]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
Fix MXCC printf warning (based on patch by Robert Reif)
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
7
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
14
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
21
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
28
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF_ASI(fmt, args...) do {} while (0)
34 #endif
35
36 #ifdef TARGET_SPARC64
37 #ifndef TARGET_ABI32
38 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
39 #else
40 #define AM_CHECK(env1) (1)
41 #endif
42 #endif
43
44 static inline void address_mask(CPUState *env1, target_ulong *addr)
45 {
46 #ifdef TARGET_SPARC64
47 if (AM_CHECK(env1))
48 *addr &= 0xffffffffULL;
49 #endif
50 }
51
52 void raise_exception(int tt)
53 {
54 env->exception_index = tt;
55 cpu_loop_exit();
56 }
57
58 static inline void set_cwp(int new_cwp)
59 {
60 cpu_set_cwp(env, new_cwp);
61 }
62
63 void helper_check_align(target_ulong addr, uint32_t align)
64 {
65 if (addr & align) {
66 #ifdef DEBUG_UNALIGNED
67 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
68 "\n", addr, env->pc);
69 #endif
70 raise_exception(TT_UNALIGNED);
71 }
72 }
73
74 #define F_HELPER(name, p) void helper_f##name##p(void)
75
76 #define F_BINOP(name) \
77 float32 helper_f ## name ## s (float32 src1, float32 src2) \
78 { \
79 return float32_ ## name (src1, src2, &env->fp_status); \
80 } \
81 F_HELPER(name, d) \
82 { \
83 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
84 } \
85 F_HELPER(name, q) \
86 { \
87 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
88 }
89
90 F_BINOP(add);
91 F_BINOP(sub);
92 F_BINOP(mul);
93 F_BINOP(div);
94 #undef F_BINOP
95
96 void helper_fsmuld(float32 src1, float32 src2)
97 {
98 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
99 float32_to_float64(src2, &env->fp_status),
100 &env->fp_status);
101 }
102
103 void helper_fdmulq(void)
104 {
105 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
106 float64_to_float128(DT1, &env->fp_status),
107 &env->fp_status);
108 }
109
110 float32 helper_fnegs(float32 src)
111 {
112 return float32_chs(src);
113 }
114
115 #ifdef TARGET_SPARC64
116 F_HELPER(neg, d)
117 {
118 DT0 = float64_chs(DT1);
119 }
120
121 F_HELPER(neg, q)
122 {
123 QT0 = float128_chs(QT1);
124 }
125 #endif
126
127 /* Integer to float conversion. */
128 float32 helper_fitos(int32_t src)
129 {
130 return int32_to_float32(src, &env->fp_status);
131 }
132
133 void helper_fitod(int32_t src)
134 {
135 DT0 = int32_to_float64(src, &env->fp_status);
136 }
137
138 void helper_fitoq(int32_t src)
139 {
140 QT0 = int32_to_float128(src, &env->fp_status);
141 }
142
143 #ifdef TARGET_SPARC64
144 float32 helper_fxtos(void)
145 {
146 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
147 }
148
149 F_HELPER(xto, d)
150 {
151 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
152 }
153
154 F_HELPER(xto, q)
155 {
156 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
157 }
158 #endif
159 #undef F_HELPER
160
161 /* floating point conversion */
162 float32 helper_fdtos(void)
163 {
164 return float64_to_float32(DT1, &env->fp_status);
165 }
166
167 void helper_fstod(float32 src)
168 {
169 DT0 = float32_to_float64(src, &env->fp_status);
170 }
171
172 float32 helper_fqtos(void)
173 {
174 return float128_to_float32(QT1, &env->fp_status);
175 }
176
177 void helper_fstoq(float32 src)
178 {
179 QT0 = float32_to_float128(src, &env->fp_status);
180 }
181
182 void helper_fqtod(void)
183 {
184 DT0 = float128_to_float64(QT1, &env->fp_status);
185 }
186
187 void helper_fdtoq(void)
188 {
189 QT0 = float64_to_float128(DT1, &env->fp_status);
190 }
191
192 /* Float to integer conversion. */
193 int32_t helper_fstoi(float32 src)
194 {
195 return float32_to_int32_round_to_zero(src, &env->fp_status);
196 }
197
198 int32_t helper_fdtoi(void)
199 {
200 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
201 }
202
203 int32_t helper_fqtoi(void)
204 {
205 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
206 }
207
208 #ifdef TARGET_SPARC64
209 void helper_fstox(float32 src)
210 {
211 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
212 }
213
214 void helper_fdtox(void)
215 {
216 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
217 }
218
219 void helper_fqtox(void)
220 {
221 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
222 }
223
224 void helper_faligndata(void)
225 {
226 uint64_t tmp;
227
228 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
229 /* on many architectures a shift of 64 does nothing */
230 if ((env->gsr & 7) != 0) {
231 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
232 }
233 *((uint64_t *)&DT0) = tmp;
234 }
235
236 #ifdef WORDS_BIGENDIAN
237 #define VIS_B64(n) b[7 - (n)]
238 #define VIS_W64(n) w[3 - (n)]
239 #define VIS_SW64(n) sw[3 - (n)]
240 #define VIS_L64(n) l[1 - (n)]
241 #define VIS_B32(n) b[3 - (n)]
242 #define VIS_W32(n) w[1 - (n)]
243 #else
244 #define VIS_B64(n) b[n]
245 #define VIS_W64(n) w[n]
246 #define VIS_SW64(n) sw[n]
247 #define VIS_L64(n) l[n]
248 #define VIS_B32(n) b[n]
249 #define VIS_W32(n) w[n]
250 #endif
251
252 typedef union {
253 uint8_t b[8];
254 uint16_t w[4];
255 int16_t sw[4];
256 uint32_t l[2];
257 float64 d;
258 } vis64;
259
260 typedef union {
261 uint8_t b[4];
262 uint16_t w[2];
263 uint32_t l;
264 float32 f;
265 } vis32;
266
267 void helper_fpmerge(void)
268 {
269 vis64 s, d;
270
271 s.d = DT0;
272 d.d = DT1;
273
274 // Reverse calculation order to handle overlap
275 d.VIS_B64(7) = s.VIS_B64(3);
276 d.VIS_B64(6) = d.VIS_B64(3);
277 d.VIS_B64(5) = s.VIS_B64(2);
278 d.VIS_B64(4) = d.VIS_B64(2);
279 d.VIS_B64(3) = s.VIS_B64(1);
280 d.VIS_B64(2) = d.VIS_B64(1);
281 d.VIS_B64(1) = s.VIS_B64(0);
282 //d.VIS_B64(0) = d.VIS_B64(0);
283
284 DT0 = d.d;
285 }
286
287 void helper_fmul8x16(void)
288 {
289 vis64 s, d;
290 uint32_t tmp;
291
292 s.d = DT0;
293 d.d = DT1;
294
295 #define PMUL(r) \
296 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
297 if ((tmp & 0xff) > 0x7f) \
298 tmp += 0x100; \
299 d.VIS_W64(r) = tmp >> 8;
300
301 PMUL(0);
302 PMUL(1);
303 PMUL(2);
304 PMUL(3);
305 #undef PMUL
306
307 DT0 = d.d;
308 }
309
310 void helper_fmul8x16al(void)
311 {
312 vis64 s, d;
313 uint32_t tmp;
314
315 s.d = DT0;
316 d.d = DT1;
317
318 #define PMUL(r) \
319 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
320 if ((tmp & 0xff) > 0x7f) \
321 tmp += 0x100; \
322 d.VIS_W64(r) = tmp >> 8;
323
324 PMUL(0);
325 PMUL(1);
326 PMUL(2);
327 PMUL(3);
328 #undef PMUL
329
330 DT0 = d.d;
331 }
332
333 void helper_fmul8x16au(void)
334 {
335 vis64 s, d;
336 uint32_t tmp;
337
338 s.d = DT0;
339 d.d = DT1;
340
341 #define PMUL(r) \
342 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
343 if ((tmp & 0xff) > 0x7f) \
344 tmp += 0x100; \
345 d.VIS_W64(r) = tmp >> 8;
346
347 PMUL(0);
348 PMUL(1);
349 PMUL(2);
350 PMUL(3);
351 #undef PMUL
352
353 DT0 = d.d;
354 }
355
356 void helper_fmul8sux16(void)
357 {
358 vis64 s, d;
359 uint32_t tmp;
360
361 s.d = DT0;
362 d.d = DT1;
363
364 #define PMUL(r) \
365 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
366 if ((tmp & 0xff) > 0x7f) \
367 tmp += 0x100; \
368 d.VIS_W64(r) = tmp >> 8;
369
370 PMUL(0);
371 PMUL(1);
372 PMUL(2);
373 PMUL(3);
374 #undef PMUL
375
376 DT0 = d.d;
377 }
378
379 void helper_fmul8ulx16(void)
380 {
381 vis64 s, d;
382 uint32_t tmp;
383
384 s.d = DT0;
385 d.d = DT1;
386
387 #define PMUL(r) \
388 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
389 if ((tmp & 0xff) > 0x7f) \
390 tmp += 0x100; \
391 d.VIS_W64(r) = tmp >> 8;
392
393 PMUL(0);
394 PMUL(1);
395 PMUL(2);
396 PMUL(3);
397 #undef PMUL
398
399 DT0 = d.d;
400 }
401
402 void helper_fmuld8sux16(void)
403 {
404 vis64 s, d;
405 uint32_t tmp;
406
407 s.d = DT0;
408 d.d = DT1;
409
410 #define PMUL(r) \
411 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
412 if ((tmp & 0xff) > 0x7f) \
413 tmp += 0x100; \
414 d.VIS_L64(r) = tmp;
415
416 // Reverse calculation order to handle overlap
417 PMUL(1);
418 PMUL(0);
419 #undef PMUL
420
421 DT0 = d.d;
422 }
423
424 void helper_fmuld8ulx16(void)
425 {
426 vis64 s, d;
427 uint32_t tmp;
428
429 s.d = DT0;
430 d.d = DT1;
431
432 #define PMUL(r) \
433 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
434 if ((tmp & 0xff) > 0x7f) \
435 tmp += 0x100; \
436 d.VIS_L64(r) = tmp;
437
438 // Reverse calculation order to handle overlap
439 PMUL(1);
440 PMUL(0);
441 #undef PMUL
442
443 DT0 = d.d;
444 }
445
446 void helper_fexpand(void)
447 {
448 vis32 s;
449 vis64 d;
450
451 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
452 d.d = DT1;
453 d.VIS_L64(0) = s.VIS_W32(0) << 4;
454 d.VIS_L64(1) = s.VIS_W32(1) << 4;
455 d.VIS_L64(2) = s.VIS_W32(2) << 4;
456 d.VIS_L64(3) = s.VIS_W32(3) << 4;
457
458 DT0 = d.d;
459 }
460
461 #define VIS_HELPER(name, F) \
462 void name##16(void) \
463 { \
464 vis64 s, d; \
465 \
466 s.d = DT0; \
467 d.d = DT1; \
468 \
469 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
470 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
471 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
472 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
473 \
474 DT0 = d.d; \
475 } \
476 \
477 uint32_t name##16s(uint32_t src1, uint32_t src2) \
478 { \
479 vis32 s, d; \
480 \
481 s.l = src1; \
482 d.l = src2; \
483 \
484 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
485 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
486 \
487 return d.l; \
488 } \
489 \
490 void name##32(void) \
491 { \
492 vis64 s, d; \
493 \
494 s.d = DT0; \
495 d.d = DT1; \
496 \
497 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
498 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
499 \
500 DT0 = d.d; \
501 } \
502 \
503 uint32_t name##32s(uint32_t src1, uint32_t src2) \
504 { \
505 vis32 s, d; \
506 \
507 s.l = src1; \
508 d.l = src2; \
509 \
510 d.l = F(d.l, s.l); \
511 \
512 return d.l; \
513 }
514
515 #define FADD(a, b) ((a) + (b))
516 #define FSUB(a, b) ((a) - (b))
517 VIS_HELPER(helper_fpadd, FADD)
518 VIS_HELPER(helper_fpsub, FSUB)
519
520 #define VIS_CMPHELPER(name, F) \
521 void name##16(void) \
522 { \
523 vis64 s, d; \
524 \
525 s.d = DT0; \
526 d.d = DT1; \
527 \
528 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
529 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
530 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
531 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
532 \
533 DT0 = d.d; \
534 } \
535 \
536 void name##32(void) \
537 { \
538 vis64 s, d; \
539 \
540 s.d = DT0; \
541 d.d = DT1; \
542 \
543 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
544 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
545 \
546 DT0 = d.d; \
547 }
548
549 #define FCMPGT(a, b) ((a) > (b))
550 #define FCMPEQ(a, b) ((a) == (b))
551 #define FCMPLE(a, b) ((a) <= (b))
552 #define FCMPNE(a, b) ((a) != (b))
553
554 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
555 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
556 VIS_CMPHELPER(helper_fcmple, FCMPLE)
557 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
558 #endif
559
560 void helper_check_ieee_exceptions(void)
561 {
562 target_ulong status;
563
564 status = get_float_exception_flags(&env->fp_status);
565 if (status) {
566 /* Copy IEEE 754 flags into FSR */
567 if (status & float_flag_invalid)
568 env->fsr |= FSR_NVC;
569 if (status & float_flag_overflow)
570 env->fsr |= FSR_OFC;
571 if (status & float_flag_underflow)
572 env->fsr |= FSR_UFC;
573 if (status & float_flag_divbyzero)
574 env->fsr |= FSR_DZC;
575 if (status & float_flag_inexact)
576 env->fsr |= FSR_NXC;
577
578 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
579 /* Unmasked exception, generate a trap */
580 env->fsr |= FSR_FTT_IEEE_EXCP;
581 raise_exception(TT_FP_EXCP);
582 } else {
583 /* Accumulate exceptions */
584 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
585 }
586 }
587 }
588
589 void helper_clear_float_exceptions(void)
590 {
591 set_float_exception_flags(0, &env->fp_status);
592 }
593
594 float32 helper_fabss(float32 src)
595 {
596 return float32_abs(src);
597 }
598
599 #ifdef TARGET_SPARC64
600 void helper_fabsd(void)
601 {
602 DT0 = float64_abs(DT1);
603 }
604
605 void helper_fabsq(void)
606 {
607 QT0 = float128_abs(QT1);
608 }
609 #endif
610
611 float32 helper_fsqrts(float32 src)
612 {
613 return float32_sqrt(src, &env->fp_status);
614 }
615
616 void helper_fsqrtd(void)
617 {
618 DT0 = float64_sqrt(DT1, &env->fp_status);
619 }
620
621 void helper_fsqrtq(void)
622 {
623 QT0 = float128_sqrt(QT1, &env->fp_status);
624 }
625
626 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
627 void glue(helper_, name) (void) \
628 { \
629 target_ulong new_fsr; \
630 \
631 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
632 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
633 case float_relation_unordered: \
634 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
635 if ((env->fsr & FSR_NVM) || TRAP) { \
636 env->fsr |= new_fsr; \
637 env->fsr |= FSR_NVC; \
638 env->fsr |= FSR_FTT_IEEE_EXCP; \
639 raise_exception(TT_FP_EXCP); \
640 } else { \
641 env->fsr |= FSR_NVA; \
642 } \
643 break; \
644 case float_relation_less: \
645 new_fsr = FSR_FCC0 << FS; \
646 break; \
647 case float_relation_greater: \
648 new_fsr = FSR_FCC1 << FS; \
649 break; \
650 default: \
651 new_fsr = 0; \
652 break; \
653 } \
654 env->fsr |= new_fsr; \
655 }
656 #define GEN_FCMPS(name, size, FS, TRAP) \
657 void glue(helper_, name)(float32 src1, float32 src2) \
658 { \
659 target_ulong new_fsr; \
660 \
661 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
662 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
663 case float_relation_unordered: \
664 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
665 if ((env->fsr & FSR_NVM) || TRAP) { \
666 env->fsr |= new_fsr; \
667 env->fsr |= FSR_NVC; \
668 env->fsr |= FSR_FTT_IEEE_EXCP; \
669 raise_exception(TT_FP_EXCP); \
670 } else { \
671 env->fsr |= FSR_NVA; \
672 } \
673 break; \
674 case float_relation_less: \
675 new_fsr = FSR_FCC0 << FS; \
676 break; \
677 case float_relation_greater: \
678 new_fsr = FSR_FCC1 << FS; \
679 break; \
680 default: \
681 new_fsr = 0; \
682 break; \
683 } \
684 env->fsr |= new_fsr; \
685 }
686
687 GEN_FCMPS(fcmps, float32, 0, 0);
688 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
689
690 GEN_FCMPS(fcmpes, float32, 0, 1);
691 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
692
693 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
694 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
695
696 #ifdef TARGET_SPARC64
697 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
698 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
699 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
700
701 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
702 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
703 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
704
705 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
706 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
707 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
708
709 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
710 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
711 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
712
713 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
714 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
715 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
716
717 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
718 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
719 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
720 #endif
721 #undef GEN_FCMPS
722
723 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
724 defined(DEBUG_MXCC)
725 static void dump_mxcc(CPUState *env)
726 {
727 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
728 env->mxccdata[0], env->mxccdata[1],
729 env->mxccdata[2], env->mxccdata[3]);
730 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
731 " %016llx %016llx %016llx %016llx\n",
732 env->mxccregs[0], env->mxccregs[1],
733 env->mxccregs[2], env->mxccregs[3],
734 env->mxccregs[4], env->mxccregs[5],
735 env->mxccregs[6], env->mxccregs[7]);
736 }
737 #endif
738
739 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
740 && defined(DEBUG_ASI)
741 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
742 uint64_t r1)
743 {
744 switch (size)
745 {
746 case 1:
747 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
748 addr, asi, r1 & 0xff);
749 break;
750 case 2:
751 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
752 addr, asi, r1 & 0xffff);
753 break;
754 case 4:
755 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
756 addr, asi, r1 & 0xffffffff);
757 break;
758 case 8:
759 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
760 addr, asi, r1);
761 break;
762 }
763 }
764 #endif
765
766 #ifndef TARGET_SPARC64
767 #ifndef CONFIG_USER_ONLY
768 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
769 {
770 uint64_t ret = 0;
771 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
772 uint32_t last_addr = addr;
773 #endif
774
775 helper_check_align(addr, size - 1);
776 switch (asi) {
777 case 2: /* SuperSparc MXCC registers */
778 switch (addr) {
779 case 0x01c00a00: /* MXCC control register */
780 if (size == 8)
781 ret = env->mxccregs[3];
782 else
783 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
784 size);
785 break;
786 case 0x01c00a04: /* MXCC control register */
787 if (size == 4)
788 ret = env->mxccregs[3];
789 else
790 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
791 size);
792 break;
793 case 0x01c00c00: /* Module reset register */
794 if (size == 8) {
795 ret = env->mxccregs[5];
796 // should we do something here?
797 } else
798 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
799 size);
800 break;
801 case 0x01c00f00: /* MBus port address register */
802 if (size == 8)
803 ret = env->mxccregs[7];
804 else
805 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
806 size);
807 break;
808 default:
809 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
810 size);
811 break;
812 }
813 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
814 "addr = %08x -> ret = %" PRIx64 ","
815 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
816 #ifdef DEBUG_MXCC
817 dump_mxcc(env);
818 #endif
819 break;
820 case 3: /* MMU probe */
821 {
822 int mmulev;
823
824 mmulev = (addr >> 8) & 15;
825 if (mmulev > 4)
826 ret = 0;
827 else
828 ret = mmu_probe(env, addr, mmulev);
829 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
830 addr, mmulev, ret);
831 }
832 break;
833 case 4: /* read MMU regs */
834 {
835 int reg = (addr >> 8) & 0x1f;
836
837 ret = env->mmuregs[reg];
838 if (reg == 3) /* Fault status cleared on read */
839 env->mmuregs[3] = 0;
840 else if (reg == 0x13) /* Fault status read */
841 ret = env->mmuregs[3];
842 else if (reg == 0x14) /* Fault address read */
843 ret = env->mmuregs[4];
844 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
845 }
846 break;
847 case 5: // Turbosparc ITLB Diagnostic
848 case 6: // Turbosparc DTLB Diagnostic
849 case 7: // Turbosparc IOTLB Diagnostic
850 break;
851 case 9: /* Supervisor code access */
852 switch(size) {
853 case 1:
854 ret = ldub_code(addr);
855 break;
856 case 2:
857 ret = lduw_code(addr);
858 break;
859 default:
860 case 4:
861 ret = ldl_code(addr);
862 break;
863 case 8:
864 ret = ldq_code(addr);
865 break;
866 }
867 break;
868 case 0xa: /* User data access */
869 switch(size) {
870 case 1:
871 ret = ldub_user(addr);
872 break;
873 case 2:
874 ret = lduw_user(addr);
875 break;
876 default:
877 case 4:
878 ret = ldl_user(addr);
879 break;
880 case 8:
881 ret = ldq_user(addr);
882 break;
883 }
884 break;
885 case 0xb: /* Supervisor data access */
886 switch(size) {
887 case 1:
888 ret = ldub_kernel(addr);
889 break;
890 case 2:
891 ret = lduw_kernel(addr);
892 break;
893 default:
894 case 4:
895 ret = ldl_kernel(addr);
896 break;
897 case 8:
898 ret = ldq_kernel(addr);
899 break;
900 }
901 break;
902 case 0xc: /* I-cache tag */
903 case 0xd: /* I-cache data */
904 case 0xe: /* D-cache tag */
905 case 0xf: /* D-cache data */
906 break;
907 case 0x20: /* MMU passthrough */
908 switch(size) {
909 case 1:
910 ret = ldub_phys(addr);
911 break;
912 case 2:
913 ret = lduw_phys(addr);
914 break;
915 default:
916 case 4:
917 ret = ldl_phys(addr);
918 break;
919 case 8:
920 ret = ldq_phys(addr);
921 break;
922 }
923 break;
924 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
925 switch(size) {
926 case 1:
927 ret = ldub_phys((target_phys_addr_t)addr
928 | ((target_phys_addr_t)(asi & 0xf) << 32));
929 break;
930 case 2:
931 ret = lduw_phys((target_phys_addr_t)addr
932 | ((target_phys_addr_t)(asi & 0xf) << 32));
933 break;
934 default:
935 case 4:
936 ret = ldl_phys((target_phys_addr_t)addr
937 | ((target_phys_addr_t)(asi & 0xf) << 32));
938 break;
939 case 8:
940 ret = ldq_phys((target_phys_addr_t)addr
941 | ((target_phys_addr_t)(asi & 0xf) << 32));
942 break;
943 }
944 break;
945 case 0x30: // Turbosparc secondary cache diagnostic
946 case 0x31: // Turbosparc RAM snoop
947 case 0x32: // Turbosparc page table descriptor diagnostic
948 case 0x39: /* data cache diagnostic register */
949 ret = 0;
950 break;
951 case 8: /* User code access, XXX */
952 default:
953 do_unassigned_access(addr, 0, 0, asi);
954 ret = 0;
955 break;
956 }
957 if (sign) {
958 switch(size) {
959 case 1:
960 ret = (int8_t) ret;
961 break;
962 case 2:
963 ret = (int16_t) ret;
964 break;
965 case 4:
966 ret = (int32_t) ret;
967 break;
968 default:
969 break;
970 }
971 }
972 #ifdef DEBUG_ASI
973 dump_asi("read ", last_addr, asi, size, ret);
974 #endif
975 return ret;
976 }
977
978 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
979 {
980 helper_check_align(addr, size - 1);
981 switch(asi) {
982 case 2: /* SuperSparc MXCC registers */
983 switch (addr) {
984 case 0x01c00000: /* MXCC stream data register 0 */
985 if (size == 8)
986 env->mxccdata[0] = val;
987 else
988 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
989 size);
990 break;
991 case 0x01c00008: /* MXCC stream data register 1 */
992 if (size == 8)
993 env->mxccdata[1] = val;
994 else
995 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
996 size);
997 break;
998 case 0x01c00010: /* MXCC stream data register 2 */
999 if (size == 8)
1000 env->mxccdata[2] = val;
1001 else
1002 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1003 size);
1004 break;
1005 case 0x01c00018: /* MXCC stream data register 3 */
1006 if (size == 8)
1007 env->mxccdata[3] = val;
1008 else
1009 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1010 size);
1011 break;
1012 case 0x01c00100: /* MXCC stream source */
1013 if (size == 8)
1014 env->mxccregs[0] = val;
1015 else
1016 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1017 size);
1018 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1019 0);
1020 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1021 8);
1022 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1023 16);
1024 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1025 24);
1026 break;
1027 case 0x01c00200: /* MXCC stream destination */
1028 if (size == 8)
1029 env->mxccregs[1] = val;
1030 else
1031 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1032 size);
1033 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1034 env->mxccdata[0]);
1035 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1036 env->mxccdata[1]);
1037 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1038 env->mxccdata[2]);
1039 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1040 env->mxccdata[3]);
1041 break;
1042 case 0x01c00a00: /* MXCC control register */
1043 if (size == 8)
1044 env->mxccregs[3] = val;
1045 else
1046 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1047 size);
1048 break;
1049 case 0x01c00a04: /* MXCC control register */
1050 if (size == 4)
1051 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1052 | val;
1053 else
1054 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1055 size);
1056 break;
1057 case 0x01c00e00: /* MXCC error register */
1058 // writing a 1 bit clears the error
1059 if (size == 8)
1060 env->mxccregs[6] &= ~val;
1061 else
1062 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1063 size);
1064 break;
1065 case 0x01c00f00: /* MBus port address register */
1066 if (size == 8)
1067 env->mxccregs[7] = val;
1068 else
1069 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1070 size);
1071 break;
1072 default:
1073 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1074 size);
1075 break;
1076 }
1077 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1078 asi, size, addr, val);
1079 #ifdef DEBUG_MXCC
1080 dump_mxcc(env);
1081 #endif
1082 break;
1083 case 3: /* MMU flush */
1084 {
1085 int mmulev;
1086
1087 mmulev = (addr >> 8) & 15;
1088 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1089 switch (mmulev) {
1090 case 0: // flush page
1091 tlb_flush_page(env, addr & 0xfffff000);
1092 break;
1093 case 1: // flush segment (256k)
1094 case 2: // flush region (16M)
1095 case 3: // flush context (4G)
1096 case 4: // flush entire
1097 tlb_flush(env, 1);
1098 break;
1099 default:
1100 break;
1101 }
1102 #ifdef DEBUG_MMU
1103 dump_mmu(env);
1104 #endif
1105 }
1106 break;
1107 case 4: /* write MMU regs */
1108 {
1109 int reg = (addr >> 8) & 0x1f;
1110 uint32_t oldreg;
1111
1112 oldreg = env->mmuregs[reg];
1113 switch(reg) {
1114 case 0: // Control Register
1115 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1116 (val & 0x00ffffff);
1117 // Mappings generated during no-fault mode or MMU
1118 // disabled mode are invalid in normal mode
1119 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1120 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1121 tlb_flush(env, 1);
1122 break;
1123 case 1: // Context Table Pointer Register
1124 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1125 break;
1126 case 2: // Context Register
1127 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1128 if (oldreg != env->mmuregs[reg]) {
1129 /* we flush when the MMU context changes because
1130 QEMU has no MMU context support */
1131 tlb_flush(env, 1);
1132 }
1133 break;
1134 case 3: // Synchronous Fault Status Register with Clear
1135 case 4: // Synchronous Fault Address Register
1136 break;
1137 case 0x10: // TLB Replacement Control Register
1138 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1139 break;
1140 case 0x13: // Synchronous Fault Status Register with Read and Clear
1141 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1142 break;
1143 case 0x14: // Synchronous Fault Address Register
1144 env->mmuregs[4] = val;
1145 break;
1146 default:
1147 env->mmuregs[reg] = val;
1148 break;
1149 }
1150 if (oldreg != env->mmuregs[reg]) {
1151 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1152 reg, oldreg, env->mmuregs[reg]);
1153 }
1154 #ifdef DEBUG_MMU
1155 dump_mmu(env);
1156 #endif
1157 }
1158 break;
1159 case 5: // Turbosparc ITLB Diagnostic
1160 case 6: // Turbosparc DTLB Diagnostic
1161 case 7: // Turbosparc IOTLB Diagnostic
1162 break;
1163 case 0xa: /* User data access */
1164 switch(size) {
1165 case 1:
1166 stb_user(addr, val);
1167 break;
1168 case 2:
1169 stw_user(addr, val);
1170 break;
1171 default:
1172 case 4:
1173 stl_user(addr, val);
1174 break;
1175 case 8:
1176 stq_user(addr, val);
1177 break;
1178 }
1179 break;
1180 case 0xb: /* Supervisor data access */
1181 switch(size) {
1182 case 1:
1183 stb_kernel(addr, val);
1184 break;
1185 case 2:
1186 stw_kernel(addr, val);
1187 break;
1188 default:
1189 case 4:
1190 stl_kernel(addr, val);
1191 break;
1192 case 8:
1193 stq_kernel(addr, val);
1194 break;
1195 }
1196 break;
1197 case 0xc: /* I-cache tag */
1198 case 0xd: /* I-cache data */
1199 case 0xe: /* D-cache tag */
1200 case 0xf: /* D-cache data */
1201 case 0x10: /* I/D-cache flush page */
1202 case 0x11: /* I/D-cache flush segment */
1203 case 0x12: /* I/D-cache flush region */
1204 case 0x13: /* I/D-cache flush context */
1205 case 0x14: /* I/D-cache flush user */
1206 break;
1207 case 0x17: /* Block copy, sta access */
1208 {
1209 // val = src
1210 // addr = dst
1211 // copy 32 bytes
1212 unsigned int i;
1213 uint32_t src = val & ~3, dst = addr & ~3, temp;
1214
1215 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1216 temp = ldl_kernel(src);
1217 stl_kernel(dst, temp);
1218 }
1219 }
1220 break;
1221 case 0x1f: /* Block fill, stda access */
1222 {
1223 // addr = dst
1224 // fill 32 bytes with val
1225 unsigned int i;
1226 uint32_t dst = addr & 7;
1227
1228 for (i = 0; i < 32; i += 8, dst += 8)
1229 stq_kernel(dst, val);
1230 }
1231 break;
1232 case 0x20: /* MMU passthrough */
1233 {
1234 switch(size) {
1235 case 1:
1236 stb_phys(addr, val);
1237 break;
1238 case 2:
1239 stw_phys(addr, val);
1240 break;
1241 case 4:
1242 default:
1243 stl_phys(addr, val);
1244 break;
1245 case 8:
1246 stq_phys(addr, val);
1247 break;
1248 }
1249 }
1250 break;
1251 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1252 {
1253 switch(size) {
1254 case 1:
1255 stb_phys((target_phys_addr_t)addr
1256 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1257 break;
1258 case 2:
1259 stw_phys((target_phys_addr_t)addr
1260 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1261 break;
1262 case 4:
1263 default:
1264 stl_phys((target_phys_addr_t)addr
1265 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1266 break;
1267 case 8:
1268 stq_phys((target_phys_addr_t)addr
1269 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1270 break;
1271 }
1272 }
1273 break;
1274 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1275 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1276 // Turbosparc snoop RAM
1277 case 0x32: // store buffer control or Turbosparc page table
1278 // descriptor diagnostic
1279 case 0x36: /* I-cache flash clear */
1280 case 0x37: /* D-cache flash clear */
1281 case 0x38: /* breakpoint diagnostics */
1282 case 0x4c: /* breakpoint action */
1283 break;
1284 case 8: /* User code access, XXX */
1285 case 9: /* Supervisor code access, XXX */
1286 default:
1287 do_unassigned_access(addr, 1, 0, asi);
1288 break;
1289 }
1290 #ifdef DEBUG_ASI
1291 dump_asi("write", addr, asi, size, val);
1292 #endif
1293 }
1294
1295 #endif /* CONFIG_USER_ONLY */
1296 #else /* TARGET_SPARC64 */
1297
1298 #ifdef CONFIG_USER_ONLY
1299 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1300 {
1301 uint64_t ret = 0;
1302 #if defined(DEBUG_ASI)
1303 target_ulong last_addr = addr;
1304 #endif
1305
1306 if (asi < 0x80)
1307 raise_exception(TT_PRIV_ACT);
1308
1309 helper_check_align(addr, size - 1);
1310 address_mask(env, &addr);
1311
1312 switch (asi) {
1313 case 0x82: // Primary no-fault
1314 case 0x8a: // Primary no-fault LE
1315 if (page_check_range(addr, size, PAGE_READ) == -1) {
1316 #ifdef DEBUG_ASI
1317 dump_asi("read ", last_addr, asi, size, ret);
1318 #endif
1319 return 0;
1320 }
1321 // Fall through
1322 case 0x80: // Primary
1323 case 0x88: // Primary LE
1324 {
1325 switch(size) {
1326 case 1:
1327 ret = ldub_raw(addr);
1328 break;
1329 case 2:
1330 ret = lduw_raw(addr);
1331 break;
1332 case 4:
1333 ret = ldl_raw(addr);
1334 break;
1335 default:
1336 case 8:
1337 ret = ldq_raw(addr);
1338 break;
1339 }
1340 }
1341 break;
1342 case 0x83: // Secondary no-fault
1343 case 0x8b: // Secondary no-fault LE
1344 if (page_check_range(addr, size, PAGE_READ) == -1) {
1345 #ifdef DEBUG_ASI
1346 dump_asi("read ", last_addr, asi, size, ret);
1347 #endif
1348 return 0;
1349 }
1350 // Fall through
1351 case 0x81: // Secondary
1352 case 0x89: // Secondary LE
1353 // XXX
1354 break;
1355 default:
1356 break;
1357 }
1358
1359 /* Convert from little endian */
1360 switch (asi) {
1361 case 0x88: // Primary LE
1362 case 0x89: // Secondary LE
1363 case 0x8a: // Primary no-fault LE
1364 case 0x8b: // Secondary no-fault LE
1365 switch(size) {
1366 case 2:
1367 ret = bswap16(ret);
1368 break;
1369 case 4:
1370 ret = bswap32(ret);
1371 break;
1372 case 8:
1373 ret = bswap64(ret);
1374 break;
1375 default:
1376 break;
1377 }
1378 default:
1379 break;
1380 }
1381
1382 /* Convert to signed number */
1383 if (sign) {
1384 switch(size) {
1385 case 1:
1386 ret = (int8_t) ret;
1387 break;
1388 case 2:
1389 ret = (int16_t) ret;
1390 break;
1391 case 4:
1392 ret = (int32_t) ret;
1393 break;
1394 default:
1395 break;
1396 }
1397 }
1398 #ifdef DEBUG_ASI
1399 dump_asi("read ", last_addr, asi, size, ret);
1400 #endif
1401 return ret;
1402 }
1403
1404 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1405 {
1406 #ifdef DEBUG_ASI
1407 dump_asi("write", addr, asi, size, val);
1408 #endif
1409 if (asi < 0x80)
1410 raise_exception(TT_PRIV_ACT);
1411
1412 helper_check_align(addr, size - 1);
1413 address_mask(env, &addr);
1414
1415 /* Convert to little endian */
1416 switch (asi) {
1417 case 0x88: // Primary LE
1418 case 0x89: // Secondary LE
1419 switch(size) {
1420 case 2:
1421 addr = bswap16(addr);
1422 break;
1423 case 4:
1424 addr = bswap32(addr);
1425 break;
1426 case 8:
1427 addr = bswap64(addr);
1428 break;
1429 default:
1430 break;
1431 }
1432 default:
1433 break;
1434 }
1435
1436 switch(asi) {
1437 case 0x80: // Primary
1438 case 0x88: // Primary LE
1439 {
1440 switch(size) {
1441 case 1:
1442 stb_raw(addr, val);
1443 break;
1444 case 2:
1445 stw_raw(addr, val);
1446 break;
1447 case 4:
1448 stl_raw(addr, val);
1449 break;
1450 case 8:
1451 default:
1452 stq_raw(addr, val);
1453 break;
1454 }
1455 }
1456 break;
1457 case 0x81: // Secondary
1458 case 0x89: // Secondary LE
1459 // XXX
1460 return;
1461
1462 case 0x82: // Primary no-fault, RO
1463 case 0x83: // Secondary no-fault, RO
1464 case 0x8a: // Primary no-fault LE, RO
1465 case 0x8b: // Secondary no-fault LE, RO
1466 default:
1467 do_unassigned_access(addr, 1, 0, 1);
1468 return;
1469 }
1470 }
1471
1472 #else /* CONFIG_USER_ONLY */
1473
1474 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1475 {
1476 uint64_t ret = 0;
1477 #if defined(DEBUG_ASI)
1478 target_ulong last_addr = addr;
1479 #endif
1480
1481 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1482 || ((env->def->features & CPU_FEATURE_HYPV)
1483 && asi >= 0x30 && asi < 0x80
1484 && !(env->hpstate & HS_PRIV)))
1485 raise_exception(TT_PRIV_ACT);
1486
1487 helper_check_align(addr, size - 1);
1488 switch (asi) {
1489 case 0x82: // Primary no-fault
1490 case 0x8a: // Primary no-fault LE
1491 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1492 #ifdef DEBUG_ASI
1493 dump_asi("read ", last_addr, asi, size, ret);
1494 #endif
1495 return 0;
1496 }
1497 // Fall through
1498 case 0x10: // As if user primary
1499 case 0x18: // As if user primary LE
1500 case 0x80: // Primary
1501 case 0x88: // Primary LE
1502 case 0xe2: // UA2007 Primary block init
1503 case 0xe3: // UA2007 Secondary block init
1504 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1505 if ((env->def->features & CPU_FEATURE_HYPV)
1506 && env->hpstate & HS_PRIV) {
1507 switch(size) {
1508 case 1:
1509 ret = ldub_hypv(addr);
1510 break;
1511 case 2:
1512 ret = lduw_hypv(addr);
1513 break;
1514 case 4:
1515 ret = ldl_hypv(addr);
1516 break;
1517 default:
1518 case 8:
1519 ret = ldq_hypv(addr);
1520 break;
1521 }
1522 } else {
1523 switch(size) {
1524 case 1:
1525 ret = ldub_kernel(addr);
1526 break;
1527 case 2:
1528 ret = lduw_kernel(addr);
1529 break;
1530 case 4:
1531 ret = ldl_kernel(addr);
1532 break;
1533 default:
1534 case 8:
1535 ret = ldq_kernel(addr);
1536 break;
1537 }
1538 }
1539 } else {
1540 switch(size) {
1541 case 1:
1542 ret = ldub_user(addr);
1543 break;
1544 case 2:
1545 ret = lduw_user(addr);
1546 break;
1547 case 4:
1548 ret = ldl_user(addr);
1549 break;
1550 default:
1551 case 8:
1552 ret = ldq_user(addr);
1553 break;
1554 }
1555 }
1556 break;
1557 case 0x14: // Bypass
1558 case 0x15: // Bypass, non-cacheable
1559 case 0x1c: // Bypass LE
1560 case 0x1d: // Bypass, non-cacheable LE
1561 {
1562 switch(size) {
1563 case 1:
1564 ret = ldub_phys(addr);
1565 break;
1566 case 2:
1567 ret = lduw_phys(addr);
1568 break;
1569 case 4:
1570 ret = ldl_phys(addr);
1571 break;
1572 default:
1573 case 8:
1574 ret = ldq_phys(addr);
1575 break;
1576 }
1577 break;
1578 }
1579 case 0x24: // Nucleus quad LDD 128 bit atomic
1580 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1581 // Only ldda allowed
1582 raise_exception(TT_ILL_INSN);
1583 return 0;
1584 case 0x83: // Secondary no-fault
1585 case 0x8b: // Secondary no-fault LE
1586 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1587 #ifdef DEBUG_ASI
1588 dump_asi("read ", last_addr, asi, size, ret);
1589 #endif
1590 return 0;
1591 }
1592 // Fall through
1593 case 0x04: // Nucleus
1594 case 0x0c: // Nucleus Little Endian (LE)
1595 case 0x11: // As if user secondary
1596 case 0x19: // As if user secondary LE
1597 case 0x4a: // UPA config
1598 case 0x81: // Secondary
1599 case 0x89: // Secondary LE
1600 // XXX
1601 break;
1602 case 0x45: // LSU
1603 ret = env->lsu;
1604 break;
1605 case 0x50: // I-MMU regs
1606 {
1607 int reg = (addr >> 3) & 0xf;
1608
1609 ret = env->immuregs[reg];
1610 break;
1611 }
1612 case 0x51: // I-MMU 8k TSB pointer
1613 case 0x52: // I-MMU 64k TSB pointer
1614 // XXX
1615 break;
1616 case 0x55: // I-MMU data access
1617 {
1618 int reg = (addr >> 3) & 0x3f;
1619
1620 ret = env->itlb_tte[reg];
1621 break;
1622 }
1623 case 0x56: // I-MMU tag read
1624 {
1625 int reg = (addr >> 3) & 0x3f;
1626
1627 ret = env->itlb_tag[reg];
1628 break;
1629 }
1630 case 0x58: // D-MMU regs
1631 {
1632 int reg = (addr >> 3) & 0xf;
1633
1634 ret = env->dmmuregs[reg];
1635 break;
1636 }
1637 case 0x5d: // D-MMU data access
1638 {
1639 int reg = (addr >> 3) & 0x3f;
1640
1641 ret = env->dtlb_tte[reg];
1642 break;
1643 }
1644 case 0x5e: // D-MMU tag read
1645 {
1646 int reg = (addr >> 3) & 0x3f;
1647
1648 ret = env->dtlb_tag[reg];
1649 break;
1650 }
1651 case 0x46: // D-cache data
1652 case 0x47: // D-cache tag access
1653 case 0x4b: // E-cache error enable
1654 case 0x4c: // E-cache asynchronous fault status
1655 case 0x4d: // E-cache asynchronous fault address
1656 case 0x4e: // E-cache tag data
1657 case 0x66: // I-cache instruction access
1658 case 0x67: // I-cache tag access
1659 case 0x6e: // I-cache predecode
1660 case 0x6f: // I-cache LRU etc.
1661 case 0x76: // E-cache tag
1662 case 0x7e: // E-cache tag
1663 break;
1664 case 0x59: // D-MMU 8k TSB pointer
1665 case 0x5a: // D-MMU 64k TSB pointer
1666 case 0x5b: // D-MMU data pointer
1667 case 0x48: // Interrupt dispatch, RO
1668 case 0x49: // Interrupt data receive
1669 case 0x7f: // Incoming interrupt vector, RO
1670 // XXX
1671 break;
1672 case 0x54: // I-MMU data in, WO
1673 case 0x57: // I-MMU demap, WO
1674 case 0x5c: // D-MMU data in, WO
1675 case 0x5f: // D-MMU demap, WO
1676 case 0x77: // Interrupt vector, WO
1677 default:
1678 do_unassigned_access(addr, 0, 0, 1);
1679 ret = 0;
1680 break;
1681 }
1682
1683 /* Convert from little endian */
1684 switch (asi) {
1685 case 0x0c: // Nucleus Little Endian (LE)
1686 case 0x18: // As if user primary LE
1687 case 0x19: // As if user secondary LE
1688 case 0x1c: // Bypass LE
1689 case 0x1d: // Bypass, non-cacheable LE
1690 case 0x88: // Primary LE
1691 case 0x89: // Secondary LE
1692 case 0x8a: // Primary no-fault LE
1693 case 0x8b: // Secondary no-fault LE
1694 switch(size) {
1695 case 2:
1696 ret = bswap16(ret);
1697 break;
1698 case 4:
1699 ret = bswap32(ret);
1700 break;
1701 case 8:
1702 ret = bswap64(ret);
1703 break;
1704 default:
1705 break;
1706 }
1707 default:
1708 break;
1709 }
1710
1711 /* Convert to signed number */
1712 if (sign) {
1713 switch(size) {
1714 case 1:
1715 ret = (int8_t) ret;
1716 break;
1717 case 2:
1718 ret = (int16_t) ret;
1719 break;
1720 case 4:
1721 ret = (int32_t) ret;
1722 break;
1723 default:
1724 break;
1725 }
1726 }
1727 #ifdef DEBUG_ASI
1728 dump_asi("read ", last_addr, asi, size, ret);
1729 #endif
1730 return ret;
1731 }
1732
1733 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1734 {
1735 #ifdef DEBUG_ASI
1736 dump_asi("write", addr, asi, size, val);
1737 #endif
1738 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1739 || ((env->def->features & CPU_FEATURE_HYPV)
1740 && asi >= 0x30 && asi < 0x80
1741 && !(env->hpstate & HS_PRIV)))
1742 raise_exception(TT_PRIV_ACT);
1743
1744 helper_check_align(addr, size - 1);
1745 /* Convert to little endian */
1746 switch (asi) {
1747 case 0x0c: // Nucleus Little Endian (LE)
1748 case 0x18: // As if user primary LE
1749 case 0x19: // As if user secondary LE
1750 case 0x1c: // Bypass LE
1751 case 0x1d: // Bypass, non-cacheable LE
1752 case 0x88: // Primary LE
1753 case 0x89: // Secondary LE
1754 switch(size) {
1755 case 2:
1756 addr = bswap16(addr);
1757 break;
1758 case 4:
1759 addr = bswap32(addr);
1760 break;
1761 case 8:
1762 addr = bswap64(addr);
1763 break;
1764 default:
1765 break;
1766 }
1767 default:
1768 break;
1769 }
1770
1771 switch(asi) {
1772 case 0x10: // As if user primary
1773 case 0x18: // As if user primary LE
1774 case 0x80: // Primary
1775 case 0x88: // Primary LE
1776 case 0xe2: // UA2007 Primary block init
1777 case 0xe3: // UA2007 Secondary block init
1778 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1779 if ((env->def->features & CPU_FEATURE_HYPV)
1780 && env->hpstate & HS_PRIV) {
1781 switch(size) {
1782 case 1:
1783 stb_hypv(addr, val);
1784 break;
1785 case 2:
1786 stw_hypv(addr, val);
1787 break;
1788 case 4:
1789 stl_hypv(addr, val);
1790 break;
1791 case 8:
1792 default:
1793 stq_hypv(addr, val);
1794 break;
1795 }
1796 } else {
1797 switch(size) {
1798 case 1:
1799 stb_kernel(addr, val);
1800 break;
1801 case 2:
1802 stw_kernel(addr, val);
1803 break;
1804 case 4:
1805 stl_kernel(addr, val);
1806 break;
1807 case 8:
1808 default:
1809 stq_kernel(addr, val);
1810 break;
1811 }
1812 }
1813 } else {
1814 switch(size) {
1815 case 1:
1816 stb_user(addr, val);
1817 break;
1818 case 2:
1819 stw_user(addr, val);
1820 break;
1821 case 4:
1822 stl_user(addr, val);
1823 break;
1824 case 8:
1825 default:
1826 stq_user(addr, val);
1827 break;
1828 }
1829 }
1830 break;
1831 case 0x14: // Bypass
1832 case 0x15: // Bypass, non-cacheable
1833 case 0x1c: // Bypass LE
1834 case 0x1d: // Bypass, non-cacheable LE
1835 {
1836 switch(size) {
1837 case 1:
1838 stb_phys(addr, val);
1839 break;
1840 case 2:
1841 stw_phys(addr, val);
1842 break;
1843 case 4:
1844 stl_phys(addr, val);
1845 break;
1846 case 8:
1847 default:
1848 stq_phys(addr, val);
1849 break;
1850 }
1851 }
1852 return;
1853 case 0x24: // Nucleus quad LDD 128 bit atomic
1854 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1855 // Only ldda allowed
1856 raise_exception(TT_ILL_INSN);
1857 return;
1858 case 0x04: // Nucleus
1859 case 0x0c: // Nucleus Little Endian (LE)
1860 case 0x11: // As if user secondary
1861 case 0x19: // As if user secondary LE
1862 case 0x4a: // UPA config
1863 case 0x81: // Secondary
1864 case 0x89: // Secondary LE
1865 // XXX
1866 return;
1867 case 0x45: // LSU
1868 {
1869 uint64_t oldreg;
1870
1871 oldreg = env->lsu;
1872 env->lsu = val & (DMMU_E | IMMU_E);
1873 // Mappings generated during D/I MMU disabled mode are
1874 // invalid in normal mode
1875 if (oldreg != env->lsu) {
1876 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1877 oldreg, env->lsu);
1878 #ifdef DEBUG_MMU
1879 dump_mmu(env);
1880 #endif
1881 tlb_flush(env, 1);
1882 }
1883 return;
1884 }
1885 case 0x50: // I-MMU regs
1886 {
1887 int reg = (addr >> 3) & 0xf;
1888 uint64_t oldreg;
1889
1890 oldreg = env->immuregs[reg];
1891 switch(reg) {
1892 case 0: // RO
1893 case 4:
1894 return;
1895 case 1: // Not in I-MMU
1896 case 2:
1897 case 7:
1898 case 8:
1899 return;
1900 case 3: // SFSR
1901 if ((val & 1) == 0)
1902 val = 0; // Clear SFSR
1903 break;
1904 case 5: // TSB access
1905 case 6: // Tag access
1906 default:
1907 break;
1908 }
1909 env->immuregs[reg] = val;
1910 if (oldreg != env->immuregs[reg]) {
1911 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1912 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1913 }
1914 #ifdef DEBUG_MMU
1915 dump_mmu(env);
1916 #endif
1917 return;
1918 }
1919 case 0x54: // I-MMU data in
1920 {
1921 unsigned int i;
1922
1923 // Try finding an invalid entry
1924 for (i = 0; i < 64; i++) {
1925 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1926 env->itlb_tag[i] = env->immuregs[6];
1927 env->itlb_tte[i] = val;
1928 return;
1929 }
1930 }
1931 // Try finding an unlocked entry
1932 for (i = 0; i < 64; i++) {
1933 if ((env->itlb_tte[i] & 0x40) == 0) {
1934 env->itlb_tag[i] = env->immuregs[6];
1935 env->itlb_tte[i] = val;
1936 return;
1937 }
1938 }
1939 // error state?
1940 return;
1941 }
1942 case 0x55: // I-MMU data access
1943 {
1944 // TODO: auto demap
1945
1946 unsigned int i = (addr >> 3) & 0x3f;
1947
1948 env->itlb_tag[i] = env->immuregs[6];
1949 env->itlb_tte[i] = val;
1950 return;
1951 }
1952 case 0x57: // I-MMU demap
1953 {
1954 unsigned int i;
1955
1956 for (i = 0; i < 64; i++) {
1957 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
1958 target_ulong mask = 0xffffffffffffe000ULL;
1959
1960 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
1961 if ((val & mask) == (env->itlb_tag[i] & mask)) {
1962 env->itlb_tag[i] = 0;
1963 env->itlb_tte[i] = 0;
1964 }
1965 return;
1966 }
1967 }
1968 }
1969 return;
1970 case 0x58: // D-MMU regs
1971 {
1972 int reg = (addr >> 3) & 0xf;
1973 uint64_t oldreg;
1974
1975 oldreg = env->dmmuregs[reg];
1976 switch(reg) {
1977 case 0: // RO
1978 case 4:
1979 return;
1980 case 3: // SFSR
1981 if ((val & 1) == 0) {
1982 val = 0; // Clear SFSR, Fault address
1983 env->dmmuregs[4] = 0;
1984 }
1985 env->dmmuregs[reg] = val;
1986 break;
1987 case 1: // Primary context
1988 case 2: // Secondary context
1989 case 5: // TSB access
1990 case 6: // Tag access
1991 case 7: // Virtual Watchpoint
1992 case 8: // Physical Watchpoint
1993 default:
1994 break;
1995 }
1996 env->dmmuregs[reg] = val;
1997 if (oldreg != env->dmmuregs[reg]) {
1998 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1999 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2000 }
2001 #ifdef DEBUG_MMU
2002 dump_mmu(env);
2003 #endif
2004 return;
2005 }
2006 case 0x5c: // D-MMU data in
2007 {
2008 unsigned int i;
2009
2010 // Try finding an invalid entry
2011 for (i = 0; i < 64; i++) {
2012 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2013 env->dtlb_tag[i] = env->dmmuregs[6];
2014 env->dtlb_tte[i] = val;
2015 return;
2016 }
2017 }
2018 // Try finding an unlocked entry
2019 for (i = 0; i < 64; i++) {
2020 if ((env->dtlb_tte[i] & 0x40) == 0) {
2021 env->dtlb_tag[i] = env->dmmuregs[6];
2022 env->dtlb_tte[i] = val;
2023 return;
2024 }
2025 }
2026 // error state?
2027 return;
2028 }
2029 case 0x5d: // D-MMU data access
2030 {
2031 unsigned int i = (addr >> 3) & 0x3f;
2032
2033 env->dtlb_tag[i] = env->dmmuregs[6];
2034 env->dtlb_tte[i] = val;
2035 return;
2036 }
2037 case 0x5f: // D-MMU demap
2038 {
2039 unsigned int i;
2040
2041 for (i = 0; i < 64; i++) {
2042 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2043 target_ulong mask = 0xffffffffffffe000ULL;
2044
2045 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2046 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2047 env->dtlb_tag[i] = 0;
2048 env->dtlb_tte[i] = 0;
2049 }
2050 return;
2051 }
2052 }
2053 }
2054 return;
2055 case 0x49: // Interrupt data receive
2056 // XXX
2057 return;
2058 case 0x46: // D-cache data
2059 case 0x47: // D-cache tag access
2060 case 0x4b: // E-cache error enable
2061 case 0x4c: // E-cache asynchronous fault status
2062 case 0x4d: // E-cache asynchronous fault address
2063 case 0x4e: // E-cache tag data
2064 case 0x66: // I-cache instruction access
2065 case 0x67: // I-cache tag access
2066 case 0x6e: // I-cache predecode
2067 case 0x6f: // I-cache LRU etc.
2068 case 0x76: // E-cache tag
2069 case 0x7e: // E-cache tag
2070 return;
2071 case 0x51: // I-MMU 8k TSB pointer, RO
2072 case 0x52: // I-MMU 64k TSB pointer, RO
2073 case 0x56: // I-MMU tag read, RO
2074 case 0x59: // D-MMU 8k TSB pointer, RO
2075 case 0x5a: // D-MMU 64k TSB pointer, RO
2076 case 0x5b: // D-MMU data pointer, RO
2077 case 0x5e: // D-MMU tag read, RO
2078 case 0x48: // Interrupt dispatch, RO
2079 case 0x7f: // Incoming interrupt vector, RO
2080 case 0x82: // Primary no-fault, RO
2081 case 0x83: // Secondary no-fault, RO
2082 case 0x8a: // Primary no-fault LE, RO
2083 case 0x8b: // Secondary no-fault LE, RO
2084 default:
2085 do_unassigned_access(addr, 1, 0, 1);
2086 return;
2087 }
2088 }
2089 #endif /* CONFIG_USER_ONLY */
2090
2091 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2092 {
2093 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2094 || ((env->def->features & CPU_FEATURE_HYPV)
2095 && asi >= 0x30 && asi < 0x80
2096 && !(env->hpstate & HS_PRIV)))
2097 raise_exception(TT_PRIV_ACT);
2098
2099 switch (asi) {
2100 case 0x24: // Nucleus quad LDD 128 bit atomic
2101 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2102 helper_check_align(addr, 0xf);
2103 if (rd == 0) {
2104 env->gregs[1] = ldq_kernel(addr + 8);
2105 if (asi == 0x2c)
2106 bswap64s(&env->gregs[1]);
2107 } else if (rd < 8) {
2108 env->gregs[rd] = ldq_kernel(addr);
2109 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2110 if (asi == 0x2c) {
2111 bswap64s(&env->gregs[rd]);
2112 bswap64s(&env->gregs[rd + 1]);
2113 }
2114 } else {
2115 env->regwptr[rd] = ldq_kernel(addr);
2116 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2117 if (asi == 0x2c) {
2118 bswap64s(&env->regwptr[rd]);
2119 bswap64s(&env->regwptr[rd + 1]);
2120 }
2121 }
2122 break;
2123 default:
2124 helper_check_align(addr, 0x3);
2125 if (rd == 0)
2126 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2127 else if (rd < 8) {
2128 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2129 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2130 } else {
2131 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2132 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2133 }
2134 break;
2135 }
2136 }
2137
2138 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2139 {
2140 unsigned int i;
2141 target_ulong val;
2142
2143 helper_check_align(addr, 3);
2144 switch (asi) {
2145 case 0xf0: // Block load primary
2146 case 0xf1: // Block load secondary
2147 case 0xf8: // Block load primary LE
2148 case 0xf9: // Block load secondary LE
2149 if (rd & 7) {
2150 raise_exception(TT_ILL_INSN);
2151 return;
2152 }
2153 helper_check_align(addr, 0x3f);
2154 for (i = 0; i < 16; i++) {
2155 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2156 0);
2157 addr += 4;
2158 }
2159
2160 return;
2161 default:
2162 break;
2163 }
2164
2165 val = helper_ld_asi(addr, asi, size, 0);
2166 switch(size) {
2167 default:
2168 case 4:
2169 *((uint32_t *)&env->fpr[rd]) = val;
2170 break;
2171 case 8:
2172 *((int64_t *)&DT0) = val;
2173 break;
2174 case 16:
2175 // XXX
2176 break;
2177 }
2178 }
2179
2180 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2181 {
2182 unsigned int i;
2183 target_ulong val = 0;
2184
2185 helper_check_align(addr, 3);
2186 switch (asi) {
2187 case 0xe0: // UA2007 Block commit store primary (cache flush)
2188 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2189 case 0xf0: // Block store primary
2190 case 0xf1: // Block store secondary
2191 case 0xf8: // Block store primary LE
2192 case 0xf9: // Block store secondary LE
2193 if (rd & 7) {
2194 raise_exception(TT_ILL_INSN);
2195 return;
2196 }
2197 helper_check_align(addr, 0x3f);
2198 for (i = 0; i < 16; i++) {
2199 val = *(uint32_t *)&env->fpr[rd++];
2200 helper_st_asi(addr, val, asi & 0x8f, 4);
2201 addr += 4;
2202 }
2203
2204 return;
2205 default:
2206 break;
2207 }
2208
2209 switch(size) {
2210 default:
2211 case 4:
2212 val = *((uint32_t *)&env->fpr[rd]);
2213 break;
2214 case 8:
2215 val = *((int64_t *)&DT0);
2216 break;
2217 case 16:
2218 // XXX
2219 break;
2220 }
2221 helper_st_asi(addr, val, asi, size);
2222 }
2223
2224 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2225 target_ulong val2, uint32_t asi)
2226 {
2227 target_ulong ret;
2228
2229 val2 &= 0xffffffffUL;
2230 ret = helper_ld_asi(addr, asi, 4, 0);
2231 ret &= 0xffffffffUL;
2232 if (val2 == ret)
2233 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2234 return ret;
2235 }
2236
2237 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2238 target_ulong val2, uint32_t asi)
2239 {
2240 target_ulong ret;
2241
2242 ret = helper_ld_asi(addr, asi, 8, 0);
2243 if (val2 == ret)
2244 helper_st_asi(addr, val1, asi, 8);
2245 return ret;
2246 }
2247 #endif /* TARGET_SPARC64 */
2248
2249 #ifndef TARGET_SPARC64
2250 void helper_rett(void)
2251 {
2252 unsigned int cwp;
2253
2254 if (env->psret == 1)
2255 raise_exception(TT_ILL_INSN);
2256
2257 env->psret = 1;
2258 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2259 if (env->wim & (1 << cwp)) {
2260 raise_exception(TT_WIN_UNF);
2261 }
2262 set_cwp(cwp);
2263 env->psrs = env->psrps;
2264 }
2265 #endif
2266
2267 target_ulong helper_udiv(target_ulong a, target_ulong b)
2268 {
2269 uint64_t x0;
2270 uint32_t x1;
2271
2272 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2273 x1 = b;
2274
2275 if (x1 == 0) {
2276 raise_exception(TT_DIV_ZERO);
2277 }
2278
2279 x0 = x0 / x1;
2280 if (x0 > 0xffffffff) {
2281 env->cc_src2 = 1;
2282 return 0xffffffff;
2283 } else {
2284 env->cc_src2 = 0;
2285 return x0;
2286 }
2287 }
2288
2289 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2290 {
2291 int64_t x0;
2292 int32_t x1;
2293
2294 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2295 x1 = b;
2296
2297 if (x1 == 0) {
2298 raise_exception(TT_DIV_ZERO);
2299 }
2300
2301 x0 = x0 / x1;
2302 if ((int32_t) x0 != x0) {
2303 env->cc_src2 = 1;
2304 return x0 < 0? 0x80000000: 0x7fffffff;
2305 } else {
2306 env->cc_src2 = 0;
2307 return x0;
2308 }
2309 }
2310
2311 void helper_stdf(target_ulong addr, int mem_idx)
2312 {
2313 helper_check_align(addr, 7);
2314 #if !defined(CONFIG_USER_ONLY)
2315 switch (mem_idx) {
2316 case 0:
2317 stfq_user(addr, DT0);
2318 break;
2319 case 1:
2320 stfq_kernel(addr, DT0);
2321 break;
2322 #ifdef TARGET_SPARC64
2323 case 2:
2324 stfq_hypv(addr, DT0);
2325 break;
2326 #endif
2327 default:
2328 break;
2329 }
2330 #else
2331 address_mask(env, &addr);
2332 stfq_raw(addr, DT0);
2333 #endif
2334 }
2335
2336 void helper_lddf(target_ulong addr, int mem_idx)
2337 {
2338 helper_check_align(addr, 7);
2339 #if !defined(CONFIG_USER_ONLY)
2340 switch (mem_idx) {
2341 case 0:
2342 DT0 = ldfq_user(addr);
2343 break;
2344 case 1:
2345 DT0 = ldfq_kernel(addr);
2346 break;
2347 #ifdef TARGET_SPARC64
2348 case 2:
2349 DT0 = ldfq_hypv(addr);
2350 break;
2351 #endif
2352 default:
2353 break;
2354 }
2355 #else
2356 address_mask(env, &addr);
2357 DT0 = ldfq_raw(addr);
2358 #endif
2359 }
2360
2361 void helper_ldqf(target_ulong addr, int mem_idx)
2362 {
2363 // XXX add 128 bit load
2364 CPU_QuadU u;
2365
2366 helper_check_align(addr, 7);
2367 #if !defined(CONFIG_USER_ONLY)
2368 switch (mem_idx) {
2369 case 0:
2370 u.ll.upper = ldq_user(addr);
2371 u.ll.lower = ldq_user(addr + 8);
2372 QT0 = u.q;
2373 break;
2374 case 1:
2375 u.ll.upper = ldq_kernel(addr);
2376 u.ll.lower = ldq_kernel(addr + 8);
2377 QT0 = u.q;
2378 break;
2379 #ifdef TARGET_SPARC64
2380 case 2:
2381 u.ll.upper = ldq_hypv(addr);
2382 u.ll.lower = ldq_hypv(addr + 8);
2383 QT0 = u.q;
2384 break;
2385 #endif
2386 default:
2387 break;
2388 }
2389 #else
2390 address_mask(env, &addr);
2391 u.ll.upper = ldq_raw(addr);
2392 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2393 QT0 = u.q;
2394 #endif
2395 }
2396
2397 void helper_stqf(target_ulong addr, int mem_idx)
2398 {
2399 // XXX add 128 bit store
2400 CPU_QuadU u;
2401
2402 helper_check_align(addr, 7);
2403 #if !defined(CONFIG_USER_ONLY)
2404 switch (mem_idx) {
2405 case 0:
2406 u.q = QT0;
2407 stq_user(addr, u.ll.upper);
2408 stq_user(addr + 8, u.ll.lower);
2409 break;
2410 case 1:
2411 u.q = QT0;
2412 stq_kernel(addr, u.ll.upper);
2413 stq_kernel(addr + 8, u.ll.lower);
2414 break;
2415 #ifdef TARGET_SPARC64
2416 case 2:
2417 u.q = QT0;
2418 stq_hypv(addr, u.ll.upper);
2419 stq_hypv(addr + 8, u.ll.lower);
2420 break;
2421 #endif
2422 default:
2423 break;
2424 }
2425 #else
2426 u.q = QT0;
2427 address_mask(env, &addr);
2428 stq_raw(addr, u.ll.upper);
2429 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2430 #endif
2431 }
2432
2433 static inline void set_fsr(void)
2434 {
2435 int rnd_mode;
2436
2437 switch (env->fsr & FSR_RD_MASK) {
2438 case FSR_RD_NEAREST:
2439 rnd_mode = float_round_nearest_even;
2440 break;
2441 default:
2442 case FSR_RD_ZERO:
2443 rnd_mode = float_round_to_zero;
2444 break;
2445 case FSR_RD_POS:
2446 rnd_mode = float_round_up;
2447 break;
2448 case FSR_RD_NEG:
2449 rnd_mode = float_round_down;
2450 break;
2451 }
2452 set_float_rounding_mode(rnd_mode, &env->fp_status);
2453 }
2454
2455 void helper_ldfsr(uint32_t new_fsr)
2456 {
2457 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
2458 set_fsr();
2459 }
2460
2461 #ifdef TARGET_SPARC64
2462 void helper_ldxfsr(uint64_t new_fsr)
2463 {
2464 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
2465 set_fsr();
2466 }
2467 #endif
2468
2469 void helper_debug(void)
2470 {
2471 env->exception_index = EXCP_DEBUG;
2472 cpu_loop_exit();
2473 }
2474
2475 #ifndef TARGET_SPARC64
2476 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2477 handling ? */
2478 void helper_save(void)
2479 {
2480 uint32_t cwp;
2481
2482 cwp = cpu_cwp_dec(env, env->cwp - 1);
2483 if (env->wim & (1 << cwp)) {
2484 raise_exception(TT_WIN_OVF);
2485 }
2486 set_cwp(cwp);
2487 }
2488
2489 void helper_restore(void)
2490 {
2491 uint32_t cwp;
2492
2493 cwp = cpu_cwp_inc(env, env->cwp + 1);
2494 if (env->wim & (1 << cwp)) {
2495 raise_exception(TT_WIN_UNF);
2496 }
2497 set_cwp(cwp);
2498 }
2499
2500 void helper_wrpsr(target_ulong new_psr)
2501 {
2502 if ((new_psr & PSR_CWP) >= env->nwindows)
2503 raise_exception(TT_ILL_INSN);
2504 else
2505 PUT_PSR(env, new_psr);
2506 }
2507
2508 target_ulong helper_rdpsr(void)
2509 {
2510 return GET_PSR(env);
2511 }
2512
2513 #else
2514 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2515 handling ? */
2516 void helper_save(void)
2517 {
2518 uint32_t cwp;
2519
2520 cwp = cpu_cwp_dec(env, env->cwp - 1);
2521 if (env->cansave == 0) {
2522 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2523 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2524 ((env->wstate & 0x7) << 2)));
2525 } else {
2526 if (env->cleanwin - env->canrestore == 0) {
2527 // XXX Clean windows without trap
2528 raise_exception(TT_CLRWIN);
2529 } else {
2530 env->cansave--;
2531 env->canrestore++;
2532 set_cwp(cwp);
2533 }
2534 }
2535 }
2536
2537 void helper_restore(void)
2538 {
2539 uint32_t cwp;
2540
2541 cwp = cpu_cwp_inc(env, env->cwp + 1);
2542 if (env->canrestore == 0) {
2543 raise_exception(TT_FILL | (env->otherwin != 0 ?
2544 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2545 ((env->wstate & 0x7) << 2)));
2546 } else {
2547 env->cansave++;
2548 env->canrestore--;
2549 set_cwp(cwp);
2550 }
2551 }
2552
2553 void helper_flushw(void)
2554 {
2555 if (env->cansave != env->nwindows - 2) {
2556 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2557 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2558 ((env->wstate & 0x7) << 2)));
2559 }
2560 }
2561
2562 void helper_saved(void)
2563 {
2564 env->cansave++;
2565 if (env->otherwin == 0)
2566 env->canrestore--;
2567 else
2568 env->otherwin--;
2569 }
2570
2571 void helper_restored(void)
2572 {
2573 env->canrestore++;
2574 if (env->cleanwin < env->nwindows - 1)
2575 env->cleanwin++;
2576 if (env->otherwin == 0)
2577 env->cansave--;
2578 else
2579 env->otherwin--;
2580 }
2581
2582 target_ulong helper_rdccr(void)
2583 {
2584 return GET_CCR(env);
2585 }
2586
2587 void helper_wrccr(target_ulong new_ccr)
2588 {
2589 PUT_CCR(env, new_ccr);
2590 }
2591
2592 // CWP handling is reversed in V9, but we still use the V8 register
2593 // order.
2594 target_ulong helper_rdcwp(void)
2595 {
2596 return GET_CWP64(env);
2597 }
2598
2599 void helper_wrcwp(target_ulong new_cwp)
2600 {
2601 PUT_CWP64(env, new_cwp);
2602 }
2603
2604 // This function uses non-native bit order
2605 #define GET_FIELD(X, FROM, TO) \
2606 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2607
2608 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2609 #define GET_FIELD_SP(X, FROM, TO) \
2610 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2611
2612 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2613 {
2614 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2615 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2616 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2617 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2618 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2619 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2620 (((pixel_addr >> 55) & 1) << 4) |
2621 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2622 GET_FIELD_SP(pixel_addr, 11, 12);
2623 }
2624
2625 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2626 {
2627 uint64_t tmp;
2628
2629 tmp = addr + offset;
2630 env->gsr &= ~7ULL;
2631 env->gsr |= tmp & 7ULL;
2632 return tmp & ~7ULL;
2633 }
2634
2635 target_ulong helper_popc(target_ulong val)
2636 {
2637 return ctpop64(val);
2638 }
2639
2640 static inline uint64_t *get_gregset(uint64_t pstate)
2641 {
2642 switch (pstate) {
2643 default:
2644 case 0:
2645 return env->bgregs;
2646 case PS_AG:
2647 return env->agregs;
2648 case PS_MG:
2649 return env->mgregs;
2650 case PS_IG:
2651 return env->igregs;
2652 }
2653 }
2654
2655 static inline void change_pstate(uint64_t new_pstate)
2656 {
2657 uint64_t pstate_regs, new_pstate_regs;
2658 uint64_t *src, *dst;
2659
2660 pstate_regs = env->pstate & 0xc01;
2661 new_pstate_regs = new_pstate & 0xc01;
2662 if (new_pstate_regs != pstate_regs) {
2663 // Switch global register bank
2664 src = get_gregset(new_pstate_regs);
2665 dst = get_gregset(pstate_regs);
2666 memcpy32(dst, env->gregs);
2667 memcpy32(env->gregs, src);
2668 }
2669 env->pstate = new_pstate;
2670 }
2671
2672 void helper_wrpstate(target_ulong new_state)
2673 {
2674 if (!(env->def->features & CPU_FEATURE_GL))
2675 change_pstate(new_state & 0xf3f);
2676 }
2677
2678 void helper_done(void)
2679 {
2680 env->pc = env->tsptr->tpc;
2681 env->npc = env->tsptr->tnpc + 4;
2682 PUT_CCR(env, env->tsptr->tstate >> 32);
2683 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2684 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2685 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2686 env->tl--;
2687 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2688 }
2689
2690 void helper_retry(void)
2691 {
2692 env->pc = env->tsptr->tpc;
2693 env->npc = env->tsptr->tnpc;
2694 PUT_CCR(env, env->tsptr->tstate >> 32);
2695 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2696 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2697 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2698 env->tl--;
2699 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2700 }
2701
2702 void helper_set_softint(uint64_t value)
2703 {
2704 env->softint |= (uint32_t)value;
2705 }
2706
2707 void helper_clear_softint(uint64_t value)
2708 {
2709 env->softint &= (uint32_t)~value;
2710 }
2711
2712 void helper_write_softint(uint64_t value)
2713 {
2714 env->softint = (uint32_t)value;
2715 }
2716 #endif
2717
2718 void helper_flush(target_ulong addr)
2719 {
2720 addr &= ~7;
2721 tb_invalidate_page_range(addr, addr + 8);
2722 }
2723
2724 #ifdef TARGET_SPARC64
2725 #ifdef DEBUG_PCALL
2726 static const char * const excp_names[0x80] = {
2727 [TT_TFAULT] = "Instruction Access Fault",
2728 [TT_TMISS] = "Instruction Access MMU Miss",
2729 [TT_CODE_ACCESS] = "Instruction Access Error",
2730 [TT_ILL_INSN] = "Illegal Instruction",
2731 [TT_PRIV_INSN] = "Privileged Instruction",
2732 [TT_NFPU_INSN] = "FPU Disabled",
2733 [TT_FP_EXCP] = "FPU Exception",
2734 [TT_TOVF] = "Tag Overflow",
2735 [TT_CLRWIN] = "Clean Windows",
2736 [TT_DIV_ZERO] = "Division By Zero",
2737 [TT_DFAULT] = "Data Access Fault",
2738 [TT_DMISS] = "Data Access MMU Miss",
2739 [TT_DATA_ACCESS] = "Data Access Error",
2740 [TT_DPROT] = "Data Protection Error",
2741 [TT_UNALIGNED] = "Unaligned Memory Access",
2742 [TT_PRIV_ACT] = "Privileged Action",
2743 [TT_EXTINT | 0x1] = "External Interrupt 1",
2744 [TT_EXTINT | 0x2] = "External Interrupt 2",
2745 [TT_EXTINT | 0x3] = "External Interrupt 3",
2746 [TT_EXTINT | 0x4] = "External Interrupt 4",
2747 [TT_EXTINT | 0x5] = "External Interrupt 5",
2748 [TT_EXTINT | 0x6] = "External Interrupt 6",
2749 [TT_EXTINT | 0x7] = "External Interrupt 7",
2750 [TT_EXTINT | 0x8] = "External Interrupt 8",
2751 [TT_EXTINT | 0x9] = "External Interrupt 9",
2752 [TT_EXTINT | 0xa] = "External Interrupt 10",
2753 [TT_EXTINT | 0xb] = "External Interrupt 11",
2754 [TT_EXTINT | 0xc] = "External Interrupt 12",
2755 [TT_EXTINT | 0xd] = "External Interrupt 13",
2756 [TT_EXTINT | 0xe] = "External Interrupt 14",
2757 [TT_EXTINT | 0xf] = "External Interrupt 15",
2758 };
2759 #endif
2760
2761 void do_interrupt(CPUState *env)
2762 {
2763 int intno = env->exception_index;
2764
2765 #ifdef DEBUG_PCALL
2766 if (loglevel & CPU_LOG_INT) {
2767 static int count;
2768 const char *name;
2769
2770 if (intno < 0 || intno >= 0x180)
2771 name = "Unknown";
2772 else if (intno >= 0x100)
2773 name = "Trap Instruction";
2774 else if (intno >= 0xc0)
2775 name = "Window Fill";
2776 else if (intno >= 0x80)
2777 name = "Window Spill";
2778 else {
2779 name = excp_names[intno];
2780 if (!name)
2781 name = "Unknown";
2782 }
2783
2784 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2785 " SP=%016" PRIx64 "\n",
2786 count, name, intno,
2787 env->pc,
2788 env->npc, env->regwptr[6]);
2789 cpu_dump_state(env, logfile, fprintf, 0);
2790 #if 0
2791 {
2792 int i;
2793 uint8_t *ptr;
2794
2795 fprintf(logfile, " code=");
2796 ptr = (uint8_t *)env->pc;
2797 for(i = 0; i < 16; i++) {
2798 fprintf(logfile, " %02x", ldub(ptr + i));
2799 }
2800 fprintf(logfile, "\n");
2801 }
2802 #endif
2803 count++;
2804 }
2805 #endif
2806 #if !defined(CONFIG_USER_ONLY)
2807 if (env->tl >= env->maxtl) {
2808 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2809 " Error state", env->exception_index, env->tl, env->maxtl);
2810 return;
2811 }
2812 #endif
2813 if (env->tl < env->maxtl - 1) {
2814 env->tl++;
2815 } else {
2816 env->pstate |= PS_RED;
2817 if (env->tl < env->maxtl)
2818 env->tl++;
2819 }
2820 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2821 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2822 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2823 GET_CWP64(env);
2824 env->tsptr->tpc = env->pc;
2825 env->tsptr->tnpc = env->npc;
2826 env->tsptr->tt = intno;
2827 if (!(env->def->features & CPU_FEATURE_GL)) {
2828 switch (intno) {
2829 case TT_IVEC:
2830 change_pstate(PS_PEF | PS_PRIV | PS_IG);
2831 break;
2832 case TT_TFAULT:
2833 case TT_TMISS:
2834 case TT_DFAULT:
2835 case TT_DMISS:
2836 case TT_DPROT:
2837 change_pstate(PS_PEF | PS_PRIV | PS_MG);
2838 break;
2839 default:
2840 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2841 break;
2842 }
2843 }
2844 if (intno == TT_CLRWIN)
2845 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2846 else if ((intno & 0x1c0) == TT_SPILL)
2847 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2848 else if ((intno & 0x1c0) == TT_FILL)
2849 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2850 env->tbr &= ~0x7fffULL;
2851 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2852 env->pc = env->tbr;
2853 env->npc = env->pc + 4;
2854 env->exception_index = 0;
2855 }
2856 #else
2857 #ifdef DEBUG_PCALL
2858 static const char * const excp_names[0x80] = {
2859 [TT_TFAULT] = "Instruction Access Fault",
2860 [TT_ILL_INSN] = "Illegal Instruction",
2861 [TT_PRIV_INSN] = "Privileged Instruction",
2862 [TT_NFPU_INSN] = "FPU Disabled",
2863 [TT_WIN_OVF] = "Window Overflow",
2864 [TT_WIN_UNF] = "Window Underflow",
2865 [TT_UNALIGNED] = "Unaligned Memory Access",
2866 [TT_FP_EXCP] = "FPU Exception",
2867 [TT_DFAULT] = "Data Access Fault",
2868 [TT_TOVF] = "Tag Overflow",
2869 [TT_EXTINT | 0x1] = "External Interrupt 1",
2870 [TT_EXTINT | 0x2] = "External Interrupt 2",
2871 [TT_EXTINT | 0x3] = "External Interrupt 3",
2872 [TT_EXTINT | 0x4] = "External Interrupt 4",
2873 [TT_EXTINT | 0x5] = "External Interrupt 5",
2874 [TT_EXTINT | 0x6] = "External Interrupt 6",
2875 [TT_EXTINT | 0x7] = "External Interrupt 7",
2876 [TT_EXTINT | 0x8] = "External Interrupt 8",
2877 [TT_EXTINT | 0x9] = "External Interrupt 9",
2878 [TT_EXTINT | 0xa] = "External Interrupt 10",
2879 [TT_EXTINT | 0xb] = "External Interrupt 11",
2880 [TT_EXTINT | 0xc] = "External Interrupt 12",
2881 [TT_EXTINT | 0xd] = "External Interrupt 13",
2882 [TT_EXTINT | 0xe] = "External Interrupt 14",
2883 [TT_EXTINT | 0xf] = "External Interrupt 15",
2884 [TT_TOVF] = "Tag Overflow",
2885 [TT_CODE_ACCESS] = "Instruction Access Error",
2886 [TT_DATA_ACCESS] = "Data Access Error",
2887 [TT_DIV_ZERO] = "Division By Zero",
2888 [TT_NCP_INSN] = "Coprocessor Disabled",
2889 };
2890 #endif
2891
2892 void do_interrupt(CPUState *env)
2893 {
2894 int cwp, intno = env->exception_index;
2895
2896 #ifdef DEBUG_PCALL
2897 if (loglevel & CPU_LOG_INT) {
2898 static int count;
2899 const char *name;
2900
2901 if (intno < 0 || intno >= 0x100)
2902 name = "Unknown";
2903 else if (intno >= 0x80)
2904 name = "Trap Instruction";
2905 else {
2906 name = excp_names[intno];
2907 if (!name)
2908 name = "Unknown";
2909 }
2910
2911 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2912 count, name, intno,
2913 env->pc,
2914 env->npc, env->regwptr[6]);
2915 cpu_dump_state(env, logfile, fprintf, 0);
2916 #if 0
2917 {
2918 int i;
2919 uint8_t *ptr;
2920
2921 fprintf(logfile, " code=");
2922 ptr = (uint8_t *)env->pc;
2923 for(i = 0; i < 16; i++) {
2924 fprintf(logfile, " %02x", ldub(ptr + i));
2925 }
2926 fprintf(logfile, "\n");
2927 }
2928 #endif
2929 count++;
2930 }
2931 #endif
2932 #if !defined(CONFIG_USER_ONLY)
2933 if (env->psret == 0) {
2934 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2935 env->exception_index);
2936 return;
2937 }
2938 #endif
2939 env->psret = 0;
2940 cwp = cpu_cwp_dec(env, env->cwp - 1);
2941 cpu_set_cwp(env, cwp);
2942 env->regwptr[9] = env->pc;
2943 env->regwptr[10] = env->npc;
2944 env->psrps = env->psrs;
2945 env->psrs = 1;
2946 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2947 env->pc = env->tbr;
2948 env->npc = env->pc + 4;
2949 env->exception_index = 0;
2950 }
2951 #endif
2952
2953 #if !defined(CONFIG_USER_ONLY)
2954
2955 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2956 void *retaddr);
2957
2958 #define MMUSUFFIX _mmu
2959 #define ALIGNED_ONLY
2960
2961 #define SHIFT 0
2962 #include "softmmu_template.h"
2963
2964 #define SHIFT 1
2965 #include "softmmu_template.h"
2966
2967 #define SHIFT 2
2968 #include "softmmu_template.h"
2969
2970 #define SHIFT 3
2971 #include "softmmu_template.h"
2972
2973 /* XXX: make it generic ? */
2974 static void cpu_restore_state2(void *retaddr)
2975 {
2976 TranslationBlock *tb;
2977 unsigned long pc;
2978
2979 if (retaddr) {
2980 /* now we have a real cpu fault */
2981 pc = (unsigned long)retaddr;
2982 tb = tb_find_pc(pc);
2983 if (tb) {
2984 /* the PC is inside the translated code. It means that we have
2985 a virtual CPU fault */
2986 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2987 }
2988 }
2989 }
2990
2991 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2992 void *retaddr)
2993 {
2994 #ifdef DEBUG_UNALIGNED
2995 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2996 "\n", addr, env->pc);
2997 #endif
2998 cpu_restore_state2(retaddr);
2999 raise_exception(TT_UNALIGNED);
3000 }
3001
3002 /* try to fill the TLB and return an exception if error. If retaddr is
3003 NULL, it means that the function was called in C code (i.e. not
3004 from generated code or from helper.c) */
3005 /* XXX: fix it to restore all registers */
3006 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3007 {
3008 int ret;
3009 CPUState *saved_env;
3010
3011 /* XXX: hack to restore env in all cases, even if not called from
3012 generated code */
3013 saved_env = env;
3014 env = cpu_single_env;
3015
3016 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3017 if (ret) {
3018 cpu_restore_state2(retaddr);
3019 cpu_loop_exit();
3020 }
3021 env = saved_env;
3022 }
3023
3024 #endif
3025
3026 #ifndef TARGET_SPARC64
3027 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3028 int is_asi)
3029 {
3030 CPUState *saved_env;
3031
3032 /* XXX: hack to restore env in all cases, even if not called from
3033 generated code */
3034 saved_env = env;
3035 env = cpu_single_env;
3036 #ifdef DEBUG_UNASSIGNED
3037 if (is_asi)
3038 printf("Unassigned mem %s access to " TARGET_FMT_plx
3039 " asi 0x%02x from " TARGET_FMT_lx "\n",
3040 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
3041 env->pc);
3042 else
3043 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
3044 TARGET_FMT_lx "\n",
3045 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
3046 #endif
3047 if (env->mmuregs[3]) /* Fault status register */
3048 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3049 if (is_asi)
3050 env->mmuregs[3] |= 1 << 16;
3051 if (env->psrs)
3052 env->mmuregs[3] |= 1 << 5;
3053 if (is_exec)
3054 env->mmuregs[3] |= 1 << 6;
3055 if (is_write)
3056 env->mmuregs[3] |= 1 << 7;
3057 env->mmuregs[3] |= (5 << 2) | 2;
3058 env->mmuregs[4] = addr; /* Fault address register */
3059 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3060 if (is_exec)
3061 raise_exception(TT_CODE_ACCESS);
3062 else
3063 raise_exception(TT_DATA_ACCESS);
3064 }
3065 env = saved_env;
3066 }
3067 #else
3068 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3069 int is_asi)
3070 {
3071 #ifdef DEBUG_UNASSIGNED
3072 CPUState *saved_env;
3073
3074 /* XXX: hack to restore env in all cases, even if not called from
3075 generated code */
3076 saved_env = env;
3077 env = cpu_single_env;
3078 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3079 "\n", addr, env->pc);
3080 env = saved_env;
3081 #endif
3082 if (is_exec)
3083 raise_exception(TT_CODE_ACCESS);
3084 else
3085 raise_exception(TT_DATA_ACCESS);
3086 }
3087 #endif
3088