]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
clean up - comments
[qemu.git] / target-sparc / op_helper.c
1 #include <math.h>
2 #include <fenv.h>
3 #include "exec.h"
4
5 //#define DEBUG_MMU
6
7 void raise_exception(int tt)
8 {
9 env->exception_index = tt;
10 cpu_loop_exit();
11 }
12
13 #ifdef USE_INT_TO_FLOAT_HELPERS
14 void do_fitos(void)
15 {
16 FT0 = (float) *((int32_t *)&FT1);
17 }
18
19 void do_fitod(void)
20 {
21 DT0 = (double) *((int32_t *)&FT1);
22 }
23 #endif
24
25 void do_fabss(void)
26 {
27 FT0 = fabsf(FT1);
28 }
29
30 void do_fsqrts(void)
31 {
32 FT0 = sqrtf(FT1);
33 }
34
35 void do_fsqrtd(void)
36 {
37 DT0 = sqrt(DT1);
38 }
39
40 void do_fcmps (void)
41 {
42 if (isnan(FT0) || isnan(FT1)) {
43 T0 = FSR_FCC1 | FSR_FCC0;
44 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
45 env->fsr |= T0;
46 if (env->fsr & FSR_NVM) {
47 raise_exception(TT_FP_EXCP);
48 } else {
49 env->fsr |= FSR_NVA;
50 }
51 } else if (FT0 < FT1) {
52 T0 = FSR_FCC0;
53 } else if (FT0 > FT1) {
54 T0 = FSR_FCC1;
55 } else {
56 T0 = 0;
57 }
58 env->fsr = T0;
59 }
60
61 void do_fcmpd (void)
62 {
63 if (isnan(DT0) || isnan(DT1)) {
64 T0 = FSR_FCC1 | FSR_FCC0;
65 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
66 env->fsr |= T0;
67 if (env->fsr & FSR_NVM) {
68 raise_exception(TT_FP_EXCP);
69 } else {
70 env->fsr |= FSR_NVA;
71 }
72 } else if (DT0 < DT1) {
73 T0 = FSR_FCC0;
74 } else if (DT0 > DT1) {
75 T0 = FSR_FCC1;
76 } else {
77 T0 = 0;
78 }
79 env->fsr = T0;
80 }
81
82 void helper_ld_asi(int asi, int size, int sign)
83 {
84 uint32_t ret;
85
86 switch (asi) {
87 case 3: /* MMU probe */
88 {
89 int mmulev;
90
91 mmulev = (T0 >> 8) & 15;
92 if (mmulev > 4)
93 ret = 0;
94 else {
95 ret = mmu_probe(T0, mmulev);
96 //bswap32s(&ret);
97 }
98 #ifdef DEBUG_MMU
99 printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
100 #endif
101 }
102 break;
103 case 4: /* read MMU regs */
104 {
105 int reg = (T0 >> 8) & 0xf;
106
107 ret = env->mmuregs[reg];
108 if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/
109 env->mmuregs[4] = 0;
110 }
111 break;
112 case 0x20 ... 0x2f: /* MMU passthrough */
113 cpu_physical_memory_read(T0, (void *) &ret, size);
114 if (size == 4)
115 tswap32s(&ret);
116 else if (size == 2)
117 tswap16s((uint16_t *)&ret);
118 break;
119 default:
120 ret = 0;
121 break;
122 }
123 T1 = ret;
124 }
125
126 void helper_st_asi(int asi, int size, int sign)
127 {
128 switch(asi) {
129 case 3: /* MMU flush */
130 {
131 int mmulev;
132
133 mmulev = (T0 >> 8) & 15;
134 switch (mmulev) {
135 case 0: // flush page
136 tlb_flush_page(cpu_single_env, T0 & 0xfffff000);
137 break;
138 case 1: // flush segment (256k)
139 case 2: // flush region (16M)
140 case 3: // flush context (4G)
141 case 4: // flush entire
142 tlb_flush(cpu_single_env, 1);
143 break;
144 default:
145 break;
146 }
147 dump_mmu();
148 return;
149 }
150 case 4: /* write MMU regs */
151 {
152 int reg = (T0 >> 8) & 0xf, oldreg;
153
154 oldreg = env->mmuregs[reg];
155 if (reg == 0) {
156 env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
157 env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
158 } else
159 env->mmuregs[reg] = T1;
160 if (oldreg != env->mmuregs[reg]) {
161 #if 0
162 // XXX: Only if MMU mapping change, we may need to flush?
163 tlb_flush(cpu_single_env, 1);
164 cpu_loop_exit();
165 FORCE_RET();
166 #endif
167 }
168 dump_mmu();
169 return;
170 }
171 case 0x17: /* Block copy, sta access */
172 {
173 // value (T1) = src
174 // address (T0) = dst
175 // copy 32 bytes
176 int src = T1, dst = T0;
177 uint8_t temp[32];
178
179 tswap32s(&src);
180
181 cpu_physical_memory_read(src, (void *) &temp, 32);
182 cpu_physical_memory_write(dst, (void *) &temp, 32);
183 }
184 return;
185 case 0x1f: /* Block fill, stda access */
186 {
187 // value (T1, T2)
188 // address (T0) = dst
189 // fill 32 bytes
190 int i, dst = T0;
191 uint64_t val;
192
193 val = (((uint64_t)T1) << 32) | T2;
194 tswap64s(&val);
195
196 for (i = 0; i < 32; i += 8, dst += 8) {
197 cpu_physical_memory_write(dst, (void *) &val, 8);
198 }
199 }
200 return;
201 case 0x20 ... 0x2f: /* MMU passthrough */
202 {
203 int temp = T1;
204 if (size == 4)
205 tswap32s(&temp);
206 else if (size == 2)
207 tswap16s((uint16_t *)&temp);
208 cpu_physical_memory_write(T0, (void *) &temp, size);
209 }
210 return;
211 default:
212 return;
213 }
214 }
215
216 void helper_rett()
217 {
218 unsigned int cwp;
219
220 env->psret = 1;
221 cwp = (env->cwp + 1) & (NWINDOWS - 1);
222 if (env->wim & (1 << cwp)) {
223 raise_exception(TT_WIN_UNF);
224 }
225 set_cwp(cwp);
226 env->psrs = env->psrps;
227 }
228
229 void helper_ldfsr(void)
230 {
231 switch (env->fsr & FSR_RD_MASK) {
232 case FSR_RD_NEAREST:
233 fesetround(FE_TONEAREST);
234 break;
235 case FSR_RD_ZERO:
236 fesetround(FE_TOWARDZERO);
237 break;
238 case FSR_RD_POS:
239 fesetround(FE_UPWARD);
240 break;
241 case FSR_RD_NEG:
242 fesetround(FE_DOWNWARD);
243 break;
244 }
245 }
246
247 void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
248 {
249 int exptemp;
250
251 *pmant = ldexp(frexp(f, &exptemp), 53);
252 *pexp = exptemp;
253 }
254
255 double cpu_put_fp64(uint64_t mant, uint16_t exp)
256 {
257 return ldexp((double) mant, exp - 53);
258 }
259
260 void helper_debug()
261 {
262 env->exception_index = EXCP_DEBUG;
263 cpu_loop_exit();
264 }
265
266 void do_wrpsr()
267 {
268 PUT_PSR(env, T0);
269 }
270
271 void do_rdpsr()
272 {
273 T0 = GET_PSR(env);
274 }