]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
Remove currently unnecessary alignment masking
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
7
8 //#define DEBUG_PCALL
9 //#define DEBUG_MMU
10 //#define DEBUG_MXCC
11 //#define DEBUG_UNALIGNED
12 //#define DEBUG_UNASSIGNED
13 //#define DEBUG_ASI
14
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
21
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
28
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF_ASI(fmt, args...) do {} while (0)
34 #endif
35
36 #ifdef TARGET_ABI32
37 #define ABI32_MASK(addr) do { (addr) &= 0xffffffffULL; } while (0)
38 #else
39 #define ABI32_MASK(addr) do {} while (0)
40 #endif
41
42 void raise_exception(int tt)
43 {
44 env->exception_index = tt;
45 cpu_loop_exit();
46 }
47
48 void helper_trap(target_ulong nb_trap)
49 {
50 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
51 cpu_loop_exit();
52 }
53
54 void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
55 {
56 if (do_trap) {
57 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
58 cpu_loop_exit();
59 }
60 }
61
62 void helper_check_align(target_ulong addr, uint32_t align)
63 {
64 if (addr & align) {
65 #ifdef DEBUG_UNALIGNED
66 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
67 "\n", addr, env->pc);
68 #endif
69 raise_exception(TT_UNALIGNED);
70 }
71 }
72
73 #define F_HELPER(name, p) void helper_f##name##p(void)
74
75 #define F_BINOP(name) \
76 F_HELPER(name, s) \
77 { \
78 FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \
79 } \
80 F_HELPER(name, d) \
81 { \
82 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
83 } \
84 F_HELPER(name, q) \
85 { \
86 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
87 }
88
89 F_BINOP(add);
90 F_BINOP(sub);
91 F_BINOP(mul);
92 F_BINOP(div);
93 #undef F_BINOP
94
95 void helper_fsmuld(void)
96 {
97 DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
98 float32_to_float64(FT1, &env->fp_status),
99 &env->fp_status);
100 }
101
102 void helper_fdmulq(void)
103 {
104 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
105 float64_to_float128(DT1, &env->fp_status),
106 &env->fp_status);
107 }
108
109 F_HELPER(neg, s)
110 {
111 FT0 = float32_chs(FT1);
112 }
113
114 #ifdef TARGET_SPARC64
115 F_HELPER(neg, d)
116 {
117 DT0 = float64_chs(DT1);
118 }
119
120 F_HELPER(neg, q)
121 {
122 QT0 = float128_chs(QT1);
123 }
124 #endif
125
126 /* Integer to float conversion. */
127 F_HELPER(ito, s)
128 {
129 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
130 }
131
132 F_HELPER(ito, d)
133 {
134 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
135 }
136
137 F_HELPER(ito, q)
138 {
139 QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
140 }
141
142 #ifdef TARGET_SPARC64
143 F_HELPER(xto, s)
144 {
145 FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
146 }
147
148 F_HELPER(xto, d)
149 {
150 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
151 }
152
153 F_HELPER(xto, q)
154 {
155 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
156 }
157 #endif
158 #undef F_HELPER
159
160 /* floating point conversion */
161 void helper_fdtos(void)
162 {
163 FT0 = float64_to_float32(DT1, &env->fp_status);
164 }
165
166 void helper_fstod(void)
167 {
168 DT0 = float32_to_float64(FT1, &env->fp_status);
169 }
170
171 void helper_fqtos(void)
172 {
173 FT0 = float128_to_float32(QT1, &env->fp_status);
174 }
175
176 void helper_fstoq(void)
177 {
178 QT0 = float32_to_float128(FT1, &env->fp_status);
179 }
180
181 void helper_fqtod(void)
182 {
183 DT0 = float128_to_float64(QT1, &env->fp_status);
184 }
185
186 void helper_fdtoq(void)
187 {
188 QT0 = float64_to_float128(DT1, &env->fp_status);
189 }
190
191 /* Float to integer conversion. */
192 void helper_fstoi(void)
193 {
194 *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
195 }
196
197 void helper_fdtoi(void)
198 {
199 *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
200 }
201
202 void helper_fqtoi(void)
203 {
204 *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
205 }
206
207 #ifdef TARGET_SPARC64
208 void helper_fstox(void)
209 {
210 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
211 }
212
213 void helper_fdtox(void)
214 {
215 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
216 }
217
218 void helper_fqtox(void)
219 {
220 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
221 }
222
223 void helper_faligndata(void)
224 {
225 uint64_t tmp;
226
227 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
228 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
229 *((uint64_t *)&DT0) = tmp;
230 }
231
232 void helper_movl_FT0_0(void)
233 {
234 *((uint32_t *)&FT0) = 0;
235 }
236
237 void helper_movl_DT0_0(void)
238 {
239 *((uint64_t *)&DT0) = 0;
240 }
241
242 void helper_movl_FT0_1(void)
243 {
244 *((uint32_t *)&FT0) = 0xffffffff;
245 }
246
247 void helper_movl_DT0_1(void)
248 {
249 *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
250 }
251
252 void helper_fnot(void)
253 {
254 *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
255 }
256
257 void helper_fnots(void)
258 {
259 *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
260 }
261
262 void helper_fnor(void)
263 {
264 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
265 }
266
267 void helper_fnors(void)
268 {
269 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
270 }
271
272 void helper_for(void)
273 {
274 *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
275 }
276
277 void helper_fors(void)
278 {
279 *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
280 }
281
282 void helper_fxor(void)
283 {
284 *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
285 }
286
287 void helper_fxors(void)
288 {
289 *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
290 }
291
292 void helper_fand(void)
293 {
294 *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
295 }
296
297 void helper_fands(void)
298 {
299 *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
300 }
301
302 void helper_fornot(void)
303 {
304 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
305 }
306
307 void helper_fornots(void)
308 {
309 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
310 }
311
312 void helper_fandnot(void)
313 {
314 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
315 }
316
317 void helper_fandnots(void)
318 {
319 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
320 }
321
322 void helper_fnand(void)
323 {
324 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
325 }
326
327 void helper_fnands(void)
328 {
329 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
330 }
331
332 void helper_fxnor(void)
333 {
334 *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
335 }
336
337 void helper_fxnors(void)
338 {
339 *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
340 }
341
342 #ifdef WORDS_BIGENDIAN
343 #define VIS_B64(n) b[7 - (n)]
344 #define VIS_W64(n) w[3 - (n)]
345 #define VIS_SW64(n) sw[3 - (n)]
346 #define VIS_L64(n) l[1 - (n)]
347 #define VIS_B32(n) b[3 - (n)]
348 #define VIS_W32(n) w[1 - (n)]
349 #else
350 #define VIS_B64(n) b[n]
351 #define VIS_W64(n) w[n]
352 #define VIS_SW64(n) sw[n]
353 #define VIS_L64(n) l[n]
354 #define VIS_B32(n) b[n]
355 #define VIS_W32(n) w[n]
356 #endif
357
358 typedef union {
359 uint8_t b[8];
360 uint16_t w[4];
361 int16_t sw[4];
362 uint32_t l[2];
363 float64 d;
364 } vis64;
365
366 typedef union {
367 uint8_t b[4];
368 uint16_t w[2];
369 uint32_t l;
370 float32 f;
371 } vis32;
372
373 void helper_fpmerge(void)
374 {
375 vis64 s, d;
376
377 s.d = DT0;
378 d.d = DT1;
379
380 // Reverse calculation order to handle overlap
381 d.VIS_B64(7) = s.VIS_B64(3);
382 d.VIS_B64(6) = d.VIS_B64(3);
383 d.VIS_B64(5) = s.VIS_B64(2);
384 d.VIS_B64(4) = d.VIS_B64(2);
385 d.VIS_B64(3) = s.VIS_B64(1);
386 d.VIS_B64(2) = d.VIS_B64(1);
387 d.VIS_B64(1) = s.VIS_B64(0);
388 //d.VIS_B64(0) = d.VIS_B64(0);
389
390 DT0 = d.d;
391 }
392
393 void helper_fmul8x16(void)
394 {
395 vis64 s, d;
396 uint32_t tmp;
397
398 s.d = DT0;
399 d.d = DT1;
400
401 #define PMUL(r) \
402 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
403 if ((tmp & 0xff) > 0x7f) \
404 tmp += 0x100; \
405 d.VIS_W64(r) = tmp >> 8;
406
407 PMUL(0);
408 PMUL(1);
409 PMUL(2);
410 PMUL(3);
411 #undef PMUL
412
413 DT0 = d.d;
414 }
415
416 void helper_fmul8x16al(void)
417 {
418 vis64 s, d;
419 uint32_t tmp;
420
421 s.d = DT0;
422 d.d = DT1;
423
424 #define PMUL(r) \
425 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
426 if ((tmp & 0xff) > 0x7f) \
427 tmp += 0x100; \
428 d.VIS_W64(r) = tmp >> 8;
429
430 PMUL(0);
431 PMUL(1);
432 PMUL(2);
433 PMUL(3);
434 #undef PMUL
435
436 DT0 = d.d;
437 }
438
439 void helper_fmul8x16au(void)
440 {
441 vis64 s, d;
442 uint32_t tmp;
443
444 s.d = DT0;
445 d.d = DT1;
446
447 #define PMUL(r) \
448 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
449 if ((tmp & 0xff) > 0x7f) \
450 tmp += 0x100; \
451 d.VIS_W64(r) = tmp >> 8;
452
453 PMUL(0);
454 PMUL(1);
455 PMUL(2);
456 PMUL(3);
457 #undef PMUL
458
459 DT0 = d.d;
460 }
461
462 void helper_fmul8sux16(void)
463 {
464 vis64 s, d;
465 uint32_t tmp;
466
467 s.d = DT0;
468 d.d = DT1;
469
470 #define PMUL(r) \
471 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
472 if ((tmp & 0xff) > 0x7f) \
473 tmp += 0x100; \
474 d.VIS_W64(r) = tmp >> 8;
475
476 PMUL(0);
477 PMUL(1);
478 PMUL(2);
479 PMUL(3);
480 #undef PMUL
481
482 DT0 = d.d;
483 }
484
485 void helper_fmul8ulx16(void)
486 {
487 vis64 s, d;
488 uint32_t tmp;
489
490 s.d = DT0;
491 d.d = DT1;
492
493 #define PMUL(r) \
494 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
495 if ((tmp & 0xff) > 0x7f) \
496 tmp += 0x100; \
497 d.VIS_W64(r) = tmp >> 8;
498
499 PMUL(0);
500 PMUL(1);
501 PMUL(2);
502 PMUL(3);
503 #undef PMUL
504
505 DT0 = d.d;
506 }
507
508 void helper_fmuld8sux16(void)
509 {
510 vis64 s, d;
511 uint32_t tmp;
512
513 s.d = DT0;
514 d.d = DT1;
515
516 #define PMUL(r) \
517 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
518 if ((tmp & 0xff) > 0x7f) \
519 tmp += 0x100; \
520 d.VIS_L64(r) = tmp;
521
522 // Reverse calculation order to handle overlap
523 PMUL(1);
524 PMUL(0);
525 #undef PMUL
526
527 DT0 = d.d;
528 }
529
530 void helper_fmuld8ulx16(void)
531 {
532 vis64 s, d;
533 uint32_t tmp;
534
535 s.d = DT0;
536 d.d = DT1;
537
538 #define PMUL(r) \
539 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
540 if ((tmp & 0xff) > 0x7f) \
541 tmp += 0x100; \
542 d.VIS_L64(r) = tmp;
543
544 // Reverse calculation order to handle overlap
545 PMUL(1);
546 PMUL(0);
547 #undef PMUL
548
549 DT0 = d.d;
550 }
551
552 void helper_fexpand(void)
553 {
554 vis32 s;
555 vis64 d;
556
557 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
558 d.d = DT1;
559 d.VIS_L64(0) = s.VIS_W32(0) << 4;
560 d.VIS_L64(1) = s.VIS_W32(1) << 4;
561 d.VIS_L64(2) = s.VIS_W32(2) << 4;
562 d.VIS_L64(3) = s.VIS_W32(3) << 4;
563
564 DT0 = d.d;
565 }
566
567 #define VIS_HELPER(name, F) \
568 void name##16(void) \
569 { \
570 vis64 s, d; \
571 \
572 s.d = DT0; \
573 d.d = DT1; \
574 \
575 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
576 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
577 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
578 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
579 \
580 DT0 = d.d; \
581 } \
582 \
583 void name##16s(void) \
584 { \
585 vis32 s, d; \
586 \
587 s.f = FT0; \
588 d.f = FT1; \
589 \
590 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
591 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
592 \
593 FT0 = d.f; \
594 } \
595 \
596 void name##32(void) \
597 { \
598 vis64 s, d; \
599 \
600 s.d = DT0; \
601 d.d = DT1; \
602 \
603 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
604 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
605 \
606 DT0 = d.d; \
607 } \
608 \
609 void name##32s(void) \
610 { \
611 vis32 s, d; \
612 \
613 s.f = FT0; \
614 d.f = FT1; \
615 \
616 d.l = F(d.l, s.l); \
617 \
618 FT0 = d.f; \
619 }
620
621 #define FADD(a, b) ((a) + (b))
622 #define FSUB(a, b) ((a) - (b))
623 VIS_HELPER(helper_fpadd, FADD)
624 VIS_HELPER(helper_fpsub, FSUB)
625
626 #define VIS_CMPHELPER(name, F) \
627 void name##16(void) \
628 { \
629 vis64 s, d; \
630 \
631 s.d = DT0; \
632 d.d = DT1; \
633 \
634 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
635 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
636 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
637 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
638 \
639 DT0 = d.d; \
640 } \
641 \
642 void name##32(void) \
643 { \
644 vis64 s, d; \
645 \
646 s.d = DT0; \
647 d.d = DT1; \
648 \
649 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
650 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
651 \
652 DT0 = d.d; \
653 }
654
655 #define FCMPGT(a, b) ((a) > (b))
656 #define FCMPEQ(a, b) ((a) == (b))
657 #define FCMPLE(a, b) ((a) <= (b))
658 #define FCMPNE(a, b) ((a) != (b))
659
660 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
661 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
662 VIS_CMPHELPER(helper_fcmple, FCMPLE)
663 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
664 #endif
665
666 void helper_check_ieee_exceptions(void)
667 {
668 target_ulong status;
669
670 status = get_float_exception_flags(&env->fp_status);
671 if (status) {
672 /* Copy IEEE 754 flags into FSR */
673 if (status & float_flag_invalid)
674 env->fsr |= FSR_NVC;
675 if (status & float_flag_overflow)
676 env->fsr |= FSR_OFC;
677 if (status & float_flag_underflow)
678 env->fsr |= FSR_UFC;
679 if (status & float_flag_divbyzero)
680 env->fsr |= FSR_DZC;
681 if (status & float_flag_inexact)
682 env->fsr |= FSR_NXC;
683
684 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
685 /* Unmasked exception, generate a trap */
686 env->fsr |= FSR_FTT_IEEE_EXCP;
687 raise_exception(TT_FP_EXCP);
688 } else {
689 /* Accumulate exceptions */
690 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
691 }
692 }
693 }
694
695 void helper_clear_float_exceptions(void)
696 {
697 set_float_exception_flags(0, &env->fp_status);
698 }
699
700 void helper_fabss(void)
701 {
702 FT0 = float32_abs(FT1);
703 }
704
705 #ifdef TARGET_SPARC64
706 void helper_fabsd(void)
707 {
708 DT0 = float64_abs(DT1);
709 }
710
711 void helper_fabsq(void)
712 {
713 QT0 = float128_abs(QT1);
714 }
715 #endif
716
717 void helper_fsqrts(void)
718 {
719 FT0 = float32_sqrt(FT1, &env->fp_status);
720 }
721
722 void helper_fsqrtd(void)
723 {
724 DT0 = float64_sqrt(DT1, &env->fp_status);
725 }
726
727 void helper_fsqrtq(void)
728 {
729 QT0 = float128_sqrt(QT1, &env->fp_status);
730 }
731
732 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
733 void glue(helper_, name) (void) \
734 { \
735 target_ulong new_fsr; \
736 \
737 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
738 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
739 case float_relation_unordered: \
740 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
741 if ((env->fsr & FSR_NVM) || TRAP) { \
742 env->fsr |= new_fsr; \
743 env->fsr |= FSR_NVC; \
744 env->fsr |= FSR_FTT_IEEE_EXCP; \
745 raise_exception(TT_FP_EXCP); \
746 } else { \
747 env->fsr |= FSR_NVA; \
748 } \
749 break; \
750 case float_relation_less: \
751 new_fsr = FSR_FCC0 << FS; \
752 break; \
753 case float_relation_greater: \
754 new_fsr = FSR_FCC1 << FS; \
755 break; \
756 default: \
757 new_fsr = 0; \
758 break; \
759 } \
760 env->fsr |= new_fsr; \
761 }
762
763 GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
764 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
765
766 GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
767 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
768
769 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
770 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
771
772 #ifdef TARGET_SPARC64
773 GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
774 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
775 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
776
777 GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
778 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
779 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
780
781 GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
782 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
783 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
784
785 GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
786 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
787 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
788
789 GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
790 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
791 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
792
793 GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
794 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
795 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
796 #endif
797
798 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
799 defined(DEBUG_MXCC)
800 static void dump_mxcc(CPUState *env)
801 {
802 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
803 env->mxccdata[0], env->mxccdata[1],
804 env->mxccdata[2], env->mxccdata[3]);
805 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
806 " %016llx %016llx %016llx %016llx\n",
807 env->mxccregs[0], env->mxccregs[1],
808 env->mxccregs[2], env->mxccregs[3],
809 env->mxccregs[4], env->mxccregs[5],
810 env->mxccregs[6], env->mxccregs[7]);
811 }
812 #endif
813
814 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
815 && defined(DEBUG_ASI)
816 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
817 uint64_t r1)
818 {
819 switch (size)
820 {
821 case 1:
822 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
823 addr, asi, r1 & 0xff);
824 break;
825 case 2:
826 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
827 addr, asi, r1 & 0xffff);
828 break;
829 case 4:
830 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
831 addr, asi, r1 & 0xffffffff);
832 break;
833 case 8:
834 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
835 addr, asi, r1);
836 break;
837 }
838 }
839 #endif
840
841 #ifndef TARGET_SPARC64
842 #ifndef CONFIG_USER_ONLY
843 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
844 {
845 uint64_t ret = 0;
846 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
847 uint32_t last_addr = addr;
848 #endif
849
850 helper_check_align(addr, size - 1);
851 switch (asi) {
852 case 2: /* SuperSparc MXCC registers */
853 switch (addr) {
854 case 0x01c00a00: /* MXCC control register */
855 if (size == 8)
856 ret = env->mxccregs[3];
857 else
858 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
859 size);
860 break;
861 case 0x01c00a04: /* MXCC control register */
862 if (size == 4)
863 ret = env->mxccregs[3];
864 else
865 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
866 size);
867 break;
868 case 0x01c00c00: /* Module reset register */
869 if (size == 8) {
870 ret = env->mxccregs[5];
871 // should we do something here?
872 } else
873 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
874 size);
875 break;
876 case 0x01c00f00: /* MBus port address register */
877 if (size == 8)
878 ret = env->mxccregs[7];
879 else
880 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
881 size);
882 break;
883 default:
884 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
885 size);
886 break;
887 }
888 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
889 "addr = %08x -> ret = %08x,"
890 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
891 #ifdef DEBUG_MXCC
892 dump_mxcc(env);
893 #endif
894 break;
895 case 3: /* MMU probe */
896 {
897 int mmulev;
898
899 mmulev = (addr >> 8) & 15;
900 if (mmulev > 4)
901 ret = 0;
902 else
903 ret = mmu_probe(env, addr, mmulev);
904 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
905 addr, mmulev, ret);
906 }
907 break;
908 case 4: /* read MMU regs */
909 {
910 int reg = (addr >> 8) & 0x1f;
911
912 ret = env->mmuregs[reg];
913 if (reg == 3) /* Fault status cleared on read */
914 env->mmuregs[3] = 0;
915 else if (reg == 0x13) /* Fault status read */
916 ret = env->mmuregs[3];
917 else if (reg == 0x14) /* Fault address read */
918 ret = env->mmuregs[4];
919 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
920 }
921 break;
922 case 5: // Turbosparc ITLB Diagnostic
923 case 6: // Turbosparc DTLB Diagnostic
924 case 7: // Turbosparc IOTLB Diagnostic
925 break;
926 case 9: /* Supervisor code access */
927 switch(size) {
928 case 1:
929 ret = ldub_code(addr);
930 break;
931 case 2:
932 ret = lduw_code(addr);
933 break;
934 default:
935 case 4:
936 ret = ldl_code(addr);
937 break;
938 case 8:
939 ret = ldq_code(addr);
940 break;
941 }
942 break;
943 case 0xa: /* User data access */
944 switch(size) {
945 case 1:
946 ret = ldub_user(addr);
947 break;
948 case 2:
949 ret = lduw_user(addr);
950 break;
951 default:
952 case 4:
953 ret = ldl_user(addr);
954 break;
955 case 8:
956 ret = ldq_user(addr);
957 break;
958 }
959 break;
960 case 0xb: /* Supervisor data access */
961 switch(size) {
962 case 1:
963 ret = ldub_kernel(addr);
964 break;
965 case 2:
966 ret = lduw_kernel(addr);
967 break;
968 default:
969 case 4:
970 ret = ldl_kernel(addr);
971 break;
972 case 8:
973 ret = ldq_kernel(addr);
974 break;
975 }
976 break;
977 case 0xc: /* I-cache tag */
978 case 0xd: /* I-cache data */
979 case 0xe: /* D-cache tag */
980 case 0xf: /* D-cache data */
981 break;
982 case 0x20: /* MMU passthrough */
983 switch(size) {
984 case 1:
985 ret = ldub_phys(addr);
986 break;
987 case 2:
988 ret = lduw_phys(addr);
989 break;
990 default:
991 case 4:
992 ret = ldl_phys(addr);
993 break;
994 case 8:
995 ret = ldq_phys(addr);
996 break;
997 }
998 break;
999 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1000 switch(size) {
1001 case 1:
1002 ret = ldub_phys((target_phys_addr_t)addr
1003 | ((target_phys_addr_t)(asi & 0xf) << 32));
1004 break;
1005 case 2:
1006 ret = lduw_phys((target_phys_addr_t)addr
1007 | ((target_phys_addr_t)(asi & 0xf) << 32));
1008 break;
1009 default:
1010 case 4:
1011 ret = ldl_phys((target_phys_addr_t)addr
1012 | ((target_phys_addr_t)(asi & 0xf) << 32));
1013 break;
1014 case 8:
1015 ret = ldq_phys((target_phys_addr_t)addr
1016 | ((target_phys_addr_t)(asi & 0xf) << 32));
1017 break;
1018 }
1019 break;
1020 case 0x30: // Turbosparc secondary cache diagnostic
1021 case 0x31: // Turbosparc RAM snoop
1022 case 0x32: // Turbosparc page table descriptor diagnostic
1023 case 0x39: /* data cache diagnostic register */
1024 ret = 0;
1025 break;
1026 case 8: /* User code access, XXX */
1027 default:
1028 do_unassigned_access(addr, 0, 0, asi);
1029 ret = 0;
1030 break;
1031 }
1032 if (sign) {
1033 switch(size) {
1034 case 1:
1035 ret = (int8_t) ret;
1036 break;
1037 case 2:
1038 ret = (int16_t) ret;
1039 break;
1040 case 4:
1041 ret = (int32_t) ret;
1042 break;
1043 default:
1044 break;
1045 }
1046 }
1047 #ifdef DEBUG_ASI
1048 dump_asi("read ", last_addr, asi, size, ret);
1049 #endif
1050 return ret;
1051 }
1052
1053 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1054 {
1055 helper_check_align(addr, size - 1);
1056 switch(asi) {
1057 case 2: /* SuperSparc MXCC registers */
1058 switch (addr) {
1059 case 0x01c00000: /* MXCC stream data register 0 */
1060 if (size == 8)
1061 env->mxccdata[0] = val;
1062 else
1063 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1064 size);
1065 break;
1066 case 0x01c00008: /* MXCC stream data register 1 */
1067 if (size == 8)
1068 env->mxccdata[1] = val;
1069 else
1070 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1071 size);
1072 break;
1073 case 0x01c00010: /* MXCC stream data register 2 */
1074 if (size == 8)
1075 env->mxccdata[2] = val;
1076 else
1077 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1078 size);
1079 break;
1080 case 0x01c00018: /* MXCC stream data register 3 */
1081 if (size == 8)
1082 env->mxccdata[3] = val;
1083 else
1084 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1085 size);
1086 break;
1087 case 0x01c00100: /* MXCC stream source */
1088 if (size == 8)
1089 env->mxccregs[0] = val;
1090 else
1091 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1092 size);
1093 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1094 0);
1095 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1096 8);
1097 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1098 16);
1099 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1100 24);
1101 break;
1102 case 0x01c00200: /* MXCC stream destination */
1103 if (size == 8)
1104 env->mxccregs[1] = val;
1105 else
1106 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1107 size);
1108 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1109 env->mxccdata[0]);
1110 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1111 env->mxccdata[1]);
1112 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1113 env->mxccdata[2]);
1114 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1115 env->mxccdata[3]);
1116 break;
1117 case 0x01c00a00: /* MXCC control register */
1118 if (size == 8)
1119 env->mxccregs[3] = val;
1120 else
1121 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1122 size);
1123 break;
1124 case 0x01c00a04: /* MXCC control register */
1125 if (size == 4)
1126 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1127 | val;
1128 else
1129 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1130 size);
1131 break;
1132 case 0x01c00e00: /* MXCC error register */
1133 // writing a 1 bit clears the error
1134 if (size == 8)
1135 env->mxccregs[6] &= ~val;
1136 else
1137 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1138 size);
1139 break;
1140 case 0x01c00f00: /* MBus port address register */
1141 if (size == 8)
1142 env->mxccregs[7] = val;
1143 else
1144 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1145 size);
1146 break;
1147 default:
1148 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1149 size);
1150 break;
1151 }
1152 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1153 size, addr, val);
1154 #ifdef DEBUG_MXCC
1155 dump_mxcc(env);
1156 #endif
1157 break;
1158 case 3: /* MMU flush */
1159 {
1160 int mmulev;
1161
1162 mmulev = (addr >> 8) & 15;
1163 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1164 switch (mmulev) {
1165 case 0: // flush page
1166 tlb_flush_page(env, addr & 0xfffff000);
1167 break;
1168 case 1: // flush segment (256k)
1169 case 2: // flush region (16M)
1170 case 3: // flush context (4G)
1171 case 4: // flush entire
1172 tlb_flush(env, 1);
1173 break;
1174 default:
1175 break;
1176 }
1177 #ifdef DEBUG_MMU
1178 dump_mmu(env);
1179 #endif
1180 }
1181 break;
1182 case 4: /* write MMU regs */
1183 {
1184 int reg = (addr >> 8) & 0x1f;
1185 uint32_t oldreg;
1186
1187 oldreg = env->mmuregs[reg];
1188 switch(reg) {
1189 case 0: // Control Register
1190 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1191 (val & 0x00ffffff);
1192 // Mappings generated during no-fault mode or MMU
1193 // disabled mode are invalid in normal mode
1194 if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
1195 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
1196 tlb_flush(env, 1);
1197 break;
1198 case 1: // Context Table Pointer Register
1199 env->mmuregs[reg] = val & env->mmu_ctpr_mask;
1200 break;
1201 case 2: // Context Register
1202 env->mmuregs[reg] = val & env->mmu_cxr_mask;
1203 if (oldreg != env->mmuregs[reg]) {
1204 /* we flush when the MMU context changes because
1205 QEMU has no MMU context support */
1206 tlb_flush(env, 1);
1207 }
1208 break;
1209 case 3: // Synchronous Fault Status Register with Clear
1210 case 4: // Synchronous Fault Address Register
1211 break;
1212 case 0x10: // TLB Replacement Control Register
1213 env->mmuregs[reg] = val & env->mmu_trcr_mask;
1214 break;
1215 case 0x13: // Synchronous Fault Status Register with Read and Clear
1216 env->mmuregs[3] = val & env->mmu_sfsr_mask;
1217 break;
1218 case 0x14: // Synchronous Fault Address Register
1219 env->mmuregs[4] = val;
1220 break;
1221 default:
1222 env->mmuregs[reg] = val;
1223 break;
1224 }
1225 if (oldreg != env->mmuregs[reg]) {
1226 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1227 reg, oldreg, env->mmuregs[reg]);
1228 }
1229 #ifdef DEBUG_MMU
1230 dump_mmu(env);
1231 #endif
1232 }
1233 break;
1234 case 5: // Turbosparc ITLB Diagnostic
1235 case 6: // Turbosparc DTLB Diagnostic
1236 case 7: // Turbosparc IOTLB Diagnostic
1237 break;
1238 case 0xa: /* User data access */
1239 switch(size) {
1240 case 1:
1241 stb_user(addr, val);
1242 break;
1243 case 2:
1244 stw_user(addr, val);
1245 break;
1246 default:
1247 case 4:
1248 stl_user(addr, val);
1249 break;
1250 case 8:
1251 stq_user(addr, val);
1252 break;
1253 }
1254 break;
1255 case 0xb: /* Supervisor data access */
1256 switch(size) {
1257 case 1:
1258 stb_kernel(addr, val);
1259 break;
1260 case 2:
1261 stw_kernel(addr, val);
1262 break;
1263 default:
1264 case 4:
1265 stl_kernel(addr, val);
1266 break;
1267 case 8:
1268 stq_kernel(addr, val);
1269 break;
1270 }
1271 break;
1272 case 0xc: /* I-cache tag */
1273 case 0xd: /* I-cache data */
1274 case 0xe: /* D-cache tag */
1275 case 0xf: /* D-cache data */
1276 case 0x10: /* I/D-cache flush page */
1277 case 0x11: /* I/D-cache flush segment */
1278 case 0x12: /* I/D-cache flush region */
1279 case 0x13: /* I/D-cache flush context */
1280 case 0x14: /* I/D-cache flush user */
1281 break;
1282 case 0x17: /* Block copy, sta access */
1283 {
1284 // val = src
1285 // addr = dst
1286 // copy 32 bytes
1287 unsigned int i;
1288 uint32_t src = val & ~3, dst = addr & ~3, temp;
1289
1290 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1291 temp = ldl_kernel(src);
1292 stl_kernel(dst, temp);
1293 }
1294 }
1295 break;
1296 case 0x1f: /* Block fill, stda access */
1297 {
1298 // addr = dst
1299 // fill 32 bytes with val
1300 unsigned int i;
1301 uint32_t dst = addr & 7;
1302
1303 for (i = 0; i < 32; i += 8, dst += 8)
1304 stq_kernel(dst, val);
1305 }
1306 break;
1307 case 0x20: /* MMU passthrough */
1308 {
1309 switch(size) {
1310 case 1:
1311 stb_phys(addr, val);
1312 break;
1313 case 2:
1314 stw_phys(addr, val);
1315 break;
1316 case 4:
1317 default:
1318 stl_phys(addr, val);
1319 break;
1320 case 8:
1321 stq_phys(addr, val);
1322 break;
1323 }
1324 }
1325 break;
1326 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1327 {
1328 switch(size) {
1329 case 1:
1330 stb_phys((target_phys_addr_t)addr
1331 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1332 break;
1333 case 2:
1334 stw_phys((target_phys_addr_t)addr
1335 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1336 break;
1337 case 4:
1338 default:
1339 stl_phys((target_phys_addr_t)addr
1340 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1341 break;
1342 case 8:
1343 stq_phys((target_phys_addr_t)addr
1344 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1345 break;
1346 }
1347 }
1348 break;
1349 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1350 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1351 // Turbosparc snoop RAM
1352 case 0x32: // store buffer control or Turbosparc page table
1353 // descriptor diagnostic
1354 case 0x36: /* I-cache flash clear */
1355 case 0x37: /* D-cache flash clear */
1356 case 0x38: /* breakpoint diagnostics */
1357 case 0x4c: /* breakpoint action */
1358 break;
1359 case 8: /* User code access, XXX */
1360 case 9: /* Supervisor code access, XXX */
1361 default:
1362 do_unassigned_access(addr, 1, 0, asi);
1363 break;
1364 }
1365 #ifdef DEBUG_ASI
1366 dump_asi("write", addr, asi, size, val);
1367 #endif
1368 }
1369
1370 #endif /* CONFIG_USER_ONLY */
1371 #else /* TARGET_SPARC64 */
1372
1373 #ifdef CONFIG_USER_ONLY
1374 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1375 {
1376 uint64_t ret = 0;
1377 #if defined(DEBUG_ASI)
1378 target_ulong last_addr = addr;
1379 #endif
1380
1381 if (asi < 0x80)
1382 raise_exception(TT_PRIV_ACT);
1383
1384 helper_check_align(addr, size - 1);
1385 ABI32_MASK(addr);
1386
1387 switch (asi) {
1388 case 0x80: // Primary
1389 case 0x82: // Primary no-fault
1390 case 0x88: // Primary LE
1391 case 0x8a: // Primary no-fault LE
1392 {
1393 switch(size) {
1394 case 1:
1395 ret = ldub_raw(addr);
1396 break;
1397 case 2:
1398 ret = lduw_raw(addr);
1399 break;
1400 case 4:
1401 ret = ldl_raw(addr);
1402 break;
1403 default:
1404 case 8:
1405 ret = ldq_raw(addr);
1406 break;
1407 }
1408 }
1409 break;
1410 case 0x81: // Secondary
1411 case 0x83: // Secondary no-fault
1412 case 0x89: // Secondary LE
1413 case 0x8b: // Secondary no-fault LE
1414 // XXX
1415 break;
1416 default:
1417 break;
1418 }
1419
1420 /* Convert from little endian */
1421 switch (asi) {
1422 case 0x88: // Primary LE
1423 case 0x89: // Secondary LE
1424 case 0x8a: // Primary no-fault LE
1425 case 0x8b: // Secondary no-fault LE
1426 switch(size) {
1427 case 2:
1428 ret = bswap16(ret);
1429 break;
1430 case 4:
1431 ret = bswap32(ret);
1432 break;
1433 case 8:
1434 ret = bswap64(ret);
1435 break;
1436 default:
1437 break;
1438 }
1439 default:
1440 break;
1441 }
1442
1443 /* Convert to signed number */
1444 if (sign) {
1445 switch(size) {
1446 case 1:
1447 ret = (int8_t) ret;
1448 break;
1449 case 2:
1450 ret = (int16_t) ret;
1451 break;
1452 case 4:
1453 ret = (int32_t) ret;
1454 break;
1455 default:
1456 break;
1457 }
1458 }
1459 #ifdef DEBUG_ASI
1460 dump_asi("read ", last_addr, asi, size, ret);
1461 #endif
1462 return ret;
1463 }
1464
1465 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1466 {
1467 #ifdef DEBUG_ASI
1468 dump_asi("write", addr, asi, size, val);
1469 #endif
1470 if (asi < 0x80)
1471 raise_exception(TT_PRIV_ACT);
1472
1473 helper_check_align(addr, size - 1);
1474 ABI32_MASK(addr);
1475
1476 /* Convert to little endian */
1477 switch (asi) {
1478 case 0x88: // Primary LE
1479 case 0x89: // Secondary LE
1480 switch(size) {
1481 case 2:
1482 addr = bswap16(addr);
1483 break;
1484 case 4:
1485 addr = bswap32(addr);
1486 break;
1487 case 8:
1488 addr = bswap64(addr);
1489 break;
1490 default:
1491 break;
1492 }
1493 default:
1494 break;
1495 }
1496
1497 switch(asi) {
1498 case 0x80: // Primary
1499 case 0x88: // Primary LE
1500 {
1501 switch(size) {
1502 case 1:
1503 stb_raw(addr, val);
1504 break;
1505 case 2:
1506 stw_raw(addr, val);
1507 break;
1508 case 4:
1509 stl_raw(addr, val);
1510 break;
1511 case 8:
1512 default:
1513 stq_raw(addr, val);
1514 break;
1515 }
1516 }
1517 break;
1518 case 0x81: // Secondary
1519 case 0x89: // Secondary LE
1520 // XXX
1521 return;
1522
1523 case 0x82: // Primary no-fault, RO
1524 case 0x83: // Secondary no-fault, RO
1525 case 0x8a: // Primary no-fault LE, RO
1526 case 0x8b: // Secondary no-fault LE, RO
1527 default:
1528 do_unassigned_access(addr, 1, 0, 1);
1529 return;
1530 }
1531 }
1532
1533 #else /* CONFIG_USER_ONLY */
1534
1535 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1536 {
1537 uint64_t ret = 0;
1538 #if defined(DEBUG_ASI)
1539 target_ulong last_addr = addr;
1540 #endif
1541
1542 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1543 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1544 raise_exception(TT_PRIV_ACT);
1545
1546 helper_check_align(addr, size - 1);
1547 switch (asi) {
1548 case 0x10: // As if user primary
1549 case 0x18: // As if user primary LE
1550 case 0x80: // Primary
1551 case 0x82: // Primary no-fault
1552 case 0x88: // Primary LE
1553 case 0x8a: // Primary no-fault LE
1554 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1555 if (env->hpstate & HS_PRIV) {
1556 switch(size) {
1557 case 1:
1558 ret = ldub_hypv(addr);
1559 break;
1560 case 2:
1561 ret = lduw_hypv(addr);
1562 break;
1563 case 4:
1564 ret = ldl_hypv(addr);
1565 break;
1566 default:
1567 case 8:
1568 ret = ldq_hypv(addr);
1569 break;
1570 }
1571 } else {
1572 switch(size) {
1573 case 1:
1574 ret = ldub_kernel(addr);
1575 break;
1576 case 2:
1577 ret = lduw_kernel(addr);
1578 break;
1579 case 4:
1580 ret = ldl_kernel(addr);
1581 break;
1582 default:
1583 case 8:
1584 ret = ldq_kernel(addr);
1585 break;
1586 }
1587 }
1588 } else {
1589 switch(size) {
1590 case 1:
1591 ret = ldub_user(addr);
1592 break;
1593 case 2:
1594 ret = lduw_user(addr);
1595 break;
1596 case 4:
1597 ret = ldl_user(addr);
1598 break;
1599 default:
1600 case 8:
1601 ret = ldq_user(addr);
1602 break;
1603 }
1604 }
1605 break;
1606 case 0x14: // Bypass
1607 case 0x15: // Bypass, non-cacheable
1608 case 0x1c: // Bypass LE
1609 case 0x1d: // Bypass, non-cacheable LE
1610 {
1611 switch(size) {
1612 case 1:
1613 ret = ldub_phys(addr);
1614 break;
1615 case 2:
1616 ret = lduw_phys(addr);
1617 break;
1618 case 4:
1619 ret = ldl_phys(addr);
1620 break;
1621 default:
1622 case 8:
1623 ret = ldq_phys(addr);
1624 break;
1625 }
1626 break;
1627 }
1628 case 0x04: // Nucleus
1629 case 0x0c: // Nucleus Little Endian (LE)
1630 case 0x11: // As if user secondary
1631 case 0x19: // As if user secondary LE
1632 case 0x24: // Nucleus quad LDD 128 bit atomic
1633 case 0x2c: // Nucleus quad LDD 128 bit atomic
1634 case 0x4a: // UPA config
1635 case 0x81: // Secondary
1636 case 0x83: // Secondary no-fault
1637 case 0x89: // Secondary LE
1638 case 0x8b: // Secondary no-fault LE
1639 // XXX
1640 break;
1641 case 0x45: // LSU
1642 ret = env->lsu;
1643 break;
1644 case 0x50: // I-MMU regs
1645 {
1646 int reg = (addr >> 3) & 0xf;
1647
1648 ret = env->immuregs[reg];
1649 break;
1650 }
1651 case 0x51: // I-MMU 8k TSB pointer
1652 case 0x52: // I-MMU 64k TSB pointer
1653 case 0x55: // I-MMU data access
1654 // XXX
1655 break;
1656 case 0x56: // I-MMU tag read
1657 {
1658 unsigned int i;
1659
1660 for (i = 0; i < 64; i++) {
1661 // Valid, ctx match, vaddr match
1662 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1663 env->itlb_tag[i] == addr) {
1664 ret = env->itlb_tag[i];
1665 break;
1666 }
1667 }
1668 break;
1669 }
1670 case 0x58: // D-MMU regs
1671 {
1672 int reg = (addr >> 3) & 0xf;
1673
1674 ret = env->dmmuregs[reg];
1675 break;
1676 }
1677 case 0x5e: // D-MMU tag read
1678 {
1679 unsigned int i;
1680
1681 for (i = 0; i < 64; i++) {
1682 // Valid, ctx match, vaddr match
1683 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1684 env->dtlb_tag[i] == addr) {
1685 ret = env->dtlb_tag[i];
1686 break;
1687 }
1688 }
1689 break;
1690 }
1691 case 0x59: // D-MMU 8k TSB pointer
1692 case 0x5a: // D-MMU 64k TSB pointer
1693 case 0x5b: // D-MMU data pointer
1694 case 0x5d: // D-MMU data access
1695 case 0x48: // Interrupt dispatch, RO
1696 case 0x49: // Interrupt data receive
1697 case 0x7f: // Incoming interrupt vector, RO
1698 // XXX
1699 break;
1700 case 0x54: // I-MMU data in, WO
1701 case 0x57: // I-MMU demap, WO
1702 case 0x5c: // D-MMU data in, WO
1703 case 0x5f: // D-MMU demap, WO
1704 case 0x77: // Interrupt vector, WO
1705 default:
1706 do_unassigned_access(addr, 0, 0, 1);
1707 ret = 0;
1708 break;
1709 }
1710
1711 /* Convert from little endian */
1712 switch (asi) {
1713 case 0x0c: // Nucleus Little Endian (LE)
1714 case 0x18: // As if user primary LE
1715 case 0x19: // As if user secondary LE
1716 case 0x1c: // Bypass LE
1717 case 0x1d: // Bypass, non-cacheable LE
1718 case 0x88: // Primary LE
1719 case 0x89: // Secondary LE
1720 case 0x8a: // Primary no-fault LE
1721 case 0x8b: // Secondary no-fault LE
1722 switch(size) {
1723 case 2:
1724 ret = bswap16(ret);
1725 break;
1726 case 4:
1727 ret = bswap32(ret);
1728 break;
1729 case 8:
1730 ret = bswap64(ret);
1731 break;
1732 default:
1733 break;
1734 }
1735 default:
1736 break;
1737 }
1738
1739 /* Convert to signed number */
1740 if (sign) {
1741 switch(size) {
1742 case 1:
1743 ret = (int8_t) ret;
1744 break;
1745 case 2:
1746 ret = (int16_t) ret;
1747 break;
1748 case 4:
1749 ret = (int32_t) ret;
1750 break;
1751 default:
1752 break;
1753 }
1754 }
1755 #ifdef DEBUG_ASI
1756 dump_asi("read ", last_addr, asi, size, ret);
1757 #endif
1758 return ret;
1759 }
1760
1761 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1762 {
1763 #ifdef DEBUG_ASI
1764 dump_asi("write", addr, asi, size, val);
1765 #endif
1766 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1767 || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1768 raise_exception(TT_PRIV_ACT);
1769
1770 helper_check_align(addr, size - 1);
1771 /* Convert to little endian */
1772 switch (asi) {
1773 case 0x0c: // Nucleus Little Endian (LE)
1774 case 0x18: // As if user primary LE
1775 case 0x19: // As if user secondary LE
1776 case 0x1c: // Bypass LE
1777 case 0x1d: // Bypass, non-cacheable LE
1778 case 0x88: // Primary LE
1779 case 0x89: // Secondary LE
1780 switch(size) {
1781 case 2:
1782 addr = bswap16(addr);
1783 break;
1784 case 4:
1785 addr = bswap32(addr);
1786 break;
1787 case 8:
1788 addr = bswap64(addr);
1789 break;
1790 default:
1791 break;
1792 }
1793 default:
1794 break;
1795 }
1796
1797 switch(asi) {
1798 case 0x10: // As if user primary
1799 case 0x18: // As if user primary LE
1800 case 0x80: // Primary
1801 case 0x88: // Primary LE
1802 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1803 if (env->hpstate & HS_PRIV) {
1804 switch(size) {
1805 case 1:
1806 stb_hypv(addr, val);
1807 break;
1808 case 2:
1809 stw_hypv(addr, val);
1810 break;
1811 case 4:
1812 stl_hypv(addr, val);
1813 break;
1814 case 8:
1815 default:
1816 stq_hypv(addr, val);
1817 break;
1818 }
1819 } else {
1820 switch(size) {
1821 case 1:
1822 stb_kernel(addr, val);
1823 break;
1824 case 2:
1825 stw_kernel(addr, val);
1826 break;
1827 case 4:
1828 stl_kernel(addr, val);
1829 break;
1830 case 8:
1831 default:
1832 stq_kernel(addr, val);
1833 break;
1834 }
1835 }
1836 } else {
1837 switch(size) {
1838 case 1:
1839 stb_user(addr, val);
1840 break;
1841 case 2:
1842 stw_user(addr, val);
1843 break;
1844 case 4:
1845 stl_user(addr, val);
1846 break;
1847 case 8:
1848 default:
1849 stq_user(addr, val);
1850 break;
1851 }
1852 }
1853 break;
1854 case 0x14: // Bypass
1855 case 0x15: // Bypass, non-cacheable
1856 case 0x1c: // Bypass LE
1857 case 0x1d: // Bypass, non-cacheable LE
1858 {
1859 switch(size) {
1860 case 1:
1861 stb_phys(addr, val);
1862 break;
1863 case 2:
1864 stw_phys(addr, val);
1865 break;
1866 case 4:
1867 stl_phys(addr, val);
1868 break;
1869 case 8:
1870 default:
1871 stq_phys(addr, val);
1872 break;
1873 }
1874 }
1875 return;
1876 case 0x04: // Nucleus
1877 case 0x0c: // Nucleus Little Endian (LE)
1878 case 0x11: // As if user secondary
1879 case 0x19: // As if user secondary LE
1880 case 0x24: // Nucleus quad LDD 128 bit atomic
1881 case 0x2c: // Nucleus quad LDD 128 bit atomic
1882 case 0x4a: // UPA config
1883 case 0x81: // Secondary
1884 case 0x89: // Secondary LE
1885 // XXX
1886 return;
1887 case 0x45: // LSU
1888 {
1889 uint64_t oldreg;
1890
1891 oldreg = env->lsu;
1892 env->lsu = val & (DMMU_E | IMMU_E);
1893 // Mappings generated during D/I MMU disabled mode are
1894 // invalid in normal mode
1895 if (oldreg != env->lsu) {
1896 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1897 oldreg, env->lsu);
1898 #ifdef DEBUG_MMU
1899 dump_mmu(env);
1900 #endif
1901 tlb_flush(env, 1);
1902 }
1903 return;
1904 }
1905 case 0x50: // I-MMU regs
1906 {
1907 int reg = (addr >> 3) & 0xf;
1908 uint64_t oldreg;
1909
1910 oldreg = env->immuregs[reg];
1911 switch(reg) {
1912 case 0: // RO
1913 case 4:
1914 return;
1915 case 1: // Not in I-MMU
1916 case 2:
1917 case 7:
1918 case 8:
1919 return;
1920 case 3: // SFSR
1921 if ((val & 1) == 0)
1922 val = 0; // Clear SFSR
1923 break;
1924 case 5: // TSB access
1925 case 6: // Tag access
1926 default:
1927 break;
1928 }
1929 env->immuregs[reg] = val;
1930 if (oldreg != env->immuregs[reg]) {
1931 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1932 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1933 }
1934 #ifdef DEBUG_MMU
1935 dump_mmu(env);
1936 #endif
1937 return;
1938 }
1939 case 0x54: // I-MMU data in
1940 {
1941 unsigned int i;
1942
1943 // Try finding an invalid entry
1944 for (i = 0; i < 64; i++) {
1945 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1946 env->itlb_tag[i] = env->immuregs[6];
1947 env->itlb_tte[i] = val;
1948 return;
1949 }
1950 }
1951 // Try finding an unlocked entry
1952 for (i = 0; i < 64; i++) {
1953 if ((env->itlb_tte[i] & 0x40) == 0) {
1954 env->itlb_tag[i] = env->immuregs[6];
1955 env->itlb_tte[i] = val;
1956 return;
1957 }
1958 }
1959 // error state?
1960 return;
1961 }
1962 case 0x55: // I-MMU data access
1963 {
1964 unsigned int i = (addr >> 3) & 0x3f;
1965
1966 env->itlb_tag[i] = env->immuregs[6];
1967 env->itlb_tte[i] = val;
1968 return;
1969 }
1970 case 0x57: // I-MMU demap
1971 // XXX
1972 return;
1973 case 0x58: // D-MMU regs
1974 {
1975 int reg = (addr >> 3) & 0xf;
1976 uint64_t oldreg;
1977
1978 oldreg = env->dmmuregs[reg];
1979 switch(reg) {
1980 case 0: // RO
1981 case 4:
1982 return;
1983 case 3: // SFSR
1984 if ((val & 1) == 0) {
1985 val = 0; // Clear SFSR, Fault address
1986 env->dmmuregs[4] = 0;
1987 }
1988 env->dmmuregs[reg] = val;
1989 break;
1990 case 1: // Primary context
1991 case 2: // Secondary context
1992 case 5: // TSB access
1993 case 6: // Tag access
1994 case 7: // Virtual Watchpoint
1995 case 8: // Physical Watchpoint
1996 default:
1997 break;
1998 }
1999 env->dmmuregs[reg] = val;
2000 if (oldreg != env->dmmuregs[reg]) {
2001 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2002 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2003 }
2004 #ifdef DEBUG_MMU
2005 dump_mmu(env);
2006 #endif
2007 return;
2008 }
2009 case 0x5c: // D-MMU data in
2010 {
2011 unsigned int i;
2012
2013 // Try finding an invalid entry
2014 for (i = 0; i < 64; i++) {
2015 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2016 env->dtlb_tag[i] = env->dmmuregs[6];
2017 env->dtlb_tte[i] = val;
2018 return;
2019 }
2020 }
2021 // Try finding an unlocked entry
2022 for (i = 0; i < 64; i++) {
2023 if ((env->dtlb_tte[i] & 0x40) == 0) {
2024 env->dtlb_tag[i] = env->dmmuregs[6];
2025 env->dtlb_tte[i] = val;
2026 return;
2027 }
2028 }
2029 // error state?
2030 return;
2031 }
2032 case 0x5d: // D-MMU data access
2033 {
2034 unsigned int i = (addr >> 3) & 0x3f;
2035
2036 env->dtlb_tag[i] = env->dmmuregs[6];
2037 env->dtlb_tte[i] = val;
2038 return;
2039 }
2040 case 0x5f: // D-MMU demap
2041 case 0x49: // Interrupt data receive
2042 // XXX
2043 return;
2044 case 0x51: // I-MMU 8k TSB pointer, RO
2045 case 0x52: // I-MMU 64k TSB pointer, RO
2046 case 0x56: // I-MMU tag read, RO
2047 case 0x59: // D-MMU 8k TSB pointer, RO
2048 case 0x5a: // D-MMU 64k TSB pointer, RO
2049 case 0x5b: // D-MMU data pointer, RO
2050 case 0x5e: // D-MMU tag read, RO
2051 case 0x48: // Interrupt dispatch, RO
2052 case 0x7f: // Incoming interrupt vector, RO
2053 case 0x82: // Primary no-fault, RO
2054 case 0x83: // Secondary no-fault, RO
2055 case 0x8a: // Primary no-fault LE, RO
2056 case 0x8b: // Secondary no-fault LE, RO
2057 default:
2058 do_unassigned_access(addr, 1, 0, 1);
2059 return;
2060 }
2061 }
2062 #endif /* CONFIG_USER_ONLY */
2063
2064 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2065 {
2066 unsigned int i;
2067 target_ulong val;
2068
2069 helper_check_align(addr, 3);
2070 switch (asi) {
2071 case 0xf0: // Block load primary
2072 case 0xf1: // Block load secondary
2073 case 0xf8: // Block load primary LE
2074 case 0xf9: // Block load secondary LE
2075 if (rd & 7) {
2076 raise_exception(TT_ILL_INSN);
2077 return;
2078 }
2079 helper_check_align(addr, 0x3f);
2080 for (i = 0; i < 16; i++) {
2081 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2082 0);
2083 addr += 4;
2084 }
2085
2086 return;
2087 default:
2088 break;
2089 }
2090
2091 val = helper_ld_asi(addr, asi, size, 0);
2092 switch(size) {
2093 default:
2094 case 4:
2095 *((uint32_t *)&FT0) = val;
2096 break;
2097 case 8:
2098 *((int64_t *)&DT0) = val;
2099 break;
2100 case 16:
2101 // XXX
2102 break;
2103 }
2104 }
2105
2106 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2107 {
2108 unsigned int i;
2109 target_ulong val = 0;
2110
2111 helper_check_align(addr, 3);
2112 switch (asi) {
2113 case 0xf0: // Block store primary
2114 case 0xf1: // Block store secondary
2115 case 0xf8: // Block store primary LE
2116 case 0xf9: // Block store secondary LE
2117 if (rd & 7) {
2118 raise_exception(TT_ILL_INSN);
2119 return;
2120 }
2121 helper_check_align(addr, 0x3f);
2122 for (i = 0; i < 16; i++) {
2123 val = *(uint32_t *)&env->fpr[rd++];
2124 helper_st_asi(addr, val, asi & 0x8f, 4);
2125 addr += 4;
2126 }
2127
2128 return;
2129 default:
2130 break;
2131 }
2132
2133 switch(size) {
2134 default:
2135 case 4:
2136 val = *((uint32_t *)&FT0);
2137 break;
2138 case 8:
2139 val = *((int64_t *)&DT0);
2140 break;
2141 case 16:
2142 // XXX
2143 break;
2144 }
2145 helper_st_asi(addr, val, asi, size);
2146 }
2147
2148 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2149 target_ulong val2, uint32_t asi)
2150 {
2151 target_ulong ret;
2152
2153 val1 &= 0xffffffffUL;
2154 ret = helper_ld_asi(addr, asi, 4, 0);
2155 ret &= 0xffffffffUL;
2156 if (val1 == ret)
2157 helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2158 return ret;
2159 }
2160
2161 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2162 target_ulong val2, uint32_t asi)
2163 {
2164 target_ulong ret;
2165
2166 ret = helper_ld_asi(addr, asi, 8, 0);
2167 if (val1 == ret)
2168 helper_st_asi(addr, val2, asi, 8);
2169 return ret;
2170 }
2171 #endif /* TARGET_SPARC64 */
2172
2173 #ifndef TARGET_SPARC64
2174 void helper_rett(void)
2175 {
2176 unsigned int cwp;
2177
2178 if (env->psret == 1)
2179 raise_exception(TT_ILL_INSN);
2180
2181 env->psret = 1;
2182 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2183 if (env->wim & (1 << cwp)) {
2184 raise_exception(TT_WIN_UNF);
2185 }
2186 set_cwp(cwp);
2187 env->psrs = env->psrps;
2188 }
2189 #endif
2190
2191 target_ulong helper_udiv(target_ulong a, target_ulong b)
2192 {
2193 uint64_t x0;
2194 uint32_t x1;
2195
2196 x0 = a | ((uint64_t) (env->y) << 32);
2197 x1 = b;
2198
2199 if (x1 == 0) {
2200 raise_exception(TT_DIV_ZERO);
2201 }
2202
2203 x0 = x0 / x1;
2204 if (x0 > 0xffffffff) {
2205 env->cc_src2 = 1;
2206 return 0xffffffff;
2207 } else {
2208 env->cc_src2 = 0;
2209 return x0;
2210 }
2211 }
2212
2213 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2214 {
2215 int64_t x0;
2216 int32_t x1;
2217
2218 x0 = a | ((int64_t) (env->y) << 32);
2219 x1 = b;
2220
2221 if (x1 == 0) {
2222 raise_exception(TT_DIV_ZERO);
2223 }
2224
2225 x0 = x0 / x1;
2226 if ((int32_t) x0 != x0) {
2227 env->cc_src2 = 1;
2228 return x0 < 0? 0x80000000: 0x7fffffff;
2229 } else {
2230 env->cc_src2 = 0;
2231 return x0;
2232 }
2233 }
2234
2235 uint64_t helper_pack64(target_ulong high, target_ulong low)
2236 {
2237 return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2238 }
2239
2240 void helper_stdf(target_ulong addr, int mem_idx)
2241 {
2242 helper_check_align(addr, 7);
2243 #if !defined(CONFIG_USER_ONLY)
2244 switch (mem_idx) {
2245 case 0:
2246 stfq_user(addr, DT0);
2247 break;
2248 case 1:
2249 stfq_kernel(addr, DT0);
2250 break;
2251 #ifdef TARGET_SPARC64
2252 case 2:
2253 stfq_hypv(addr, DT0);
2254 break;
2255 #endif
2256 default:
2257 break;
2258 }
2259 #else
2260 ABI32_MASK(addr);
2261 stfq_raw(addr, DT0);
2262 #endif
2263 }
2264
2265 void helper_lddf(target_ulong addr, int mem_idx)
2266 {
2267 helper_check_align(addr, 7);
2268 #if !defined(CONFIG_USER_ONLY)
2269 switch (mem_idx) {
2270 case 0:
2271 DT0 = ldfq_user(addr);
2272 break;
2273 case 1:
2274 DT0 = ldfq_kernel(addr);
2275 break;
2276 #ifdef TARGET_SPARC64
2277 case 2:
2278 DT0 = ldfq_hypv(addr);
2279 break;
2280 #endif
2281 default:
2282 break;
2283 }
2284 #else
2285 ABI32_MASK(addr);
2286 DT0 = ldfq_raw(addr);
2287 #endif
2288 }
2289
2290 void helper_ldqf(target_ulong addr, int mem_idx)
2291 {
2292 // XXX add 128 bit load
2293 CPU_QuadU u;
2294
2295 helper_check_align(addr, 7);
2296 #if !defined(CONFIG_USER_ONLY)
2297 switch (mem_idx) {
2298 case 0:
2299 u.ll.upper = ldq_user(addr);
2300 u.ll.lower = ldq_user(addr + 8);
2301 QT0 = u.q;
2302 break;
2303 case 1:
2304 u.ll.upper = ldq_kernel(addr);
2305 u.ll.lower = ldq_kernel(addr + 8);
2306 QT0 = u.q;
2307 break;
2308 #ifdef TARGET_SPARC64
2309 case 2:
2310 u.ll.upper = ldq_hypv(addr);
2311 u.ll.lower = ldq_hypv(addr + 8);
2312 QT0 = u.q;
2313 break;
2314 #endif
2315 default:
2316 break;
2317 }
2318 #else
2319 ABI32_MASK(addr);
2320 u.ll.upper = ldq_raw(addr);
2321 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2322 QT0 = u.q;
2323 #endif
2324 }
2325
2326 void helper_stqf(target_ulong addr, int mem_idx)
2327 {
2328 // XXX add 128 bit store
2329 CPU_QuadU u;
2330
2331 helper_check_align(addr, 7);
2332 #if !defined(CONFIG_USER_ONLY)
2333 switch (mem_idx) {
2334 case 0:
2335 u.q = QT0;
2336 stq_user(addr, u.ll.upper);
2337 stq_user(addr + 8, u.ll.lower);
2338 break;
2339 case 1:
2340 u.q = QT0;
2341 stq_kernel(addr, u.ll.upper);
2342 stq_kernel(addr + 8, u.ll.lower);
2343 break;
2344 #ifdef TARGET_SPARC64
2345 case 2:
2346 u.q = QT0;
2347 stq_hypv(addr, u.ll.upper);
2348 stq_hypv(addr + 8, u.ll.lower);
2349 break;
2350 #endif
2351 default:
2352 break;
2353 }
2354 #else
2355 u.q = QT0;
2356 ABI32_MASK(addr);
2357 stq_raw(addr, u.ll.upper);
2358 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2359 #endif
2360 }
2361
2362 void helper_ldfsr(void)
2363 {
2364 int rnd_mode;
2365
2366 PUT_FSR32(env, *((uint32_t *) &FT0));
2367 switch (env->fsr & FSR_RD_MASK) {
2368 case FSR_RD_NEAREST:
2369 rnd_mode = float_round_nearest_even;
2370 break;
2371 default:
2372 case FSR_RD_ZERO:
2373 rnd_mode = float_round_to_zero;
2374 break;
2375 case FSR_RD_POS:
2376 rnd_mode = float_round_up;
2377 break;
2378 case FSR_RD_NEG:
2379 rnd_mode = float_round_down;
2380 break;
2381 }
2382 set_float_rounding_mode(rnd_mode, &env->fp_status);
2383 }
2384
2385 void helper_stfsr(void)
2386 {
2387 *((uint32_t *) &FT0) = GET_FSR32(env);
2388 }
2389
2390 void helper_debug(void)
2391 {
2392 env->exception_index = EXCP_DEBUG;
2393 cpu_loop_exit();
2394 }
2395
2396 #ifndef TARGET_SPARC64
2397 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2398 handling ? */
2399 void helper_save(void)
2400 {
2401 uint32_t cwp;
2402
2403 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2404 if (env->wim & (1 << cwp)) {
2405 raise_exception(TT_WIN_OVF);
2406 }
2407 set_cwp(cwp);
2408 }
2409
2410 void helper_restore(void)
2411 {
2412 uint32_t cwp;
2413
2414 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2415 if (env->wim & (1 << cwp)) {
2416 raise_exception(TT_WIN_UNF);
2417 }
2418 set_cwp(cwp);
2419 }
2420
2421 void helper_wrpsr(target_ulong new_psr)
2422 {
2423 if ((new_psr & PSR_CWP) >= NWINDOWS)
2424 raise_exception(TT_ILL_INSN);
2425 else
2426 PUT_PSR(env, new_psr);
2427 }
2428
2429 target_ulong helper_rdpsr(void)
2430 {
2431 return GET_PSR(env);
2432 }
2433
2434 #else
2435 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2436 handling ? */
2437 void helper_save(void)
2438 {
2439 uint32_t cwp;
2440
2441 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2442 if (env->cansave == 0) {
2443 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2444 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2445 ((env->wstate & 0x7) << 2)));
2446 } else {
2447 if (env->cleanwin - env->canrestore == 0) {
2448 // XXX Clean windows without trap
2449 raise_exception(TT_CLRWIN);
2450 } else {
2451 env->cansave--;
2452 env->canrestore++;
2453 set_cwp(cwp);
2454 }
2455 }
2456 }
2457
2458 void helper_restore(void)
2459 {
2460 uint32_t cwp;
2461
2462 cwp = (env->cwp + 1) & (NWINDOWS - 1);
2463 if (env->canrestore == 0) {
2464 raise_exception(TT_FILL | (env->otherwin != 0 ?
2465 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2466 ((env->wstate & 0x7) << 2)));
2467 } else {
2468 env->cansave++;
2469 env->canrestore--;
2470 set_cwp(cwp);
2471 }
2472 }
2473
2474 void helper_flushw(void)
2475 {
2476 if (env->cansave != NWINDOWS - 2) {
2477 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2478 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2479 ((env->wstate & 0x7) << 2)));
2480 }
2481 }
2482
2483 void helper_saved(void)
2484 {
2485 env->cansave++;
2486 if (env->otherwin == 0)
2487 env->canrestore--;
2488 else
2489 env->otherwin--;
2490 }
2491
2492 void helper_restored(void)
2493 {
2494 env->canrestore++;
2495 if (env->cleanwin < NWINDOWS - 1)
2496 env->cleanwin++;
2497 if (env->otherwin == 0)
2498 env->cansave--;
2499 else
2500 env->otherwin--;
2501 }
2502
2503 target_ulong helper_rdccr(void)
2504 {
2505 return GET_CCR(env);
2506 }
2507
2508 void helper_wrccr(target_ulong new_ccr)
2509 {
2510 PUT_CCR(env, new_ccr);
2511 }
2512
2513 // CWP handling is reversed in V9, but we still use the V8 register
2514 // order.
2515 target_ulong helper_rdcwp(void)
2516 {
2517 return GET_CWP64(env);
2518 }
2519
2520 void helper_wrcwp(target_ulong new_cwp)
2521 {
2522 PUT_CWP64(env, new_cwp);
2523 }
2524
2525 // This function uses non-native bit order
2526 #define GET_FIELD(X, FROM, TO) \
2527 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2528
2529 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2530 #define GET_FIELD_SP(X, FROM, TO) \
2531 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2532
2533 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2534 {
2535 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2536 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2537 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2538 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2539 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2540 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2541 (((pixel_addr >> 55) & 1) << 4) |
2542 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2543 GET_FIELD_SP(pixel_addr, 11, 12);
2544 }
2545
2546 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2547 {
2548 uint64_t tmp;
2549
2550 tmp = addr + offset;
2551 env->gsr &= ~7ULL;
2552 env->gsr |= tmp & 7ULL;
2553 return tmp & ~7ULL;
2554 }
2555
2556 target_ulong helper_popc(target_ulong val)
2557 {
2558 return ctpop64(val);
2559 }
2560
2561 static inline uint64_t *get_gregset(uint64_t pstate)
2562 {
2563 switch (pstate) {
2564 default:
2565 case 0:
2566 return env->bgregs;
2567 case PS_AG:
2568 return env->agregs;
2569 case PS_MG:
2570 return env->mgregs;
2571 case PS_IG:
2572 return env->igregs;
2573 }
2574 }
2575
2576 static inline void change_pstate(uint64_t new_pstate)
2577 {
2578 uint64_t pstate_regs, new_pstate_regs;
2579 uint64_t *src, *dst;
2580
2581 pstate_regs = env->pstate & 0xc01;
2582 new_pstate_regs = new_pstate & 0xc01;
2583 if (new_pstate_regs != pstate_regs) {
2584 // Switch global register bank
2585 src = get_gregset(new_pstate_regs);
2586 dst = get_gregset(pstate_regs);
2587 memcpy32(dst, env->gregs);
2588 memcpy32(env->gregs, src);
2589 }
2590 env->pstate = new_pstate;
2591 }
2592
2593 void helper_wrpstate(target_ulong new_state)
2594 {
2595 change_pstate(new_state & 0xf3f);
2596 }
2597
2598 void helper_done(void)
2599 {
2600 env->tl--;
2601 env->tsptr = &env->ts[env->tl];
2602 env->pc = env->tsptr->tpc;
2603 env->npc = env->tsptr->tnpc + 4;
2604 PUT_CCR(env, env->tsptr->tstate >> 32);
2605 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2606 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2607 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2608 }
2609
2610 void helper_retry(void)
2611 {
2612 env->tl--;
2613 env->tsptr = &env->ts[env->tl];
2614 env->pc = env->tsptr->tpc;
2615 env->npc = env->tsptr->tnpc;
2616 PUT_CCR(env, env->tsptr->tstate >> 32);
2617 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2618 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2619 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2620 }
2621 #endif
2622
2623 void set_cwp(int new_cwp)
2624 {
2625 /* put the modified wrap registers at their proper location */
2626 if (env->cwp == (NWINDOWS - 1))
2627 memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
2628 env->cwp = new_cwp;
2629 /* put the wrap registers at their temporary location */
2630 if (new_cwp == (NWINDOWS - 1))
2631 memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
2632 env->regwptr = env->regbase + (new_cwp * 16);
2633 REGWPTR = env->regwptr;
2634 }
2635
2636 void cpu_set_cwp(CPUState *env1, int new_cwp)
2637 {
2638 CPUState *saved_env;
2639 #ifdef reg_REGWPTR
2640 target_ulong *saved_regwptr;
2641 #endif
2642
2643 saved_env = env;
2644 #ifdef reg_REGWPTR
2645 saved_regwptr = REGWPTR;
2646 #endif
2647 env = env1;
2648 set_cwp(new_cwp);
2649 env = saved_env;
2650 #ifdef reg_REGWPTR
2651 REGWPTR = saved_regwptr;
2652 #endif
2653 }
2654
2655 #ifdef TARGET_SPARC64
2656 #ifdef DEBUG_PCALL
2657 static const char * const excp_names[0x50] = {
2658 [TT_TFAULT] = "Instruction Access Fault",
2659 [TT_TMISS] = "Instruction Access MMU Miss",
2660 [TT_CODE_ACCESS] = "Instruction Access Error",
2661 [TT_ILL_INSN] = "Illegal Instruction",
2662 [TT_PRIV_INSN] = "Privileged Instruction",
2663 [TT_NFPU_INSN] = "FPU Disabled",
2664 [TT_FP_EXCP] = "FPU Exception",
2665 [TT_TOVF] = "Tag Overflow",
2666 [TT_CLRWIN] = "Clean Windows",
2667 [TT_DIV_ZERO] = "Division By Zero",
2668 [TT_DFAULT] = "Data Access Fault",
2669 [TT_DMISS] = "Data Access MMU Miss",
2670 [TT_DATA_ACCESS] = "Data Access Error",
2671 [TT_DPROT] = "Data Protection Error",
2672 [TT_UNALIGNED] = "Unaligned Memory Access",
2673 [TT_PRIV_ACT] = "Privileged Action",
2674 [TT_EXTINT | 0x1] = "External Interrupt 1",
2675 [TT_EXTINT | 0x2] = "External Interrupt 2",
2676 [TT_EXTINT | 0x3] = "External Interrupt 3",
2677 [TT_EXTINT | 0x4] = "External Interrupt 4",
2678 [TT_EXTINT | 0x5] = "External Interrupt 5",
2679 [TT_EXTINT | 0x6] = "External Interrupt 6",
2680 [TT_EXTINT | 0x7] = "External Interrupt 7",
2681 [TT_EXTINT | 0x8] = "External Interrupt 8",
2682 [TT_EXTINT | 0x9] = "External Interrupt 9",
2683 [TT_EXTINT | 0xa] = "External Interrupt 10",
2684 [TT_EXTINT | 0xb] = "External Interrupt 11",
2685 [TT_EXTINT | 0xc] = "External Interrupt 12",
2686 [TT_EXTINT | 0xd] = "External Interrupt 13",
2687 [TT_EXTINT | 0xe] = "External Interrupt 14",
2688 [TT_EXTINT | 0xf] = "External Interrupt 15",
2689 };
2690 #endif
2691
2692 void do_interrupt(int intno)
2693 {
2694 #ifdef DEBUG_PCALL
2695 if (loglevel & CPU_LOG_INT) {
2696 static int count;
2697 const char *name;
2698
2699 if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
2700 name = "Unknown";
2701 else if (intno >= 0x100)
2702 name = "Trap Instruction";
2703 else if (intno >= 0xc0)
2704 name = "Window Fill";
2705 else if (intno >= 0x80)
2706 name = "Window Spill";
2707 else {
2708 name = excp_names[intno];
2709 if (!name)
2710 name = "Unknown";
2711 }
2712
2713 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2714 " SP=%016" PRIx64 "\n",
2715 count, name, intno,
2716 env->pc,
2717 env->npc, env->regwptr[6]);
2718 cpu_dump_state(env, logfile, fprintf, 0);
2719 #if 0
2720 {
2721 int i;
2722 uint8_t *ptr;
2723
2724 fprintf(logfile, " code=");
2725 ptr = (uint8_t *)env->pc;
2726 for(i = 0; i < 16; i++) {
2727 fprintf(logfile, " %02x", ldub(ptr + i));
2728 }
2729 fprintf(logfile, "\n");
2730 }
2731 #endif
2732 count++;
2733 }
2734 #endif
2735 #if !defined(CONFIG_USER_ONLY)
2736 if (env->tl == MAXTL) {
2737 cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state",
2738 env->exception_index);
2739 return;
2740 }
2741 #endif
2742 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2743 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2744 GET_CWP64(env);
2745 env->tsptr->tpc = env->pc;
2746 env->tsptr->tnpc = env->npc;
2747 env->tsptr->tt = intno;
2748 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2749
2750 if (intno == TT_CLRWIN)
2751 set_cwp((env->cwp - 1) & (NWINDOWS - 1));
2752 else if ((intno & 0x1c0) == TT_SPILL)
2753 set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
2754 else if ((intno & 0x1c0) == TT_FILL)
2755 set_cwp((env->cwp + 1) & (NWINDOWS - 1));
2756 env->tbr &= ~0x7fffULL;
2757 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2758 if (env->tl < MAXTL - 1) {
2759 env->tl++;
2760 } else {
2761 env->pstate |= PS_RED;
2762 if (env->tl != MAXTL)
2763 env->tl++;
2764 }
2765 env->tsptr = &env->ts[env->tl];
2766 env->pc = env->tbr;
2767 env->npc = env->pc + 4;
2768 env->exception_index = 0;
2769 }
2770 #else
2771 #ifdef DEBUG_PCALL
2772 static const char * const excp_names[0x80] = {
2773 [TT_TFAULT] = "Instruction Access Fault",
2774 [TT_ILL_INSN] = "Illegal Instruction",
2775 [TT_PRIV_INSN] = "Privileged Instruction",
2776 [TT_NFPU_INSN] = "FPU Disabled",
2777 [TT_WIN_OVF] = "Window Overflow",
2778 [TT_WIN_UNF] = "Window Underflow",
2779 [TT_UNALIGNED] = "Unaligned Memory Access",
2780 [TT_FP_EXCP] = "FPU Exception",
2781 [TT_DFAULT] = "Data Access Fault",
2782 [TT_TOVF] = "Tag Overflow",
2783 [TT_EXTINT | 0x1] = "External Interrupt 1",
2784 [TT_EXTINT | 0x2] = "External Interrupt 2",
2785 [TT_EXTINT | 0x3] = "External Interrupt 3",
2786 [TT_EXTINT | 0x4] = "External Interrupt 4",
2787 [TT_EXTINT | 0x5] = "External Interrupt 5",
2788 [TT_EXTINT | 0x6] = "External Interrupt 6",
2789 [TT_EXTINT | 0x7] = "External Interrupt 7",
2790 [TT_EXTINT | 0x8] = "External Interrupt 8",
2791 [TT_EXTINT | 0x9] = "External Interrupt 9",
2792 [TT_EXTINT | 0xa] = "External Interrupt 10",
2793 [TT_EXTINT | 0xb] = "External Interrupt 11",
2794 [TT_EXTINT | 0xc] = "External Interrupt 12",
2795 [TT_EXTINT | 0xd] = "External Interrupt 13",
2796 [TT_EXTINT | 0xe] = "External Interrupt 14",
2797 [TT_EXTINT | 0xf] = "External Interrupt 15",
2798 [TT_TOVF] = "Tag Overflow",
2799 [TT_CODE_ACCESS] = "Instruction Access Error",
2800 [TT_DATA_ACCESS] = "Data Access Error",
2801 [TT_DIV_ZERO] = "Division By Zero",
2802 [TT_NCP_INSN] = "Coprocessor Disabled",
2803 };
2804 #endif
2805
2806 void do_interrupt(int intno)
2807 {
2808 int cwp;
2809
2810 #ifdef DEBUG_PCALL
2811 if (loglevel & CPU_LOG_INT) {
2812 static int count;
2813 const char *name;
2814
2815 if (intno < 0 || intno >= 0x100)
2816 name = "Unknown";
2817 else if (intno >= 0x80)
2818 name = "Trap Instruction";
2819 else {
2820 name = excp_names[intno];
2821 if (!name)
2822 name = "Unknown";
2823 }
2824
2825 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2826 count, name, intno,
2827 env->pc,
2828 env->npc, env->regwptr[6]);
2829 cpu_dump_state(env, logfile, fprintf, 0);
2830 #if 0
2831 {
2832 int i;
2833 uint8_t *ptr;
2834
2835 fprintf(logfile, " code=");
2836 ptr = (uint8_t *)env->pc;
2837 for(i = 0; i < 16; i++) {
2838 fprintf(logfile, " %02x", ldub(ptr + i));
2839 }
2840 fprintf(logfile, "\n");
2841 }
2842 #endif
2843 count++;
2844 }
2845 #endif
2846 #if !defined(CONFIG_USER_ONLY)
2847 if (env->psret == 0) {
2848 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2849 env->exception_index);
2850 return;
2851 }
2852 #endif
2853 env->psret = 0;
2854 cwp = (env->cwp - 1) & (NWINDOWS - 1);
2855 set_cwp(cwp);
2856 env->regwptr[9] = env->pc;
2857 env->regwptr[10] = env->npc;
2858 env->psrps = env->psrs;
2859 env->psrs = 1;
2860 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2861 env->pc = env->tbr;
2862 env->npc = env->pc + 4;
2863 env->exception_index = 0;
2864 }
2865 #endif
2866
2867 #if !defined(CONFIG_USER_ONLY)
2868
2869 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2870 void *retaddr);
2871
2872 #define MMUSUFFIX _mmu
2873 #define ALIGNED_ONLY
2874 #ifdef __s390__
2875 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & \
2876 0x7fffffffUL))
2877 #else
2878 # define GETPC() (__builtin_return_address(0))
2879 #endif
2880
2881 #define SHIFT 0
2882 #include "softmmu_template.h"
2883
2884 #define SHIFT 1
2885 #include "softmmu_template.h"
2886
2887 #define SHIFT 2
2888 #include "softmmu_template.h"
2889
2890 #define SHIFT 3
2891 #include "softmmu_template.h"
2892
2893 /* XXX: make it generic ? */
2894 static void cpu_restore_state2(void *retaddr)
2895 {
2896 TranslationBlock *tb;
2897 unsigned long pc;
2898
2899 if (retaddr) {
2900 /* now we have a real cpu fault */
2901 pc = (unsigned long)retaddr;
2902 tb = tb_find_pc(pc);
2903 if (tb) {
2904 /* the PC is inside the translated code. It means that we have
2905 a virtual CPU fault */
2906 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2907 }
2908 }
2909 }
2910
2911 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2912 void *retaddr)
2913 {
2914 #ifdef DEBUG_UNALIGNED
2915 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2916 "\n", addr, env->pc);
2917 #endif
2918 cpu_restore_state2(retaddr);
2919 raise_exception(TT_UNALIGNED);
2920 }
2921
2922 /* try to fill the TLB and return an exception if error. If retaddr is
2923 NULL, it means that the function was called in C code (i.e. not
2924 from generated code or from helper.c) */
2925 /* XXX: fix it to restore all registers */
2926 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2927 {
2928 int ret;
2929 CPUState *saved_env;
2930
2931 /* XXX: hack to restore env in all cases, even if not called from
2932 generated code */
2933 saved_env = env;
2934 env = cpu_single_env;
2935
2936 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2937 if (ret) {
2938 cpu_restore_state2(retaddr);
2939 cpu_loop_exit();
2940 }
2941 env = saved_env;
2942 }
2943
2944 #endif
2945
2946 #ifndef TARGET_SPARC64
2947 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2948 int is_asi)
2949 {
2950 CPUState *saved_env;
2951
2952 /* XXX: hack to restore env in all cases, even if not called from
2953 generated code */
2954 saved_env = env;
2955 env = cpu_single_env;
2956 #ifdef DEBUG_UNASSIGNED
2957 if (is_asi)
2958 printf("Unassigned mem %s access to " TARGET_FMT_plx
2959 " asi 0x%02x from " TARGET_FMT_lx "\n",
2960 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2961 env->pc);
2962 else
2963 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2964 TARGET_FMT_lx "\n",
2965 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2966 #endif
2967 if (env->mmuregs[3]) /* Fault status register */
2968 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2969 if (is_asi)
2970 env->mmuregs[3] |= 1 << 16;
2971 if (env->psrs)
2972 env->mmuregs[3] |= 1 << 5;
2973 if (is_exec)
2974 env->mmuregs[3] |= 1 << 6;
2975 if (is_write)
2976 env->mmuregs[3] |= 1 << 7;
2977 env->mmuregs[3] |= (5 << 2) | 2;
2978 env->mmuregs[4] = addr; /* Fault address register */
2979 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2980 if (is_exec)
2981 raise_exception(TT_CODE_ACCESS);
2982 else
2983 raise_exception(TT_DATA_ACCESS);
2984 }
2985 env = saved_env;
2986 }
2987 #else
2988 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2989 int is_asi)
2990 {
2991 #ifdef DEBUG_UNASSIGNED
2992 CPUState *saved_env;
2993
2994 /* XXX: hack to restore env in all cases, even if not called from
2995 generated code */
2996 saved_env = env;
2997 env = cpu_single_env;
2998 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2999 "\n", addr, env->pc);
3000 env = saved_env;
3001 #endif
3002 if (is_exec)
3003 raise_exception(TT_CODE_ACCESS);
3004 else
3005 raise_exception(TT_DATA_ACCESS);
3006 }
3007 #endif
3008