]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
initial sparc64 support - sparc fixes (Blue Swirl)
[qemu.git] / target-sparc / op_helper.c
1 #include <math.h>
2 #include <fenv.h>
3 #include "exec.h"
4
5 //#define DEBUG_MMU
6
7 #ifdef USE_INT_TO_FLOAT_HELPERS
8 void do_fitos(void)
9 {
10 FT0 = (float) *((int32_t *)&FT1);
11 }
12
13 void do_fitod(void)
14 {
15 DT0 = (double) *((int32_t *)&FT1);
16 }
17 #endif
18
19 void do_fabss(void)
20 {
21 FT0 = fabsf(FT1);
22 }
23
24 void do_fsqrts(void)
25 {
26 FT0 = sqrtf(FT1);
27 }
28
29 void do_fsqrtd(void)
30 {
31 DT0 = sqrt(DT1);
32 }
33
34 void do_fcmps (void)
35 {
36 if (isnan(FT0) || isnan(FT1)) {
37 T0 = FSR_FCC1 | FSR_FCC0;
38 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
39 env->fsr |= T0;
40 if (env->fsr & FSR_NVM) {
41 raise_exception(TT_FP_EXCP);
42 } else {
43 env->fsr |= FSR_NVA;
44 }
45 } else if (FT0 < FT1) {
46 T0 = FSR_FCC0;
47 } else if (FT0 > FT1) {
48 T0 = FSR_FCC1;
49 } else {
50 T0 = 0;
51 }
52 env->fsr = T0;
53 }
54
55 void do_fcmpd (void)
56 {
57 if (isnan(DT0) || isnan(DT1)) {
58 T0 = FSR_FCC1 | FSR_FCC0;
59 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
60 env->fsr |= T0;
61 if (env->fsr & FSR_NVM) {
62 raise_exception(TT_FP_EXCP);
63 } else {
64 env->fsr |= FSR_NVA;
65 }
66 } else if (DT0 < DT1) {
67 T0 = FSR_FCC0;
68 } else if (DT0 > DT1) {
69 T0 = FSR_FCC1;
70 } else {
71 T0 = 0;
72 }
73 env->fsr = T0;
74 }
75
76 void helper_ld_asi(int asi, int size, int sign)
77 {
78 uint32_t ret;
79
80 switch (asi) {
81 case 3: /* MMU probe */
82 {
83 int mmulev;
84
85 mmulev = (T0 >> 8) & 15;
86 if (mmulev > 4)
87 ret = 0;
88 else {
89 ret = mmu_probe(T0, mmulev);
90 //bswap32s(&ret);
91 }
92 #ifdef DEBUG_MMU
93 printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
94 #endif
95 }
96 break;
97 case 4: /* read MMU regs */
98 {
99 int reg = (T0 >> 8) & 0xf;
100
101 ret = env->mmuregs[reg];
102 if (reg == 3 || reg == 4) /* Fault status, addr cleared on read*/
103 env->mmuregs[4] = 0;
104 }
105 break;
106 case 0x20 ... 0x2f: /* MMU passthrough */
107 cpu_physical_memory_read(T0, (void *) &ret, size);
108 if (size == 4)
109 tswap32s(&ret);
110 else if (size == 2)
111 tswap16s((uint16_t *)&ret);
112 break;
113 default:
114 ret = 0;
115 break;
116 }
117 T1 = ret;
118 }
119
120 void helper_st_asi(int asi, int size, int sign)
121 {
122 switch(asi) {
123 case 3: /* MMU flush */
124 {
125 int mmulev;
126
127 mmulev = (T0 >> 8) & 15;
128 switch (mmulev) {
129 case 0: // flush page
130 tlb_flush_page(cpu_single_env, T0 & 0xfffff000);
131 break;
132 case 1: // flush segment (256k)
133 case 2: // flush region (16M)
134 case 3: // flush context (4G)
135 case 4: // flush entire
136 tlb_flush(cpu_single_env, 1);
137 break;
138 default:
139 break;
140 }
141 dump_mmu();
142 return;
143 }
144 case 4: /* write MMU regs */
145 {
146 int reg = (T0 >> 8) & 0xf, oldreg;
147
148 oldreg = env->mmuregs[reg];
149 if (reg == 0) {
150 env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
151 env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
152 } else
153 env->mmuregs[reg] = T1;
154 if (oldreg != env->mmuregs[reg]) {
155 #if 0
156 // XXX: Only if MMU mapping change, we may need to flush?
157 tlb_flush(cpu_single_env, 1);
158 cpu_loop_exit();
159 FORCE_RET();
160 #endif
161 }
162 dump_mmu();
163 return;
164 }
165 case 0x17: /* Block copy, sta access */
166 {
167 // value (T1) = src
168 // address (T0) = dst
169 // copy 32 bytes
170 int src = T1, dst = T0;
171 uint8_t temp[32];
172
173 tswap32s(&src);
174
175 cpu_physical_memory_read(src, (void *) &temp, 32);
176 cpu_physical_memory_write(dst, (void *) &temp, 32);
177 }
178 return;
179 case 0x1f: /* Block fill, stda access */
180 {
181 // value (T1, T2)
182 // address (T0) = dst
183 // fill 32 bytes
184 int i, dst = T0;
185 uint64_t val;
186
187 val = (((uint64_t)T1) << 32) | T2;
188 tswap64s(&val);
189
190 for (i = 0; i < 32; i += 8, dst += 8) {
191 cpu_physical_memory_write(dst, (void *) &val, 8);
192 }
193 }
194 return;
195 case 0x20 ... 0x2f: /* MMU passthrough */
196 {
197 int temp = T1;
198 if (size == 4)
199 tswap32s(&temp);
200 else if (size == 2)
201 tswap16s((uint16_t *)&temp);
202 cpu_physical_memory_write(T0, (void *) &temp, size);
203 }
204 return;
205 default:
206 return;
207 }
208 }
209
210 void helper_rett()
211 {
212 unsigned int cwp;
213
214 env->psret = 1;
215 cwp = (env->cwp + 1) & (NWINDOWS - 1);
216 if (env->wim & (1 << cwp)) {
217 raise_exception(TT_WIN_UNF);
218 }
219 set_cwp(cwp);
220 env->psrs = env->psrps;
221 }
222
223 void helper_ldfsr(void)
224 {
225 switch (env->fsr & FSR_RD_MASK) {
226 case FSR_RD_NEAREST:
227 fesetround(FE_TONEAREST);
228 break;
229 case FSR_RD_ZERO:
230 fesetround(FE_TOWARDZERO);
231 break;
232 case FSR_RD_POS:
233 fesetround(FE_UPWARD);
234 break;
235 case FSR_RD_NEG:
236 fesetround(FE_DOWNWARD);
237 break;
238 }
239 }
240
241 void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
242 {
243 int exptemp;
244
245 *pmant = ldexp(frexp(f, &exptemp), 53);
246 *pexp = exptemp;
247 }
248
249 double cpu_put_fp64(uint64_t mant, uint16_t exp)
250 {
251 return ldexp((double) mant, exp - 53);
252 }
253
254 void helper_debug()
255 {
256 env->exception_index = EXCP_DEBUG;
257 cpu_loop_exit();
258 }
259
260 void do_wrpsr()
261 {
262 PUT_PSR(env, T0);
263 }
264
265 void do_rdpsr()
266 {
267 T0 = GET_PSR(env);
268 }