]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
Revert "Get rid of _t suffix"
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
7
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
14
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
21
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
28
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
33
34 #ifdef TARGET_SPARC64
35 #ifndef TARGET_ABI32
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37 #else
38 #define AM_CHECK(env1) (1)
39 #endif
40 #endif
41
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
47 {
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
50 int tsb_size = tsb_register & 0xf;
51
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
54
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
58
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
64 }
65
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
68 }
69
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
76 }
77 tsb_base_mask <<= 1;
78 }
79
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
81 }
82
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
86 {
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
88 }
89
90 static void replace_tlb_entry(SparcTLBEntry *tlb,
91 uint64_t tlb_tag, uint64_t tlb_tte,
92 CPUState *env1)
93 {
94 target_ulong mask, size, va, offset;
95
96 // flush page range if translation is valid
97 if (TTE_IS_VALID(tlb->tte)) {
98
99 mask = 0xffffffffffffe000ULL;
100 mask <<= 3 * ((tlb->tte >> 61) & 3);
101 size = ~mask + 1;
102
103 va = tlb->tag & mask;
104
105 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
106 tlb_flush_page(env1, va + offset);
107 }
108 }
109
110 tlb->tag = tlb_tag;
111 tlb->tte = tlb_tte;
112 }
113
114 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
115 const char* strmmu, CPUState *env1)
116 {
117 unsigned int i;
118 target_ulong mask;
119
120 for (i = 0; i < 64; i++) {
121 if (TTE_IS_VALID(tlb[i].tte)) {
122
123 mask = 0xffffffffffffe000ULL;
124 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
125
126 if ((demap_addr & mask) == (tlb[i].tag & mask)) {
127 replace_tlb_entry(&tlb[i], 0, 0, env1);
128 #ifdef DEBUG_MMU
129 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
130 dump_mmu(env1);
131 #endif
132 }
133 //return;
134 }
135 }
136
137 }
138
139 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
140 uint64_t tlb_tag, uint64_t tlb_tte,
141 const char* strmmu, CPUState *env1)
142 {
143 unsigned int i, replace_used;
144
145 // Try replacing invalid entry
146 for (i = 0; i < 64; i++) {
147 if (!TTE_IS_VALID(tlb[i].tte)) {
148 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
149 #ifdef DEBUG_MMU
150 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
151 dump_mmu(env1);
152 #endif
153 return;
154 }
155 }
156
157 // All entries are valid, try replacing unlocked entry
158
159 for (replace_used = 0; replace_used < 2; ++replace_used) {
160
161 // Used entries are not replaced on first pass
162
163 for (i = 0; i < 64; i++) {
164 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
165
166 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
167 #ifdef DEBUG_MMU
168 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
169 strmmu, (replace_used?"used":"unused"), i);
170 dump_mmu(env1);
171 #endif
172 return;
173 }
174 }
175
176 // Now reset used bit and search for unused entries again
177
178 for (i = 0; i < 64; i++) {
179 TTE_SET_UNUSED(tlb[i].tte);
180 }
181 }
182
183 #ifdef DEBUG_MMU
184 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
185 #endif
186 // error state?
187 }
188
189 #endif
190
191 static inline void address_mask(CPUState *env1, target_ulong *addr)
192 {
193 #ifdef TARGET_SPARC64
194 if (AM_CHECK(env1))
195 *addr &= 0xffffffffULL;
196 #endif
197 }
198
199 static void raise_exception(int tt)
200 {
201 env->exception_index = tt;
202 cpu_loop_exit();
203 }
204
205 void HELPER(raise_exception)(int tt)
206 {
207 raise_exception(tt);
208 }
209
210 static inline void set_cwp(int new_cwp)
211 {
212 cpu_set_cwp(env, new_cwp);
213 }
214
215 void helper_check_align(target_ulong addr, uint32_t align)
216 {
217 if (addr & align) {
218 #ifdef DEBUG_UNALIGNED
219 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
220 "\n", addr, env->pc);
221 #endif
222 raise_exception(TT_UNALIGNED);
223 }
224 }
225
226 #define F_HELPER(name, p) void helper_f##name##p(void)
227
228 #define F_BINOP(name) \
229 float32 helper_f ## name ## s (float32 src1, float32 src2) \
230 { \
231 return float32_ ## name (src1, src2, &env->fp_status); \
232 } \
233 F_HELPER(name, d) \
234 { \
235 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
236 } \
237 F_HELPER(name, q) \
238 { \
239 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
240 }
241
242 F_BINOP(add);
243 F_BINOP(sub);
244 F_BINOP(mul);
245 F_BINOP(div);
246 #undef F_BINOP
247
248 void helper_fsmuld(float32 src1, float32 src2)
249 {
250 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
251 float32_to_float64(src2, &env->fp_status),
252 &env->fp_status);
253 }
254
255 void helper_fdmulq(void)
256 {
257 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
258 float64_to_float128(DT1, &env->fp_status),
259 &env->fp_status);
260 }
261
262 float32 helper_fnegs(float32 src)
263 {
264 return float32_chs(src);
265 }
266
267 #ifdef TARGET_SPARC64
268 F_HELPER(neg, d)
269 {
270 DT0 = float64_chs(DT1);
271 }
272
273 F_HELPER(neg, q)
274 {
275 QT0 = float128_chs(QT1);
276 }
277 #endif
278
279 /* Integer to float conversion. */
280 float32 helper_fitos(int32_t src)
281 {
282 return int32_to_float32(src, &env->fp_status);
283 }
284
285 void helper_fitod(int32_t src)
286 {
287 DT0 = int32_to_float64(src, &env->fp_status);
288 }
289
290 void helper_fitoq(int32_t src)
291 {
292 QT0 = int32_to_float128(src, &env->fp_status);
293 }
294
295 #ifdef TARGET_SPARC64
296 float32 helper_fxtos(void)
297 {
298 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
299 }
300
301 F_HELPER(xto, d)
302 {
303 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
304 }
305
306 F_HELPER(xto, q)
307 {
308 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
309 }
310 #endif
311 #undef F_HELPER
312
313 /* floating point conversion */
314 float32 helper_fdtos(void)
315 {
316 return float64_to_float32(DT1, &env->fp_status);
317 }
318
319 void helper_fstod(float32 src)
320 {
321 DT0 = float32_to_float64(src, &env->fp_status);
322 }
323
324 float32 helper_fqtos(void)
325 {
326 return float128_to_float32(QT1, &env->fp_status);
327 }
328
329 void helper_fstoq(float32 src)
330 {
331 QT0 = float32_to_float128(src, &env->fp_status);
332 }
333
334 void helper_fqtod(void)
335 {
336 DT0 = float128_to_float64(QT1, &env->fp_status);
337 }
338
339 void helper_fdtoq(void)
340 {
341 QT0 = float64_to_float128(DT1, &env->fp_status);
342 }
343
344 /* Float to integer conversion. */
345 int32_t helper_fstoi(float32 src)
346 {
347 return float32_to_int32_round_to_zero(src, &env->fp_status);
348 }
349
350 int32_t helper_fdtoi(void)
351 {
352 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
353 }
354
355 int32_t helper_fqtoi(void)
356 {
357 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
358 }
359
360 #ifdef TARGET_SPARC64
361 void helper_fstox(float32 src)
362 {
363 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
364 }
365
366 void helper_fdtox(void)
367 {
368 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
369 }
370
371 void helper_fqtox(void)
372 {
373 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
374 }
375
376 void helper_faligndata(void)
377 {
378 uint64_t tmp;
379
380 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
381 /* on many architectures a shift of 64 does nothing */
382 if ((env->gsr & 7) != 0) {
383 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
384 }
385 *((uint64_t *)&DT0) = tmp;
386 }
387
388 #ifdef HOST_WORDS_BIGENDIAN
389 #define VIS_B64(n) b[7 - (n)]
390 #define VIS_W64(n) w[3 - (n)]
391 #define VIS_SW64(n) sw[3 - (n)]
392 #define VIS_L64(n) l[1 - (n)]
393 #define VIS_B32(n) b[3 - (n)]
394 #define VIS_W32(n) w[1 - (n)]
395 #else
396 #define VIS_B64(n) b[n]
397 #define VIS_W64(n) w[n]
398 #define VIS_SW64(n) sw[n]
399 #define VIS_L64(n) l[n]
400 #define VIS_B32(n) b[n]
401 #define VIS_W32(n) w[n]
402 #endif
403
404 typedef union {
405 uint8_t b[8];
406 uint16_t w[4];
407 int16_t sw[4];
408 uint32_t l[2];
409 float64 d;
410 } vis64;
411
412 typedef union {
413 uint8_t b[4];
414 uint16_t w[2];
415 uint32_t l;
416 float32 f;
417 } vis32;
418
419 void helper_fpmerge(void)
420 {
421 vis64 s, d;
422
423 s.d = DT0;
424 d.d = DT1;
425
426 // Reverse calculation order to handle overlap
427 d.VIS_B64(7) = s.VIS_B64(3);
428 d.VIS_B64(6) = d.VIS_B64(3);
429 d.VIS_B64(5) = s.VIS_B64(2);
430 d.VIS_B64(4) = d.VIS_B64(2);
431 d.VIS_B64(3) = s.VIS_B64(1);
432 d.VIS_B64(2) = d.VIS_B64(1);
433 d.VIS_B64(1) = s.VIS_B64(0);
434 //d.VIS_B64(0) = d.VIS_B64(0);
435
436 DT0 = d.d;
437 }
438
439 void helper_fmul8x16(void)
440 {
441 vis64 s, d;
442 uint32_t tmp;
443
444 s.d = DT0;
445 d.d = DT1;
446
447 #define PMUL(r) \
448 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
449 if ((tmp & 0xff) > 0x7f) \
450 tmp += 0x100; \
451 d.VIS_W64(r) = tmp >> 8;
452
453 PMUL(0);
454 PMUL(1);
455 PMUL(2);
456 PMUL(3);
457 #undef PMUL
458
459 DT0 = d.d;
460 }
461
462 void helper_fmul8x16al(void)
463 {
464 vis64 s, d;
465 uint32_t tmp;
466
467 s.d = DT0;
468 d.d = DT1;
469
470 #define PMUL(r) \
471 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
472 if ((tmp & 0xff) > 0x7f) \
473 tmp += 0x100; \
474 d.VIS_W64(r) = tmp >> 8;
475
476 PMUL(0);
477 PMUL(1);
478 PMUL(2);
479 PMUL(3);
480 #undef PMUL
481
482 DT0 = d.d;
483 }
484
485 void helper_fmul8x16au(void)
486 {
487 vis64 s, d;
488 uint32_t tmp;
489
490 s.d = DT0;
491 d.d = DT1;
492
493 #define PMUL(r) \
494 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
495 if ((tmp & 0xff) > 0x7f) \
496 tmp += 0x100; \
497 d.VIS_W64(r) = tmp >> 8;
498
499 PMUL(0);
500 PMUL(1);
501 PMUL(2);
502 PMUL(3);
503 #undef PMUL
504
505 DT0 = d.d;
506 }
507
508 void helper_fmul8sux16(void)
509 {
510 vis64 s, d;
511 uint32_t tmp;
512
513 s.d = DT0;
514 d.d = DT1;
515
516 #define PMUL(r) \
517 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
518 if ((tmp & 0xff) > 0x7f) \
519 tmp += 0x100; \
520 d.VIS_W64(r) = tmp >> 8;
521
522 PMUL(0);
523 PMUL(1);
524 PMUL(2);
525 PMUL(3);
526 #undef PMUL
527
528 DT0 = d.d;
529 }
530
531 void helper_fmul8ulx16(void)
532 {
533 vis64 s, d;
534 uint32_t tmp;
535
536 s.d = DT0;
537 d.d = DT1;
538
539 #define PMUL(r) \
540 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
541 if ((tmp & 0xff) > 0x7f) \
542 tmp += 0x100; \
543 d.VIS_W64(r) = tmp >> 8;
544
545 PMUL(0);
546 PMUL(1);
547 PMUL(2);
548 PMUL(3);
549 #undef PMUL
550
551 DT0 = d.d;
552 }
553
554 void helper_fmuld8sux16(void)
555 {
556 vis64 s, d;
557 uint32_t tmp;
558
559 s.d = DT0;
560 d.d = DT1;
561
562 #define PMUL(r) \
563 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
564 if ((tmp & 0xff) > 0x7f) \
565 tmp += 0x100; \
566 d.VIS_L64(r) = tmp;
567
568 // Reverse calculation order to handle overlap
569 PMUL(1);
570 PMUL(0);
571 #undef PMUL
572
573 DT0 = d.d;
574 }
575
576 void helper_fmuld8ulx16(void)
577 {
578 vis64 s, d;
579 uint32_t tmp;
580
581 s.d = DT0;
582 d.d = DT1;
583
584 #define PMUL(r) \
585 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
586 if ((tmp & 0xff) > 0x7f) \
587 tmp += 0x100; \
588 d.VIS_L64(r) = tmp;
589
590 // Reverse calculation order to handle overlap
591 PMUL(1);
592 PMUL(0);
593 #undef PMUL
594
595 DT0 = d.d;
596 }
597
598 void helper_fexpand(void)
599 {
600 vis32 s;
601 vis64 d;
602
603 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
604 d.d = DT1;
605 d.VIS_W64(0) = s.VIS_B32(0) << 4;
606 d.VIS_W64(1) = s.VIS_B32(1) << 4;
607 d.VIS_W64(2) = s.VIS_B32(2) << 4;
608 d.VIS_W64(3) = s.VIS_B32(3) << 4;
609
610 DT0 = d.d;
611 }
612
613 #define VIS_HELPER(name, F) \
614 void name##16(void) \
615 { \
616 vis64 s, d; \
617 \
618 s.d = DT0; \
619 d.d = DT1; \
620 \
621 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
622 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
623 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
624 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
625 \
626 DT0 = d.d; \
627 } \
628 \
629 uint32_t name##16s(uint32_t src1, uint32_t src2) \
630 { \
631 vis32 s, d; \
632 \
633 s.l = src1; \
634 d.l = src2; \
635 \
636 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
637 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
638 \
639 return d.l; \
640 } \
641 \
642 void name##32(void) \
643 { \
644 vis64 s, d; \
645 \
646 s.d = DT0; \
647 d.d = DT1; \
648 \
649 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
650 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
651 \
652 DT0 = d.d; \
653 } \
654 \
655 uint32_t name##32s(uint32_t src1, uint32_t src2) \
656 { \
657 vis32 s, d; \
658 \
659 s.l = src1; \
660 d.l = src2; \
661 \
662 d.l = F(d.l, s.l); \
663 \
664 return d.l; \
665 }
666
667 #define FADD(a, b) ((a) + (b))
668 #define FSUB(a, b) ((a) - (b))
669 VIS_HELPER(helper_fpadd, FADD)
670 VIS_HELPER(helper_fpsub, FSUB)
671
672 #define VIS_CMPHELPER(name, F) \
673 void name##16(void) \
674 { \
675 vis64 s, d; \
676 \
677 s.d = DT0; \
678 d.d = DT1; \
679 \
680 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
681 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
682 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
683 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
684 \
685 DT0 = d.d; \
686 } \
687 \
688 void name##32(void) \
689 { \
690 vis64 s, d; \
691 \
692 s.d = DT0; \
693 d.d = DT1; \
694 \
695 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
696 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
697 \
698 DT0 = d.d; \
699 }
700
701 #define FCMPGT(a, b) ((a) > (b))
702 #define FCMPEQ(a, b) ((a) == (b))
703 #define FCMPLE(a, b) ((a) <= (b))
704 #define FCMPNE(a, b) ((a) != (b))
705
706 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
707 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
708 VIS_CMPHELPER(helper_fcmple, FCMPLE)
709 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
710 #endif
711
712 void helper_check_ieee_exceptions(void)
713 {
714 target_ulong status;
715
716 status = get_float_exception_flags(&env->fp_status);
717 if (status) {
718 /* Copy IEEE 754 flags into FSR */
719 if (status & float_flag_invalid)
720 env->fsr |= FSR_NVC;
721 if (status & float_flag_overflow)
722 env->fsr |= FSR_OFC;
723 if (status & float_flag_underflow)
724 env->fsr |= FSR_UFC;
725 if (status & float_flag_divbyzero)
726 env->fsr |= FSR_DZC;
727 if (status & float_flag_inexact)
728 env->fsr |= FSR_NXC;
729
730 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
731 /* Unmasked exception, generate a trap */
732 env->fsr |= FSR_FTT_IEEE_EXCP;
733 raise_exception(TT_FP_EXCP);
734 } else {
735 /* Accumulate exceptions */
736 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
737 }
738 }
739 }
740
741 void helper_clear_float_exceptions(void)
742 {
743 set_float_exception_flags(0, &env->fp_status);
744 }
745
746 float32 helper_fabss(float32 src)
747 {
748 return float32_abs(src);
749 }
750
751 #ifdef TARGET_SPARC64
752 void helper_fabsd(void)
753 {
754 DT0 = float64_abs(DT1);
755 }
756
757 void helper_fabsq(void)
758 {
759 QT0 = float128_abs(QT1);
760 }
761 #endif
762
763 float32 helper_fsqrts(float32 src)
764 {
765 return float32_sqrt(src, &env->fp_status);
766 }
767
768 void helper_fsqrtd(void)
769 {
770 DT0 = float64_sqrt(DT1, &env->fp_status);
771 }
772
773 void helper_fsqrtq(void)
774 {
775 QT0 = float128_sqrt(QT1, &env->fp_status);
776 }
777
778 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
779 void glue(helper_, name) (void) \
780 { \
781 target_ulong new_fsr; \
782 \
783 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
784 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
785 case float_relation_unordered: \
786 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
787 if ((env->fsr & FSR_NVM) || TRAP) { \
788 env->fsr |= new_fsr; \
789 env->fsr |= FSR_NVC; \
790 env->fsr |= FSR_FTT_IEEE_EXCP; \
791 raise_exception(TT_FP_EXCP); \
792 } else { \
793 env->fsr |= FSR_NVA; \
794 } \
795 break; \
796 case float_relation_less: \
797 new_fsr = FSR_FCC0 << FS; \
798 break; \
799 case float_relation_greater: \
800 new_fsr = FSR_FCC1 << FS; \
801 break; \
802 default: \
803 new_fsr = 0; \
804 break; \
805 } \
806 env->fsr |= new_fsr; \
807 }
808 #define GEN_FCMPS(name, size, FS, TRAP) \
809 void glue(helper_, name)(float32 src1, float32 src2) \
810 { \
811 target_ulong new_fsr; \
812 \
813 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
814 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
815 case float_relation_unordered: \
816 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
817 if ((env->fsr & FSR_NVM) || TRAP) { \
818 env->fsr |= new_fsr; \
819 env->fsr |= FSR_NVC; \
820 env->fsr |= FSR_FTT_IEEE_EXCP; \
821 raise_exception(TT_FP_EXCP); \
822 } else { \
823 env->fsr |= FSR_NVA; \
824 } \
825 break; \
826 case float_relation_less: \
827 new_fsr = FSR_FCC0 << FS; \
828 break; \
829 case float_relation_greater: \
830 new_fsr = FSR_FCC1 << FS; \
831 break; \
832 default: \
833 new_fsr = 0; \
834 break; \
835 } \
836 env->fsr |= new_fsr; \
837 }
838
839 GEN_FCMPS(fcmps, float32, 0, 0);
840 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
841
842 GEN_FCMPS(fcmpes, float32, 0, 1);
843 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
844
845 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
846 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
847
848 static uint32_t compute_all_flags(void)
849 {
850 return env->psr & PSR_ICC;
851 }
852
853 static uint32_t compute_C_flags(void)
854 {
855 return env->psr & PSR_CARRY;
856 }
857
858 static inline uint32_t get_NZ_icc(target_ulong dst)
859 {
860 uint32_t ret = 0;
861
862 if (!(dst & 0xffffffffULL))
863 ret |= PSR_ZERO;
864 if ((int32_t) (dst & 0xffffffffULL) < 0)
865 ret |= PSR_NEG;
866 return ret;
867 }
868
869 #ifdef TARGET_SPARC64
870 static uint32_t compute_all_flags_xcc(void)
871 {
872 return env->xcc & PSR_ICC;
873 }
874
875 static uint32_t compute_C_flags_xcc(void)
876 {
877 return env->xcc & PSR_CARRY;
878 }
879
880 static inline uint32_t get_NZ_xcc(target_ulong dst)
881 {
882 uint32_t ret = 0;
883
884 if (!dst)
885 ret |= PSR_ZERO;
886 if ((int64_t)dst < 0)
887 ret |= PSR_NEG;
888 return ret;
889 }
890 #endif
891
892 static inline uint32_t get_V_div_icc(target_ulong src2)
893 {
894 uint32_t ret = 0;
895
896 if (src2 != 0)
897 ret |= PSR_OVF;
898 return ret;
899 }
900
901 static uint32_t compute_all_div(void)
902 {
903 uint32_t ret;
904
905 ret = get_NZ_icc(CC_DST);
906 ret |= get_V_div_icc(CC_SRC2);
907 return ret;
908 }
909
910 static uint32_t compute_C_div(void)
911 {
912 return 0;
913 }
914
915 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
916 {
917 uint32_t ret = 0;
918
919 if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
920 ret |= PSR_CARRY;
921 return ret;
922 }
923
924 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
925 target_ulong src2)
926 {
927 uint32_t ret = 0;
928
929 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
930 ret |= PSR_OVF;
931 return ret;
932 }
933
934 static uint32_t compute_all_add(void)
935 {
936 uint32_t ret;
937
938 ret = get_NZ_icc(CC_DST);
939 ret |= get_C_add_icc(CC_DST, CC_SRC);
940 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
941 return ret;
942 }
943
944 static uint32_t compute_C_add(void)
945 {
946 return get_C_add_icc(CC_DST, CC_SRC);
947 }
948
949 #ifdef TARGET_SPARC64
950 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
951 {
952 uint32_t ret = 0;
953
954 if (dst < src1)
955 ret |= PSR_CARRY;
956 return ret;
957 }
958
959 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
960 target_ulong src2)
961 {
962 uint32_t ret = 0;
963
964 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
965 ret |= PSR_OVF;
966 return ret;
967 }
968
969 static uint32_t compute_all_add_xcc(void)
970 {
971 uint32_t ret;
972
973 ret = get_NZ_xcc(CC_DST);
974 ret |= get_C_add_xcc(CC_DST, CC_SRC);
975 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
976 return ret;
977 }
978
979 static uint32_t compute_C_add_xcc(void)
980 {
981 return get_C_add_xcc(CC_DST, CC_SRC);
982 }
983 #endif
984
985 static uint32_t compute_all_addx(void)
986 {
987 uint32_t ret;
988
989 ret = get_NZ_icc(CC_DST);
990 ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
991 ret |= get_C_add_icc(CC_DST, CC_SRC);
992 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
993 return ret;
994 }
995
996 static uint32_t compute_C_addx(void)
997 {
998 uint32_t ret;
999
1000 ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
1001 ret |= get_C_add_icc(CC_DST, CC_SRC);
1002 return ret;
1003 }
1004
1005 #ifdef TARGET_SPARC64
1006 static uint32_t compute_all_addx_xcc(void)
1007 {
1008 uint32_t ret;
1009
1010 ret = get_NZ_xcc(CC_DST);
1011 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1012 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1013 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1014 return ret;
1015 }
1016
1017 static uint32_t compute_C_addx_xcc(void)
1018 {
1019 uint32_t ret;
1020
1021 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1022 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1023 return ret;
1024 }
1025 #endif
1026
1027 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1028 {
1029 uint32_t ret = 0;
1030
1031 if ((src1 | src2) & 0x3)
1032 ret |= PSR_OVF;
1033 return ret;
1034 }
1035
1036 static uint32_t compute_all_tadd(void)
1037 {
1038 uint32_t ret;
1039
1040 ret = get_NZ_icc(CC_DST);
1041 ret |= get_C_add_icc(CC_DST, CC_SRC);
1042 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1043 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1044 return ret;
1045 }
1046
1047 static uint32_t compute_C_tadd(void)
1048 {
1049 return get_C_add_icc(CC_DST, CC_SRC);
1050 }
1051
1052 static uint32_t compute_all_taddtv(void)
1053 {
1054 uint32_t ret;
1055
1056 ret = get_NZ_icc(CC_DST);
1057 ret |= get_C_add_icc(CC_DST, CC_SRC);
1058 return ret;
1059 }
1060
1061 static uint32_t compute_C_taddtv(void)
1062 {
1063 return get_C_add_icc(CC_DST, CC_SRC);
1064 }
1065
1066 static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
1067 {
1068 uint32_t ret = 0;
1069
1070 if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
1071 ret |= PSR_CARRY;
1072 return ret;
1073 }
1074
1075 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1076 target_ulong src2)
1077 {
1078 uint32_t ret = 0;
1079
1080 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1081 ret |= PSR_OVF;
1082 return ret;
1083 }
1084
1085 static uint32_t compute_all_sub(void)
1086 {
1087 uint32_t ret;
1088
1089 ret = get_NZ_icc(CC_DST);
1090 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1091 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1092 return ret;
1093 }
1094
1095 static uint32_t compute_C_sub(void)
1096 {
1097 return get_C_sub_icc(CC_SRC, CC_SRC2);
1098 }
1099
1100 #ifdef TARGET_SPARC64
1101 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1102 {
1103 uint32_t ret = 0;
1104
1105 if (src1 < src2)
1106 ret |= PSR_CARRY;
1107 return ret;
1108 }
1109
1110 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1111 target_ulong src2)
1112 {
1113 uint32_t ret = 0;
1114
1115 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1116 ret |= PSR_OVF;
1117 return ret;
1118 }
1119
1120 static uint32_t compute_all_sub_xcc(void)
1121 {
1122 uint32_t ret;
1123
1124 ret = get_NZ_xcc(CC_DST);
1125 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1126 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1127 return ret;
1128 }
1129
1130 static uint32_t compute_C_sub_xcc(void)
1131 {
1132 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1133 }
1134 #endif
1135
1136 static uint32_t compute_all_subx(void)
1137 {
1138 uint32_t ret;
1139
1140 ret = get_NZ_icc(CC_DST);
1141 ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1142 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1143 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1144 return ret;
1145 }
1146
1147 static uint32_t compute_C_subx(void)
1148 {
1149 uint32_t ret;
1150
1151 ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1152 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1153 return ret;
1154 }
1155
1156 #ifdef TARGET_SPARC64
1157 static uint32_t compute_all_subx_xcc(void)
1158 {
1159 uint32_t ret;
1160
1161 ret = get_NZ_xcc(CC_DST);
1162 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1163 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1164 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1165 return ret;
1166 }
1167
1168 static uint32_t compute_C_subx_xcc(void)
1169 {
1170 uint32_t ret;
1171
1172 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1173 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1174 return ret;
1175 }
1176 #endif
1177
1178 static uint32_t compute_all_tsub(void)
1179 {
1180 uint32_t ret;
1181
1182 ret = get_NZ_icc(CC_DST);
1183 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1184 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1185 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1186 return ret;
1187 }
1188
1189 static uint32_t compute_C_tsub(void)
1190 {
1191 return get_C_sub_icc(CC_DST, CC_SRC);
1192 }
1193
1194 static uint32_t compute_all_tsubtv(void)
1195 {
1196 uint32_t ret;
1197
1198 ret = get_NZ_icc(CC_DST);
1199 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1200 return ret;
1201 }
1202
1203 static uint32_t compute_C_tsubtv(void)
1204 {
1205 return get_C_sub_icc(CC_DST, CC_SRC);
1206 }
1207
1208 static uint32_t compute_all_logic(void)
1209 {
1210 return get_NZ_icc(CC_DST);
1211 }
1212
1213 static uint32_t compute_C_logic(void)
1214 {
1215 return 0;
1216 }
1217
1218 #ifdef TARGET_SPARC64
1219 static uint32_t compute_all_logic_xcc(void)
1220 {
1221 return get_NZ_xcc(CC_DST);
1222 }
1223 #endif
1224
1225 typedef struct CCTable {
1226 uint32_t (*compute_all)(void); /* return all the flags */
1227 uint32_t (*compute_c)(void); /* return the C flag */
1228 } CCTable;
1229
1230 static const CCTable icc_table[CC_OP_NB] = {
1231 /* CC_OP_DYNAMIC should never happen */
1232 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1233 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1234 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1235 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1236 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1237 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1238 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1239 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1240 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1241 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1242 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1243 };
1244
1245 #ifdef TARGET_SPARC64
1246 static const CCTable xcc_table[CC_OP_NB] = {
1247 /* CC_OP_DYNAMIC should never happen */
1248 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1249 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1250 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1251 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1252 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1253 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1254 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1255 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1256 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1257 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1258 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1259 };
1260 #endif
1261
1262 void helper_compute_psr(void)
1263 {
1264 uint32_t new_psr;
1265
1266 new_psr = icc_table[CC_OP].compute_all();
1267 env->psr = new_psr;
1268 #ifdef TARGET_SPARC64
1269 new_psr = xcc_table[CC_OP].compute_all();
1270 env->xcc = new_psr;
1271 #endif
1272 CC_OP = CC_OP_FLAGS;
1273 }
1274
1275 uint32_t helper_compute_C_icc(void)
1276 {
1277 uint32_t ret;
1278
1279 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1280 return ret;
1281 }
1282
1283 #ifdef TARGET_SPARC64
1284 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1285 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1286 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1287
1288 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1289 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1290 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1291
1292 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1293 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1294 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1295
1296 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1297 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1298 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1299
1300 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1301 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1302 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1303
1304 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1305 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1306 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1307 #endif
1308 #undef GEN_FCMPS
1309
1310 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1311 defined(DEBUG_MXCC)
1312 static void dump_mxcc(CPUState *env)
1313 {
1314 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1315 "\n",
1316 env->mxccdata[0], env->mxccdata[1],
1317 env->mxccdata[2], env->mxccdata[3]);
1318 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1319 "\n"
1320 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1321 "\n",
1322 env->mxccregs[0], env->mxccregs[1],
1323 env->mxccregs[2], env->mxccregs[3],
1324 env->mxccregs[4], env->mxccregs[5],
1325 env->mxccregs[6], env->mxccregs[7]);
1326 }
1327 #endif
1328
1329 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1330 && defined(DEBUG_ASI)
1331 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1332 uint64_t r1)
1333 {
1334 switch (size)
1335 {
1336 case 1:
1337 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1338 addr, asi, r1 & 0xff);
1339 break;
1340 case 2:
1341 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1342 addr, asi, r1 & 0xffff);
1343 break;
1344 case 4:
1345 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1346 addr, asi, r1 & 0xffffffff);
1347 break;
1348 case 8:
1349 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1350 addr, asi, r1);
1351 break;
1352 }
1353 }
1354 #endif
1355
1356 #ifndef TARGET_SPARC64
1357 #ifndef CONFIG_USER_ONLY
1358 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1359 {
1360 uint64_t ret = 0;
1361 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1362 uint32_t last_addr = addr;
1363 #endif
1364
1365 helper_check_align(addr, size - 1);
1366 switch (asi) {
1367 case 2: /* SuperSparc MXCC registers */
1368 switch (addr) {
1369 case 0x01c00a00: /* MXCC control register */
1370 if (size == 8)
1371 ret = env->mxccregs[3];
1372 else
1373 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1374 size);
1375 break;
1376 case 0x01c00a04: /* MXCC control register */
1377 if (size == 4)
1378 ret = env->mxccregs[3];
1379 else
1380 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1381 size);
1382 break;
1383 case 0x01c00c00: /* Module reset register */
1384 if (size == 8) {
1385 ret = env->mxccregs[5];
1386 // should we do something here?
1387 } else
1388 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1389 size);
1390 break;
1391 case 0x01c00f00: /* MBus port address register */
1392 if (size == 8)
1393 ret = env->mxccregs[7];
1394 else
1395 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1396 size);
1397 break;
1398 default:
1399 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1400 size);
1401 break;
1402 }
1403 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1404 "addr = %08x -> ret = %" PRIx64 ","
1405 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1406 #ifdef DEBUG_MXCC
1407 dump_mxcc(env);
1408 #endif
1409 break;
1410 case 3: /* MMU probe */
1411 {
1412 int mmulev;
1413
1414 mmulev = (addr >> 8) & 15;
1415 if (mmulev > 4)
1416 ret = 0;
1417 else
1418 ret = mmu_probe(env, addr, mmulev);
1419 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1420 addr, mmulev, ret);
1421 }
1422 break;
1423 case 4: /* read MMU regs */
1424 {
1425 int reg = (addr >> 8) & 0x1f;
1426
1427 ret = env->mmuregs[reg];
1428 if (reg == 3) /* Fault status cleared on read */
1429 env->mmuregs[3] = 0;
1430 else if (reg == 0x13) /* Fault status read */
1431 ret = env->mmuregs[3];
1432 else if (reg == 0x14) /* Fault address read */
1433 ret = env->mmuregs[4];
1434 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1435 }
1436 break;
1437 case 5: // Turbosparc ITLB Diagnostic
1438 case 6: // Turbosparc DTLB Diagnostic
1439 case 7: // Turbosparc IOTLB Diagnostic
1440 break;
1441 case 9: /* Supervisor code access */
1442 switch(size) {
1443 case 1:
1444 ret = ldub_code(addr);
1445 break;
1446 case 2:
1447 ret = lduw_code(addr);
1448 break;
1449 default:
1450 case 4:
1451 ret = ldl_code(addr);
1452 break;
1453 case 8:
1454 ret = ldq_code(addr);
1455 break;
1456 }
1457 break;
1458 case 0xa: /* User data access */
1459 switch(size) {
1460 case 1:
1461 ret = ldub_user(addr);
1462 break;
1463 case 2:
1464 ret = lduw_user(addr);
1465 break;
1466 default:
1467 case 4:
1468 ret = ldl_user(addr);
1469 break;
1470 case 8:
1471 ret = ldq_user(addr);
1472 break;
1473 }
1474 break;
1475 case 0xb: /* Supervisor data access */
1476 switch(size) {
1477 case 1:
1478 ret = ldub_kernel(addr);
1479 break;
1480 case 2:
1481 ret = lduw_kernel(addr);
1482 break;
1483 default:
1484 case 4:
1485 ret = ldl_kernel(addr);
1486 break;
1487 case 8:
1488 ret = ldq_kernel(addr);
1489 break;
1490 }
1491 break;
1492 case 0xc: /* I-cache tag */
1493 case 0xd: /* I-cache data */
1494 case 0xe: /* D-cache tag */
1495 case 0xf: /* D-cache data */
1496 break;
1497 case 0x20: /* MMU passthrough */
1498 switch(size) {
1499 case 1:
1500 ret = ldub_phys(addr);
1501 break;
1502 case 2:
1503 ret = lduw_phys(addr);
1504 break;
1505 default:
1506 case 4:
1507 ret = ldl_phys(addr);
1508 break;
1509 case 8:
1510 ret = ldq_phys(addr);
1511 break;
1512 }
1513 break;
1514 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1515 switch(size) {
1516 case 1:
1517 ret = ldub_phys((target_phys_addr_t)addr
1518 | ((target_phys_addr_t)(asi & 0xf) << 32));
1519 break;
1520 case 2:
1521 ret = lduw_phys((target_phys_addr_t)addr
1522 | ((target_phys_addr_t)(asi & 0xf) << 32));
1523 break;
1524 default:
1525 case 4:
1526 ret = ldl_phys((target_phys_addr_t)addr
1527 | ((target_phys_addr_t)(asi & 0xf) << 32));
1528 break;
1529 case 8:
1530 ret = ldq_phys((target_phys_addr_t)addr
1531 | ((target_phys_addr_t)(asi & 0xf) << 32));
1532 break;
1533 }
1534 break;
1535 case 0x30: // Turbosparc secondary cache diagnostic
1536 case 0x31: // Turbosparc RAM snoop
1537 case 0x32: // Turbosparc page table descriptor diagnostic
1538 case 0x39: /* data cache diagnostic register */
1539 ret = 0;
1540 break;
1541 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1542 {
1543 int reg = (addr >> 8) & 3;
1544
1545 switch(reg) {
1546 case 0: /* Breakpoint Value (Addr) */
1547 ret = env->mmubpregs[reg];
1548 break;
1549 case 1: /* Breakpoint Mask */
1550 ret = env->mmubpregs[reg];
1551 break;
1552 case 2: /* Breakpoint Control */
1553 ret = env->mmubpregs[reg];
1554 break;
1555 case 3: /* Breakpoint Status */
1556 ret = env->mmubpregs[reg];
1557 env->mmubpregs[reg] = 0ULL;
1558 break;
1559 }
1560 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1561 ret);
1562 }
1563 break;
1564 case 8: /* User code access, XXX */
1565 default:
1566 do_unassigned_access(addr, 0, 0, asi, size);
1567 ret = 0;
1568 break;
1569 }
1570 if (sign) {
1571 switch(size) {
1572 case 1:
1573 ret = (int8_t) ret;
1574 break;
1575 case 2:
1576 ret = (int16_t) ret;
1577 break;
1578 case 4:
1579 ret = (int32_t) ret;
1580 break;
1581 default:
1582 break;
1583 }
1584 }
1585 #ifdef DEBUG_ASI
1586 dump_asi("read ", last_addr, asi, size, ret);
1587 #endif
1588 return ret;
1589 }
1590
1591 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1592 {
1593 helper_check_align(addr, size - 1);
1594 switch(asi) {
1595 case 2: /* SuperSparc MXCC registers */
1596 switch (addr) {
1597 case 0x01c00000: /* MXCC stream data register 0 */
1598 if (size == 8)
1599 env->mxccdata[0] = val;
1600 else
1601 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1602 size);
1603 break;
1604 case 0x01c00008: /* MXCC stream data register 1 */
1605 if (size == 8)
1606 env->mxccdata[1] = val;
1607 else
1608 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1609 size);
1610 break;
1611 case 0x01c00010: /* MXCC stream data register 2 */
1612 if (size == 8)
1613 env->mxccdata[2] = val;
1614 else
1615 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1616 size);
1617 break;
1618 case 0x01c00018: /* MXCC stream data register 3 */
1619 if (size == 8)
1620 env->mxccdata[3] = val;
1621 else
1622 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1623 size);
1624 break;
1625 case 0x01c00100: /* MXCC stream source */
1626 if (size == 8)
1627 env->mxccregs[0] = val;
1628 else
1629 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1630 size);
1631 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1632 0);
1633 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1634 8);
1635 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1636 16);
1637 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1638 24);
1639 break;
1640 case 0x01c00200: /* MXCC stream destination */
1641 if (size == 8)
1642 env->mxccregs[1] = val;
1643 else
1644 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1645 size);
1646 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1647 env->mxccdata[0]);
1648 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1649 env->mxccdata[1]);
1650 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1651 env->mxccdata[2]);
1652 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1653 env->mxccdata[3]);
1654 break;
1655 case 0x01c00a00: /* MXCC control register */
1656 if (size == 8)
1657 env->mxccregs[3] = val;
1658 else
1659 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1660 size);
1661 break;
1662 case 0x01c00a04: /* MXCC control register */
1663 if (size == 4)
1664 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1665 | val;
1666 else
1667 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1668 size);
1669 break;
1670 case 0x01c00e00: /* MXCC error register */
1671 // writing a 1 bit clears the error
1672 if (size == 8)
1673 env->mxccregs[6] &= ~val;
1674 else
1675 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1676 size);
1677 break;
1678 case 0x01c00f00: /* MBus port address register */
1679 if (size == 8)
1680 env->mxccregs[7] = val;
1681 else
1682 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1683 size);
1684 break;
1685 default:
1686 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1687 size);
1688 break;
1689 }
1690 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1691 asi, size, addr, val);
1692 #ifdef DEBUG_MXCC
1693 dump_mxcc(env);
1694 #endif
1695 break;
1696 case 3: /* MMU flush */
1697 {
1698 int mmulev;
1699
1700 mmulev = (addr >> 8) & 15;
1701 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1702 switch (mmulev) {
1703 case 0: // flush page
1704 tlb_flush_page(env, addr & 0xfffff000);
1705 break;
1706 case 1: // flush segment (256k)
1707 case 2: // flush region (16M)
1708 case 3: // flush context (4G)
1709 case 4: // flush entire
1710 tlb_flush(env, 1);
1711 break;
1712 default:
1713 break;
1714 }
1715 #ifdef DEBUG_MMU
1716 dump_mmu(env);
1717 #endif
1718 }
1719 break;
1720 case 4: /* write MMU regs */
1721 {
1722 int reg = (addr >> 8) & 0x1f;
1723 uint32_t oldreg;
1724
1725 oldreg = env->mmuregs[reg];
1726 switch(reg) {
1727 case 0: // Control Register
1728 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1729 (val & 0x00ffffff);
1730 // Mappings generated during no-fault mode or MMU
1731 // disabled mode are invalid in normal mode
1732 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1733 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1734 tlb_flush(env, 1);
1735 break;
1736 case 1: // Context Table Pointer Register
1737 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1738 break;
1739 case 2: // Context Register
1740 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1741 if (oldreg != env->mmuregs[reg]) {
1742 /* we flush when the MMU context changes because
1743 QEMU has no MMU context support */
1744 tlb_flush(env, 1);
1745 }
1746 break;
1747 case 3: // Synchronous Fault Status Register with Clear
1748 case 4: // Synchronous Fault Address Register
1749 break;
1750 case 0x10: // TLB Replacement Control Register
1751 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1752 break;
1753 case 0x13: // Synchronous Fault Status Register with Read and Clear
1754 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1755 break;
1756 case 0x14: // Synchronous Fault Address Register
1757 env->mmuregs[4] = val;
1758 break;
1759 default:
1760 env->mmuregs[reg] = val;
1761 break;
1762 }
1763 if (oldreg != env->mmuregs[reg]) {
1764 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1765 reg, oldreg, env->mmuregs[reg]);
1766 }
1767 #ifdef DEBUG_MMU
1768 dump_mmu(env);
1769 #endif
1770 }
1771 break;
1772 case 5: // Turbosparc ITLB Diagnostic
1773 case 6: // Turbosparc DTLB Diagnostic
1774 case 7: // Turbosparc IOTLB Diagnostic
1775 break;
1776 case 0xa: /* User data access */
1777 switch(size) {
1778 case 1:
1779 stb_user(addr, val);
1780 break;
1781 case 2:
1782 stw_user(addr, val);
1783 break;
1784 default:
1785 case 4:
1786 stl_user(addr, val);
1787 break;
1788 case 8:
1789 stq_user(addr, val);
1790 break;
1791 }
1792 break;
1793 case 0xb: /* Supervisor data access */
1794 switch(size) {
1795 case 1:
1796 stb_kernel(addr, val);
1797 break;
1798 case 2:
1799 stw_kernel(addr, val);
1800 break;
1801 default:
1802 case 4:
1803 stl_kernel(addr, val);
1804 break;
1805 case 8:
1806 stq_kernel(addr, val);
1807 break;
1808 }
1809 break;
1810 case 0xc: /* I-cache tag */
1811 case 0xd: /* I-cache data */
1812 case 0xe: /* D-cache tag */
1813 case 0xf: /* D-cache data */
1814 case 0x10: /* I/D-cache flush page */
1815 case 0x11: /* I/D-cache flush segment */
1816 case 0x12: /* I/D-cache flush region */
1817 case 0x13: /* I/D-cache flush context */
1818 case 0x14: /* I/D-cache flush user */
1819 break;
1820 case 0x17: /* Block copy, sta access */
1821 {
1822 // val = src
1823 // addr = dst
1824 // copy 32 bytes
1825 unsigned int i;
1826 uint32_t src = val & ~3, dst = addr & ~3, temp;
1827
1828 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1829 temp = ldl_kernel(src);
1830 stl_kernel(dst, temp);
1831 }
1832 }
1833 break;
1834 case 0x1f: /* Block fill, stda access */
1835 {
1836 // addr = dst
1837 // fill 32 bytes with val
1838 unsigned int i;
1839 uint32_t dst = addr & 7;
1840
1841 for (i = 0; i < 32; i += 8, dst += 8)
1842 stq_kernel(dst, val);
1843 }
1844 break;
1845 case 0x20: /* MMU passthrough */
1846 {
1847 switch(size) {
1848 case 1:
1849 stb_phys(addr, val);
1850 break;
1851 case 2:
1852 stw_phys(addr, val);
1853 break;
1854 case 4:
1855 default:
1856 stl_phys(addr, val);
1857 break;
1858 case 8:
1859 stq_phys(addr, val);
1860 break;
1861 }
1862 }
1863 break;
1864 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1865 {
1866 switch(size) {
1867 case 1:
1868 stb_phys((target_phys_addr_t)addr
1869 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1870 break;
1871 case 2:
1872 stw_phys((target_phys_addr_t)addr
1873 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1874 break;
1875 case 4:
1876 default:
1877 stl_phys((target_phys_addr_t)addr
1878 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1879 break;
1880 case 8:
1881 stq_phys((target_phys_addr_t)addr
1882 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1883 break;
1884 }
1885 }
1886 break;
1887 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1888 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1889 // Turbosparc snoop RAM
1890 case 0x32: // store buffer control or Turbosparc page table
1891 // descriptor diagnostic
1892 case 0x36: /* I-cache flash clear */
1893 case 0x37: /* D-cache flash clear */
1894 case 0x4c: /* breakpoint action */
1895 break;
1896 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1897 {
1898 int reg = (addr >> 8) & 3;
1899
1900 switch(reg) {
1901 case 0: /* Breakpoint Value (Addr) */
1902 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1903 break;
1904 case 1: /* Breakpoint Mask */
1905 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1906 break;
1907 case 2: /* Breakpoint Control */
1908 env->mmubpregs[reg] = (val & 0x7fULL);
1909 break;
1910 case 3: /* Breakpoint Status */
1911 env->mmubpregs[reg] = (val & 0xfULL);
1912 break;
1913 }
1914 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1915 env->mmuregs[reg]);
1916 }
1917 break;
1918 case 8: /* User code access, XXX */
1919 case 9: /* Supervisor code access, XXX */
1920 default:
1921 do_unassigned_access(addr, 1, 0, asi, size);
1922 break;
1923 }
1924 #ifdef DEBUG_ASI
1925 dump_asi("write", addr, asi, size, val);
1926 #endif
1927 }
1928
1929 #endif /* CONFIG_USER_ONLY */
1930 #else /* TARGET_SPARC64 */
1931
1932 #ifdef CONFIG_USER_ONLY
1933 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1934 {
1935 uint64_t ret = 0;
1936 #if defined(DEBUG_ASI)
1937 target_ulong last_addr = addr;
1938 #endif
1939
1940 if (asi < 0x80)
1941 raise_exception(TT_PRIV_ACT);
1942
1943 helper_check_align(addr, size - 1);
1944 address_mask(env, &addr);
1945
1946 switch (asi) {
1947 case 0x82: // Primary no-fault
1948 case 0x8a: // Primary no-fault LE
1949 if (page_check_range(addr, size, PAGE_READ) == -1) {
1950 #ifdef DEBUG_ASI
1951 dump_asi("read ", last_addr, asi, size, ret);
1952 #endif
1953 return 0;
1954 }
1955 // Fall through
1956 case 0x80: // Primary
1957 case 0x88: // Primary LE
1958 {
1959 switch(size) {
1960 case 1:
1961 ret = ldub_raw(addr);
1962 break;
1963 case 2:
1964 ret = lduw_raw(addr);
1965 break;
1966 case 4:
1967 ret = ldl_raw(addr);
1968 break;
1969 default:
1970 case 8:
1971 ret = ldq_raw(addr);
1972 break;
1973 }
1974 }
1975 break;
1976 case 0x83: // Secondary no-fault
1977 case 0x8b: // Secondary no-fault LE
1978 if (page_check_range(addr, size, PAGE_READ) == -1) {
1979 #ifdef DEBUG_ASI
1980 dump_asi("read ", last_addr, asi, size, ret);
1981 #endif
1982 return 0;
1983 }
1984 // Fall through
1985 case 0x81: // Secondary
1986 case 0x89: // Secondary LE
1987 // XXX
1988 break;
1989 default:
1990 break;
1991 }
1992
1993 /* Convert from little endian */
1994 switch (asi) {
1995 case 0x88: // Primary LE
1996 case 0x89: // Secondary LE
1997 case 0x8a: // Primary no-fault LE
1998 case 0x8b: // Secondary no-fault LE
1999 switch(size) {
2000 case 2:
2001 ret = bswap16(ret);
2002 break;
2003 case 4:
2004 ret = bswap32(ret);
2005 break;
2006 case 8:
2007 ret = bswap64(ret);
2008 break;
2009 default:
2010 break;
2011 }
2012 default:
2013 break;
2014 }
2015
2016 /* Convert to signed number */
2017 if (sign) {
2018 switch(size) {
2019 case 1:
2020 ret = (int8_t) ret;
2021 break;
2022 case 2:
2023 ret = (int16_t) ret;
2024 break;
2025 case 4:
2026 ret = (int32_t) ret;
2027 break;
2028 default:
2029 break;
2030 }
2031 }
2032 #ifdef DEBUG_ASI
2033 dump_asi("read ", last_addr, asi, size, ret);
2034 #endif
2035 return ret;
2036 }
2037
2038 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2039 {
2040 #ifdef DEBUG_ASI
2041 dump_asi("write", addr, asi, size, val);
2042 #endif
2043 if (asi < 0x80)
2044 raise_exception(TT_PRIV_ACT);
2045
2046 helper_check_align(addr, size - 1);
2047 address_mask(env, &addr);
2048
2049 /* Convert to little endian */
2050 switch (asi) {
2051 case 0x88: // Primary LE
2052 case 0x89: // Secondary LE
2053 switch(size) {
2054 case 2:
2055 val = bswap16(val);
2056 break;
2057 case 4:
2058 val = bswap32(val);
2059 break;
2060 case 8:
2061 val = bswap64(val);
2062 break;
2063 default:
2064 break;
2065 }
2066 default:
2067 break;
2068 }
2069
2070 switch(asi) {
2071 case 0x80: // Primary
2072 case 0x88: // Primary LE
2073 {
2074 switch(size) {
2075 case 1:
2076 stb_raw(addr, val);
2077 break;
2078 case 2:
2079 stw_raw(addr, val);
2080 break;
2081 case 4:
2082 stl_raw(addr, val);
2083 break;
2084 case 8:
2085 default:
2086 stq_raw(addr, val);
2087 break;
2088 }
2089 }
2090 break;
2091 case 0x81: // Secondary
2092 case 0x89: // Secondary LE
2093 // XXX
2094 return;
2095
2096 case 0x82: // Primary no-fault, RO
2097 case 0x83: // Secondary no-fault, RO
2098 case 0x8a: // Primary no-fault LE, RO
2099 case 0x8b: // Secondary no-fault LE, RO
2100 default:
2101 do_unassigned_access(addr, 1, 0, 1, size);
2102 return;
2103 }
2104 }
2105
2106 #else /* CONFIG_USER_ONLY */
2107
2108 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2109 {
2110 uint64_t ret = 0;
2111 #if defined(DEBUG_ASI)
2112 target_ulong last_addr = addr;
2113 #endif
2114
2115 asi &= 0xff;
2116
2117 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2118 || ((env->def->features & CPU_FEATURE_HYPV)
2119 && asi >= 0x30 && asi < 0x80
2120 && !(env->hpstate & HS_PRIV)))
2121 raise_exception(TT_PRIV_ACT);
2122
2123 helper_check_align(addr, size - 1);
2124 switch (asi) {
2125 case 0x82: // Primary no-fault
2126 case 0x8a: // Primary no-fault LE
2127 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2128 #ifdef DEBUG_ASI
2129 dump_asi("read ", last_addr, asi, size, ret);
2130 #endif
2131 return 0;
2132 }
2133 // Fall through
2134 case 0x10: // As if user primary
2135 case 0x18: // As if user primary LE
2136 case 0x80: // Primary
2137 case 0x88: // Primary LE
2138 case 0xe2: // UA2007 Primary block init
2139 case 0xe3: // UA2007 Secondary block init
2140 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2141 if ((env->def->features & CPU_FEATURE_HYPV)
2142 && env->hpstate & HS_PRIV) {
2143 switch(size) {
2144 case 1:
2145 ret = ldub_hypv(addr);
2146 break;
2147 case 2:
2148 ret = lduw_hypv(addr);
2149 break;
2150 case 4:
2151 ret = ldl_hypv(addr);
2152 break;
2153 default:
2154 case 8:
2155 ret = ldq_hypv(addr);
2156 break;
2157 }
2158 } else {
2159 switch(size) {
2160 case 1:
2161 ret = ldub_kernel(addr);
2162 break;
2163 case 2:
2164 ret = lduw_kernel(addr);
2165 break;
2166 case 4:
2167 ret = ldl_kernel(addr);
2168 break;
2169 default:
2170 case 8:
2171 ret = ldq_kernel(addr);
2172 break;
2173 }
2174 }
2175 } else {
2176 switch(size) {
2177 case 1:
2178 ret = ldub_user(addr);
2179 break;
2180 case 2:
2181 ret = lduw_user(addr);
2182 break;
2183 case 4:
2184 ret = ldl_user(addr);
2185 break;
2186 default:
2187 case 8:
2188 ret = ldq_user(addr);
2189 break;
2190 }
2191 }
2192 break;
2193 case 0x14: // Bypass
2194 case 0x15: // Bypass, non-cacheable
2195 case 0x1c: // Bypass LE
2196 case 0x1d: // Bypass, non-cacheable LE
2197 {
2198 switch(size) {
2199 case 1:
2200 ret = ldub_phys(addr);
2201 break;
2202 case 2:
2203 ret = lduw_phys(addr);
2204 break;
2205 case 4:
2206 ret = ldl_phys(addr);
2207 break;
2208 default:
2209 case 8:
2210 ret = ldq_phys(addr);
2211 break;
2212 }
2213 break;
2214 }
2215 case 0x24: // Nucleus quad LDD 128 bit atomic
2216 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2217 // Only ldda allowed
2218 raise_exception(TT_ILL_INSN);
2219 return 0;
2220 case 0x83: // Secondary no-fault
2221 case 0x8b: // Secondary no-fault LE
2222 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2223 #ifdef DEBUG_ASI
2224 dump_asi("read ", last_addr, asi, size, ret);
2225 #endif
2226 return 0;
2227 }
2228 // Fall through
2229 case 0x04: // Nucleus
2230 case 0x0c: // Nucleus Little Endian (LE)
2231 case 0x11: // As if user secondary
2232 case 0x19: // As if user secondary LE
2233 case 0x4a: // UPA config
2234 case 0x81: // Secondary
2235 case 0x89: // Secondary LE
2236 // XXX
2237 break;
2238 case 0x45: // LSU
2239 ret = env->lsu;
2240 break;
2241 case 0x50: // I-MMU regs
2242 {
2243 int reg = (addr >> 3) & 0xf;
2244
2245 if (reg == 0) {
2246 // I-TSB Tag Target register
2247 ret = ultrasparc_tag_target(env->immu.tag_access);
2248 } else {
2249 ret = env->immuregs[reg];
2250 }
2251
2252 break;
2253 }
2254 case 0x51: // I-MMU 8k TSB pointer
2255 {
2256 // env->immuregs[5] holds I-MMU TSB register value
2257 // env->immuregs[6] holds I-MMU Tag Access register value
2258 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2259 8*1024);
2260 break;
2261 }
2262 case 0x52: // I-MMU 64k TSB pointer
2263 {
2264 // env->immuregs[5] holds I-MMU TSB register value
2265 // env->immuregs[6] holds I-MMU Tag Access register value
2266 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2267 64*1024);
2268 break;
2269 }
2270 case 0x55: // I-MMU data access
2271 {
2272 int reg = (addr >> 3) & 0x3f;
2273
2274 ret = env->itlb[reg].tte;
2275 break;
2276 }
2277 case 0x56: // I-MMU tag read
2278 {
2279 int reg = (addr >> 3) & 0x3f;
2280
2281 ret = env->itlb[reg].tag;
2282 break;
2283 }
2284 case 0x58: // D-MMU regs
2285 {
2286 int reg = (addr >> 3) & 0xf;
2287
2288 if (reg == 0) {
2289 // D-TSB Tag Target register
2290 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2291 } else {
2292 ret = env->dmmuregs[reg];
2293 }
2294 break;
2295 }
2296 case 0x59: // D-MMU 8k TSB pointer
2297 {
2298 // env->dmmuregs[5] holds D-MMU TSB register value
2299 // env->dmmuregs[6] holds D-MMU Tag Access register value
2300 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2301 8*1024);
2302 break;
2303 }
2304 case 0x5a: // D-MMU 64k TSB pointer
2305 {
2306 // env->dmmuregs[5] holds D-MMU TSB register value
2307 // env->dmmuregs[6] holds D-MMU Tag Access register value
2308 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2309 64*1024);
2310 break;
2311 }
2312 case 0x5d: // D-MMU data access
2313 {
2314 int reg = (addr >> 3) & 0x3f;
2315
2316 ret = env->dtlb[reg].tte;
2317 break;
2318 }
2319 case 0x5e: // D-MMU tag read
2320 {
2321 int reg = (addr >> 3) & 0x3f;
2322
2323 ret = env->dtlb[reg].tag;
2324 break;
2325 }
2326 case 0x46: // D-cache data
2327 case 0x47: // D-cache tag access
2328 case 0x4b: // E-cache error enable
2329 case 0x4c: // E-cache asynchronous fault status
2330 case 0x4d: // E-cache asynchronous fault address
2331 case 0x4e: // E-cache tag data
2332 case 0x66: // I-cache instruction access
2333 case 0x67: // I-cache tag access
2334 case 0x6e: // I-cache predecode
2335 case 0x6f: // I-cache LRU etc.
2336 case 0x76: // E-cache tag
2337 case 0x7e: // E-cache tag
2338 break;
2339 case 0x5b: // D-MMU data pointer
2340 case 0x48: // Interrupt dispatch, RO
2341 case 0x49: // Interrupt data receive
2342 case 0x7f: // Incoming interrupt vector, RO
2343 // XXX
2344 break;
2345 case 0x54: // I-MMU data in, WO
2346 case 0x57: // I-MMU demap, WO
2347 case 0x5c: // D-MMU data in, WO
2348 case 0x5f: // D-MMU demap, WO
2349 case 0x77: // Interrupt vector, WO
2350 default:
2351 do_unassigned_access(addr, 0, 0, 1, size);
2352 ret = 0;
2353 break;
2354 }
2355
2356 /* Convert from little endian */
2357 switch (asi) {
2358 case 0x0c: // Nucleus Little Endian (LE)
2359 case 0x18: // As if user primary LE
2360 case 0x19: // As if user secondary LE
2361 case 0x1c: // Bypass LE
2362 case 0x1d: // Bypass, non-cacheable LE
2363 case 0x88: // Primary LE
2364 case 0x89: // Secondary LE
2365 case 0x8a: // Primary no-fault LE
2366 case 0x8b: // Secondary no-fault LE
2367 switch(size) {
2368 case 2:
2369 ret = bswap16(ret);
2370 break;
2371 case 4:
2372 ret = bswap32(ret);
2373 break;
2374 case 8:
2375 ret = bswap64(ret);
2376 break;
2377 default:
2378 break;
2379 }
2380 default:
2381 break;
2382 }
2383
2384 /* Convert to signed number */
2385 if (sign) {
2386 switch(size) {
2387 case 1:
2388 ret = (int8_t) ret;
2389 break;
2390 case 2:
2391 ret = (int16_t) ret;
2392 break;
2393 case 4:
2394 ret = (int32_t) ret;
2395 break;
2396 default:
2397 break;
2398 }
2399 }
2400 #ifdef DEBUG_ASI
2401 dump_asi("read ", last_addr, asi, size, ret);
2402 #endif
2403 return ret;
2404 }
2405
2406 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2407 {
2408 #ifdef DEBUG_ASI
2409 dump_asi("write", addr, asi, size, val);
2410 #endif
2411
2412 asi &= 0xff;
2413
2414 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2415 || ((env->def->features & CPU_FEATURE_HYPV)
2416 && asi >= 0x30 && asi < 0x80
2417 && !(env->hpstate & HS_PRIV)))
2418 raise_exception(TT_PRIV_ACT);
2419
2420 helper_check_align(addr, size - 1);
2421 /* Convert to little endian */
2422 switch (asi) {
2423 case 0x0c: // Nucleus Little Endian (LE)
2424 case 0x18: // As if user primary LE
2425 case 0x19: // As if user secondary LE
2426 case 0x1c: // Bypass LE
2427 case 0x1d: // Bypass, non-cacheable LE
2428 case 0x88: // Primary LE
2429 case 0x89: // Secondary LE
2430 switch(size) {
2431 case 2:
2432 val = bswap16(val);
2433 break;
2434 case 4:
2435 val = bswap32(val);
2436 break;
2437 case 8:
2438 val = bswap64(val);
2439 break;
2440 default:
2441 break;
2442 }
2443 default:
2444 break;
2445 }
2446
2447 switch(asi) {
2448 case 0x10: // As if user primary
2449 case 0x18: // As if user primary LE
2450 case 0x80: // Primary
2451 case 0x88: // Primary LE
2452 case 0xe2: // UA2007 Primary block init
2453 case 0xe3: // UA2007 Secondary block init
2454 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2455 if ((env->def->features & CPU_FEATURE_HYPV)
2456 && env->hpstate & HS_PRIV) {
2457 switch(size) {
2458 case 1:
2459 stb_hypv(addr, val);
2460 break;
2461 case 2:
2462 stw_hypv(addr, val);
2463 break;
2464 case 4:
2465 stl_hypv(addr, val);
2466 break;
2467 case 8:
2468 default:
2469 stq_hypv(addr, val);
2470 break;
2471 }
2472 } else {
2473 switch(size) {
2474 case 1:
2475 stb_kernel(addr, val);
2476 break;
2477 case 2:
2478 stw_kernel(addr, val);
2479 break;
2480 case 4:
2481 stl_kernel(addr, val);
2482 break;
2483 case 8:
2484 default:
2485 stq_kernel(addr, val);
2486 break;
2487 }
2488 }
2489 } else {
2490 switch(size) {
2491 case 1:
2492 stb_user(addr, val);
2493 break;
2494 case 2:
2495 stw_user(addr, val);
2496 break;
2497 case 4:
2498 stl_user(addr, val);
2499 break;
2500 case 8:
2501 default:
2502 stq_user(addr, val);
2503 break;
2504 }
2505 }
2506 break;
2507 case 0x14: // Bypass
2508 case 0x15: // Bypass, non-cacheable
2509 case 0x1c: // Bypass LE
2510 case 0x1d: // Bypass, non-cacheable LE
2511 {
2512 switch(size) {
2513 case 1:
2514 stb_phys(addr, val);
2515 break;
2516 case 2:
2517 stw_phys(addr, val);
2518 break;
2519 case 4:
2520 stl_phys(addr, val);
2521 break;
2522 case 8:
2523 default:
2524 stq_phys(addr, val);
2525 break;
2526 }
2527 }
2528 return;
2529 case 0x24: // Nucleus quad LDD 128 bit atomic
2530 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2531 // Only ldda allowed
2532 raise_exception(TT_ILL_INSN);
2533 return;
2534 case 0x04: // Nucleus
2535 case 0x0c: // Nucleus Little Endian (LE)
2536 case 0x11: // As if user secondary
2537 case 0x19: // As if user secondary LE
2538 case 0x4a: // UPA config
2539 case 0x81: // Secondary
2540 case 0x89: // Secondary LE
2541 // XXX
2542 return;
2543 case 0x45: // LSU
2544 {
2545 uint64_t oldreg;
2546
2547 oldreg = env->lsu;
2548 env->lsu = val & (DMMU_E | IMMU_E);
2549 // Mappings generated during D/I MMU disabled mode are
2550 // invalid in normal mode
2551 if (oldreg != env->lsu) {
2552 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2553 oldreg, env->lsu);
2554 #ifdef DEBUG_MMU
2555 dump_mmu(env);
2556 #endif
2557 tlb_flush(env, 1);
2558 }
2559 return;
2560 }
2561 case 0x50: // I-MMU regs
2562 {
2563 int reg = (addr >> 3) & 0xf;
2564 uint64_t oldreg;
2565
2566 oldreg = env->immuregs[reg];
2567 switch(reg) {
2568 case 0: // RO
2569 return;
2570 case 1: // Not in I-MMU
2571 case 2:
2572 return;
2573 case 3: // SFSR
2574 if ((val & 1) == 0)
2575 val = 0; // Clear SFSR
2576 env->immu.sfsr = val;
2577 break;
2578 case 4: // RO
2579 return;
2580 case 5: // TSB access
2581 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2582 PRIx64 "\n", env->immu.tsb, val);
2583 env->immu.tsb = val;
2584 break;
2585 case 6: // Tag access
2586 env->immu.tag_access = val;
2587 break;
2588 case 7:
2589 case 8:
2590 return;
2591 default:
2592 break;
2593 }
2594
2595 if (oldreg != env->immuregs[reg]) {
2596 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2597 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2598 }
2599 #ifdef DEBUG_MMU
2600 dump_mmu(env);
2601 #endif
2602 return;
2603 }
2604 case 0x54: // I-MMU data in
2605 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2606 return;
2607 case 0x55: // I-MMU data access
2608 {
2609 // TODO: auto demap
2610
2611 unsigned int i = (addr >> 3) & 0x3f;
2612
2613 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2614
2615 #ifdef DEBUG_MMU
2616 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2617 dump_mmu(env);
2618 #endif
2619 return;
2620 }
2621 case 0x57: // I-MMU demap
2622 demap_tlb(env->itlb, val, "immu", env);
2623 return;
2624 case 0x58: // D-MMU regs
2625 {
2626 int reg = (addr >> 3) & 0xf;
2627 uint64_t oldreg;
2628
2629 oldreg = env->dmmuregs[reg];
2630 switch(reg) {
2631 case 0: // RO
2632 case 4:
2633 return;
2634 case 3: // SFSR
2635 if ((val & 1) == 0) {
2636 val = 0; // Clear SFSR, Fault address
2637 env->dmmu.sfar = 0;
2638 }
2639 env->dmmu.sfsr = val;
2640 break;
2641 case 1: // Primary context
2642 env->dmmu.mmu_primary_context = val;
2643 break;
2644 case 2: // Secondary context
2645 env->dmmu.mmu_secondary_context = val;
2646 break;
2647 case 5: // TSB access
2648 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2649 PRIx64 "\n", env->dmmu.tsb, val);
2650 env->dmmu.tsb = val;
2651 break;
2652 case 6: // Tag access
2653 env->dmmu.tag_access = val;
2654 break;
2655 case 7: // Virtual Watchpoint
2656 case 8: // Physical Watchpoint
2657 default:
2658 env->dmmuregs[reg] = val;
2659 break;
2660 }
2661
2662 if (oldreg != env->dmmuregs[reg]) {
2663 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2664 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2665 }
2666 #ifdef DEBUG_MMU
2667 dump_mmu(env);
2668 #endif
2669 return;
2670 }
2671 case 0x5c: // D-MMU data in
2672 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2673 return;
2674 case 0x5d: // D-MMU data access
2675 {
2676 unsigned int i = (addr >> 3) & 0x3f;
2677
2678 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2679
2680 #ifdef DEBUG_MMU
2681 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2682 dump_mmu(env);
2683 #endif
2684 return;
2685 }
2686 case 0x5f: // D-MMU demap
2687 demap_tlb(env->dtlb, val, "dmmu", env);
2688 return;
2689 case 0x49: // Interrupt data receive
2690 // XXX
2691 return;
2692 case 0x46: // D-cache data
2693 case 0x47: // D-cache tag access
2694 case 0x4b: // E-cache error enable
2695 case 0x4c: // E-cache asynchronous fault status
2696 case 0x4d: // E-cache asynchronous fault address
2697 case 0x4e: // E-cache tag data
2698 case 0x66: // I-cache instruction access
2699 case 0x67: // I-cache tag access
2700 case 0x6e: // I-cache predecode
2701 case 0x6f: // I-cache LRU etc.
2702 case 0x76: // E-cache tag
2703 case 0x7e: // E-cache tag
2704 return;
2705 case 0x51: // I-MMU 8k TSB pointer, RO
2706 case 0x52: // I-MMU 64k TSB pointer, RO
2707 case 0x56: // I-MMU tag read, RO
2708 case 0x59: // D-MMU 8k TSB pointer, RO
2709 case 0x5a: // D-MMU 64k TSB pointer, RO
2710 case 0x5b: // D-MMU data pointer, RO
2711 case 0x5e: // D-MMU tag read, RO
2712 case 0x48: // Interrupt dispatch, RO
2713 case 0x7f: // Incoming interrupt vector, RO
2714 case 0x82: // Primary no-fault, RO
2715 case 0x83: // Secondary no-fault, RO
2716 case 0x8a: // Primary no-fault LE, RO
2717 case 0x8b: // Secondary no-fault LE, RO
2718 default:
2719 do_unassigned_access(addr, 1, 0, 1, size);
2720 return;
2721 }
2722 }
2723 #endif /* CONFIG_USER_ONLY */
2724
2725 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2726 {
2727 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2728 || ((env->def->features & CPU_FEATURE_HYPV)
2729 && asi >= 0x30 && asi < 0x80
2730 && !(env->hpstate & HS_PRIV)))
2731 raise_exception(TT_PRIV_ACT);
2732
2733 switch (asi) {
2734 case 0x24: // Nucleus quad LDD 128 bit atomic
2735 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2736 helper_check_align(addr, 0xf);
2737 if (rd == 0) {
2738 env->gregs[1] = ldq_kernel(addr + 8);
2739 if (asi == 0x2c)
2740 bswap64s(&env->gregs[1]);
2741 } else if (rd < 8) {
2742 env->gregs[rd] = ldq_kernel(addr);
2743 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2744 if (asi == 0x2c) {
2745 bswap64s(&env->gregs[rd]);
2746 bswap64s(&env->gregs[rd + 1]);
2747 }
2748 } else {
2749 env->regwptr[rd] = ldq_kernel(addr);
2750 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2751 if (asi == 0x2c) {
2752 bswap64s(&env->regwptr[rd]);
2753 bswap64s(&env->regwptr[rd + 1]);
2754 }
2755 }
2756 break;
2757 default:
2758 helper_check_align(addr, 0x3);
2759 if (rd == 0)
2760 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2761 else if (rd < 8) {
2762 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2763 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2764 } else {
2765 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2766 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2767 }
2768 break;
2769 }
2770 }
2771
2772 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2773 {
2774 unsigned int i;
2775 target_ulong val;
2776
2777 helper_check_align(addr, 3);
2778 switch (asi) {
2779 case 0xf0: // Block load primary
2780 case 0xf1: // Block load secondary
2781 case 0xf8: // Block load primary LE
2782 case 0xf9: // Block load secondary LE
2783 if (rd & 7) {
2784 raise_exception(TT_ILL_INSN);
2785 return;
2786 }
2787 helper_check_align(addr, 0x3f);
2788 for (i = 0; i < 16; i++) {
2789 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2790 0);
2791 addr += 4;
2792 }
2793
2794 return;
2795 default:
2796 break;
2797 }
2798
2799 val = helper_ld_asi(addr, asi, size, 0);
2800 switch(size) {
2801 default:
2802 case 4:
2803 *((uint32_t *)&env->fpr[rd]) = val;
2804 break;
2805 case 8:
2806 *((int64_t *)&DT0) = val;
2807 break;
2808 case 16:
2809 // XXX
2810 break;
2811 }
2812 }
2813
2814 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2815 {
2816 unsigned int i;
2817 target_ulong val = 0;
2818
2819 helper_check_align(addr, 3);
2820 switch (asi) {
2821 case 0xe0: // UA2007 Block commit store primary (cache flush)
2822 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2823 case 0xf0: // Block store primary
2824 case 0xf1: // Block store secondary
2825 case 0xf8: // Block store primary LE
2826 case 0xf9: // Block store secondary LE
2827 if (rd & 7) {
2828 raise_exception(TT_ILL_INSN);
2829 return;
2830 }
2831 helper_check_align(addr, 0x3f);
2832 for (i = 0; i < 16; i++) {
2833 val = *(uint32_t *)&env->fpr[rd++];
2834 helper_st_asi(addr, val, asi & 0x8f, 4);
2835 addr += 4;
2836 }
2837
2838 return;
2839 default:
2840 break;
2841 }
2842
2843 switch(size) {
2844 default:
2845 case 4:
2846 val = *((uint32_t *)&env->fpr[rd]);
2847 break;
2848 case 8:
2849 val = *((int64_t *)&DT0);
2850 break;
2851 case 16:
2852 // XXX
2853 break;
2854 }
2855 helper_st_asi(addr, val, asi, size);
2856 }
2857
2858 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2859 target_ulong val2, uint32_t asi)
2860 {
2861 target_ulong ret;
2862
2863 val2 &= 0xffffffffUL;
2864 ret = helper_ld_asi(addr, asi, 4, 0);
2865 ret &= 0xffffffffUL;
2866 if (val2 == ret)
2867 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2868 return ret;
2869 }
2870
2871 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2872 target_ulong val2, uint32_t asi)
2873 {
2874 target_ulong ret;
2875
2876 ret = helper_ld_asi(addr, asi, 8, 0);
2877 if (val2 == ret)
2878 helper_st_asi(addr, val1, asi, 8);
2879 return ret;
2880 }
2881 #endif /* TARGET_SPARC64 */
2882
2883 #ifndef TARGET_SPARC64
2884 void helper_rett(void)
2885 {
2886 unsigned int cwp;
2887
2888 if (env->psret == 1)
2889 raise_exception(TT_ILL_INSN);
2890
2891 env->psret = 1;
2892 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2893 if (env->wim & (1 << cwp)) {
2894 raise_exception(TT_WIN_UNF);
2895 }
2896 set_cwp(cwp);
2897 env->psrs = env->psrps;
2898 }
2899 #endif
2900
2901 target_ulong helper_udiv(target_ulong a, target_ulong b)
2902 {
2903 uint64_t x0;
2904 uint32_t x1;
2905
2906 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2907 x1 = b;
2908
2909 if (x1 == 0) {
2910 raise_exception(TT_DIV_ZERO);
2911 }
2912
2913 x0 = x0 / x1;
2914 if (x0 > 0xffffffff) {
2915 env->cc_src2 = 1;
2916 return 0xffffffff;
2917 } else {
2918 env->cc_src2 = 0;
2919 return x0;
2920 }
2921 }
2922
2923 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2924 {
2925 int64_t x0;
2926 int32_t x1;
2927
2928 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2929 x1 = b;
2930
2931 if (x1 == 0) {
2932 raise_exception(TT_DIV_ZERO);
2933 }
2934
2935 x0 = x0 / x1;
2936 if ((int32_t) x0 != x0) {
2937 env->cc_src2 = 1;
2938 return x0 < 0? 0x80000000: 0x7fffffff;
2939 } else {
2940 env->cc_src2 = 0;
2941 return x0;
2942 }
2943 }
2944
2945 void helper_stdf(target_ulong addr, int mem_idx)
2946 {
2947 helper_check_align(addr, 7);
2948 #if !defined(CONFIG_USER_ONLY)
2949 switch (mem_idx) {
2950 case 0:
2951 stfq_user(addr, DT0);
2952 break;
2953 case 1:
2954 stfq_kernel(addr, DT0);
2955 break;
2956 #ifdef TARGET_SPARC64
2957 case 2:
2958 stfq_hypv(addr, DT0);
2959 break;
2960 #endif
2961 default:
2962 break;
2963 }
2964 #else
2965 address_mask(env, &addr);
2966 stfq_raw(addr, DT0);
2967 #endif
2968 }
2969
2970 void helper_lddf(target_ulong addr, int mem_idx)
2971 {
2972 helper_check_align(addr, 7);
2973 #if !defined(CONFIG_USER_ONLY)
2974 switch (mem_idx) {
2975 case 0:
2976 DT0 = ldfq_user(addr);
2977 break;
2978 case 1:
2979 DT0 = ldfq_kernel(addr);
2980 break;
2981 #ifdef TARGET_SPARC64
2982 case 2:
2983 DT0 = ldfq_hypv(addr);
2984 break;
2985 #endif
2986 default:
2987 break;
2988 }
2989 #else
2990 address_mask(env, &addr);
2991 DT0 = ldfq_raw(addr);
2992 #endif
2993 }
2994
2995 void helper_ldqf(target_ulong addr, int mem_idx)
2996 {
2997 // XXX add 128 bit load
2998 CPU_QuadU u;
2999
3000 helper_check_align(addr, 7);
3001 #if !defined(CONFIG_USER_ONLY)
3002 switch (mem_idx) {
3003 case 0:
3004 u.ll.upper = ldq_user(addr);
3005 u.ll.lower = ldq_user(addr + 8);
3006 QT0 = u.q;
3007 break;
3008 case 1:
3009 u.ll.upper = ldq_kernel(addr);
3010 u.ll.lower = ldq_kernel(addr + 8);
3011 QT0 = u.q;
3012 break;
3013 #ifdef TARGET_SPARC64
3014 case 2:
3015 u.ll.upper = ldq_hypv(addr);
3016 u.ll.lower = ldq_hypv(addr + 8);
3017 QT0 = u.q;
3018 break;
3019 #endif
3020 default:
3021 break;
3022 }
3023 #else
3024 address_mask(env, &addr);
3025 u.ll.upper = ldq_raw(addr);
3026 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
3027 QT0 = u.q;
3028 #endif
3029 }
3030
3031 void helper_stqf(target_ulong addr, int mem_idx)
3032 {
3033 // XXX add 128 bit store
3034 CPU_QuadU u;
3035
3036 helper_check_align(addr, 7);
3037 #if !defined(CONFIG_USER_ONLY)
3038 switch (mem_idx) {
3039 case 0:
3040 u.q = QT0;
3041 stq_user(addr, u.ll.upper);
3042 stq_user(addr + 8, u.ll.lower);
3043 break;
3044 case 1:
3045 u.q = QT0;
3046 stq_kernel(addr, u.ll.upper);
3047 stq_kernel(addr + 8, u.ll.lower);
3048 break;
3049 #ifdef TARGET_SPARC64
3050 case 2:
3051 u.q = QT0;
3052 stq_hypv(addr, u.ll.upper);
3053 stq_hypv(addr + 8, u.ll.lower);
3054 break;
3055 #endif
3056 default:
3057 break;
3058 }
3059 #else
3060 u.q = QT0;
3061 address_mask(env, &addr);
3062 stq_raw(addr, u.ll.upper);
3063 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3064 #endif
3065 }
3066
3067 static inline void set_fsr(void)
3068 {
3069 int rnd_mode;
3070
3071 switch (env->fsr & FSR_RD_MASK) {
3072 case FSR_RD_NEAREST:
3073 rnd_mode = float_round_nearest_even;
3074 break;
3075 default:
3076 case FSR_RD_ZERO:
3077 rnd_mode = float_round_to_zero;
3078 break;
3079 case FSR_RD_POS:
3080 rnd_mode = float_round_up;
3081 break;
3082 case FSR_RD_NEG:
3083 rnd_mode = float_round_down;
3084 break;
3085 }
3086 set_float_rounding_mode(rnd_mode, &env->fp_status);
3087 }
3088
3089 void helper_ldfsr(uint32_t new_fsr)
3090 {
3091 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3092 set_fsr();
3093 }
3094
3095 #ifdef TARGET_SPARC64
3096 void helper_ldxfsr(uint64_t new_fsr)
3097 {
3098 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3099 set_fsr();
3100 }
3101 #endif
3102
3103 void helper_debug(void)
3104 {
3105 env->exception_index = EXCP_DEBUG;
3106 cpu_loop_exit();
3107 }
3108
3109 #ifndef TARGET_SPARC64
3110 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3111 handling ? */
3112 void helper_save(void)
3113 {
3114 uint32_t cwp;
3115
3116 cwp = cpu_cwp_dec(env, env->cwp - 1);
3117 if (env->wim & (1 << cwp)) {
3118 raise_exception(TT_WIN_OVF);
3119 }
3120 set_cwp(cwp);
3121 }
3122
3123 void helper_restore(void)
3124 {
3125 uint32_t cwp;
3126
3127 cwp = cpu_cwp_inc(env, env->cwp + 1);
3128 if (env->wim & (1 << cwp)) {
3129 raise_exception(TT_WIN_UNF);
3130 }
3131 set_cwp(cwp);
3132 }
3133
3134 void helper_wrpsr(target_ulong new_psr)
3135 {
3136 if ((new_psr & PSR_CWP) >= env->nwindows)
3137 raise_exception(TT_ILL_INSN);
3138 else
3139 PUT_PSR(env, new_psr);
3140 }
3141
3142 target_ulong helper_rdpsr(void)
3143 {
3144 return GET_PSR(env);
3145 }
3146
3147 #else
3148 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3149 handling ? */
3150 void helper_save(void)
3151 {
3152 uint32_t cwp;
3153
3154 cwp = cpu_cwp_dec(env, env->cwp - 1);
3155 if (env->cansave == 0) {
3156 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3157 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3158 ((env->wstate & 0x7) << 2)));
3159 } else {
3160 if (env->cleanwin - env->canrestore == 0) {
3161 // XXX Clean windows without trap
3162 raise_exception(TT_CLRWIN);
3163 } else {
3164 env->cansave--;
3165 env->canrestore++;
3166 set_cwp(cwp);
3167 }
3168 }
3169 }
3170
3171 void helper_restore(void)
3172 {
3173 uint32_t cwp;
3174
3175 cwp = cpu_cwp_inc(env, env->cwp + 1);
3176 if (env->canrestore == 0) {
3177 raise_exception(TT_FILL | (env->otherwin != 0 ?
3178 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3179 ((env->wstate & 0x7) << 2)));
3180 } else {
3181 env->cansave++;
3182 env->canrestore--;
3183 set_cwp(cwp);
3184 }
3185 }
3186
3187 void helper_flushw(void)
3188 {
3189 if (env->cansave != env->nwindows - 2) {
3190 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3191 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3192 ((env->wstate & 0x7) << 2)));
3193 }
3194 }
3195
3196 void helper_saved(void)
3197 {
3198 env->cansave++;
3199 if (env->otherwin == 0)
3200 env->canrestore--;
3201 else
3202 env->otherwin--;
3203 }
3204
3205 void helper_restored(void)
3206 {
3207 env->canrestore++;
3208 if (env->cleanwin < env->nwindows - 1)
3209 env->cleanwin++;
3210 if (env->otherwin == 0)
3211 env->cansave--;
3212 else
3213 env->otherwin--;
3214 }
3215
3216 target_ulong helper_rdccr(void)
3217 {
3218 return GET_CCR(env);
3219 }
3220
3221 void helper_wrccr(target_ulong new_ccr)
3222 {
3223 PUT_CCR(env, new_ccr);
3224 }
3225
3226 // CWP handling is reversed in V9, but we still use the V8 register
3227 // order.
3228 target_ulong helper_rdcwp(void)
3229 {
3230 return GET_CWP64(env);
3231 }
3232
3233 void helper_wrcwp(target_ulong new_cwp)
3234 {
3235 PUT_CWP64(env, new_cwp);
3236 }
3237
3238 // This function uses non-native bit order
3239 #define GET_FIELD(X, FROM, TO) \
3240 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3241
3242 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3243 #define GET_FIELD_SP(X, FROM, TO) \
3244 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3245
3246 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3247 {
3248 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3249 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3250 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3251 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3252 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3253 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3254 (((pixel_addr >> 55) & 1) << 4) |
3255 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3256 GET_FIELD_SP(pixel_addr, 11, 12);
3257 }
3258
3259 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3260 {
3261 uint64_t tmp;
3262
3263 tmp = addr + offset;
3264 env->gsr &= ~7ULL;
3265 env->gsr |= tmp & 7ULL;
3266 return tmp & ~7ULL;
3267 }
3268
3269 target_ulong helper_popc(target_ulong val)
3270 {
3271 return ctpop64(val);
3272 }
3273
3274 static inline uint64_t *get_gregset(uint64_t pstate)
3275 {
3276 switch (pstate) {
3277 default:
3278 case 0:
3279 return env->bgregs;
3280 case PS_AG:
3281 return env->agregs;
3282 case PS_MG:
3283 return env->mgregs;
3284 case PS_IG:
3285 return env->igregs;
3286 }
3287 }
3288
3289 static inline void change_pstate(uint64_t new_pstate)
3290 {
3291 uint64_t pstate_regs, new_pstate_regs;
3292 uint64_t *src, *dst;
3293
3294 if (env->def->features & CPU_FEATURE_GL) {
3295 // PS_AG is not implemented in this case
3296 new_pstate &= ~PS_AG;
3297 }
3298
3299 pstate_regs = env->pstate & 0xc01;
3300 new_pstate_regs = new_pstate & 0xc01;
3301
3302 if (new_pstate_regs != pstate_regs) {
3303 // Switch global register bank
3304 src = get_gregset(new_pstate_regs);
3305 dst = get_gregset(pstate_regs);
3306 memcpy32(dst, env->gregs);
3307 memcpy32(env->gregs, src);
3308 }
3309 env->pstate = new_pstate;
3310 }
3311
3312 void helper_wrpstate(target_ulong new_state)
3313 {
3314 change_pstate(new_state & 0xf3f);
3315 }
3316
3317 void helper_done(void)
3318 {
3319 trap_state* tsptr = cpu_tsptr(env);
3320
3321 env->pc = tsptr->tpc;
3322 env->npc = tsptr->tnpc + 4;
3323 PUT_CCR(env, tsptr->tstate >> 32);
3324 env->asi = (tsptr->tstate >> 24) & 0xff;
3325 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3326 PUT_CWP64(env, tsptr->tstate & 0xff);
3327 env->tl--;
3328 }
3329
3330 void helper_retry(void)
3331 {
3332 trap_state* tsptr = cpu_tsptr(env);
3333
3334 env->pc = tsptr->tpc;
3335 env->npc = tsptr->tnpc;
3336 PUT_CCR(env, tsptr->tstate >> 32);
3337 env->asi = (tsptr->tstate >> 24) & 0xff;
3338 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3339 PUT_CWP64(env, tsptr->tstate & 0xff);
3340 env->tl--;
3341 }
3342
3343 void helper_set_softint(uint64_t value)
3344 {
3345 env->softint |= (uint32_t)value;
3346 }
3347
3348 void helper_clear_softint(uint64_t value)
3349 {
3350 env->softint &= (uint32_t)~value;
3351 }
3352
3353 void helper_write_softint(uint64_t value)
3354 {
3355 env->softint = (uint32_t)value;
3356 }
3357 #endif
3358
3359 void helper_flush(target_ulong addr)
3360 {
3361 addr &= ~7;
3362 tb_invalidate_page_range(addr, addr + 8);
3363 }
3364
3365 #ifdef TARGET_SPARC64
3366 #ifdef DEBUG_PCALL
3367 static const char * const excp_names[0x80] = {
3368 [TT_TFAULT] = "Instruction Access Fault",
3369 [TT_TMISS] = "Instruction Access MMU Miss",
3370 [TT_CODE_ACCESS] = "Instruction Access Error",
3371 [TT_ILL_INSN] = "Illegal Instruction",
3372 [TT_PRIV_INSN] = "Privileged Instruction",
3373 [TT_NFPU_INSN] = "FPU Disabled",
3374 [TT_FP_EXCP] = "FPU Exception",
3375 [TT_TOVF] = "Tag Overflow",
3376 [TT_CLRWIN] = "Clean Windows",
3377 [TT_DIV_ZERO] = "Division By Zero",
3378 [TT_DFAULT] = "Data Access Fault",
3379 [TT_DMISS] = "Data Access MMU Miss",
3380 [TT_DATA_ACCESS] = "Data Access Error",
3381 [TT_DPROT] = "Data Protection Error",
3382 [TT_UNALIGNED] = "Unaligned Memory Access",
3383 [TT_PRIV_ACT] = "Privileged Action",
3384 [TT_EXTINT | 0x1] = "External Interrupt 1",
3385 [TT_EXTINT | 0x2] = "External Interrupt 2",
3386 [TT_EXTINT | 0x3] = "External Interrupt 3",
3387 [TT_EXTINT | 0x4] = "External Interrupt 4",
3388 [TT_EXTINT | 0x5] = "External Interrupt 5",
3389 [TT_EXTINT | 0x6] = "External Interrupt 6",
3390 [TT_EXTINT | 0x7] = "External Interrupt 7",
3391 [TT_EXTINT | 0x8] = "External Interrupt 8",
3392 [TT_EXTINT | 0x9] = "External Interrupt 9",
3393 [TT_EXTINT | 0xa] = "External Interrupt 10",
3394 [TT_EXTINT | 0xb] = "External Interrupt 11",
3395 [TT_EXTINT | 0xc] = "External Interrupt 12",
3396 [TT_EXTINT | 0xd] = "External Interrupt 13",
3397 [TT_EXTINT | 0xe] = "External Interrupt 14",
3398 [TT_EXTINT | 0xf] = "External Interrupt 15",
3399 };
3400 #endif
3401
3402 trap_state* cpu_tsptr(CPUState* env)
3403 {
3404 return &env->ts[env->tl & MAXTL_MASK];
3405 }
3406
3407 void do_interrupt(CPUState *env)
3408 {
3409 int intno = env->exception_index;
3410 trap_state* tsptr;
3411
3412 #ifdef DEBUG_PCALL
3413 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3414 static int count;
3415 const char *name;
3416
3417 if (intno < 0 || intno >= 0x180)
3418 name = "Unknown";
3419 else if (intno >= 0x100)
3420 name = "Trap Instruction";
3421 else if (intno >= 0xc0)
3422 name = "Window Fill";
3423 else if (intno >= 0x80)
3424 name = "Window Spill";
3425 else {
3426 name = excp_names[intno];
3427 if (!name)
3428 name = "Unknown";
3429 }
3430
3431 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3432 " SP=%016" PRIx64 "\n",
3433 count, name, intno,
3434 env->pc,
3435 env->npc, env->regwptr[6]);
3436 log_cpu_state(env, 0);
3437 #if 0
3438 {
3439 int i;
3440 uint8_t *ptr;
3441
3442 qemu_log(" code=");
3443 ptr = (uint8_t *)env->pc;
3444 for(i = 0; i < 16; i++) {
3445 qemu_log(" %02x", ldub(ptr + i));
3446 }
3447 qemu_log("\n");
3448 }
3449 #endif
3450 count++;
3451 }
3452 #endif
3453 #if !defined(CONFIG_USER_ONLY)
3454 if (env->tl >= env->maxtl) {
3455 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3456 " Error state", env->exception_index, env->tl, env->maxtl);
3457 return;
3458 }
3459 #endif
3460 if (env->tl < env->maxtl - 1) {
3461 env->tl++;
3462 } else {
3463 env->pstate |= PS_RED;
3464 if (env->tl < env->maxtl)
3465 env->tl++;
3466 }
3467 tsptr = cpu_tsptr(env);
3468
3469 tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3470 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3471 GET_CWP64(env);
3472 tsptr->tpc = env->pc;
3473 tsptr->tnpc = env->npc;
3474 tsptr->tt = intno;
3475
3476 switch (intno) {
3477 case TT_IVEC:
3478 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3479 break;
3480 case TT_TFAULT:
3481 case TT_TMISS:
3482 case TT_DFAULT:
3483 case TT_DMISS:
3484 case TT_DPROT:
3485 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3486 break;
3487 default:
3488 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3489 break;
3490 }
3491
3492 if (intno == TT_CLRWIN)
3493 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3494 else if ((intno & 0x1c0) == TT_SPILL)
3495 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3496 else if ((intno & 0x1c0) == TT_FILL)
3497 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3498 env->tbr &= ~0x7fffULL;
3499 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3500 env->pc = env->tbr;
3501 env->npc = env->pc + 4;
3502 env->exception_index = 0;
3503 }
3504 #else
3505 #ifdef DEBUG_PCALL
3506 static const char * const excp_names[0x80] = {
3507 [TT_TFAULT] = "Instruction Access Fault",
3508 [TT_ILL_INSN] = "Illegal Instruction",
3509 [TT_PRIV_INSN] = "Privileged Instruction",
3510 [TT_NFPU_INSN] = "FPU Disabled",
3511 [TT_WIN_OVF] = "Window Overflow",
3512 [TT_WIN_UNF] = "Window Underflow",
3513 [TT_UNALIGNED] = "Unaligned Memory Access",
3514 [TT_FP_EXCP] = "FPU Exception",
3515 [TT_DFAULT] = "Data Access Fault",
3516 [TT_TOVF] = "Tag Overflow",
3517 [TT_EXTINT | 0x1] = "External Interrupt 1",
3518 [TT_EXTINT | 0x2] = "External Interrupt 2",
3519 [TT_EXTINT | 0x3] = "External Interrupt 3",
3520 [TT_EXTINT | 0x4] = "External Interrupt 4",
3521 [TT_EXTINT | 0x5] = "External Interrupt 5",
3522 [TT_EXTINT | 0x6] = "External Interrupt 6",
3523 [TT_EXTINT | 0x7] = "External Interrupt 7",
3524 [TT_EXTINT | 0x8] = "External Interrupt 8",
3525 [TT_EXTINT | 0x9] = "External Interrupt 9",
3526 [TT_EXTINT | 0xa] = "External Interrupt 10",
3527 [TT_EXTINT | 0xb] = "External Interrupt 11",
3528 [TT_EXTINT | 0xc] = "External Interrupt 12",
3529 [TT_EXTINT | 0xd] = "External Interrupt 13",
3530 [TT_EXTINT | 0xe] = "External Interrupt 14",
3531 [TT_EXTINT | 0xf] = "External Interrupt 15",
3532 [TT_TOVF] = "Tag Overflow",
3533 [TT_CODE_ACCESS] = "Instruction Access Error",
3534 [TT_DATA_ACCESS] = "Data Access Error",
3535 [TT_DIV_ZERO] = "Division By Zero",
3536 [TT_NCP_INSN] = "Coprocessor Disabled",
3537 };
3538 #endif
3539
3540 void do_interrupt(CPUState *env)
3541 {
3542 int cwp, intno = env->exception_index;
3543
3544 #ifdef DEBUG_PCALL
3545 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3546 static int count;
3547 const char *name;
3548
3549 if (intno < 0 || intno >= 0x100)
3550 name = "Unknown";
3551 else if (intno >= 0x80)
3552 name = "Trap Instruction";
3553 else {
3554 name = excp_names[intno];
3555 if (!name)
3556 name = "Unknown";
3557 }
3558
3559 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3560 count, name, intno,
3561 env->pc,
3562 env->npc, env->regwptr[6]);
3563 log_cpu_state(env, 0);
3564 #if 0
3565 {
3566 int i;
3567 uint8_t *ptr;
3568
3569 qemu_log(" code=");
3570 ptr = (uint8_t *)env->pc;
3571 for(i = 0; i < 16; i++) {
3572 qemu_log(" %02x", ldub(ptr + i));
3573 }
3574 qemu_log("\n");
3575 }
3576 #endif
3577 count++;
3578 }
3579 #endif
3580 #if !defined(CONFIG_USER_ONLY)
3581 if (env->psret == 0) {
3582 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3583 env->exception_index);
3584 return;
3585 }
3586 #endif
3587 env->psret = 0;
3588 cwp = cpu_cwp_dec(env, env->cwp - 1);
3589 cpu_set_cwp(env, cwp);
3590 env->regwptr[9] = env->pc;
3591 env->regwptr[10] = env->npc;
3592 env->psrps = env->psrs;
3593 env->psrs = 1;
3594 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3595 env->pc = env->tbr;
3596 env->npc = env->pc + 4;
3597 env->exception_index = 0;
3598 }
3599 #endif
3600
3601 #if !defined(CONFIG_USER_ONLY)
3602
3603 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3604 void *retaddr);
3605
3606 #define MMUSUFFIX _mmu
3607 #define ALIGNED_ONLY
3608
3609 #define SHIFT 0
3610 #include "softmmu_template.h"
3611
3612 #define SHIFT 1
3613 #include "softmmu_template.h"
3614
3615 #define SHIFT 2
3616 #include "softmmu_template.h"
3617
3618 #define SHIFT 3
3619 #include "softmmu_template.h"
3620
3621 /* XXX: make it generic ? */
3622 static void cpu_restore_state2(void *retaddr)
3623 {
3624 TranslationBlock *tb;
3625 unsigned long pc;
3626
3627 if (retaddr) {
3628 /* now we have a real cpu fault */
3629 pc = (unsigned long)retaddr;
3630 tb = tb_find_pc(pc);
3631 if (tb) {
3632 /* the PC is inside the translated code. It means that we have
3633 a virtual CPU fault */
3634 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3635 }
3636 }
3637 }
3638
3639 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3640 void *retaddr)
3641 {
3642 #ifdef DEBUG_UNALIGNED
3643 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3644 "\n", addr, env->pc);
3645 #endif
3646 cpu_restore_state2(retaddr);
3647 raise_exception(TT_UNALIGNED);
3648 }
3649
3650 /* try to fill the TLB and return an exception if error. If retaddr is
3651 NULL, it means that the function was called in C code (i.e. not
3652 from generated code or from helper.c) */
3653 /* XXX: fix it to restore all registers */
3654 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3655 {
3656 int ret;
3657 CPUState *saved_env;
3658
3659 /* XXX: hack to restore env in all cases, even if not called from
3660 generated code */
3661 saved_env = env;
3662 env = cpu_single_env;
3663
3664 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3665 if (ret) {
3666 cpu_restore_state2(retaddr);
3667 cpu_loop_exit();
3668 }
3669 env = saved_env;
3670 }
3671
3672 #endif
3673
3674 #ifndef TARGET_SPARC64
3675 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3676 int is_asi, int size)
3677 {
3678 CPUState *saved_env;
3679
3680 /* XXX: hack to restore env in all cases, even if not called from
3681 generated code */
3682 saved_env = env;
3683 env = cpu_single_env;
3684 #ifdef DEBUG_UNASSIGNED
3685 if (is_asi)
3686 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3687 " asi 0x%02x from " TARGET_FMT_lx "\n",
3688 is_exec ? "exec" : is_write ? "write" : "read", size,
3689 size == 1 ? "" : "s", addr, is_asi, env->pc);
3690 else
3691 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3692 " from " TARGET_FMT_lx "\n",
3693 is_exec ? "exec" : is_write ? "write" : "read", size,
3694 size == 1 ? "" : "s", addr, env->pc);
3695 #endif
3696 if (env->mmuregs[3]) /* Fault status register */
3697 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3698 if (is_asi)
3699 env->mmuregs[3] |= 1 << 16;
3700 if (env->psrs)
3701 env->mmuregs[3] |= 1 << 5;
3702 if (is_exec)
3703 env->mmuregs[3] |= 1 << 6;
3704 if (is_write)
3705 env->mmuregs[3] |= 1 << 7;
3706 env->mmuregs[3] |= (5 << 2) | 2;
3707 env->mmuregs[4] = addr; /* Fault address register */
3708 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3709 if (is_exec)
3710 raise_exception(TT_CODE_ACCESS);
3711 else
3712 raise_exception(TT_DATA_ACCESS);
3713 }
3714 env = saved_env;
3715 }
3716 #else
3717 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3718 int is_asi, int size)
3719 {
3720 #ifdef DEBUG_UNASSIGNED
3721 CPUState *saved_env;
3722
3723 /* XXX: hack to restore env in all cases, even if not called from
3724 generated code */
3725 saved_env = env;
3726 env = cpu_single_env;
3727 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3728 "\n", addr, env->pc);
3729 env = saved_env;
3730 #endif
3731 if (is_exec)
3732 raise_exception(TT_CODE_ACCESS);
3733 else
3734 raise_exception(TT_DATA_ACCESS);
3735 }
3736 #endif
3737
3738 #ifdef TARGET_SPARC64
3739 void helper_tick_set_count(void *opaque, uint64_t count)
3740 {
3741 #if !defined(CONFIG_USER_ONLY)
3742 cpu_tick_set_count(opaque, count);
3743 #endif
3744 }
3745
3746 uint64_t helper_tick_get_count(void *opaque)
3747 {
3748 #if !defined(CONFIG_USER_ONLY)
3749 return cpu_tick_get_count(opaque);
3750 #else
3751 return 0;
3752 #endif
3753 }
3754
3755 void helper_tick_set_limit(void *opaque, uint64_t limit)
3756 {
3757 #if !defined(CONFIG_USER_ONLY)
3758 cpu_tick_set_limit(opaque, limit);
3759 #endif
3760 }
3761 #endif