]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
7
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
14
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
21
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
28
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
33
34 #ifdef TARGET_SPARC64
35 #ifndef TARGET_ABI32
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37 #else
38 #define AM_CHECK(env1) (1)
39 #endif
40 #endif
41
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
47 {
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
50 int tsb_size = tsb_register & 0xf;
51
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
54
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
58
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
64 }
65
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
68 }
69
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
76 }
77 tsb_base_mask <<= 1;
78 }
79
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
81 }
82
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
86 {
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
88 }
89
90 static void replace_tlb_entry(SparcTLBEntry *tlb,
91 uint64_t tlb_tag, uint64_t tlb_tte,
92 CPUState *env1)
93 {
94 target_ulong mask, size, va, offset;
95
96 // flush page range if translation is valid
97 if (TTE_IS_VALID(tlb->tte)) {
98
99 mask = 0xffffffffffffe000ULL;
100 mask <<= 3 * ((tlb->tte >> 61) & 3);
101 size = ~mask + 1;
102
103 va = tlb->tag & mask;
104
105 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
106 tlb_flush_page(env1, va + offset);
107 }
108 }
109
110 tlb->tag = tlb_tag;
111 tlb->tte = tlb_tte;
112 }
113
114 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
115 const char* strmmu, CPUState *env1)
116 {
117 unsigned int i;
118 target_ulong mask;
119
120 for (i = 0; i < 64; i++) {
121 if (TTE_IS_VALID(tlb[i].tte)) {
122
123 mask = 0xffffffffffffe000ULL;
124 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
125
126 if ((demap_addr & mask) == (tlb[i].tag & mask)) {
127 replace_tlb_entry(&tlb[i], 0, 0, env1);
128 #ifdef DEBUG_MMU
129 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
130 dump_mmu(env1);
131 #endif
132 }
133 //return;
134 }
135 }
136
137 }
138
139 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
140 uint64_t tlb_tag, uint64_t tlb_tte,
141 const char* strmmu, CPUState *env1)
142 {
143 unsigned int i, replace_used;
144
145 // Try replacing invalid entry
146 for (i = 0; i < 64; i++) {
147 if (!TTE_IS_VALID(tlb[i].tte)) {
148 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
149 #ifdef DEBUG_MMU
150 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
151 dump_mmu(env1);
152 #endif
153 return;
154 }
155 }
156
157 // All entries are valid, try replacing unlocked entry
158
159 for (replace_used = 0; replace_used < 2; ++replace_used) {
160
161 // Used entries are not replaced on first pass
162
163 for (i = 0; i < 64; i++) {
164 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
165
166 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
167 #ifdef DEBUG_MMU
168 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
169 strmmu, (replace_used?"used":"unused"), i);
170 dump_mmu(env1);
171 #endif
172 return;
173 }
174 }
175
176 // Now reset used bit and search for unused entries again
177
178 for (i = 0; i < 64; i++) {
179 TTE_SET_UNUSED(tlb[i].tte);
180 }
181 }
182
183 #ifdef DEBUG_MMU
184 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
185 #endif
186 // error state?
187 }
188
189 #endif
190
191 static inline void address_mask(CPUState *env1, target_ulong *addr)
192 {
193 #ifdef TARGET_SPARC64
194 if (AM_CHECK(env1))
195 *addr &= 0xffffffffULL;
196 #endif
197 }
198
199 static void raise_exception(int tt)
200 {
201 env->exception_index = tt;
202 cpu_loop_exit();
203 }
204
205 void HELPER(raise_exception)(int tt)
206 {
207 raise_exception(tt);
208 }
209
210 static inline void set_cwp(int new_cwp)
211 {
212 cpu_set_cwp(env, new_cwp);
213 }
214
215 void helper_check_align(target_ulong addr, uint32_t align)
216 {
217 if (addr & align) {
218 #ifdef DEBUG_UNALIGNED
219 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
220 "\n", addr, env->pc);
221 #endif
222 raise_exception(TT_UNALIGNED);
223 }
224 }
225
226 #define F_HELPER(name, p) void helper_f##name##p(void)
227
228 #define F_BINOP(name) \
229 float32 helper_f ## name ## s (float32 src1, float32 src2) \
230 { \
231 return float32_ ## name (src1, src2, &env->fp_status); \
232 } \
233 F_HELPER(name, d) \
234 { \
235 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
236 } \
237 F_HELPER(name, q) \
238 { \
239 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
240 }
241
242 F_BINOP(add);
243 F_BINOP(sub);
244 F_BINOP(mul);
245 F_BINOP(div);
246 #undef F_BINOP
247
248 void helper_fsmuld(float32 src1, float32 src2)
249 {
250 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
251 float32_to_float64(src2, &env->fp_status),
252 &env->fp_status);
253 }
254
255 void helper_fdmulq(void)
256 {
257 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
258 float64_to_float128(DT1, &env->fp_status),
259 &env->fp_status);
260 }
261
262 float32 helper_fnegs(float32 src)
263 {
264 return float32_chs(src);
265 }
266
267 #ifdef TARGET_SPARC64
268 F_HELPER(neg, d)
269 {
270 DT0 = float64_chs(DT1);
271 }
272
273 F_HELPER(neg, q)
274 {
275 QT0 = float128_chs(QT1);
276 }
277 #endif
278
279 /* Integer to float conversion. */
280 float32 helper_fitos(int32_t src)
281 {
282 return int32_to_float32(src, &env->fp_status);
283 }
284
285 void helper_fitod(int32_t src)
286 {
287 DT0 = int32_to_float64(src, &env->fp_status);
288 }
289
290 void helper_fitoq(int32_t src)
291 {
292 QT0 = int32_to_float128(src, &env->fp_status);
293 }
294
295 #ifdef TARGET_SPARC64
296 float32 helper_fxtos(void)
297 {
298 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
299 }
300
301 F_HELPER(xto, d)
302 {
303 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
304 }
305
306 F_HELPER(xto, q)
307 {
308 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
309 }
310 #endif
311 #undef F_HELPER
312
313 /* floating point conversion */
314 float32 helper_fdtos(void)
315 {
316 return float64_to_float32(DT1, &env->fp_status);
317 }
318
319 void helper_fstod(float32 src)
320 {
321 DT0 = float32_to_float64(src, &env->fp_status);
322 }
323
324 float32 helper_fqtos(void)
325 {
326 return float128_to_float32(QT1, &env->fp_status);
327 }
328
329 void helper_fstoq(float32 src)
330 {
331 QT0 = float32_to_float128(src, &env->fp_status);
332 }
333
334 void helper_fqtod(void)
335 {
336 DT0 = float128_to_float64(QT1, &env->fp_status);
337 }
338
339 void helper_fdtoq(void)
340 {
341 QT0 = float64_to_float128(DT1, &env->fp_status);
342 }
343
344 /* Float to integer conversion. */
345 int32_t helper_fstoi(float32 src)
346 {
347 return float32_to_int32_round_to_zero(src, &env->fp_status);
348 }
349
350 int32_t helper_fdtoi(void)
351 {
352 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
353 }
354
355 int32_t helper_fqtoi(void)
356 {
357 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
358 }
359
360 #ifdef TARGET_SPARC64
361 void helper_fstox(float32 src)
362 {
363 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
364 }
365
366 void helper_fdtox(void)
367 {
368 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
369 }
370
371 void helper_fqtox(void)
372 {
373 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
374 }
375
376 void helper_faligndata(void)
377 {
378 uint64_t tmp;
379
380 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
381 /* on many architectures a shift of 64 does nothing */
382 if ((env->gsr & 7) != 0) {
383 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
384 }
385 *((uint64_t *)&DT0) = tmp;
386 }
387
388 #ifdef HOST_WORDS_BIGENDIAN
389 #define VIS_B64(n) b[7 - (n)]
390 #define VIS_W64(n) w[3 - (n)]
391 #define VIS_SW64(n) sw[3 - (n)]
392 #define VIS_L64(n) l[1 - (n)]
393 #define VIS_B32(n) b[3 - (n)]
394 #define VIS_W32(n) w[1 - (n)]
395 #else
396 #define VIS_B64(n) b[n]
397 #define VIS_W64(n) w[n]
398 #define VIS_SW64(n) sw[n]
399 #define VIS_L64(n) l[n]
400 #define VIS_B32(n) b[n]
401 #define VIS_W32(n) w[n]
402 #endif
403
404 typedef union {
405 uint8_t b[8];
406 uint16_t w[4];
407 int16_t sw[4];
408 uint32_t l[2];
409 float64 d;
410 } vis64;
411
412 typedef union {
413 uint8_t b[4];
414 uint16_t w[2];
415 uint32_t l;
416 float32 f;
417 } vis32;
418
419 void helper_fpmerge(void)
420 {
421 vis64 s, d;
422
423 s.d = DT0;
424 d.d = DT1;
425
426 // Reverse calculation order to handle overlap
427 d.VIS_B64(7) = s.VIS_B64(3);
428 d.VIS_B64(6) = d.VIS_B64(3);
429 d.VIS_B64(5) = s.VIS_B64(2);
430 d.VIS_B64(4) = d.VIS_B64(2);
431 d.VIS_B64(3) = s.VIS_B64(1);
432 d.VIS_B64(2) = d.VIS_B64(1);
433 d.VIS_B64(1) = s.VIS_B64(0);
434 //d.VIS_B64(0) = d.VIS_B64(0);
435
436 DT0 = d.d;
437 }
438
439 void helper_fmul8x16(void)
440 {
441 vis64 s, d;
442 uint32_t tmp;
443
444 s.d = DT0;
445 d.d = DT1;
446
447 #define PMUL(r) \
448 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
449 if ((tmp & 0xff) > 0x7f) \
450 tmp += 0x100; \
451 d.VIS_W64(r) = tmp >> 8;
452
453 PMUL(0);
454 PMUL(1);
455 PMUL(2);
456 PMUL(3);
457 #undef PMUL
458
459 DT0 = d.d;
460 }
461
462 void helper_fmul8x16al(void)
463 {
464 vis64 s, d;
465 uint32_t tmp;
466
467 s.d = DT0;
468 d.d = DT1;
469
470 #define PMUL(r) \
471 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
472 if ((tmp & 0xff) > 0x7f) \
473 tmp += 0x100; \
474 d.VIS_W64(r) = tmp >> 8;
475
476 PMUL(0);
477 PMUL(1);
478 PMUL(2);
479 PMUL(3);
480 #undef PMUL
481
482 DT0 = d.d;
483 }
484
485 void helper_fmul8x16au(void)
486 {
487 vis64 s, d;
488 uint32_t tmp;
489
490 s.d = DT0;
491 d.d = DT1;
492
493 #define PMUL(r) \
494 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
495 if ((tmp & 0xff) > 0x7f) \
496 tmp += 0x100; \
497 d.VIS_W64(r) = tmp >> 8;
498
499 PMUL(0);
500 PMUL(1);
501 PMUL(2);
502 PMUL(3);
503 #undef PMUL
504
505 DT0 = d.d;
506 }
507
508 void helper_fmul8sux16(void)
509 {
510 vis64 s, d;
511 uint32_t tmp;
512
513 s.d = DT0;
514 d.d = DT1;
515
516 #define PMUL(r) \
517 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
518 if ((tmp & 0xff) > 0x7f) \
519 tmp += 0x100; \
520 d.VIS_W64(r) = tmp >> 8;
521
522 PMUL(0);
523 PMUL(1);
524 PMUL(2);
525 PMUL(3);
526 #undef PMUL
527
528 DT0 = d.d;
529 }
530
531 void helper_fmul8ulx16(void)
532 {
533 vis64 s, d;
534 uint32_t tmp;
535
536 s.d = DT0;
537 d.d = DT1;
538
539 #define PMUL(r) \
540 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
541 if ((tmp & 0xff) > 0x7f) \
542 tmp += 0x100; \
543 d.VIS_W64(r) = tmp >> 8;
544
545 PMUL(0);
546 PMUL(1);
547 PMUL(2);
548 PMUL(3);
549 #undef PMUL
550
551 DT0 = d.d;
552 }
553
554 void helper_fmuld8sux16(void)
555 {
556 vis64 s, d;
557 uint32_t tmp;
558
559 s.d = DT0;
560 d.d = DT1;
561
562 #define PMUL(r) \
563 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
564 if ((tmp & 0xff) > 0x7f) \
565 tmp += 0x100; \
566 d.VIS_L64(r) = tmp;
567
568 // Reverse calculation order to handle overlap
569 PMUL(1);
570 PMUL(0);
571 #undef PMUL
572
573 DT0 = d.d;
574 }
575
576 void helper_fmuld8ulx16(void)
577 {
578 vis64 s, d;
579 uint32_t tmp;
580
581 s.d = DT0;
582 d.d = DT1;
583
584 #define PMUL(r) \
585 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
586 if ((tmp & 0xff) > 0x7f) \
587 tmp += 0x100; \
588 d.VIS_L64(r) = tmp;
589
590 // Reverse calculation order to handle overlap
591 PMUL(1);
592 PMUL(0);
593 #undef PMUL
594
595 DT0 = d.d;
596 }
597
598 void helper_fexpand(void)
599 {
600 vis32 s;
601 vis64 d;
602
603 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
604 d.d = DT1;
605 d.VIS_W64(0) = s.VIS_B32(0) << 4;
606 d.VIS_W64(1) = s.VIS_B32(1) << 4;
607 d.VIS_W64(2) = s.VIS_B32(2) << 4;
608 d.VIS_W64(3) = s.VIS_B32(3) << 4;
609
610 DT0 = d.d;
611 }
612
613 #define VIS_HELPER(name, F) \
614 void name##16(void) \
615 { \
616 vis64 s, d; \
617 \
618 s.d = DT0; \
619 d.d = DT1; \
620 \
621 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
622 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
623 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
624 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
625 \
626 DT0 = d.d; \
627 } \
628 \
629 uint32_t name##16s(uint32_t src1, uint32_t src2) \
630 { \
631 vis32 s, d; \
632 \
633 s.l = src1; \
634 d.l = src2; \
635 \
636 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
637 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
638 \
639 return d.l; \
640 } \
641 \
642 void name##32(void) \
643 { \
644 vis64 s, d; \
645 \
646 s.d = DT0; \
647 d.d = DT1; \
648 \
649 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
650 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
651 \
652 DT0 = d.d; \
653 } \
654 \
655 uint32_t name##32s(uint32_t src1, uint32_t src2) \
656 { \
657 vis32 s, d; \
658 \
659 s.l = src1; \
660 d.l = src2; \
661 \
662 d.l = F(d.l, s.l); \
663 \
664 return d.l; \
665 }
666
667 #define FADD(a, b) ((a) + (b))
668 #define FSUB(a, b) ((a) - (b))
669 VIS_HELPER(helper_fpadd, FADD)
670 VIS_HELPER(helper_fpsub, FSUB)
671
672 #define VIS_CMPHELPER(name, F) \
673 void name##16(void) \
674 { \
675 vis64 s, d; \
676 \
677 s.d = DT0; \
678 d.d = DT1; \
679 \
680 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
681 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
682 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
683 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
684 \
685 DT0 = d.d; \
686 } \
687 \
688 void name##32(void) \
689 { \
690 vis64 s, d; \
691 \
692 s.d = DT0; \
693 d.d = DT1; \
694 \
695 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
696 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
697 \
698 DT0 = d.d; \
699 }
700
701 #define FCMPGT(a, b) ((a) > (b))
702 #define FCMPEQ(a, b) ((a) == (b))
703 #define FCMPLE(a, b) ((a) <= (b))
704 #define FCMPNE(a, b) ((a) != (b))
705
706 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
707 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
708 VIS_CMPHELPER(helper_fcmple, FCMPLE)
709 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
710 #endif
711
712 void helper_check_ieee_exceptions(void)
713 {
714 target_ulong status;
715
716 status = get_float_exception_flags(&env->fp_status);
717 if (status) {
718 /* Copy IEEE 754 flags into FSR */
719 if (status & float_flag_invalid)
720 env->fsr |= FSR_NVC;
721 if (status & float_flag_overflow)
722 env->fsr |= FSR_OFC;
723 if (status & float_flag_underflow)
724 env->fsr |= FSR_UFC;
725 if (status & float_flag_divbyzero)
726 env->fsr |= FSR_DZC;
727 if (status & float_flag_inexact)
728 env->fsr |= FSR_NXC;
729
730 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
731 /* Unmasked exception, generate a trap */
732 env->fsr |= FSR_FTT_IEEE_EXCP;
733 raise_exception(TT_FP_EXCP);
734 } else {
735 /* Accumulate exceptions */
736 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
737 }
738 }
739 }
740
741 void helper_clear_float_exceptions(void)
742 {
743 set_float_exception_flags(0, &env->fp_status);
744 }
745
746 float32 helper_fabss(float32 src)
747 {
748 return float32_abs(src);
749 }
750
751 #ifdef TARGET_SPARC64
752 void helper_fabsd(void)
753 {
754 DT0 = float64_abs(DT1);
755 }
756
757 void helper_fabsq(void)
758 {
759 QT0 = float128_abs(QT1);
760 }
761 #endif
762
763 float32 helper_fsqrts(float32 src)
764 {
765 return float32_sqrt(src, &env->fp_status);
766 }
767
768 void helper_fsqrtd(void)
769 {
770 DT0 = float64_sqrt(DT1, &env->fp_status);
771 }
772
773 void helper_fsqrtq(void)
774 {
775 QT0 = float128_sqrt(QT1, &env->fp_status);
776 }
777
778 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
779 void glue(helper_, name) (void) \
780 { \
781 target_ulong new_fsr; \
782 \
783 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
784 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
785 case float_relation_unordered: \
786 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
787 if ((env->fsr & FSR_NVM) || TRAP) { \
788 env->fsr |= new_fsr; \
789 env->fsr |= FSR_NVC; \
790 env->fsr |= FSR_FTT_IEEE_EXCP; \
791 raise_exception(TT_FP_EXCP); \
792 } else { \
793 env->fsr |= FSR_NVA; \
794 } \
795 break; \
796 case float_relation_less: \
797 new_fsr = FSR_FCC0 << FS; \
798 break; \
799 case float_relation_greater: \
800 new_fsr = FSR_FCC1 << FS; \
801 break; \
802 default: \
803 new_fsr = 0; \
804 break; \
805 } \
806 env->fsr |= new_fsr; \
807 }
808 #define GEN_FCMPS(name, size, FS, TRAP) \
809 void glue(helper_, name)(float32 src1, float32 src2) \
810 { \
811 target_ulong new_fsr; \
812 \
813 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
814 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
815 case float_relation_unordered: \
816 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
817 if ((env->fsr & FSR_NVM) || TRAP) { \
818 env->fsr |= new_fsr; \
819 env->fsr |= FSR_NVC; \
820 env->fsr |= FSR_FTT_IEEE_EXCP; \
821 raise_exception(TT_FP_EXCP); \
822 } else { \
823 env->fsr |= FSR_NVA; \
824 } \
825 break; \
826 case float_relation_less: \
827 new_fsr = FSR_FCC0 << FS; \
828 break; \
829 case float_relation_greater: \
830 new_fsr = FSR_FCC1 << FS; \
831 break; \
832 default: \
833 new_fsr = 0; \
834 break; \
835 } \
836 env->fsr |= new_fsr; \
837 }
838
839 GEN_FCMPS(fcmps, float32, 0, 0);
840 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
841
842 GEN_FCMPS(fcmpes, float32, 0, 1);
843 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
844
845 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
846 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
847
848 static uint32_t compute_all_flags(void)
849 {
850 return env->psr & PSR_ICC;
851 }
852
853 static uint32_t compute_C_flags(void)
854 {
855 return env->psr & PSR_CARRY;
856 }
857
858 static inline uint32_t get_NZ_icc(target_ulong dst)
859 {
860 uint32_t ret = 0;
861
862 if (!(dst & 0xffffffffULL))
863 ret |= PSR_ZERO;
864 if ((int32_t) (dst & 0xffffffffULL) < 0)
865 ret |= PSR_NEG;
866 return ret;
867 }
868
869 #ifdef TARGET_SPARC64
870 static uint32_t compute_all_flags_xcc(void)
871 {
872 return env->xcc & PSR_ICC;
873 }
874
875 static uint32_t compute_C_flags_xcc(void)
876 {
877 return env->xcc & PSR_CARRY;
878 }
879
880 static inline uint32_t get_NZ_xcc(target_ulong dst)
881 {
882 uint32_t ret = 0;
883
884 if (!dst)
885 ret |= PSR_ZERO;
886 if ((int64_t)dst < 0)
887 ret |= PSR_NEG;
888 return ret;
889 }
890 #endif
891
892 static inline uint32_t get_V_div_icc(target_ulong src2)
893 {
894 uint32_t ret = 0;
895
896 if (src2 != 0)
897 ret |= PSR_OVF;
898 return ret;
899 }
900
901 static uint32_t compute_all_div(void)
902 {
903 uint32_t ret;
904
905 ret = get_NZ_icc(CC_DST);
906 ret |= get_V_div_icc(CC_SRC2);
907 return ret;
908 }
909
910 static uint32_t compute_C_div(void)
911 {
912 return 0;
913 }
914
915 /* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
916 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
917 target_ulong src2)
918 {
919 uint32_t ret = 0;
920
921 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
922 | ((~(dst & (1ULL << 31)))
923 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
924 ret |= PSR_CARRY;
925 return ret;
926 }
927
928 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
929 target_ulong src2)
930 {
931 uint32_t ret = 0;
932
933 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
934 ret |= PSR_OVF;
935 return ret;
936 }
937
938 #ifdef TARGET_SPARC64
939 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
940 {
941 uint32_t ret = 0;
942
943 if (dst < src1)
944 ret |= PSR_CARRY;
945 return ret;
946 }
947
948 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
949 target_ulong src2)
950 {
951 uint32_t ret = 0;
952
953 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
954 ret |= PSR_OVF;
955 return ret;
956 }
957
958 static uint32_t compute_all_add_xcc(void)
959 {
960 uint32_t ret;
961
962 ret = get_NZ_xcc(CC_DST);
963 ret |= get_C_add_xcc(CC_DST, CC_SRC);
964 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
965 return ret;
966 }
967
968 static uint32_t compute_C_add_xcc(void)
969 {
970 return get_C_add_xcc(CC_DST, CC_SRC);
971 }
972 #endif
973
974 static uint32_t compute_all_add(void)
975 {
976 uint32_t ret;
977
978 ret = get_NZ_icc(CC_DST);
979 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
980 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
981 return ret;
982 }
983
984 static uint32_t compute_C_add(void)
985 {
986 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
987 }
988
989 #ifdef TARGET_SPARC64
990 static uint32_t compute_all_addx_xcc(void)
991 {
992 uint32_t ret;
993
994 ret = get_NZ_xcc(CC_DST);
995 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
996 ret |= get_C_add_xcc(CC_DST, CC_SRC);
997 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
998 return ret;
999 }
1000
1001 static uint32_t compute_C_addx_xcc(void)
1002 {
1003 uint32_t ret;
1004
1005 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1006 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1007 return ret;
1008 }
1009 #endif
1010
1011 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1012 {
1013 uint32_t ret = 0;
1014
1015 if ((src1 | src2) & 0x3)
1016 ret |= PSR_OVF;
1017 return ret;
1018 }
1019
1020 static uint32_t compute_all_tadd(void)
1021 {
1022 uint32_t ret;
1023
1024 ret = get_NZ_icc(CC_DST);
1025 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1026 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1027 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1028 return ret;
1029 }
1030
1031 static uint32_t compute_C_tadd(void)
1032 {
1033 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1034 }
1035
1036 static uint32_t compute_all_taddtv(void)
1037 {
1038 uint32_t ret;
1039
1040 ret = get_NZ_icc(CC_DST);
1041 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1042 return ret;
1043 }
1044
1045 static uint32_t compute_C_taddtv(void)
1046 {
1047 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1048 }
1049
1050 /* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1051 static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1052 target_ulong src2)
1053 {
1054 uint32_t ret = 0;
1055
1056 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1057 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1058 | (src2 & (1ULL << 31)))))
1059 ret |= PSR_CARRY;
1060 return ret;
1061 }
1062
1063 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1064 target_ulong src2)
1065 {
1066 uint32_t ret = 0;
1067
1068 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1069 ret |= PSR_OVF;
1070 return ret;
1071 }
1072
1073
1074 #ifdef TARGET_SPARC64
1075 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1076 {
1077 uint32_t ret = 0;
1078
1079 if (src1 < src2)
1080 ret |= PSR_CARRY;
1081 return ret;
1082 }
1083
1084 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1085 target_ulong src2)
1086 {
1087 uint32_t ret = 0;
1088
1089 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1090 ret |= PSR_OVF;
1091 return ret;
1092 }
1093
1094 static uint32_t compute_all_sub_xcc(void)
1095 {
1096 uint32_t ret;
1097
1098 ret = get_NZ_xcc(CC_DST);
1099 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1100 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1101 return ret;
1102 }
1103
1104 static uint32_t compute_C_sub_xcc(void)
1105 {
1106 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1107 }
1108 #endif
1109
1110 static uint32_t compute_all_sub(void)
1111 {
1112 uint32_t ret;
1113
1114 ret = get_NZ_icc(CC_DST);
1115 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1116 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1117 return ret;
1118 }
1119
1120 static uint32_t compute_C_sub(void)
1121 {
1122 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1123 }
1124
1125 #ifdef TARGET_SPARC64
1126 static uint32_t compute_all_subx_xcc(void)
1127 {
1128 uint32_t ret;
1129
1130 ret = get_NZ_xcc(CC_DST);
1131 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1132 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1133 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1134 return ret;
1135 }
1136
1137 static uint32_t compute_C_subx_xcc(void)
1138 {
1139 uint32_t ret;
1140
1141 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1142 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1143 return ret;
1144 }
1145 #endif
1146
1147 static uint32_t compute_all_tsub(void)
1148 {
1149 uint32_t ret;
1150
1151 ret = get_NZ_icc(CC_DST);
1152 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1153 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1154 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1155 return ret;
1156 }
1157
1158 static uint32_t compute_C_tsub(void)
1159 {
1160 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1161 }
1162
1163 static uint32_t compute_all_tsubtv(void)
1164 {
1165 uint32_t ret;
1166
1167 ret = get_NZ_icc(CC_DST);
1168 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1169 return ret;
1170 }
1171
1172 static uint32_t compute_C_tsubtv(void)
1173 {
1174 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1175 }
1176
1177 static uint32_t compute_all_logic(void)
1178 {
1179 return get_NZ_icc(CC_DST);
1180 }
1181
1182 static uint32_t compute_C_logic(void)
1183 {
1184 return 0;
1185 }
1186
1187 #ifdef TARGET_SPARC64
1188 static uint32_t compute_all_logic_xcc(void)
1189 {
1190 return get_NZ_xcc(CC_DST);
1191 }
1192 #endif
1193
1194 typedef struct CCTable {
1195 uint32_t (*compute_all)(void); /* return all the flags */
1196 uint32_t (*compute_c)(void); /* return the C flag */
1197 } CCTable;
1198
1199 static const CCTable icc_table[CC_OP_NB] = {
1200 /* CC_OP_DYNAMIC should never happen */
1201 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1202 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1203 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1204 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
1205 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1206 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1207 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1208 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
1209 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1210 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1211 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1212 };
1213
1214 #ifdef TARGET_SPARC64
1215 static const CCTable xcc_table[CC_OP_NB] = {
1216 /* CC_OP_DYNAMIC should never happen */
1217 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1218 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1219 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1220 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1221 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1222 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1223 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1224 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1225 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1226 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1227 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1228 };
1229 #endif
1230
1231 void helper_compute_psr(void)
1232 {
1233 uint32_t new_psr;
1234
1235 new_psr = icc_table[CC_OP].compute_all();
1236 env->psr = new_psr;
1237 #ifdef TARGET_SPARC64
1238 new_psr = xcc_table[CC_OP].compute_all();
1239 env->xcc = new_psr;
1240 #endif
1241 CC_OP = CC_OP_FLAGS;
1242 }
1243
1244 uint32_t helper_compute_C_icc(void)
1245 {
1246 uint32_t ret;
1247
1248 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1249 return ret;
1250 }
1251
1252 #ifdef TARGET_SPARC64
1253 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1254 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1255 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1256
1257 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1258 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1259 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1260
1261 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1262 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1263 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1264
1265 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1266 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1267 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1268
1269 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1270 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1271 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1272
1273 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1274 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1275 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1276 #endif
1277 #undef GEN_FCMPS
1278
1279 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1280 defined(DEBUG_MXCC)
1281 static void dump_mxcc(CPUState *env)
1282 {
1283 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1284 "\n",
1285 env->mxccdata[0], env->mxccdata[1],
1286 env->mxccdata[2], env->mxccdata[3]);
1287 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1288 "\n"
1289 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1290 "\n",
1291 env->mxccregs[0], env->mxccregs[1],
1292 env->mxccregs[2], env->mxccregs[3],
1293 env->mxccregs[4], env->mxccregs[5],
1294 env->mxccregs[6], env->mxccregs[7]);
1295 }
1296 #endif
1297
1298 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1299 && defined(DEBUG_ASI)
1300 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1301 uint64_t r1)
1302 {
1303 switch (size)
1304 {
1305 case 1:
1306 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1307 addr, asi, r1 & 0xff);
1308 break;
1309 case 2:
1310 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1311 addr, asi, r1 & 0xffff);
1312 break;
1313 case 4:
1314 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1315 addr, asi, r1 & 0xffffffff);
1316 break;
1317 case 8:
1318 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1319 addr, asi, r1);
1320 break;
1321 }
1322 }
1323 #endif
1324
1325 #ifndef TARGET_SPARC64
1326 #ifndef CONFIG_USER_ONLY
1327 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1328 {
1329 uint64_t ret = 0;
1330 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1331 uint32_t last_addr = addr;
1332 #endif
1333
1334 helper_check_align(addr, size - 1);
1335 switch (asi) {
1336 case 2: /* SuperSparc MXCC registers */
1337 switch (addr) {
1338 case 0x01c00a00: /* MXCC control register */
1339 if (size == 8)
1340 ret = env->mxccregs[3];
1341 else
1342 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1343 size);
1344 break;
1345 case 0x01c00a04: /* MXCC control register */
1346 if (size == 4)
1347 ret = env->mxccregs[3];
1348 else
1349 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1350 size);
1351 break;
1352 case 0x01c00c00: /* Module reset register */
1353 if (size == 8) {
1354 ret = env->mxccregs[5];
1355 // should we do something here?
1356 } else
1357 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1358 size);
1359 break;
1360 case 0x01c00f00: /* MBus port address register */
1361 if (size == 8)
1362 ret = env->mxccregs[7];
1363 else
1364 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1365 size);
1366 break;
1367 default:
1368 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1369 size);
1370 break;
1371 }
1372 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1373 "addr = %08x -> ret = %" PRIx64 ","
1374 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1375 #ifdef DEBUG_MXCC
1376 dump_mxcc(env);
1377 #endif
1378 break;
1379 case 3: /* MMU probe */
1380 {
1381 int mmulev;
1382
1383 mmulev = (addr >> 8) & 15;
1384 if (mmulev > 4)
1385 ret = 0;
1386 else
1387 ret = mmu_probe(env, addr, mmulev);
1388 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1389 addr, mmulev, ret);
1390 }
1391 break;
1392 case 4: /* read MMU regs */
1393 {
1394 int reg = (addr >> 8) & 0x1f;
1395
1396 ret = env->mmuregs[reg];
1397 if (reg == 3) /* Fault status cleared on read */
1398 env->mmuregs[3] = 0;
1399 else if (reg == 0x13) /* Fault status read */
1400 ret = env->mmuregs[3];
1401 else if (reg == 0x14) /* Fault address read */
1402 ret = env->mmuregs[4];
1403 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1404 }
1405 break;
1406 case 5: // Turbosparc ITLB Diagnostic
1407 case 6: // Turbosparc DTLB Diagnostic
1408 case 7: // Turbosparc IOTLB Diagnostic
1409 break;
1410 case 9: /* Supervisor code access */
1411 switch(size) {
1412 case 1:
1413 ret = ldub_code(addr);
1414 break;
1415 case 2:
1416 ret = lduw_code(addr);
1417 break;
1418 default:
1419 case 4:
1420 ret = ldl_code(addr);
1421 break;
1422 case 8:
1423 ret = ldq_code(addr);
1424 break;
1425 }
1426 break;
1427 case 0xa: /* User data access */
1428 switch(size) {
1429 case 1:
1430 ret = ldub_user(addr);
1431 break;
1432 case 2:
1433 ret = lduw_user(addr);
1434 break;
1435 default:
1436 case 4:
1437 ret = ldl_user(addr);
1438 break;
1439 case 8:
1440 ret = ldq_user(addr);
1441 break;
1442 }
1443 break;
1444 case 0xb: /* Supervisor data access */
1445 switch(size) {
1446 case 1:
1447 ret = ldub_kernel(addr);
1448 break;
1449 case 2:
1450 ret = lduw_kernel(addr);
1451 break;
1452 default:
1453 case 4:
1454 ret = ldl_kernel(addr);
1455 break;
1456 case 8:
1457 ret = ldq_kernel(addr);
1458 break;
1459 }
1460 break;
1461 case 0xc: /* I-cache tag */
1462 case 0xd: /* I-cache data */
1463 case 0xe: /* D-cache tag */
1464 case 0xf: /* D-cache data */
1465 break;
1466 case 0x20: /* MMU passthrough */
1467 switch(size) {
1468 case 1:
1469 ret = ldub_phys(addr);
1470 break;
1471 case 2:
1472 ret = lduw_phys(addr);
1473 break;
1474 default:
1475 case 4:
1476 ret = ldl_phys(addr);
1477 break;
1478 case 8:
1479 ret = ldq_phys(addr);
1480 break;
1481 }
1482 break;
1483 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1484 switch(size) {
1485 case 1:
1486 ret = ldub_phys((target_phys_addr_t)addr
1487 | ((target_phys_addr_t)(asi & 0xf) << 32));
1488 break;
1489 case 2:
1490 ret = lduw_phys((target_phys_addr_t)addr
1491 | ((target_phys_addr_t)(asi & 0xf) << 32));
1492 break;
1493 default:
1494 case 4:
1495 ret = ldl_phys((target_phys_addr_t)addr
1496 | ((target_phys_addr_t)(asi & 0xf) << 32));
1497 break;
1498 case 8:
1499 ret = ldq_phys((target_phys_addr_t)addr
1500 | ((target_phys_addr_t)(asi & 0xf) << 32));
1501 break;
1502 }
1503 break;
1504 case 0x30: // Turbosparc secondary cache diagnostic
1505 case 0x31: // Turbosparc RAM snoop
1506 case 0x32: // Turbosparc page table descriptor diagnostic
1507 case 0x39: /* data cache diagnostic register */
1508 ret = 0;
1509 break;
1510 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1511 {
1512 int reg = (addr >> 8) & 3;
1513
1514 switch(reg) {
1515 case 0: /* Breakpoint Value (Addr) */
1516 ret = env->mmubpregs[reg];
1517 break;
1518 case 1: /* Breakpoint Mask */
1519 ret = env->mmubpregs[reg];
1520 break;
1521 case 2: /* Breakpoint Control */
1522 ret = env->mmubpregs[reg];
1523 break;
1524 case 3: /* Breakpoint Status */
1525 ret = env->mmubpregs[reg];
1526 env->mmubpregs[reg] = 0ULL;
1527 break;
1528 }
1529 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1530 ret);
1531 }
1532 break;
1533 case 8: /* User code access, XXX */
1534 default:
1535 do_unassigned_access(addr, 0, 0, asi, size);
1536 ret = 0;
1537 break;
1538 }
1539 if (sign) {
1540 switch(size) {
1541 case 1:
1542 ret = (int8_t) ret;
1543 break;
1544 case 2:
1545 ret = (int16_t) ret;
1546 break;
1547 case 4:
1548 ret = (int32_t) ret;
1549 break;
1550 default:
1551 break;
1552 }
1553 }
1554 #ifdef DEBUG_ASI
1555 dump_asi("read ", last_addr, asi, size, ret);
1556 #endif
1557 return ret;
1558 }
1559
1560 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1561 {
1562 helper_check_align(addr, size - 1);
1563 switch(asi) {
1564 case 2: /* SuperSparc MXCC registers */
1565 switch (addr) {
1566 case 0x01c00000: /* MXCC stream data register 0 */
1567 if (size == 8)
1568 env->mxccdata[0] = val;
1569 else
1570 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1571 size);
1572 break;
1573 case 0x01c00008: /* MXCC stream data register 1 */
1574 if (size == 8)
1575 env->mxccdata[1] = val;
1576 else
1577 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1578 size);
1579 break;
1580 case 0x01c00010: /* MXCC stream data register 2 */
1581 if (size == 8)
1582 env->mxccdata[2] = val;
1583 else
1584 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1585 size);
1586 break;
1587 case 0x01c00018: /* MXCC stream data register 3 */
1588 if (size == 8)
1589 env->mxccdata[3] = val;
1590 else
1591 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1592 size);
1593 break;
1594 case 0x01c00100: /* MXCC stream source */
1595 if (size == 8)
1596 env->mxccregs[0] = val;
1597 else
1598 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1599 size);
1600 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1601 0);
1602 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1603 8);
1604 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1605 16);
1606 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1607 24);
1608 break;
1609 case 0x01c00200: /* MXCC stream destination */
1610 if (size == 8)
1611 env->mxccregs[1] = val;
1612 else
1613 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1614 size);
1615 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1616 env->mxccdata[0]);
1617 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1618 env->mxccdata[1]);
1619 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1620 env->mxccdata[2]);
1621 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1622 env->mxccdata[3]);
1623 break;
1624 case 0x01c00a00: /* MXCC control register */
1625 if (size == 8)
1626 env->mxccregs[3] = val;
1627 else
1628 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1629 size);
1630 break;
1631 case 0x01c00a04: /* MXCC control register */
1632 if (size == 4)
1633 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1634 | val;
1635 else
1636 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1637 size);
1638 break;
1639 case 0x01c00e00: /* MXCC error register */
1640 // writing a 1 bit clears the error
1641 if (size == 8)
1642 env->mxccregs[6] &= ~val;
1643 else
1644 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1645 size);
1646 break;
1647 case 0x01c00f00: /* MBus port address register */
1648 if (size == 8)
1649 env->mxccregs[7] = val;
1650 else
1651 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1652 size);
1653 break;
1654 default:
1655 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1656 size);
1657 break;
1658 }
1659 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1660 asi, size, addr, val);
1661 #ifdef DEBUG_MXCC
1662 dump_mxcc(env);
1663 #endif
1664 break;
1665 case 3: /* MMU flush */
1666 {
1667 int mmulev;
1668
1669 mmulev = (addr >> 8) & 15;
1670 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1671 switch (mmulev) {
1672 case 0: // flush page
1673 tlb_flush_page(env, addr & 0xfffff000);
1674 break;
1675 case 1: // flush segment (256k)
1676 case 2: // flush region (16M)
1677 case 3: // flush context (4G)
1678 case 4: // flush entire
1679 tlb_flush(env, 1);
1680 break;
1681 default:
1682 break;
1683 }
1684 #ifdef DEBUG_MMU
1685 dump_mmu(env);
1686 #endif
1687 }
1688 break;
1689 case 4: /* write MMU regs */
1690 {
1691 int reg = (addr >> 8) & 0x1f;
1692 uint32_t oldreg;
1693
1694 oldreg = env->mmuregs[reg];
1695 switch(reg) {
1696 case 0: // Control Register
1697 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1698 (val & 0x00ffffff);
1699 // Mappings generated during no-fault mode or MMU
1700 // disabled mode are invalid in normal mode
1701 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1702 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1703 tlb_flush(env, 1);
1704 break;
1705 case 1: // Context Table Pointer Register
1706 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1707 break;
1708 case 2: // Context Register
1709 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1710 if (oldreg != env->mmuregs[reg]) {
1711 /* we flush when the MMU context changes because
1712 QEMU has no MMU context support */
1713 tlb_flush(env, 1);
1714 }
1715 break;
1716 case 3: // Synchronous Fault Status Register with Clear
1717 case 4: // Synchronous Fault Address Register
1718 break;
1719 case 0x10: // TLB Replacement Control Register
1720 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1721 break;
1722 case 0x13: // Synchronous Fault Status Register with Read and Clear
1723 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1724 break;
1725 case 0x14: // Synchronous Fault Address Register
1726 env->mmuregs[4] = val;
1727 break;
1728 default:
1729 env->mmuregs[reg] = val;
1730 break;
1731 }
1732 if (oldreg != env->mmuregs[reg]) {
1733 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1734 reg, oldreg, env->mmuregs[reg]);
1735 }
1736 #ifdef DEBUG_MMU
1737 dump_mmu(env);
1738 #endif
1739 }
1740 break;
1741 case 5: // Turbosparc ITLB Diagnostic
1742 case 6: // Turbosparc DTLB Diagnostic
1743 case 7: // Turbosparc IOTLB Diagnostic
1744 break;
1745 case 0xa: /* User data access */
1746 switch(size) {
1747 case 1:
1748 stb_user(addr, val);
1749 break;
1750 case 2:
1751 stw_user(addr, val);
1752 break;
1753 default:
1754 case 4:
1755 stl_user(addr, val);
1756 break;
1757 case 8:
1758 stq_user(addr, val);
1759 break;
1760 }
1761 break;
1762 case 0xb: /* Supervisor data access */
1763 switch(size) {
1764 case 1:
1765 stb_kernel(addr, val);
1766 break;
1767 case 2:
1768 stw_kernel(addr, val);
1769 break;
1770 default:
1771 case 4:
1772 stl_kernel(addr, val);
1773 break;
1774 case 8:
1775 stq_kernel(addr, val);
1776 break;
1777 }
1778 break;
1779 case 0xc: /* I-cache tag */
1780 case 0xd: /* I-cache data */
1781 case 0xe: /* D-cache tag */
1782 case 0xf: /* D-cache data */
1783 case 0x10: /* I/D-cache flush page */
1784 case 0x11: /* I/D-cache flush segment */
1785 case 0x12: /* I/D-cache flush region */
1786 case 0x13: /* I/D-cache flush context */
1787 case 0x14: /* I/D-cache flush user */
1788 break;
1789 case 0x17: /* Block copy, sta access */
1790 {
1791 // val = src
1792 // addr = dst
1793 // copy 32 bytes
1794 unsigned int i;
1795 uint32_t src = val & ~3, dst = addr & ~3, temp;
1796
1797 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1798 temp = ldl_kernel(src);
1799 stl_kernel(dst, temp);
1800 }
1801 }
1802 break;
1803 case 0x1f: /* Block fill, stda access */
1804 {
1805 // addr = dst
1806 // fill 32 bytes with val
1807 unsigned int i;
1808 uint32_t dst = addr & 7;
1809
1810 for (i = 0; i < 32; i += 8, dst += 8)
1811 stq_kernel(dst, val);
1812 }
1813 break;
1814 case 0x20: /* MMU passthrough */
1815 {
1816 switch(size) {
1817 case 1:
1818 stb_phys(addr, val);
1819 break;
1820 case 2:
1821 stw_phys(addr, val);
1822 break;
1823 case 4:
1824 default:
1825 stl_phys(addr, val);
1826 break;
1827 case 8:
1828 stq_phys(addr, val);
1829 break;
1830 }
1831 }
1832 break;
1833 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1834 {
1835 switch(size) {
1836 case 1:
1837 stb_phys((target_phys_addr_t)addr
1838 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1839 break;
1840 case 2:
1841 stw_phys((target_phys_addr_t)addr
1842 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1843 break;
1844 case 4:
1845 default:
1846 stl_phys((target_phys_addr_t)addr
1847 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1848 break;
1849 case 8:
1850 stq_phys((target_phys_addr_t)addr
1851 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1852 break;
1853 }
1854 }
1855 break;
1856 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1857 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1858 // Turbosparc snoop RAM
1859 case 0x32: // store buffer control or Turbosparc page table
1860 // descriptor diagnostic
1861 case 0x36: /* I-cache flash clear */
1862 case 0x37: /* D-cache flash clear */
1863 case 0x4c: /* breakpoint action */
1864 break;
1865 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1866 {
1867 int reg = (addr >> 8) & 3;
1868
1869 switch(reg) {
1870 case 0: /* Breakpoint Value (Addr) */
1871 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1872 break;
1873 case 1: /* Breakpoint Mask */
1874 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1875 break;
1876 case 2: /* Breakpoint Control */
1877 env->mmubpregs[reg] = (val & 0x7fULL);
1878 break;
1879 case 3: /* Breakpoint Status */
1880 env->mmubpregs[reg] = (val & 0xfULL);
1881 break;
1882 }
1883 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1884 env->mmuregs[reg]);
1885 }
1886 break;
1887 case 8: /* User code access, XXX */
1888 case 9: /* Supervisor code access, XXX */
1889 default:
1890 do_unassigned_access(addr, 1, 0, asi, size);
1891 break;
1892 }
1893 #ifdef DEBUG_ASI
1894 dump_asi("write", addr, asi, size, val);
1895 #endif
1896 }
1897
1898 #endif /* CONFIG_USER_ONLY */
1899 #else /* TARGET_SPARC64 */
1900
1901 #ifdef CONFIG_USER_ONLY
1902 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1903 {
1904 uint64_t ret = 0;
1905 #if defined(DEBUG_ASI)
1906 target_ulong last_addr = addr;
1907 #endif
1908
1909 if (asi < 0x80)
1910 raise_exception(TT_PRIV_ACT);
1911
1912 helper_check_align(addr, size - 1);
1913 address_mask(env, &addr);
1914
1915 switch (asi) {
1916 case 0x82: // Primary no-fault
1917 case 0x8a: // Primary no-fault LE
1918 if (page_check_range(addr, size, PAGE_READ) == -1) {
1919 #ifdef DEBUG_ASI
1920 dump_asi("read ", last_addr, asi, size, ret);
1921 #endif
1922 return 0;
1923 }
1924 // Fall through
1925 case 0x80: // Primary
1926 case 0x88: // Primary LE
1927 {
1928 switch(size) {
1929 case 1:
1930 ret = ldub_raw(addr);
1931 break;
1932 case 2:
1933 ret = lduw_raw(addr);
1934 break;
1935 case 4:
1936 ret = ldl_raw(addr);
1937 break;
1938 default:
1939 case 8:
1940 ret = ldq_raw(addr);
1941 break;
1942 }
1943 }
1944 break;
1945 case 0x83: // Secondary no-fault
1946 case 0x8b: // Secondary no-fault LE
1947 if (page_check_range(addr, size, PAGE_READ) == -1) {
1948 #ifdef DEBUG_ASI
1949 dump_asi("read ", last_addr, asi, size, ret);
1950 #endif
1951 return 0;
1952 }
1953 // Fall through
1954 case 0x81: // Secondary
1955 case 0x89: // Secondary LE
1956 // XXX
1957 break;
1958 default:
1959 break;
1960 }
1961
1962 /* Convert from little endian */
1963 switch (asi) {
1964 case 0x88: // Primary LE
1965 case 0x89: // Secondary LE
1966 case 0x8a: // Primary no-fault LE
1967 case 0x8b: // Secondary no-fault LE
1968 switch(size) {
1969 case 2:
1970 ret = bswap16(ret);
1971 break;
1972 case 4:
1973 ret = bswap32(ret);
1974 break;
1975 case 8:
1976 ret = bswap64(ret);
1977 break;
1978 default:
1979 break;
1980 }
1981 default:
1982 break;
1983 }
1984
1985 /* Convert to signed number */
1986 if (sign) {
1987 switch(size) {
1988 case 1:
1989 ret = (int8_t) ret;
1990 break;
1991 case 2:
1992 ret = (int16_t) ret;
1993 break;
1994 case 4:
1995 ret = (int32_t) ret;
1996 break;
1997 default:
1998 break;
1999 }
2000 }
2001 #ifdef DEBUG_ASI
2002 dump_asi("read ", last_addr, asi, size, ret);
2003 #endif
2004 return ret;
2005 }
2006
2007 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2008 {
2009 #ifdef DEBUG_ASI
2010 dump_asi("write", addr, asi, size, val);
2011 #endif
2012 if (asi < 0x80)
2013 raise_exception(TT_PRIV_ACT);
2014
2015 helper_check_align(addr, size - 1);
2016 address_mask(env, &addr);
2017
2018 /* Convert to little endian */
2019 switch (asi) {
2020 case 0x88: // Primary LE
2021 case 0x89: // Secondary LE
2022 switch(size) {
2023 case 2:
2024 val = bswap16(val);
2025 break;
2026 case 4:
2027 val = bswap32(val);
2028 break;
2029 case 8:
2030 val = bswap64(val);
2031 break;
2032 default:
2033 break;
2034 }
2035 default:
2036 break;
2037 }
2038
2039 switch(asi) {
2040 case 0x80: // Primary
2041 case 0x88: // Primary LE
2042 {
2043 switch(size) {
2044 case 1:
2045 stb_raw(addr, val);
2046 break;
2047 case 2:
2048 stw_raw(addr, val);
2049 break;
2050 case 4:
2051 stl_raw(addr, val);
2052 break;
2053 case 8:
2054 default:
2055 stq_raw(addr, val);
2056 break;
2057 }
2058 }
2059 break;
2060 case 0x81: // Secondary
2061 case 0x89: // Secondary LE
2062 // XXX
2063 return;
2064
2065 case 0x82: // Primary no-fault, RO
2066 case 0x83: // Secondary no-fault, RO
2067 case 0x8a: // Primary no-fault LE, RO
2068 case 0x8b: // Secondary no-fault LE, RO
2069 default:
2070 do_unassigned_access(addr, 1, 0, 1, size);
2071 return;
2072 }
2073 }
2074
2075 #else /* CONFIG_USER_ONLY */
2076
2077 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2078 {
2079 uint64_t ret = 0;
2080 #if defined(DEBUG_ASI)
2081 target_ulong last_addr = addr;
2082 #endif
2083
2084 asi &= 0xff;
2085
2086 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2087 || ((env->def->features & CPU_FEATURE_HYPV)
2088 && asi >= 0x30 && asi < 0x80
2089 && !(env->hpstate & HS_PRIV)))
2090 raise_exception(TT_PRIV_ACT);
2091
2092 helper_check_align(addr, size - 1);
2093 switch (asi) {
2094 case 0x82: // Primary no-fault
2095 case 0x8a: // Primary no-fault LE
2096 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2097 #ifdef DEBUG_ASI
2098 dump_asi("read ", last_addr, asi, size, ret);
2099 #endif
2100 return 0;
2101 }
2102 // Fall through
2103 case 0x10: // As if user primary
2104 case 0x18: // As if user primary LE
2105 case 0x80: // Primary
2106 case 0x88: // Primary LE
2107 case 0xe2: // UA2007 Primary block init
2108 case 0xe3: // UA2007 Secondary block init
2109 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2110 if ((env->def->features & CPU_FEATURE_HYPV)
2111 && env->hpstate & HS_PRIV) {
2112 switch(size) {
2113 case 1:
2114 ret = ldub_hypv(addr);
2115 break;
2116 case 2:
2117 ret = lduw_hypv(addr);
2118 break;
2119 case 4:
2120 ret = ldl_hypv(addr);
2121 break;
2122 default:
2123 case 8:
2124 ret = ldq_hypv(addr);
2125 break;
2126 }
2127 } else {
2128 switch(size) {
2129 case 1:
2130 ret = ldub_kernel(addr);
2131 break;
2132 case 2:
2133 ret = lduw_kernel(addr);
2134 break;
2135 case 4:
2136 ret = ldl_kernel(addr);
2137 break;
2138 default:
2139 case 8:
2140 ret = ldq_kernel(addr);
2141 break;
2142 }
2143 }
2144 } else {
2145 switch(size) {
2146 case 1:
2147 ret = ldub_user(addr);
2148 break;
2149 case 2:
2150 ret = lduw_user(addr);
2151 break;
2152 case 4:
2153 ret = ldl_user(addr);
2154 break;
2155 default:
2156 case 8:
2157 ret = ldq_user(addr);
2158 break;
2159 }
2160 }
2161 break;
2162 case 0x14: // Bypass
2163 case 0x15: // Bypass, non-cacheable
2164 case 0x1c: // Bypass LE
2165 case 0x1d: // Bypass, non-cacheable LE
2166 {
2167 switch(size) {
2168 case 1:
2169 ret = ldub_phys(addr);
2170 break;
2171 case 2:
2172 ret = lduw_phys(addr);
2173 break;
2174 case 4:
2175 ret = ldl_phys(addr);
2176 break;
2177 default:
2178 case 8:
2179 ret = ldq_phys(addr);
2180 break;
2181 }
2182 break;
2183 }
2184 case 0x24: // Nucleus quad LDD 128 bit atomic
2185 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2186 // Only ldda allowed
2187 raise_exception(TT_ILL_INSN);
2188 return 0;
2189 case 0x83: // Secondary no-fault
2190 case 0x8b: // Secondary no-fault LE
2191 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2192 #ifdef DEBUG_ASI
2193 dump_asi("read ", last_addr, asi, size, ret);
2194 #endif
2195 return 0;
2196 }
2197 // Fall through
2198 case 0x04: // Nucleus
2199 case 0x0c: // Nucleus Little Endian (LE)
2200 case 0x11: // As if user secondary
2201 case 0x19: // As if user secondary LE
2202 case 0x4a: // UPA config
2203 case 0x81: // Secondary
2204 case 0x89: // Secondary LE
2205 // XXX
2206 break;
2207 case 0x45: // LSU
2208 ret = env->lsu;
2209 break;
2210 case 0x50: // I-MMU regs
2211 {
2212 int reg = (addr >> 3) & 0xf;
2213
2214 if (reg == 0) {
2215 // I-TSB Tag Target register
2216 ret = ultrasparc_tag_target(env->immu.tag_access);
2217 } else {
2218 ret = env->immuregs[reg];
2219 }
2220
2221 break;
2222 }
2223 case 0x51: // I-MMU 8k TSB pointer
2224 {
2225 // env->immuregs[5] holds I-MMU TSB register value
2226 // env->immuregs[6] holds I-MMU Tag Access register value
2227 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2228 8*1024);
2229 break;
2230 }
2231 case 0x52: // I-MMU 64k TSB pointer
2232 {
2233 // env->immuregs[5] holds I-MMU TSB register value
2234 // env->immuregs[6] holds I-MMU Tag Access register value
2235 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2236 64*1024);
2237 break;
2238 }
2239 case 0x55: // I-MMU data access
2240 {
2241 int reg = (addr >> 3) & 0x3f;
2242
2243 ret = env->itlb[reg].tte;
2244 break;
2245 }
2246 case 0x56: // I-MMU tag read
2247 {
2248 int reg = (addr >> 3) & 0x3f;
2249
2250 ret = env->itlb[reg].tag;
2251 break;
2252 }
2253 case 0x58: // D-MMU regs
2254 {
2255 int reg = (addr >> 3) & 0xf;
2256
2257 if (reg == 0) {
2258 // D-TSB Tag Target register
2259 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2260 } else {
2261 ret = env->dmmuregs[reg];
2262 }
2263 break;
2264 }
2265 case 0x59: // D-MMU 8k TSB pointer
2266 {
2267 // env->dmmuregs[5] holds D-MMU TSB register value
2268 // env->dmmuregs[6] holds D-MMU Tag Access register value
2269 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2270 8*1024);
2271 break;
2272 }
2273 case 0x5a: // D-MMU 64k TSB pointer
2274 {
2275 // env->dmmuregs[5] holds D-MMU TSB register value
2276 // env->dmmuregs[6] holds D-MMU Tag Access register value
2277 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2278 64*1024);
2279 break;
2280 }
2281 case 0x5d: // D-MMU data access
2282 {
2283 int reg = (addr >> 3) & 0x3f;
2284
2285 ret = env->dtlb[reg].tte;
2286 break;
2287 }
2288 case 0x5e: // D-MMU tag read
2289 {
2290 int reg = (addr >> 3) & 0x3f;
2291
2292 ret = env->dtlb[reg].tag;
2293 break;
2294 }
2295 case 0x46: // D-cache data
2296 case 0x47: // D-cache tag access
2297 case 0x4b: // E-cache error enable
2298 case 0x4c: // E-cache asynchronous fault status
2299 case 0x4d: // E-cache asynchronous fault address
2300 case 0x4e: // E-cache tag data
2301 case 0x66: // I-cache instruction access
2302 case 0x67: // I-cache tag access
2303 case 0x6e: // I-cache predecode
2304 case 0x6f: // I-cache LRU etc.
2305 case 0x76: // E-cache tag
2306 case 0x7e: // E-cache tag
2307 break;
2308 case 0x5b: // D-MMU data pointer
2309 case 0x48: // Interrupt dispatch, RO
2310 case 0x49: // Interrupt data receive
2311 case 0x7f: // Incoming interrupt vector, RO
2312 // XXX
2313 break;
2314 case 0x54: // I-MMU data in, WO
2315 case 0x57: // I-MMU demap, WO
2316 case 0x5c: // D-MMU data in, WO
2317 case 0x5f: // D-MMU demap, WO
2318 case 0x77: // Interrupt vector, WO
2319 default:
2320 do_unassigned_access(addr, 0, 0, 1, size);
2321 ret = 0;
2322 break;
2323 }
2324
2325 /* Convert from little endian */
2326 switch (asi) {
2327 case 0x0c: // Nucleus Little Endian (LE)
2328 case 0x18: // As if user primary LE
2329 case 0x19: // As if user secondary LE
2330 case 0x1c: // Bypass LE
2331 case 0x1d: // Bypass, non-cacheable LE
2332 case 0x88: // Primary LE
2333 case 0x89: // Secondary LE
2334 case 0x8a: // Primary no-fault LE
2335 case 0x8b: // Secondary no-fault LE
2336 switch(size) {
2337 case 2:
2338 ret = bswap16(ret);
2339 break;
2340 case 4:
2341 ret = bswap32(ret);
2342 break;
2343 case 8:
2344 ret = bswap64(ret);
2345 break;
2346 default:
2347 break;
2348 }
2349 default:
2350 break;
2351 }
2352
2353 /* Convert to signed number */
2354 if (sign) {
2355 switch(size) {
2356 case 1:
2357 ret = (int8_t) ret;
2358 break;
2359 case 2:
2360 ret = (int16_t) ret;
2361 break;
2362 case 4:
2363 ret = (int32_t) ret;
2364 break;
2365 default:
2366 break;
2367 }
2368 }
2369 #ifdef DEBUG_ASI
2370 dump_asi("read ", last_addr, asi, size, ret);
2371 #endif
2372 return ret;
2373 }
2374
2375 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2376 {
2377 #ifdef DEBUG_ASI
2378 dump_asi("write", addr, asi, size, val);
2379 #endif
2380
2381 asi &= 0xff;
2382
2383 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2384 || ((env->def->features & CPU_FEATURE_HYPV)
2385 && asi >= 0x30 && asi < 0x80
2386 && !(env->hpstate & HS_PRIV)))
2387 raise_exception(TT_PRIV_ACT);
2388
2389 helper_check_align(addr, size - 1);
2390 /* Convert to little endian */
2391 switch (asi) {
2392 case 0x0c: // Nucleus Little Endian (LE)
2393 case 0x18: // As if user primary LE
2394 case 0x19: // As if user secondary LE
2395 case 0x1c: // Bypass LE
2396 case 0x1d: // Bypass, non-cacheable LE
2397 case 0x88: // Primary LE
2398 case 0x89: // Secondary LE
2399 switch(size) {
2400 case 2:
2401 val = bswap16(val);
2402 break;
2403 case 4:
2404 val = bswap32(val);
2405 break;
2406 case 8:
2407 val = bswap64(val);
2408 break;
2409 default:
2410 break;
2411 }
2412 default:
2413 break;
2414 }
2415
2416 switch(asi) {
2417 case 0x10: // As if user primary
2418 case 0x18: // As if user primary LE
2419 case 0x80: // Primary
2420 case 0x88: // Primary LE
2421 case 0xe2: // UA2007 Primary block init
2422 case 0xe3: // UA2007 Secondary block init
2423 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2424 if ((env->def->features & CPU_FEATURE_HYPV)
2425 && env->hpstate & HS_PRIV) {
2426 switch(size) {
2427 case 1:
2428 stb_hypv(addr, val);
2429 break;
2430 case 2:
2431 stw_hypv(addr, val);
2432 break;
2433 case 4:
2434 stl_hypv(addr, val);
2435 break;
2436 case 8:
2437 default:
2438 stq_hypv(addr, val);
2439 break;
2440 }
2441 } else {
2442 switch(size) {
2443 case 1:
2444 stb_kernel(addr, val);
2445 break;
2446 case 2:
2447 stw_kernel(addr, val);
2448 break;
2449 case 4:
2450 stl_kernel(addr, val);
2451 break;
2452 case 8:
2453 default:
2454 stq_kernel(addr, val);
2455 break;
2456 }
2457 }
2458 } else {
2459 switch(size) {
2460 case 1:
2461 stb_user(addr, val);
2462 break;
2463 case 2:
2464 stw_user(addr, val);
2465 break;
2466 case 4:
2467 stl_user(addr, val);
2468 break;
2469 case 8:
2470 default:
2471 stq_user(addr, val);
2472 break;
2473 }
2474 }
2475 break;
2476 case 0x14: // Bypass
2477 case 0x15: // Bypass, non-cacheable
2478 case 0x1c: // Bypass LE
2479 case 0x1d: // Bypass, non-cacheable LE
2480 {
2481 switch(size) {
2482 case 1:
2483 stb_phys(addr, val);
2484 break;
2485 case 2:
2486 stw_phys(addr, val);
2487 break;
2488 case 4:
2489 stl_phys(addr, val);
2490 break;
2491 case 8:
2492 default:
2493 stq_phys(addr, val);
2494 break;
2495 }
2496 }
2497 return;
2498 case 0x24: // Nucleus quad LDD 128 bit atomic
2499 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2500 // Only ldda allowed
2501 raise_exception(TT_ILL_INSN);
2502 return;
2503 case 0x04: // Nucleus
2504 case 0x0c: // Nucleus Little Endian (LE)
2505 case 0x11: // As if user secondary
2506 case 0x19: // As if user secondary LE
2507 case 0x4a: // UPA config
2508 case 0x81: // Secondary
2509 case 0x89: // Secondary LE
2510 // XXX
2511 return;
2512 case 0x45: // LSU
2513 {
2514 uint64_t oldreg;
2515
2516 oldreg = env->lsu;
2517 env->lsu = val & (DMMU_E | IMMU_E);
2518 // Mappings generated during D/I MMU disabled mode are
2519 // invalid in normal mode
2520 if (oldreg != env->lsu) {
2521 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2522 oldreg, env->lsu);
2523 #ifdef DEBUG_MMU
2524 dump_mmu(env);
2525 #endif
2526 tlb_flush(env, 1);
2527 }
2528 return;
2529 }
2530 case 0x50: // I-MMU regs
2531 {
2532 int reg = (addr >> 3) & 0xf;
2533 uint64_t oldreg;
2534
2535 oldreg = env->immuregs[reg];
2536 switch(reg) {
2537 case 0: // RO
2538 return;
2539 case 1: // Not in I-MMU
2540 case 2:
2541 return;
2542 case 3: // SFSR
2543 if ((val & 1) == 0)
2544 val = 0; // Clear SFSR
2545 env->immu.sfsr = val;
2546 break;
2547 case 4: // RO
2548 return;
2549 case 5: // TSB access
2550 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2551 PRIx64 "\n", env->immu.tsb, val);
2552 env->immu.tsb = val;
2553 break;
2554 case 6: // Tag access
2555 env->immu.tag_access = val;
2556 break;
2557 case 7:
2558 case 8:
2559 return;
2560 default:
2561 break;
2562 }
2563
2564 if (oldreg != env->immuregs[reg]) {
2565 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2566 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2567 }
2568 #ifdef DEBUG_MMU
2569 dump_mmu(env);
2570 #endif
2571 return;
2572 }
2573 case 0x54: // I-MMU data in
2574 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2575 return;
2576 case 0x55: // I-MMU data access
2577 {
2578 // TODO: auto demap
2579
2580 unsigned int i = (addr >> 3) & 0x3f;
2581
2582 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2583
2584 #ifdef DEBUG_MMU
2585 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2586 dump_mmu(env);
2587 #endif
2588 return;
2589 }
2590 case 0x57: // I-MMU demap
2591 demap_tlb(env->itlb, val, "immu", env);
2592 return;
2593 case 0x58: // D-MMU regs
2594 {
2595 int reg = (addr >> 3) & 0xf;
2596 uint64_t oldreg;
2597
2598 oldreg = env->dmmuregs[reg];
2599 switch(reg) {
2600 case 0: // RO
2601 case 4:
2602 return;
2603 case 3: // SFSR
2604 if ((val & 1) == 0) {
2605 val = 0; // Clear SFSR, Fault address
2606 env->dmmu.sfar = 0;
2607 }
2608 env->dmmu.sfsr = val;
2609 break;
2610 case 1: // Primary context
2611 env->dmmu.mmu_primary_context = val;
2612 break;
2613 case 2: // Secondary context
2614 env->dmmu.mmu_secondary_context = val;
2615 break;
2616 case 5: // TSB access
2617 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2618 PRIx64 "\n", env->dmmu.tsb, val);
2619 env->dmmu.tsb = val;
2620 break;
2621 case 6: // Tag access
2622 env->dmmu.tag_access = val;
2623 break;
2624 case 7: // Virtual Watchpoint
2625 case 8: // Physical Watchpoint
2626 default:
2627 env->dmmuregs[reg] = val;
2628 break;
2629 }
2630
2631 if (oldreg != env->dmmuregs[reg]) {
2632 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2633 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2634 }
2635 #ifdef DEBUG_MMU
2636 dump_mmu(env);
2637 #endif
2638 return;
2639 }
2640 case 0x5c: // D-MMU data in
2641 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2642 return;
2643 case 0x5d: // D-MMU data access
2644 {
2645 unsigned int i = (addr >> 3) & 0x3f;
2646
2647 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2648
2649 #ifdef DEBUG_MMU
2650 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2651 dump_mmu(env);
2652 #endif
2653 return;
2654 }
2655 case 0x5f: // D-MMU demap
2656 demap_tlb(env->dtlb, val, "dmmu", env);
2657 return;
2658 case 0x49: // Interrupt data receive
2659 // XXX
2660 return;
2661 case 0x46: // D-cache data
2662 case 0x47: // D-cache tag access
2663 case 0x4b: // E-cache error enable
2664 case 0x4c: // E-cache asynchronous fault status
2665 case 0x4d: // E-cache asynchronous fault address
2666 case 0x4e: // E-cache tag data
2667 case 0x66: // I-cache instruction access
2668 case 0x67: // I-cache tag access
2669 case 0x6e: // I-cache predecode
2670 case 0x6f: // I-cache LRU etc.
2671 case 0x76: // E-cache tag
2672 case 0x7e: // E-cache tag
2673 return;
2674 case 0x51: // I-MMU 8k TSB pointer, RO
2675 case 0x52: // I-MMU 64k TSB pointer, RO
2676 case 0x56: // I-MMU tag read, RO
2677 case 0x59: // D-MMU 8k TSB pointer, RO
2678 case 0x5a: // D-MMU 64k TSB pointer, RO
2679 case 0x5b: // D-MMU data pointer, RO
2680 case 0x5e: // D-MMU tag read, RO
2681 case 0x48: // Interrupt dispatch, RO
2682 case 0x7f: // Incoming interrupt vector, RO
2683 case 0x82: // Primary no-fault, RO
2684 case 0x83: // Secondary no-fault, RO
2685 case 0x8a: // Primary no-fault LE, RO
2686 case 0x8b: // Secondary no-fault LE, RO
2687 default:
2688 do_unassigned_access(addr, 1, 0, 1, size);
2689 return;
2690 }
2691 }
2692 #endif /* CONFIG_USER_ONLY */
2693
2694 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2695 {
2696 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2697 || ((env->def->features & CPU_FEATURE_HYPV)
2698 && asi >= 0x30 && asi < 0x80
2699 && !(env->hpstate & HS_PRIV)))
2700 raise_exception(TT_PRIV_ACT);
2701
2702 switch (asi) {
2703 case 0x24: // Nucleus quad LDD 128 bit atomic
2704 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2705 helper_check_align(addr, 0xf);
2706 if (rd == 0) {
2707 env->gregs[1] = ldq_kernel(addr + 8);
2708 if (asi == 0x2c)
2709 bswap64s(&env->gregs[1]);
2710 } else if (rd < 8) {
2711 env->gregs[rd] = ldq_kernel(addr);
2712 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2713 if (asi == 0x2c) {
2714 bswap64s(&env->gregs[rd]);
2715 bswap64s(&env->gregs[rd + 1]);
2716 }
2717 } else {
2718 env->regwptr[rd] = ldq_kernel(addr);
2719 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2720 if (asi == 0x2c) {
2721 bswap64s(&env->regwptr[rd]);
2722 bswap64s(&env->regwptr[rd + 1]);
2723 }
2724 }
2725 break;
2726 default:
2727 helper_check_align(addr, 0x3);
2728 if (rd == 0)
2729 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2730 else if (rd < 8) {
2731 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2732 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2733 } else {
2734 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2735 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2736 }
2737 break;
2738 }
2739 }
2740
2741 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2742 {
2743 unsigned int i;
2744 target_ulong val;
2745
2746 helper_check_align(addr, 3);
2747 switch (asi) {
2748 case 0xf0: // Block load primary
2749 case 0xf1: // Block load secondary
2750 case 0xf8: // Block load primary LE
2751 case 0xf9: // Block load secondary LE
2752 if (rd & 7) {
2753 raise_exception(TT_ILL_INSN);
2754 return;
2755 }
2756 helper_check_align(addr, 0x3f);
2757 for (i = 0; i < 16; i++) {
2758 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2759 0);
2760 addr += 4;
2761 }
2762
2763 return;
2764 default:
2765 break;
2766 }
2767
2768 val = helper_ld_asi(addr, asi, size, 0);
2769 switch(size) {
2770 default:
2771 case 4:
2772 *((uint32_t *)&env->fpr[rd]) = val;
2773 break;
2774 case 8:
2775 *((int64_t *)&DT0) = val;
2776 break;
2777 case 16:
2778 // XXX
2779 break;
2780 }
2781 }
2782
2783 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2784 {
2785 unsigned int i;
2786 target_ulong val = 0;
2787
2788 helper_check_align(addr, 3);
2789 switch (asi) {
2790 case 0xe0: // UA2007 Block commit store primary (cache flush)
2791 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2792 case 0xf0: // Block store primary
2793 case 0xf1: // Block store secondary
2794 case 0xf8: // Block store primary LE
2795 case 0xf9: // Block store secondary LE
2796 if (rd & 7) {
2797 raise_exception(TT_ILL_INSN);
2798 return;
2799 }
2800 helper_check_align(addr, 0x3f);
2801 for (i = 0; i < 16; i++) {
2802 val = *(uint32_t *)&env->fpr[rd++];
2803 helper_st_asi(addr, val, asi & 0x8f, 4);
2804 addr += 4;
2805 }
2806
2807 return;
2808 default:
2809 break;
2810 }
2811
2812 switch(size) {
2813 default:
2814 case 4:
2815 val = *((uint32_t *)&env->fpr[rd]);
2816 break;
2817 case 8:
2818 val = *((int64_t *)&DT0);
2819 break;
2820 case 16:
2821 // XXX
2822 break;
2823 }
2824 helper_st_asi(addr, val, asi, size);
2825 }
2826
2827 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2828 target_ulong val2, uint32_t asi)
2829 {
2830 target_ulong ret;
2831
2832 val2 &= 0xffffffffUL;
2833 ret = helper_ld_asi(addr, asi, 4, 0);
2834 ret &= 0xffffffffUL;
2835 if (val2 == ret)
2836 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2837 return ret;
2838 }
2839
2840 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2841 target_ulong val2, uint32_t asi)
2842 {
2843 target_ulong ret;
2844
2845 ret = helper_ld_asi(addr, asi, 8, 0);
2846 if (val2 == ret)
2847 helper_st_asi(addr, val1, asi, 8);
2848 return ret;
2849 }
2850 #endif /* TARGET_SPARC64 */
2851
2852 #ifndef TARGET_SPARC64
2853 void helper_rett(void)
2854 {
2855 unsigned int cwp;
2856
2857 if (env->psret == 1)
2858 raise_exception(TT_ILL_INSN);
2859
2860 env->psret = 1;
2861 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2862 if (env->wim & (1 << cwp)) {
2863 raise_exception(TT_WIN_UNF);
2864 }
2865 set_cwp(cwp);
2866 env->psrs = env->psrps;
2867 }
2868 #endif
2869
2870 target_ulong helper_udiv(target_ulong a, target_ulong b)
2871 {
2872 uint64_t x0;
2873 uint32_t x1;
2874
2875 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2876 x1 = b;
2877
2878 if (x1 == 0) {
2879 raise_exception(TT_DIV_ZERO);
2880 }
2881
2882 x0 = x0 / x1;
2883 if (x0 > 0xffffffff) {
2884 env->cc_src2 = 1;
2885 return 0xffffffff;
2886 } else {
2887 env->cc_src2 = 0;
2888 return x0;
2889 }
2890 }
2891
2892 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2893 {
2894 int64_t x0;
2895 int32_t x1;
2896
2897 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2898 x1 = b;
2899
2900 if (x1 == 0) {
2901 raise_exception(TT_DIV_ZERO);
2902 }
2903
2904 x0 = x0 / x1;
2905 if ((int32_t) x0 != x0) {
2906 env->cc_src2 = 1;
2907 return x0 < 0? 0x80000000: 0x7fffffff;
2908 } else {
2909 env->cc_src2 = 0;
2910 return x0;
2911 }
2912 }
2913
2914 void helper_stdf(target_ulong addr, int mem_idx)
2915 {
2916 helper_check_align(addr, 7);
2917 #if !defined(CONFIG_USER_ONLY)
2918 switch (mem_idx) {
2919 case 0:
2920 stfq_user(addr, DT0);
2921 break;
2922 case 1:
2923 stfq_kernel(addr, DT0);
2924 break;
2925 #ifdef TARGET_SPARC64
2926 case 2:
2927 stfq_hypv(addr, DT0);
2928 break;
2929 #endif
2930 default:
2931 break;
2932 }
2933 #else
2934 address_mask(env, &addr);
2935 stfq_raw(addr, DT0);
2936 #endif
2937 }
2938
2939 void helper_lddf(target_ulong addr, int mem_idx)
2940 {
2941 helper_check_align(addr, 7);
2942 #if !defined(CONFIG_USER_ONLY)
2943 switch (mem_idx) {
2944 case 0:
2945 DT0 = ldfq_user(addr);
2946 break;
2947 case 1:
2948 DT0 = ldfq_kernel(addr);
2949 break;
2950 #ifdef TARGET_SPARC64
2951 case 2:
2952 DT0 = ldfq_hypv(addr);
2953 break;
2954 #endif
2955 default:
2956 break;
2957 }
2958 #else
2959 address_mask(env, &addr);
2960 DT0 = ldfq_raw(addr);
2961 #endif
2962 }
2963
2964 void helper_ldqf(target_ulong addr, int mem_idx)
2965 {
2966 // XXX add 128 bit load
2967 CPU_QuadU u;
2968
2969 helper_check_align(addr, 7);
2970 #if !defined(CONFIG_USER_ONLY)
2971 switch (mem_idx) {
2972 case 0:
2973 u.ll.upper = ldq_user(addr);
2974 u.ll.lower = ldq_user(addr + 8);
2975 QT0 = u.q;
2976 break;
2977 case 1:
2978 u.ll.upper = ldq_kernel(addr);
2979 u.ll.lower = ldq_kernel(addr + 8);
2980 QT0 = u.q;
2981 break;
2982 #ifdef TARGET_SPARC64
2983 case 2:
2984 u.ll.upper = ldq_hypv(addr);
2985 u.ll.lower = ldq_hypv(addr + 8);
2986 QT0 = u.q;
2987 break;
2988 #endif
2989 default:
2990 break;
2991 }
2992 #else
2993 address_mask(env, &addr);
2994 u.ll.upper = ldq_raw(addr);
2995 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2996 QT0 = u.q;
2997 #endif
2998 }
2999
3000 void helper_stqf(target_ulong addr, int mem_idx)
3001 {
3002 // XXX add 128 bit store
3003 CPU_QuadU u;
3004
3005 helper_check_align(addr, 7);
3006 #if !defined(CONFIG_USER_ONLY)
3007 switch (mem_idx) {
3008 case 0:
3009 u.q = QT0;
3010 stq_user(addr, u.ll.upper);
3011 stq_user(addr + 8, u.ll.lower);
3012 break;
3013 case 1:
3014 u.q = QT0;
3015 stq_kernel(addr, u.ll.upper);
3016 stq_kernel(addr + 8, u.ll.lower);
3017 break;
3018 #ifdef TARGET_SPARC64
3019 case 2:
3020 u.q = QT0;
3021 stq_hypv(addr, u.ll.upper);
3022 stq_hypv(addr + 8, u.ll.lower);
3023 break;
3024 #endif
3025 default:
3026 break;
3027 }
3028 #else
3029 u.q = QT0;
3030 address_mask(env, &addr);
3031 stq_raw(addr, u.ll.upper);
3032 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
3033 #endif
3034 }
3035
3036 static inline void set_fsr(void)
3037 {
3038 int rnd_mode;
3039
3040 switch (env->fsr & FSR_RD_MASK) {
3041 case FSR_RD_NEAREST:
3042 rnd_mode = float_round_nearest_even;
3043 break;
3044 default:
3045 case FSR_RD_ZERO:
3046 rnd_mode = float_round_to_zero;
3047 break;
3048 case FSR_RD_POS:
3049 rnd_mode = float_round_up;
3050 break;
3051 case FSR_RD_NEG:
3052 rnd_mode = float_round_down;
3053 break;
3054 }
3055 set_float_rounding_mode(rnd_mode, &env->fp_status);
3056 }
3057
3058 void helper_ldfsr(uint32_t new_fsr)
3059 {
3060 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3061 set_fsr();
3062 }
3063
3064 #ifdef TARGET_SPARC64
3065 void helper_ldxfsr(uint64_t new_fsr)
3066 {
3067 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3068 set_fsr();
3069 }
3070 #endif
3071
3072 void helper_debug(void)
3073 {
3074 env->exception_index = EXCP_DEBUG;
3075 cpu_loop_exit();
3076 }
3077
3078 #ifndef TARGET_SPARC64
3079 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3080 handling ? */
3081 void helper_save(void)
3082 {
3083 uint32_t cwp;
3084
3085 cwp = cpu_cwp_dec(env, env->cwp - 1);
3086 if (env->wim & (1 << cwp)) {
3087 raise_exception(TT_WIN_OVF);
3088 }
3089 set_cwp(cwp);
3090 }
3091
3092 void helper_restore(void)
3093 {
3094 uint32_t cwp;
3095
3096 cwp = cpu_cwp_inc(env, env->cwp + 1);
3097 if (env->wim & (1 << cwp)) {
3098 raise_exception(TT_WIN_UNF);
3099 }
3100 set_cwp(cwp);
3101 }
3102
3103 void helper_wrpsr(target_ulong new_psr)
3104 {
3105 if ((new_psr & PSR_CWP) >= env->nwindows)
3106 raise_exception(TT_ILL_INSN);
3107 else
3108 PUT_PSR(env, new_psr);
3109 }
3110
3111 target_ulong helper_rdpsr(void)
3112 {
3113 return GET_PSR(env);
3114 }
3115
3116 #else
3117 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3118 handling ? */
3119 void helper_save(void)
3120 {
3121 uint32_t cwp;
3122
3123 cwp = cpu_cwp_dec(env, env->cwp - 1);
3124 if (env->cansave == 0) {
3125 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3126 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3127 ((env->wstate & 0x7) << 2)));
3128 } else {
3129 if (env->cleanwin - env->canrestore == 0) {
3130 // XXX Clean windows without trap
3131 raise_exception(TT_CLRWIN);
3132 } else {
3133 env->cansave--;
3134 env->canrestore++;
3135 set_cwp(cwp);
3136 }
3137 }
3138 }
3139
3140 void helper_restore(void)
3141 {
3142 uint32_t cwp;
3143
3144 cwp = cpu_cwp_inc(env, env->cwp + 1);
3145 if (env->canrestore == 0) {
3146 raise_exception(TT_FILL | (env->otherwin != 0 ?
3147 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3148 ((env->wstate & 0x7) << 2)));
3149 } else {
3150 env->cansave++;
3151 env->canrestore--;
3152 set_cwp(cwp);
3153 }
3154 }
3155
3156 void helper_flushw(void)
3157 {
3158 if (env->cansave != env->nwindows - 2) {
3159 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3160 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3161 ((env->wstate & 0x7) << 2)));
3162 }
3163 }
3164
3165 void helper_saved(void)
3166 {
3167 env->cansave++;
3168 if (env->otherwin == 0)
3169 env->canrestore--;
3170 else
3171 env->otherwin--;
3172 }
3173
3174 void helper_restored(void)
3175 {
3176 env->canrestore++;
3177 if (env->cleanwin < env->nwindows - 1)
3178 env->cleanwin++;
3179 if (env->otherwin == 0)
3180 env->cansave--;
3181 else
3182 env->otherwin--;
3183 }
3184
3185 target_ulong helper_rdccr(void)
3186 {
3187 return GET_CCR(env);
3188 }
3189
3190 void helper_wrccr(target_ulong new_ccr)
3191 {
3192 PUT_CCR(env, new_ccr);
3193 }
3194
3195 // CWP handling is reversed in V9, but we still use the V8 register
3196 // order.
3197 target_ulong helper_rdcwp(void)
3198 {
3199 return GET_CWP64(env);
3200 }
3201
3202 void helper_wrcwp(target_ulong new_cwp)
3203 {
3204 PUT_CWP64(env, new_cwp);
3205 }
3206
3207 // This function uses non-native bit order
3208 #define GET_FIELD(X, FROM, TO) \
3209 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3210
3211 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3212 #define GET_FIELD_SP(X, FROM, TO) \
3213 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3214
3215 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3216 {
3217 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3218 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3219 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3220 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3221 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3222 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3223 (((pixel_addr >> 55) & 1) << 4) |
3224 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3225 GET_FIELD_SP(pixel_addr, 11, 12);
3226 }
3227
3228 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3229 {
3230 uint64_t tmp;
3231
3232 tmp = addr + offset;
3233 env->gsr &= ~7ULL;
3234 env->gsr |= tmp & 7ULL;
3235 return tmp & ~7ULL;
3236 }
3237
3238 target_ulong helper_popc(target_ulong val)
3239 {
3240 return ctpop64(val);
3241 }
3242
3243 static inline uint64_t *get_gregset(uint64_t pstate)
3244 {
3245 switch (pstate) {
3246 default:
3247 case 0:
3248 return env->bgregs;
3249 case PS_AG:
3250 return env->agregs;
3251 case PS_MG:
3252 return env->mgregs;
3253 case PS_IG:
3254 return env->igregs;
3255 }
3256 }
3257
3258 static inline void change_pstate(uint64_t new_pstate)
3259 {
3260 uint64_t pstate_regs, new_pstate_regs;
3261 uint64_t *src, *dst;
3262
3263 if (env->def->features & CPU_FEATURE_GL) {
3264 // PS_AG is not implemented in this case
3265 new_pstate &= ~PS_AG;
3266 }
3267
3268 pstate_regs = env->pstate & 0xc01;
3269 new_pstate_regs = new_pstate & 0xc01;
3270
3271 if (new_pstate_regs != pstate_regs) {
3272 // Switch global register bank
3273 src = get_gregset(new_pstate_regs);
3274 dst = get_gregset(pstate_regs);
3275 memcpy32(dst, env->gregs);
3276 memcpy32(env->gregs, src);
3277 }
3278 env->pstate = new_pstate;
3279 }
3280
3281 void helper_wrpstate(target_ulong new_state)
3282 {
3283 change_pstate(new_state & 0xf3f);
3284 }
3285
3286 void helper_done(void)
3287 {
3288 trap_state* tsptr = cpu_tsptr(env);
3289
3290 env->pc = tsptr->tnpc;
3291 env->npc = tsptr->tnpc + 4;
3292 PUT_CCR(env, tsptr->tstate >> 32);
3293 env->asi = (tsptr->tstate >> 24) & 0xff;
3294 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3295 PUT_CWP64(env, tsptr->tstate & 0xff);
3296 env->tl--;
3297 }
3298
3299 void helper_retry(void)
3300 {
3301 trap_state* tsptr = cpu_tsptr(env);
3302
3303 env->pc = tsptr->tpc;
3304 env->npc = tsptr->tnpc;
3305 PUT_CCR(env, tsptr->tstate >> 32);
3306 env->asi = (tsptr->tstate >> 24) & 0xff;
3307 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3308 PUT_CWP64(env, tsptr->tstate & 0xff);
3309 env->tl--;
3310 }
3311
3312 void helper_set_softint(uint64_t value)
3313 {
3314 env->softint |= (uint32_t)value;
3315 }
3316
3317 void helper_clear_softint(uint64_t value)
3318 {
3319 env->softint &= (uint32_t)~value;
3320 }
3321
3322 void helper_write_softint(uint64_t value)
3323 {
3324 env->softint = (uint32_t)value;
3325 }
3326 #endif
3327
3328 void helper_flush(target_ulong addr)
3329 {
3330 addr &= ~7;
3331 tb_invalidate_page_range(addr, addr + 8);
3332 }
3333
3334 #ifdef TARGET_SPARC64
3335 #ifdef DEBUG_PCALL
3336 static const char * const excp_names[0x80] = {
3337 [TT_TFAULT] = "Instruction Access Fault",
3338 [TT_TMISS] = "Instruction Access MMU Miss",
3339 [TT_CODE_ACCESS] = "Instruction Access Error",
3340 [TT_ILL_INSN] = "Illegal Instruction",
3341 [TT_PRIV_INSN] = "Privileged Instruction",
3342 [TT_NFPU_INSN] = "FPU Disabled",
3343 [TT_FP_EXCP] = "FPU Exception",
3344 [TT_TOVF] = "Tag Overflow",
3345 [TT_CLRWIN] = "Clean Windows",
3346 [TT_DIV_ZERO] = "Division By Zero",
3347 [TT_DFAULT] = "Data Access Fault",
3348 [TT_DMISS] = "Data Access MMU Miss",
3349 [TT_DATA_ACCESS] = "Data Access Error",
3350 [TT_DPROT] = "Data Protection Error",
3351 [TT_UNALIGNED] = "Unaligned Memory Access",
3352 [TT_PRIV_ACT] = "Privileged Action",
3353 [TT_EXTINT | 0x1] = "External Interrupt 1",
3354 [TT_EXTINT | 0x2] = "External Interrupt 2",
3355 [TT_EXTINT | 0x3] = "External Interrupt 3",
3356 [TT_EXTINT | 0x4] = "External Interrupt 4",
3357 [TT_EXTINT | 0x5] = "External Interrupt 5",
3358 [TT_EXTINT | 0x6] = "External Interrupt 6",
3359 [TT_EXTINT | 0x7] = "External Interrupt 7",
3360 [TT_EXTINT | 0x8] = "External Interrupt 8",
3361 [TT_EXTINT | 0x9] = "External Interrupt 9",
3362 [TT_EXTINT | 0xa] = "External Interrupt 10",
3363 [TT_EXTINT | 0xb] = "External Interrupt 11",
3364 [TT_EXTINT | 0xc] = "External Interrupt 12",
3365 [TT_EXTINT | 0xd] = "External Interrupt 13",
3366 [TT_EXTINT | 0xe] = "External Interrupt 14",
3367 [TT_EXTINT | 0xf] = "External Interrupt 15",
3368 };
3369 #endif
3370
3371 trap_state* cpu_tsptr(CPUState* env)
3372 {
3373 return &env->ts[env->tl & MAXTL_MASK];
3374 }
3375
3376 void do_interrupt(CPUState *env)
3377 {
3378 int intno = env->exception_index;
3379 trap_state* tsptr;
3380
3381 #ifdef DEBUG_PCALL
3382 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3383 static int count;
3384 const char *name;
3385
3386 if (intno < 0 || intno >= 0x180)
3387 name = "Unknown";
3388 else if (intno >= 0x100)
3389 name = "Trap Instruction";
3390 else if (intno >= 0xc0)
3391 name = "Window Fill";
3392 else if (intno >= 0x80)
3393 name = "Window Spill";
3394 else {
3395 name = excp_names[intno];
3396 if (!name)
3397 name = "Unknown";
3398 }
3399
3400 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3401 " SP=%016" PRIx64 "\n",
3402 count, name, intno,
3403 env->pc,
3404 env->npc, env->regwptr[6]);
3405 log_cpu_state(env, 0);
3406 #if 0
3407 {
3408 int i;
3409 uint8_t *ptr;
3410
3411 qemu_log(" code=");
3412 ptr = (uint8_t *)env->pc;
3413 for(i = 0; i < 16; i++) {
3414 qemu_log(" %02x", ldub(ptr + i));
3415 }
3416 qemu_log("\n");
3417 }
3418 #endif
3419 count++;
3420 }
3421 #endif
3422 #if !defined(CONFIG_USER_ONLY)
3423 if (env->tl >= env->maxtl) {
3424 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3425 " Error state", env->exception_index, env->tl, env->maxtl);
3426 return;
3427 }
3428 #endif
3429 if (env->tl < env->maxtl - 1) {
3430 env->tl++;
3431 } else {
3432 env->pstate |= PS_RED;
3433 if (env->tl < env->maxtl)
3434 env->tl++;
3435 }
3436 tsptr = cpu_tsptr(env);
3437
3438 tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3439 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3440 GET_CWP64(env);
3441 tsptr->tpc = env->pc;
3442 tsptr->tnpc = env->npc;
3443 tsptr->tt = intno;
3444
3445 switch (intno) {
3446 case TT_IVEC:
3447 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3448 break;
3449 case TT_TFAULT:
3450 case TT_DFAULT:
3451 case TT_TMISS ... TT_TMISS + 3:
3452 case TT_DMISS ... TT_DMISS + 3:
3453 case TT_DPROT ... TT_DPROT + 3:
3454 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3455 break;
3456 default:
3457 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3458 break;
3459 }
3460
3461 if (intno == TT_CLRWIN)
3462 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3463 else if ((intno & 0x1c0) == TT_SPILL)
3464 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3465 else if ((intno & 0x1c0) == TT_FILL)
3466 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3467 env->tbr &= ~0x7fffULL;
3468 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3469 env->pc = env->tbr;
3470 env->npc = env->pc + 4;
3471 env->exception_index = 0;
3472 }
3473 #else
3474 #ifdef DEBUG_PCALL
3475 static const char * const excp_names[0x80] = {
3476 [TT_TFAULT] = "Instruction Access Fault",
3477 [TT_ILL_INSN] = "Illegal Instruction",
3478 [TT_PRIV_INSN] = "Privileged Instruction",
3479 [TT_NFPU_INSN] = "FPU Disabled",
3480 [TT_WIN_OVF] = "Window Overflow",
3481 [TT_WIN_UNF] = "Window Underflow",
3482 [TT_UNALIGNED] = "Unaligned Memory Access",
3483 [TT_FP_EXCP] = "FPU Exception",
3484 [TT_DFAULT] = "Data Access Fault",
3485 [TT_TOVF] = "Tag Overflow",
3486 [TT_EXTINT | 0x1] = "External Interrupt 1",
3487 [TT_EXTINT | 0x2] = "External Interrupt 2",
3488 [TT_EXTINT | 0x3] = "External Interrupt 3",
3489 [TT_EXTINT | 0x4] = "External Interrupt 4",
3490 [TT_EXTINT | 0x5] = "External Interrupt 5",
3491 [TT_EXTINT | 0x6] = "External Interrupt 6",
3492 [TT_EXTINT | 0x7] = "External Interrupt 7",
3493 [TT_EXTINT | 0x8] = "External Interrupt 8",
3494 [TT_EXTINT | 0x9] = "External Interrupt 9",
3495 [TT_EXTINT | 0xa] = "External Interrupt 10",
3496 [TT_EXTINT | 0xb] = "External Interrupt 11",
3497 [TT_EXTINT | 0xc] = "External Interrupt 12",
3498 [TT_EXTINT | 0xd] = "External Interrupt 13",
3499 [TT_EXTINT | 0xe] = "External Interrupt 14",
3500 [TT_EXTINT | 0xf] = "External Interrupt 15",
3501 [TT_TOVF] = "Tag Overflow",
3502 [TT_CODE_ACCESS] = "Instruction Access Error",
3503 [TT_DATA_ACCESS] = "Data Access Error",
3504 [TT_DIV_ZERO] = "Division By Zero",
3505 [TT_NCP_INSN] = "Coprocessor Disabled",
3506 };
3507 #endif
3508
3509 void do_interrupt(CPUState *env)
3510 {
3511 int cwp, intno = env->exception_index;
3512
3513 #ifdef DEBUG_PCALL
3514 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3515 static int count;
3516 const char *name;
3517
3518 if (intno < 0 || intno >= 0x100)
3519 name = "Unknown";
3520 else if (intno >= 0x80)
3521 name = "Trap Instruction";
3522 else {
3523 name = excp_names[intno];
3524 if (!name)
3525 name = "Unknown";
3526 }
3527
3528 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3529 count, name, intno,
3530 env->pc,
3531 env->npc, env->regwptr[6]);
3532 log_cpu_state(env, 0);
3533 #if 0
3534 {
3535 int i;
3536 uint8_t *ptr;
3537
3538 qemu_log(" code=");
3539 ptr = (uint8_t *)env->pc;
3540 for(i = 0; i < 16; i++) {
3541 qemu_log(" %02x", ldub(ptr + i));
3542 }
3543 qemu_log("\n");
3544 }
3545 #endif
3546 count++;
3547 }
3548 #endif
3549 #if !defined(CONFIG_USER_ONLY)
3550 if (env->psret == 0) {
3551 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3552 env->exception_index);
3553 return;
3554 }
3555 #endif
3556 env->psret = 0;
3557 cwp = cpu_cwp_dec(env, env->cwp - 1);
3558 cpu_set_cwp(env, cwp);
3559 env->regwptr[9] = env->pc;
3560 env->regwptr[10] = env->npc;
3561 env->psrps = env->psrs;
3562 env->psrs = 1;
3563 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3564 env->pc = env->tbr;
3565 env->npc = env->pc + 4;
3566 env->exception_index = 0;
3567 }
3568 #endif
3569
3570 #if !defined(CONFIG_USER_ONLY)
3571
3572 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3573 void *retaddr);
3574
3575 #define MMUSUFFIX _mmu
3576 #define ALIGNED_ONLY
3577
3578 #define SHIFT 0
3579 #include "softmmu_template.h"
3580
3581 #define SHIFT 1
3582 #include "softmmu_template.h"
3583
3584 #define SHIFT 2
3585 #include "softmmu_template.h"
3586
3587 #define SHIFT 3
3588 #include "softmmu_template.h"
3589
3590 /* XXX: make it generic ? */
3591 static void cpu_restore_state2(void *retaddr)
3592 {
3593 TranslationBlock *tb;
3594 unsigned long pc;
3595
3596 if (retaddr) {
3597 /* now we have a real cpu fault */
3598 pc = (unsigned long)retaddr;
3599 tb = tb_find_pc(pc);
3600 if (tb) {
3601 /* the PC is inside the translated code. It means that we have
3602 a virtual CPU fault */
3603 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3604 }
3605 }
3606 }
3607
3608 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3609 void *retaddr)
3610 {
3611 #ifdef DEBUG_UNALIGNED
3612 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3613 "\n", addr, env->pc);
3614 #endif
3615 cpu_restore_state2(retaddr);
3616 raise_exception(TT_UNALIGNED);
3617 }
3618
3619 /* try to fill the TLB and return an exception if error. If retaddr is
3620 NULL, it means that the function was called in C code (i.e. not
3621 from generated code or from helper.c) */
3622 /* XXX: fix it to restore all registers */
3623 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3624 {
3625 int ret;
3626 CPUState *saved_env;
3627
3628 /* XXX: hack to restore env in all cases, even if not called from
3629 generated code */
3630 saved_env = env;
3631 env = cpu_single_env;
3632
3633 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3634 if (ret) {
3635 cpu_restore_state2(retaddr);
3636 cpu_loop_exit();
3637 }
3638 env = saved_env;
3639 }
3640
3641 #endif
3642
3643 #ifndef TARGET_SPARC64
3644 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3645 int is_asi, int size)
3646 {
3647 CPUState *saved_env;
3648
3649 /* XXX: hack to restore env in all cases, even if not called from
3650 generated code */
3651 saved_env = env;
3652 env = cpu_single_env;
3653 #ifdef DEBUG_UNASSIGNED
3654 if (is_asi)
3655 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3656 " asi 0x%02x from " TARGET_FMT_lx "\n",
3657 is_exec ? "exec" : is_write ? "write" : "read", size,
3658 size == 1 ? "" : "s", addr, is_asi, env->pc);
3659 else
3660 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3661 " from " TARGET_FMT_lx "\n",
3662 is_exec ? "exec" : is_write ? "write" : "read", size,
3663 size == 1 ? "" : "s", addr, env->pc);
3664 #endif
3665 if (env->mmuregs[3]) /* Fault status register */
3666 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3667 if (is_asi)
3668 env->mmuregs[3] |= 1 << 16;
3669 if (env->psrs)
3670 env->mmuregs[3] |= 1 << 5;
3671 if (is_exec)
3672 env->mmuregs[3] |= 1 << 6;
3673 if (is_write)
3674 env->mmuregs[3] |= 1 << 7;
3675 env->mmuregs[3] |= (5 << 2) | 2;
3676 env->mmuregs[4] = addr; /* Fault address register */
3677 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3678 if (is_exec)
3679 raise_exception(TT_CODE_ACCESS);
3680 else
3681 raise_exception(TT_DATA_ACCESS);
3682 }
3683 env = saved_env;
3684 }
3685 #else
3686 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3687 int is_asi, int size)
3688 {
3689 CPUState *saved_env;
3690
3691 /* XXX: hack to restore env in all cases, even if not called from
3692 generated code */
3693 saved_env = env;
3694 env = cpu_single_env;
3695
3696 #ifdef DEBUG_UNASSIGNED
3697 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3698 "\n", addr, env->pc);
3699 #endif
3700
3701 if (is_exec)
3702 raise_exception(TT_CODE_ACCESS);
3703 else
3704 raise_exception(TT_DATA_ACCESS);
3705
3706 env = saved_env;
3707 }
3708 #endif
3709
3710 #ifdef TARGET_SPARC64
3711 void helper_tick_set_count(void *opaque, uint64_t count)
3712 {
3713 #if !defined(CONFIG_USER_ONLY)
3714 cpu_tick_set_count(opaque, count);
3715 #endif
3716 }
3717
3718 uint64_t helper_tick_get_count(void *opaque)
3719 {
3720 #if !defined(CONFIG_USER_ONLY)
3721 return cpu_tick_get_count(opaque);
3722 #else
3723 return 0;
3724 #endif
3725 }
3726
3727 void helper_tick_set_limit(void *opaque, uint64_t limit)
3728 {
3729 #if !defined(CONFIG_USER_ONLY)
3730 cpu_tick_set_limit(opaque, limit);
3731 #endif
3732 }
3733 #endif