]> git.proxmox.com Git - qemu.git/blob - target-unicore32/helper.c
target-arm: Use correct float status for Neon int-float conversions
[qemu.git] / target-unicore32 / helper.c
1 /*
2 * Copyright (C) 2010-2011 GUAN Xue-tao
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11
12 #include "cpu.h"
13 #include "exec-all.h"
14 #include "gdbstub.h"
15 #include "helper.h"
16 #include "qemu-common.h"
17 #include "host-utils.h"
18
19 static inline void set_feature(CPUState *env, int feature)
20 {
21 env->features |= feature;
22 }
23
24 struct uc32_cpu_t {
25 uint32_t id;
26 const char *name;
27 };
28
29 static const struct uc32_cpu_t uc32_cpu_names[] = {
30 { UC32_CPUID_UCV2, "UniCore-II"},
31 { UC32_CPUID_ANY, "any"},
32 { 0, NULL}
33 };
34
35 /* return 0 if not found */
36 static uint32_t uc32_cpu_find_by_name(const char *name)
37 {
38 int i;
39 uint32_t id;
40
41 id = 0;
42 for (i = 0; uc32_cpu_names[i].name; i++) {
43 if (strcmp(name, uc32_cpu_names[i].name) == 0) {
44 id = uc32_cpu_names[i].id;
45 break;
46 }
47 }
48 return id;
49 }
50
51 CPUState *uc32_cpu_init(const char *cpu_model)
52 {
53 CPUState *env;
54 uint32_t id;
55 static int inited = 1;
56
57 env = qemu_mallocz(sizeof(CPUState));
58 cpu_exec_init(env);
59
60 id = uc32_cpu_find_by_name(cpu_model);
61 switch (id) {
62 case UC32_CPUID_UCV2:
63 set_feature(env, UC32_HWCAP_CMOV);
64 set_feature(env, UC32_HWCAP_UCF64);
65 env->ucf64.xregs[UC32_UCF64_FPSCR] = 0;
66 env->cp0.c0_cachetype = 0x1dd20d2;
67 env->cp0.c1_sys = 0x00090078;
68 break;
69 case UC32_CPUID_ANY: /* For userspace emulation. */
70 set_feature(env, UC32_HWCAP_CMOV);
71 set_feature(env, UC32_HWCAP_UCF64);
72 break;
73 default:
74 cpu_abort(env, "Bad CPU ID: %x\n", id);
75 }
76
77 env->cpu_model_str = cpu_model;
78 env->cp0.c0_cpuid = id;
79 env->uncached_asr = ASR_MODE_USER;
80 env->regs[31] = 0;
81
82 if (inited) {
83 inited = 0;
84 uc32_translate_init();
85 }
86
87 tlb_flush(env, 1);
88 qemu_init_vcpu(env);
89 return env;
90 }
91
92 uint32_t HELPER(clo)(uint32_t x)
93 {
94 return clo32(x);
95 }
96
97 uint32_t HELPER(clz)(uint32_t x)
98 {
99 return clz32(x);
100 }
101
102 void do_interrupt(CPUState *env)
103 {
104 env->exception_index = -1;
105 }
106
107 int uc32_cpu_handle_mmu_fault(CPUState *env, target_ulong address, int rw,
108 int mmu_idx, int is_softmmu)
109 {
110 env->exception_index = UC32_EXCP_TRAP;
111 env->cp0.c4_faultaddr = address;
112 return 1;
113 }
114
115 /* These should probably raise undefined insn exceptions. */
116 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
117 {
118 int op1 = (insn >> 8) & 0xf;
119 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
120 return;
121 }
122
123 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
124 {
125 int op1 = (insn >> 8) & 0xf;
126 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
127 return 0;
128 }
129
130 void HELPER(set_cp0)(CPUState *env, uint32_t insn, uint32_t val)
131 {
132 cpu_abort(env, "cp0 insn %08x\n", insn);
133 }
134
135 uint32_t HELPER(get_cp0)(CPUState *env, uint32_t insn)
136 {
137 cpu_abort(env, "cp0 insn %08x\n", insn);
138 return 0;
139 }
140
141 void switch_mode(CPUState *env, int mode)
142 {
143 if (mode != ASR_MODE_USER) {
144 cpu_abort(env, "Tried to switch out of user mode\n");
145 }
146 }
147
148 void HELPER(set_r29_banked)(CPUState *env, uint32_t mode, uint32_t val)
149 {
150 cpu_abort(env, "banked r29 write\n");
151 }
152
153 uint32_t HELPER(get_r29_banked)(CPUState *env, uint32_t mode)
154 {
155 cpu_abort(env, "banked r29 read\n");
156 return 0;
157 }
158
159 /* UniCore-F64 support. We follow the convention used for F64 instrunctions:
160 Single precition routines have a "s" suffix, double precision a
161 "d" suffix. */
162
163 /* Convert host exception flags to f64 form. */
164 static inline int ucf64_exceptbits_from_host(int host_bits)
165 {
166 int target_bits = 0;
167
168 if (host_bits & float_flag_invalid) {
169 target_bits |= UCF64_FPSCR_FLAG_INVALID;
170 }
171 if (host_bits & float_flag_divbyzero) {
172 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
173 }
174 if (host_bits & float_flag_overflow) {
175 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
176 }
177 if (host_bits & float_flag_underflow) {
178 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
179 }
180 if (host_bits & float_flag_inexact) {
181 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
182 }
183 return target_bits;
184 }
185
186 uint32_t HELPER(ucf64_get_fpscr)(CPUState *env)
187 {
188 int i;
189 uint32_t fpscr;
190
191 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
192 i = get_float_exception_flags(&env->ucf64.fp_status);
193 fpscr |= ucf64_exceptbits_from_host(i);
194 return fpscr;
195 }
196
197 /* Convert ucf64 exception flags to target form. */
198 static inline int ucf64_exceptbits_to_host(int target_bits)
199 {
200 int host_bits = 0;
201
202 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
203 host_bits |= float_flag_invalid;
204 }
205 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
206 host_bits |= float_flag_divbyzero;
207 }
208 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
209 host_bits |= float_flag_overflow;
210 }
211 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
212 host_bits |= float_flag_underflow;
213 }
214 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
215 host_bits |= float_flag_inexact;
216 }
217 return host_bits;
218 }
219
220 void HELPER(ucf64_set_fpscr)(CPUState *env, uint32_t val)
221 {
222 int i;
223 uint32_t changed;
224
225 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
226 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
227
228 changed ^= val;
229 if (changed & (UCF64_FPSCR_RND_MASK)) {
230 i = UCF64_FPSCR_RND(val);
231 switch (i) {
232 case 0:
233 i = float_round_nearest_even;
234 break;
235 case 1:
236 i = float_round_to_zero;
237 break;
238 case 2:
239 i = float_round_up;
240 break;
241 case 3:
242 i = float_round_down;
243 break;
244 default: /* 100 and 101 not implement */
245 cpu_abort(env, "Unsupported UniCore-F64 round mode");
246 }
247 set_float_rounding_mode(i, &env->ucf64.fp_status);
248 }
249
250 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
251 set_float_exception_flags(i, &env->ucf64.fp_status);
252 }
253
254 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUState *env)
255 {
256 return float32_add(a, b, &env->ucf64.fp_status);
257 }
258
259 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUState *env)
260 {
261 return float64_add(a, b, &env->ucf64.fp_status);
262 }
263
264 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUState *env)
265 {
266 return float32_sub(a, b, &env->ucf64.fp_status);
267 }
268
269 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUState *env)
270 {
271 return float64_sub(a, b, &env->ucf64.fp_status);
272 }
273
274 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUState *env)
275 {
276 return float32_mul(a, b, &env->ucf64.fp_status);
277 }
278
279 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUState *env)
280 {
281 return float64_mul(a, b, &env->ucf64.fp_status);
282 }
283
284 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUState *env)
285 {
286 return float32_div(a, b, &env->ucf64.fp_status);
287 }
288
289 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUState *env)
290 {
291 return float64_div(a, b, &env->ucf64.fp_status);
292 }
293
294 float32 HELPER(ucf64_negs)(float32 a)
295 {
296 return float32_chs(a);
297 }
298
299 float64 HELPER(ucf64_negd)(float64 a)
300 {
301 return float64_chs(a);
302 }
303
304 float32 HELPER(ucf64_abss)(float32 a)
305 {
306 return float32_abs(a);
307 }
308
309 float64 HELPER(ucf64_absd)(float64 a)
310 {
311 return float64_abs(a);
312 }
313
314 /* XXX: check quiet/signaling case */
315 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUState *env)
316 {
317 int flag;
318 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
319 env->CF = 0;
320 switch (c & 0x7) {
321 case 0: /* F */
322 break;
323 case 1: /* UN */
324 if (flag == 2) {
325 env->CF = 1;
326 }
327 break;
328 case 2: /* EQ */
329 if (flag == 0) {
330 env->CF = 1;
331 }
332 break;
333 case 3: /* UEQ */
334 if ((flag == 0) || (flag == 2)) {
335 env->CF = 1;
336 }
337 break;
338 case 4: /* OLT */
339 if (flag == -1) {
340 env->CF = 1;
341 }
342 break;
343 case 5: /* ULT */
344 if ((flag == -1) || (flag == 2)) {
345 env->CF = 1;
346 }
347 break;
348 case 6: /* OLE */
349 if ((flag == -1) || (flag == 0)) {
350 env->CF = 1;
351 }
352 break;
353 case 7: /* ULE */
354 if (flag != 1) {
355 env->CF = 1;
356 }
357 break;
358 }
359 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
360 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
361 }
362
363 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUState *env)
364 {
365 int flag;
366 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
367 env->CF = 0;
368 switch (c & 0x7) {
369 case 0: /* F */
370 break;
371 case 1: /* UN */
372 if (flag == 2) {
373 env->CF = 1;
374 }
375 break;
376 case 2: /* EQ */
377 if (flag == 0) {
378 env->CF = 1;
379 }
380 break;
381 case 3: /* UEQ */
382 if ((flag == 0) || (flag == 2)) {
383 env->CF = 1;
384 }
385 break;
386 case 4: /* OLT */
387 if (flag == -1) {
388 env->CF = 1;
389 }
390 break;
391 case 5: /* ULT */
392 if ((flag == -1) || (flag == 2)) {
393 env->CF = 1;
394 }
395 break;
396 case 6: /* OLE */
397 if ((flag == -1) || (flag == 0)) {
398 env->CF = 1;
399 }
400 break;
401 case 7: /* ULE */
402 if (flag != 1) {
403 env->CF = 1;
404 }
405 break;
406 }
407 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
408 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
409 }
410
411 /* Helper routines to perform bitwise copies between float and int. */
412 static inline float32 ucf64_itos(uint32_t i)
413 {
414 union {
415 uint32_t i;
416 float32 s;
417 } v;
418
419 v.i = i;
420 return v.s;
421 }
422
423 static inline uint32_t ucf64_stoi(float32 s)
424 {
425 union {
426 uint32_t i;
427 float32 s;
428 } v;
429
430 v.s = s;
431 return v.i;
432 }
433
434 static inline float64 ucf64_itod(uint64_t i)
435 {
436 union {
437 uint64_t i;
438 float64 d;
439 } v;
440
441 v.i = i;
442 return v.d;
443 }
444
445 static inline uint64_t ucf64_dtoi(float64 d)
446 {
447 union {
448 uint64_t i;
449 float64 d;
450 } v;
451
452 v.d = d;
453 return v.i;
454 }
455
456 /* Integer to float conversion. */
457 float32 HELPER(ucf64_si2sf)(float32 x, CPUState *env)
458 {
459 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
460 }
461
462 float64 HELPER(ucf64_si2df)(float32 x, CPUState *env)
463 {
464 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
465 }
466
467 /* Float to integer conversion. */
468 float32 HELPER(ucf64_sf2si)(float32 x, CPUState *env)
469 {
470 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
471 }
472
473 float32 HELPER(ucf64_df2si)(float64 x, CPUState *env)
474 {
475 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
476 }
477
478 /* floating point conversion */
479 float64 HELPER(ucf64_sf2df)(float32 x, CPUState *env)
480 {
481 return float32_to_float64(x, &env->ucf64.fp_status);
482 }
483
484 float32 HELPER(ucf64_df2sf)(float64 x, CPUState *env)
485 {
486 return float64_to_float32(x, &env->ucf64.fp_status);
487 }