]> git.proxmox.com Git - qemu.git/blob - target-unicore32/helper.c
target-unicore32: Don't overuse CPUState
[qemu.git] / target-unicore32 / helper.c
1 /*
2 * Copyright (C) 2010-2011 GUAN Xue-tao
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include "cpu.h"
10 #include "gdbstub.h"
11 #include "helper.h"
12 #include "host-utils.h"
13
14 static inline void set_feature(CPUUniCore32State *env, int feature)
15 {
16 env->features |= feature;
17 }
18
19 struct uc32_cpu_t {
20 uint32_t id;
21 const char *name;
22 };
23
24 static const struct uc32_cpu_t uc32_cpu_names[] = {
25 { UC32_CPUID_UCV2, "UniCore-II"},
26 { UC32_CPUID_ANY, "any"},
27 { 0, NULL}
28 };
29
30 /* return 0 if not found */
31 static uint32_t uc32_cpu_find_by_name(const char *name)
32 {
33 int i;
34 uint32_t id;
35
36 id = 0;
37 for (i = 0; uc32_cpu_names[i].name; i++) {
38 if (strcmp(name, uc32_cpu_names[i].name) == 0) {
39 id = uc32_cpu_names[i].id;
40 break;
41 }
42 }
43 return id;
44 }
45
46 CPUUniCore32State *uc32_cpu_init(const char *cpu_model)
47 {
48 CPUUniCore32State *env;
49 uint32_t id;
50 static int inited = 1;
51
52 env = g_malloc0(sizeof(CPUUniCore32State));
53 cpu_exec_init(env);
54
55 id = uc32_cpu_find_by_name(cpu_model);
56 switch (id) {
57 case UC32_CPUID_UCV2:
58 set_feature(env, UC32_HWCAP_CMOV);
59 set_feature(env, UC32_HWCAP_UCF64);
60 env->ucf64.xregs[UC32_UCF64_FPSCR] = 0;
61 env->cp0.c0_cachetype = 0x1dd20d2;
62 env->cp0.c1_sys = 0x00090078;
63 break;
64 case UC32_CPUID_ANY: /* For userspace emulation. */
65 set_feature(env, UC32_HWCAP_CMOV);
66 set_feature(env, UC32_HWCAP_UCF64);
67 break;
68 default:
69 cpu_abort(env, "Bad CPU ID: %x\n", id);
70 }
71
72 env->cpu_model_str = cpu_model;
73 env->cp0.c0_cpuid = id;
74 env->uncached_asr = ASR_MODE_USER;
75 env->regs[31] = 0;
76
77 if (inited) {
78 inited = 0;
79 uc32_translate_init();
80 }
81
82 tlb_flush(env, 1);
83 qemu_init_vcpu(env);
84 return env;
85 }
86
87 uint32_t HELPER(clo)(uint32_t x)
88 {
89 return clo32(x);
90 }
91
92 uint32_t HELPER(clz)(uint32_t x)
93 {
94 return clz32(x);
95 }
96
97 void do_interrupt(CPUUniCore32State *env)
98 {
99 env->exception_index = -1;
100 }
101
102 int uc32_cpu_handle_mmu_fault(CPUUniCore32State *env, target_ulong address, int rw,
103 int mmu_idx)
104 {
105 env->exception_index = UC32_EXCP_TRAP;
106 env->cp0.c4_faultaddr = address;
107 return 1;
108 }
109
110 /* These should probably raise undefined insn exceptions. */
111 void HELPER(set_cp)(CPUUniCore32State *env, uint32_t insn, uint32_t val)
112 {
113 int op1 = (insn >> 8) & 0xf;
114 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
115 return;
116 }
117
118 uint32_t HELPER(get_cp)(CPUUniCore32State *env, uint32_t insn)
119 {
120 int op1 = (insn >> 8) & 0xf;
121 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
122 return 0;
123 }
124
125 void HELPER(set_cp0)(CPUUniCore32State *env, uint32_t insn, uint32_t val)
126 {
127 cpu_abort(env, "cp0 insn %08x\n", insn);
128 }
129
130 uint32_t HELPER(get_cp0)(CPUUniCore32State *env, uint32_t insn)
131 {
132 cpu_abort(env, "cp0 insn %08x\n", insn);
133 return 0;
134 }
135
136 void switch_mode(CPUUniCore32State *env, int mode)
137 {
138 if (mode != ASR_MODE_USER) {
139 cpu_abort(env, "Tried to switch out of user mode\n");
140 }
141 }
142
143 void HELPER(set_r29_banked)(CPUUniCore32State *env, uint32_t mode, uint32_t val)
144 {
145 cpu_abort(env, "banked r29 write\n");
146 }
147
148 uint32_t HELPER(get_r29_banked)(CPUUniCore32State *env, uint32_t mode)
149 {
150 cpu_abort(env, "banked r29 read\n");
151 return 0;
152 }
153
154 /* UniCore-F64 support. We follow the convention used for F64 instrunctions:
155 Single precition routines have a "s" suffix, double precision a
156 "d" suffix. */
157
158 /* Convert host exception flags to f64 form. */
159 static inline int ucf64_exceptbits_from_host(int host_bits)
160 {
161 int target_bits = 0;
162
163 if (host_bits & float_flag_invalid) {
164 target_bits |= UCF64_FPSCR_FLAG_INVALID;
165 }
166 if (host_bits & float_flag_divbyzero) {
167 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
168 }
169 if (host_bits & float_flag_overflow) {
170 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
171 }
172 if (host_bits & float_flag_underflow) {
173 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
174 }
175 if (host_bits & float_flag_inexact) {
176 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
177 }
178 return target_bits;
179 }
180
181 uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
182 {
183 int i;
184 uint32_t fpscr;
185
186 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
187 i = get_float_exception_flags(&env->ucf64.fp_status);
188 fpscr |= ucf64_exceptbits_from_host(i);
189 return fpscr;
190 }
191
192 /* Convert ucf64 exception flags to target form. */
193 static inline int ucf64_exceptbits_to_host(int target_bits)
194 {
195 int host_bits = 0;
196
197 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
198 host_bits |= float_flag_invalid;
199 }
200 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
201 host_bits |= float_flag_divbyzero;
202 }
203 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
204 host_bits |= float_flag_overflow;
205 }
206 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
207 host_bits |= float_flag_underflow;
208 }
209 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
210 host_bits |= float_flag_inexact;
211 }
212 return host_bits;
213 }
214
215 void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
216 {
217 int i;
218 uint32_t changed;
219
220 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
221 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
222
223 changed ^= val;
224 if (changed & (UCF64_FPSCR_RND_MASK)) {
225 i = UCF64_FPSCR_RND(val);
226 switch (i) {
227 case 0:
228 i = float_round_nearest_even;
229 break;
230 case 1:
231 i = float_round_to_zero;
232 break;
233 case 2:
234 i = float_round_up;
235 break;
236 case 3:
237 i = float_round_down;
238 break;
239 default: /* 100 and 101 not implement */
240 cpu_abort(env, "Unsupported UniCore-F64 round mode");
241 }
242 set_float_rounding_mode(i, &env->ucf64.fp_status);
243 }
244
245 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
246 set_float_exception_flags(i, &env->ucf64.fp_status);
247 }
248
249 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
250 {
251 return float32_add(a, b, &env->ucf64.fp_status);
252 }
253
254 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
255 {
256 return float64_add(a, b, &env->ucf64.fp_status);
257 }
258
259 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
260 {
261 return float32_sub(a, b, &env->ucf64.fp_status);
262 }
263
264 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
265 {
266 return float64_sub(a, b, &env->ucf64.fp_status);
267 }
268
269 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
270 {
271 return float32_mul(a, b, &env->ucf64.fp_status);
272 }
273
274 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
275 {
276 return float64_mul(a, b, &env->ucf64.fp_status);
277 }
278
279 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
280 {
281 return float32_div(a, b, &env->ucf64.fp_status);
282 }
283
284 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
285 {
286 return float64_div(a, b, &env->ucf64.fp_status);
287 }
288
289 float32 HELPER(ucf64_negs)(float32 a)
290 {
291 return float32_chs(a);
292 }
293
294 float64 HELPER(ucf64_negd)(float64 a)
295 {
296 return float64_chs(a);
297 }
298
299 float32 HELPER(ucf64_abss)(float32 a)
300 {
301 return float32_abs(a);
302 }
303
304 float64 HELPER(ucf64_absd)(float64 a)
305 {
306 return float64_abs(a);
307 }
308
309 /* XXX: check quiet/signaling case */
310 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUUniCore32State *env)
311 {
312 int flag;
313 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
314 env->CF = 0;
315 switch (c & 0x7) {
316 case 0: /* F */
317 break;
318 case 1: /* UN */
319 if (flag == 2) {
320 env->CF = 1;
321 }
322 break;
323 case 2: /* EQ */
324 if (flag == 0) {
325 env->CF = 1;
326 }
327 break;
328 case 3: /* UEQ */
329 if ((flag == 0) || (flag == 2)) {
330 env->CF = 1;
331 }
332 break;
333 case 4: /* OLT */
334 if (flag == -1) {
335 env->CF = 1;
336 }
337 break;
338 case 5: /* ULT */
339 if ((flag == -1) || (flag == 2)) {
340 env->CF = 1;
341 }
342 break;
343 case 6: /* OLE */
344 if ((flag == -1) || (flag == 0)) {
345 env->CF = 1;
346 }
347 break;
348 case 7: /* ULE */
349 if (flag != 1) {
350 env->CF = 1;
351 }
352 break;
353 }
354 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
355 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
356 }
357
358 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env)
359 {
360 int flag;
361 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
362 env->CF = 0;
363 switch (c & 0x7) {
364 case 0: /* F */
365 break;
366 case 1: /* UN */
367 if (flag == 2) {
368 env->CF = 1;
369 }
370 break;
371 case 2: /* EQ */
372 if (flag == 0) {
373 env->CF = 1;
374 }
375 break;
376 case 3: /* UEQ */
377 if ((flag == 0) || (flag == 2)) {
378 env->CF = 1;
379 }
380 break;
381 case 4: /* OLT */
382 if (flag == -1) {
383 env->CF = 1;
384 }
385 break;
386 case 5: /* ULT */
387 if ((flag == -1) || (flag == 2)) {
388 env->CF = 1;
389 }
390 break;
391 case 6: /* OLE */
392 if ((flag == -1) || (flag == 0)) {
393 env->CF = 1;
394 }
395 break;
396 case 7: /* ULE */
397 if (flag != 1) {
398 env->CF = 1;
399 }
400 break;
401 }
402 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
403 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
404 }
405
406 /* Helper routines to perform bitwise copies between float and int. */
407 static inline float32 ucf64_itos(uint32_t i)
408 {
409 union {
410 uint32_t i;
411 float32 s;
412 } v;
413
414 v.i = i;
415 return v.s;
416 }
417
418 static inline uint32_t ucf64_stoi(float32 s)
419 {
420 union {
421 uint32_t i;
422 float32 s;
423 } v;
424
425 v.s = s;
426 return v.i;
427 }
428
429 static inline float64 ucf64_itod(uint64_t i)
430 {
431 union {
432 uint64_t i;
433 float64 d;
434 } v;
435
436 v.i = i;
437 return v.d;
438 }
439
440 static inline uint64_t ucf64_dtoi(float64 d)
441 {
442 union {
443 uint64_t i;
444 float64 d;
445 } v;
446
447 v.d = d;
448 return v.i;
449 }
450
451 /* Integer to float conversion. */
452 float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
453 {
454 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
455 }
456
457 float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
458 {
459 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
460 }
461
462 /* Float to integer conversion. */
463 float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
464 {
465 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
466 }
467
468 float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
469 {
470 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
471 }
472
473 /* floating point conversion */
474 float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
475 {
476 return float32_to_float64(x, &env->ucf64.fp_status);
477 }
478
479 float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
480 {
481 return float64_to_float32(x, &env->ucf64.fp_status);
482 }