]> git.proxmox.com Git - qemu.git/blob - target-unicore32/helper.c
unicore32-softmmu: Add unicore32-softmmu build support
[qemu.git] / target-unicore32 / helper.c
1 /*
2 * Copyright (C) 2010-2012 Guan Xuetao
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Contributions from 2012-04-01 on are considered under GPL version 2,
9 * or (at your option) any later version.
10 */
11
12 #include "cpu.h"
13 #include "gdbstub.h"
14 #include "helper.h"
15 #include "host-utils.h"
16
17 CPUUniCore32State *uc32_cpu_init(const char *cpu_model)
18 {
19 UniCore32CPU *cpu;
20 CPUUniCore32State *env;
21 static int inited = 1;
22
23 if (object_class_by_name(cpu_model) == NULL) {
24 return NULL;
25 }
26 cpu = UNICORE32_CPU(object_new(cpu_model));
27 env = &cpu->env;
28
29 if (inited) {
30 inited = 0;
31 uc32_translate_init();
32 }
33
34 qemu_init_vcpu(env);
35 return env;
36 }
37
38 uint32_t HELPER(clo)(uint32_t x)
39 {
40 return clo32(x);
41 }
42
43 uint32_t HELPER(clz)(uint32_t x)
44 {
45 return clz32(x);
46 }
47
48 #ifdef CONFIG_USER_ONLY
49 void switch_mode(CPUUniCore32State *env, int mode)
50 {
51 if (mode != ASR_MODE_USER) {
52 cpu_abort(env, "Tried to switch out of user mode\n");
53 }
54 }
55
56 void do_interrupt(CPUUniCore32State *env)
57 {
58 cpu_abort(env, "NO interrupt in user mode\n");
59 }
60
61 int uc32_cpu_handle_mmu_fault(CPUUniCore32State *env, target_ulong address,
62 int access_type, int mmu_idx)
63 {
64 cpu_abort(env, "NO mmu fault in user mode\n");
65 return 1;
66 }
67 #endif
68
69 /* These should probably raise undefined insn exceptions. */
70 void HELPER(set_cp)(CPUUniCore32State *env, uint32_t insn, uint32_t val)
71 {
72 int op1 = (insn >> 8) & 0xf;
73 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
74 return;
75 }
76
77 uint32_t HELPER(get_cp)(CPUUniCore32State *env, uint32_t insn)
78 {
79 int op1 = (insn >> 8) & 0xf;
80 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
81 return 0;
82 }
83
84 void HELPER(set_cp0)(CPUUniCore32State *env, uint32_t insn, uint32_t val)
85 {
86 cpu_abort(env, "cp0 insn %08x\n", insn);
87 }
88
89 uint32_t HELPER(get_cp0)(CPUUniCore32State *env, uint32_t insn)
90 {
91 cpu_abort(env, "cp0 insn %08x\n", insn);
92 return 0;
93 }
94
95 void HELPER(set_r29_banked)(CPUUniCore32State *env, uint32_t mode, uint32_t val)
96 {
97 cpu_abort(env, "banked r29 write\n");
98 }
99
100 uint32_t HELPER(get_r29_banked)(CPUUniCore32State *env, uint32_t mode)
101 {
102 cpu_abort(env, "banked r29 read\n");
103 return 0;
104 }
105
106 /* UniCore-F64 support. We follow the convention used for F64 instrunctions:
107 Single precition routines have a "s" suffix, double precision a
108 "d" suffix. */
109
110 /* Convert host exception flags to f64 form. */
111 static inline int ucf64_exceptbits_from_host(int host_bits)
112 {
113 int target_bits = 0;
114
115 if (host_bits & float_flag_invalid) {
116 target_bits |= UCF64_FPSCR_FLAG_INVALID;
117 }
118 if (host_bits & float_flag_divbyzero) {
119 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
120 }
121 if (host_bits & float_flag_overflow) {
122 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
123 }
124 if (host_bits & float_flag_underflow) {
125 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
126 }
127 if (host_bits & float_flag_inexact) {
128 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
129 }
130 return target_bits;
131 }
132
133 uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
134 {
135 int i;
136 uint32_t fpscr;
137
138 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
139 i = get_float_exception_flags(&env->ucf64.fp_status);
140 fpscr |= ucf64_exceptbits_from_host(i);
141 return fpscr;
142 }
143
144 /* Convert ucf64 exception flags to target form. */
145 static inline int ucf64_exceptbits_to_host(int target_bits)
146 {
147 int host_bits = 0;
148
149 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
150 host_bits |= float_flag_invalid;
151 }
152 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
153 host_bits |= float_flag_divbyzero;
154 }
155 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
156 host_bits |= float_flag_overflow;
157 }
158 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
159 host_bits |= float_flag_underflow;
160 }
161 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
162 host_bits |= float_flag_inexact;
163 }
164 return host_bits;
165 }
166
167 void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
168 {
169 int i;
170 uint32_t changed;
171
172 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
173 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
174
175 changed ^= val;
176 if (changed & (UCF64_FPSCR_RND_MASK)) {
177 i = UCF64_FPSCR_RND(val);
178 switch (i) {
179 case 0:
180 i = float_round_nearest_even;
181 break;
182 case 1:
183 i = float_round_to_zero;
184 break;
185 case 2:
186 i = float_round_up;
187 break;
188 case 3:
189 i = float_round_down;
190 break;
191 default: /* 100 and 101 not implement */
192 cpu_abort(env, "Unsupported UniCore-F64 round mode");
193 }
194 set_float_rounding_mode(i, &env->ucf64.fp_status);
195 }
196
197 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
198 set_float_exception_flags(i, &env->ucf64.fp_status);
199 }
200
201 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
202 {
203 return float32_add(a, b, &env->ucf64.fp_status);
204 }
205
206 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
207 {
208 return float64_add(a, b, &env->ucf64.fp_status);
209 }
210
211 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
212 {
213 return float32_sub(a, b, &env->ucf64.fp_status);
214 }
215
216 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
217 {
218 return float64_sub(a, b, &env->ucf64.fp_status);
219 }
220
221 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
222 {
223 return float32_mul(a, b, &env->ucf64.fp_status);
224 }
225
226 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
227 {
228 return float64_mul(a, b, &env->ucf64.fp_status);
229 }
230
231 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
232 {
233 return float32_div(a, b, &env->ucf64.fp_status);
234 }
235
236 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
237 {
238 return float64_div(a, b, &env->ucf64.fp_status);
239 }
240
241 float32 HELPER(ucf64_negs)(float32 a)
242 {
243 return float32_chs(a);
244 }
245
246 float64 HELPER(ucf64_negd)(float64 a)
247 {
248 return float64_chs(a);
249 }
250
251 float32 HELPER(ucf64_abss)(float32 a)
252 {
253 return float32_abs(a);
254 }
255
256 float64 HELPER(ucf64_absd)(float64 a)
257 {
258 return float64_abs(a);
259 }
260
261 /* XXX: check quiet/signaling case */
262 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUUniCore32State *env)
263 {
264 int flag;
265 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
266 env->CF = 0;
267 switch (c & 0x7) {
268 case 0: /* F */
269 break;
270 case 1: /* UN */
271 if (flag == 2) {
272 env->CF = 1;
273 }
274 break;
275 case 2: /* EQ */
276 if (flag == 0) {
277 env->CF = 1;
278 }
279 break;
280 case 3: /* UEQ */
281 if ((flag == 0) || (flag == 2)) {
282 env->CF = 1;
283 }
284 break;
285 case 4: /* OLT */
286 if (flag == -1) {
287 env->CF = 1;
288 }
289 break;
290 case 5: /* ULT */
291 if ((flag == -1) || (flag == 2)) {
292 env->CF = 1;
293 }
294 break;
295 case 6: /* OLE */
296 if ((flag == -1) || (flag == 0)) {
297 env->CF = 1;
298 }
299 break;
300 case 7: /* ULE */
301 if (flag != 1) {
302 env->CF = 1;
303 }
304 break;
305 }
306 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
307 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
308 }
309
310 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env)
311 {
312 int flag;
313 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
314 env->CF = 0;
315 switch (c & 0x7) {
316 case 0: /* F */
317 break;
318 case 1: /* UN */
319 if (flag == 2) {
320 env->CF = 1;
321 }
322 break;
323 case 2: /* EQ */
324 if (flag == 0) {
325 env->CF = 1;
326 }
327 break;
328 case 3: /* UEQ */
329 if ((flag == 0) || (flag == 2)) {
330 env->CF = 1;
331 }
332 break;
333 case 4: /* OLT */
334 if (flag == -1) {
335 env->CF = 1;
336 }
337 break;
338 case 5: /* ULT */
339 if ((flag == -1) || (flag == 2)) {
340 env->CF = 1;
341 }
342 break;
343 case 6: /* OLE */
344 if ((flag == -1) || (flag == 0)) {
345 env->CF = 1;
346 }
347 break;
348 case 7: /* ULE */
349 if (flag != 1) {
350 env->CF = 1;
351 }
352 break;
353 }
354 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
355 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
356 }
357
358 /* Helper routines to perform bitwise copies between float and int. */
359 static inline float32 ucf64_itos(uint32_t i)
360 {
361 union {
362 uint32_t i;
363 float32 s;
364 } v;
365
366 v.i = i;
367 return v.s;
368 }
369
370 static inline uint32_t ucf64_stoi(float32 s)
371 {
372 union {
373 uint32_t i;
374 float32 s;
375 } v;
376
377 v.s = s;
378 return v.i;
379 }
380
381 static inline float64 ucf64_itod(uint64_t i)
382 {
383 union {
384 uint64_t i;
385 float64 d;
386 } v;
387
388 v.i = i;
389 return v.d;
390 }
391
392 static inline uint64_t ucf64_dtoi(float64 d)
393 {
394 union {
395 uint64_t i;
396 float64 d;
397 } v;
398
399 v.d = d;
400 return v.i;
401 }
402
403 /* Integer to float conversion. */
404 float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
405 {
406 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
407 }
408
409 float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
410 {
411 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
412 }
413
414 /* Float to integer conversion. */
415 float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
416 {
417 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
418 }
419
420 float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
421 {
422 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
423 }
424
425 /* floating point conversion */
426 float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
427 {
428 return float32_to_float64(x, &env->ucf64.fp_status);
429 }
430
431 float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
432 {
433 return float64_to_float32(x, &env->ucf64.fp_status);
434 }