]> git.proxmox.com Git - qemu.git/blob - target-unicore32/helper.c
unicore32-softmmu: Add coprocessor 0(sysctrl) and 1(ocd) instruction support
[qemu.git] / target-unicore32 / helper.c
1 /*
2 * Copyright (C) 2010-2012 Guan Xuetao
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Contributions from 2012-04-01 on are considered under GPL version 2,
9 * or (at your option) any later version.
10 */
11
12 #include "cpu.h"
13 #include "gdbstub.h"
14 #include "helper.h"
15 #include "host-utils.h"
16
17 #undef DEBUG_UC32
18
19 #ifdef DEBUG_UC32
20 #define DPRINTF(fmt, ...) printf("%s: " fmt , __func__, ## __VA_ARGS__)
21 #else
22 #define DPRINTF(fmt, ...) do {} while (0)
23 #endif
24
25 CPUUniCore32State *uc32_cpu_init(const char *cpu_model)
26 {
27 UniCore32CPU *cpu;
28 CPUUniCore32State *env;
29 static int inited = 1;
30
31 if (object_class_by_name(cpu_model) == NULL) {
32 return NULL;
33 }
34 cpu = UNICORE32_CPU(object_new(cpu_model));
35 env = &cpu->env;
36
37 if (inited) {
38 inited = 0;
39 uc32_translate_init();
40 }
41
42 qemu_init_vcpu(env);
43 return env;
44 }
45
46 uint32_t HELPER(clo)(uint32_t x)
47 {
48 return clo32(x);
49 }
50
51 uint32_t HELPER(clz)(uint32_t x)
52 {
53 return clz32(x);
54 }
55
56 #ifndef CONFIG_USER_ONLY
57 void helper_cp0_set(CPUUniCore32State *env, uint32_t val, uint32_t creg,
58 uint32_t cop)
59 {
60 /*
61 * movc pp.nn, rn, #imm9
62 * rn: UCOP_REG_D
63 * nn: UCOP_REG_N
64 * 1: sys control reg.
65 * 2: page table base reg.
66 * 3: data fault status reg.
67 * 4: insn fault status reg.
68 * 5: cache op. reg.
69 * 6: tlb op. reg.
70 * imm9: split UCOP_IMM10 with bit5 is 0
71 */
72 switch (creg) {
73 case 1:
74 if (cop != 0) {
75 goto unrecognized;
76 }
77 env->cp0.c1_sys = val;
78 break;
79 case 2:
80 if (cop != 0) {
81 goto unrecognized;
82 }
83 env->cp0.c2_base = val;
84 break;
85 case 3:
86 if (cop != 0) {
87 goto unrecognized;
88 }
89 env->cp0.c3_faultstatus = val;
90 break;
91 case 4:
92 if (cop != 0) {
93 goto unrecognized;
94 }
95 env->cp0.c4_faultaddr = val;
96 break;
97 case 5:
98 switch (cop) {
99 case 28:
100 DPRINTF("Invalidate Entire I&D cache\n");
101 return;
102 case 20:
103 DPRINTF("Invalidate Entire Icache\n");
104 return;
105 case 12:
106 DPRINTF("Invalidate Entire Dcache\n");
107 return;
108 case 10:
109 DPRINTF("Clean Entire Dcache\n");
110 return;
111 case 14:
112 DPRINTF("Flush Entire Dcache\n");
113 return;
114 case 13:
115 DPRINTF("Invalidate Dcache line\n");
116 return;
117 case 11:
118 DPRINTF("Clean Dcache line\n");
119 return;
120 case 15:
121 DPRINTF("Flush Dcache line\n");
122 return;
123 }
124 break;
125 case 6:
126 if ((cop <= 6) && (cop >= 2)) {
127 /* invalid all tlb */
128 tlb_flush(env, 1);
129 return;
130 }
131 break;
132 default:
133 goto unrecognized;
134 }
135 return;
136 unrecognized:
137 DPRINTF("Wrong register (%d) or wrong operation (%d) in cp0_set!\n",
138 creg, cop);
139 }
140
141 uint32_t helper_cp0_get(CPUUniCore32State *env, uint32_t creg, uint32_t cop)
142 {
143 /*
144 * movc rd, pp.nn, #imm9
145 * rd: UCOP_REG_D
146 * nn: UCOP_REG_N
147 * 0: cpuid and cachetype
148 * 1: sys control reg.
149 * 2: page table base reg.
150 * 3: data fault status reg.
151 * 4: insn fault status reg.
152 * imm9: split UCOP_IMM10 with bit5 is 0
153 */
154 switch (creg) {
155 case 0:
156 switch (cop) {
157 case 0:
158 return env->cp0.c0_cpuid;
159 case 1:
160 return env->cp0.c0_cachetype;
161 }
162 break;
163 case 1:
164 if (cop == 0) {
165 return env->cp0.c1_sys;
166 }
167 break;
168 case 2:
169 if (cop == 0) {
170 return env->cp0.c2_base;
171 }
172 break;
173 case 3:
174 if (cop == 0) {
175 return env->cp0.c3_faultstatus;
176 }
177 break;
178 case 4:
179 if (cop == 0) {
180 return env->cp0.c4_faultaddr;
181 }
182 break;
183 }
184 DPRINTF("Wrong register (%d) or wrong operation (%d) in cp0_set!\n",
185 creg, cop);
186 return 0;
187 }
188
189 void helper_cp1_putc(target_ulong x)
190 {
191 /* TODO: curses display should be added here for screen output. */
192 DPRINTF("%c", x);
193 }
194 #endif
195
196 #ifdef CONFIG_USER_ONLY
197 void switch_mode(CPUUniCore32State *env, int mode)
198 {
199 if (mode != ASR_MODE_USER) {
200 cpu_abort(env, "Tried to switch out of user mode\n");
201 }
202 }
203
204 void do_interrupt(CPUUniCore32State *env)
205 {
206 cpu_abort(env, "NO interrupt in user mode\n");
207 }
208
209 int uc32_cpu_handle_mmu_fault(CPUUniCore32State *env, target_ulong address,
210 int access_type, int mmu_idx)
211 {
212 cpu_abort(env, "NO mmu fault in user mode\n");
213 return 1;
214 }
215 #endif
216
217 /* UniCore-F64 support. We follow the convention used for F64 instrunctions:
218 Single precition routines have a "s" suffix, double precision a
219 "d" suffix. */
220
221 /* Convert host exception flags to f64 form. */
222 static inline int ucf64_exceptbits_from_host(int host_bits)
223 {
224 int target_bits = 0;
225
226 if (host_bits & float_flag_invalid) {
227 target_bits |= UCF64_FPSCR_FLAG_INVALID;
228 }
229 if (host_bits & float_flag_divbyzero) {
230 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
231 }
232 if (host_bits & float_flag_overflow) {
233 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
234 }
235 if (host_bits & float_flag_underflow) {
236 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
237 }
238 if (host_bits & float_flag_inexact) {
239 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
240 }
241 return target_bits;
242 }
243
244 uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
245 {
246 int i;
247 uint32_t fpscr;
248
249 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
250 i = get_float_exception_flags(&env->ucf64.fp_status);
251 fpscr |= ucf64_exceptbits_from_host(i);
252 return fpscr;
253 }
254
255 /* Convert ucf64 exception flags to target form. */
256 static inline int ucf64_exceptbits_to_host(int target_bits)
257 {
258 int host_bits = 0;
259
260 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
261 host_bits |= float_flag_invalid;
262 }
263 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
264 host_bits |= float_flag_divbyzero;
265 }
266 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
267 host_bits |= float_flag_overflow;
268 }
269 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
270 host_bits |= float_flag_underflow;
271 }
272 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
273 host_bits |= float_flag_inexact;
274 }
275 return host_bits;
276 }
277
278 void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
279 {
280 int i;
281 uint32_t changed;
282
283 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
284 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
285
286 changed ^= val;
287 if (changed & (UCF64_FPSCR_RND_MASK)) {
288 i = UCF64_FPSCR_RND(val);
289 switch (i) {
290 case 0:
291 i = float_round_nearest_even;
292 break;
293 case 1:
294 i = float_round_to_zero;
295 break;
296 case 2:
297 i = float_round_up;
298 break;
299 case 3:
300 i = float_round_down;
301 break;
302 default: /* 100 and 101 not implement */
303 cpu_abort(env, "Unsupported UniCore-F64 round mode");
304 }
305 set_float_rounding_mode(i, &env->ucf64.fp_status);
306 }
307
308 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
309 set_float_exception_flags(i, &env->ucf64.fp_status);
310 }
311
312 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
313 {
314 return float32_add(a, b, &env->ucf64.fp_status);
315 }
316
317 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
318 {
319 return float64_add(a, b, &env->ucf64.fp_status);
320 }
321
322 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
323 {
324 return float32_sub(a, b, &env->ucf64.fp_status);
325 }
326
327 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
328 {
329 return float64_sub(a, b, &env->ucf64.fp_status);
330 }
331
332 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
333 {
334 return float32_mul(a, b, &env->ucf64.fp_status);
335 }
336
337 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
338 {
339 return float64_mul(a, b, &env->ucf64.fp_status);
340 }
341
342 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
343 {
344 return float32_div(a, b, &env->ucf64.fp_status);
345 }
346
347 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
348 {
349 return float64_div(a, b, &env->ucf64.fp_status);
350 }
351
352 float32 HELPER(ucf64_negs)(float32 a)
353 {
354 return float32_chs(a);
355 }
356
357 float64 HELPER(ucf64_negd)(float64 a)
358 {
359 return float64_chs(a);
360 }
361
362 float32 HELPER(ucf64_abss)(float32 a)
363 {
364 return float32_abs(a);
365 }
366
367 float64 HELPER(ucf64_absd)(float64 a)
368 {
369 return float64_abs(a);
370 }
371
372 /* XXX: check quiet/signaling case */
373 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUUniCore32State *env)
374 {
375 int flag;
376 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
377 env->CF = 0;
378 switch (c & 0x7) {
379 case 0: /* F */
380 break;
381 case 1: /* UN */
382 if (flag == 2) {
383 env->CF = 1;
384 }
385 break;
386 case 2: /* EQ */
387 if (flag == 0) {
388 env->CF = 1;
389 }
390 break;
391 case 3: /* UEQ */
392 if ((flag == 0) || (flag == 2)) {
393 env->CF = 1;
394 }
395 break;
396 case 4: /* OLT */
397 if (flag == -1) {
398 env->CF = 1;
399 }
400 break;
401 case 5: /* ULT */
402 if ((flag == -1) || (flag == 2)) {
403 env->CF = 1;
404 }
405 break;
406 case 6: /* OLE */
407 if ((flag == -1) || (flag == 0)) {
408 env->CF = 1;
409 }
410 break;
411 case 7: /* ULE */
412 if (flag != 1) {
413 env->CF = 1;
414 }
415 break;
416 }
417 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
418 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
419 }
420
421 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env)
422 {
423 int flag;
424 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
425 env->CF = 0;
426 switch (c & 0x7) {
427 case 0: /* F */
428 break;
429 case 1: /* UN */
430 if (flag == 2) {
431 env->CF = 1;
432 }
433 break;
434 case 2: /* EQ */
435 if (flag == 0) {
436 env->CF = 1;
437 }
438 break;
439 case 3: /* UEQ */
440 if ((flag == 0) || (flag == 2)) {
441 env->CF = 1;
442 }
443 break;
444 case 4: /* OLT */
445 if (flag == -1) {
446 env->CF = 1;
447 }
448 break;
449 case 5: /* ULT */
450 if ((flag == -1) || (flag == 2)) {
451 env->CF = 1;
452 }
453 break;
454 case 6: /* OLE */
455 if ((flag == -1) || (flag == 0)) {
456 env->CF = 1;
457 }
458 break;
459 case 7: /* ULE */
460 if (flag != 1) {
461 env->CF = 1;
462 }
463 break;
464 }
465 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
466 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
467 }
468
469 /* Helper routines to perform bitwise copies between float and int. */
470 static inline float32 ucf64_itos(uint32_t i)
471 {
472 union {
473 uint32_t i;
474 float32 s;
475 } v;
476
477 v.i = i;
478 return v.s;
479 }
480
481 static inline uint32_t ucf64_stoi(float32 s)
482 {
483 union {
484 uint32_t i;
485 float32 s;
486 } v;
487
488 v.s = s;
489 return v.i;
490 }
491
492 static inline float64 ucf64_itod(uint64_t i)
493 {
494 union {
495 uint64_t i;
496 float64 d;
497 } v;
498
499 v.i = i;
500 return v.d;
501 }
502
503 static inline uint64_t ucf64_dtoi(float64 d)
504 {
505 union {
506 uint64_t i;
507 float64 d;
508 } v;
509
510 v.d = d;
511 return v.i;
512 }
513
514 /* Integer to float conversion. */
515 float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
516 {
517 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
518 }
519
520 float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
521 {
522 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
523 }
524
525 /* Float to integer conversion. */
526 float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
527 {
528 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
529 }
530
531 float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
532 {
533 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
534 }
535
536 /* floating point conversion */
537 float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
538 {
539 return float32_to_float64(x, &env->ucf64.fp_status);
540 }
541
542 float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
543 {
544 return float64_to_float32(x, &env->ucf64.fp_status);
545 }