]> git.proxmox.com Git - qemu.git/blob - target-xtensa/helper.c
target-xtensa: Move TCG initialization to XtensaCPU initfn
[qemu.git] / target-xtensa / helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
35
36 static struct XtensaConfigList *xtensa_cores;
37
38 void xtensa_register_core(XtensaConfigList *node)
39 {
40 node->next = xtensa_cores;
41 xtensa_cores = node;
42 }
43
44 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
45 {
46 unsigned i;
47
48 for (i = 0; i < env->config->ndbreak; ++i) {
49 if (env->cpu_watchpoint[i] &&
50 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
51 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
52 }
53 }
54 return 0;
55 }
56
57 void xtensa_breakpoint_handler(CPUXtensaState *env)
58 {
59 if (env->watchpoint_hit) {
60 if (env->watchpoint_hit->flags & BP_CPU) {
61 uint32_t cause;
62
63 env->watchpoint_hit = NULL;
64 cause = check_hw_breakpoints(env);
65 if (cause) {
66 debug_exception_env(env, cause);
67 }
68 cpu_resume_from_signal(env, NULL);
69 }
70 }
71 }
72
73 XtensaCPU *cpu_xtensa_init(const char *cpu_model)
74 {
75 XtensaCPU *cpu;
76 CPUXtensaState *env;
77 const XtensaConfig *config = NULL;
78 XtensaConfigList *core = xtensa_cores;
79
80 for (; core; core = core->next)
81 if (strcmp(core->config->name, cpu_model) == 0) {
82 config = core->config;
83 break;
84 }
85
86 if (config == NULL) {
87 return NULL;
88 }
89
90 cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
91 env = &cpu->env;
92 env->config = config;
93
94 xtensa_irq_init(env);
95
96 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
97
98 return cpu;
99 }
100
101
102 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
103 {
104 XtensaConfigList *core = xtensa_cores;
105 cpu_fprintf(f, "Available CPUs:\n");
106 for (; core; core = core->next) {
107 cpu_fprintf(f, " %s\n", core->config->name);
108 }
109 }
110
111 hwaddr cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
112 {
113 uint32_t paddr;
114 uint32_t page_size;
115 unsigned access;
116
117 if (xtensa_get_physical_addr(env, false, addr, 0, 0,
118 &paddr, &page_size, &access) == 0) {
119 return paddr;
120 }
121 if (xtensa_get_physical_addr(env, false, addr, 2, 0,
122 &paddr, &page_size, &access) == 0) {
123 return paddr;
124 }
125 return ~0;
126 }
127
128 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
129 {
130 if (xtensa_option_enabled(env->config,
131 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
132 return vector - env->config->vecbase + env->sregs[VECBASE];
133 } else {
134 return vector;
135 }
136 }
137
138 /*!
139 * Handle penging IRQ.
140 * For the high priority interrupt jump to the corresponding interrupt vector.
141 * For the level-1 interrupt convert it to either user, kernel or double
142 * exception with the 'level-1 interrupt' exception cause.
143 */
144 static void handle_interrupt(CPUXtensaState *env)
145 {
146 int level = env->pending_irq_level;
147
148 if (level > xtensa_get_cintlevel(env) &&
149 level <= env->config->nlevel &&
150 (env->config->level_mask[level] &
151 env->sregs[INTSET] &
152 env->sregs[INTENABLE])) {
153 if (level > 1) {
154 env->sregs[EPC1 + level - 1] = env->pc;
155 env->sregs[EPS2 + level - 2] = env->sregs[PS];
156 env->sregs[PS] =
157 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
158 env->pc = relocated_vector(env,
159 env->config->interrupt_vector[level]);
160 } else {
161 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
162
163 if (env->sregs[PS] & PS_EXCM) {
164 if (env->config->ndepc) {
165 env->sregs[DEPC] = env->pc;
166 } else {
167 env->sregs[EPC1] = env->pc;
168 }
169 env->exception_index = EXC_DOUBLE;
170 } else {
171 env->sregs[EPC1] = env->pc;
172 env->exception_index =
173 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
174 }
175 env->sregs[PS] |= PS_EXCM;
176 }
177 env->exception_taken = 1;
178 }
179 }
180
181 void do_interrupt(CPUXtensaState *env)
182 {
183 if (env->exception_index == EXC_IRQ) {
184 qemu_log_mask(CPU_LOG_INT,
185 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
186 "pc = %08x, a0 = %08x, ps = %08x, "
187 "intset = %08x, intenable = %08x, "
188 "ccount = %08x\n",
189 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
190 env->pc, env->regs[0], env->sregs[PS],
191 env->sregs[INTSET], env->sregs[INTENABLE],
192 env->sregs[CCOUNT]);
193 handle_interrupt(env);
194 }
195
196 switch (env->exception_index) {
197 case EXC_WINDOW_OVERFLOW4:
198 case EXC_WINDOW_UNDERFLOW4:
199 case EXC_WINDOW_OVERFLOW8:
200 case EXC_WINDOW_UNDERFLOW8:
201 case EXC_WINDOW_OVERFLOW12:
202 case EXC_WINDOW_UNDERFLOW12:
203 case EXC_KERNEL:
204 case EXC_USER:
205 case EXC_DOUBLE:
206 case EXC_DEBUG:
207 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
208 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
209 __func__, env->exception_index,
210 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
211 if (env->config->exception_vector[env->exception_index]) {
212 env->pc = relocated_vector(env,
213 env->config->exception_vector[env->exception_index]);
214 env->exception_taken = 1;
215 } else {
216 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
217 __func__, env->pc, env->exception_index);
218 }
219 break;
220
221 case EXC_IRQ:
222 break;
223
224 default:
225 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
226 __func__, env->pc, env->exception_index);
227 break;
228 }
229 check_interrupts(env);
230 }
231
232 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
233 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
234 {
235 unsigned wi, ei;
236
237 for (wi = 0; wi < tlb->nways; ++wi) {
238 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
239 entry[wi][ei].asid = 0;
240 entry[wi][ei].variable = true;
241 }
242 }
243 }
244
245 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
246 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
247 {
248 if (!tlb->varway56) {
249 static const xtensa_tlb_entry way5[] = {
250 {
251 .vaddr = 0xd0000000,
252 .paddr = 0,
253 .asid = 1,
254 .attr = 7,
255 .variable = false,
256 }, {
257 .vaddr = 0xd8000000,
258 .paddr = 0,
259 .asid = 1,
260 .attr = 3,
261 .variable = false,
262 }
263 };
264 static const xtensa_tlb_entry way6[] = {
265 {
266 .vaddr = 0xe0000000,
267 .paddr = 0xf0000000,
268 .asid = 1,
269 .attr = 7,
270 .variable = false,
271 }, {
272 .vaddr = 0xf0000000,
273 .paddr = 0xf0000000,
274 .asid = 1,
275 .attr = 3,
276 .variable = false,
277 }
278 };
279 memcpy(entry[5], way5, sizeof(way5));
280 memcpy(entry[6], way6, sizeof(way6));
281 } else {
282 uint32_t ei;
283 for (ei = 0; ei < 8; ++ei) {
284 entry[6][ei].vaddr = ei << 29;
285 entry[6][ei].paddr = ei << 29;
286 entry[6][ei].asid = 1;
287 entry[6][ei].attr = 3;
288 }
289 }
290 }
291
292 static void reset_tlb_region_way0(CPUXtensaState *env,
293 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
294 {
295 unsigned ei;
296
297 for (ei = 0; ei < 8; ++ei) {
298 entry[0][ei].vaddr = ei << 29;
299 entry[0][ei].paddr = ei << 29;
300 entry[0][ei].asid = 1;
301 entry[0][ei].attr = 2;
302 entry[0][ei].variable = true;
303 }
304 }
305
306 void reset_mmu(CPUXtensaState *env)
307 {
308 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
309 env->sregs[RASID] = 0x04030201;
310 env->sregs[ITLBCFG] = 0;
311 env->sregs[DTLBCFG] = 0;
312 env->autorefill_idx = 0;
313 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
314 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
315 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
316 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
317 } else {
318 reset_tlb_region_way0(env, env->itlb);
319 reset_tlb_region_way0(env, env->dtlb);
320 }
321 }
322
323 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
324 {
325 unsigned i;
326 for (i = 0; i < 4; ++i) {
327 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
328 return i;
329 }
330 }
331 return 0xff;
332 }
333
334 /*!
335 * Lookup xtensa TLB for the given virtual address.
336 * See ISA, 4.6.2.2
337 *
338 * \param pwi: [out] way index
339 * \param pei: [out] entry index
340 * \param pring: [out] access ring
341 * \return 0 if ok, exception cause code otherwise
342 */
343 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
344 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
345 {
346 const xtensa_tlb *tlb = dtlb ?
347 &env->config->dtlb : &env->config->itlb;
348 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
349 env->dtlb : env->itlb;
350
351 int nhits = 0;
352 unsigned wi;
353
354 for (wi = 0; wi < tlb->nways; ++wi) {
355 uint32_t vpn;
356 uint32_t ei;
357 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
358 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
359 unsigned ring = get_ring(env, entry[wi][ei].asid);
360 if (ring < 4) {
361 if (++nhits > 1) {
362 return dtlb ?
363 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
364 INST_TLB_MULTI_HIT_CAUSE;
365 }
366 *pwi = wi;
367 *pei = ei;
368 *pring = ring;
369 }
370 }
371 }
372 return nhits ? 0 :
373 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
374 }
375
376 /*!
377 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
378 * See ISA, 4.6.5.10
379 */
380 static unsigned mmu_attr_to_access(uint32_t attr)
381 {
382 unsigned access = 0;
383
384 if (attr < 12) {
385 access |= PAGE_READ;
386 if (attr & 0x1) {
387 access |= PAGE_EXEC;
388 }
389 if (attr & 0x2) {
390 access |= PAGE_WRITE;
391 }
392
393 switch (attr & 0xc) {
394 case 0:
395 access |= PAGE_CACHE_BYPASS;
396 break;
397
398 case 4:
399 access |= PAGE_CACHE_WB;
400 break;
401
402 case 8:
403 access |= PAGE_CACHE_WT;
404 break;
405 }
406 } else if (attr == 13) {
407 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
408 }
409 return access;
410 }
411
412 /*!
413 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
414 * See ISA, 4.6.3.3
415 */
416 static unsigned region_attr_to_access(uint32_t attr)
417 {
418 static const unsigned access[16] = {
419 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
420 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
421 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
422 [3] = PAGE_EXEC | PAGE_CACHE_WB,
423 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
424 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
425 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
426 };
427
428 return access[attr & 0xf];
429 }
430
431 /*!
432 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
433 * See ISA, A.2.14 The Cache Attribute Register
434 */
435 static unsigned cacheattr_attr_to_access(uint32_t attr)
436 {
437 static const unsigned access[16] = {
438 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
439 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
440 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
441 [3] = PAGE_EXEC | PAGE_CACHE_WB,
442 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
443 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
444 };
445
446 return access[attr & 0xf];
447 }
448
449 static bool is_access_granted(unsigned access, int is_write)
450 {
451 switch (is_write) {
452 case 0:
453 return access & PAGE_READ;
454
455 case 1:
456 return access & PAGE_WRITE;
457
458 case 2:
459 return access & PAGE_EXEC;
460
461 default:
462 return 0;
463 }
464 }
465
466 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
467
468 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
469 uint32_t vaddr, int is_write, int mmu_idx,
470 uint32_t *paddr, uint32_t *page_size, unsigned *access,
471 bool may_lookup_pt)
472 {
473 bool dtlb = is_write != 2;
474 uint32_t wi;
475 uint32_t ei;
476 uint8_t ring;
477 uint32_t vpn;
478 uint32_t pte;
479 const xtensa_tlb_entry *entry = NULL;
480 xtensa_tlb_entry tmp_entry;
481 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
482
483 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
484 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
485 ring = (pte >> 4) & 0x3;
486 wi = 0;
487 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
488
489 if (update_tlb) {
490 wi = ++env->autorefill_idx & 0x3;
491 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
492 env->sregs[EXCVADDR] = vaddr;
493 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
494 __func__, vaddr, vpn, pte);
495 } else {
496 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
497 entry = &tmp_entry;
498 }
499 ret = 0;
500 }
501 if (ret != 0) {
502 return ret;
503 }
504
505 if (entry == NULL) {
506 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
507 }
508
509 if (ring < mmu_idx) {
510 return dtlb ?
511 LOAD_STORE_PRIVILEGE_CAUSE :
512 INST_FETCH_PRIVILEGE_CAUSE;
513 }
514
515 *access = mmu_attr_to_access(entry->attr) &
516 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
517 if (!is_access_granted(*access, is_write)) {
518 return dtlb ?
519 (is_write ?
520 STORE_PROHIBITED_CAUSE :
521 LOAD_PROHIBITED_CAUSE) :
522 INST_FETCH_PROHIBITED_CAUSE;
523 }
524
525 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
526 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
527
528 return 0;
529 }
530
531 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
532 {
533 uint32_t paddr;
534 uint32_t page_size;
535 unsigned access;
536 uint32_t pt_vaddr =
537 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
538 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
539 &paddr, &page_size, &access, false);
540
541 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
542 vaddr, ret ? ~0 : paddr);
543
544 if (ret == 0) {
545 *pte = ldl_phys(paddr);
546 }
547 return ret;
548 }
549
550 static int get_physical_addr_region(CPUXtensaState *env,
551 uint32_t vaddr, int is_write, int mmu_idx,
552 uint32_t *paddr, uint32_t *page_size, unsigned *access)
553 {
554 bool dtlb = is_write != 2;
555 uint32_t wi = 0;
556 uint32_t ei = (vaddr >> 29) & 0x7;
557 const xtensa_tlb_entry *entry =
558 xtensa_tlb_get_entry(env, dtlb, wi, ei);
559
560 *access = region_attr_to_access(entry->attr);
561 if (!is_access_granted(*access, is_write)) {
562 return dtlb ?
563 (is_write ?
564 STORE_PROHIBITED_CAUSE :
565 LOAD_PROHIBITED_CAUSE) :
566 INST_FETCH_PROHIBITED_CAUSE;
567 }
568
569 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
570 *page_size = ~REGION_PAGE_MASK + 1;
571
572 return 0;
573 }
574
575 /*!
576 * Convert virtual address to physical addr.
577 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
578 *
579 * \return 0 if ok, exception cause code otherwise
580 */
581 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
582 uint32_t vaddr, int is_write, int mmu_idx,
583 uint32_t *paddr, uint32_t *page_size, unsigned *access)
584 {
585 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
586 return get_physical_addr_mmu(env, update_tlb,
587 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
588 } else if (xtensa_option_bits_enabled(env->config,
589 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
590 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
591 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
592 paddr, page_size, access);
593 } else {
594 *paddr = vaddr;
595 *page_size = TARGET_PAGE_SIZE;
596 *access = cacheattr_attr_to_access(
597 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
598 return 0;
599 }
600 }
601
602 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
603 CPUXtensaState *env, bool dtlb)
604 {
605 unsigned wi, ei;
606 const xtensa_tlb *conf =
607 dtlb ? &env->config->dtlb : &env->config->itlb;
608 unsigned (*attr_to_access)(uint32_t) =
609 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
610 mmu_attr_to_access : region_attr_to_access;
611
612 for (wi = 0; wi < conf->nways; ++wi) {
613 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
614 const char *sz_text;
615 bool print_header = true;
616
617 if (sz >= 0x100000) {
618 sz >>= 20;
619 sz_text = "MB";
620 } else {
621 sz >>= 10;
622 sz_text = "KB";
623 }
624
625 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
626 const xtensa_tlb_entry *entry =
627 xtensa_tlb_get_entry(env, dtlb, wi, ei);
628
629 if (entry->asid) {
630 static const char * const cache_text[8] = {
631 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
632 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
633 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
634 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
635 };
636 unsigned access = attr_to_access(entry->attr);
637 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
638 PAGE_CACHE_SHIFT;
639
640 if (print_header) {
641 print_header = false;
642 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
643 cpu_fprintf(f,
644 "\tVaddr Paddr ASID Attr RWX Cache\n"
645 "\t---------- ---------- ---- ---- --- -------\n");
646 }
647 cpu_fprintf(f,
648 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
649 entry->vaddr,
650 entry->paddr,
651 entry->asid,
652 entry->attr,
653 (access & PAGE_READ) ? 'R' : '-',
654 (access & PAGE_WRITE) ? 'W' : '-',
655 (access & PAGE_EXEC) ? 'X' : '-',
656 cache_text[cache_idx] ? cache_text[cache_idx] :
657 "Invalid");
658 }
659 }
660 }
661 }
662
663 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
664 {
665 if (xtensa_option_bits_enabled(env->config,
666 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
667 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
668 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
669
670 cpu_fprintf(f, "ITLB:\n");
671 dump_tlb(f, cpu_fprintf, env, false);
672 cpu_fprintf(f, "\nDTLB:\n");
673 dump_tlb(f, cpu_fprintf, env, true);
674 } else {
675 cpu_fprintf(f, "No TLB for this CPU core\n");
676 }
677 }