]> git.proxmox.com Git - qemu.git/blob - target-xtensa/helper.c
target-xtensa: QOM'ify CPU reset
[qemu.git] / target-xtensa / helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "gdbstub.h"
31 #include "host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
35
36 void cpu_state_reset(CPUXtensaState *env)
37 {
38 cpu_reset(ENV_GET_CPU(env));
39 }
40
41 static struct XtensaConfigList *xtensa_cores;
42
43 void xtensa_register_core(XtensaConfigList *node)
44 {
45 node->next = xtensa_cores;
46 xtensa_cores = node;
47 }
48
49 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
50 {
51 unsigned i;
52
53 for (i = 0; i < env->config->ndbreak; ++i) {
54 if (env->cpu_watchpoint[i] &&
55 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
56 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
57 }
58 }
59 return 0;
60 }
61
62 static CPUDebugExcpHandler *prev_debug_excp_handler;
63
64 static void breakpoint_handler(CPUXtensaState *env)
65 {
66 if (env->watchpoint_hit) {
67 if (env->watchpoint_hit->flags & BP_CPU) {
68 uint32_t cause;
69
70 env->watchpoint_hit = NULL;
71 cause = check_hw_breakpoints(env);
72 if (cause) {
73 debug_exception_env(env, cause);
74 }
75 cpu_resume_from_signal(env, NULL);
76 }
77 }
78 if (prev_debug_excp_handler) {
79 prev_debug_excp_handler(env);
80 }
81 }
82
83 CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
84 {
85 static int tcg_inited;
86 static int debug_handler_inited;
87 XtensaCPU *cpu;
88 CPUXtensaState *env;
89 const XtensaConfig *config = NULL;
90 XtensaConfigList *core = xtensa_cores;
91
92 for (; core; core = core->next)
93 if (strcmp(core->config->name, cpu_model) == 0) {
94 config = core->config;
95 break;
96 }
97
98 if (config == NULL) {
99 return NULL;
100 }
101
102 cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
103 env = &cpu->env;
104 env->config = config;
105 cpu_exec_init(env);
106
107 if (!tcg_inited) {
108 tcg_inited = 1;
109 xtensa_translate_init();
110 }
111
112 if (!debug_handler_inited && tcg_enabled()) {
113 debug_handler_inited = 1;
114 prev_debug_excp_handler =
115 cpu_set_debug_excp_handler(breakpoint_handler);
116 }
117
118 xtensa_irq_init(env);
119 qemu_init_vcpu(env);
120 return env;
121 }
122
123
124 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
125 {
126 XtensaConfigList *core = xtensa_cores;
127 cpu_fprintf(f, "Available CPUs:\n");
128 for (; core; core = core->next) {
129 cpu_fprintf(f, " %s\n", core->config->name);
130 }
131 }
132
133 target_phys_addr_t cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
134 {
135 uint32_t paddr;
136 uint32_t page_size;
137 unsigned access;
138
139 if (xtensa_get_physical_addr(env, addr, 0, 0,
140 &paddr, &page_size, &access) == 0) {
141 return paddr;
142 }
143 if (xtensa_get_physical_addr(env, addr, 2, 0,
144 &paddr, &page_size, &access) == 0) {
145 return paddr;
146 }
147 return ~0;
148 }
149
150 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
151 {
152 if (xtensa_option_enabled(env->config,
153 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
154 return vector - env->config->vecbase + env->sregs[VECBASE];
155 } else {
156 return vector;
157 }
158 }
159
160 /*!
161 * Handle penging IRQ.
162 * For the high priority interrupt jump to the corresponding interrupt vector.
163 * For the level-1 interrupt convert it to either user, kernel or double
164 * exception with the 'level-1 interrupt' exception cause.
165 */
166 static void handle_interrupt(CPUXtensaState *env)
167 {
168 int level = env->pending_irq_level;
169
170 if (level > xtensa_get_cintlevel(env) &&
171 level <= env->config->nlevel &&
172 (env->config->level_mask[level] &
173 env->sregs[INTSET] &
174 env->sregs[INTENABLE])) {
175 if (level > 1) {
176 env->sregs[EPC1 + level - 1] = env->pc;
177 env->sregs[EPS2 + level - 2] = env->sregs[PS];
178 env->sregs[PS] =
179 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
180 env->pc = relocated_vector(env,
181 env->config->interrupt_vector[level]);
182 } else {
183 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
184
185 if (env->sregs[PS] & PS_EXCM) {
186 if (env->config->ndepc) {
187 env->sregs[DEPC] = env->pc;
188 } else {
189 env->sregs[EPC1] = env->pc;
190 }
191 env->exception_index = EXC_DOUBLE;
192 } else {
193 env->sregs[EPC1] = env->pc;
194 env->exception_index =
195 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
196 }
197 env->sregs[PS] |= PS_EXCM;
198 }
199 env->exception_taken = 1;
200 }
201 }
202
203 void do_interrupt(CPUXtensaState *env)
204 {
205 if (env->exception_index == EXC_IRQ) {
206 qemu_log_mask(CPU_LOG_INT,
207 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
208 "pc = %08x, a0 = %08x, ps = %08x, "
209 "intset = %08x, intenable = %08x, "
210 "ccount = %08x\n",
211 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
212 env->pc, env->regs[0], env->sregs[PS],
213 env->sregs[INTSET], env->sregs[INTENABLE],
214 env->sregs[CCOUNT]);
215 handle_interrupt(env);
216 }
217
218 switch (env->exception_index) {
219 case EXC_WINDOW_OVERFLOW4:
220 case EXC_WINDOW_UNDERFLOW4:
221 case EXC_WINDOW_OVERFLOW8:
222 case EXC_WINDOW_UNDERFLOW8:
223 case EXC_WINDOW_OVERFLOW12:
224 case EXC_WINDOW_UNDERFLOW12:
225 case EXC_KERNEL:
226 case EXC_USER:
227 case EXC_DOUBLE:
228 case EXC_DEBUG:
229 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
230 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
231 __func__, env->exception_index,
232 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
233 if (env->config->exception_vector[env->exception_index]) {
234 env->pc = relocated_vector(env,
235 env->config->exception_vector[env->exception_index]);
236 env->exception_taken = 1;
237 } else {
238 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
239 __func__, env->pc, env->exception_index);
240 }
241 break;
242
243 case EXC_IRQ:
244 break;
245
246 default:
247 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
248 __func__, env->pc, env->exception_index);
249 break;
250 }
251 check_interrupts(env);
252 }
253
254 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
255 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
256 {
257 unsigned wi, ei;
258
259 for (wi = 0; wi < tlb->nways; ++wi) {
260 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
261 entry[wi][ei].asid = 0;
262 entry[wi][ei].variable = true;
263 }
264 }
265 }
266
267 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
268 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
269 {
270 if (!tlb->varway56) {
271 static const xtensa_tlb_entry way5[] = {
272 {
273 .vaddr = 0xd0000000,
274 .paddr = 0,
275 .asid = 1,
276 .attr = 7,
277 .variable = false,
278 }, {
279 .vaddr = 0xd8000000,
280 .paddr = 0,
281 .asid = 1,
282 .attr = 3,
283 .variable = false,
284 }
285 };
286 static const xtensa_tlb_entry way6[] = {
287 {
288 .vaddr = 0xe0000000,
289 .paddr = 0xf0000000,
290 .asid = 1,
291 .attr = 7,
292 .variable = false,
293 }, {
294 .vaddr = 0xf0000000,
295 .paddr = 0xf0000000,
296 .asid = 1,
297 .attr = 3,
298 .variable = false,
299 }
300 };
301 memcpy(entry[5], way5, sizeof(way5));
302 memcpy(entry[6], way6, sizeof(way6));
303 } else {
304 uint32_t ei;
305 for (ei = 0; ei < 8; ++ei) {
306 entry[6][ei].vaddr = ei << 29;
307 entry[6][ei].paddr = ei << 29;
308 entry[6][ei].asid = 1;
309 entry[6][ei].attr = 3;
310 }
311 }
312 }
313
314 static void reset_tlb_region_way0(CPUXtensaState *env,
315 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
316 {
317 unsigned ei;
318
319 for (ei = 0; ei < 8; ++ei) {
320 entry[0][ei].vaddr = ei << 29;
321 entry[0][ei].paddr = ei << 29;
322 entry[0][ei].asid = 1;
323 entry[0][ei].attr = 2;
324 entry[0][ei].variable = true;
325 }
326 }
327
328 void reset_mmu(CPUXtensaState *env)
329 {
330 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
331 env->sregs[RASID] = 0x04030201;
332 env->sregs[ITLBCFG] = 0;
333 env->sregs[DTLBCFG] = 0;
334 env->autorefill_idx = 0;
335 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
336 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
337 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
338 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
339 } else {
340 reset_tlb_region_way0(env, env->itlb);
341 reset_tlb_region_way0(env, env->dtlb);
342 }
343 }
344
345 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
346 {
347 unsigned i;
348 for (i = 0; i < 4; ++i) {
349 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
350 return i;
351 }
352 }
353 return 0xff;
354 }
355
356 /*!
357 * Lookup xtensa TLB for the given virtual address.
358 * See ISA, 4.6.2.2
359 *
360 * \param pwi: [out] way index
361 * \param pei: [out] entry index
362 * \param pring: [out] access ring
363 * \return 0 if ok, exception cause code otherwise
364 */
365 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
366 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
367 {
368 const xtensa_tlb *tlb = dtlb ?
369 &env->config->dtlb : &env->config->itlb;
370 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
371 env->dtlb : env->itlb;
372
373 int nhits = 0;
374 unsigned wi;
375
376 for (wi = 0; wi < tlb->nways; ++wi) {
377 uint32_t vpn;
378 uint32_t ei;
379 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
380 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
381 unsigned ring = get_ring(env, entry[wi][ei].asid);
382 if (ring < 4) {
383 if (++nhits > 1) {
384 return dtlb ?
385 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
386 INST_TLB_MULTI_HIT_CAUSE;
387 }
388 *pwi = wi;
389 *pei = ei;
390 *pring = ring;
391 }
392 }
393 }
394 return nhits ? 0 :
395 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
396 }
397
398 /*!
399 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
400 * See ISA, 4.6.5.10
401 */
402 static unsigned mmu_attr_to_access(uint32_t attr)
403 {
404 unsigned access = 0;
405 if (attr < 12) {
406 access |= PAGE_READ;
407 if (attr & 0x1) {
408 access |= PAGE_EXEC;
409 }
410 if (attr & 0x2) {
411 access |= PAGE_WRITE;
412 }
413 } else if (attr == 13) {
414 access |= PAGE_READ | PAGE_WRITE;
415 }
416 return access;
417 }
418
419 /*!
420 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
421 * See ISA, 4.6.3.3
422 */
423 static unsigned region_attr_to_access(uint32_t attr)
424 {
425 unsigned access = 0;
426 if ((attr < 6 && attr != 3) || attr == 14) {
427 access |= PAGE_READ | PAGE_WRITE;
428 }
429 if (attr > 0 && attr < 6) {
430 access |= PAGE_EXEC;
431 }
432 return access;
433 }
434
435 static bool is_access_granted(unsigned access, int is_write)
436 {
437 switch (is_write) {
438 case 0:
439 return access & PAGE_READ;
440
441 case 1:
442 return access & PAGE_WRITE;
443
444 case 2:
445 return access & PAGE_EXEC;
446
447 default:
448 return 0;
449 }
450 }
451
452 static int autorefill_mmu(CPUXtensaState *env, uint32_t vaddr, bool dtlb,
453 uint32_t *wi, uint32_t *ei, uint8_t *ring);
454
455 static int get_physical_addr_mmu(CPUXtensaState *env,
456 uint32_t vaddr, int is_write, int mmu_idx,
457 uint32_t *paddr, uint32_t *page_size, unsigned *access)
458 {
459 bool dtlb = is_write != 2;
460 uint32_t wi;
461 uint32_t ei;
462 uint8_t ring;
463 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
464
465 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
466 (mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
467 autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
468 ret = 0;
469 }
470 if (ret != 0) {
471 return ret;
472 }
473
474 const xtensa_tlb_entry *entry =
475 xtensa_tlb_get_entry(env, dtlb, wi, ei);
476
477 if (ring < mmu_idx) {
478 return dtlb ?
479 LOAD_STORE_PRIVILEGE_CAUSE :
480 INST_FETCH_PRIVILEGE_CAUSE;
481 }
482
483 *access = mmu_attr_to_access(entry->attr);
484 if (!is_access_granted(*access, is_write)) {
485 return dtlb ?
486 (is_write ?
487 STORE_PROHIBITED_CAUSE :
488 LOAD_PROHIBITED_CAUSE) :
489 INST_FETCH_PROHIBITED_CAUSE;
490 }
491
492 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
493 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
494
495 return 0;
496 }
497
498 static int autorefill_mmu(CPUXtensaState *env, uint32_t vaddr, bool dtlb,
499 uint32_t *wi, uint32_t *ei, uint8_t *ring)
500 {
501 uint32_t paddr;
502 uint32_t page_size;
503 unsigned access;
504 uint32_t pt_vaddr =
505 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
506 int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
507 &paddr, &page_size, &access);
508
509 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
510 vaddr, ret ? ~0 : paddr);
511
512 if (ret == 0) {
513 uint32_t vpn;
514 uint32_t pte = ldl_phys(paddr);
515
516 *ring = (pte >> 4) & 0x3;
517 *wi = (++env->autorefill_idx) & 0x3;
518 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
519 xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
520 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
521 __func__, vaddr, vpn, pte);
522 }
523 return ret;
524 }
525
526 static int get_physical_addr_region(CPUXtensaState *env,
527 uint32_t vaddr, int is_write, int mmu_idx,
528 uint32_t *paddr, uint32_t *page_size, unsigned *access)
529 {
530 bool dtlb = is_write != 2;
531 uint32_t wi = 0;
532 uint32_t ei = (vaddr >> 29) & 0x7;
533 const xtensa_tlb_entry *entry =
534 xtensa_tlb_get_entry(env, dtlb, wi, ei);
535
536 *access = region_attr_to_access(entry->attr);
537 if (!is_access_granted(*access, is_write)) {
538 return dtlb ?
539 (is_write ?
540 STORE_PROHIBITED_CAUSE :
541 LOAD_PROHIBITED_CAUSE) :
542 INST_FETCH_PROHIBITED_CAUSE;
543 }
544
545 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
546 *page_size = ~REGION_PAGE_MASK + 1;
547
548 return 0;
549 }
550
551 /*!
552 * Convert virtual address to physical addr.
553 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
554 *
555 * \return 0 if ok, exception cause code otherwise
556 */
557 int xtensa_get_physical_addr(CPUXtensaState *env,
558 uint32_t vaddr, int is_write, int mmu_idx,
559 uint32_t *paddr, uint32_t *page_size, unsigned *access)
560 {
561 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
562 return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
563 paddr, page_size, access);
564 } else if (xtensa_option_bits_enabled(env->config,
565 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
566 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
567 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
568 paddr, page_size, access);
569 } else {
570 *paddr = vaddr;
571 *page_size = TARGET_PAGE_SIZE;
572 *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
573 return 0;
574 }
575 }
576
577 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
578 CPUXtensaState *env, bool dtlb)
579 {
580 unsigned wi, ei;
581 const xtensa_tlb *conf =
582 dtlb ? &env->config->dtlb : &env->config->itlb;
583 unsigned (*attr_to_access)(uint32_t) =
584 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
585 mmu_attr_to_access : region_attr_to_access;
586
587 for (wi = 0; wi < conf->nways; ++wi) {
588 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
589 const char *sz_text;
590 bool print_header = true;
591
592 if (sz >= 0x100000) {
593 sz >>= 20;
594 sz_text = "MB";
595 } else {
596 sz >>= 10;
597 sz_text = "KB";
598 }
599
600 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
601 const xtensa_tlb_entry *entry =
602 xtensa_tlb_get_entry(env, dtlb, wi, ei);
603
604 if (entry->asid) {
605 unsigned access = attr_to_access(entry->attr);
606
607 if (print_header) {
608 print_header = false;
609 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
610 cpu_fprintf(f,
611 "\tVaddr Paddr ASID Attr RWX\n"
612 "\t---------- ---------- ---- ---- ---\n");
613 }
614 cpu_fprintf(f,
615 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c\n",
616 entry->vaddr,
617 entry->paddr,
618 entry->asid,
619 entry->attr,
620 (access & PAGE_READ) ? 'R' : '-',
621 (access & PAGE_WRITE) ? 'W' : '-',
622 (access & PAGE_EXEC) ? 'X' : '-');
623 }
624 }
625 }
626 }
627
628 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
629 {
630 if (xtensa_option_bits_enabled(env->config,
631 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
632 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
633 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
634
635 cpu_fprintf(f, "ITLB:\n");
636 dump_tlb(f, cpu_fprintf, env, false);
637 cpu_fprintf(f, "\nDTLB:\n");
638 dump_tlb(f, cpu_fprintf, env, true);
639 } else {
640 cpu_fprintf(f, "No TLB for this CPU core\n");
641 }
642 }