]> git.proxmox.com Git - qemu.git/blob - tests/rtc-test.c
target-m68k: Move TCG initialization to M68kCPU initfn
[qemu.git] / tests / rtc-test.c
1 /*
2 * QTest testcase for the MC146818 real-time clock
3 *
4 * Copyright IBM, Corp. 2012
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13 #include "libqtest.h"
14 #include "hw/mc146818rtc_regs.h"
15
16 #include <glib.h>
17 #include <stdio.h>
18 #include <string.h>
19 #include <stdlib.h>
20 #include <unistd.h>
21
22 static uint8_t base = 0x70;
23
24 static int bcd2dec(int value)
25 {
26 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
27 }
28
29 static int dec2bcd(int value)
30 {
31 return ((value / 10) << 4) | (value % 10);
32 }
33
34 static uint8_t cmos_read(uint8_t reg)
35 {
36 outb(base + 0, reg);
37 return inb(base + 1);
38 }
39
40 static void cmos_write(uint8_t reg, uint8_t val)
41 {
42 outb(base + 0, reg);
43 outb(base + 1, val);
44 }
45
46 static int tm_cmp(struct tm *lhs, struct tm *rhs)
47 {
48 time_t a, b;
49 struct tm d1, d2;
50
51 memcpy(&d1, lhs, sizeof(d1));
52 memcpy(&d2, rhs, sizeof(d2));
53
54 a = mktime(&d1);
55 b = mktime(&d2);
56
57 if (a < b) {
58 return -1;
59 } else if (a > b) {
60 return 1;
61 }
62
63 return 0;
64 }
65
66 #if 0
67 static void print_tm(struct tm *tm)
68 {
69 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
70 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
71 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
72 }
73 #endif
74
75 static void cmos_get_date_time(struct tm *date)
76 {
77 int base_year = 2000, hour_offset;
78 int sec, min, hour, mday, mon, year;
79 time_t ts;
80 struct tm dummy;
81
82 sec = cmos_read(RTC_SECONDS);
83 min = cmos_read(RTC_MINUTES);
84 hour = cmos_read(RTC_HOURS);
85 mday = cmos_read(RTC_DAY_OF_MONTH);
86 mon = cmos_read(RTC_MONTH);
87 year = cmos_read(RTC_YEAR);
88
89 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
90 sec = bcd2dec(sec);
91 min = bcd2dec(min);
92 hour = bcd2dec(hour);
93 mday = bcd2dec(mday);
94 mon = bcd2dec(mon);
95 year = bcd2dec(year);
96 hour_offset = 80;
97 } else {
98 hour_offset = 0x80;
99 }
100
101 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
102 if (hour >= hour_offset) {
103 hour -= hour_offset;
104 hour += 12;
105 }
106 }
107
108 ts = time(NULL);
109 localtime_r(&ts, &dummy);
110
111 date->tm_isdst = dummy.tm_isdst;
112 date->tm_sec = sec;
113 date->tm_min = min;
114 date->tm_hour = hour;
115 date->tm_mday = mday;
116 date->tm_mon = mon - 1;
117 date->tm_year = base_year + year - 1900;
118 #ifndef __sun__
119 date->tm_gmtoff = 0;
120 #endif
121
122 ts = mktime(date);
123 }
124
125 static void check_time(int wiggle)
126 {
127 struct tm start, date[4], end;
128 struct tm *datep;
129 time_t ts;
130
131 /*
132 * This check assumes a few things. First, we cannot guarantee that we get
133 * a consistent reading from the wall clock because we may hit an edge of
134 * the clock while reading. To work around this, we read four clock readings
135 * such that at least two of them should match. We need to assume that one
136 * reading is corrupt so we need four readings to ensure that we have at
137 * least two consecutive identical readings
138 *
139 * It's also possible that we'll cross an edge reading the host clock so
140 * simply check to make sure that the clock reading is within the period of
141 * when we expect it to be.
142 */
143
144 ts = time(NULL);
145 gmtime_r(&ts, &start);
146
147 cmos_get_date_time(&date[0]);
148 cmos_get_date_time(&date[1]);
149 cmos_get_date_time(&date[2]);
150 cmos_get_date_time(&date[3]);
151
152 ts = time(NULL);
153 gmtime_r(&ts, &end);
154
155 if (tm_cmp(&date[0], &date[1]) == 0) {
156 datep = &date[0];
157 } else if (tm_cmp(&date[1], &date[2]) == 0) {
158 datep = &date[1];
159 } else if (tm_cmp(&date[2], &date[3]) == 0) {
160 datep = &date[2];
161 } else {
162 g_assert_not_reached();
163 }
164
165 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
166 long t, s;
167
168 start.tm_isdst = datep->tm_isdst;
169
170 t = (long)mktime(datep);
171 s = (long)mktime(&start);
172 if (t < s) {
173 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
174 } else {
175 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
176 }
177
178 g_assert_cmpint(ABS(t - s), <=, wiggle);
179 }
180 }
181
182 static int wiggle = 2;
183
184 static void set_year_20xx(void)
185 {
186 /* Set BCD mode */
187 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
188 cmos_write(RTC_REG_A, 0x76);
189 cmos_write(RTC_YEAR, 0x11);
190 cmos_write(RTC_CENTURY, 0x20);
191 cmos_write(RTC_MONTH, 0x02);
192 cmos_write(RTC_DAY_OF_MONTH, 0x02);
193 cmos_write(RTC_HOURS, 0x02);
194 cmos_write(RTC_MINUTES, 0x04);
195 cmos_write(RTC_SECONDS, 0x58);
196 cmos_write(RTC_REG_A, 0x26);
197
198 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
199 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
200 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
201 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
202 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
203 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
204 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
205
206 if (sizeof(time_t) == 4) {
207 return;
208 }
209
210 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
211 cmos_write(RTC_REG_A, 0x76);
212 cmos_write(RTC_YEAR, 0x80);
213 cmos_write(RTC_REG_A, 0x26);
214
215 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
216 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
217 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
218 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
219 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
220 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
221 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
222
223 cmos_write(RTC_REG_A, 0x76);
224 cmos_write(RTC_YEAR, 0x11);
225 cmos_write(RTC_REG_A, 0x26);
226
227 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
228 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
229 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
230 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
231 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
232 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
233 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
234 }
235
236 static void set_year_1980(void)
237 {
238 /* Set BCD mode */
239 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
240 cmos_write(RTC_REG_A, 0x76);
241 cmos_write(RTC_YEAR, 0x80);
242 cmos_write(RTC_CENTURY, 0x19);
243 cmos_write(RTC_MONTH, 0x02);
244 cmos_write(RTC_DAY_OF_MONTH, 0x02);
245 cmos_write(RTC_HOURS, 0x02);
246 cmos_write(RTC_MINUTES, 0x04);
247 cmos_write(RTC_SECONDS, 0x58);
248 cmos_write(RTC_REG_A, 0x26);
249
250 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
251 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
252 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
253 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
254 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
255 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
256 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
257 }
258
259 static void bcd_check_time(void)
260 {
261 /* Set BCD mode */
262 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
263 check_time(wiggle);
264 }
265
266 static void dec_check_time(void)
267 {
268 /* Set DEC mode */
269 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
270 check_time(wiggle);
271 }
272
273 static void set_alarm_time(struct tm *tm)
274 {
275 int sec;
276
277 sec = tm->tm_sec;
278
279 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
280 sec = dec2bcd(sec);
281 }
282
283 cmos_write(RTC_SECONDS_ALARM, sec);
284 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
285 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
286 }
287
288 static void alarm_time(void)
289 {
290 struct tm now;
291 time_t ts;
292 int i;
293
294 ts = time(NULL);
295 gmtime_r(&ts, &now);
296
297 /* set DEC mode */
298 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
299
300 g_assert(!get_irq(RTC_ISA_IRQ));
301 cmos_read(RTC_REG_C);
302
303 now.tm_sec = (now.tm_sec + 2) % 60;
304 set_alarm_time(&now);
305 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
306
307 for (i = 0; i < 2 + wiggle; i++) {
308 if (get_irq(RTC_ISA_IRQ)) {
309 break;
310 }
311
312 clock_step(1000000000);
313 }
314
315 g_assert(get_irq(RTC_ISA_IRQ));
316 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
317 g_assert(cmos_read(RTC_REG_C) == 0);
318 }
319
320 /* success if no crash or abort */
321 static void fuzz_registers(void)
322 {
323 unsigned int i;
324
325 for (i = 0; i < 1000; i++) {
326 uint8_t reg, val;
327
328 reg = (uint8_t)g_test_rand_int_range(0, 16);
329 val = (uint8_t)g_test_rand_int_range(0, 256);
330
331 cmos_write(reg, val);
332 cmos_read(reg);
333 }
334 }
335
336 static void register_b_set_flag(void)
337 {
338 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
339 cmos_write(RTC_REG_B, (cmos_read(RTC_REG_B) & ~REG_B_DM) | REG_B_SET);
340
341 cmos_write(RTC_REG_A, 0x76);
342 cmos_write(RTC_YEAR, 0x11);
343 cmos_write(RTC_CENTURY, 0x20);
344 cmos_write(RTC_MONTH, 0x02);
345 cmos_write(RTC_DAY_OF_MONTH, 0x02);
346 cmos_write(RTC_HOURS, 0x02);
347 cmos_write(RTC_MINUTES, 0x04);
348 cmos_write(RTC_SECONDS, 0x58);
349 cmos_write(RTC_REG_A, 0x26);
350
351 /* Since SET flag is still enabled, these are equality checks. */
352 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
353 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
354 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
355 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
356 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
357 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
358 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
359
360 /* Disable SET flag in Register B */
361 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
362
363 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
364 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
365
366 /* Since SET flag is disabled, this is an inequality check.
367 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
368 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
369 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
370 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
371 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
372 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
373 }
374
375 int main(int argc, char **argv)
376 {
377 QTestState *s = NULL;
378 int ret;
379
380 g_test_init(&argc, &argv, NULL);
381
382 s = qtest_start("-display none -rtc clock=vm");
383 qtest_irq_intercept_in(s, "ioapic");
384
385 qtest_add_func("/rtc/bcd/check-time", bcd_check_time);
386 qtest_add_func("/rtc/dec/check-time", dec_check_time);
387 qtest_add_func("/rtc/alarm-time", alarm_time);
388 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
389 qtest_add_func("/rtc/set-year/1980", set_year_1980);
390 qtest_add_func("/rtc/register_b_set_flag", register_b_set_flag);
391 qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
392 ret = g_test_run();
393
394 if (s) {
395 qtest_quit(s);
396 }
397
398 return ret;
399 }