]> git.proxmox.com Git - qemu.git/blob - tests/test-visitor-serialization.c
Merge remote-tracking branch 'quintela/thread-20121220.next' into staging
[qemu.git] / tests / test-visitor-serialization.c
1 /*
2 * Unit-tests for visitor-based serialization
3 *
4 * Copyright IBM, Corp. 2012
5 *
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 */
12
13 #include <glib.h>
14 #include <stdlib.h>
15 #include <stdint.h>
16 #include <float.h>
17
18 #include "qemu-common.h"
19 #include "test-qapi-types.h"
20 #include "test-qapi-visit.h"
21 #include "qapi/qmp/types.h"
22 #include "qapi/qmp-input-visitor.h"
23 #include "qapi/qmp-output-visitor.h"
24 #include "qapi/string-input-visitor.h"
25 #include "qapi/string-output-visitor.h"
26
27 typedef struct PrimitiveType {
28 union {
29 const char *string;
30 bool boolean;
31 double number;
32 int64_t integer;
33 uint8_t u8;
34 uint16_t u16;
35 uint32_t u32;
36 uint64_t u64;
37 int8_t s8;
38 int16_t s16;
39 int32_t s32;
40 int64_t s64;
41 intmax_t max;
42 } value;
43 enum {
44 PTYPE_STRING = 0,
45 PTYPE_BOOLEAN,
46 PTYPE_NUMBER,
47 PTYPE_INTEGER,
48 PTYPE_U8,
49 PTYPE_U16,
50 PTYPE_U32,
51 PTYPE_U64,
52 PTYPE_S8,
53 PTYPE_S16,
54 PTYPE_S32,
55 PTYPE_S64,
56 PTYPE_EOL,
57 } type;
58 const char *description;
59 } PrimitiveType;
60
61 /* test helpers */
62
63 static void visit_primitive_type(Visitor *v, void **native, Error **errp)
64 {
65 PrimitiveType *pt = *native;
66 switch(pt->type) {
67 case PTYPE_STRING:
68 visit_type_str(v, (char **)&pt->value.string, NULL, errp);
69 break;
70 case PTYPE_BOOLEAN:
71 visit_type_bool(v, &pt->value.boolean, NULL, errp);
72 break;
73 case PTYPE_NUMBER:
74 visit_type_number(v, &pt->value.number, NULL, errp);
75 break;
76 case PTYPE_INTEGER:
77 visit_type_int(v, &pt->value.integer, NULL, errp);
78 break;
79 case PTYPE_U8:
80 visit_type_uint8(v, &pt->value.u8, NULL, errp);
81 break;
82 case PTYPE_U16:
83 visit_type_uint16(v, &pt->value.u16, NULL, errp);
84 break;
85 case PTYPE_U32:
86 visit_type_uint32(v, &pt->value.u32, NULL, errp);
87 break;
88 case PTYPE_U64:
89 visit_type_uint64(v, &pt->value.u64, NULL, errp);
90 break;
91 case PTYPE_S8:
92 visit_type_int8(v, &pt->value.s8, NULL, errp);
93 break;
94 case PTYPE_S16:
95 visit_type_int16(v, &pt->value.s16, NULL, errp);
96 break;
97 case PTYPE_S32:
98 visit_type_int32(v, &pt->value.s32, NULL, errp);
99 break;
100 case PTYPE_S64:
101 visit_type_int64(v, &pt->value.s64, NULL, errp);
102 break;
103 case PTYPE_EOL:
104 g_assert(false);
105 }
106 }
107
108 typedef struct TestStruct
109 {
110 int64_t integer;
111 bool boolean;
112 char *string;
113 } TestStruct;
114
115 static void visit_type_TestStruct(Visitor *v, TestStruct **obj,
116 const char *name, Error **errp)
117 {
118 visit_start_struct(v, (void **)obj, NULL, name, sizeof(TestStruct), errp);
119
120 visit_type_int(v, &(*obj)->integer, "integer", errp);
121 visit_type_bool(v, &(*obj)->boolean, "boolean", errp);
122 visit_type_str(v, &(*obj)->string, "string", errp);
123
124 visit_end_struct(v, errp);
125 }
126
127 static TestStruct *struct_create(void)
128 {
129 TestStruct *ts = g_malloc0(sizeof(*ts));
130 ts->integer = -42;
131 ts->boolean = true;
132 ts->string = strdup("test string");
133 return ts;
134 }
135
136 static void struct_compare(TestStruct *ts1, TestStruct *ts2)
137 {
138 g_assert(ts1);
139 g_assert(ts2);
140 g_assert_cmpint(ts1->integer, ==, ts2->integer);
141 g_assert(ts1->boolean == ts2->boolean);
142 g_assert_cmpstr(ts1->string, ==, ts2->string);
143 }
144
145 static void struct_cleanup(TestStruct *ts)
146 {
147 g_free(ts->string);
148 g_free(ts);
149 }
150
151 static void visit_struct(Visitor *v, void **native, Error **errp)
152 {
153 visit_type_TestStruct(v, (TestStruct **)native, NULL, errp);
154 }
155
156 static UserDefNested *nested_struct_create(void)
157 {
158 UserDefNested *udnp = g_malloc0(sizeof(*udnp));
159 udnp->string0 = strdup("test_string0");
160 udnp->dict1.string1 = strdup("test_string1");
161 udnp->dict1.dict2.userdef1 = g_malloc0(sizeof(UserDefOne));
162 udnp->dict1.dict2.userdef1->integer = 42;
163 udnp->dict1.dict2.userdef1->string = strdup("test_string");
164 udnp->dict1.dict2.string2 = strdup("test_string2");
165 udnp->dict1.has_dict3 = true;
166 udnp->dict1.dict3.userdef2 = g_malloc0(sizeof(UserDefOne));
167 udnp->dict1.dict3.userdef2->integer = 43;
168 udnp->dict1.dict3.userdef2->string = strdup("test_string");
169 udnp->dict1.dict3.string3 = strdup("test_string3");
170 return udnp;
171 }
172
173 static void nested_struct_compare(UserDefNested *udnp1, UserDefNested *udnp2)
174 {
175 g_assert(udnp1);
176 g_assert(udnp2);
177 g_assert_cmpstr(udnp1->string0, ==, udnp2->string0);
178 g_assert_cmpstr(udnp1->dict1.string1, ==, udnp2->dict1.string1);
179 g_assert_cmpint(udnp1->dict1.dict2.userdef1->integer, ==,
180 udnp2->dict1.dict2.userdef1->integer);
181 g_assert_cmpstr(udnp1->dict1.dict2.userdef1->string, ==,
182 udnp2->dict1.dict2.userdef1->string);
183 g_assert_cmpstr(udnp1->dict1.dict2.string2, ==, udnp2->dict1.dict2.string2);
184 g_assert(udnp1->dict1.has_dict3 == udnp2->dict1.has_dict3);
185 g_assert_cmpint(udnp1->dict1.dict3.userdef2->integer, ==,
186 udnp2->dict1.dict3.userdef2->integer);
187 g_assert_cmpstr(udnp1->dict1.dict3.userdef2->string, ==,
188 udnp2->dict1.dict3.userdef2->string);
189 g_assert_cmpstr(udnp1->dict1.dict3.string3, ==, udnp2->dict1.dict3.string3);
190 }
191
192 static void nested_struct_cleanup(UserDefNested *udnp)
193 {
194 qapi_free_UserDefNested(udnp);
195 }
196
197 static void visit_nested_struct(Visitor *v, void **native, Error **errp)
198 {
199 visit_type_UserDefNested(v, (UserDefNested **)native, NULL, errp);
200 }
201
202 static void visit_nested_struct_list(Visitor *v, void **native, Error **errp)
203 {
204 visit_type_UserDefNestedList(v, (UserDefNestedList **)native, NULL, errp);
205 }
206
207 /* test cases */
208
209 typedef void (*VisitorFunc)(Visitor *v, void **native, Error **errp);
210
211 typedef enum VisitorCapabilities {
212 VCAP_PRIMITIVES = 1,
213 VCAP_STRUCTURES = 2,
214 VCAP_LISTS = 4,
215 } VisitorCapabilities;
216
217 typedef struct SerializeOps {
218 void (*serialize)(void *native_in, void **datap,
219 VisitorFunc visit, Error **errp);
220 void (*deserialize)(void **native_out, void *datap,
221 VisitorFunc visit, Error **errp);
222 void (*cleanup)(void *datap);
223 const char *type;
224 VisitorCapabilities caps;
225 } SerializeOps;
226
227 typedef struct TestArgs {
228 const SerializeOps *ops;
229 void *test_data;
230 } TestArgs;
231
232 #define FLOAT_STRING_PRECISION 6 /* corresponding to n in %.nf formatting */
233 static gsize calc_float_string_storage(double value)
234 {
235 int whole_value = value;
236 gsize i = 0;
237 do {
238 i++;
239 } while (whole_value /= 10);
240 return i + 2 + FLOAT_STRING_PRECISION;
241 }
242
243 static void test_primitives(gconstpointer opaque)
244 {
245 TestArgs *args = (TestArgs *) opaque;
246 const SerializeOps *ops = args->ops;
247 PrimitiveType *pt = args->test_data;
248 PrimitiveType *pt_copy = g_malloc0(sizeof(*pt_copy));
249 Error *err = NULL;
250 void *serialize_data;
251 char *double1, *double2;
252
253 pt_copy->type = pt->type;
254 ops->serialize(pt, &serialize_data, visit_primitive_type, &err);
255 ops->deserialize((void **)&pt_copy, serialize_data, visit_primitive_type, &err);
256
257 g_assert(err == NULL);
258 g_assert(pt_copy != NULL);
259 if (pt->type == PTYPE_STRING) {
260 g_assert_cmpstr(pt->value.string, ==, pt_copy->value.string);
261 } else if (pt->type == PTYPE_NUMBER) {
262 /* we serialize with %f for our reference visitors, so rather than fuzzy
263 * floating math to test "equality", just compare the formatted values
264 */
265 double1 = g_malloc0(calc_float_string_storage(pt->value.number));
266 double2 = g_malloc0(calc_float_string_storage(pt_copy->value.number));
267 g_assert_cmpstr(double1, ==, double2);
268 g_free(double1);
269 g_free(double2);
270 } else if (pt->type == PTYPE_BOOLEAN) {
271 g_assert_cmpint(!!pt->value.max, ==, !!pt->value.max);
272 } else {
273 g_assert_cmpint(pt->value.max, ==, pt_copy->value.max);
274 }
275
276 ops->cleanup(serialize_data);
277 g_free(args);
278 }
279
280 static void test_struct(gconstpointer opaque)
281 {
282 TestArgs *args = (TestArgs *) opaque;
283 const SerializeOps *ops = args->ops;
284 TestStruct *ts = struct_create();
285 TestStruct *ts_copy = NULL;
286 Error *err = NULL;
287 void *serialize_data;
288
289 ops->serialize(ts, &serialize_data, visit_struct, &err);
290 ops->deserialize((void **)&ts_copy, serialize_data, visit_struct, &err);
291
292 g_assert(err == NULL);
293 struct_compare(ts, ts_copy);
294
295 struct_cleanup(ts);
296 struct_cleanup(ts_copy);
297
298 ops->cleanup(serialize_data);
299 g_free(args);
300 }
301
302 static void test_nested_struct(gconstpointer opaque)
303 {
304 TestArgs *args = (TestArgs *) opaque;
305 const SerializeOps *ops = args->ops;
306 UserDefNested *udnp = nested_struct_create();
307 UserDefNested *udnp_copy = NULL;
308 Error *err = NULL;
309 void *serialize_data;
310
311 ops->serialize(udnp, &serialize_data, visit_nested_struct, &err);
312 ops->deserialize((void **)&udnp_copy, serialize_data, visit_nested_struct, &err);
313
314 g_assert(err == NULL);
315 nested_struct_compare(udnp, udnp_copy);
316
317 nested_struct_cleanup(udnp);
318 nested_struct_cleanup(udnp_copy);
319
320 ops->cleanup(serialize_data);
321 g_free(args);
322 }
323
324 static void test_nested_struct_list(gconstpointer opaque)
325 {
326 TestArgs *args = (TestArgs *) opaque;
327 const SerializeOps *ops = args->ops;
328 UserDefNestedList *listp = NULL, *tmp, *tmp_copy, *listp_copy = NULL;
329 Error *err = NULL;
330 void *serialize_data;
331 int i = 0;
332
333 for (i = 0; i < 8; i++) {
334 tmp = g_malloc0(sizeof(UserDefNestedList));
335 tmp->value = nested_struct_create();
336 tmp->next = listp;
337 listp = tmp;
338 }
339
340 ops->serialize(listp, &serialize_data, visit_nested_struct_list, &err);
341 ops->deserialize((void **)&listp_copy, serialize_data,
342 visit_nested_struct_list, &err);
343
344 g_assert(err == NULL);
345
346 tmp = listp;
347 tmp_copy = listp_copy;
348 while (listp_copy) {
349 g_assert(listp);
350 nested_struct_compare(listp->value, listp_copy->value);
351 listp = listp->next;
352 listp_copy = listp_copy->next;
353 }
354
355 qapi_free_UserDefNestedList(tmp);
356 qapi_free_UserDefNestedList(tmp_copy);
357
358 ops->cleanup(serialize_data);
359 g_free(args);
360 }
361
362 PrimitiveType pt_values[] = {
363 /* string tests */
364 {
365 .description = "string_empty",
366 .type = PTYPE_STRING,
367 .value.string = "",
368 },
369 {
370 .description = "string_whitespace",
371 .type = PTYPE_STRING,
372 .value.string = "a b c\td",
373 },
374 {
375 .description = "string_newlines",
376 .type = PTYPE_STRING,
377 .value.string = "a\nb\n",
378 },
379 {
380 .description = "string_commas",
381 .type = PTYPE_STRING,
382 .value.string = "a,b, c,d",
383 },
384 {
385 .description = "string_single_quoted",
386 .type = PTYPE_STRING,
387 .value.string = "'a b',cd",
388 },
389 {
390 .description = "string_double_quoted",
391 .type = PTYPE_STRING,
392 .value.string = "\"a b\",cd",
393 },
394 /* boolean tests */
395 {
396 .description = "boolean_true1",
397 .type = PTYPE_BOOLEAN,
398 .value.boolean = true,
399 },
400 {
401 .description = "boolean_true2",
402 .type = PTYPE_BOOLEAN,
403 .value.boolean = 8,
404 },
405 {
406 .description = "boolean_true3",
407 .type = PTYPE_BOOLEAN,
408 .value.boolean = -1,
409 },
410 {
411 .description = "boolean_false1",
412 .type = PTYPE_BOOLEAN,
413 .value.boolean = false,
414 },
415 {
416 .description = "boolean_false2",
417 .type = PTYPE_BOOLEAN,
418 .value.boolean = 0,
419 },
420 /* number tests (double) */
421 /* note: we format these to %.6f before comparing, since that's how
422 * we serialize them and it doesn't make sense to check precision
423 * beyond that.
424 */
425 {
426 .description = "number_sanity1",
427 .type = PTYPE_NUMBER,
428 .value.number = -1,
429 },
430 {
431 .description = "number_sanity2",
432 .type = PTYPE_NUMBER,
433 .value.number = 3.14159265,
434 },
435 {
436 .description = "number_min",
437 .type = PTYPE_NUMBER,
438 .value.number = DBL_MIN,
439 },
440 {
441 .description = "number_max",
442 .type = PTYPE_NUMBER,
443 .value.number = DBL_MAX,
444 },
445 /* integer tests (int64) */
446 {
447 .description = "integer_sanity1",
448 .type = PTYPE_INTEGER,
449 .value.integer = -1,
450 },
451 {
452 .description = "integer_sanity2",
453 .type = PTYPE_INTEGER,
454 .value.integer = INT64_MAX / 2 + 1,
455 },
456 {
457 .description = "integer_min",
458 .type = PTYPE_INTEGER,
459 .value.integer = INT64_MIN,
460 },
461 {
462 .description = "integer_max",
463 .type = PTYPE_INTEGER,
464 .value.integer = INT64_MAX,
465 },
466 /* uint8 tests */
467 {
468 .description = "uint8_sanity1",
469 .type = PTYPE_U8,
470 .value.u8 = 1,
471 },
472 {
473 .description = "uint8_sanity2",
474 .type = PTYPE_U8,
475 .value.u8 = UINT8_MAX / 2 + 1,
476 },
477 {
478 .description = "uint8_min",
479 .type = PTYPE_U8,
480 .value.u8 = 0,
481 },
482 {
483 .description = "uint8_max",
484 .type = PTYPE_U8,
485 .value.u8 = UINT8_MAX,
486 },
487 /* uint16 tests */
488 {
489 .description = "uint16_sanity1",
490 .type = PTYPE_U16,
491 .value.u16 = 1,
492 },
493 {
494 .description = "uint16_sanity2",
495 .type = PTYPE_U16,
496 .value.u16 = UINT16_MAX / 2 + 1,
497 },
498 {
499 .description = "uint16_min",
500 .type = PTYPE_U16,
501 .value.u16 = 0,
502 },
503 {
504 .description = "uint16_max",
505 .type = PTYPE_U16,
506 .value.u16 = UINT16_MAX,
507 },
508 /* uint32 tests */
509 {
510 .description = "uint32_sanity1",
511 .type = PTYPE_U32,
512 .value.u32 = 1,
513 },
514 {
515 .description = "uint32_sanity2",
516 .type = PTYPE_U32,
517 .value.u32 = UINT32_MAX / 2 + 1,
518 },
519 {
520 .description = "uint32_min",
521 .type = PTYPE_U32,
522 .value.u32 = 0,
523 },
524 {
525 .description = "uint32_max",
526 .type = PTYPE_U32,
527 .value.u32 = UINT32_MAX,
528 },
529 /* uint64 tests */
530 {
531 .description = "uint64_sanity1",
532 .type = PTYPE_U64,
533 .value.u64 = 1,
534 },
535 {
536 .description = "uint64_sanity2",
537 .type = PTYPE_U64,
538 .value.u64 = UINT64_MAX / 2 + 1,
539 },
540 {
541 .description = "uint64_min",
542 .type = PTYPE_U64,
543 .value.u64 = 0,
544 },
545 {
546 .description = "uint64_max",
547 .type = PTYPE_U64,
548 .value.u64 = UINT64_MAX,
549 },
550 /* int8 tests */
551 {
552 .description = "int8_sanity1",
553 .type = PTYPE_S8,
554 .value.s8 = -1,
555 },
556 {
557 .description = "int8_sanity2",
558 .type = PTYPE_S8,
559 .value.s8 = INT8_MAX / 2 + 1,
560 },
561 {
562 .description = "int8_min",
563 .type = PTYPE_S8,
564 .value.s8 = INT8_MIN,
565 },
566 {
567 .description = "int8_max",
568 .type = PTYPE_S8,
569 .value.s8 = INT8_MAX,
570 },
571 /* int16 tests */
572 {
573 .description = "int16_sanity1",
574 .type = PTYPE_S16,
575 .value.s16 = -1,
576 },
577 {
578 .description = "int16_sanity2",
579 .type = PTYPE_S16,
580 .value.s16 = INT16_MAX / 2 + 1,
581 },
582 {
583 .description = "int16_min",
584 .type = PTYPE_S16,
585 .value.s16 = INT16_MIN,
586 },
587 {
588 .description = "int16_max",
589 .type = PTYPE_S16,
590 .value.s16 = INT16_MAX,
591 },
592 /* int32 tests */
593 {
594 .description = "int32_sanity1",
595 .type = PTYPE_S32,
596 .value.s32 = -1,
597 },
598 {
599 .description = "int32_sanity2",
600 .type = PTYPE_S32,
601 .value.s32 = INT32_MAX / 2 + 1,
602 },
603 {
604 .description = "int32_min",
605 .type = PTYPE_S32,
606 .value.s32 = INT32_MIN,
607 },
608 {
609 .description = "int32_max",
610 .type = PTYPE_S32,
611 .value.s32 = INT32_MAX,
612 },
613 /* int64 tests */
614 {
615 .description = "int64_sanity1",
616 .type = PTYPE_S64,
617 .value.s64 = -1,
618 },
619 {
620 .description = "int64_sanity2",
621 .type = PTYPE_S64,
622 .value.s64 = INT64_MAX / 2 + 1,
623 },
624 {
625 .description = "int64_min",
626 .type = PTYPE_S64,
627 .value.s64 = INT64_MIN,
628 },
629 {
630 .description = "int64_max",
631 .type = PTYPE_S64,
632 .value.s64 = INT64_MAX,
633 },
634 { .type = PTYPE_EOL }
635 };
636
637 /* visitor-specific op implementations */
638
639 typedef struct QmpSerializeData {
640 QmpOutputVisitor *qov;
641 QmpInputVisitor *qiv;
642 } QmpSerializeData;
643
644 static void qmp_serialize(void *native_in, void **datap,
645 VisitorFunc visit, Error **errp)
646 {
647 QmpSerializeData *d = g_malloc0(sizeof(*d));
648
649 d->qov = qmp_output_visitor_new();
650 visit(qmp_output_get_visitor(d->qov), &native_in, errp);
651 *datap = d;
652 }
653
654 static void qmp_deserialize(void **native_out, void *datap,
655 VisitorFunc visit, Error **errp)
656 {
657 QmpSerializeData *d = datap;
658 QString *output_json = qobject_to_json(qmp_output_get_qobject(d->qov));
659 QObject *obj = qobject_from_json(qstring_get_str(output_json));
660
661 QDECREF(output_json);
662 d->qiv = qmp_input_visitor_new(obj);
663 visit(qmp_input_get_visitor(d->qiv), native_out, errp);
664 }
665
666 static void qmp_cleanup(void *datap)
667 {
668 QmpSerializeData *d = datap;
669 qmp_output_visitor_cleanup(d->qov);
670 qmp_input_visitor_cleanup(d->qiv);
671 }
672
673 typedef struct StringSerializeData {
674 StringOutputVisitor *sov;
675 StringInputVisitor *siv;
676 } StringSerializeData;
677
678 static void string_serialize(void *native_in, void **datap,
679 VisitorFunc visit, Error **errp)
680 {
681 StringSerializeData *d = g_malloc0(sizeof(*d));
682
683 d->sov = string_output_visitor_new();
684 visit(string_output_get_visitor(d->sov), &native_in, errp);
685 *datap = d;
686 }
687
688 static void string_deserialize(void **native_out, void *datap,
689 VisitorFunc visit, Error **errp)
690 {
691 StringSerializeData *d = datap;
692
693 d->siv = string_input_visitor_new(string_output_get_string(d->sov));
694 visit(string_input_get_visitor(d->siv), native_out, errp);
695 }
696
697 static void string_cleanup(void *datap)
698 {
699 StringSerializeData *d = datap;
700 string_output_visitor_cleanup(d->sov);
701 string_input_visitor_cleanup(d->siv);
702 }
703
704 /* visitor registration, test harness */
705
706 /* note: to function interchangeably as a serialization mechanism your
707 * visitor test implementation should pass the test cases for all visitor
708 * capabilities: primitives, structures, and lists
709 */
710 static const SerializeOps visitors[] = {
711 {
712 .type = "QMP",
713 .serialize = qmp_serialize,
714 .deserialize = qmp_deserialize,
715 .cleanup = qmp_cleanup,
716 .caps = VCAP_PRIMITIVES | VCAP_STRUCTURES | VCAP_LISTS
717 },
718 {
719 .type = "String",
720 .serialize = string_serialize,
721 .deserialize = string_deserialize,
722 .cleanup = string_cleanup,
723 .caps = VCAP_PRIMITIVES
724 },
725 { NULL }
726 };
727
728 static void add_visitor_type(const SerializeOps *ops)
729 {
730 char testname_prefix[128];
731 char testname[128];
732 TestArgs *args;
733 int i = 0;
734
735 sprintf(testname_prefix, "/visitor/serialization/%s", ops->type);
736
737 if (ops->caps & VCAP_PRIMITIVES) {
738 while (pt_values[i].type != PTYPE_EOL) {
739 sprintf(testname, "%s/primitives/%s", testname_prefix,
740 pt_values[i].description);
741 args = g_malloc0(sizeof(*args));
742 args->ops = ops;
743 args->test_data = &pt_values[i];
744 g_test_add_data_func(testname, args, test_primitives);
745 i++;
746 }
747 }
748
749 if (ops->caps & VCAP_STRUCTURES) {
750 sprintf(testname, "%s/struct", testname_prefix);
751 args = g_malloc0(sizeof(*args));
752 args->ops = ops;
753 args->test_data = NULL;
754 g_test_add_data_func(testname, args, test_struct);
755
756 sprintf(testname, "%s/nested_struct", testname_prefix);
757 args = g_malloc0(sizeof(*args));
758 args->ops = ops;
759 args->test_data = NULL;
760 g_test_add_data_func(testname, args, test_nested_struct);
761 }
762
763 if (ops->caps & VCAP_LISTS) {
764 sprintf(testname, "%s/nested_struct_list", testname_prefix);
765 args = g_malloc0(sizeof(*args));
766 args->ops = ops;
767 args->test_data = NULL;
768 g_test_add_data_func(testname, args, test_nested_struct_list);
769 }
770 }
771
772 int main(int argc, char **argv)
773 {
774 int i = 0;
775
776 g_test_init(&argc, &argv, NULL);
777
778 while (visitors[i].type != NULL) {
779 add_visitor_type(&visitors[i]);
780 i++;
781 }
782
783 g_test_run();
784
785 return 0;
786 }