]> git.proxmox.com Git - qemu.git/blob - translate-all.c
TCG: Final globals clean-up
[qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "disas/disas.h"
37 #include "tcg.h"
38 #include "qemu/timer.h"
39 #include "exec/memory.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include "qemu.h"
43 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
44 #include <sys/param.h>
45 #if __FreeBSD_version >= 700104
46 #define HAVE_KINFO_GETVMMAP
47 #define sigqueue sigqueue_freebsd /* avoid redefinition */
48 #include <sys/time.h>
49 #include <sys/proc.h>
50 #include <machine/profile.h>
51 #define _KERNEL
52 #include <sys/user.h>
53 #undef _KERNEL
54 #undef sigqueue
55 #include <libutil.h>
56 #endif
57 #endif
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
67
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
72
73 #define SMC_BITMAP_USE_THRESHOLD 10
74
75 /* Translation blocks */
76 static TranslationBlock *tbs;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
81
82 typedef struct PageDesc {
83 /* list of TBs intersecting this ram page */
84 TranslationBlock *first_tb;
85 /* in order to optimize self modifying code, we count the number
86 of lookups we do to a given page to use a bitmap */
87 unsigned int code_write_count;
88 uint8_t *code_bitmap;
89 #if defined(CONFIG_USER_ONLY)
90 unsigned long flags;
91 #endif
92 } PageDesc;
93
94 /* In system mode we want L1_MAP to be based on ram offsets,
95 while in user mode we want it to be based on virtual addresses. */
96 #if !defined(CONFIG_USER_ONLY)
97 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
98 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
99 #else
100 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
101 #endif
102 #else
103 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
104 #endif
105
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
109
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
115
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_host_page_size;
122 uintptr_t qemu_host_page_mask;
123
124 /* This is a multi-level map on the virtual address space.
125 The bottom level has pointers to PageDesc. */
126 static void *l1_map[V_L1_SIZE];
127
128 /* statistics */
129 static int tb_flush_count;
130 static int tb_phys_invalidate_count;
131
132 /* code generation context */
133 TCGContext tcg_ctx;
134
135 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
136 tb_page_addr_t phys_page2);
137 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
138
139 void cpu_gen_init(void)
140 {
141 tcg_context_init(&tcg_ctx);
142 }
143
144 /* return non zero if the very first instruction is invalid so that
145 the virtual CPU can trigger an exception.
146
147 '*gen_code_size_ptr' contains the size of the generated code (host
148 code).
149 */
150 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
151 {
152 TCGContext *s = &tcg_ctx;
153 uint8_t *gen_code_buf;
154 int gen_code_size;
155 #ifdef CONFIG_PROFILER
156 int64_t ti;
157 #endif
158
159 #ifdef CONFIG_PROFILER
160 s->tb_count1++; /* includes aborted translations because of
161 exceptions */
162 ti = profile_getclock();
163 #endif
164 tcg_func_start(s);
165
166 gen_intermediate_code(env, tb);
167
168 /* generate machine code */
169 gen_code_buf = tb->tc_ptr;
170 tb->tb_next_offset[0] = 0xffff;
171 tb->tb_next_offset[1] = 0xffff;
172 s->tb_next_offset = tb->tb_next_offset;
173 #ifdef USE_DIRECT_JUMP
174 s->tb_jmp_offset = tb->tb_jmp_offset;
175 s->tb_next = NULL;
176 #else
177 s->tb_jmp_offset = NULL;
178 s->tb_next = tb->tb_next;
179 #endif
180
181 #ifdef CONFIG_PROFILER
182 s->tb_count++;
183 s->interm_time += profile_getclock() - ti;
184 s->code_time -= profile_getclock();
185 #endif
186 gen_code_size = tcg_gen_code(s, gen_code_buf);
187 *gen_code_size_ptr = gen_code_size;
188 #ifdef CONFIG_PROFILER
189 s->code_time += profile_getclock();
190 s->code_in_len += tb->size;
191 s->code_out_len += gen_code_size;
192 #endif
193
194 #ifdef DEBUG_DISAS
195 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
196 qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr);
197 log_disas(tb->tc_ptr, *gen_code_size_ptr);
198 qemu_log("\n");
199 qemu_log_flush();
200 }
201 #endif
202 return 0;
203 }
204
205 /* The cpu state corresponding to 'searched_pc' is restored.
206 */
207 static int cpu_restore_state_from_tb(TranslationBlock *tb, CPUArchState *env,
208 uintptr_t searched_pc)
209 {
210 TCGContext *s = &tcg_ctx;
211 int j;
212 uintptr_t tc_ptr;
213 #ifdef CONFIG_PROFILER
214 int64_t ti;
215 #endif
216
217 #ifdef CONFIG_PROFILER
218 ti = profile_getclock();
219 #endif
220 tcg_func_start(s);
221
222 gen_intermediate_code_pc(env, tb);
223
224 if (use_icount) {
225 /* Reset the cycle counter to the start of the block. */
226 env->icount_decr.u16.low += tb->icount;
227 /* Clear the IO flag. */
228 env->can_do_io = 0;
229 }
230
231 /* find opc index corresponding to search_pc */
232 tc_ptr = (uintptr_t)tb->tc_ptr;
233 if (searched_pc < tc_ptr)
234 return -1;
235
236 s->tb_next_offset = tb->tb_next_offset;
237 #ifdef USE_DIRECT_JUMP
238 s->tb_jmp_offset = tb->tb_jmp_offset;
239 s->tb_next = NULL;
240 #else
241 s->tb_jmp_offset = NULL;
242 s->tb_next = tb->tb_next;
243 #endif
244 j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr);
245 if (j < 0)
246 return -1;
247 /* now find start of instruction before */
248 while (s->gen_opc_instr_start[j] == 0) {
249 j--;
250 }
251 env->icount_decr.u16.low -= s->gen_opc_icount[j];
252
253 restore_state_to_opc(env, tb, j);
254
255 #ifdef CONFIG_PROFILER
256 s->restore_time += profile_getclock() - ti;
257 s->restore_count++;
258 #endif
259 return 0;
260 }
261
262 bool cpu_restore_state(CPUArchState *env, uintptr_t retaddr)
263 {
264 TranslationBlock *tb;
265
266 tb = tb_find_pc(retaddr);
267 if (tb) {
268 cpu_restore_state_from_tb(tb, env, retaddr);
269 return true;
270 }
271 return false;
272 }
273
274 #ifdef _WIN32
275 static inline void map_exec(void *addr, long size)
276 {
277 DWORD old_protect;
278 VirtualProtect(addr, size,
279 PAGE_EXECUTE_READWRITE, &old_protect);
280 }
281 #else
282 static inline void map_exec(void *addr, long size)
283 {
284 unsigned long start, end, page_size;
285
286 page_size = getpagesize();
287 start = (unsigned long)addr;
288 start &= ~(page_size - 1);
289
290 end = (unsigned long)addr + size;
291 end += page_size - 1;
292 end &= ~(page_size - 1);
293
294 mprotect((void *)start, end - start,
295 PROT_READ | PROT_WRITE | PROT_EXEC);
296 }
297 #endif
298
299 static void page_init(void)
300 {
301 /* NOTE: we can always suppose that qemu_host_page_size >=
302 TARGET_PAGE_SIZE */
303 #ifdef _WIN32
304 {
305 SYSTEM_INFO system_info;
306
307 GetSystemInfo(&system_info);
308 qemu_real_host_page_size = system_info.dwPageSize;
309 }
310 #else
311 qemu_real_host_page_size = getpagesize();
312 #endif
313 if (qemu_host_page_size == 0) {
314 qemu_host_page_size = qemu_real_host_page_size;
315 }
316 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
317 qemu_host_page_size = TARGET_PAGE_SIZE;
318 }
319 qemu_host_page_mask = ~(qemu_host_page_size - 1);
320
321 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 {
323 #ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry *freep;
325 int i, cnt;
326
327 freep = kinfo_getvmmap(getpid(), &cnt);
328 if (freep) {
329 mmap_lock();
330 for (i = 0; i < cnt; i++) {
331 unsigned long startaddr, endaddr;
332
333 startaddr = freep[i].kve_start;
334 endaddr = freep[i].kve_end;
335 if (h2g_valid(startaddr)) {
336 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337
338 if (h2g_valid(endaddr)) {
339 endaddr = h2g(endaddr);
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341 } else {
342 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
343 endaddr = ~0ul;
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 #endif
346 }
347 }
348 }
349 free(freep);
350 mmap_unlock();
351 }
352 #else
353 FILE *f;
354
355 last_brk = (unsigned long)sbrk(0);
356
357 f = fopen("/compat/linux/proc/self/maps", "r");
358 if (f) {
359 mmap_lock();
360
361 do {
362 unsigned long startaddr, endaddr;
363 int n;
364
365 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366
367 if (n == 2 && h2g_valid(startaddr)) {
368 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369
370 if (h2g_valid(endaddr)) {
371 endaddr = h2g(endaddr);
372 } else {
373 endaddr = ~0ul;
374 }
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 }
377 } while (!feof(f));
378
379 fclose(f);
380 mmap_unlock();
381 }
382 #endif
383 }
384 #endif
385 }
386
387 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388 {
389 PageDesc *pd;
390 void **lp;
391 int i;
392
393 #if defined(CONFIG_USER_ONLY)
394 /* We can't use g_malloc because it may recurse into a locked mutex. */
395 # define ALLOC(P, SIZE) \
396 do { \
397 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
398 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
399 } while (0)
400 #else
401 # define ALLOC(P, SIZE) \
402 do { P = g_malloc0(SIZE); } while (0)
403 #endif
404
405 /* Level 1. Always allocated. */
406 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
407
408 /* Level 2..N-1. */
409 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
410 void **p = *lp;
411
412 if (p == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
416 ALLOC(p, sizeof(void *) * L2_SIZE);
417 *lp = p;
418 }
419
420 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
421 }
422
423 pd = *lp;
424 if (pd == NULL) {
425 if (!alloc) {
426 return NULL;
427 }
428 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
429 *lp = pd;
430 }
431
432 #undef ALLOC
433
434 return pd + (index & (L2_SIZE - 1));
435 }
436
437 static inline PageDesc *page_find(tb_page_addr_t index)
438 {
439 return page_find_alloc(index, 0);
440 }
441
442 #if !defined(CONFIG_USER_ONLY)
443 #define mmap_lock() do { } while (0)
444 #define mmap_unlock() do { } while (0)
445 #endif
446
447 #if defined(CONFIG_USER_ONLY)
448 /* Currently it is not recommended to allocate big chunks of data in
449 user mode. It will change when a dedicated libc will be used. */
450 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
451 region in which the guest needs to run. Revisit this. */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
454
455 /* ??? Should configure for this, not list operating systems here. */
456 #if (defined(__linux__) \
457 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
458 || defined(__DragonFly__) || defined(__OpenBSD__) \
459 || defined(__NetBSD__))
460 # define USE_MMAP
461 #endif
462
463 /* Minimum size of the code gen buffer. This number is randomly chosen,
464 but not so small that we can't have a fair number of TB's live. */
465 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
466
467 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
468 indicated, this is constrained by the range of direct branches on the
469 host cpu, as used by the TCG implementation of goto_tb. */
470 #if defined(__x86_64__)
471 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
472 #elif defined(__sparc__)
473 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
474 #elif defined(__arm__)
475 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
476 #elif defined(__s390x__)
477 /* We have a +- 4GB range on the branches; leave some slop. */
478 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479 #else
480 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
481 #endif
482
483 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484
485 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
486 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
487 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488
489 static inline size_t size_code_gen_buffer(size_t tb_size)
490 {
491 /* Size the buffer. */
492 if (tb_size == 0) {
493 #ifdef USE_STATIC_CODE_GEN_BUFFER
494 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
495 #else
496 /* ??? Needs adjustments. */
497 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
498 static buffer, we could size this on RESERVED_VA, on the text
499 segment size of the executable, or continue to use the default. */
500 tb_size = (unsigned long)(ram_size / 4);
501 #endif
502 }
503 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
504 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 }
506 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 }
509 tcg_ctx.code_gen_buffer_size = tb_size;
510 return tb_size;
511 }
512
513 #ifdef USE_STATIC_CODE_GEN_BUFFER
514 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
515 __attribute__((aligned(CODE_GEN_ALIGN)));
516
517 static inline void *alloc_code_gen_buffer(void)
518 {
519 map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size);
520 return static_code_gen_buffer;
521 }
522 #elif defined(USE_MMAP)
523 static inline void *alloc_code_gen_buffer(void)
524 {
525 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 uintptr_t start = 0;
527 void *buf;
528
529 /* Constrain the position of the buffer based on the host cpu.
530 Note that these addresses are chosen in concert with the
531 addresses assigned in the relevant linker script file. */
532 # if defined(__PIE__) || defined(__PIC__)
533 /* Don't bother setting a preferred location if we're building
534 a position-independent executable. We're more likely to get
535 an address near the main executable if we let the kernel
536 choose the address. */
537 # elif defined(__x86_64__) && defined(MAP_32BIT)
538 /* Force the memory down into low memory with the executable.
539 Leave the choice of exact location with the kernel. */
540 flags |= MAP_32BIT;
541 /* Cannot expect to map more than 800MB in low memory. */
542 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
543 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
544 }
545 # elif defined(__sparc__)
546 start = 0x40000000ul;
547 # elif defined(__s390x__)
548 start = 0x90000000ul;
549 # endif
550
551 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
552 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
553 return buf == MAP_FAILED ? NULL : buf;
554 }
555 #else
556 static inline void *alloc_code_gen_buffer(void)
557 {
558 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
559
560 if (buf) {
561 map_exec(buf, tcg_ctx.code_gen_buffer_size);
562 }
563 return buf;
564 }
565 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
566
567 static inline void code_gen_alloc(size_t tb_size)
568 {
569 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
570 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
571 if (tcg_ctx.code_gen_buffer == NULL) {
572 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
573 exit(1);
574 }
575
576 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
577 QEMU_MADV_HUGEPAGE);
578
579 /* Steal room for the prologue at the end of the buffer. This ensures
580 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
581 from TB's to the prologue are going to be in range. It also means
582 that we don't need to mark (additional) portions of the data segment
583 as executable. */
584 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
585 tcg_ctx.code_gen_buffer_size - 1024;
586 tcg_ctx.code_gen_buffer_size -= 1024;
587
588 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
589 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
590 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
591 CODE_GEN_AVG_BLOCK_SIZE;
592 tbs = g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
593 }
594
595 /* Must be called before using the QEMU cpus. 'tb_size' is the size
596 (in bytes) allocated to the translation buffer. Zero means default
597 size. */
598 void tcg_exec_init(unsigned long tb_size)
599 {
600 cpu_gen_init();
601 code_gen_alloc(tb_size);
602 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
603 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
604 page_init();
605 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
606 /* There's no guest base to take into account, so go ahead and
607 initialize the prologue now. */
608 tcg_prologue_init(&tcg_ctx);
609 #endif
610 }
611
612 bool tcg_enabled(void)
613 {
614 return tcg_ctx.code_gen_buffer != NULL;
615 }
616
617 /* Allocate a new translation block. Flush the translation buffer if
618 too many translation blocks or too much generated code. */
619 static TranslationBlock *tb_alloc(target_ulong pc)
620 {
621 TranslationBlock *tb;
622
623 if (nb_tbs >= tcg_ctx.code_gen_max_blocks ||
624 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
625 tcg_ctx.code_gen_buffer_max_size) {
626 return NULL;
627 }
628 tb = &tbs[nb_tbs++];
629 tb->pc = pc;
630 tb->cflags = 0;
631 return tb;
632 }
633
634 void tb_free(TranslationBlock *tb)
635 {
636 /* In practice this is mostly used for single use temporary TB
637 Ignore the hard cases and just back up if this TB happens to
638 be the last one generated. */
639 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
640 tcg_ctx.code_gen_ptr = tb->tc_ptr;
641 nb_tbs--;
642 }
643 }
644
645 static inline void invalidate_page_bitmap(PageDesc *p)
646 {
647 if (p->code_bitmap) {
648 g_free(p->code_bitmap);
649 p->code_bitmap = NULL;
650 }
651 p->code_write_count = 0;
652 }
653
654 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
655 static void page_flush_tb_1(int level, void **lp)
656 {
657 int i;
658
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
664
665 for (i = 0; i < L2_SIZE; ++i) {
666 pd[i].first_tb = NULL;
667 invalidate_page_bitmap(pd + i);
668 }
669 } else {
670 void **pp = *lp;
671
672 for (i = 0; i < L2_SIZE; ++i) {
673 page_flush_tb_1(level - 1, pp + i);
674 }
675 }
676 }
677
678 static void page_flush_tb(void)
679 {
680 int i;
681
682 for (i = 0; i < V_L1_SIZE; i++) {
683 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
684 }
685 }
686
687 /* flush all the translation blocks */
688 /* XXX: tb_flush is currently not thread safe */
689 void tb_flush(CPUArchState *env1)
690 {
691 CPUArchState *env;
692
693 #if defined(DEBUG_FLUSH)
694 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
695 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
696 nb_tbs, nb_tbs > 0 ?
697 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
698 nb_tbs : 0);
699 #endif
700 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
701 > tcg_ctx.code_gen_buffer_size) {
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703 }
704 nb_tbs = 0;
705
706 for (env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof(void *));
708 }
709
710 memset(tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof(void *));
711 page_flush_tb();
712
713 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
716 tb_flush_count++;
717 }
718
719 #ifdef DEBUG_TB_CHECK
720
721 static void tb_invalidate_check(target_ulong address)
722 {
723 TranslationBlock *tb;
724 int i;
725
726 address &= TARGET_PAGE_MASK;
727 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
728 for (tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
729 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
730 address >= tb->pc + tb->size)) {
731 printf("ERROR invalidate: address=" TARGET_FMT_lx
732 " PC=%08lx size=%04x\n",
733 address, (long)tb->pc, tb->size);
734 }
735 }
736 }
737 }
738
739 /* verify that all the pages have correct rights for code */
740 static void tb_page_check(void)
741 {
742 TranslationBlock *tb;
743 int i, flags1, flags2;
744
745 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
746 for (tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
747 flags1 = page_get_flags(tb->pc);
748 flags2 = page_get_flags(tb->pc + tb->size - 1);
749 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
750 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
751 (long)tb->pc, tb->size, flags1, flags2);
752 }
753 }
754 }
755 }
756
757 #endif
758
759 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
760 {
761 TranslationBlock *tb1;
762
763 for (;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = tb1->phys_hash_next;
767 break;
768 }
769 ptb = &tb1->phys_hash_next;
770 }
771 }
772
773 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774 {
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for (;;) {
779 tb1 = *ptb;
780 n1 = (uintptr_t)tb1 & 3;
781 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788 }
789
790 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791 {
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for (;;) {
800 tb1 = *ptb;
801 n1 = (uintptr_t)tb1 & 3;
802 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
803 if (n1 == n && tb1 == tb) {
804 break;
805 }
806 if (n1 == 2) {
807 ptb = &tb1->jmp_first;
808 } else {
809 ptb = &tb1->jmp_next[n1];
810 }
811 }
812 /* now we can suppress tb(n) from the list */
813 *ptb = tb->jmp_next[n];
814
815 tb->jmp_next[n] = NULL;
816 }
817 }
818
819 /* reset the jump entry 'n' of a TB so that it is not chained to
820 another TB */
821 static inline void tb_reset_jump(TranslationBlock *tb, int n)
822 {
823 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
824 }
825
826 /* invalidate one TB */
827 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
828 {
829 CPUArchState *env;
830 PageDesc *p;
831 unsigned int h, n1;
832 tb_page_addr_t phys_pc;
833 TranslationBlock *tb1, *tb2;
834
835 /* remove the TB from the hash list */
836 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
837 h = tb_phys_hash_func(phys_pc);
838 tb_hash_remove(&tb_phys_hash[h], tb);
839
840 /* remove the TB from the page list */
841 if (tb->page_addr[0] != page_addr) {
842 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
843 tb_page_remove(&p->first_tb, tb);
844 invalidate_page_bitmap(p);
845 }
846 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
847 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
848 tb_page_remove(&p->first_tb, tb);
849 invalidate_page_bitmap(p);
850 }
851
852 tb_invalidated_flag = 1;
853
854 /* remove the TB from the hash list */
855 h = tb_jmp_cache_hash_func(tb->pc);
856 for (env = first_cpu; env != NULL; env = env->next_cpu) {
857 if (env->tb_jmp_cache[h] == tb) {
858 env->tb_jmp_cache[h] = NULL;
859 }
860 }
861
862 /* suppress this TB from the two jump lists */
863 tb_jmp_remove(tb, 0);
864 tb_jmp_remove(tb, 1);
865
866 /* suppress any remaining jumps to this TB */
867 tb1 = tb->jmp_first;
868 for (;;) {
869 n1 = (uintptr_t)tb1 & 3;
870 if (n1 == 2) {
871 break;
872 }
873 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
874 tb2 = tb1->jmp_next[n1];
875 tb_reset_jump(tb1, n1);
876 tb1->jmp_next[n1] = NULL;
877 tb1 = tb2;
878 }
879 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
880
881 tb_phys_invalidate_count++;
882 }
883
884 static inline void set_bits(uint8_t *tab, int start, int len)
885 {
886 int end, mask, end1;
887
888 end = start + len;
889 tab += start >> 3;
890 mask = 0xff << (start & 7);
891 if ((start & ~7) == (end & ~7)) {
892 if (start < end) {
893 mask &= ~(0xff << (end & 7));
894 *tab |= mask;
895 }
896 } else {
897 *tab++ |= mask;
898 start = (start + 8) & ~7;
899 end1 = end & ~7;
900 while (start < end1) {
901 *tab++ = 0xff;
902 start += 8;
903 }
904 if (start < end) {
905 mask = ~(0xff << (end & 7));
906 *tab |= mask;
907 }
908 }
909 }
910
911 static void build_page_bitmap(PageDesc *p)
912 {
913 int n, tb_start, tb_end;
914 TranslationBlock *tb;
915
916 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
917
918 tb = p->first_tb;
919 while (tb != NULL) {
920 n = (uintptr_t)tb & 3;
921 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
922 /* NOTE: this is subtle as a TB may span two physical pages */
923 if (n == 0) {
924 /* NOTE: tb_end may be after the end of the page, but
925 it is not a problem */
926 tb_start = tb->pc & ~TARGET_PAGE_MASK;
927 tb_end = tb_start + tb->size;
928 if (tb_end > TARGET_PAGE_SIZE) {
929 tb_end = TARGET_PAGE_SIZE;
930 }
931 } else {
932 tb_start = 0;
933 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
934 }
935 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
936 tb = tb->page_next[n];
937 }
938 }
939
940 TranslationBlock *tb_gen_code(CPUArchState *env,
941 target_ulong pc, target_ulong cs_base,
942 int flags, int cflags)
943 {
944 TranslationBlock *tb;
945 uint8_t *tc_ptr;
946 tb_page_addr_t phys_pc, phys_page2;
947 target_ulong virt_page2;
948 int code_gen_size;
949
950 phys_pc = get_page_addr_code(env, pc);
951 tb = tb_alloc(pc);
952 if (!tb) {
953 /* flush must be done */
954 tb_flush(env);
955 /* cannot fail at this point */
956 tb = tb_alloc(pc);
957 /* Don't forget to invalidate previous TB info. */
958 tb_invalidated_flag = 1;
959 }
960 tc_ptr = tcg_ctx.code_gen_ptr;
961 tb->tc_ptr = tc_ptr;
962 tb->cs_base = cs_base;
963 tb->flags = flags;
964 tb->cflags = cflags;
965 cpu_gen_code(env, tb, &code_gen_size);
966 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
967 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
968
969 /* check next page if needed */
970 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
971 phys_page2 = -1;
972 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
973 phys_page2 = get_page_addr_code(env, virt_page2);
974 }
975 tb_link_page(tb, phys_pc, phys_page2);
976 return tb;
977 }
978
979 /*
980 * Invalidate all TBs which intersect with the target physical address range
981 * [start;end[. NOTE: start and end may refer to *different* physical pages.
982 * 'is_cpu_write_access' should be true if called from a real cpu write
983 * access: the virtual CPU will exit the current TB if code is modified inside
984 * this TB.
985 */
986 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
987 int is_cpu_write_access)
988 {
989 while (start < end) {
990 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
991 start &= TARGET_PAGE_MASK;
992 start += TARGET_PAGE_SIZE;
993 }
994 }
995
996 /*
997 * Invalidate all TBs which intersect with the target physical address range
998 * [start;end[. NOTE: start and end must refer to the *same* physical page.
999 * 'is_cpu_write_access' should be true if called from a real cpu write
1000 * access: the virtual CPU will exit the current TB if code is modified inside
1001 * this TB.
1002 */
1003 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1004 int is_cpu_write_access)
1005 {
1006 TranslationBlock *tb, *tb_next, *saved_tb;
1007 CPUArchState *env = cpu_single_env;
1008 tb_page_addr_t tb_start, tb_end;
1009 PageDesc *p;
1010 int n;
1011 #ifdef TARGET_HAS_PRECISE_SMC
1012 int current_tb_not_found = is_cpu_write_access;
1013 TranslationBlock *current_tb = NULL;
1014 int current_tb_modified = 0;
1015 target_ulong current_pc = 0;
1016 target_ulong current_cs_base = 0;
1017 int current_flags = 0;
1018 #endif /* TARGET_HAS_PRECISE_SMC */
1019
1020 p = page_find(start >> TARGET_PAGE_BITS);
1021 if (!p) {
1022 return;
1023 }
1024 if (!p->code_bitmap &&
1025 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1026 is_cpu_write_access) {
1027 /* build code bitmap */
1028 build_page_bitmap(p);
1029 }
1030
1031 /* we remove all the TBs in the range [start, end[ */
1032 /* XXX: see if in some cases it could be faster to invalidate all
1033 the code */
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (uintptr_t)tb & 3;
1037 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1038 tb_next = tb->page_next[n];
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044 tb_end = tb_start + tb->size;
1045 } else {
1046 tb_start = tb->page_addr[1];
1047 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
1049 if (!(tb_end <= start || tb_start >= end)) {
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (current_tb_not_found) {
1052 current_tb_not_found = 0;
1053 current_tb = NULL;
1054 if (env->mem_io_pc) {
1055 /* now we have a real cpu fault */
1056 current_tb = tb_find_pc(env->mem_io_pc);
1057 }
1058 }
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1066
1067 current_tb_modified = 1;
1068 cpu_restore_state_from_tb(current_tb, env, env->mem_io_pc);
1069 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1070 &current_flags);
1071 }
1072 #endif /* TARGET_HAS_PRECISE_SMC */
1073 /* we need to do that to handle the case where a signal
1074 occurs while doing tb_phys_invalidate() */
1075 saved_tb = NULL;
1076 if (env) {
1077 saved_tb = env->current_tb;
1078 env->current_tb = NULL;
1079 }
1080 tb_phys_invalidate(tb, -1);
1081 if (env) {
1082 env->current_tb = saved_tb;
1083 if (env->interrupt_request && env->current_tb) {
1084 cpu_interrupt(env, env->interrupt_request);
1085 }
1086 }
1087 }
1088 tb = tb_next;
1089 }
1090 #if !defined(CONFIG_USER_ONLY)
1091 /* if no code remaining, no need to continue to use slow writes */
1092 if (!p->first_tb) {
1093 invalidate_page_bitmap(p);
1094 if (is_cpu_write_access) {
1095 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1096 }
1097 }
1098 #endif
1099 #ifdef TARGET_HAS_PRECISE_SMC
1100 if (current_tb_modified) {
1101 /* we generate a block containing just the instruction
1102 modifying the memory. It will ensure that it cannot modify
1103 itself */
1104 env->current_tb = NULL;
1105 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1106 cpu_resume_from_signal(env, NULL);
1107 }
1108 #endif
1109 }
1110
1111 /* len must be <= 8 and start must be a multiple of len */
1112 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1113 {
1114 PageDesc *p;
1115 int offset, b;
1116
1117 #if 0
1118 if (1) {
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env->mem_io_vaddr, len,
1121 cpu_single_env->eip,
1122 cpu_single_env->eip +
1123 (intptr_t)cpu_single_env->segs[R_CS].base);
1124 }
1125 #endif
1126 p = page_find(start >> TARGET_PAGE_BITS);
1127 if (!p) {
1128 return;
1129 }
1130 if (p->code_bitmap) {
1131 offset = start & ~TARGET_PAGE_MASK;
1132 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1133 if (b & ((1 << len) - 1)) {
1134 goto do_invalidate;
1135 }
1136 } else {
1137 do_invalidate:
1138 tb_invalidate_phys_page_range(start, start + len, 1);
1139 }
1140 }
1141
1142 #if !defined(CONFIG_SOFTMMU)
1143 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1144 uintptr_t pc, void *puc)
1145 {
1146 TranslationBlock *tb;
1147 PageDesc *p;
1148 int n;
1149 #ifdef TARGET_HAS_PRECISE_SMC
1150 TranslationBlock *current_tb = NULL;
1151 CPUArchState *env = cpu_single_env;
1152 int current_tb_modified = 0;
1153 target_ulong current_pc = 0;
1154 target_ulong current_cs_base = 0;
1155 int current_flags = 0;
1156 #endif
1157
1158 addr &= TARGET_PAGE_MASK;
1159 p = page_find(addr >> TARGET_PAGE_BITS);
1160 if (!p) {
1161 return;
1162 }
1163 tb = p->first_tb;
1164 #ifdef TARGET_HAS_PRECISE_SMC
1165 if (tb && pc != 0) {
1166 current_tb = tb_find_pc(pc);
1167 }
1168 #endif
1169 while (tb != NULL) {
1170 n = (uintptr_t)tb & 3;
1171 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb == tb &&
1174 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1175 /* If we are modifying the current TB, we must stop
1176 its execution. We could be more precise by checking
1177 that the modification is after the current PC, but it
1178 would require a specialized function to partially
1179 restore the CPU state */
1180
1181 current_tb_modified = 1;
1182 cpu_restore_state_from_tb(current_tb, env, pc);
1183 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1184 &current_flags);
1185 }
1186 #endif /* TARGET_HAS_PRECISE_SMC */
1187 tb_phys_invalidate(tb, addr);
1188 tb = tb->page_next[n];
1189 }
1190 p->first_tb = NULL;
1191 #ifdef TARGET_HAS_PRECISE_SMC
1192 if (current_tb_modified) {
1193 /* we generate a block containing just the instruction
1194 modifying the memory. It will ensure that it cannot modify
1195 itself */
1196 env->current_tb = NULL;
1197 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1198 cpu_resume_from_signal(env, puc);
1199 }
1200 #endif
1201 }
1202 #endif
1203
1204 /* add the tb in the target page and protect it if necessary */
1205 static inline void tb_alloc_page(TranslationBlock *tb,
1206 unsigned int n, tb_page_addr_t page_addr)
1207 {
1208 PageDesc *p;
1209 #ifndef CONFIG_USER_ONLY
1210 bool page_already_protected;
1211 #endif
1212
1213 tb->page_addr[n] = page_addr;
1214 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1215 tb->page_next[n] = p->first_tb;
1216 #ifndef CONFIG_USER_ONLY
1217 page_already_protected = p->first_tb != NULL;
1218 #endif
1219 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1220 invalidate_page_bitmap(p);
1221
1222 #if defined(TARGET_HAS_SMC) || 1
1223
1224 #if defined(CONFIG_USER_ONLY)
1225 if (p->flags & PAGE_WRITE) {
1226 target_ulong addr;
1227 PageDesc *p2;
1228 int prot;
1229
1230 /* force the host page as non writable (writes will have a
1231 page fault + mprotect overhead) */
1232 page_addr &= qemu_host_page_mask;
1233 prot = 0;
1234 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1235 addr += TARGET_PAGE_SIZE) {
1236
1237 p2 = page_find(addr >> TARGET_PAGE_BITS);
1238 if (!p2) {
1239 continue;
1240 }
1241 prot |= p2->flags;
1242 p2->flags &= ~PAGE_WRITE;
1243 }
1244 mprotect(g2h(page_addr), qemu_host_page_size,
1245 (prot & PAGE_BITS) & ~PAGE_WRITE);
1246 #ifdef DEBUG_TB_INVALIDATE
1247 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1248 page_addr);
1249 #endif
1250 }
1251 #else
1252 /* if some code is already present, then the pages are already
1253 protected. So we handle the case where only the first TB is
1254 allocated in a physical page */
1255 if (!page_already_protected) {
1256 tlb_protect_code(page_addr);
1257 }
1258 #endif
1259
1260 #endif /* TARGET_HAS_SMC */
1261 }
1262
1263 /* add a new TB and link it to the physical page tables. phys_page2 is
1264 (-1) to indicate that only one page contains the TB. */
1265 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1266 tb_page_addr_t phys_page2)
1267 {
1268 unsigned int h;
1269 TranslationBlock **ptb;
1270
1271 /* Grab the mmap lock to stop another thread invalidating this TB
1272 before we are done. */
1273 mmap_lock();
1274 /* add in the physical hash table */
1275 h = tb_phys_hash_func(phys_pc);
1276 ptb = &tb_phys_hash[h];
1277 tb->phys_hash_next = *ptb;
1278 *ptb = tb;
1279
1280 /* add in the page list */
1281 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1282 if (phys_page2 != -1) {
1283 tb_alloc_page(tb, 1, phys_page2);
1284 } else {
1285 tb->page_addr[1] = -1;
1286 }
1287
1288 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1289 tb->jmp_next[0] = NULL;
1290 tb->jmp_next[1] = NULL;
1291
1292 /* init original jump addresses */
1293 if (tb->tb_next_offset[0] != 0xffff) {
1294 tb_reset_jump(tb, 0);
1295 }
1296 if (tb->tb_next_offset[1] != 0xffff) {
1297 tb_reset_jump(tb, 1);
1298 }
1299
1300 #ifdef DEBUG_TB_CHECK
1301 tb_page_check();
1302 #endif
1303 mmap_unlock();
1304 }
1305
1306 #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
1307 /* check whether the given addr is in TCG generated code buffer or not */
1308 bool is_tcg_gen_code(uintptr_t tc_ptr)
1309 {
1310 /* This can be called during code generation, code_gen_buffer_max_size
1311 is used instead of code_gen_ptr for upper boundary checking */
1312 return (tc_ptr >= (uintptr_t)tcg_ctx.code_gen_buffer &&
1313 tc_ptr < (uintptr_t)(tcg_ctx.code_gen_buffer +
1314 tcg_ctx.code_gen_buffer_max_size));
1315 }
1316 #endif
1317
1318 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1319 tb[1].tc_ptr. Return NULL if not found */
1320 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1321 {
1322 int m_min, m_max, m;
1323 uintptr_t v;
1324 TranslationBlock *tb;
1325
1326 if (nb_tbs <= 0) {
1327 return NULL;
1328 }
1329 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1330 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1331 return NULL;
1332 }
1333 /* binary search (cf Knuth) */
1334 m_min = 0;
1335 m_max = nb_tbs - 1;
1336 while (m_min <= m_max) {
1337 m = (m_min + m_max) >> 1;
1338 tb = &tbs[m];
1339 v = (uintptr_t)tb->tc_ptr;
1340 if (v == tc_ptr) {
1341 return tb;
1342 } else if (tc_ptr < v) {
1343 m_max = m - 1;
1344 } else {
1345 m_min = m + 1;
1346 }
1347 }
1348 return &tbs[m_max];
1349 }
1350
1351 static void tb_reset_jump_recursive(TranslationBlock *tb);
1352
1353 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354 {
1355 TranslationBlock *tb1, *tb_next, **ptb;
1356 unsigned int n1;
1357
1358 tb1 = tb->jmp_next[n];
1359 if (tb1 != NULL) {
1360 /* find head of list */
1361 for (;;) {
1362 n1 = (uintptr_t)tb1 & 3;
1363 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1364 if (n1 == 2) {
1365 break;
1366 }
1367 tb1 = tb1->jmp_next[n1];
1368 }
1369 /* we are now sure now that tb jumps to tb1 */
1370 tb_next = tb1;
1371
1372 /* remove tb from the jmp_first list */
1373 ptb = &tb_next->jmp_first;
1374 for (;;) {
1375 tb1 = *ptb;
1376 n1 = (uintptr_t)tb1 & 3;
1377 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1378 if (n1 == n && tb1 == tb) {
1379 break;
1380 }
1381 ptb = &tb1->jmp_next[n1];
1382 }
1383 *ptb = tb->jmp_next[n];
1384 tb->jmp_next[n] = NULL;
1385
1386 /* suppress the jump to next tb in generated code */
1387 tb_reset_jump(tb, n);
1388
1389 /* suppress jumps in the tb on which we could have jumped */
1390 tb_reset_jump_recursive(tb_next);
1391 }
1392 }
1393
1394 static void tb_reset_jump_recursive(TranslationBlock *tb)
1395 {
1396 tb_reset_jump_recursive2(tb, 0);
1397 tb_reset_jump_recursive2(tb, 1);
1398 }
1399
1400 #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
1401 void tb_invalidate_phys_addr(hwaddr addr)
1402 {
1403 ram_addr_t ram_addr;
1404 MemoryRegionSection *section;
1405
1406 section = phys_page_find(address_space_memory.dispatch,
1407 addr >> TARGET_PAGE_BITS);
1408 if (!(memory_region_is_ram(section->mr)
1409 || (section->mr->rom_device && section->mr->readable))) {
1410 return;
1411 }
1412 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1413 + memory_region_section_addr(section, addr);
1414 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1415 }
1416 #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1417
1418 void cpu_unlink_tb(CPUArchState *env)
1419 {
1420 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1421 problem and hope the cpu will stop of its own accord. For userspace
1422 emulation this often isn't actually as bad as it sounds. Often
1423 signals are used primarily to interrupt blocking syscalls. */
1424 TranslationBlock *tb;
1425 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1426
1427 spin_lock(&interrupt_lock);
1428 tb = env->current_tb;
1429 /* if the cpu is currently executing code, we must unlink it and
1430 all the potentially executing TB */
1431 if (tb) {
1432 env->current_tb = NULL;
1433 tb_reset_jump_recursive(tb);
1434 }
1435 spin_unlock(&interrupt_lock);
1436 }
1437
1438 void tb_check_watchpoint(CPUArchState *env)
1439 {
1440 TranslationBlock *tb;
1441
1442 tb = tb_find_pc(env->mem_io_pc);
1443 if (!tb) {
1444 cpu_abort(env, "check_watchpoint: could not find TB for pc=%p",
1445 (void *)env->mem_io_pc);
1446 }
1447 cpu_restore_state_from_tb(tb, env, env->mem_io_pc);
1448 tb_phys_invalidate(tb, -1);
1449 }
1450
1451 #ifndef CONFIG_USER_ONLY
1452 /* mask must never be zero, except for A20 change call */
1453 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1454 {
1455 CPUState *cpu = ENV_GET_CPU(env);
1456 int old_mask;
1457
1458 old_mask = env->interrupt_request;
1459 env->interrupt_request |= mask;
1460
1461 /*
1462 * If called from iothread context, wake the target cpu in
1463 * case its halted.
1464 */
1465 if (!qemu_cpu_is_self(cpu)) {
1466 qemu_cpu_kick(cpu);
1467 return;
1468 }
1469
1470 if (use_icount) {
1471 env->icount_decr.u16.high = 0xffff;
1472 if (!can_do_io(env)
1473 && (mask & ~old_mask) != 0) {
1474 cpu_abort(env, "Raised interrupt while not in I/O function");
1475 }
1476 } else {
1477 cpu_unlink_tb(env);
1478 }
1479 }
1480
1481 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1482
1483 /* in deterministic execution mode, instructions doing device I/Os
1484 must be at the end of the TB */
1485 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
1486 {
1487 TranslationBlock *tb;
1488 uint32_t n, cflags;
1489 target_ulong pc, cs_base;
1490 uint64_t flags;
1491
1492 tb = tb_find_pc(retaddr);
1493 if (!tb) {
1494 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
1495 (void *)retaddr);
1496 }
1497 n = env->icount_decr.u16.low + tb->icount;
1498 cpu_restore_state_from_tb(tb, env, retaddr);
1499 /* Calculate how many instructions had been executed before the fault
1500 occurred. */
1501 n = n - env->icount_decr.u16.low;
1502 /* Generate a new TB ending on the I/O insn. */
1503 n++;
1504 /* On MIPS and SH, delay slot instructions can only be restarted if
1505 they were already the first instruction in the TB. If this is not
1506 the first instruction in a TB then re-execute the preceding
1507 branch. */
1508 #if defined(TARGET_MIPS)
1509 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1510 env->active_tc.PC -= 4;
1511 env->icount_decr.u16.low++;
1512 env->hflags &= ~MIPS_HFLAG_BMASK;
1513 }
1514 #elif defined(TARGET_SH4)
1515 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1516 && n > 1) {
1517 env->pc -= 2;
1518 env->icount_decr.u16.low++;
1519 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1520 }
1521 #endif
1522 /* This should never happen. */
1523 if (n > CF_COUNT_MASK) {
1524 cpu_abort(env, "TB too big during recompile");
1525 }
1526
1527 cflags = n | CF_LAST_IO;
1528 pc = tb->pc;
1529 cs_base = tb->cs_base;
1530 flags = tb->flags;
1531 tb_phys_invalidate(tb, -1);
1532 /* FIXME: In theory this could raise an exception. In practice
1533 we have already translated the block once so it's probably ok. */
1534 tb_gen_code(env, pc, cs_base, flags, cflags);
1535 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1536 the first in the TB) then we end up generating a whole new TB and
1537 repeating the fault, which is horribly inefficient.
1538 Better would be to execute just this insn uncached, or generate a
1539 second new TB. */
1540 cpu_resume_from_signal(env, NULL);
1541 }
1542
1543 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1544 {
1545 unsigned int i;
1546
1547 /* Discard jump cache entries for any tb which might potentially
1548 overlap the flushed page. */
1549 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1550 memset(&env->tb_jmp_cache[i], 0,
1551 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1552
1553 i = tb_jmp_cache_hash_page(addr);
1554 memset(&env->tb_jmp_cache[i], 0,
1555 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1556 }
1557
1558 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1559 {
1560 int i, target_code_size, max_target_code_size;
1561 int direct_jmp_count, direct_jmp2_count, cross_page;
1562 TranslationBlock *tb;
1563
1564 target_code_size = 0;
1565 max_target_code_size = 0;
1566 cross_page = 0;
1567 direct_jmp_count = 0;
1568 direct_jmp2_count = 0;
1569 for (i = 0; i < nb_tbs; i++) {
1570 tb = &tbs[i];
1571 target_code_size += tb->size;
1572 if (tb->size > max_target_code_size) {
1573 max_target_code_size = tb->size;
1574 }
1575 if (tb->page_addr[1] != -1) {
1576 cross_page++;
1577 }
1578 if (tb->tb_next_offset[0] != 0xffff) {
1579 direct_jmp_count++;
1580 if (tb->tb_next_offset[1] != 0xffff) {
1581 direct_jmp2_count++;
1582 }
1583 }
1584 }
1585 /* XXX: avoid using doubles ? */
1586 cpu_fprintf(f, "Translation buffer state:\n");
1587 cpu_fprintf(f, "gen code size %td/%zd\n",
1588 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1589 tcg_ctx.code_gen_buffer_max_size);
1590 cpu_fprintf(f, "TB count %d/%d\n",
1591 nb_tbs, tcg_ctx.code_gen_max_blocks);
1592 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1593 nb_tbs ? target_code_size / nb_tbs : 0,
1594 max_target_code_size);
1595 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1596 nb_tbs ? (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) /
1597 nb_tbs : 0,
1598 target_code_size ?
1599 (double) (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) /
1600 target_code_size : 0);
1601 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
1602 cross_page,
1603 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
1604 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1605 direct_jmp_count,
1606 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
1607 direct_jmp2_count,
1608 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
1609 cpu_fprintf(f, "\nStatistics:\n");
1610 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
1611 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
1612 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1613 tcg_dump_info(f, cpu_fprintf);
1614 }
1615
1616 #else /* CONFIG_USER_ONLY */
1617
1618 void cpu_interrupt(CPUArchState *env, int mask)
1619 {
1620 env->interrupt_request |= mask;
1621 cpu_unlink_tb(env);
1622 }
1623
1624 /*
1625 * Walks guest process memory "regions" one by one
1626 * and calls callback function 'fn' for each region.
1627 */
1628 struct walk_memory_regions_data {
1629 walk_memory_regions_fn fn;
1630 void *priv;
1631 uintptr_t start;
1632 int prot;
1633 };
1634
1635 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1636 abi_ulong end, int new_prot)
1637 {
1638 if (data->start != -1ul) {
1639 int rc = data->fn(data->priv, data->start, end, data->prot);
1640 if (rc != 0) {
1641 return rc;
1642 }
1643 }
1644
1645 data->start = (new_prot ? end : -1ul);
1646 data->prot = new_prot;
1647
1648 return 0;
1649 }
1650
1651 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1652 abi_ulong base, int level, void **lp)
1653 {
1654 abi_ulong pa;
1655 int i, rc;
1656
1657 if (*lp == NULL) {
1658 return walk_memory_regions_end(data, base, 0);
1659 }
1660
1661 if (level == 0) {
1662 PageDesc *pd = *lp;
1663
1664 for (i = 0; i < L2_SIZE; ++i) {
1665 int prot = pd[i].flags;
1666
1667 pa = base | (i << TARGET_PAGE_BITS);
1668 if (prot != data->prot) {
1669 rc = walk_memory_regions_end(data, pa, prot);
1670 if (rc != 0) {
1671 return rc;
1672 }
1673 }
1674 }
1675 } else {
1676 void **pp = *lp;
1677
1678 for (i = 0; i < L2_SIZE; ++i) {
1679 pa = base | ((abi_ulong)i <<
1680 (TARGET_PAGE_BITS + L2_BITS * level));
1681 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1682 if (rc != 0) {
1683 return rc;
1684 }
1685 }
1686 }
1687
1688 return 0;
1689 }
1690
1691 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1692 {
1693 struct walk_memory_regions_data data;
1694 uintptr_t i;
1695
1696 data.fn = fn;
1697 data.priv = priv;
1698 data.start = -1ul;
1699 data.prot = 0;
1700
1701 for (i = 0; i < V_L1_SIZE; i++) {
1702 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1703 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1704
1705 if (rc != 0) {
1706 return rc;
1707 }
1708 }
1709
1710 return walk_memory_regions_end(&data, 0, 0);
1711 }
1712
1713 static int dump_region(void *priv, abi_ulong start,
1714 abi_ulong end, unsigned long prot)
1715 {
1716 FILE *f = (FILE *)priv;
1717
1718 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1719 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1720 start, end, end - start,
1721 ((prot & PAGE_READ) ? 'r' : '-'),
1722 ((prot & PAGE_WRITE) ? 'w' : '-'),
1723 ((prot & PAGE_EXEC) ? 'x' : '-'));
1724
1725 return 0;
1726 }
1727
1728 /* dump memory mappings */
1729 void page_dump(FILE *f)
1730 {
1731 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
1732 "start", "end", "size", "prot");
1733 walk_memory_regions(f, dump_region);
1734 }
1735
1736 int page_get_flags(target_ulong address)
1737 {
1738 PageDesc *p;
1739
1740 p = page_find(address >> TARGET_PAGE_BITS);
1741 if (!p) {
1742 return 0;
1743 }
1744 return p->flags;
1745 }
1746
1747 /* Modify the flags of a page and invalidate the code if necessary.
1748 The flag PAGE_WRITE_ORG is positioned automatically depending
1749 on PAGE_WRITE. The mmap_lock should already be held. */
1750 void page_set_flags(target_ulong start, target_ulong end, int flags)
1751 {
1752 target_ulong addr, len;
1753
1754 /* This function should never be called with addresses outside the
1755 guest address space. If this assert fires, it probably indicates
1756 a missing call to h2g_valid. */
1757 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1758 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1759 #endif
1760 assert(start < end);
1761
1762 start = start & TARGET_PAGE_MASK;
1763 end = TARGET_PAGE_ALIGN(end);
1764
1765 if (flags & PAGE_WRITE) {
1766 flags |= PAGE_WRITE_ORG;
1767 }
1768
1769 for (addr = start, len = end - start;
1770 len != 0;
1771 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1772 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1773
1774 /* If the write protection bit is set, then we invalidate
1775 the code inside. */
1776 if (!(p->flags & PAGE_WRITE) &&
1777 (flags & PAGE_WRITE) &&
1778 p->first_tb) {
1779 tb_invalidate_phys_page(addr, 0, NULL);
1780 }
1781 p->flags = flags;
1782 }
1783 }
1784
1785 int page_check_range(target_ulong start, target_ulong len, int flags)
1786 {
1787 PageDesc *p;
1788 target_ulong end;
1789 target_ulong addr;
1790
1791 /* This function should never be called with addresses outside the
1792 guest address space. If this assert fires, it probably indicates
1793 a missing call to h2g_valid. */
1794 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1795 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1796 #endif
1797
1798 if (len == 0) {
1799 return 0;
1800 }
1801 if (start + len - 1 < start) {
1802 /* We've wrapped around. */
1803 return -1;
1804 }
1805
1806 /* must do before we loose bits in the next step */
1807 end = TARGET_PAGE_ALIGN(start + len);
1808 start = start & TARGET_PAGE_MASK;
1809
1810 for (addr = start, len = end - start;
1811 len != 0;
1812 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1813 p = page_find(addr >> TARGET_PAGE_BITS);
1814 if (!p) {
1815 return -1;
1816 }
1817 if (!(p->flags & PAGE_VALID)) {
1818 return -1;
1819 }
1820
1821 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1822 return -1;
1823 }
1824 if (flags & PAGE_WRITE) {
1825 if (!(p->flags & PAGE_WRITE_ORG)) {
1826 return -1;
1827 }
1828 /* unprotect the page if it was put read-only because it
1829 contains translated code */
1830 if (!(p->flags & PAGE_WRITE)) {
1831 if (!page_unprotect(addr, 0, NULL)) {
1832 return -1;
1833 }
1834 }
1835 return 0;
1836 }
1837 }
1838 return 0;
1839 }
1840
1841 /* called from signal handler: invalidate the code and unprotect the
1842 page. Return TRUE if the fault was successfully handled. */
1843 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1844 {
1845 unsigned int prot;
1846 PageDesc *p;
1847 target_ulong host_start, host_end, addr;
1848
1849 /* Technically this isn't safe inside a signal handler. However we
1850 know this only ever happens in a synchronous SEGV handler, so in
1851 practice it seems to be ok. */
1852 mmap_lock();
1853
1854 p = page_find(address >> TARGET_PAGE_BITS);
1855 if (!p) {
1856 mmap_unlock();
1857 return 0;
1858 }
1859
1860 /* if the page was really writable, then we change its
1861 protection back to writable */
1862 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1863 host_start = address & qemu_host_page_mask;
1864 host_end = host_start + qemu_host_page_size;
1865
1866 prot = 0;
1867 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1868 p = page_find(addr >> TARGET_PAGE_BITS);
1869 p->flags |= PAGE_WRITE;
1870 prot |= p->flags;
1871
1872 /* and since the content will be modified, we must invalidate
1873 the corresponding translated code. */
1874 tb_invalidate_phys_page(addr, pc, puc);
1875 #ifdef DEBUG_TB_CHECK
1876 tb_invalidate_check(addr);
1877 #endif
1878 }
1879 mprotect((void *)g2h(host_start), qemu_host_page_size,
1880 prot & PAGE_BITS);
1881
1882 mmap_unlock();
1883 return 1;
1884 }
1885 mmap_unlock();
1886 return 0;
1887 }
1888 #endif /* CONFIG_USER_ONLY */