]> git.proxmox.com Git - qemu.git/blob - ui/vnc-enc-tight.c
vnc: tight add PNG encoding
[qemu.git] / ui / vnc-enc-tight.c
1 /*
2 * QEMU VNC display driver: tight encoding
3 *
4 * From libvncserver/libvncserver/tight.c
5 * Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
6 * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
7 *
8 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "config-host.h"
30
31 #ifdef CONFIG_VNC_PNG
32 #include <png.h>
33 #endif
34 #ifdef CONFIG_VNC_JPEG
35 #include <stdio.h>
36 #include <jpeglib.h>
37 #endif
38
39 #include "qemu-common.h"
40
41 #include "bswap.h"
42 #include "qdict.h"
43 #include "qint.h"
44 #include "vnc.h"
45 #include "vnc-enc-tight.h"
46
47 /* Compression level stuff. The following array contains various
48 encoder parameters for each of 10 compression levels (0..9).
49 Last three parameters correspond to JPEG quality levels (0..9). */
50
51 static const struct {
52 int max_rect_size, max_rect_width;
53 int mono_min_rect_size, gradient_min_rect_size;
54 int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level;
55 int gradient_threshold, gradient_threshold24;
56 int idx_max_colors_divisor;
57 int jpeg_quality, jpeg_threshold, jpeg_threshold24;
58 } tight_conf[] = {
59 { 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 },
60 { 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 },
61 { 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 },
62 { 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 },
63 { 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 },
64 { 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 },
65 { 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 },
66 { 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 },
67 { 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 },
68 { 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 }
69 };
70
71
72 static int tight_send_framebuffer_update(VncState *vs, int x, int y,
73 int w, int h);
74
75 #ifdef CONFIG_VNC_PNG
76 static int send_png_rect(VncState *vs, int x, int y, int w, int h,
77 QDict *palette);
78
79 static bool tight_can_send_png_rect(VncState *vs, int w, int h)
80 {
81 if (vs->tight_type != VNC_ENCODING_TIGHT_PNG) {
82 return false;
83 }
84
85 if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
86 vs->clientds.pf.bytes_per_pixel == 1) {
87 return false;
88 }
89
90 return true;
91 }
92 #endif
93
94 /*
95 * Code to guess if given rectangle is suitable for smooth image
96 * compression (by applying "gradient" filter or JPEG coder).
97 */
98
99 static uint
100 tight_detect_smooth_image24(VncState *vs, int w, int h)
101 {
102 int off;
103 int x, y, d, dx;
104 uint c;
105 uint stats[256];
106 int pixels = 0;
107 int pix, left[3];
108 uint errors;
109 unsigned char *buf = vs->tight.buffer;
110
111 /*
112 * If client is big-endian, color samples begin from the second
113 * byte (offset 1) of a 32-bit pixel value.
114 */
115 off = !!(vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG);
116
117 memset(stats, 0, sizeof (stats));
118
119 for (y = 0, x = 0; y < h && x < w;) {
120 for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;
121 d++) {
122 for (c = 0; c < 3; c++) {
123 left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;
124 }
125 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {
126 for (c = 0; c < 3; c++) {
127 pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;
128 stats[abs(pix - left[c])]++;
129 left[c] = pix;
130 }
131 pixels++;
132 }
133 }
134 if (w > h) {
135 x += h;
136 y = 0;
137 } else {
138 x = 0;
139 y += w;
140 }
141 }
142
143 /* 95% smooth or more ... */
144 if (stats[0] * 33 / pixels >= 95) {
145 return 0;
146 }
147
148 errors = 0;
149 for (c = 1; c < 8; c++) {
150 errors += stats[c] * (c * c);
151 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {
152 return 0;
153 }
154 }
155 for (; c < 256; c++) {
156 errors += stats[c] * (c * c);
157 }
158 errors /= (pixels * 3 - stats[0]);
159
160 return errors;
161 }
162
163 #define DEFINE_DETECT_FUNCTION(bpp) \
164 \
165 static uint \
166 tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \
167 bool endian; \
168 uint##bpp##_t pix; \
169 int max[3], shift[3]; \
170 int x, y, d, dx; \
171 uint c; \
172 uint stats[256]; \
173 int pixels = 0; \
174 int sample, sum, left[3]; \
175 uint errors; \
176 unsigned char *buf = vs->tight.buffer; \
177 \
178 endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
179 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
180 \
181 \
182 max[0] = vs->clientds.pf.rmax; \
183 max[1] = vs->clientds.pf.gmax; \
184 max[2] = vs->clientds.pf.bmax; \
185 shift[0] = vs->clientds.pf.rshift; \
186 shift[1] = vs->clientds.pf.gshift; \
187 shift[2] = vs->clientds.pf.bshift; \
188 \
189 memset(stats, 0, sizeof(stats)); \
190 \
191 y = 0, x = 0; \
192 while (y < h && x < w) { \
193 for (d = 0; d < h - y && \
194 d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \
195 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \
196 if (endian) { \
197 pix = bswap_##bpp(pix); \
198 } \
199 for (c = 0; c < 3; c++) { \
200 left[c] = (int)(pix >> shift[c] & max[c]); \
201 } \
202 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \
203 dx++) { \
204 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \
205 if (endian) { \
206 pix = bswap_##bpp(pix); \
207 } \
208 sum = 0; \
209 for (c = 0; c < 3; c++) { \
210 sample = (int)(pix >> shift[c] & max[c]); \
211 sum += abs(sample - left[c]); \
212 left[c] = sample; \
213 } \
214 if (sum > 255) { \
215 sum = 255; \
216 } \
217 stats[sum]++; \
218 pixels++; \
219 } \
220 } \
221 if (w > h) { \
222 x += h; \
223 y = 0; \
224 } else { \
225 x = 0; \
226 y += w; \
227 } \
228 } \
229 \
230 if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \
231 return 0; \
232 } \
233 \
234 errors = 0; \
235 for (c = 1; c < 8; c++) { \
236 errors += stats[c] * (c * c); \
237 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \
238 return 0; \
239 } \
240 } \
241 for (; c < 256; c++) { \
242 errors += stats[c] * (c * c); \
243 } \
244 errors /= (pixels - stats[0]); \
245 \
246 return errors; \
247 }
248
249 DEFINE_DETECT_FUNCTION(16)
250 DEFINE_DETECT_FUNCTION(32)
251
252 static int
253 tight_detect_smooth_image(VncState *vs, int w, int h)
254 {
255 uint errors;
256 int compression = vs->tight_compression;
257 int quality = vs->tight_quality;
258
259 if (!vs->vd->lossy) {
260 return 0;
261 }
262
263 if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
264 vs->clientds.pf.bytes_per_pixel == 1 ||
265 w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) {
266 return 0;
267 }
268
269 if (vs->tight_quality != -1) {
270 if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) {
271 return 0;
272 }
273 } else {
274 if (w * h < tight_conf[compression].gradient_min_rect_size) {
275 return 0;
276 }
277 }
278
279 if (vs->clientds.pf.bytes_per_pixel == 4) {
280 if (vs->tight_pixel24) {
281 errors = tight_detect_smooth_image24(vs, w, h);
282 if (vs->tight_quality != -1) {
283 return (errors < tight_conf[quality].jpeg_threshold24);
284 }
285 return (errors < tight_conf[compression].gradient_threshold24);
286 } else {
287 errors = tight_detect_smooth_image32(vs, w, h);
288 }
289 } else {
290 errors = tight_detect_smooth_image16(vs, w, h);
291 }
292 if (quality != -1) {
293 return (errors < tight_conf[quality].jpeg_threshold);
294 }
295 return (errors < tight_conf[compression].gradient_threshold);
296 }
297
298 /*
299 * Code to determine how many different colors used in rectangle.
300 */
301
302 static void tight_palette_rgb2buf(uint32_t rgb, int bpp, uint8_t buf[6])
303 {
304 memset(buf, 0, 6);
305
306 if (bpp == 32) {
307 buf[0] = ((rgb >> 24) & 0xFF);
308 buf[1] = ((rgb >> 16) & 0xFF);
309 buf[2] = ((rgb >> 8) & 0xFF);
310 buf[3] = ((rgb >> 0) & 0xFF);
311 buf[4] = ((buf[0] & 1) == 0) << 3 | ((buf[1] & 1) == 0) << 2;
312 buf[4]|= ((buf[2] & 1) == 0) << 1 | ((buf[3] & 1) == 0) << 0;
313 buf[0] |= 1;
314 buf[1] |= 1;
315 buf[2] |= 1;
316 buf[3] |= 1;
317 }
318 if (bpp == 16) {
319 buf[0] = ((rgb >> 8) & 0xFF);
320 buf[1] = ((rgb >> 0) & 0xFF);
321 buf[2] = ((buf[0] & 1) == 0) << 1 | ((buf[1] & 1) == 0) << 0;
322 buf[0] |= 1;
323 buf[1] |= 1;
324 }
325 }
326
327 static uint32_t tight_palette_buf2rgb(int bpp, const uint8_t *buf)
328 {
329 uint32_t rgb = 0;
330
331 if (bpp == 32) {
332 rgb |= ((buf[0] & ~1) | !((buf[4] >> 3) & 1)) << 24;
333 rgb |= ((buf[1] & ~1) | !((buf[4] >> 2) & 1)) << 16;
334 rgb |= ((buf[2] & ~1) | !((buf[4] >> 1) & 1)) << 8;
335 rgb |= ((buf[3] & ~1) | !((buf[4] >> 0) & 1)) << 0;
336 }
337 if (bpp == 16) {
338 rgb |= ((buf[0] & ~1) | !((buf[2] >> 1) & 1)) << 8;
339 rgb |= ((buf[1] & ~1) | !((buf[2] >> 0) & 1)) << 0;
340 }
341 return rgb;
342 }
343
344
345 static int tight_palette_insert(QDict *palette, uint32_t rgb, int bpp, int max)
346 {
347 uint8_t key[6];
348 int idx = qdict_size(palette);
349 bool present;
350
351 tight_palette_rgb2buf(rgb, bpp, key);
352 present = qdict_haskey(palette, (char *)key);
353 if (idx >= max && !present) {
354 return 0;
355 }
356 if (!present) {
357 qdict_put(palette, (char *)key, qint_from_int(idx));
358 }
359 return qdict_size(palette);
360 }
361
362 #define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
363 \
364 static int \
365 tight_fill_palette##bpp(VncState *vs, int x, int y, \
366 int max, size_t count, \
367 uint32_t *bg, uint32_t *fg, \
368 struct QDict **palette) { \
369 uint##bpp##_t *data; \
370 uint##bpp##_t c0, c1, ci; \
371 int i, n0, n1; \
372 \
373 data = (uint##bpp##_t *)vs->tight.buffer; \
374 \
375 c0 = data[0]; \
376 i = 1; \
377 while (i < count && data[i] == c0) \
378 i++; \
379 if (i >= count) { \
380 *bg = *fg = c0; \
381 return 1; \
382 } \
383 \
384 if (max < 2) { \
385 return 0; \
386 } \
387 \
388 n0 = i; \
389 c1 = data[i]; \
390 n1 = 0; \
391 for (i++; i < count; i++) { \
392 ci = data[i]; \
393 if (ci == c0) { \
394 n0++; \
395 } else if (ci == c1) { \
396 n1++; \
397 } else \
398 break; \
399 } \
400 if (i >= count) { \
401 if (n0 > n1) { \
402 *bg = (uint32_t)c0; \
403 *fg = (uint32_t)c1; \
404 } else { \
405 *bg = (uint32_t)c1; \
406 *fg = (uint32_t)c0; \
407 } \
408 return 2; \
409 } \
410 \
411 if (max == 2) { \
412 return 0; \
413 } \
414 \
415 *palette = qdict_new(); \
416 tight_palette_insert(*palette, c0, bpp, max); \
417 tight_palette_insert(*palette, c1, bpp, max); \
418 tight_palette_insert(*palette, ci, bpp, max); \
419 \
420 for (i++; i < count; i++) { \
421 if (data[i] == ci) { \
422 continue; \
423 } else { \
424 ci = data[i]; \
425 if (!tight_palette_insert(*palette, (uint32_t)ci, \
426 bpp, max)) { \
427 return 0; \
428 } \
429 } \
430 } \
431 \
432 return qdict_size(*palette); \
433 }
434
435 DEFINE_FILL_PALETTE_FUNCTION(8)
436 DEFINE_FILL_PALETTE_FUNCTION(16)
437 DEFINE_FILL_PALETTE_FUNCTION(32)
438
439 static int tight_fill_palette(VncState *vs, int x, int y,
440 size_t count, uint32_t *bg, uint32_t *fg,
441 struct QDict **palette)
442 {
443 int max;
444
445 max = count / tight_conf[vs->tight_compression].idx_max_colors_divisor;
446 if (max < 2 &&
447 count >= tight_conf[vs->tight_compression].mono_min_rect_size) {
448 max = 2;
449 }
450 if (max >= 256) {
451 max = 256;
452 }
453
454 switch(vs->clientds.pf.bytes_per_pixel) {
455 case 4:
456 return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette);
457 case 2:
458 return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette);
459 default:
460 max = 2;
461 return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette);
462 }
463 return 0;
464 }
465
466 /* Callback to dump a palette with qdict_iter
467 static void print_palette(const char *key, QObject *obj, void *opaque)
468 {
469 uint8_t idx = qint_get_int(qobject_to_qint(obj));
470 uint32_t rgb = tight_palette_buf2rgb(32, (uint8_t *)key);
471
472 fprintf(stderr, "%.2x ", (unsigned char)*key);
473 while (*key++)
474 fprintf(stderr, "%.2x ", (unsigned char)*key);
475
476 fprintf(stderr, ": idx: %x rgb: %x\n", idx, rgb);
477 }
478 */
479
480 /*
481 * Converting truecolor samples into palette indices.
482 */
483 #define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
484 \
485 static void \
486 tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \
487 struct QDict *palette) { \
488 uint##bpp##_t *src; \
489 uint##bpp##_t rgb; \
490 uint8_t key[6]; \
491 int i, rep; \
492 uint8_t idx; \
493 \
494 src = (uint##bpp##_t *) buf; \
495 \
496 for (i = 0; i < count; i++) { \
497 \
498 rgb = *src++; \
499 rep = 0; \
500 while (i < count && *src == rgb) { \
501 rep++, src++, i++; \
502 } \
503 tight_palette_rgb2buf(rgb, bpp, key); \
504 if (!qdict_haskey(palette, (char *)key)) { \
505 /* \
506 * Should never happen, but don't break everything \
507 * if it does, use the first color instead \
508 */ \
509 idx = 0; \
510 } else { \
511 idx = qdict_get_int(palette, (char *)key); \
512 } \
513 while (rep >= 0) { \
514 *buf++ = idx; \
515 rep--; \
516 } \
517 } \
518 }
519
520 DEFINE_IDX_ENCODE_FUNCTION(16)
521 DEFINE_IDX_ENCODE_FUNCTION(32)
522
523 #define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
524 \
525 static void \
526 tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \
527 uint##bpp##_t bg, uint##bpp##_t fg) { \
528 uint##bpp##_t *ptr; \
529 unsigned int value, mask; \
530 int aligned_width; \
531 int x, y, bg_bits; \
532 \
533 ptr = (uint##bpp##_t *) buf; \
534 aligned_width = w - w % 8; \
535 \
536 for (y = 0; y < h; y++) { \
537 for (x = 0; x < aligned_width; x += 8) { \
538 for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
539 if (*ptr++ != bg) { \
540 break; \
541 } \
542 } \
543 if (bg_bits == 8) { \
544 *buf++ = 0; \
545 continue; \
546 } \
547 mask = 0x80 >> bg_bits; \
548 value = mask; \
549 for (bg_bits++; bg_bits < 8; bg_bits++) { \
550 mask >>= 1; \
551 if (*ptr++ != bg) { \
552 value |= mask; \
553 } \
554 } \
555 *buf++ = (uint8_t)value; \
556 } \
557 \
558 mask = 0x80; \
559 value = 0; \
560 if (x >= w) { \
561 continue; \
562 } \
563 \
564 for (; x < w; x++) { \
565 if (*ptr++ != bg) { \
566 value |= mask; \
567 } \
568 mask >>= 1; \
569 } \
570 *buf++ = (uint8_t)value; \
571 } \
572 }
573
574 DEFINE_MONO_ENCODE_FUNCTION(8)
575 DEFINE_MONO_ENCODE_FUNCTION(16)
576 DEFINE_MONO_ENCODE_FUNCTION(32)
577
578 /*
579 * ``Gradient'' filter for 24-bit color samples.
580 * Should be called only when redMax, greenMax and blueMax are 255.
581 * Color components assumed to be byte-aligned.
582 */
583
584 static void
585 tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h)
586 {
587 uint32_t *buf32;
588 uint32_t pix32;
589 int shift[3];
590 int *prev;
591 int here[3], upper[3], left[3], upperleft[3];
592 int prediction;
593 int x, y, c;
594
595 buf32 = (uint32_t *)buf;
596 memset(vs->tight_gradient.buffer, 0, w * 3 * sizeof(int));
597
598 if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
599 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
600 shift[0] = vs->clientds.pf.rshift;
601 shift[1] = vs->clientds.pf.gshift;
602 shift[2] = vs->clientds.pf.bshift;
603 } else {
604 shift[0] = 24 - vs->clientds.pf.rshift;
605 shift[1] = 24 - vs->clientds.pf.gshift;
606 shift[2] = 24 - vs->clientds.pf.bshift;
607 }
608
609 for (y = 0; y < h; y++) {
610 for (c = 0; c < 3; c++) {
611 upper[c] = 0;
612 here[c] = 0;
613 }
614 prev = (int *)vs->tight_gradient.buffer;
615 for (x = 0; x < w; x++) {
616 pix32 = *buf32++;
617 for (c = 0; c < 3; c++) {
618 upperleft[c] = upper[c];
619 left[c] = here[c];
620 upper[c] = *prev;
621 here[c] = (int)(pix32 >> shift[c] & 0xFF);
622 *prev++ = here[c];
623
624 prediction = left[c] + upper[c] - upperleft[c];
625 if (prediction < 0) {
626 prediction = 0;
627 } else if (prediction > 0xFF) {
628 prediction = 0xFF;
629 }
630 *buf++ = (char)(here[c] - prediction);
631 }
632 }
633 }
634 }
635
636
637 /*
638 * ``Gradient'' filter for other color depths.
639 */
640
641 #define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \
642 \
643 static void \
644 tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \
645 int w, int h) { \
646 uint##bpp##_t pix, diff; \
647 bool endian; \
648 int *prev; \
649 int max[3], shift[3]; \
650 int here[3], upper[3], left[3], upperleft[3]; \
651 int prediction; \
652 int x, y, c; \
653 \
654 memset (vs->tight_gradient.buffer, 0, w * 3 * sizeof(int)); \
655 \
656 endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
657 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
658 \
659 max[0] = vs->clientds.pf.rmax; \
660 max[1] = vs->clientds.pf.gmax; \
661 max[2] = vs->clientds.pf.bmax; \
662 shift[0] = vs->clientds.pf.rshift; \
663 shift[1] = vs->clientds.pf.gshift; \
664 shift[2] = vs->clientds.pf.bshift; \
665 \
666 for (y = 0; y < h; y++) { \
667 for (c = 0; c < 3; c++) { \
668 upper[c] = 0; \
669 here[c] = 0; \
670 } \
671 prev = (int *)vs->tight_gradient.buffer; \
672 for (x = 0; x < w; x++) { \
673 pix = *buf; \
674 if (endian) { \
675 pix = bswap_##bpp(pix); \
676 } \
677 diff = 0; \
678 for (c = 0; c < 3; c++) { \
679 upperleft[c] = upper[c]; \
680 left[c] = here[c]; \
681 upper[c] = *prev; \
682 here[c] = (int)(pix >> shift[c] & max[c]); \
683 *prev++ = here[c]; \
684 \
685 prediction = left[c] + upper[c] - upperleft[c]; \
686 if (prediction < 0) { \
687 prediction = 0; \
688 } else if (prediction > max[c]) { \
689 prediction = max[c]; \
690 } \
691 diff |= ((here[c] - prediction) & max[c]) \
692 << shift[c]; \
693 } \
694 if (endian) { \
695 diff = bswap_##bpp(diff); \
696 } \
697 *buf++ = diff; \
698 } \
699 } \
700 }
701
702 DEFINE_GRADIENT_FILTER_FUNCTION(16)
703 DEFINE_GRADIENT_FILTER_FUNCTION(32)
704
705 /*
706 * Check if a rectangle is all of the same color. If needSameColor is
707 * set to non-zero, then also check that its color equals to the
708 * *colorPtr value. The result is 1 if the test is successfull, and in
709 * that case new color will be stored in *colorPtr.
710 */
711
712 #define DEFINE_CHECK_SOLID_FUNCTION(bpp) \
713 \
714 static bool \
715 check_solid_tile##bpp(VncState *vs, int x, int y, int w, int h, \
716 uint32_t* color, bool samecolor) \
717 { \
718 VncDisplay *vd = vs->vd; \
719 uint##bpp##_t *fbptr; \
720 uint##bpp##_t c; \
721 int dx, dy; \
722 \
723 fbptr = (uint##bpp##_t *) \
724 (vd->server->data + y * ds_get_linesize(vs->ds) + \
725 x * ds_get_bytes_per_pixel(vs->ds)); \
726 \
727 c = *fbptr; \
728 if (samecolor && (uint32_t)c != *color) { \
729 return false; \
730 } \
731 \
732 for (dy = 0; dy < h; dy++) { \
733 for (dx = 0; dx < w; dx++) { \
734 if (c != fbptr[dx]) { \
735 return false; \
736 } \
737 } \
738 fbptr = (uint##bpp##_t *) \
739 ((uint8_t *)fbptr + ds_get_linesize(vs->ds)); \
740 } \
741 \
742 *color = (uint32_t)c; \
743 return true; \
744 }
745
746 DEFINE_CHECK_SOLID_FUNCTION(32)
747 DEFINE_CHECK_SOLID_FUNCTION(16)
748 DEFINE_CHECK_SOLID_FUNCTION(8)
749
750 static bool check_solid_tile(VncState *vs, int x, int y, int w, int h,
751 uint32_t* color, bool samecolor)
752 {
753 VncDisplay *vd = vs->vd;
754
755 switch(vd->server->pf.bytes_per_pixel) {
756 case 4:
757 return check_solid_tile32(vs, x, y, w, h, color, samecolor);
758 case 2:
759 return check_solid_tile16(vs, x, y, w, h, color, samecolor);
760 default:
761 return check_solid_tile8(vs, x, y, w, h, color, samecolor);
762 }
763 }
764
765 static void find_best_solid_area(VncState *vs, int x, int y, int w, int h,
766 uint32_t color, int *w_ptr, int *h_ptr)
767 {
768 int dx, dy, dw, dh;
769 int w_prev;
770 int w_best = 0, h_best = 0;
771
772 w_prev = w;
773
774 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
775
776 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy);
777 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev);
778
779 if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) {
780 break;
781 }
782
783 for (dx = x + dw; dx < x + w_prev;) {
784 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx);
785
786 if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) {
787 break;
788 }
789 dx += dw;
790 }
791
792 w_prev = dx - x;
793 if (w_prev * (dy + dh - y) > w_best * h_best) {
794 w_best = w_prev;
795 h_best = dy + dh - y;
796 }
797 }
798
799 *w_ptr = w_best;
800 *h_ptr = h_best;
801 }
802
803 static void extend_solid_area(VncState *vs, int x, int y, int w, int h,
804 uint32_t color, int *x_ptr, int *y_ptr,
805 int *w_ptr, int *h_ptr)
806 {
807 int cx, cy;
808
809 /* Try to extend the area upwards. */
810 for ( cy = *y_ptr - 1;
811 cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
812 cy-- );
813 *h_ptr += *y_ptr - (cy + 1);
814 *y_ptr = cy + 1;
815
816 /* ... downwards. */
817 for ( cy = *y_ptr + *h_ptr;
818 cy < y + h &&
819 check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
820 cy++ );
821 *h_ptr += cy - (*y_ptr + *h_ptr);
822
823 /* ... to the left. */
824 for ( cx = *x_ptr - 1;
825 cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
826 cx-- );
827 *w_ptr += *x_ptr - (cx + 1);
828 *x_ptr = cx + 1;
829
830 /* ... to the right. */
831 for ( cx = *x_ptr + *w_ptr;
832 cx < x + w &&
833 check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
834 cx++ );
835 *w_ptr += cx - (*x_ptr + *w_ptr);
836 }
837
838 static int tight_init_stream(VncState *vs, int stream_id,
839 int level, int strategy)
840 {
841 z_streamp zstream = &vs->tight_stream[stream_id];
842
843 if (zstream->opaque == NULL) {
844 int err;
845
846 VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id);
847 VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs);
848 zstream->zalloc = vnc_zlib_zalloc;
849 zstream->zfree = vnc_zlib_zfree;
850
851 err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS,
852 MAX_MEM_LEVEL, strategy);
853
854 if (err != Z_OK) {
855 fprintf(stderr, "VNC: error initializing zlib\n");
856 return -1;
857 }
858
859 vs->tight_levels[stream_id] = level;
860 zstream->opaque = vs;
861 }
862
863 if (vs->tight_levels[stream_id] != level) {
864 if (deflateParams(zstream, level, strategy) != Z_OK) {
865 return -1;
866 }
867 vs->tight_levels[stream_id] = level;
868 }
869 return 0;
870 }
871
872 static void tight_send_compact_size(VncState *vs, size_t len)
873 {
874 int lpc = 0;
875 int bytes = 0;
876 char buf[3] = {0, 0, 0};
877
878 buf[bytes++] = len & 0x7F;
879 if (len > 0x7F) {
880 buf[bytes-1] |= 0x80;
881 buf[bytes++] = (len >> 7) & 0x7F;
882 if (len > 0x3FFF) {
883 buf[bytes-1] |= 0x80;
884 buf[bytes++] = (len >> 14) & 0xFF;
885 }
886 }
887 for (lpc = 0; lpc < bytes; lpc++) {
888 vnc_write_u8(vs, buf[lpc]);
889 }
890 }
891
892 static int tight_compress_data(VncState *vs, int stream_id, size_t bytes,
893 int level, int strategy)
894 {
895 z_streamp zstream = &vs->tight_stream[stream_id];
896 int previous_out;
897
898 if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) {
899 vnc_write(vs, vs->tight.buffer, vs->tight.offset);
900 return bytes;
901 }
902
903 if (tight_init_stream(vs, stream_id, level, strategy)) {
904 return -1;
905 }
906
907 /* reserve memory in output buffer */
908 buffer_reserve(&vs->tight_zlib, bytes + 64);
909
910 /* set pointers */
911 zstream->next_in = vs->tight.buffer;
912 zstream->avail_in = vs->tight.offset;
913 zstream->next_out = vs->tight_zlib.buffer + vs->tight_zlib.offset;
914 zstream->avail_out = vs->tight_zlib.capacity - vs->tight_zlib.offset;
915 zstream->data_type = Z_BINARY;
916 previous_out = zstream->total_out;
917
918 /* start encoding */
919 if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) {
920 fprintf(stderr, "VNC: error during tight compression\n");
921 return -1;
922 }
923
924 vs->tight_zlib.offset = vs->tight_zlib.capacity - zstream->avail_out;
925 bytes = zstream->total_out - previous_out;
926
927 tight_send_compact_size(vs, bytes);
928 vnc_write(vs, vs->tight_zlib.buffer, bytes);
929
930 buffer_reset(&vs->tight_zlib);
931
932 return bytes;
933 }
934
935 /*
936 * Subencoding implementations.
937 */
938 static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
939 {
940 uint32_t *buf32;
941 uint32_t pix;
942 int rshift, gshift, bshift;
943
944 buf32 = (uint32_t *)buf;
945
946 if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
947 (vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
948 rshift = vs->clientds.pf.rshift;
949 gshift = vs->clientds.pf.gshift;
950 bshift = vs->clientds.pf.bshift;
951 } else {
952 rshift = 24 - vs->clientds.pf.rshift;
953 gshift = 24 - vs->clientds.pf.gshift;
954 bshift = 24 - vs->clientds.pf.bshift;
955 }
956
957 if (ret) {
958 *ret = count * 3;
959 }
960
961 while (count--) {
962 pix = *buf32++;
963 *buf++ = (char)(pix >> rshift);
964 *buf++ = (char)(pix >> gshift);
965 *buf++ = (char)(pix >> bshift);
966 }
967 }
968
969 static int send_full_color_rect(VncState *vs, int x, int y, int w, int h)
970 {
971 int stream = 0;
972 size_t bytes;
973
974 #ifdef CONFIG_VNC_PNG
975 if (tight_can_send_png_rect(vs, w, h)) {
976 return send_png_rect(vs, x, y, w, h, NULL);
977 }
978 #endif
979
980 vnc_write_u8(vs, stream << 4); /* no flushing, no filter */
981
982 if (vs->tight_pixel24) {
983 tight_pack24(vs, vs->tight.buffer, w * h, &vs->tight.offset);
984 bytes = 3;
985 } else {
986 bytes = vs->clientds.pf.bytes_per_pixel;
987 }
988
989 bytes = tight_compress_data(vs, stream, w * h * bytes,
990 tight_conf[vs->tight_compression].raw_zlib_level,
991 Z_DEFAULT_STRATEGY);
992
993 return (bytes >= 0);
994 }
995
996 static int send_solid_rect(VncState *vs)
997 {
998 size_t bytes;
999
1000 vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */
1001
1002 if (vs->tight_pixel24) {
1003 tight_pack24(vs, vs->tight.buffer, 1, &vs->tight.offset);
1004 bytes = 3;
1005 } else {
1006 bytes = vs->clientds.pf.bytes_per_pixel;
1007 }
1008
1009 vnc_write(vs, vs->tight.buffer, bytes);
1010 return 1;
1011 }
1012
1013 static int send_mono_rect(VncState *vs, int x, int y,
1014 int w, int h, uint32_t bg, uint32_t fg)
1015 {
1016 size_t bytes;
1017 int stream = 1;
1018 int level = tight_conf[vs->tight_compression].mono_zlib_level;
1019
1020 #ifdef CONFIG_VNC_PNG
1021 if (tight_can_send_png_rect(vs, w, h)) {
1022 int ret;
1023 QDict *palette = qdict_new();
1024 int bpp = vs->clientds.pf.bytes_per_pixel * 8;
1025
1026 tight_palette_insert(palette, bg, bpp, 2);
1027 tight_palette_insert(palette, fg, bpp, 2);
1028 ret = send_png_rect(vs, x, y, w, h, palette);
1029 QDECREF(palette);
1030 return ret;
1031 }
1032 #endif
1033
1034 bytes = ((w + 7) / 8) * h;
1035
1036 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1037 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
1038 vnc_write_u8(vs, 1);
1039
1040 switch(vs->clientds.pf.bytes_per_pixel) {
1041 case 4:
1042 {
1043 uint32_t buf[2] = {bg, fg};
1044 size_t ret = sizeof (buf);
1045
1046 if (vs->tight_pixel24) {
1047 tight_pack24(vs, (unsigned char*)buf, 2, &ret);
1048 }
1049 vnc_write(vs, buf, ret);
1050
1051 tight_encode_mono_rect32(vs->tight.buffer, w, h, bg, fg);
1052 break;
1053 }
1054 case 2:
1055 vnc_write(vs, &bg, 2);
1056 vnc_write(vs, &fg, 2);
1057 tight_encode_mono_rect16(vs->tight.buffer, w, h, bg, fg);
1058 break;
1059 default:
1060 vnc_write_u8(vs, bg);
1061 vnc_write_u8(vs, fg);
1062 tight_encode_mono_rect8(vs->tight.buffer, w, h, bg, fg);
1063 break;
1064 }
1065 vs->tight.offset = bytes;
1066
1067 bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY);
1068 return (bytes >= 0);
1069 }
1070
1071 struct palette_cb_priv {
1072 VncState *vs;
1073 uint8_t *header;
1074 #ifdef CONFIG_VNC_PNG
1075 png_colorp png_palette;
1076 #endif
1077 };
1078
1079 static void write_palette(const char *key, QObject *obj, void *opaque)
1080 {
1081 struct palette_cb_priv *priv = opaque;
1082 VncState *vs = priv->vs;
1083 uint32_t bytes = vs->clientds.pf.bytes_per_pixel;
1084 uint8_t idx = qint_get_int(qobject_to_qint(obj));
1085
1086 if (bytes == 4) {
1087 uint32_t color = tight_palette_buf2rgb(32, (uint8_t *)key);
1088
1089 ((uint32_t*)priv->header)[idx] = color;
1090 } else {
1091 uint16_t color = tight_palette_buf2rgb(16, (uint8_t *)key);
1092
1093 ((uint16_t*)priv->header)[idx] = color;
1094 }
1095 }
1096
1097 static bool send_gradient_rect(VncState *vs, int x, int y, int w, int h)
1098 {
1099 int stream = 3;
1100 int level = tight_conf[vs->tight_compression].gradient_zlib_level;
1101 size_t bytes;
1102
1103 if (vs->clientds.pf.bytes_per_pixel == 1)
1104 return send_full_color_rect(vs, x, y, w, h);
1105
1106 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1107 vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT);
1108
1109 buffer_reserve(&vs->tight_gradient, w * 3 * sizeof (int));
1110
1111 if (vs->tight_pixel24) {
1112 tight_filter_gradient24(vs, vs->tight.buffer, w, h);
1113 bytes = 3;
1114 } else if (vs->clientds.pf.bytes_per_pixel == 4) {
1115 tight_filter_gradient32(vs, (uint32_t *)vs->tight.buffer, w, h);
1116 bytes = 4;
1117 } else {
1118 tight_filter_gradient16(vs, (uint16_t *)vs->tight.buffer, w, h);
1119 bytes = 2;
1120 }
1121
1122 buffer_reset(&vs->tight_gradient);
1123
1124 bytes = w * h * bytes;
1125 vs->tight.offset = bytes;
1126
1127 bytes = tight_compress_data(vs, stream, bytes,
1128 level, Z_FILTERED);
1129 return (bytes >= 0);
1130 }
1131
1132 static int send_palette_rect(VncState *vs, int x, int y,
1133 int w, int h, struct QDict *palette)
1134 {
1135 int stream = 2;
1136 int level = tight_conf[vs->tight_compression].idx_zlib_level;
1137 int colors;
1138 size_t bytes;
1139
1140 #ifdef CONFIG_VNC_PNG
1141 if (tight_can_send_png_rect(vs, w, h)) {
1142 return send_png_rect(vs, x, y, w, h, palette);
1143 }
1144 #endif
1145
1146 colors = qdict_size(palette);
1147
1148 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
1149 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
1150 vnc_write_u8(vs, colors - 1);
1151
1152 switch(vs->clientds.pf.bytes_per_pixel) {
1153 case 4:
1154 {
1155 size_t old_offset, offset;
1156 uint32_t header[qdict_size(palette)];
1157 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1158
1159 old_offset = vs->output.offset;
1160 qdict_iter(palette, write_palette, &priv);
1161 vnc_write(vs, header, sizeof(header));
1162
1163 if (vs->tight_pixel24) {
1164 tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset);
1165 vs->output.offset = old_offset + offset;
1166 }
1167
1168 tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette);
1169 break;
1170 }
1171 case 2:
1172 {
1173 uint16_t header[qdict_size(palette)];
1174 struct palette_cb_priv priv = { vs, (uint8_t *)header };
1175
1176 qdict_iter(palette, write_palette, &priv);
1177 vnc_write(vs, header, sizeof(header));
1178 tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette);
1179 break;
1180 }
1181 default:
1182 return -1; /* No palette for 8bits colors */
1183 break;
1184 }
1185 bytes = w * h;
1186 vs->tight.offset = bytes;
1187
1188 bytes = tight_compress_data(vs, stream, bytes,
1189 level, Z_DEFAULT_STRATEGY);
1190 return (bytes >= 0);
1191 }
1192
1193 #if defined(CONFIG_VNC_JPEG) || defined(CONFIG_VNC_PNG)
1194 static void rgb_prepare_row24(VncState *vs, uint8_t *dst, int x, int y,
1195 int count)
1196 {
1197 VncDisplay *vd = vs->vd;
1198 uint32_t *fbptr;
1199 uint32_t pix;
1200
1201 fbptr = (uint32_t *)(vd->server->data + y * ds_get_linesize(vs->ds) +
1202 x * ds_get_bytes_per_pixel(vs->ds));
1203
1204 while (count--) {
1205 pix = *fbptr++;
1206 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.rshift);
1207 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.gshift);
1208 *dst++ = (uint8_t)(pix >> vs->ds->surface->pf.bshift);
1209 }
1210 }
1211
1212 #define DEFINE_RGB_GET_ROW_FUNCTION(bpp) \
1213 \
1214 static void \
1215 rgb_prepare_row##bpp(VncState *vs, uint8_t *dst, \
1216 int x, int y, int count) \
1217 { \
1218 VncDisplay *vd = vs->vd; \
1219 uint##bpp##_t *fbptr; \
1220 uint##bpp##_t pix; \
1221 int r, g, b; \
1222 \
1223 fbptr = (uint##bpp##_t *) \
1224 (vd->server->data + y * ds_get_linesize(vs->ds) + \
1225 x * ds_get_bytes_per_pixel(vs->ds)); \
1226 \
1227 while (count--) { \
1228 pix = *fbptr++; \
1229 \
1230 r = (int)((pix >> vs->ds->surface->pf.rshift) \
1231 & vs->ds->surface->pf.rmax); \
1232 g = (int)((pix >> vs->ds->surface->pf.gshift) \
1233 & vs->ds->surface->pf.gmax); \
1234 b = (int)((pix >> vs->ds->surface->pf.bshift) \
1235 & vs->ds->surface->pf.bmax); \
1236 \
1237 *dst++ = (uint8_t)((r * 255 + vs->ds->surface->pf.rmax / 2) \
1238 / vs->ds->surface->pf.rmax); \
1239 *dst++ = (uint8_t)((g * 255 + vs->ds->surface->pf.gmax / 2) \
1240 / vs->ds->surface->pf.gmax); \
1241 *dst++ = (uint8_t)((b * 255 + vs->ds->surface->pf.bmax / 2) \
1242 / vs->ds->surface->pf.bmax); \
1243 } \
1244 }
1245
1246 DEFINE_RGB_GET_ROW_FUNCTION(16)
1247 DEFINE_RGB_GET_ROW_FUNCTION(32)
1248
1249 static void rgb_prepare_row(VncState *vs, uint8_t *dst, int x, int y,
1250 int count)
1251 {
1252 if (vs->tight_pixel24)
1253 rgb_prepare_row24(vs, dst, x, y, count);
1254 else if (ds_get_bytes_per_pixel(vs->ds) == 4)
1255 rgb_prepare_row32(vs, dst, x, y, count);
1256 else
1257 rgb_prepare_row16(vs, dst, x, y, count);
1258 }
1259 #endif /* CONFIG_VNC_JPEG or CONFIG_VNC_PNG */
1260
1261 /*
1262 * JPEG compression stuff.
1263 */
1264 #ifdef CONFIG_VNC_JPEG
1265 /*
1266 * Destination manager implementation for JPEG library.
1267 */
1268
1269 /* This is called once per encoding */
1270 static void jpeg_init_destination(j_compress_ptr cinfo)
1271 {
1272 VncState *vs = cinfo->client_data;
1273 Buffer *buffer = &vs->tight_jpeg;
1274
1275 cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset;
1276 cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset);
1277 }
1278
1279 /* This is called when we ran out of buffer (shouldn't happen!) */
1280 static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo)
1281 {
1282 VncState *vs = cinfo->client_data;
1283 Buffer *buffer = &vs->tight_jpeg;
1284
1285 buffer->offset = buffer->capacity;
1286 buffer_reserve(buffer, 2048);
1287 jpeg_init_destination(cinfo);
1288 return TRUE;
1289 }
1290
1291 /* This is called when we are done processing data */
1292 static void jpeg_term_destination(j_compress_ptr cinfo)
1293 {
1294 VncState *vs = cinfo->client_data;
1295 Buffer *buffer = &vs->tight_jpeg;
1296
1297 buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer;
1298 }
1299
1300 static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality)
1301 {
1302 struct jpeg_compress_struct cinfo;
1303 struct jpeg_error_mgr jerr;
1304 struct jpeg_destination_mgr manager;
1305 JSAMPROW row[1];
1306 uint8_t *buf;
1307 int dy;
1308
1309 if (ds_get_bytes_per_pixel(vs->ds) == 1)
1310 return send_full_color_rect(vs, x, y, w, h);
1311
1312 buffer_reserve(&vs->tight_jpeg, 2048);
1313
1314 cinfo.err = jpeg_std_error(&jerr);
1315 jpeg_create_compress(&cinfo);
1316
1317 cinfo.client_data = vs;
1318 cinfo.image_width = w;
1319 cinfo.image_height = h;
1320 cinfo.input_components = 3;
1321 cinfo.in_color_space = JCS_RGB;
1322
1323 jpeg_set_defaults(&cinfo);
1324 jpeg_set_quality(&cinfo, quality, true);
1325
1326 manager.init_destination = jpeg_init_destination;
1327 manager.empty_output_buffer = jpeg_empty_output_buffer;
1328 manager.term_destination = jpeg_term_destination;
1329 cinfo.dest = &manager;
1330
1331 jpeg_start_compress(&cinfo, true);
1332
1333 buf = qemu_malloc(w * 3);
1334 row[0] = buf;
1335 for (dy = 0; dy < h; dy++) {
1336 rgb_prepare_row(vs, buf, x, y + dy, w);
1337 jpeg_write_scanlines(&cinfo, row, 1);
1338 }
1339 qemu_free(buf);
1340
1341 jpeg_finish_compress(&cinfo);
1342 jpeg_destroy_compress(&cinfo);
1343
1344 vnc_write_u8(vs, VNC_TIGHT_JPEG << 4);
1345
1346 tight_send_compact_size(vs, vs->tight_jpeg.offset);
1347 vnc_write(vs, vs->tight_jpeg.buffer, vs->tight_jpeg.offset);
1348 buffer_reset(&vs->tight_jpeg);
1349
1350 return 1;
1351 }
1352 #endif /* CONFIG_VNC_JPEG */
1353
1354 /*
1355 * PNG compression stuff.
1356 */
1357 #ifdef CONFIG_VNC_PNG
1358 static void write_png_palette(const char *key, QObject *obj, void *opaque)
1359 {
1360 struct palette_cb_priv *priv = opaque;
1361 VncState *vs = priv->vs;
1362 uint32_t bytes = vs->clientds.pf.bytes_per_pixel;
1363 uint8_t idx = qint_get_int(qobject_to_qint(obj));
1364 png_colorp color = &priv->png_palette[idx];
1365 uint32_t pix;
1366
1367 if (bytes == 4) {
1368 pix = tight_palette_buf2rgb(32, (uint8_t *)key);
1369 } else {
1370 pix = tight_palette_buf2rgb(16, (uint8_t *)key);
1371 }
1372
1373 if (vs->tight_pixel24)
1374 {
1375 color->red = (pix >> vs->clientds.pf.rshift) & vs->clientds.pf.rmax;
1376 color->green = (pix >> vs->clientds.pf.gshift) & vs->clientds.pf.gmax;
1377 color->blue = (pix >> vs->clientds.pf.bshift) & vs->clientds.pf.bmax;
1378 }
1379 else
1380 {
1381 int red, green, blue;
1382
1383 red = (pix >> vs->clientds.pf.rshift) & vs->clientds.pf.rmax;
1384 green = (pix >> vs->clientds.pf.gshift) & vs->clientds.pf.gmax;
1385 blue = (pix >> vs->clientds.pf.bshift) & vs->clientds.pf.bmax;
1386 color->red = ((red * 255 + vs->clientds.pf.rmax / 2) /
1387 vs->clientds.pf.rmax);
1388 color->green = ((green * 255 + vs->clientds.pf.gmax / 2) /
1389 vs->clientds.pf.gmax);
1390 color->blue = ((blue * 255 + vs->clientds.pf.bmax / 2) /
1391 vs->clientds.pf.bmax);
1392 }
1393 }
1394
1395 static void png_write_data(png_structp png_ptr, png_bytep data,
1396 png_size_t length)
1397 {
1398 VncState *vs = png_get_io_ptr(png_ptr);
1399
1400 buffer_reserve(&vs->tight_png, vs->tight_png.offset + length);
1401 memcpy(vs->tight_png.buffer + vs->tight_png.offset, data, length);
1402
1403 vs->tight_png.offset += length;
1404 }
1405
1406 static void png_flush_data(png_structp png_ptr)
1407 {
1408 }
1409
1410 static void *vnc_png_malloc(png_structp png_ptr, png_size_t size)
1411 {
1412 return qemu_malloc(size);
1413 }
1414
1415 static void vnc_png_free(png_structp png_ptr, png_voidp ptr)
1416 {
1417 qemu_free(ptr);
1418 }
1419
1420 static int send_png_rect(VncState *vs, int x, int y, int w, int h,
1421 QDict *palette)
1422 {
1423 png_byte color_type;
1424 png_structp png_ptr;
1425 png_infop info_ptr;
1426 png_colorp png_palette = NULL;
1427 size_t offset;
1428 int level = tight_conf[vs->tight_compression].raw_zlib_level;
1429 uint8_t *buf;
1430 int dy;
1431
1432 png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL,
1433 NULL, vnc_png_malloc, vnc_png_free);
1434
1435 if (png_ptr == NULL)
1436 return -1;
1437
1438 info_ptr = png_create_info_struct(png_ptr);
1439
1440 if (info_ptr == NULL) {
1441 png_destroy_write_struct(&png_ptr, NULL);
1442 return -1;
1443 }
1444
1445 png_set_write_fn(png_ptr, (void *) vs, png_write_data, png_flush_data);
1446 png_set_compression_level(png_ptr, level);
1447
1448 if (palette) {
1449 color_type = PNG_COLOR_TYPE_PALETTE;
1450 } else {
1451 color_type = PNG_COLOR_TYPE_RGB;
1452 }
1453
1454 png_set_IHDR(png_ptr, info_ptr, w, h,
1455 8, color_type, PNG_INTERLACE_NONE,
1456 PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
1457
1458 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1459 struct palette_cb_priv priv;
1460
1461 png_palette = png_malloc(png_ptr, sizeof(*png_palette) *
1462 qdict_size(palette));
1463
1464 priv.vs = vs;
1465 priv.png_palette = png_palette;
1466 qdict_iter(palette, write_png_palette, &priv);
1467
1468 png_set_PLTE(png_ptr, info_ptr, png_palette, qdict_size(palette));
1469
1470 offset = vs->tight.offset;
1471 if (vs->clientds.pf.bytes_per_pixel == 4) {
1472 tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette);
1473 } else {
1474 tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette);
1475 }
1476 }
1477
1478 png_write_info(png_ptr, info_ptr);
1479
1480 buffer_reserve(&vs->tight_png, 2048);
1481 buf = qemu_malloc(w * 3);
1482 for (dy = 0; dy < h; dy++)
1483 {
1484 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1485 memcpy(buf, vs->tight.buffer + (dy * w), w);
1486 } else {
1487 rgb_prepare_row(vs, buf, x, y + dy, w);
1488 }
1489 png_write_row(png_ptr, buf);
1490 }
1491 qemu_free(buf);
1492
1493 png_write_end(png_ptr, NULL);
1494
1495 if (color_type == PNG_COLOR_TYPE_PALETTE) {
1496 png_free(png_ptr, png_palette);
1497 }
1498
1499 png_destroy_write_struct(&png_ptr, &info_ptr);
1500
1501 vnc_write_u8(vs, VNC_TIGHT_PNG << 4);
1502
1503 tight_send_compact_size(vs, vs->tight_png.offset);
1504 vnc_write(vs, vs->tight_png.buffer, vs->tight_png.offset);
1505 buffer_reset(&vs->tight_png);
1506 return 1;
1507 }
1508 #endif /* CONFIG_VNC_PNG */
1509
1510 static void vnc_tight_start(VncState *vs)
1511 {
1512 buffer_reset(&vs->tight);
1513
1514 // make the output buffer be the zlib buffer, so we can compress it later
1515 vs->tight_tmp = vs->output;
1516 vs->output = vs->tight;
1517 }
1518
1519 static void vnc_tight_stop(VncState *vs)
1520 {
1521 // switch back to normal output/zlib buffers
1522 vs->tight = vs->output;
1523 vs->output = vs->tight_tmp;
1524 }
1525
1526 static int send_sub_rect(VncState *vs, int x, int y, int w, int h)
1527 {
1528 struct QDict *palette = NULL;
1529 uint32_t bg = 0, fg = 0;
1530 int colors;
1531 int ret = 0;
1532
1533 vnc_framebuffer_update(vs, x, y, w, h, vs->tight_type);
1534
1535 vnc_tight_start(vs);
1536 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1537 vnc_tight_stop(vs);
1538
1539 colors = tight_fill_palette(vs, x, y, w * h, &fg, &bg, &palette);
1540
1541 if (colors == 0) {
1542 if (tight_detect_smooth_image(vs, w, h)) {
1543 if (vs->tight_quality == -1) {
1544 ret = send_gradient_rect(vs, x, y, w, h);
1545 } else {
1546 #ifdef CONFIG_VNC_JPEG
1547 int quality = tight_conf[vs->tight_quality].jpeg_quality;
1548
1549 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1550 #else
1551 ret = send_full_color_rect(vs, x, y, w, h);
1552 #endif
1553 }
1554 } else {
1555 ret = send_full_color_rect(vs, x, y, w, h);
1556 }
1557 } else if (colors == 1) {
1558 ret = send_solid_rect(vs);
1559 } else if (colors == 2) {
1560 ret = send_mono_rect(vs, x, y, w, h, bg, fg);
1561 } else if (colors <= 256) {
1562 #ifdef CONFIG_VNC_JPEG
1563 if (colors > 96 && vs->tight_quality != -1 && vs->tight_quality <= 3 &&
1564 tight_detect_smooth_image(vs, w, h)) {
1565 int quality = tight_conf[vs->tight_quality].jpeg_quality;
1566
1567 ret = send_jpeg_rect(vs, x, y, w, h, quality);
1568 } else {
1569 ret = send_palette_rect(vs, x, y, w, h, palette);
1570 }
1571 #else
1572 ret = send_palette_rect(vs, x, y, w, h, palette);
1573 #endif
1574 }
1575 QDECREF(palette);
1576 return ret;
1577 }
1578
1579 static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h)
1580 {
1581 vnc_framebuffer_update(vs, x, y, w, h, vs->tight_type);
1582
1583 vnc_tight_start(vs);
1584 vnc_raw_send_framebuffer_update(vs, x, y, w, h);
1585 vnc_tight_stop(vs);
1586
1587 return send_solid_rect(vs);
1588 }
1589
1590 static int send_rect_simple(VncState *vs, int x, int y, int w, int h)
1591 {
1592 int max_size, max_width;
1593 int max_sub_width, max_sub_height;
1594 int dx, dy;
1595 int rw, rh;
1596 int n = 0;
1597
1598 max_size = tight_conf[vs->tight_compression].max_rect_size;
1599 max_width = tight_conf[vs->tight_compression].max_rect_width;
1600
1601 if (w > max_width || w * h > max_size) {
1602 max_sub_width = (w > max_width) ? max_width : w;
1603 max_sub_height = max_size / max_sub_width;
1604
1605 for (dy = 0; dy < h; dy += max_sub_height) {
1606 for (dx = 0; dx < w; dx += max_width) {
1607 rw = MIN(max_sub_width, w - dx);
1608 rh = MIN(max_sub_height, h - dy);
1609 n += send_sub_rect(vs, x+dx, y+dy, rw, rh);
1610 }
1611 }
1612 } else {
1613 n += send_sub_rect(vs, x, y, w, h);
1614 }
1615
1616 return n;
1617 }
1618
1619 static int find_large_solid_color_rect(VncState *vs, int x, int y,
1620 int w, int h, int max_rows)
1621 {
1622 int dx, dy, dw, dh;
1623 int n = 0;
1624
1625 /* Try to find large solid-color areas and send them separately. */
1626
1627 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1628
1629 /* If a rectangle becomes too large, send its upper part now. */
1630
1631 if (dy - y >= max_rows) {
1632 n += send_rect_simple(vs, x, y, w, max_rows);
1633 y += max_rows;
1634 h -= max_rows;
1635 }
1636
1637 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy));
1638
1639 for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
1640 uint32_t color_value;
1641 int x_best, y_best, w_best, h_best;
1642
1643 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx));
1644
1645 if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) {
1646 continue ;
1647 }
1648
1649 /* Get dimensions of solid-color area. */
1650
1651 find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y),
1652 color_value, &w_best, &h_best);
1653
1654 /* Make sure a solid rectangle is large enough
1655 (or the whole rectangle is of the same color). */
1656
1657 if (w_best * h_best != w * h &&
1658 w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) {
1659 continue;
1660 }
1661
1662 /* Try to extend solid rectangle to maximum size. */
1663
1664 x_best = dx; y_best = dy;
1665 extend_solid_area(vs, x, y, w, h, color_value,
1666 &x_best, &y_best, &w_best, &h_best);
1667
1668 /* Send rectangles at top and left to solid-color area. */
1669
1670 if (y_best != y) {
1671 n += send_rect_simple(vs, x, y, w, y_best-y);
1672 }
1673 if (x_best != x) {
1674 n += tight_send_framebuffer_update(vs, x, y_best,
1675 x_best-x, h_best);
1676 }
1677
1678 /* Send solid-color rectangle. */
1679 n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best);
1680
1681 /* Send remaining rectangles (at right and bottom). */
1682
1683 if (x_best + w_best != x + w) {
1684 n += tight_send_framebuffer_update(vs, x_best+w_best,
1685 y_best,
1686 w-(x_best-x)-w_best,
1687 h_best);
1688 }
1689 if (y_best + h_best != y + h) {
1690 n += tight_send_framebuffer_update(vs, x, y_best+h_best,
1691 w, h-(y_best-y)-h_best);
1692 }
1693
1694 /* Return after all recursive calls are done. */
1695 return n;
1696 }
1697 }
1698 return n + send_rect_simple(vs, x, y, w, h);
1699 }
1700
1701 static int tight_send_framebuffer_update(VncState *vs, int x, int y,
1702 int w, int h)
1703 {
1704 int max_rows;
1705
1706 if (vs->clientds.pf.bytes_per_pixel == 4 && vs->clientds.pf.rmax == 0xFF &&
1707 vs->clientds.pf.bmax == 0xFF && vs->clientds.pf.gmax == 0xFF) {
1708 vs->tight_pixel24 = true;
1709 } else {
1710 vs->tight_pixel24 = false;
1711 }
1712
1713 if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE)
1714 return send_rect_simple(vs, x, y, w, h);
1715
1716 /* Calculate maximum number of rows in one non-solid rectangle. */
1717
1718 max_rows = tight_conf[vs->tight_compression].max_rect_size;
1719 max_rows /= MIN(tight_conf[vs->tight_compression].max_rect_width, w);
1720
1721 return find_large_solid_color_rect(vs, x, y, w, h, max_rows);
1722 }
1723
1724 int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y,
1725 int w, int h)
1726 {
1727 vs->tight_type = VNC_ENCODING_TIGHT;
1728 return tight_send_framebuffer_update(vs, x, y, w, h);
1729 }
1730
1731 int vnc_tight_png_send_framebuffer_update(VncState *vs, int x, int y,
1732 int w, int h)
1733 {
1734 vs->tight_type = VNC_ENCODING_TIGHT_PNG;
1735 return tight_send_framebuffer_update(vs, x, y, w, h);
1736 }
1737
1738 void vnc_tight_clear(VncState *vs)
1739 {
1740 int i;
1741 for (i=0; i<ARRAY_SIZE(vs->tight_stream); i++) {
1742 if (vs->tight_stream[i].opaque) {
1743 deflateEnd(&vs->tight_stream[i]);
1744 }
1745 }
1746
1747 buffer_free(&vs->tight);
1748 buffer_free(&vs->tight_zlib);
1749 buffer_free(&vs->tight_gradient);
1750 #ifdef CONFIG_VNC_JPEG
1751 buffer_free(&vs->tight_jpeg);
1752 #endif
1753 }