]> git.proxmox.com Git - qemu.git/blob - util/cutils.c
buffer_is_zero: use vector optimizations if possible
[qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu-common.h"
25 #include "qemu/host-utils.h"
26 #include <math.h>
27
28 #include "qemu/sockets.h"
29 #include "qemu/iov.h"
30
31 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
32 {
33 int len = qemu_strnlen(str, buf_size);
34 memcpy(buf, str, len);
35 memset(buf + len, pad, buf_size - len);
36 }
37
38 void pstrcpy(char *buf, int buf_size, const char *str)
39 {
40 int c;
41 char *q = buf;
42
43 if (buf_size <= 0)
44 return;
45
46 for(;;) {
47 c = *str++;
48 if (c == 0 || q >= buf + buf_size - 1)
49 break;
50 *q++ = c;
51 }
52 *q = '\0';
53 }
54
55 /* strcat and truncate. */
56 char *pstrcat(char *buf, int buf_size, const char *s)
57 {
58 int len;
59 len = strlen(buf);
60 if (len < buf_size)
61 pstrcpy(buf + len, buf_size - len, s);
62 return buf;
63 }
64
65 int strstart(const char *str, const char *val, const char **ptr)
66 {
67 const char *p, *q;
68 p = str;
69 q = val;
70 while (*q != '\0') {
71 if (*p != *q)
72 return 0;
73 p++;
74 q++;
75 }
76 if (ptr)
77 *ptr = p;
78 return 1;
79 }
80
81 int stristart(const char *str, const char *val, const char **ptr)
82 {
83 const char *p, *q;
84 p = str;
85 q = val;
86 while (*q != '\0') {
87 if (qemu_toupper(*p) != qemu_toupper(*q))
88 return 0;
89 p++;
90 q++;
91 }
92 if (ptr)
93 *ptr = p;
94 return 1;
95 }
96
97 /* XXX: use host strnlen if available ? */
98 int qemu_strnlen(const char *s, int max_len)
99 {
100 int i;
101
102 for(i = 0; i < max_len; i++) {
103 if (s[i] == '\0') {
104 break;
105 }
106 }
107 return i;
108 }
109
110 time_t mktimegm(struct tm *tm)
111 {
112 time_t t;
113 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
114 if (m < 3) {
115 m += 12;
116 y--;
117 }
118 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
119 y / 400 - 719469);
120 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
121 return t;
122 }
123
124 int qemu_fls(int i)
125 {
126 return 32 - clz32(i);
127 }
128
129 /*
130 * Make sure data goes on disk, but if possible do not bother to
131 * write out the inode just for timestamp updates.
132 *
133 * Unfortunately even in 2009 many operating systems do not support
134 * fdatasync and have to fall back to fsync.
135 */
136 int qemu_fdatasync(int fd)
137 {
138 #ifdef CONFIG_FDATASYNC
139 return fdatasync(fd);
140 #else
141 return fsync(fd);
142 #endif
143 }
144
145 /*
146 * Searches for an area with non-zero content in a buffer
147 *
148 * Attention! The len must be a multiple of
149 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
150 * and addr must be a multiple of sizeof(VECTYPE) due to
151 * restriction of optimizations in this function.
152 *
153 * can_use_buffer_find_nonzero_offset() can be used to check
154 * these requirements.
155 *
156 * The return value is the offset of the non-zero area rounded
157 * down to a multiple of sizeof(VECTYPE) for the first
158 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to
159 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
160 * afterwards.
161 *
162 * If the buffer is all zero the return value is equal to len.
163 */
164
165 size_t buffer_find_nonzero_offset(const void *buf, size_t len)
166 {
167 const VECTYPE *p = buf;
168 const VECTYPE zero = (VECTYPE){0};
169 size_t i;
170
171 assert(can_use_buffer_find_nonzero_offset(buf, len));
172
173 if (!len) {
174 return 0;
175 }
176
177 for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
178 if (!ALL_EQ(p[i], zero)) {
179 return i * sizeof(VECTYPE);
180 }
181 }
182
183 for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
184 i < len / sizeof(VECTYPE);
185 i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
186 VECTYPE tmp0 = p[i + 0] | p[i + 1];
187 VECTYPE tmp1 = p[i + 2] | p[i + 3];
188 VECTYPE tmp2 = p[i + 4] | p[i + 5];
189 VECTYPE tmp3 = p[i + 6] | p[i + 7];
190 VECTYPE tmp01 = tmp0 | tmp1;
191 VECTYPE tmp23 = tmp2 | tmp3;
192 if (!ALL_EQ(tmp01 | tmp23, zero)) {
193 break;
194 }
195 }
196
197 return i * sizeof(VECTYPE);
198 }
199
200 /*
201 * Checks if a buffer is all zeroes
202 *
203 * Attention! The len must be a multiple of 4 * sizeof(long) due to
204 * restriction of optimizations in this function.
205 */
206 bool buffer_is_zero(const void *buf, size_t len)
207 {
208 /*
209 * Use long as the biggest available internal data type that fits into the
210 * CPU register and unroll the loop to smooth out the effect of memory
211 * latency.
212 */
213
214 size_t i;
215 long d0, d1, d2, d3;
216 const long * const data = buf;
217
218 /* use vector optimized zero check if possible */
219 if (can_use_buffer_find_nonzero_offset(buf, len)) {
220 return buffer_find_nonzero_offset(buf, len) == len;
221 }
222
223 assert(len % (4 * sizeof(long)) == 0);
224 len /= sizeof(long);
225
226 for (i = 0; i < len; i += 4) {
227 d0 = data[i + 0];
228 d1 = data[i + 1];
229 d2 = data[i + 2];
230 d3 = data[i + 3];
231
232 if (d0 || d1 || d2 || d3) {
233 return false;
234 }
235 }
236
237 return true;
238 }
239
240 #ifndef _WIN32
241 /* Sets a specific flag */
242 int fcntl_setfl(int fd, int flag)
243 {
244 int flags;
245
246 flags = fcntl(fd, F_GETFL);
247 if (flags == -1)
248 return -errno;
249
250 if (fcntl(fd, F_SETFL, flags | flag) == -1)
251 return -errno;
252
253 return 0;
254 }
255 #endif
256
257 static int64_t suffix_mul(char suffix, int64_t unit)
258 {
259 switch (qemu_toupper(suffix)) {
260 case STRTOSZ_DEFSUFFIX_B:
261 return 1;
262 case STRTOSZ_DEFSUFFIX_KB:
263 return unit;
264 case STRTOSZ_DEFSUFFIX_MB:
265 return unit * unit;
266 case STRTOSZ_DEFSUFFIX_GB:
267 return unit * unit * unit;
268 case STRTOSZ_DEFSUFFIX_TB:
269 return unit * unit * unit * unit;
270 }
271 return -1;
272 }
273
274 /*
275 * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
276 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
277 * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on
278 * other error.
279 */
280 int64_t strtosz_suffix_unit(const char *nptr, char **end,
281 const char default_suffix, int64_t unit)
282 {
283 int64_t retval = -EINVAL;
284 char *endptr;
285 unsigned char c;
286 int mul_required = 0;
287 double val, mul, integral, fraction;
288
289 errno = 0;
290 val = strtod(nptr, &endptr);
291 if (isnan(val) || endptr == nptr || errno != 0) {
292 goto fail;
293 }
294 fraction = modf(val, &integral);
295 if (fraction != 0) {
296 mul_required = 1;
297 }
298 c = *endptr;
299 mul = suffix_mul(c, unit);
300 if (mul >= 0) {
301 endptr++;
302 } else {
303 mul = suffix_mul(default_suffix, unit);
304 assert(mul >= 0);
305 }
306 if (mul == 1 && mul_required) {
307 goto fail;
308 }
309 if ((val * mul >= INT64_MAX) || val < 0) {
310 retval = -ERANGE;
311 goto fail;
312 }
313 retval = val * mul;
314
315 fail:
316 if (end) {
317 *end = endptr;
318 }
319
320 return retval;
321 }
322
323 int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
324 {
325 return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
326 }
327
328 int64_t strtosz(const char *nptr, char **end)
329 {
330 return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
331 }
332
333 /**
334 * parse_uint:
335 *
336 * @s: String to parse
337 * @value: Destination for parsed integer value
338 * @endptr: Destination for pointer to first character not consumed
339 * @base: integer base, between 2 and 36 inclusive, or 0
340 *
341 * Parse unsigned integer
342 *
343 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
344 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
345 *
346 * If @s is null, or @base is invalid, or @s doesn't start with an
347 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
348 * return -EINVAL.
349 *
350 * Set *@endptr to point right beyond the parsed integer (even if the integer
351 * overflows or is negative, all digits will be parsed and *@endptr will
352 * point right beyond them).
353 *
354 * If the integer is negative, set *@value to 0, and return -ERANGE.
355 *
356 * If the integer overflows unsigned long long, set *@value to
357 * ULLONG_MAX, and return -ERANGE.
358 *
359 * Else, set *@value to the parsed integer, and return 0.
360 */
361 int parse_uint(const char *s, unsigned long long *value, char **endptr,
362 int base)
363 {
364 int r = 0;
365 char *endp = (char *)s;
366 unsigned long long val = 0;
367
368 if (!s) {
369 r = -EINVAL;
370 goto out;
371 }
372
373 errno = 0;
374 val = strtoull(s, &endp, base);
375 if (errno) {
376 r = -errno;
377 goto out;
378 }
379
380 if (endp == s) {
381 r = -EINVAL;
382 goto out;
383 }
384
385 /* make sure we reject negative numbers: */
386 while (isspace((unsigned char)*s)) {
387 s++;
388 }
389 if (*s == '-') {
390 val = 0;
391 r = -ERANGE;
392 goto out;
393 }
394
395 out:
396 *value = val;
397 *endptr = endp;
398 return r;
399 }
400
401 /**
402 * parse_uint_full:
403 *
404 * @s: String to parse
405 * @value: Destination for parsed integer value
406 * @base: integer base, between 2 and 36 inclusive, or 0
407 *
408 * Parse unsigned integer from entire string
409 *
410 * Have the same behavior of parse_uint(), but with an additional check
411 * for additional data after the parsed number. If extra characters are present
412 * after the parsed number, the function will return -EINVAL, and *@v will
413 * be set to 0.
414 */
415 int parse_uint_full(const char *s, unsigned long long *value, int base)
416 {
417 char *endp;
418 int r;
419
420 r = parse_uint(s, value, &endp, base);
421 if (r < 0) {
422 return r;
423 }
424 if (*endp) {
425 *value = 0;
426 return -EINVAL;
427 }
428
429 return 0;
430 }
431
432 int qemu_parse_fd(const char *param)
433 {
434 int fd;
435 char *endptr = NULL;
436
437 fd = strtol(param, &endptr, 10);
438 if (*endptr || (fd == 0 && param == endptr)) {
439 return -1;
440 }
441 return fd;
442 }
443
444 /* round down to the nearest power of 2*/
445 int64_t pow2floor(int64_t value)
446 {
447 if (!is_power_of_2(value)) {
448 value = 0x8000000000000000ULL >> clz64(value);
449 }
450 return value;
451 }
452
453 /*
454 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
455 * Input is limited to 14-bit numbers
456 */
457 int uleb128_encode_small(uint8_t *out, uint32_t n)
458 {
459 g_assert(n <= 0x3fff);
460 if (n < 0x80) {
461 *out++ = n;
462 return 1;
463 } else {
464 *out++ = (n & 0x7f) | 0x80;
465 *out++ = n >> 7;
466 return 2;
467 }
468 }
469
470 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
471 {
472 if (!(*in & 0x80)) {
473 *n = *in++;
474 return 1;
475 } else {
476 *n = *in++ & 0x7f;
477 /* we exceed 14 bit number */
478 if (*in & 0x80) {
479 return -1;
480 }
481 *n |= *in++ << 7;
482 return 2;
483 }
484 }