]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - virt/kvm/arm/arm.c
Merge branch 'x86/hyperv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[mirror_ubuntu-disco-kernel.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78
79 /**
80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81 * Must be called from non-preemptible context
82 */
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 {
85 return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93 return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103 return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108 *(int *)rtn = 0;
109 }
110
111
112 /**
113 * kvm_arch_init_vm - initializes a VM data structure
114 * @kvm: pointer to the KVM struct
115 */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118 int ret, cpu;
119
120 if (type)
121 return -EINVAL;
122
123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124 if (!kvm->arch.last_vcpu_ran)
125 return -ENOMEM;
126
127 for_each_possible_cpu(cpu)
128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130 ret = kvm_alloc_stage2_pgd(kvm);
131 if (ret)
132 goto out_fail_alloc;
133
134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 if (ret)
136 goto out_free_stage2_pgd;
137
138 kvm_vgic_early_init(kvm);
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158 return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163 return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 kvm_vgic_destroy(kvm);
181
182 free_percpu(kvm->arch.last_vcpu_ran);
183 kvm->arch.last_vcpu_ran = NULL;
184
185 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186 if (kvm->vcpus[i]) {
187 kvm_arch_vcpu_free(kvm->vcpus[i]);
188 kvm->vcpus[i] = NULL;
189 }
190 }
191 atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196 int r;
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 r = vgic_present;
200 break;
201 case KVM_CAP_IOEVENTFD:
202 case KVM_CAP_DEVICE_CTRL:
203 case KVM_CAP_USER_MEMORY:
204 case KVM_CAP_SYNC_MMU:
205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206 case KVM_CAP_ONE_REG:
207 case KVM_CAP_ARM_PSCI:
208 case KVM_CAP_ARM_PSCI_0_2:
209 case KVM_CAP_READONLY_MEM:
210 case KVM_CAP_MP_STATE:
211 case KVM_CAP_IMMEDIATE_EXIT:
212 r = 1;
213 break;
214 case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 r = 1;
216 break;
217 case KVM_CAP_NR_VCPUS:
218 r = num_online_cpus();
219 break;
220 case KVM_CAP_MAX_VCPUS:
221 r = KVM_MAX_VCPUS;
222 break;
223 case KVM_CAP_NR_MEMSLOTS:
224 r = KVM_USER_MEM_SLOTS;
225 break;
226 case KVM_CAP_MSI_DEVID:
227 if (!kvm)
228 r = -EINVAL;
229 else
230 r = kvm->arch.vgic.msis_require_devid;
231 break;
232 case KVM_CAP_ARM_USER_IRQ:
233 /*
234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 * (bump this number if adding more devices)
236 */
237 r = 1;
238 break;
239 default:
240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 break;
242 }
243 return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247 unsigned int ioctl, unsigned long arg)
248 {
249 return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255 int err;
256 struct kvm_vcpu *vcpu;
257
258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 err = -EBUSY;
260 goto out;
261 }
262
263 if (id >= kvm->arch.max_vcpus) {
264 err = -EINVAL;
265 goto out;
266 }
267
268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 if (!vcpu) {
270 err = -ENOMEM;
271 goto out;
272 }
273
274 err = kvm_vcpu_init(vcpu, kvm, id);
275 if (err)
276 goto free_vcpu;
277
278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 if (err)
280 goto vcpu_uninit;
281
282 return vcpu;
283 vcpu_uninit:
284 kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299 static_branch_dec(&userspace_irqchip_in_use);
300
301 kvm_mmu_free_memory_caches(vcpu);
302 kvm_timer_vcpu_terminate(vcpu);
303 kvm_pmu_vcpu_destroy(vcpu);
304 kvm_vcpu_uninit(vcpu);
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310 kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315 return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320 kvm_timer_schedule(vcpu);
321 kvm_vgic_v4_enable_doorbell(vcpu);
322 }
323
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
325 {
326 kvm_timer_unschedule(vcpu);
327 kvm_vgic_v4_disable_doorbell(vcpu);
328 }
329
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
331 {
332 /* Force users to call KVM_ARM_VCPU_INIT */
333 vcpu->arch.target = -1;
334 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335
336 /* Set up the timer */
337 kvm_timer_vcpu_init(vcpu);
338
339 kvm_arm_reset_debug_ptr(vcpu);
340
341 return kvm_vgic_vcpu_init(vcpu);
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346 int *last_ran;
347
348 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
349
350 /*
351 * We might get preempted before the vCPU actually runs, but
352 * over-invalidation doesn't affect correctness.
353 */
354 if (*last_ran != vcpu->vcpu_id) {
355 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356 *last_ran = vcpu->vcpu_id;
357 }
358
359 vcpu->cpu = cpu;
360 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
361
362 kvm_arm_set_running_vcpu(vcpu);
363 kvm_vgic_load(vcpu);
364 kvm_timer_vcpu_load(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369 kvm_timer_vcpu_put(vcpu);
370 kvm_vgic_put(vcpu);
371
372 vcpu->cpu = -1;
373
374 kvm_arm_set_running_vcpu(NULL);
375 }
376
377 static void vcpu_power_off(struct kvm_vcpu *vcpu)
378 {
379 vcpu->arch.power_off = true;
380 kvm_make_request(KVM_REQ_SLEEP, vcpu);
381 kvm_vcpu_kick(vcpu);
382 }
383
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
385 struct kvm_mp_state *mp_state)
386 {
387 vcpu_load(vcpu);
388
389 if (vcpu->arch.power_off)
390 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391 else
392 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394 vcpu_put(vcpu);
395 return 0;
396 }
397
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
399 struct kvm_mp_state *mp_state)
400 {
401 int ret = 0;
402
403 vcpu_load(vcpu);
404
405 switch (mp_state->mp_state) {
406 case KVM_MP_STATE_RUNNABLE:
407 vcpu->arch.power_off = false;
408 break;
409 case KVM_MP_STATE_STOPPED:
410 vcpu_power_off(vcpu);
411 break;
412 default:
413 ret = -EINVAL;
414 }
415
416 vcpu_put(vcpu);
417 return ret;
418 }
419
420 /**
421 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
422 * @v: The VCPU pointer
423 *
424 * If the guest CPU is not waiting for interrupts or an interrupt line is
425 * asserted, the CPU is by definition runnable.
426 */
427 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
428 {
429 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
430 && !v->arch.power_off && !v->arch.pause);
431 }
432
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435 return vcpu_mode_priv(vcpu);
436 }
437
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442
443 void force_vm_exit(const cpumask_t *mask)
444 {
445 preempt_disable();
446 smp_call_function_many(mask, exit_vm_noop, NULL, true);
447 preempt_enable();
448 }
449
450 /**
451 * need_new_vmid_gen - check that the VMID is still valid
452 * @kvm: The VM's VMID to check
453 *
454 * return true if there is a new generation of VMIDs being used
455 *
456 * The hardware supports only 256 values with the value zero reserved for the
457 * host, so we check if an assigned value belongs to a previous generation,
458 * which which requires us to assign a new value. If we're the first to use a
459 * VMID for the new generation, we must flush necessary caches and TLBs on all
460 * CPUs.
461 */
462 static bool need_new_vmid_gen(struct kvm *kvm)
463 {
464 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
465 }
466
467 /**
468 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469 * @kvm The guest that we are about to run
470 *
471 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
473 * caches and TLBs.
474 */
475 static void update_vttbr(struct kvm *kvm)
476 {
477 phys_addr_t pgd_phys;
478 u64 vmid;
479
480 if (!need_new_vmid_gen(kvm))
481 return;
482
483 spin_lock(&kvm_vmid_lock);
484
485 /*
486 * We need to re-check the vmid_gen here to ensure that if another vcpu
487 * already allocated a valid vmid for this vm, then this vcpu should
488 * use the same vmid.
489 */
490 if (!need_new_vmid_gen(kvm)) {
491 spin_unlock(&kvm_vmid_lock);
492 return;
493 }
494
495 /* First user of a new VMID generation? */
496 if (unlikely(kvm_next_vmid == 0)) {
497 atomic64_inc(&kvm_vmid_gen);
498 kvm_next_vmid = 1;
499
500 /*
501 * On SMP we know no other CPUs can use this CPU's or each
502 * other's VMID after force_vm_exit returns since the
503 * kvm_vmid_lock blocks them from reentry to the guest.
504 */
505 force_vm_exit(cpu_all_mask);
506 /*
507 * Now broadcast TLB + ICACHE invalidation over the inner
508 * shareable domain to make sure all data structures are
509 * clean.
510 */
511 kvm_call_hyp(__kvm_flush_vm_context);
512 }
513
514 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
515 kvm->arch.vmid = kvm_next_vmid;
516 kvm_next_vmid++;
517 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518
519 /* update vttbr to be used with the new vmid */
520 pgd_phys = virt_to_phys(kvm->arch.pgd);
521 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523 kvm->arch.vttbr = pgd_phys | vmid;
524
525 spin_unlock(&kvm_vmid_lock);
526 }
527
528 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
529 {
530 struct kvm *kvm = vcpu->kvm;
531 int ret = 0;
532
533 if (likely(vcpu->arch.has_run_once))
534 return 0;
535
536 vcpu->arch.has_run_once = true;
537
538 if (likely(irqchip_in_kernel(kvm))) {
539 /*
540 * Map the VGIC hardware resources before running a vcpu the
541 * first time on this VM.
542 */
543 if (unlikely(!vgic_ready(kvm))) {
544 ret = kvm_vgic_map_resources(kvm);
545 if (ret)
546 return ret;
547 }
548 } else {
549 /*
550 * Tell the rest of the code that there are userspace irqchip
551 * VMs in the wild.
552 */
553 static_branch_inc(&userspace_irqchip_in_use);
554 }
555
556 ret = kvm_timer_enable(vcpu);
557 if (ret)
558 return ret;
559
560 ret = kvm_arm_pmu_v3_enable(vcpu);
561
562 return ret;
563 }
564
565 bool kvm_arch_intc_initialized(struct kvm *kvm)
566 {
567 return vgic_initialized(kvm);
568 }
569
570 void kvm_arm_halt_guest(struct kvm *kvm)
571 {
572 int i;
573 struct kvm_vcpu *vcpu;
574
575 kvm_for_each_vcpu(i, vcpu, kvm)
576 vcpu->arch.pause = true;
577 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
578 }
579
580 void kvm_arm_resume_guest(struct kvm *kvm)
581 {
582 int i;
583 struct kvm_vcpu *vcpu;
584
585 kvm_for_each_vcpu(i, vcpu, kvm) {
586 vcpu->arch.pause = false;
587 swake_up(kvm_arch_vcpu_wq(vcpu));
588 }
589 }
590
591 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
592 {
593 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
594
595 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
596 (!vcpu->arch.pause)));
597
598 if (vcpu->arch.power_off || vcpu->arch.pause) {
599 /* Awaken to handle a signal, request we sleep again later. */
600 kvm_make_request(KVM_REQ_SLEEP, vcpu);
601 }
602 }
603
604 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
605 {
606 return vcpu->arch.target >= 0;
607 }
608
609 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
610 {
611 if (kvm_request_pending(vcpu)) {
612 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
613 vcpu_req_sleep(vcpu);
614
615 /*
616 * Clear IRQ_PENDING requests that were made to guarantee
617 * that a VCPU sees new virtual interrupts.
618 */
619 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
620 }
621 }
622
623 /**
624 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
625 * @vcpu: The VCPU pointer
626 * @run: The kvm_run structure pointer used for userspace state exchange
627 *
628 * This function is called through the VCPU_RUN ioctl called from user space. It
629 * will execute VM code in a loop until the time slice for the process is used
630 * or some emulation is needed from user space in which case the function will
631 * return with return value 0 and with the kvm_run structure filled in with the
632 * required data for the requested emulation.
633 */
634 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
635 {
636 int ret;
637
638 if (unlikely(!kvm_vcpu_initialized(vcpu)))
639 return -ENOEXEC;
640
641 vcpu_load(vcpu);
642
643 ret = kvm_vcpu_first_run_init(vcpu);
644 if (ret)
645 goto out;
646
647 if (run->exit_reason == KVM_EXIT_MMIO) {
648 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
649 if (ret)
650 goto out;
651 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
652 ret = 0;
653 goto out;
654 }
655
656 }
657
658 if (run->immediate_exit) {
659 ret = -EINTR;
660 goto out;
661 }
662
663 kvm_sigset_activate(vcpu);
664
665 ret = 1;
666 run->exit_reason = KVM_EXIT_UNKNOWN;
667 while (ret > 0) {
668 /*
669 * Check conditions before entering the guest
670 */
671 cond_resched();
672
673 update_vttbr(vcpu->kvm);
674
675 check_vcpu_requests(vcpu);
676
677 /*
678 * Preparing the interrupts to be injected also
679 * involves poking the GIC, which must be done in a
680 * non-preemptible context.
681 */
682 preempt_disable();
683
684 /* Flush FP/SIMD state that can't survive guest entry/exit */
685 kvm_fpsimd_flush_cpu_state();
686
687 kvm_pmu_flush_hwstate(vcpu);
688
689 local_irq_disable();
690
691 kvm_vgic_flush_hwstate(vcpu);
692
693 /*
694 * Exit if we have a signal pending so that we can deliver the
695 * signal to user space.
696 */
697 if (signal_pending(current)) {
698 ret = -EINTR;
699 run->exit_reason = KVM_EXIT_INTR;
700 }
701
702 /*
703 * If we're using a userspace irqchip, then check if we need
704 * to tell a userspace irqchip about timer or PMU level
705 * changes and if so, exit to userspace (the actual level
706 * state gets updated in kvm_timer_update_run and
707 * kvm_pmu_update_run below).
708 */
709 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
710 if (kvm_timer_should_notify_user(vcpu) ||
711 kvm_pmu_should_notify_user(vcpu)) {
712 ret = -EINTR;
713 run->exit_reason = KVM_EXIT_INTR;
714 }
715 }
716
717 /*
718 * Ensure we set mode to IN_GUEST_MODE after we disable
719 * interrupts and before the final VCPU requests check.
720 * See the comment in kvm_vcpu_exiting_guest_mode() and
721 * Documentation/virtual/kvm/vcpu-requests.rst
722 */
723 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
724
725 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
726 kvm_request_pending(vcpu)) {
727 vcpu->mode = OUTSIDE_GUEST_MODE;
728 kvm_pmu_sync_hwstate(vcpu);
729 if (static_branch_unlikely(&userspace_irqchip_in_use))
730 kvm_timer_sync_hwstate(vcpu);
731 kvm_vgic_sync_hwstate(vcpu);
732 local_irq_enable();
733 preempt_enable();
734 continue;
735 }
736
737 kvm_arm_setup_debug(vcpu);
738
739 /**************************************************************
740 * Enter the guest
741 */
742 trace_kvm_entry(*vcpu_pc(vcpu));
743 guest_enter_irqoff();
744
745 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
746
747 vcpu->mode = OUTSIDE_GUEST_MODE;
748 vcpu->stat.exits++;
749 /*
750 * Back from guest
751 *************************************************************/
752
753 kvm_arm_clear_debug(vcpu);
754
755 /*
756 * We must sync the PMU state before the vgic state so
757 * that the vgic can properly sample the updated state of the
758 * interrupt line.
759 */
760 kvm_pmu_sync_hwstate(vcpu);
761
762 /*
763 * Sync the vgic state before syncing the timer state because
764 * the timer code needs to know if the virtual timer
765 * interrupts are active.
766 */
767 kvm_vgic_sync_hwstate(vcpu);
768
769 /*
770 * Sync the timer hardware state before enabling interrupts as
771 * we don't want vtimer interrupts to race with syncing the
772 * timer virtual interrupt state.
773 */
774 if (static_branch_unlikely(&userspace_irqchip_in_use))
775 kvm_timer_sync_hwstate(vcpu);
776
777 /*
778 * We may have taken a host interrupt in HYP mode (ie
779 * while executing the guest). This interrupt is still
780 * pending, as we haven't serviced it yet!
781 *
782 * We're now back in SVC mode, with interrupts
783 * disabled. Enabling the interrupts now will have
784 * the effect of taking the interrupt again, in SVC
785 * mode this time.
786 */
787 local_irq_enable();
788
789 /*
790 * We do local_irq_enable() before calling guest_exit() so
791 * that if a timer interrupt hits while running the guest we
792 * account that tick as being spent in the guest. We enable
793 * preemption after calling guest_exit() so that if we get
794 * preempted we make sure ticks after that is not counted as
795 * guest time.
796 */
797 guest_exit();
798 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
799
800 preempt_enable();
801
802 ret = handle_exit(vcpu, run, ret);
803 }
804
805 /* Tell userspace about in-kernel device output levels */
806 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
807 kvm_timer_update_run(vcpu);
808 kvm_pmu_update_run(vcpu);
809 }
810
811 kvm_sigset_deactivate(vcpu);
812
813 out:
814 vcpu_put(vcpu);
815 return ret;
816 }
817
818 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
819 {
820 int bit_index;
821 bool set;
822 unsigned long *ptr;
823
824 if (number == KVM_ARM_IRQ_CPU_IRQ)
825 bit_index = __ffs(HCR_VI);
826 else /* KVM_ARM_IRQ_CPU_FIQ */
827 bit_index = __ffs(HCR_VF);
828
829 ptr = (unsigned long *)&vcpu->arch.irq_lines;
830 if (level)
831 set = test_and_set_bit(bit_index, ptr);
832 else
833 set = test_and_clear_bit(bit_index, ptr);
834
835 /*
836 * If we didn't change anything, no need to wake up or kick other CPUs
837 */
838 if (set == level)
839 return 0;
840
841 /*
842 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
843 * trigger a world-switch round on the running physical CPU to set the
844 * virtual IRQ/FIQ fields in the HCR appropriately.
845 */
846 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
847 kvm_vcpu_kick(vcpu);
848
849 return 0;
850 }
851
852 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
853 bool line_status)
854 {
855 u32 irq = irq_level->irq;
856 unsigned int irq_type, vcpu_idx, irq_num;
857 int nrcpus = atomic_read(&kvm->online_vcpus);
858 struct kvm_vcpu *vcpu = NULL;
859 bool level = irq_level->level;
860
861 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
862 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
863 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
864
865 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
866
867 switch (irq_type) {
868 case KVM_ARM_IRQ_TYPE_CPU:
869 if (irqchip_in_kernel(kvm))
870 return -ENXIO;
871
872 if (vcpu_idx >= nrcpus)
873 return -EINVAL;
874
875 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
876 if (!vcpu)
877 return -EINVAL;
878
879 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
880 return -EINVAL;
881
882 return vcpu_interrupt_line(vcpu, irq_num, level);
883 case KVM_ARM_IRQ_TYPE_PPI:
884 if (!irqchip_in_kernel(kvm))
885 return -ENXIO;
886
887 if (vcpu_idx >= nrcpus)
888 return -EINVAL;
889
890 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
891 if (!vcpu)
892 return -EINVAL;
893
894 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
895 return -EINVAL;
896
897 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
898 case KVM_ARM_IRQ_TYPE_SPI:
899 if (!irqchip_in_kernel(kvm))
900 return -ENXIO;
901
902 if (irq_num < VGIC_NR_PRIVATE_IRQS)
903 return -EINVAL;
904
905 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
906 }
907
908 return -EINVAL;
909 }
910
911 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
912 const struct kvm_vcpu_init *init)
913 {
914 unsigned int i;
915 int phys_target = kvm_target_cpu();
916
917 if (init->target != phys_target)
918 return -EINVAL;
919
920 /*
921 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
922 * use the same target.
923 */
924 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
925 return -EINVAL;
926
927 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
928 for (i = 0; i < sizeof(init->features) * 8; i++) {
929 bool set = (init->features[i / 32] & (1 << (i % 32)));
930
931 if (set && i >= KVM_VCPU_MAX_FEATURES)
932 return -ENOENT;
933
934 /*
935 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
936 * use the same feature set.
937 */
938 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
939 test_bit(i, vcpu->arch.features) != set)
940 return -EINVAL;
941
942 if (set)
943 set_bit(i, vcpu->arch.features);
944 }
945
946 vcpu->arch.target = phys_target;
947
948 /* Now we know what it is, we can reset it. */
949 return kvm_reset_vcpu(vcpu);
950 }
951
952
953 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
954 struct kvm_vcpu_init *init)
955 {
956 int ret;
957
958 ret = kvm_vcpu_set_target(vcpu, init);
959 if (ret)
960 return ret;
961
962 /*
963 * Ensure a rebooted VM will fault in RAM pages and detect if the
964 * guest MMU is turned off and flush the caches as needed.
965 */
966 if (vcpu->arch.has_run_once)
967 stage2_unmap_vm(vcpu->kvm);
968
969 vcpu_reset_hcr(vcpu);
970
971 /*
972 * Handle the "start in power-off" case.
973 */
974 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
975 vcpu_power_off(vcpu);
976 else
977 vcpu->arch.power_off = false;
978
979 return 0;
980 }
981
982 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
983 struct kvm_device_attr *attr)
984 {
985 int ret = -ENXIO;
986
987 switch (attr->group) {
988 default:
989 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
990 break;
991 }
992
993 return ret;
994 }
995
996 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
997 struct kvm_device_attr *attr)
998 {
999 int ret = -ENXIO;
1000
1001 switch (attr->group) {
1002 default:
1003 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1004 break;
1005 }
1006
1007 return ret;
1008 }
1009
1010 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1011 struct kvm_device_attr *attr)
1012 {
1013 int ret = -ENXIO;
1014
1015 switch (attr->group) {
1016 default:
1017 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1018 break;
1019 }
1020
1021 return ret;
1022 }
1023
1024 long kvm_arch_vcpu_ioctl(struct file *filp,
1025 unsigned int ioctl, unsigned long arg)
1026 {
1027 struct kvm_vcpu *vcpu = filp->private_data;
1028 void __user *argp = (void __user *)arg;
1029 struct kvm_device_attr attr;
1030 long r;
1031
1032 vcpu_load(vcpu);
1033
1034 switch (ioctl) {
1035 case KVM_ARM_VCPU_INIT: {
1036 struct kvm_vcpu_init init;
1037
1038 r = -EFAULT;
1039 if (copy_from_user(&init, argp, sizeof(init)))
1040 break;
1041
1042 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1043 break;
1044 }
1045 case KVM_SET_ONE_REG:
1046 case KVM_GET_ONE_REG: {
1047 struct kvm_one_reg reg;
1048
1049 r = -ENOEXEC;
1050 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1051 break;
1052
1053 r = -EFAULT;
1054 if (copy_from_user(&reg, argp, sizeof(reg)))
1055 break;
1056
1057 if (ioctl == KVM_SET_ONE_REG)
1058 r = kvm_arm_set_reg(vcpu, &reg);
1059 else
1060 r = kvm_arm_get_reg(vcpu, &reg);
1061 break;
1062 }
1063 case KVM_GET_REG_LIST: {
1064 struct kvm_reg_list __user *user_list = argp;
1065 struct kvm_reg_list reg_list;
1066 unsigned n;
1067
1068 r = -ENOEXEC;
1069 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1070 break;
1071
1072 r = -EFAULT;
1073 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1074 break;
1075 n = reg_list.n;
1076 reg_list.n = kvm_arm_num_regs(vcpu);
1077 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1078 break;
1079 r = -E2BIG;
1080 if (n < reg_list.n)
1081 break;
1082 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1083 break;
1084 }
1085 case KVM_SET_DEVICE_ATTR: {
1086 r = -EFAULT;
1087 if (copy_from_user(&attr, argp, sizeof(attr)))
1088 break;
1089 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1090 break;
1091 }
1092 case KVM_GET_DEVICE_ATTR: {
1093 r = -EFAULT;
1094 if (copy_from_user(&attr, argp, sizeof(attr)))
1095 break;
1096 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1097 break;
1098 }
1099 case KVM_HAS_DEVICE_ATTR: {
1100 r = -EFAULT;
1101 if (copy_from_user(&attr, argp, sizeof(attr)))
1102 break;
1103 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1104 break;
1105 }
1106 default:
1107 r = -EINVAL;
1108 }
1109
1110 vcpu_put(vcpu);
1111 return r;
1112 }
1113
1114 /**
1115 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1116 * @kvm: kvm instance
1117 * @log: slot id and address to which we copy the log
1118 *
1119 * Steps 1-4 below provide general overview of dirty page logging. See
1120 * kvm_get_dirty_log_protect() function description for additional details.
1121 *
1122 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1123 * always flush the TLB (step 4) even if previous step failed and the dirty
1124 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1125 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1126 * writes will be marked dirty for next log read.
1127 *
1128 * 1. Take a snapshot of the bit and clear it if needed.
1129 * 2. Write protect the corresponding page.
1130 * 3. Copy the snapshot to the userspace.
1131 * 4. Flush TLB's if needed.
1132 */
1133 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1134 {
1135 bool is_dirty = false;
1136 int r;
1137
1138 mutex_lock(&kvm->slots_lock);
1139
1140 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1141
1142 if (is_dirty)
1143 kvm_flush_remote_tlbs(kvm);
1144
1145 mutex_unlock(&kvm->slots_lock);
1146 return r;
1147 }
1148
1149 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1150 struct kvm_arm_device_addr *dev_addr)
1151 {
1152 unsigned long dev_id, type;
1153
1154 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1155 KVM_ARM_DEVICE_ID_SHIFT;
1156 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1157 KVM_ARM_DEVICE_TYPE_SHIFT;
1158
1159 switch (dev_id) {
1160 case KVM_ARM_DEVICE_VGIC_V2:
1161 if (!vgic_present)
1162 return -ENXIO;
1163 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1164 default:
1165 return -ENODEV;
1166 }
1167 }
1168
1169 long kvm_arch_vm_ioctl(struct file *filp,
1170 unsigned int ioctl, unsigned long arg)
1171 {
1172 struct kvm *kvm = filp->private_data;
1173 void __user *argp = (void __user *)arg;
1174
1175 switch (ioctl) {
1176 case KVM_CREATE_IRQCHIP: {
1177 int ret;
1178 if (!vgic_present)
1179 return -ENXIO;
1180 mutex_lock(&kvm->lock);
1181 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1182 mutex_unlock(&kvm->lock);
1183 return ret;
1184 }
1185 case KVM_ARM_SET_DEVICE_ADDR: {
1186 struct kvm_arm_device_addr dev_addr;
1187
1188 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1189 return -EFAULT;
1190 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1191 }
1192 case KVM_ARM_PREFERRED_TARGET: {
1193 int err;
1194 struct kvm_vcpu_init init;
1195
1196 err = kvm_vcpu_preferred_target(&init);
1197 if (err)
1198 return err;
1199
1200 if (copy_to_user(argp, &init, sizeof(init)))
1201 return -EFAULT;
1202
1203 return 0;
1204 }
1205 default:
1206 return -EINVAL;
1207 }
1208 }
1209
1210 static void cpu_init_hyp_mode(void *dummy)
1211 {
1212 phys_addr_t pgd_ptr;
1213 unsigned long hyp_stack_ptr;
1214 unsigned long stack_page;
1215 unsigned long vector_ptr;
1216
1217 /* Switch from the HYP stub to our own HYP init vector */
1218 __hyp_set_vectors(kvm_get_idmap_vector());
1219
1220 pgd_ptr = kvm_mmu_get_httbr();
1221 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1222 hyp_stack_ptr = stack_page + PAGE_SIZE;
1223 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1224
1225 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1226 __cpu_init_stage2();
1227
1228 kvm_arm_init_debug();
1229 }
1230
1231 static void cpu_hyp_reset(void)
1232 {
1233 if (!is_kernel_in_hyp_mode())
1234 __hyp_reset_vectors();
1235 }
1236
1237 static void cpu_hyp_reinit(void)
1238 {
1239 cpu_hyp_reset();
1240
1241 if (is_kernel_in_hyp_mode()) {
1242 /*
1243 * __cpu_init_stage2() is safe to call even if the PM
1244 * event was cancelled before the CPU was reset.
1245 */
1246 __cpu_init_stage2();
1247 kvm_timer_init_vhe();
1248 } else {
1249 cpu_init_hyp_mode(NULL);
1250 }
1251
1252 if (vgic_present)
1253 kvm_vgic_init_cpu_hardware();
1254 }
1255
1256 static void _kvm_arch_hardware_enable(void *discard)
1257 {
1258 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1259 cpu_hyp_reinit();
1260 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1261 }
1262 }
1263
1264 int kvm_arch_hardware_enable(void)
1265 {
1266 _kvm_arch_hardware_enable(NULL);
1267 return 0;
1268 }
1269
1270 static void _kvm_arch_hardware_disable(void *discard)
1271 {
1272 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1273 cpu_hyp_reset();
1274 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1275 }
1276 }
1277
1278 void kvm_arch_hardware_disable(void)
1279 {
1280 _kvm_arch_hardware_disable(NULL);
1281 }
1282
1283 #ifdef CONFIG_CPU_PM
1284 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1285 unsigned long cmd,
1286 void *v)
1287 {
1288 /*
1289 * kvm_arm_hardware_enabled is left with its old value over
1290 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1291 * re-enable hyp.
1292 */
1293 switch (cmd) {
1294 case CPU_PM_ENTER:
1295 if (__this_cpu_read(kvm_arm_hardware_enabled))
1296 /*
1297 * don't update kvm_arm_hardware_enabled here
1298 * so that the hardware will be re-enabled
1299 * when we resume. See below.
1300 */
1301 cpu_hyp_reset();
1302
1303 return NOTIFY_OK;
1304 case CPU_PM_ENTER_FAILED:
1305 case CPU_PM_EXIT:
1306 if (__this_cpu_read(kvm_arm_hardware_enabled))
1307 /* The hardware was enabled before suspend. */
1308 cpu_hyp_reinit();
1309
1310 return NOTIFY_OK;
1311
1312 default:
1313 return NOTIFY_DONE;
1314 }
1315 }
1316
1317 static struct notifier_block hyp_init_cpu_pm_nb = {
1318 .notifier_call = hyp_init_cpu_pm_notifier,
1319 };
1320
1321 static void __init hyp_cpu_pm_init(void)
1322 {
1323 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1324 }
1325 static void __init hyp_cpu_pm_exit(void)
1326 {
1327 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1328 }
1329 #else
1330 static inline void hyp_cpu_pm_init(void)
1331 {
1332 }
1333 static inline void hyp_cpu_pm_exit(void)
1334 {
1335 }
1336 #endif
1337
1338 static void teardown_common_resources(void)
1339 {
1340 free_percpu(kvm_host_cpu_state);
1341 }
1342
1343 static int init_common_resources(void)
1344 {
1345 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1346 if (!kvm_host_cpu_state) {
1347 kvm_err("Cannot allocate host CPU state\n");
1348 return -ENOMEM;
1349 }
1350
1351 /* set size of VMID supported by CPU */
1352 kvm_vmid_bits = kvm_get_vmid_bits();
1353 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1354
1355 return 0;
1356 }
1357
1358 static int init_subsystems(void)
1359 {
1360 int err = 0;
1361
1362 /*
1363 * Enable hardware so that subsystem initialisation can access EL2.
1364 */
1365 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1366
1367 /*
1368 * Register CPU lower-power notifier
1369 */
1370 hyp_cpu_pm_init();
1371
1372 /*
1373 * Init HYP view of VGIC
1374 */
1375 err = kvm_vgic_hyp_init();
1376 switch (err) {
1377 case 0:
1378 vgic_present = true;
1379 break;
1380 case -ENODEV:
1381 case -ENXIO:
1382 vgic_present = false;
1383 err = 0;
1384 break;
1385 default:
1386 goto out;
1387 }
1388
1389 /*
1390 * Init HYP architected timer support
1391 */
1392 err = kvm_timer_hyp_init(vgic_present);
1393 if (err)
1394 goto out;
1395
1396 kvm_perf_init();
1397 kvm_coproc_table_init();
1398
1399 out:
1400 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1401
1402 return err;
1403 }
1404
1405 static void teardown_hyp_mode(void)
1406 {
1407 int cpu;
1408
1409 free_hyp_pgds();
1410 for_each_possible_cpu(cpu)
1411 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1412 hyp_cpu_pm_exit();
1413 }
1414
1415 /**
1416 * Inits Hyp-mode on all online CPUs
1417 */
1418 static int init_hyp_mode(void)
1419 {
1420 int cpu;
1421 int err = 0;
1422
1423 /*
1424 * Allocate Hyp PGD and setup Hyp identity mapping
1425 */
1426 err = kvm_mmu_init();
1427 if (err)
1428 goto out_err;
1429
1430 /*
1431 * Allocate stack pages for Hypervisor-mode
1432 */
1433 for_each_possible_cpu(cpu) {
1434 unsigned long stack_page;
1435
1436 stack_page = __get_free_page(GFP_KERNEL);
1437 if (!stack_page) {
1438 err = -ENOMEM;
1439 goto out_err;
1440 }
1441
1442 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1443 }
1444
1445 /*
1446 * Map the Hyp-code called directly from the host
1447 */
1448 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1449 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1450 if (err) {
1451 kvm_err("Cannot map world-switch code\n");
1452 goto out_err;
1453 }
1454
1455 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1456 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1457 if (err) {
1458 kvm_err("Cannot map rodata section\n");
1459 goto out_err;
1460 }
1461
1462 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1463 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1464 if (err) {
1465 kvm_err("Cannot map bss section\n");
1466 goto out_err;
1467 }
1468
1469 /*
1470 * Map the Hyp stack pages
1471 */
1472 for_each_possible_cpu(cpu) {
1473 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1474 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1475 PAGE_HYP);
1476
1477 if (err) {
1478 kvm_err("Cannot map hyp stack\n");
1479 goto out_err;
1480 }
1481 }
1482
1483 for_each_possible_cpu(cpu) {
1484 kvm_cpu_context_t *cpu_ctxt;
1485
1486 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1487 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1488
1489 if (err) {
1490 kvm_err("Cannot map host CPU state: %d\n", err);
1491 goto out_err;
1492 }
1493 }
1494
1495 return 0;
1496
1497 out_err:
1498 teardown_hyp_mode();
1499 kvm_err("error initializing Hyp mode: %d\n", err);
1500 return err;
1501 }
1502
1503 static void check_kvm_target_cpu(void *ret)
1504 {
1505 *(int *)ret = kvm_target_cpu();
1506 }
1507
1508 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1509 {
1510 struct kvm_vcpu *vcpu;
1511 int i;
1512
1513 mpidr &= MPIDR_HWID_BITMASK;
1514 kvm_for_each_vcpu(i, vcpu, kvm) {
1515 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1516 return vcpu;
1517 }
1518 return NULL;
1519 }
1520
1521 bool kvm_arch_has_irq_bypass(void)
1522 {
1523 return true;
1524 }
1525
1526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1527 struct irq_bypass_producer *prod)
1528 {
1529 struct kvm_kernel_irqfd *irqfd =
1530 container_of(cons, struct kvm_kernel_irqfd, consumer);
1531
1532 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1533 &irqfd->irq_entry);
1534 }
1535 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1536 struct irq_bypass_producer *prod)
1537 {
1538 struct kvm_kernel_irqfd *irqfd =
1539 container_of(cons, struct kvm_kernel_irqfd, consumer);
1540
1541 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1542 &irqfd->irq_entry);
1543 }
1544
1545 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1546 {
1547 struct kvm_kernel_irqfd *irqfd =
1548 container_of(cons, struct kvm_kernel_irqfd, consumer);
1549
1550 kvm_arm_halt_guest(irqfd->kvm);
1551 }
1552
1553 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1554 {
1555 struct kvm_kernel_irqfd *irqfd =
1556 container_of(cons, struct kvm_kernel_irqfd, consumer);
1557
1558 kvm_arm_resume_guest(irqfd->kvm);
1559 }
1560
1561 /**
1562 * Initialize Hyp-mode and memory mappings on all CPUs.
1563 */
1564 int kvm_arch_init(void *opaque)
1565 {
1566 int err;
1567 int ret, cpu;
1568 bool in_hyp_mode;
1569
1570 if (!is_hyp_mode_available()) {
1571 kvm_info("HYP mode not available\n");
1572 return -ENODEV;
1573 }
1574
1575 for_each_online_cpu(cpu) {
1576 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1577 if (ret < 0) {
1578 kvm_err("Error, CPU %d not supported!\n", cpu);
1579 return -ENODEV;
1580 }
1581 }
1582
1583 err = init_common_resources();
1584 if (err)
1585 return err;
1586
1587 in_hyp_mode = is_kernel_in_hyp_mode();
1588
1589 if (!in_hyp_mode) {
1590 err = init_hyp_mode();
1591 if (err)
1592 goto out_err;
1593 }
1594
1595 err = init_subsystems();
1596 if (err)
1597 goto out_hyp;
1598
1599 if (in_hyp_mode)
1600 kvm_info("VHE mode initialized successfully\n");
1601 else
1602 kvm_info("Hyp mode initialized successfully\n");
1603
1604 return 0;
1605
1606 out_hyp:
1607 if (!in_hyp_mode)
1608 teardown_hyp_mode();
1609 out_err:
1610 teardown_common_resources();
1611 return err;
1612 }
1613
1614 /* NOP: Compiling as a module not supported */
1615 void kvm_arch_exit(void)
1616 {
1617 kvm_perf_teardown();
1618 }
1619
1620 static int arm_init(void)
1621 {
1622 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1623 return rc;
1624 }
1625
1626 module_init(arm_init);