]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - virt/kvm/arm/mmu.c
block: Cleanup license notice
[mirror_ubuntu-disco-kernel.git] / virt / kvm / arm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 static unsigned long io_map_base;
47
48 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 }
73
74 /*
75 * D-Cache management functions. They take the page table entries by
76 * value, as they are flushing the cache using the kernel mapping (or
77 * kmap on 32bit).
78 */
79 static void kvm_flush_dcache_pte(pte_t pte)
80 {
81 __kvm_flush_dcache_pte(pte);
82 }
83
84 static void kvm_flush_dcache_pmd(pmd_t pmd)
85 {
86 __kvm_flush_dcache_pmd(pmd);
87 }
88
89 static void kvm_flush_dcache_pud(pud_t pud)
90 {
91 __kvm_flush_dcache_pud(pud);
92 }
93
94 static bool kvm_is_device_pfn(unsigned long pfn)
95 {
96 return !pfn_valid(pfn);
97 }
98
99 /**
100 * stage2_dissolve_pmd() - clear and flush huge PMD entry
101 * @kvm: pointer to kvm structure.
102 * @addr: IPA
103 * @pmd: pmd pointer for IPA
104 *
105 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
106 * pages in the range dirty.
107 */
108 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
109 {
110 if (!pmd_thp_or_huge(*pmd))
111 return;
112
113 pmd_clear(pmd);
114 kvm_tlb_flush_vmid_ipa(kvm, addr);
115 put_page(virt_to_page(pmd));
116 }
117
118 /**
119 * stage2_dissolve_pud() - clear and flush huge PUD entry
120 * @kvm: pointer to kvm structure.
121 * @addr: IPA
122 * @pud: pud pointer for IPA
123 *
124 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. Marks all
125 * pages in the range dirty.
126 */
127 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
128 {
129 if (!stage2_pud_huge(kvm, *pudp))
130 return;
131
132 stage2_pud_clear(kvm, pudp);
133 kvm_tlb_flush_vmid_ipa(kvm, addr);
134 put_page(virt_to_page(pudp));
135 }
136
137 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
138 int min, int max)
139 {
140 void *page;
141
142 BUG_ON(max > KVM_NR_MEM_OBJS);
143 if (cache->nobjs >= min)
144 return 0;
145 while (cache->nobjs < max) {
146 page = (void *)__get_free_page(PGALLOC_GFP);
147 if (!page)
148 return -ENOMEM;
149 cache->objects[cache->nobjs++] = page;
150 }
151 return 0;
152 }
153
154 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
155 {
156 while (mc->nobjs)
157 free_page((unsigned long)mc->objects[--mc->nobjs]);
158 }
159
160 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
161 {
162 void *p;
163
164 BUG_ON(!mc || !mc->nobjs);
165 p = mc->objects[--mc->nobjs];
166 return p;
167 }
168
169 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
170 {
171 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
172 stage2_pgd_clear(kvm, pgd);
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 stage2_pud_free(kvm, pud_table);
175 put_page(virt_to_page(pgd));
176 }
177
178 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
179 {
180 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
181 VM_BUG_ON(stage2_pud_huge(kvm, *pud));
182 stage2_pud_clear(kvm, pud);
183 kvm_tlb_flush_vmid_ipa(kvm, addr);
184 stage2_pmd_free(kvm, pmd_table);
185 put_page(virt_to_page(pud));
186 }
187
188 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
189 {
190 pte_t *pte_table = pte_offset_kernel(pmd, 0);
191 VM_BUG_ON(pmd_thp_or_huge(*pmd));
192 pmd_clear(pmd);
193 kvm_tlb_flush_vmid_ipa(kvm, addr);
194 pte_free_kernel(NULL, pte_table);
195 put_page(virt_to_page(pmd));
196 }
197
198 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
199 {
200 WRITE_ONCE(*ptep, new_pte);
201 dsb(ishst);
202 }
203
204 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
205 {
206 WRITE_ONCE(*pmdp, new_pmd);
207 dsb(ishst);
208 }
209
210 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
211 {
212 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
213 }
214
215 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
216 {
217 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
218 dsb(ishst);
219 }
220
221 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
222 {
223 WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
224 dsb(ishst);
225 }
226
227 /*
228 * Unmapping vs dcache management:
229 *
230 * If a guest maps certain memory pages as uncached, all writes will
231 * bypass the data cache and go directly to RAM. However, the CPUs
232 * can still speculate reads (not writes) and fill cache lines with
233 * data.
234 *
235 * Those cache lines will be *clean* cache lines though, so a
236 * clean+invalidate operation is equivalent to an invalidate
237 * operation, because no cache lines are marked dirty.
238 *
239 * Those clean cache lines could be filled prior to an uncached write
240 * by the guest, and the cache coherent IO subsystem would therefore
241 * end up writing old data to disk.
242 *
243 * This is why right after unmapping a page/section and invalidating
244 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
245 * the IO subsystem will never hit in the cache.
246 *
247 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
248 * we then fully enforce cacheability of RAM, no matter what the guest
249 * does.
250 */
251 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
252 phys_addr_t addr, phys_addr_t end)
253 {
254 phys_addr_t start_addr = addr;
255 pte_t *pte, *start_pte;
256
257 start_pte = pte = pte_offset_kernel(pmd, addr);
258 do {
259 if (!pte_none(*pte)) {
260 pte_t old_pte = *pte;
261
262 kvm_set_pte(pte, __pte(0));
263 kvm_tlb_flush_vmid_ipa(kvm, addr);
264
265 /* No need to invalidate the cache for device mappings */
266 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
267 kvm_flush_dcache_pte(old_pte);
268
269 put_page(virt_to_page(pte));
270 }
271 } while (pte++, addr += PAGE_SIZE, addr != end);
272
273 if (stage2_pte_table_empty(kvm, start_pte))
274 clear_stage2_pmd_entry(kvm, pmd, start_addr);
275 }
276
277 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
278 phys_addr_t addr, phys_addr_t end)
279 {
280 phys_addr_t next, start_addr = addr;
281 pmd_t *pmd, *start_pmd;
282
283 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
284 do {
285 next = stage2_pmd_addr_end(kvm, addr, end);
286 if (!pmd_none(*pmd)) {
287 if (pmd_thp_or_huge(*pmd)) {
288 pmd_t old_pmd = *pmd;
289
290 pmd_clear(pmd);
291 kvm_tlb_flush_vmid_ipa(kvm, addr);
292
293 kvm_flush_dcache_pmd(old_pmd);
294
295 put_page(virt_to_page(pmd));
296 } else {
297 unmap_stage2_ptes(kvm, pmd, addr, next);
298 }
299 }
300 } while (pmd++, addr = next, addr != end);
301
302 if (stage2_pmd_table_empty(kvm, start_pmd))
303 clear_stage2_pud_entry(kvm, pud, start_addr);
304 }
305
306 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
307 phys_addr_t addr, phys_addr_t end)
308 {
309 phys_addr_t next, start_addr = addr;
310 pud_t *pud, *start_pud;
311
312 start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
313 do {
314 next = stage2_pud_addr_end(kvm, addr, end);
315 if (!stage2_pud_none(kvm, *pud)) {
316 if (stage2_pud_huge(kvm, *pud)) {
317 pud_t old_pud = *pud;
318
319 stage2_pud_clear(kvm, pud);
320 kvm_tlb_flush_vmid_ipa(kvm, addr);
321 kvm_flush_dcache_pud(old_pud);
322 put_page(virt_to_page(pud));
323 } else {
324 unmap_stage2_pmds(kvm, pud, addr, next);
325 }
326 }
327 } while (pud++, addr = next, addr != end);
328
329 if (stage2_pud_table_empty(kvm, start_pud))
330 clear_stage2_pgd_entry(kvm, pgd, start_addr);
331 }
332
333 /**
334 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
335 * @kvm: The VM pointer
336 * @start: The intermediate physical base address of the range to unmap
337 * @size: The size of the area to unmap
338 *
339 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
340 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
341 * destroying the VM), otherwise another faulting VCPU may come in and mess
342 * with things behind our backs.
343 */
344 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
345 {
346 pgd_t *pgd;
347 phys_addr_t addr = start, end = start + size;
348 phys_addr_t next;
349
350 assert_spin_locked(&kvm->mmu_lock);
351 WARN_ON(size & ~PAGE_MASK);
352
353 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
354 do {
355 /*
356 * Make sure the page table is still active, as another thread
357 * could have possibly freed the page table, while we released
358 * the lock.
359 */
360 if (!READ_ONCE(kvm->arch.pgd))
361 break;
362 next = stage2_pgd_addr_end(kvm, addr, end);
363 if (!stage2_pgd_none(kvm, *pgd))
364 unmap_stage2_puds(kvm, pgd, addr, next);
365 /*
366 * If the range is too large, release the kvm->mmu_lock
367 * to prevent starvation and lockup detector warnings.
368 */
369 if (next != end)
370 cond_resched_lock(&kvm->mmu_lock);
371 } while (pgd++, addr = next, addr != end);
372 }
373
374 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
375 phys_addr_t addr, phys_addr_t end)
376 {
377 pte_t *pte;
378
379 pte = pte_offset_kernel(pmd, addr);
380 do {
381 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
382 kvm_flush_dcache_pte(*pte);
383 } while (pte++, addr += PAGE_SIZE, addr != end);
384 }
385
386 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
387 phys_addr_t addr, phys_addr_t end)
388 {
389 pmd_t *pmd;
390 phys_addr_t next;
391
392 pmd = stage2_pmd_offset(kvm, pud, addr);
393 do {
394 next = stage2_pmd_addr_end(kvm, addr, end);
395 if (!pmd_none(*pmd)) {
396 if (pmd_thp_or_huge(*pmd))
397 kvm_flush_dcache_pmd(*pmd);
398 else
399 stage2_flush_ptes(kvm, pmd, addr, next);
400 }
401 } while (pmd++, addr = next, addr != end);
402 }
403
404 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
405 phys_addr_t addr, phys_addr_t end)
406 {
407 pud_t *pud;
408 phys_addr_t next;
409
410 pud = stage2_pud_offset(kvm, pgd, addr);
411 do {
412 next = stage2_pud_addr_end(kvm, addr, end);
413 if (!stage2_pud_none(kvm, *pud)) {
414 if (stage2_pud_huge(kvm, *pud))
415 kvm_flush_dcache_pud(*pud);
416 else
417 stage2_flush_pmds(kvm, pud, addr, next);
418 }
419 } while (pud++, addr = next, addr != end);
420 }
421
422 static void stage2_flush_memslot(struct kvm *kvm,
423 struct kvm_memory_slot *memslot)
424 {
425 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
426 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
427 phys_addr_t next;
428 pgd_t *pgd;
429
430 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
431 do {
432 next = stage2_pgd_addr_end(kvm, addr, end);
433 if (!stage2_pgd_none(kvm, *pgd))
434 stage2_flush_puds(kvm, pgd, addr, next);
435 } while (pgd++, addr = next, addr != end);
436 }
437
438 /**
439 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
440 * @kvm: The struct kvm pointer
441 *
442 * Go through the stage 2 page tables and invalidate any cache lines
443 * backing memory already mapped to the VM.
444 */
445 static void stage2_flush_vm(struct kvm *kvm)
446 {
447 struct kvm_memslots *slots;
448 struct kvm_memory_slot *memslot;
449 int idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453
454 slots = kvm_memslots(kvm);
455 kvm_for_each_memslot(memslot, slots)
456 stage2_flush_memslot(kvm, memslot);
457
458 spin_unlock(&kvm->mmu_lock);
459 srcu_read_unlock(&kvm->srcu, idx);
460 }
461
462 static void clear_hyp_pgd_entry(pgd_t *pgd)
463 {
464 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
465 pgd_clear(pgd);
466 pud_free(NULL, pud_table);
467 put_page(virt_to_page(pgd));
468 }
469
470 static void clear_hyp_pud_entry(pud_t *pud)
471 {
472 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
473 VM_BUG_ON(pud_huge(*pud));
474 pud_clear(pud);
475 pmd_free(NULL, pmd_table);
476 put_page(virt_to_page(pud));
477 }
478
479 static void clear_hyp_pmd_entry(pmd_t *pmd)
480 {
481 pte_t *pte_table = pte_offset_kernel(pmd, 0);
482 VM_BUG_ON(pmd_thp_or_huge(*pmd));
483 pmd_clear(pmd);
484 pte_free_kernel(NULL, pte_table);
485 put_page(virt_to_page(pmd));
486 }
487
488 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
489 {
490 pte_t *pte, *start_pte;
491
492 start_pte = pte = pte_offset_kernel(pmd, addr);
493 do {
494 if (!pte_none(*pte)) {
495 kvm_set_pte(pte, __pte(0));
496 put_page(virt_to_page(pte));
497 }
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499
500 if (hyp_pte_table_empty(start_pte))
501 clear_hyp_pmd_entry(pmd);
502 }
503
504 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
505 {
506 phys_addr_t next;
507 pmd_t *pmd, *start_pmd;
508
509 start_pmd = pmd = pmd_offset(pud, addr);
510 do {
511 next = pmd_addr_end(addr, end);
512 /* Hyp doesn't use huge pmds */
513 if (!pmd_none(*pmd))
514 unmap_hyp_ptes(pmd, addr, next);
515 } while (pmd++, addr = next, addr != end);
516
517 if (hyp_pmd_table_empty(start_pmd))
518 clear_hyp_pud_entry(pud);
519 }
520
521 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
522 {
523 phys_addr_t next;
524 pud_t *pud, *start_pud;
525
526 start_pud = pud = pud_offset(pgd, addr);
527 do {
528 next = pud_addr_end(addr, end);
529 /* Hyp doesn't use huge puds */
530 if (!pud_none(*pud))
531 unmap_hyp_pmds(pud, addr, next);
532 } while (pud++, addr = next, addr != end);
533
534 if (hyp_pud_table_empty(start_pud))
535 clear_hyp_pgd_entry(pgd);
536 }
537
538 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
539 {
540 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
541 }
542
543 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
544 phys_addr_t start, u64 size)
545 {
546 pgd_t *pgd;
547 phys_addr_t addr = start, end = start + size;
548 phys_addr_t next;
549
550 /*
551 * We don't unmap anything from HYP, except at the hyp tear down.
552 * Hence, we don't have to invalidate the TLBs here.
553 */
554 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
555 do {
556 next = pgd_addr_end(addr, end);
557 if (!pgd_none(*pgd))
558 unmap_hyp_puds(pgd, addr, next);
559 } while (pgd++, addr = next, addr != end);
560 }
561
562 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
563 {
564 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
565 }
566
567 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
568 {
569 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
570 }
571
572 /**
573 * free_hyp_pgds - free Hyp-mode page tables
574 *
575 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
576 * therefore contains either mappings in the kernel memory area (above
577 * PAGE_OFFSET), or device mappings in the idmap range.
578 *
579 * boot_hyp_pgd should only map the idmap range, and is only used in
580 * the extended idmap case.
581 */
582 void free_hyp_pgds(void)
583 {
584 pgd_t *id_pgd;
585
586 mutex_lock(&kvm_hyp_pgd_mutex);
587
588 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
589
590 if (id_pgd) {
591 /* In case we never called hyp_mmu_init() */
592 if (!io_map_base)
593 io_map_base = hyp_idmap_start;
594 unmap_hyp_idmap_range(id_pgd, io_map_base,
595 hyp_idmap_start + PAGE_SIZE - io_map_base);
596 }
597
598 if (boot_hyp_pgd) {
599 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
600 boot_hyp_pgd = NULL;
601 }
602
603 if (hyp_pgd) {
604 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
605 (uintptr_t)high_memory - PAGE_OFFSET);
606
607 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
608 hyp_pgd = NULL;
609 }
610 if (merged_hyp_pgd) {
611 clear_page(merged_hyp_pgd);
612 free_page((unsigned long)merged_hyp_pgd);
613 merged_hyp_pgd = NULL;
614 }
615
616 mutex_unlock(&kvm_hyp_pgd_mutex);
617 }
618
619 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
620 unsigned long end, unsigned long pfn,
621 pgprot_t prot)
622 {
623 pte_t *pte;
624 unsigned long addr;
625
626 addr = start;
627 do {
628 pte = pte_offset_kernel(pmd, addr);
629 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
630 get_page(virt_to_page(pte));
631 pfn++;
632 } while (addr += PAGE_SIZE, addr != end);
633 }
634
635 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
636 unsigned long end, unsigned long pfn,
637 pgprot_t prot)
638 {
639 pmd_t *pmd;
640 pte_t *pte;
641 unsigned long addr, next;
642
643 addr = start;
644 do {
645 pmd = pmd_offset(pud, addr);
646
647 BUG_ON(pmd_sect(*pmd));
648
649 if (pmd_none(*pmd)) {
650 pte = pte_alloc_one_kernel(NULL, addr);
651 if (!pte) {
652 kvm_err("Cannot allocate Hyp pte\n");
653 return -ENOMEM;
654 }
655 kvm_pmd_populate(pmd, pte);
656 get_page(virt_to_page(pmd));
657 }
658
659 next = pmd_addr_end(addr, end);
660
661 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
662 pfn += (next - addr) >> PAGE_SHIFT;
663 } while (addr = next, addr != end);
664
665 return 0;
666 }
667
668 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
669 unsigned long end, unsigned long pfn,
670 pgprot_t prot)
671 {
672 pud_t *pud;
673 pmd_t *pmd;
674 unsigned long addr, next;
675 int ret;
676
677 addr = start;
678 do {
679 pud = pud_offset(pgd, addr);
680
681 if (pud_none_or_clear_bad(pud)) {
682 pmd = pmd_alloc_one(NULL, addr);
683 if (!pmd) {
684 kvm_err("Cannot allocate Hyp pmd\n");
685 return -ENOMEM;
686 }
687 kvm_pud_populate(pud, pmd);
688 get_page(virt_to_page(pud));
689 }
690
691 next = pud_addr_end(addr, end);
692 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
693 if (ret)
694 return ret;
695 pfn += (next - addr) >> PAGE_SHIFT;
696 } while (addr = next, addr != end);
697
698 return 0;
699 }
700
701 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
702 unsigned long start, unsigned long end,
703 unsigned long pfn, pgprot_t prot)
704 {
705 pgd_t *pgd;
706 pud_t *pud;
707 unsigned long addr, next;
708 int err = 0;
709
710 mutex_lock(&kvm_hyp_pgd_mutex);
711 addr = start & PAGE_MASK;
712 end = PAGE_ALIGN(end);
713 do {
714 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
715
716 if (pgd_none(*pgd)) {
717 pud = pud_alloc_one(NULL, addr);
718 if (!pud) {
719 kvm_err("Cannot allocate Hyp pud\n");
720 err = -ENOMEM;
721 goto out;
722 }
723 kvm_pgd_populate(pgd, pud);
724 get_page(virt_to_page(pgd));
725 }
726
727 next = pgd_addr_end(addr, end);
728 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
729 if (err)
730 goto out;
731 pfn += (next - addr) >> PAGE_SHIFT;
732 } while (addr = next, addr != end);
733 out:
734 mutex_unlock(&kvm_hyp_pgd_mutex);
735 return err;
736 }
737
738 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
739 {
740 if (!is_vmalloc_addr(kaddr)) {
741 BUG_ON(!virt_addr_valid(kaddr));
742 return __pa(kaddr);
743 } else {
744 return page_to_phys(vmalloc_to_page(kaddr)) +
745 offset_in_page(kaddr);
746 }
747 }
748
749 /**
750 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
751 * @from: The virtual kernel start address of the range
752 * @to: The virtual kernel end address of the range (exclusive)
753 * @prot: The protection to be applied to this range
754 *
755 * The same virtual address as the kernel virtual address is also used
756 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
757 * physical pages.
758 */
759 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
760 {
761 phys_addr_t phys_addr;
762 unsigned long virt_addr;
763 unsigned long start = kern_hyp_va((unsigned long)from);
764 unsigned long end = kern_hyp_va((unsigned long)to);
765
766 if (is_kernel_in_hyp_mode())
767 return 0;
768
769 start = start & PAGE_MASK;
770 end = PAGE_ALIGN(end);
771
772 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
773 int err;
774
775 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
776 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
777 virt_addr, virt_addr + PAGE_SIZE,
778 __phys_to_pfn(phys_addr),
779 prot);
780 if (err)
781 return err;
782 }
783
784 return 0;
785 }
786
787 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
788 unsigned long *haddr, pgprot_t prot)
789 {
790 pgd_t *pgd = hyp_pgd;
791 unsigned long base;
792 int ret = 0;
793
794 mutex_lock(&kvm_hyp_pgd_mutex);
795
796 /*
797 * This assumes that we we have enough space below the idmap
798 * page to allocate our VAs. If not, the check below will
799 * kick. A potential alternative would be to detect that
800 * overflow and switch to an allocation above the idmap.
801 *
802 * The allocated size is always a multiple of PAGE_SIZE.
803 */
804 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
805 base = io_map_base - size;
806
807 /*
808 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
809 * allocating the new area, as it would indicate we've
810 * overflowed the idmap/IO address range.
811 */
812 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
813 ret = -ENOMEM;
814 else
815 io_map_base = base;
816
817 mutex_unlock(&kvm_hyp_pgd_mutex);
818
819 if (ret)
820 goto out;
821
822 if (__kvm_cpu_uses_extended_idmap())
823 pgd = boot_hyp_pgd;
824
825 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
826 base, base + size,
827 __phys_to_pfn(phys_addr), prot);
828 if (ret)
829 goto out;
830
831 *haddr = base + offset_in_page(phys_addr);
832
833 out:
834 return ret;
835 }
836
837 /**
838 * create_hyp_io_mappings - Map IO into both kernel and HYP
839 * @phys_addr: The physical start address which gets mapped
840 * @size: Size of the region being mapped
841 * @kaddr: Kernel VA for this mapping
842 * @haddr: HYP VA for this mapping
843 */
844 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
845 void __iomem **kaddr,
846 void __iomem **haddr)
847 {
848 unsigned long addr;
849 int ret;
850
851 *kaddr = ioremap(phys_addr, size);
852 if (!*kaddr)
853 return -ENOMEM;
854
855 if (is_kernel_in_hyp_mode()) {
856 *haddr = *kaddr;
857 return 0;
858 }
859
860 ret = __create_hyp_private_mapping(phys_addr, size,
861 &addr, PAGE_HYP_DEVICE);
862 if (ret) {
863 iounmap(*kaddr);
864 *kaddr = NULL;
865 *haddr = NULL;
866 return ret;
867 }
868
869 *haddr = (void __iomem *)addr;
870 return 0;
871 }
872
873 /**
874 * create_hyp_exec_mappings - Map an executable range into HYP
875 * @phys_addr: The physical start address which gets mapped
876 * @size: Size of the region being mapped
877 * @haddr: HYP VA for this mapping
878 */
879 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
880 void **haddr)
881 {
882 unsigned long addr;
883 int ret;
884
885 BUG_ON(is_kernel_in_hyp_mode());
886
887 ret = __create_hyp_private_mapping(phys_addr, size,
888 &addr, PAGE_HYP_EXEC);
889 if (ret) {
890 *haddr = NULL;
891 return ret;
892 }
893
894 *haddr = (void *)addr;
895 return 0;
896 }
897
898 /**
899 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
900 * @kvm: The KVM struct pointer for the VM.
901 *
902 * Allocates only the stage-2 HW PGD level table(s) (can support either full
903 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
904 * allocated pages.
905 *
906 * Note we don't need locking here as this is only called when the VM is
907 * created, which can only be done once.
908 */
909 int kvm_alloc_stage2_pgd(struct kvm *kvm)
910 {
911 pgd_t *pgd;
912
913 if (kvm->arch.pgd != NULL) {
914 kvm_err("kvm_arch already initialized?\n");
915 return -EINVAL;
916 }
917
918 /* Allocate the HW PGD, making sure that each page gets its own refcount */
919 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
920 if (!pgd)
921 return -ENOMEM;
922
923 kvm->arch.pgd = pgd;
924 return 0;
925 }
926
927 static void stage2_unmap_memslot(struct kvm *kvm,
928 struct kvm_memory_slot *memslot)
929 {
930 hva_t hva = memslot->userspace_addr;
931 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
932 phys_addr_t size = PAGE_SIZE * memslot->npages;
933 hva_t reg_end = hva + size;
934
935 /*
936 * A memory region could potentially cover multiple VMAs, and any holes
937 * between them, so iterate over all of them to find out if we should
938 * unmap any of them.
939 *
940 * +--------------------------------------------+
941 * +---------------+----------------+ +----------------+
942 * | : VMA 1 | VMA 2 | | VMA 3 : |
943 * +---------------+----------------+ +----------------+
944 * | memory region |
945 * +--------------------------------------------+
946 */
947 do {
948 struct vm_area_struct *vma = find_vma(current->mm, hva);
949 hva_t vm_start, vm_end;
950
951 if (!vma || vma->vm_start >= reg_end)
952 break;
953
954 /*
955 * Take the intersection of this VMA with the memory region
956 */
957 vm_start = max(hva, vma->vm_start);
958 vm_end = min(reg_end, vma->vm_end);
959
960 if (!(vma->vm_flags & VM_PFNMAP)) {
961 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
962 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
963 }
964 hva = vm_end;
965 } while (hva < reg_end);
966 }
967
968 /**
969 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
970 * @kvm: The struct kvm pointer
971 *
972 * Go through the memregions and unmap any reguler RAM
973 * backing memory already mapped to the VM.
974 */
975 void stage2_unmap_vm(struct kvm *kvm)
976 {
977 struct kvm_memslots *slots;
978 struct kvm_memory_slot *memslot;
979 int idx;
980
981 idx = srcu_read_lock(&kvm->srcu);
982 down_read(&current->mm->mmap_sem);
983 spin_lock(&kvm->mmu_lock);
984
985 slots = kvm_memslots(kvm);
986 kvm_for_each_memslot(memslot, slots)
987 stage2_unmap_memslot(kvm, memslot);
988
989 spin_unlock(&kvm->mmu_lock);
990 up_read(&current->mm->mmap_sem);
991 srcu_read_unlock(&kvm->srcu, idx);
992 }
993
994 /**
995 * kvm_free_stage2_pgd - free all stage-2 tables
996 * @kvm: The KVM struct pointer for the VM.
997 *
998 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
999 * underlying level-2 and level-3 tables before freeing the actual level-1 table
1000 * and setting the struct pointer to NULL.
1001 */
1002 void kvm_free_stage2_pgd(struct kvm *kvm)
1003 {
1004 void *pgd = NULL;
1005
1006 spin_lock(&kvm->mmu_lock);
1007 if (kvm->arch.pgd) {
1008 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1009 pgd = READ_ONCE(kvm->arch.pgd);
1010 kvm->arch.pgd = NULL;
1011 }
1012 spin_unlock(&kvm->mmu_lock);
1013
1014 /* Free the HW pgd, one page at a time */
1015 if (pgd)
1016 free_pages_exact(pgd, stage2_pgd_size(kvm));
1017 }
1018
1019 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1020 phys_addr_t addr)
1021 {
1022 pgd_t *pgd;
1023 pud_t *pud;
1024
1025 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1026 if (stage2_pgd_none(kvm, *pgd)) {
1027 if (!cache)
1028 return NULL;
1029 pud = mmu_memory_cache_alloc(cache);
1030 stage2_pgd_populate(kvm, pgd, pud);
1031 get_page(virt_to_page(pgd));
1032 }
1033
1034 return stage2_pud_offset(kvm, pgd, addr);
1035 }
1036
1037 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1038 phys_addr_t addr)
1039 {
1040 pud_t *pud;
1041 pmd_t *pmd;
1042
1043 pud = stage2_get_pud(kvm, cache, addr);
1044 if (!pud || stage2_pud_huge(kvm, *pud))
1045 return NULL;
1046
1047 if (stage2_pud_none(kvm, *pud)) {
1048 if (!cache)
1049 return NULL;
1050 pmd = mmu_memory_cache_alloc(cache);
1051 stage2_pud_populate(kvm, pud, pmd);
1052 get_page(virt_to_page(pud));
1053 }
1054
1055 return stage2_pmd_offset(kvm, pud, addr);
1056 }
1057
1058 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1059 *cache, phys_addr_t addr, const pmd_t *new_pmd)
1060 {
1061 pmd_t *pmd, old_pmd;
1062
1063 pmd = stage2_get_pmd(kvm, cache, addr);
1064 VM_BUG_ON(!pmd);
1065
1066 old_pmd = *pmd;
1067 if (pmd_present(old_pmd)) {
1068 /*
1069 * Multiple vcpus faulting on the same PMD entry, can
1070 * lead to them sequentially updating the PMD with the
1071 * same value. Following the break-before-make
1072 * (pmd_clear() followed by tlb_flush()) process can
1073 * hinder forward progress due to refaults generated
1074 * on missing translations.
1075 *
1076 * Skip updating the page table if the entry is
1077 * unchanged.
1078 */
1079 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1080 return 0;
1081
1082 /*
1083 * Mapping in huge pages should only happen through a
1084 * fault. If a page is merged into a transparent huge
1085 * page, the individual subpages of that huge page
1086 * should be unmapped through MMU notifiers before we
1087 * get here.
1088 *
1089 * Merging of CompoundPages is not supported; they
1090 * should become splitting first, unmapped, merged,
1091 * and mapped back in on-demand.
1092 */
1093 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1094
1095 pmd_clear(pmd);
1096 kvm_tlb_flush_vmid_ipa(kvm, addr);
1097 } else {
1098 get_page(virt_to_page(pmd));
1099 }
1100
1101 kvm_set_pmd(pmd, *new_pmd);
1102 return 0;
1103 }
1104
1105 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1106 phys_addr_t addr, const pud_t *new_pudp)
1107 {
1108 pud_t *pudp, old_pud;
1109
1110 pudp = stage2_get_pud(kvm, cache, addr);
1111 VM_BUG_ON(!pudp);
1112
1113 old_pud = *pudp;
1114
1115 /*
1116 * A large number of vcpus faulting on the same stage 2 entry,
1117 * can lead to a refault due to the
1118 * stage2_pud_clear()/tlb_flush(). Skip updating the page
1119 * tables if there is no change.
1120 */
1121 if (pud_val(old_pud) == pud_val(*new_pudp))
1122 return 0;
1123
1124 if (stage2_pud_present(kvm, old_pud)) {
1125 stage2_pud_clear(kvm, pudp);
1126 kvm_tlb_flush_vmid_ipa(kvm, addr);
1127 } else {
1128 get_page(virt_to_page(pudp));
1129 }
1130
1131 kvm_set_pud(pudp, *new_pudp);
1132 return 0;
1133 }
1134
1135 /*
1136 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1137 * true if a valid and present leaf-entry is found. A pointer to the
1138 * leaf-entry is returned in the appropriate level variable - pudpp,
1139 * pmdpp, ptepp.
1140 */
1141 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1142 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1143 {
1144 pud_t *pudp;
1145 pmd_t *pmdp;
1146 pte_t *ptep;
1147
1148 *pudpp = NULL;
1149 *pmdpp = NULL;
1150 *ptepp = NULL;
1151
1152 pudp = stage2_get_pud(kvm, NULL, addr);
1153 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1154 return false;
1155
1156 if (stage2_pud_huge(kvm, *pudp)) {
1157 *pudpp = pudp;
1158 return true;
1159 }
1160
1161 pmdp = stage2_pmd_offset(kvm, pudp, addr);
1162 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1163 return false;
1164
1165 if (pmd_thp_or_huge(*pmdp)) {
1166 *pmdpp = pmdp;
1167 return true;
1168 }
1169
1170 ptep = pte_offset_kernel(pmdp, addr);
1171 if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1172 return false;
1173
1174 *ptepp = ptep;
1175 return true;
1176 }
1177
1178 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1179 {
1180 pud_t *pudp;
1181 pmd_t *pmdp;
1182 pte_t *ptep;
1183 bool found;
1184
1185 found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1186 if (!found)
1187 return false;
1188
1189 if (pudp)
1190 return kvm_s2pud_exec(pudp);
1191 else if (pmdp)
1192 return kvm_s2pmd_exec(pmdp);
1193 else
1194 return kvm_s2pte_exec(ptep);
1195 }
1196
1197 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1198 phys_addr_t addr, const pte_t *new_pte,
1199 unsigned long flags)
1200 {
1201 pud_t *pud;
1202 pmd_t *pmd;
1203 pte_t *pte, old_pte;
1204 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1205 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1206
1207 VM_BUG_ON(logging_active && !cache);
1208
1209 /* Create stage-2 page table mapping - Levels 0 and 1 */
1210 pud = stage2_get_pud(kvm, cache, addr);
1211 if (!pud) {
1212 /*
1213 * Ignore calls from kvm_set_spte_hva for unallocated
1214 * address ranges.
1215 */
1216 return 0;
1217 }
1218
1219 /*
1220 * While dirty page logging - dissolve huge PUD, then continue
1221 * on to allocate page.
1222 */
1223 if (logging_active)
1224 stage2_dissolve_pud(kvm, addr, pud);
1225
1226 if (stage2_pud_none(kvm, *pud)) {
1227 if (!cache)
1228 return 0; /* ignore calls from kvm_set_spte_hva */
1229 pmd = mmu_memory_cache_alloc(cache);
1230 stage2_pud_populate(kvm, pud, pmd);
1231 get_page(virt_to_page(pud));
1232 }
1233
1234 pmd = stage2_pmd_offset(kvm, pud, addr);
1235 if (!pmd) {
1236 /*
1237 * Ignore calls from kvm_set_spte_hva for unallocated
1238 * address ranges.
1239 */
1240 return 0;
1241 }
1242
1243 /*
1244 * While dirty page logging - dissolve huge PMD, then continue on to
1245 * allocate page.
1246 */
1247 if (logging_active)
1248 stage2_dissolve_pmd(kvm, addr, pmd);
1249
1250 /* Create stage-2 page mappings - Level 2 */
1251 if (pmd_none(*pmd)) {
1252 if (!cache)
1253 return 0; /* ignore calls from kvm_set_spte_hva */
1254 pte = mmu_memory_cache_alloc(cache);
1255 kvm_pmd_populate(pmd, pte);
1256 get_page(virt_to_page(pmd));
1257 }
1258
1259 pte = pte_offset_kernel(pmd, addr);
1260
1261 if (iomap && pte_present(*pte))
1262 return -EFAULT;
1263
1264 /* Create 2nd stage page table mapping - Level 3 */
1265 old_pte = *pte;
1266 if (pte_present(old_pte)) {
1267 /* Skip page table update if there is no change */
1268 if (pte_val(old_pte) == pte_val(*new_pte))
1269 return 0;
1270
1271 kvm_set_pte(pte, __pte(0));
1272 kvm_tlb_flush_vmid_ipa(kvm, addr);
1273 } else {
1274 get_page(virt_to_page(pte));
1275 }
1276
1277 kvm_set_pte(pte, *new_pte);
1278 return 0;
1279 }
1280
1281 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1282 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1283 {
1284 if (pte_young(*pte)) {
1285 *pte = pte_mkold(*pte);
1286 return 1;
1287 }
1288 return 0;
1289 }
1290 #else
1291 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1292 {
1293 return __ptep_test_and_clear_young(pte);
1294 }
1295 #endif
1296
1297 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1298 {
1299 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1300 }
1301
1302 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1303 {
1304 return stage2_ptep_test_and_clear_young((pte_t *)pud);
1305 }
1306
1307 /**
1308 * kvm_phys_addr_ioremap - map a device range to guest IPA
1309 *
1310 * @kvm: The KVM pointer
1311 * @guest_ipa: The IPA at which to insert the mapping
1312 * @pa: The physical address of the device
1313 * @size: The size of the mapping
1314 */
1315 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1316 phys_addr_t pa, unsigned long size, bool writable)
1317 {
1318 phys_addr_t addr, end;
1319 int ret = 0;
1320 unsigned long pfn;
1321 struct kvm_mmu_memory_cache cache = { 0, };
1322
1323 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1324 pfn = __phys_to_pfn(pa);
1325
1326 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1327 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1328
1329 if (writable)
1330 pte = kvm_s2pte_mkwrite(pte);
1331
1332 ret = mmu_topup_memory_cache(&cache,
1333 kvm_mmu_cache_min_pages(kvm),
1334 KVM_NR_MEM_OBJS);
1335 if (ret)
1336 goto out;
1337 spin_lock(&kvm->mmu_lock);
1338 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1339 KVM_S2PTE_FLAG_IS_IOMAP);
1340 spin_unlock(&kvm->mmu_lock);
1341 if (ret)
1342 goto out;
1343
1344 pfn++;
1345 }
1346
1347 out:
1348 mmu_free_memory_cache(&cache);
1349 return ret;
1350 }
1351
1352 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1353 {
1354 kvm_pfn_t pfn = *pfnp;
1355 gfn_t gfn = *ipap >> PAGE_SHIFT;
1356 struct page *page = pfn_to_page(pfn);
1357
1358 /*
1359 * PageTransCompoundMap() returns true for THP and
1360 * hugetlbfs. Make sure the adjustment is done only for THP
1361 * pages.
1362 */
1363 if (!PageHuge(page) && PageTransCompoundMap(page)) {
1364 unsigned long mask;
1365 /*
1366 * The address we faulted on is backed by a transparent huge
1367 * page. However, because we map the compound huge page and
1368 * not the individual tail page, we need to transfer the
1369 * refcount to the head page. We have to be careful that the
1370 * THP doesn't start to split while we are adjusting the
1371 * refcounts.
1372 *
1373 * We are sure this doesn't happen, because mmu_notifier_retry
1374 * was successful and we are holding the mmu_lock, so if this
1375 * THP is trying to split, it will be blocked in the mmu
1376 * notifier before touching any of the pages, specifically
1377 * before being able to call __split_huge_page_refcount().
1378 *
1379 * We can therefore safely transfer the refcount from PG_tail
1380 * to PG_head and switch the pfn from a tail page to the head
1381 * page accordingly.
1382 */
1383 mask = PTRS_PER_PMD - 1;
1384 VM_BUG_ON((gfn & mask) != (pfn & mask));
1385 if (pfn & mask) {
1386 *ipap &= PMD_MASK;
1387 kvm_release_pfn_clean(pfn);
1388 pfn &= ~mask;
1389 kvm_get_pfn(pfn);
1390 *pfnp = pfn;
1391 }
1392
1393 return true;
1394 }
1395
1396 return false;
1397 }
1398
1399 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1400 {
1401 if (kvm_vcpu_trap_is_iabt(vcpu))
1402 return false;
1403
1404 return kvm_vcpu_dabt_iswrite(vcpu);
1405 }
1406
1407 /**
1408 * stage2_wp_ptes - write protect PMD range
1409 * @pmd: pointer to pmd entry
1410 * @addr: range start address
1411 * @end: range end address
1412 */
1413 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1414 {
1415 pte_t *pte;
1416
1417 pte = pte_offset_kernel(pmd, addr);
1418 do {
1419 if (!pte_none(*pte)) {
1420 if (!kvm_s2pte_readonly(pte))
1421 kvm_set_s2pte_readonly(pte);
1422 }
1423 } while (pte++, addr += PAGE_SIZE, addr != end);
1424 }
1425
1426 /**
1427 * stage2_wp_pmds - write protect PUD range
1428 * kvm: kvm instance for the VM
1429 * @pud: pointer to pud entry
1430 * @addr: range start address
1431 * @end: range end address
1432 */
1433 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1434 phys_addr_t addr, phys_addr_t end)
1435 {
1436 pmd_t *pmd;
1437 phys_addr_t next;
1438
1439 pmd = stage2_pmd_offset(kvm, pud, addr);
1440
1441 do {
1442 next = stage2_pmd_addr_end(kvm, addr, end);
1443 if (!pmd_none(*pmd)) {
1444 if (pmd_thp_or_huge(*pmd)) {
1445 if (!kvm_s2pmd_readonly(pmd))
1446 kvm_set_s2pmd_readonly(pmd);
1447 } else {
1448 stage2_wp_ptes(pmd, addr, next);
1449 }
1450 }
1451 } while (pmd++, addr = next, addr != end);
1452 }
1453
1454 /**
1455 * stage2_wp_puds - write protect PGD range
1456 * @pgd: pointer to pgd entry
1457 * @addr: range start address
1458 * @end: range end address
1459 *
1460 * Process PUD entries, for a huge PUD we cause a panic.
1461 */
1462 static void stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1463 phys_addr_t addr, phys_addr_t end)
1464 {
1465 pud_t *pud;
1466 phys_addr_t next;
1467
1468 pud = stage2_pud_offset(kvm, pgd, addr);
1469 do {
1470 next = stage2_pud_addr_end(kvm, addr, end);
1471 if (!stage2_pud_none(kvm, *pud)) {
1472 if (stage2_pud_huge(kvm, *pud)) {
1473 if (!kvm_s2pud_readonly(pud))
1474 kvm_set_s2pud_readonly(pud);
1475 } else {
1476 stage2_wp_pmds(kvm, pud, addr, next);
1477 }
1478 }
1479 } while (pud++, addr = next, addr != end);
1480 }
1481
1482 /**
1483 * stage2_wp_range() - write protect stage2 memory region range
1484 * @kvm: The KVM pointer
1485 * @addr: Start address of range
1486 * @end: End address of range
1487 */
1488 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1489 {
1490 pgd_t *pgd;
1491 phys_addr_t next;
1492
1493 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1494 do {
1495 /*
1496 * Release kvm_mmu_lock periodically if the memory region is
1497 * large. Otherwise, we may see kernel panics with
1498 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1499 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1500 * will also starve other vCPUs. We have to also make sure
1501 * that the page tables are not freed while we released
1502 * the lock.
1503 */
1504 cond_resched_lock(&kvm->mmu_lock);
1505 if (!READ_ONCE(kvm->arch.pgd))
1506 break;
1507 next = stage2_pgd_addr_end(kvm, addr, end);
1508 if (stage2_pgd_present(kvm, *pgd))
1509 stage2_wp_puds(kvm, pgd, addr, next);
1510 } while (pgd++, addr = next, addr != end);
1511 }
1512
1513 /**
1514 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1515 * @kvm: The KVM pointer
1516 * @slot: The memory slot to write protect
1517 *
1518 * Called to start logging dirty pages after memory region
1519 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1520 * all present PUD, PMD and PTEs are write protected in the memory region.
1521 * Afterwards read of dirty page log can be called.
1522 *
1523 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1524 * serializing operations for VM memory regions.
1525 */
1526 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1527 {
1528 struct kvm_memslots *slots = kvm_memslots(kvm);
1529 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1530 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1531 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1532
1533 spin_lock(&kvm->mmu_lock);
1534 stage2_wp_range(kvm, start, end);
1535 spin_unlock(&kvm->mmu_lock);
1536 kvm_flush_remote_tlbs(kvm);
1537 }
1538
1539 /**
1540 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1541 * @kvm: The KVM pointer
1542 * @slot: The memory slot associated with mask
1543 * @gfn_offset: The gfn offset in memory slot
1544 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1545 * slot to be write protected
1546 *
1547 * Walks bits set in mask write protects the associated pte's. Caller must
1548 * acquire kvm_mmu_lock.
1549 */
1550 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1551 struct kvm_memory_slot *slot,
1552 gfn_t gfn_offset, unsigned long mask)
1553 {
1554 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1555 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1556 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1557
1558 stage2_wp_range(kvm, start, end);
1559 }
1560
1561 /*
1562 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1563 * dirty pages.
1564 *
1565 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1566 * enable dirty logging for them.
1567 */
1568 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1569 struct kvm_memory_slot *slot,
1570 gfn_t gfn_offset, unsigned long mask)
1571 {
1572 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1573 }
1574
1575 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1576 {
1577 __clean_dcache_guest_page(pfn, size);
1578 }
1579
1580 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1581 {
1582 __invalidate_icache_guest_page(pfn, size);
1583 }
1584
1585 static void kvm_send_hwpoison_signal(unsigned long address,
1586 struct vm_area_struct *vma)
1587 {
1588 short lsb;
1589
1590 if (is_vm_hugetlb_page(vma))
1591 lsb = huge_page_shift(hstate_vma(vma));
1592 else
1593 lsb = PAGE_SHIFT;
1594
1595 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1596 }
1597
1598 static bool fault_supports_stage2_pmd_mappings(struct kvm_memory_slot *memslot,
1599 unsigned long hva)
1600 {
1601 gpa_t gpa_start, gpa_end;
1602 hva_t uaddr_start, uaddr_end;
1603 size_t size;
1604
1605 size = memslot->npages * PAGE_SIZE;
1606
1607 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1608 gpa_end = gpa_start + size;
1609
1610 uaddr_start = memslot->userspace_addr;
1611 uaddr_end = uaddr_start + size;
1612
1613 /*
1614 * Pages belonging to memslots that don't have the same alignment
1615 * within a PMD for userspace and IPA cannot be mapped with stage-2
1616 * PMD entries, because we'll end up mapping the wrong pages.
1617 *
1618 * Consider a layout like the following:
1619 *
1620 * memslot->userspace_addr:
1621 * +-----+--------------------+--------------------+---+
1622 * |abcde|fgh Stage-1 PMD | Stage-1 PMD tv|xyz|
1623 * +-----+--------------------+--------------------+---+
1624 *
1625 * memslot->base_gfn << PAGE_SIZE:
1626 * +---+--------------------+--------------------+-----+
1627 * |abc|def Stage-2 PMD | Stage-2 PMD |tvxyz|
1628 * +---+--------------------+--------------------+-----+
1629 *
1630 * If we create those stage-2 PMDs, we'll end up with this incorrect
1631 * mapping:
1632 * d -> f
1633 * e -> g
1634 * f -> h
1635 */
1636 if ((gpa_start & ~S2_PMD_MASK) != (uaddr_start & ~S2_PMD_MASK))
1637 return false;
1638
1639 /*
1640 * Next, let's make sure we're not trying to map anything not covered
1641 * by the memslot. This means we have to prohibit PMD size mappings
1642 * for the beginning and end of a non-PMD aligned and non-PMD sized
1643 * memory slot (illustrated by the head and tail parts of the
1644 * userspace view above containing pages 'abcde' and 'xyz',
1645 * respectively).
1646 *
1647 * Note that it doesn't matter if we do the check using the
1648 * userspace_addr or the base_gfn, as both are equally aligned (per
1649 * the check above) and equally sized.
1650 */
1651 return (hva & S2_PMD_MASK) >= uaddr_start &&
1652 (hva & S2_PMD_MASK) + S2_PMD_SIZE <= uaddr_end;
1653 }
1654
1655 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1656 struct kvm_memory_slot *memslot, unsigned long hva,
1657 unsigned long fault_status)
1658 {
1659 int ret;
1660 bool write_fault, writable, force_pte = false;
1661 bool exec_fault, needs_exec;
1662 unsigned long mmu_seq;
1663 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1664 struct kvm *kvm = vcpu->kvm;
1665 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1666 struct vm_area_struct *vma;
1667 kvm_pfn_t pfn;
1668 pgprot_t mem_type = PAGE_S2;
1669 bool logging_active = memslot_is_logging(memslot);
1670 unsigned long vma_pagesize, flags = 0;
1671
1672 write_fault = kvm_is_write_fault(vcpu);
1673 exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1674 VM_BUG_ON(write_fault && exec_fault);
1675
1676 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1677 kvm_err("Unexpected L2 read permission error\n");
1678 return -EFAULT;
1679 }
1680
1681 if (!fault_supports_stage2_pmd_mappings(memslot, hva))
1682 force_pte = true;
1683
1684 if (logging_active)
1685 force_pte = true;
1686
1687 /* Let's check if we will get back a huge page backed by hugetlbfs */
1688 down_read(&current->mm->mmap_sem);
1689 vma = find_vma_intersection(current->mm, hva, hva + 1);
1690 if (unlikely(!vma)) {
1691 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1692 up_read(&current->mm->mmap_sem);
1693 return -EFAULT;
1694 }
1695
1696 vma_pagesize = vma_kernel_pagesize(vma);
1697 /*
1698 * PUD level may not exist for a VM but PMD is guaranteed to
1699 * exist.
1700 */
1701 if ((vma_pagesize == PMD_SIZE ||
1702 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pud(kvm))) &&
1703 !force_pte) {
1704 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1705 }
1706 up_read(&current->mm->mmap_sem);
1707
1708 /* We need minimum second+third level pages */
1709 ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1710 KVM_NR_MEM_OBJS);
1711 if (ret)
1712 return ret;
1713
1714 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1715 /*
1716 * Ensure the read of mmu_notifier_seq happens before we call
1717 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1718 * the page we just got a reference to gets unmapped before we have a
1719 * chance to grab the mmu_lock, which ensure that if the page gets
1720 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1721 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1722 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1723 */
1724 smp_rmb();
1725
1726 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1727 if (pfn == KVM_PFN_ERR_HWPOISON) {
1728 kvm_send_hwpoison_signal(hva, vma);
1729 return 0;
1730 }
1731 if (is_error_noslot_pfn(pfn))
1732 return -EFAULT;
1733
1734 if (kvm_is_device_pfn(pfn)) {
1735 mem_type = PAGE_S2_DEVICE;
1736 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1737 } else if (logging_active) {
1738 /*
1739 * Faults on pages in a memslot with logging enabled
1740 * should not be mapped with huge pages (it introduces churn
1741 * and performance degradation), so force a pte mapping.
1742 */
1743 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1744
1745 /*
1746 * Only actually map the page as writable if this was a write
1747 * fault.
1748 */
1749 if (!write_fault)
1750 writable = false;
1751 }
1752
1753 spin_lock(&kvm->mmu_lock);
1754 if (mmu_notifier_retry(kvm, mmu_seq))
1755 goto out_unlock;
1756
1757 if (vma_pagesize == PAGE_SIZE && !force_pte) {
1758 /*
1759 * Only PMD_SIZE transparent hugepages(THP) are
1760 * currently supported. This code will need to be
1761 * updated to support other THP sizes.
1762 */
1763 if (transparent_hugepage_adjust(&pfn, &fault_ipa))
1764 vma_pagesize = PMD_SIZE;
1765 }
1766
1767 if (writable)
1768 kvm_set_pfn_dirty(pfn);
1769
1770 if (fault_status != FSC_PERM)
1771 clean_dcache_guest_page(pfn, vma_pagesize);
1772
1773 if (exec_fault)
1774 invalidate_icache_guest_page(pfn, vma_pagesize);
1775
1776 /*
1777 * If we took an execution fault we have made the
1778 * icache/dcache coherent above and should now let the s2
1779 * mapping be executable.
1780 *
1781 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1782 * execute permissions, and we preserve whatever we have.
1783 */
1784 needs_exec = exec_fault ||
1785 (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1786
1787 if (vma_pagesize == PUD_SIZE) {
1788 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1789
1790 new_pud = kvm_pud_mkhuge(new_pud);
1791 if (writable)
1792 new_pud = kvm_s2pud_mkwrite(new_pud);
1793
1794 if (needs_exec)
1795 new_pud = kvm_s2pud_mkexec(new_pud);
1796
1797 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1798 } else if (vma_pagesize == PMD_SIZE) {
1799 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1800
1801 new_pmd = kvm_pmd_mkhuge(new_pmd);
1802
1803 if (writable)
1804 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1805
1806 if (needs_exec)
1807 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1808
1809 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1810 } else {
1811 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1812
1813 if (writable) {
1814 new_pte = kvm_s2pte_mkwrite(new_pte);
1815 mark_page_dirty(kvm, gfn);
1816 }
1817
1818 if (needs_exec)
1819 new_pte = kvm_s2pte_mkexec(new_pte);
1820
1821 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1822 }
1823
1824 out_unlock:
1825 spin_unlock(&kvm->mmu_lock);
1826 kvm_set_pfn_accessed(pfn);
1827 kvm_release_pfn_clean(pfn);
1828 return ret;
1829 }
1830
1831 /*
1832 * Resolve the access fault by making the page young again.
1833 * Note that because the faulting entry is guaranteed not to be
1834 * cached in the TLB, we don't need to invalidate anything.
1835 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1836 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1837 */
1838 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1839 {
1840 pud_t *pud;
1841 pmd_t *pmd;
1842 pte_t *pte;
1843 kvm_pfn_t pfn;
1844 bool pfn_valid = false;
1845
1846 trace_kvm_access_fault(fault_ipa);
1847
1848 spin_lock(&vcpu->kvm->mmu_lock);
1849
1850 if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1851 goto out;
1852
1853 if (pud) { /* HugeTLB */
1854 *pud = kvm_s2pud_mkyoung(*pud);
1855 pfn = kvm_pud_pfn(*pud);
1856 pfn_valid = true;
1857 } else if (pmd) { /* THP, HugeTLB */
1858 *pmd = pmd_mkyoung(*pmd);
1859 pfn = pmd_pfn(*pmd);
1860 pfn_valid = true;
1861 } else {
1862 *pte = pte_mkyoung(*pte); /* Just a page... */
1863 pfn = pte_pfn(*pte);
1864 pfn_valid = true;
1865 }
1866
1867 out:
1868 spin_unlock(&vcpu->kvm->mmu_lock);
1869 if (pfn_valid)
1870 kvm_set_pfn_accessed(pfn);
1871 }
1872
1873 /**
1874 * kvm_handle_guest_abort - handles all 2nd stage aborts
1875 * @vcpu: the VCPU pointer
1876 * @run: the kvm_run structure
1877 *
1878 * Any abort that gets to the host is almost guaranteed to be caused by a
1879 * missing second stage translation table entry, which can mean that either the
1880 * guest simply needs more memory and we must allocate an appropriate page or it
1881 * can mean that the guest tried to access I/O memory, which is emulated by user
1882 * space. The distinction is based on the IPA causing the fault and whether this
1883 * memory region has been registered as standard RAM by user space.
1884 */
1885 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1886 {
1887 unsigned long fault_status;
1888 phys_addr_t fault_ipa;
1889 struct kvm_memory_slot *memslot;
1890 unsigned long hva;
1891 bool is_iabt, write_fault, writable;
1892 gfn_t gfn;
1893 int ret, idx;
1894
1895 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1896
1897 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1898 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1899
1900 /* Synchronous External Abort? */
1901 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1902 /*
1903 * For RAS the host kernel may handle this abort.
1904 * There is no need to pass the error into the guest.
1905 */
1906 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1907 return 1;
1908
1909 if (unlikely(!is_iabt)) {
1910 kvm_inject_vabt(vcpu);
1911 return 1;
1912 }
1913 }
1914
1915 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1916 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1917
1918 /* Check the stage-2 fault is trans. fault or write fault */
1919 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1920 fault_status != FSC_ACCESS) {
1921 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1922 kvm_vcpu_trap_get_class(vcpu),
1923 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1924 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1925 return -EFAULT;
1926 }
1927
1928 idx = srcu_read_lock(&vcpu->kvm->srcu);
1929
1930 gfn = fault_ipa >> PAGE_SHIFT;
1931 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1932 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1933 write_fault = kvm_is_write_fault(vcpu);
1934 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1935 if (is_iabt) {
1936 /* Prefetch Abort on I/O address */
1937 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1938 ret = 1;
1939 goto out_unlock;
1940 }
1941
1942 /*
1943 * Check for a cache maintenance operation. Since we
1944 * ended-up here, we know it is outside of any memory
1945 * slot. But we can't find out if that is for a device,
1946 * or if the guest is just being stupid. The only thing
1947 * we know for sure is that this range cannot be cached.
1948 *
1949 * So let's assume that the guest is just being
1950 * cautious, and skip the instruction.
1951 */
1952 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1953 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1954 ret = 1;
1955 goto out_unlock;
1956 }
1957
1958 /*
1959 * The IPA is reported as [MAX:12], so we need to
1960 * complement it with the bottom 12 bits from the
1961 * faulting VA. This is always 12 bits, irrespective
1962 * of the page size.
1963 */
1964 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1965 ret = io_mem_abort(vcpu, run, fault_ipa);
1966 goto out_unlock;
1967 }
1968
1969 /* Userspace should not be able to register out-of-bounds IPAs */
1970 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1971
1972 if (fault_status == FSC_ACCESS) {
1973 handle_access_fault(vcpu, fault_ipa);
1974 ret = 1;
1975 goto out_unlock;
1976 }
1977
1978 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1979 if (ret == 0)
1980 ret = 1;
1981 out_unlock:
1982 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1983 return ret;
1984 }
1985
1986 static int handle_hva_to_gpa(struct kvm *kvm,
1987 unsigned long start,
1988 unsigned long end,
1989 int (*handler)(struct kvm *kvm,
1990 gpa_t gpa, u64 size,
1991 void *data),
1992 void *data)
1993 {
1994 struct kvm_memslots *slots;
1995 struct kvm_memory_slot *memslot;
1996 int ret = 0;
1997
1998 slots = kvm_memslots(kvm);
1999
2000 /* we only care about the pages that the guest sees */
2001 kvm_for_each_memslot(memslot, slots) {
2002 unsigned long hva_start, hva_end;
2003 gfn_t gpa;
2004
2005 hva_start = max(start, memslot->userspace_addr);
2006 hva_end = min(end, memslot->userspace_addr +
2007 (memslot->npages << PAGE_SHIFT));
2008 if (hva_start >= hva_end)
2009 continue;
2010
2011 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2012 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2013 }
2014
2015 return ret;
2016 }
2017
2018 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2019 {
2020 unmap_stage2_range(kvm, gpa, size);
2021 return 0;
2022 }
2023
2024 int kvm_unmap_hva_range(struct kvm *kvm,
2025 unsigned long start, unsigned long end)
2026 {
2027 if (!kvm->arch.pgd)
2028 return 0;
2029
2030 trace_kvm_unmap_hva_range(start, end);
2031 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2032 return 0;
2033 }
2034
2035 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2036 {
2037 pte_t *pte = (pte_t *)data;
2038
2039 WARN_ON(size != PAGE_SIZE);
2040 /*
2041 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2042 * flag clear because MMU notifiers will have unmapped a huge PMD before
2043 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2044 * therefore stage2_set_pte() never needs to clear out a huge PMD
2045 * through this calling path.
2046 */
2047 stage2_set_pte(kvm, NULL, gpa, pte, 0);
2048 return 0;
2049 }
2050
2051
2052 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2053 {
2054 unsigned long end = hva + PAGE_SIZE;
2055 kvm_pfn_t pfn = pte_pfn(pte);
2056 pte_t stage2_pte;
2057
2058 if (!kvm->arch.pgd)
2059 return 0;
2060
2061 trace_kvm_set_spte_hva(hva);
2062
2063 /*
2064 * We've moved a page around, probably through CoW, so let's treat it
2065 * just like a translation fault and clean the cache to the PoC.
2066 */
2067 clean_dcache_guest_page(pfn, PAGE_SIZE);
2068 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2069 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2070
2071 return 0;
2072 }
2073
2074 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2075 {
2076 pud_t *pud;
2077 pmd_t *pmd;
2078 pte_t *pte;
2079
2080 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2081 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2082 return 0;
2083
2084 if (pud)
2085 return stage2_pudp_test_and_clear_young(pud);
2086 else if (pmd)
2087 return stage2_pmdp_test_and_clear_young(pmd);
2088 else
2089 return stage2_ptep_test_and_clear_young(pte);
2090 }
2091
2092 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2093 {
2094 pud_t *pud;
2095 pmd_t *pmd;
2096 pte_t *pte;
2097
2098 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2099 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2100 return 0;
2101
2102 if (pud)
2103 return kvm_s2pud_young(*pud);
2104 else if (pmd)
2105 return pmd_young(*pmd);
2106 else
2107 return pte_young(*pte);
2108 }
2109
2110 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2111 {
2112 if (!kvm->arch.pgd)
2113 return 0;
2114 trace_kvm_age_hva(start, end);
2115 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2116 }
2117
2118 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2119 {
2120 if (!kvm->arch.pgd)
2121 return 0;
2122 trace_kvm_test_age_hva(hva);
2123 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2124 }
2125
2126 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2127 {
2128 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2129 }
2130
2131 phys_addr_t kvm_mmu_get_httbr(void)
2132 {
2133 if (__kvm_cpu_uses_extended_idmap())
2134 return virt_to_phys(merged_hyp_pgd);
2135 else
2136 return virt_to_phys(hyp_pgd);
2137 }
2138
2139 phys_addr_t kvm_get_idmap_vector(void)
2140 {
2141 return hyp_idmap_vector;
2142 }
2143
2144 static int kvm_map_idmap_text(pgd_t *pgd)
2145 {
2146 int err;
2147
2148 /* Create the idmap in the boot page tables */
2149 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2150 hyp_idmap_start, hyp_idmap_end,
2151 __phys_to_pfn(hyp_idmap_start),
2152 PAGE_HYP_EXEC);
2153 if (err)
2154 kvm_err("Failed to idmap %lx-%lx\n",
2155 hyp_idmap_start, hyp_idmap_end);
2156
2157 return err;
2158 }
2159
2160 int kvm_mmu_init(void)
2161 {
2162 int err;
2163
2164 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2165 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2166 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2167 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2168 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2169
2170 /*
2171 * We rely on the linker script to ensure at build time that the HYP
2172 * init code does not cross a page boundary.
2173 */
2174 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2175
2176 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2177 kvm_debug("HYP VA range: %lx:%lx\n",
2178 kern_hyp_va(PAGE_OFFSET),
2179 kern_hyp_va((unsigned long)high_memory - 1));
2180
2181 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2182 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2183 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2184 /*
2185 * The idmap page is intersecting with the VA space,
2186 * it is not safe to continue further.
2187 */
2188 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2189 err = -EINVAL;
2190 goto out;
2191 }
2192
2193 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2194 if (!hyp_pgd) {
2195 kvm_err("Hyp mode PGD not allocated\n");
2196 err = -ENOMEM;
2197 goto out;
2198 }
2199
2200 if (__kvm_cpu_uses_extended_idmap()) {
2201 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2202 hyp_pgd_order);
2203 if (!boot_hyp_pgd) {
2204 kvm_err("Hyp boot PGD not allocated\n");
2205 err = -ENOMEM;
2206 goto out;
2207 }
2208
2209 err = kvm_map_idmap_text(boot_hyp_pgd);
2210 if (err)
2211 goto out;
2212
2213 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2214 if (!merged_hyp_pgd) {
2215 kvm_err("Failed to allocate extra HYP pgd\n");
2216 goto out;
2217 }
2218 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2219 hyp_idmap_start);
2220 } else {
2221 err = kvm_map_idmap_text(hyp_pgd);
2222 if (err)
2223 goto out;
2224 }
2225
2226 io_map_base = hyp_idmap_start;
2227 return 0;
2228 out:
2229 free_hyp_pgds();
2230 return err;
2231 }
2232
2233 void kvm_arch_commit_memory_region(struct kvm *kvm,
2234 const struct kvm_userspace_memory_region *mem,
2235 const struct kvm_memory_slot *old,
2236 const struct kvm_memory_slot *new,
2237 enum kvm_mr_change change)
2238 {
2239 /*
2240 * At this point memslot has been committed and there is an
2241 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2242 * memory slot is write protected.
2243 */
2244 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2245 kvm_mmu_wp_memory_region(kvm, mem->slot);
2246 }
2247
2248 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2249 struct kvm_memory_slot *memslot,
2250 const struct kvm_userspace_memory_region *mem,
2251 enum kvm_mr_change change)
2252 {
2253 hva_t hva = mem->userspace_addr;
2254 hva_t reg_end = hva + mem->memory_size;
2255 bool writable = !(mem->flags & KVM_MEM_READONLY);
2256 int ret = 0;
2257
2258 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2259 change != KVM_MR_FLAGS_ONLY)
2260 return 0;
2261
2262 /*
2263 * Prevent userspace from creating a memory region outside of the IPA
2264 * space addressable by the KVM guest IPA space.
2265 */
2266 if (memslot->base_gfn + memslot->npages >=
2267 (kvm_phys_size(kvm) >> PAGE_SHIFT))
2268 return -EFAULT;
2269
2270 down_read(&current->mm->mmap_sem);
2271 /*
2272 * A memory region could potentially cover multiple VMAs, and any holes
2273 * between them, so iterate over all of them to find out if we can map
2274 * any of them right now.
2275 *
2276 * +--------------------------------------------+
2277 * +---------------+----------------+ +----------------+
2278 * | : VMA 1 | VMA 2 | | VMA 3 : |
2279 * +---------------+----------------+ +----------------+
2280 * | memory region |
2281 * +--------------------------------------------+
2282 */
2283 do {
2284 struct vm_area_struct *vma = find_vma(current->mm, hva);
2285 hva_t vm_start, vm_end;
2286
2287 if (!vma || vma->vm_start >= reg_end)
2288 break;
2289
2290 /*
2291 * Mapping a read-only VMA is only allowed if the
2292 * memory region is configured as read-only.
2293 */
2294 if (writable && !(vma->vm_flags & VM_WRITE)) {
2295 ret = -EPERM;
2296 break;
2297 }
2298
2299 /*
2300 * Take the intersection of this VMA with the memory region
2301 */
2302 vm_start = max(hva, vma->vm_start);
2303 vm_end = min(reg_end, vma->vm_end);
2304
2305 if (vma->vm_flags & VM_PFNMAP) {
2306 gpa_t gpa = mem->guest_phys_addr +
2307 (vm_start - mem->userspace_addr);
2308 phys_addr_t pa;
2309
2310 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2311 pa += vm_start - vma->vm_start;
2312
2313 /* IO region dirty page logging not allowed */
2314 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2315 ret = -EINVAL;
2316 goto out;
2317 }
2318
2319 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2320 vm_end - vm_start,
2321 writable);
2322 if (ret)
2323 break;
2324 }
2325 hva = vm_end;
2326 } while (hva < reg_end);
2327
2328 if (change == KVM_MR_FLAGS_ONLY)
2329 goto out;
2330
2331 spin_lock(&kvm->mmu_lock);
2332 if (ret)
2333 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2334 else
2335 stage2_flush_memslot(kvm, memslot);
2336 spin_unlock(&kvm->mmu_lock);
2337 out:
2338 up_read(&current->mm->mmap_sem);
2339 return ret;
2340 }
2341
2342 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2343 struct kvm_memory_slot *dont)
2344 {
2345 }
2346
2347 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2348 unsigned long npages)
2349 {
2350 return 0;
2351 }
2352
2353 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2354 {
2355 }
2356
2357 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2358 {
2359 kvm_free_stage2_pgd(kvm);
2360 }
2361
2362 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2363 struct kvm_memory_slot *slot)
2364 {
2365 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2366 phys_addr_t size = slot->npages << PAGE_SHIFT;
2367
2368 spin_lock(&kvm->mmu_lock);
2369 unmap_stage2_range(kvm, gpa, size);
2370 spin_unlock(&kvm->mmu_lock);
2371 }
2372
2373 /*
2374 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2375 *
2376 * Main problems:
2377 * - S/W ops are local to a CPU (not broadcast)
2378 * - We have line migration behind our back (speculation)
2379 * - System caches don't support S/W at all (damn!)
2380 *
2381 * In the face of the above, the best we can do is to try and convert
2382 * S/W ops to VA ops. Because the guest is not allowed to infer the
2383 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2384 * which is a rather good thing for us.
2385 *
2386 * Also, it is only used when turning caches on/off ("The expected
2387 * usage of the cache maintenance instructions that operate by set/way
2388 * is associated with the cache maintenance instructions associated
2389 * with the powerdown and powerup of caches, if this is required by
2390 * the implementation.").
2391 *
2392 * We use the following policy:
2393 *
2394 * - If we trap a S/W operation, we enable VM trapping to detect
2395 * caches being turned on/off, and do a full clean.
2396 *
2397 * - We flush the caches on both caches being turned on and off.
2398 *
2399 * - Once the caches are enabled, we stop trapping VM ops.
2400 */
2401 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2402 {
2403 unsigned long hcr = *vcpu_hcr(vcpu);
2404
2405 /*
2406 * If this is the first time we do a S/W operation
2407 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2408 * VM trapping.
2409 *
2410 * Otherwise, rely on the VM trapping to wait for the MMU +
2411 * Caches to be turned off. At that point, we'll be able to
2412 * clean the caches again.
2413 */
2414 if (!(hcr & HCR_TVM)) {
2415 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2416 vcpu_has_cache_enabled(vcpu));
2417 stage2_flush_vm(vcpu->kvm);
2418 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2419 }
2420 }
2421
2422 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2423 {
2424 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2425
2426 /*
2427 * If switching the MMU+caches on, need to invalidate the caches.
2428 * If switching it off, need to clean the caches.
2429 * Clean + invalidate does the trick always.
2430 */
2431 if (now_enabled != was_enabled)
2432 stage2_flush_vm(vcpu->kvm);
2433
2434 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2435 if (now_enabled)
2436 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2437
2438 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2439 }