]> git.proxmox.com Git - qemu.git/blob - vl.c
qdev/usb: add usb bus support to qdev, convert drivers.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
113
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 return qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
178
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 /***********************************************************/
275 /* x86 ISA bus support */
276
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
279
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
282 {
283 va_list ap;
284 CPUState *env;
285
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
297 }
298 va_end(ap);
299 abort();
300 }
301
302 static void set_proc_name(const char *s)
303 {
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
314 }
315
316 /***************/
317 /* ballooning */
318
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
321
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 {
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
326 }
327
328 void qemu_balloon(ram_addr_t target)
329 {
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
332 }
333
334 ram_addr_t qemu_balloon_status(void)
335 {
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
339 }
340
341 /***********************************************************/
342 /* keyboard/mouse */
343
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 {
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
353 }
354
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
358 {
359 QEMUPutMouseEntry *s, *cursor;
360
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
368
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
372 }
373
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
377
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
380
381 return s;
382 }
383
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 {
386 QEMUPutMouseEntry *prev = NULL, *cursor;
387
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
390
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
395 }
396
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
406 }
407
408 prev->next = entry->next;
409
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
412
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
415 }
416
417 void kbd_put_keycode(int keycode)
418 {
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
421 }
422 }
423
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 {
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
429
430 if (!qemu_put_mouse_event_current) {
431 return;
432 }
433
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
450 }
451 }
452
453 int kbd_mouse_is_absolute(void)
454 {
455 if (!qemu_put_mouse_event_current)
456 return 0;
457
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
459 }
460
461 void do_info_mice(Monitor *mon)
462 {
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
465
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
469 }
470
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
479 }
480 }
481
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
483 {
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
487
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
491 }
492
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
497 }
498
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
503 }
504
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
507 {
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
519
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
527 }
528
529 /***********************************************************/
530 /* real time host monotonic timer */
531
532 #define QEMU_TIMER_BASE 1000000000LL
533
534 #ifdef WIN32
535
536 static int64_t clock_freq;
537
538 static void init_get_clock(void)
539 {
540 LARGE_INTEGER freq;
541 int ret;
542 ret = QueryPerformanceFrequency(&freq);
543 if (ret == 0) {
544 fprintf(stderr, "Could not calibrate ticks\n");
545 exit(1);
546 }
547 clock_freq = freq.QuadPart;
548 }
549
550 static int64_t get_clock(void)
551 {
552 LARGE_INTEGER ti;
553 QueryPerformanceCounter(&ti);
554 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
555 }
556
557 #else
558
559 static int use_rt_clock;
560
561 static void init_get_clock(void)
562 {
563 use_rt_clock = 0;
564 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
565 || defined(__DragonFly__)
566 {
567 struct timespec ts;
568 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
569 use_rt_clock = 1;
570 }
571 }
572 #endif
573 }
574
575 static int64_t get_clock(void)
576 {
577 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
578 || defined(__DragonFly__)
579 if (use_rt_clock) {
580 struct timespec ts;
581 clock_gettime(CLOCK_MONOTONIC, &ts);
582 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
583 } else
584 #endif
585 {
586 /* XXX: using gettimeofday leads to problems if the date
587 changes, so it should be avoided. */
588 struct timeval tv;
589 gettimeofday(&tv, NULL);
590 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
591 }
592 }
593 #endif
594
595 /* Return the virtual CPU time, based on the instruction counter. */
596 static int64_t cpu_get_icount(void)
597 {
598 int64_t icount;
599 CPUState *env = cpu_single_env;;
600 icount = qemu_icount;
601 if (env) {
602 if (!can_do_io(env))
603 fprintf(stderr, "Bad clock read\n");
604 icount -= (env->icount_decr.u16.low + env->icount_extra);
605 }
606 return qemu_icount_bias + (icount << icount_time_shift);
607 }
608
609 /***********************************************************/
610 /* guest cycle counter */
611
612 static int64_t cpu_ticks_prev;
613 static int64_t cpu_ticks_offset;
614 static int64_t cpu_clock_offset;
615 static int cpu_ticks_enabled;
616
617 /* return the host CPU cycle counter and handle stop/restart */
618 int64_t cpu_get_ticks(void)
619 {
620 if (use_icount) {
621 return cpu_get_icount();
622 }
623 if (!cpu_ticks_enabled) {
624 return cpu_ticks_offset;
625 } else {
626 int64_t ticks;
627 ticks = cpu_get_real_ticks();
628 if (cpu_ticks_prev > ticks) {
629 /* Note: non increasing ticks may happen if the host uses
630 software suspend */
631 cpu_ticks_offset += cpu_ticks_prev - ticks;
632 }
633 cpu_ticks_prev = ticks;
634 return ticks + cpu_ticks_offset;
635 }
636 }
637
638 /* return the host CPU monotonic timer and handle stop/restart */
639 static int64_t cpu_get_clock(void)
640 {
641 int64_t ti;
642 if (!cpu_ticks_enabled) {
643 return cpu_clock_offset;
644 } else {
645 ti = get_clock();
646 return ti + cpu_clock_offset;
647 }
648 }
649
650 /* enable cpu_get_ticks() */
651 void cpu_enable_ticks(void)
652 {
653 if (!cpu_ticks_enabled) {
654 cpu_ticks_offset -= cpu_get_real_ticks();
655 cpu_clock_offset -= get_clock();
656 cpu_ticks_enabled = 1;
657 }
658 }
659
660 /* disable cpu_get_ticks() : the clock is stopped. You must not call
661 cpu_get_ticks() after that. */
662 void cpu_disable_ticks(void)
663 {
664 if (cpu_ticks_enabled) {
665 cpu_ticks_offset = cpu_get_ticks();
666 cpu_clock_offset = cpu_get_clock();
667 cpu_ticks_enabled = 0;
668 }
669 }
670
671 /***********************************************************/
672 /* timers */
673
674 #define QEMU_TIMER_REALTIME 0
675 #define QEMU_TIMER_VIRTUAL 1
676
677 struct QEMUClock {
678 int type;
679 /* XXX: add frequency */
680 };
681
682 struct QEMUTimer {
683 QEMUClock *clock;
684 int64_t expire_time;
685 QEMUTimerCB *cb;
686 void *opaque;
687 struct QEMUTimer *next;
688 };
689
690 struct qemu_alarm_timer {
691 char const *name;
692 unsigned int flags;
693
694 int (*start)(struct qemu_alarm_timer *t);
695 void (*stop)(struct qemu_alarm_timer *t);
696 void (*rearm)(struct qemu_alarm_timer *t);
697 void *priv;
698 };
699
700 #define ALARM_FLAG_DYNTICKS 0x1
701 #define ALARM_FLAG_EXPIRED 0x2
702
703 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
704 {
705 return t && (t->flags & ALARM_FLAG_DYNTICKS);
706 }
707
708 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
709 {
710 if (!alarm_has_dynticks(t))
711 return;
712
713 t->rearm(t);
714 }
715
716 /* TODO: MIN_TIMER_REARM_US should be optimized */
717 #define MIN_TIMER_REARM_US 250
718
719 static struct qemu_alarm_timer *alarm_timer;
720
721 #ifdef _WIN32
722
723 struct qemu_alarm_win32 {
724 MMRESULT timerId;
725 unsigned int period;
726 } alarm_win32_data = {0, -1};
727
728 static int win32_start_timer(struct qemu_alarm_timer *t);
729 static void win32_stop_timer(struct qemu_alarm_timer *t);
730 static void win32_rearm_timer(struct qemu_alarm_timer *t);
731
732 #else
733
734 static int unix_start_timer(struct qemu_alarm_timer *t);
735 static void unix_stop_timer(struct qemu_alarm_timer *t);
736
737 #ifdef __linux__
738
739 static int dynticks_start_timer(struct qemu_alarm_timer *t);
740 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
741 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
742
743 static int hpet_start_timer(struct qemu_alarm_timer *t);
744 static void hpet_stop_timer(struct qemu_alarm_timer *t);
745
746 static int rtc_start_timer(struct qemu_alarm_timer *t);
747 static void rtc_stop_timer(struct qemu_alarm_timer *t);
748
749 #endif /* __linux__ */
750
751 #endif /* _WIN32 */
752
753 /* Correlation between real and virtual time is always going to be
754 fairly approximate, so ignore small variation.
755 When the guest is idle real and virtual time will be aligned in
756 the IO wait loop. */
757 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
758
759 static void icount_adjust(void)
760 {
761 int64_t cur_time;
762 int64_t cur_icount;
763 int64_t delta;
764 static int64_t last_delta;
765 /* If the VM is not running, then do nothing. */
766 if (!vm_running)
767 return;
768
769 cur_time = cpu_get_clock();
770 cur_icount = qemu_get_clock(vm_clock);
771 delta = cur_icount - cur_time;
772 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 if (delta > 0
774 && last_delta + ICOUNT_WOBBLE < delta * 2
775 && icount_time_shift > 0) {
776 /* The guest is getting too far ahead. Slow time down. */
777 icount_time_shift--;
778 }
779 if (delta < 0
780 && last_delta - ICOUNT_WOBBLE > delta * 2
781 && icount_time_shift < MAX_ICOUNT_SHIFT) {
782 /* The guest is getting too far behind. Speed time up. */
783 icount_time_shift++;
784 }
785 last_delta = delta;
786 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
787 }
788
789 static void icount_adjust_rt(void * opaque)
790 {
791 qemu_mod_timer(icount_rt_timer,
792 qemu_get_clock(rt_clock) + 1000);
793 icount_adjust();
794 }
795
796 static void icount_adjust_vm(void * opaque)
797 {
798 qemu_mod_timer(icount_vm_timer,
799 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
800 icount_adjust();
801 }
802
803 static void init_icount_adjust(void)
804 {
805 /* Have both realtime and virtual time triggers for speed adjustment.
806 The realtime trigger catches emulated time passing too slowly,
807 the virtual time trigger catches emulated time passing too fast.
808 Realtime triggers occur even when idle, so use them less frequently
809 than VM triggers. */
810 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
811 qemu_mod_timer(icount_rt_timer,
812 qemu_get_clock(rt_clock) + 1000);
813 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
814 qemu_mod_timer(icount_vm_timer,
815 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
816 }
817
818 static struct qemu_alarm_timer alarm_timers[] = {
819 #ifndef _WIN32
820 #ifdef __linux__
821 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
822 dynticks_stop_timer, dynticks_rearm_timer, NULL},
823 /* HPET - if available - is preferred */
824 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
825 /* ...otherwise try RTC */
826 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
827 #endif
828 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
829 #else
830 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
831 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
832 {"win32", 0, win32_start_timer,
833 win32_stop_timer, NULL, &alarm_win32_data},
834 #endif
835 {NULL, }
836 };
837
838 static void show_available_alarms(void)
839 {
840 int i;
841
842 printf("Available alarm timers, in order of precedence:\n");
843 for (i = 0; alarm_timers[i].name; i++)
844 printf("%s\n", alarm_timers[i].name);
845 }
846
847 static void configure_alarms(char const *opt)
848 {
849 int i;
850 int cur = 0;
851 int count = ARRAY_SIZE(alarm_timers) - 1;
852 char *arg;
853 char *name;
854 struct qemu_alarm_timer tmp;
855
856 if (!strcmp(opt, "?")) {
857 show_available_alarms();
858 exit(0);
859 }
860
861 arg = strdup(opt);
862
863 /* Reorder the array */
864 name = strtok(arg, ",");
865 while (name) {
866 for (i = 0; i < count && alarm_timers[i].name; i++) {
867 if (!strcmp(alarm_timers[i].name, name))
868 break;
869 }
870
871 if (i == count) {
872 fprintf(stderr, "Unknown clock %s\n", name);
873 goto next;
874 }
875
876 if (i < cur)
877 /* Ignore */
878 goto next;
879
880 /* Swap */
881 tmp = alarm_timers[i];
882 alarm_timers[i] = alarm_timers[cur];
883 alarm_timers[cur] = tmp;
884
885 cur++;
886 next:
887 name = strtok(NULL, ",");
888 }
889
890 free(arg);
891
892 if (cur) {
893 /* Disable remaining timers */
894 for (i = cur; i < count; i++)
895 alarm_timers[i].name = NULL;
896 } else {
897 show_available_alarms();
898 exit(1);
899 }
900 }
901
902 QEMUClock *rt_clock;
903 QEMUClock *vm_clock;
904
905 static QEMUTimer *active_timers[2];
906
907 static QEMUClock *qemu_new_clock(int type)
908 {
909 QEMUClock *clock;
910 clock = qemu_mallocz(sizeof(QEMUClock));
911 clock->type = type;
912 return clock;
913 }
914
915 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
916 {
917 QEMUTimer *ts;
918
919 ts = qemu_mallocz(sizeof(QEMUTimer));
920 ts->clock = clock;
921 ts->cb = cb;
922 ts->opaque = opaque;
923 return ts;
924 }
925
926 void qemu_free_timer(QEMUTimer *ts)
927 {
928 qemu_free(ts);
929 }
930
931 /* stop a timer, but do not dealloc it */
932 void qemu_del_timer(QEMUTimer *ts)
933 {
934 QEMUTimer **pt, *t;
935
936 /* NOTE: this code must be signal safe because
937 qemu_timer_expired() can be called from a signal. */
938 pt = &active_timers[ts->clock->type];
939 for(;;) {
940 t = *pt;
941 if (!t)
942 break;
943 if (t == ts) {
944 *pt = t->next;
945 break;
946 }
947 pt = &t->next;
948 }
949 }
950
951 /* modify the current timer so that it will be fired when current_time
952 >= expire_time. The corresponding callback will be called. */
953 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
954 {
955 QEMUTimer **pt, *t;
956
957 qemu_del_timer(ts);
958
959 /* add the timer in the sorted list */
960 /* NOTE: this code must be signal safe because
961 qemu_timer_expired() can be called from a signal. */
962 pt = &active_timers[ts->clock->type];
963 for(;;) {
964 t = *pt;
965 if (!t)
966 break;
967 if (t->expire_time > expire_time)
968 break;
969 pt = &t->next;
970 }
971 ts->expire_time = expire_time;
972 ts->next = *pt;
973 *pt = ts;
974
975 /* Rearm if necessary */
976 if (pt == &active_timers[ts->clock->type]) {
977 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
978 qemu_rearm_alarm_timer(alarm_timer);
979 }
980 /* Interrupt execution to force deadline recalculation. */
981 if (use_icount)
982 qemu_notify_event();
983 }
984 }
985
986 int qemu_timer_pending(QEMUTimer *ts)
987 {
988 QEMUTimer *t;
989 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
990 if (t == ts)
991 return 1;
992 }
993 return 0;
994 }
995
996 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
997 {
998 if (!timer_head)
999 return 0;
1000 return (timer_head->expire_time <= current_time);
1001 }
1002
1003 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1004 {
1005 QEMUTimer *ts;
1006
1007 for(;;) {
1008 ts = *ptimer_head;
1009 if (!ts || ts->expire_time > current_time)
1010 break;
1011 /* remove timer from the list before calling the callback */
1012 *ptimer_head = ts->next;
1013 ts->next = NULL;
1014
1015 /* run the callback (the timer list can be modified) */
1016 ts->cb(ts->opaque);
1017 }
1018 }
1019
1020 int64_t qemu_get_clock(QEMUClock *clock)
1021 {
1022 switch(clock->type) {
1023 case QEMU_TIMER_REALTIME:
1024 return get_clock() / 1000000;
1025 default:
1026 case QEMU_TIMER_VIRTUAL:
1027 if (use_icount) {
1028 return cpu_get_icount();
1029 } else {
1030 return cpu_get_clock();
1031 }
1032 }
1033 }
1034
1035 static void init_timers(void)
1036 {
1037 init_get_clock();
1038 ticks_per_sec = QEMU_TIMER_BASE;
1039 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1040 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1041 }
1042
1043 /* save a timer */
1044 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1045 {
1046 uint64_t expire_time;
1047
1048 if (qemu_timer_pending(ts)) {
1049 expire_time = ts->expire_time;
1050 } else {
1051 expire_time = -1;
1052 }
1053 qemu_put_be64(f, expire_time);
1054 }
1055
1056 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1057 {
1058 uint64_t expire_time;
1059
1060 expire_time = qemu_get_be64(f);
1061 if (expire_time != -1) {
1062 qemu_mod_timer(ts, expire_time);
1063 } else {
1064 qemu_del_timer(ts);
1065 }
1066 }
1067
1068 static void timer_save(QEMUFile *f, void *opaque)
1069 {
1070 if (cpu_ticks_enabled) {
1071 hw_error("cannot save state if virtual timers are running");
1072 }
1073 qemu_put_be64(f, cpu_ticks_offset);
1074 qemu_put_be64(f, ticks_per_sec);
1075 qemu_put_be64(f, cpu_clock_offset);
1076 }
1077
1078 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1079 {
1080 if (version_id != 1 && version_id != 2)
1081 return -EINVAL;
1082 if (cpu_ticks_enabled) {
1083 return -EINVAL;
1084 }
1085 cpu_ticks_offset=qemu_get_be64(f);
1086 ticks_per_sec=qemu_get_be64(f);
1087 if (version_id == 2) {
1088 cpu_clock_offset=qemu_get_be64(f);
1089 }
1090 return 0;
1091 }
1092
1093 static void qemu_event_increment(void);
1094
1095 #ifdef _WIN32
1096 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1097 DWORD_PTR dwUser, DWORD_PTR dw1,
1098 DWORD_PTR dw2)
1099 #else
1100 static void host_alarm_handler(int host_signum)
1101 #endif
1102 {
1103 #if 0
1104 #define DISP_FREQ 1000
1105 {
1106 static int64_t delta_min = INT64_MAX;
1107 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1108 static int count;
1109 ti = qemu_get_clock(vm_clock);
1110 if (last_clock != 0) {
1111 delta = ti - last_clock;
1112 if (delta < delta_min)
1113 delta_min = delta;
1114 if (delta > delta_max)
1115 delta_max = delta;
1116 delta_cum += delta;
1117 if (++count == DISP_FREQ) {
1118 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1119 muldiv64(delta_min, 1000000, ticks_per_sec),
1120 muldiv64(delta_max, 1000000, ticks_per_sec),
1121 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1122 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1123 count = 0;
1124 delta_min = INT64_MAX;
1125 delta_max = 0;
1126 delta_cum = 0;
1127 }
1128 }
1129 last_clock = ti;
1130 }
1131 #endif
1132 if (alarm_has_dynticks(alarm_timer) ||
1133 (!use_icount &&
1134 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1135 qemu_get_clock(vm_clock))) ||
1136 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1137 qemu_get_clock(rt_clock))) {
1138 qemu_event_increment();
1139 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1140
1141 #ifndef CONFIG_IOTHREAD
1142 if (next_cpu) {
1143 /* stop the currently executing cpu because a timer occured */
1144 cpu_exit(next_cpu);
1145 }
1146 #endif
1147 timer_alarm_pending = 1;
1148 qemu_notify_event();
1149 }
1150 }
1151
1152 static int64_t qemu_next_deadline(void)
1153 {
1154 int64_t delta;
1155
1156 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1157 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1158 qemu_get_clock(vm_clock);
1159 } else {
1160 /* To avoid problems with overflow limit this to 2^32. */
1161 delta = INT32_MAX;
1162 }
1163
1164 if (delta < 0)
1165 delta = 0;
1166
1167 return delta;
1168 }
1169
1170 #if defined(__linux__) || defined(_WIN32)
1171 static uint64_t qemu_next_deadline_dyntick(void)
1172 {
1173 int64_t delta;
1174 int64_t rtdelta;
1175
1176 if (use_icount)
1177 delta = INT32_MAX;
1178 else
1179 delta = (qemu_next_deadline() + 999) / 1000;
1180
1181 if (active_timers[QEMU_TIMER_REALTIME]) {
1182 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1183 qemu_get_clock(rt_clock))*1000;
1184 if (rtdelta < delta)
1185 delta = rtdelta;
1186 }
1187
1188 if (delta < MIN_TIMER_REARM_US)
1189 delta = MIN_TIMER_REARM_US;
1190
1191 return delta;
1192 }
1193 #endif
1194
1195 #ifndef _WIN32
1196
1197 /* Sets a specific flag */
1198 static int fcntl_setfl(int fd, int flag)
1199 {
1200 int flags;
1201
1202 flags = fcntl(fd, F_GETFL);
1203 if (flags == -1)
1204 return -errno;
1205
1206 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1207 return -errno;
1208
1209 return 0;
1210 }
1211
1212 #if defined(__linux__)
1213
1214 #define RTC_FREQ 1024
1215
1216 static void enable_sigio_timer(int fd)
1217 {
1218 struct sigaction act;
1219
1220 /* timer signal */
1221 sigfillset(&act.sa_mask);
1222 act.sa_flags = 0;
1223 act.sa_handler = host_alarm_handler;
1224
1225 sigaction(SIGIO, &act, NULL);
1226 fcntl_setfl(fd, O_ASYNC);
1227 fcntl(fd, F_SETOWN, getpid());
1228 }
1229
1230 static int hpet_start_timer(struct qemu_alarm_timer *t)
1231 {
1232 struct hpet_info info;
1233 int r, fd;
1234
1235 fd = open("/dev/hpet", O_RDONLY);
1236 if (fd < 0)
1237 return -1;
1238
1239 /* Set frequency */
1240 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1241 if (r < 0) {
1242 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1243 "error, but for better emulation accuracy type:\n"
1244 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1245 goto fail;
1246 }
1247
1248 /* Check capabilities */
1249 r = ioctl(fd, HPET_INFO, &info);
1250 if (r < 0)
1251 goto fail;
1252
1253 /* Enable periodic mode */
1254 r = ioctl(fd, HPET_EPI, 0);
1255 if (info.hi_flags && (r < 0))
1256 goto fail;
1257
1258 /* Enable interrupt */
1259 r = ioctl(fd, HPET_IE_ON, 0);
1260 if (r < 0)
1261 goto fail;
1262
1263 enable_sigio_timer(fd);
1264 t->priv = (void *)(long)fd;
1265
1266 return 0;
1267 fail:
1268 close(fd);
1269 return -1;
1270 }
1271
1272 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1273 {
1274 int fd = (long)t->priv;
1275
1276 close(fd);
1277 }
1278
1279 static int rtc_start_timer(struct qemu_alarm_timer *t)
1280 {
1281 int rtc_fd;
1282 unsigned long current_rtc_freq = 0;
1283
1284 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1285 if (rtc_fd < 0)
1286 return -1;
1287 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1288 if (current_rtc_freq != RTC_FREQ &&
1289 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1290 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1291 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1292 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1293 goto fail;
1294 }
1295 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1296 fail:
1297 close(rtc_fd);
1298 return -1;
1299 }
1300
1301 enable_sigio_timer(rtc_fd);
1302
1303 t->priv = (void *)(long)rtc_fd;
1304
1305 return 0;
1306 }
1307
1308 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1309 {
1310 int rtc_fd = (long)t->priv;
1311
1312 close(rtc_fd);
1313 }
1314
1315 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1316 {
1317 struct sigevent ev;
1318 timer_t host_timer;
1319 struct sigaction act;
1320
1321 sigfillset(&act.sa_mask);
1322 act.sa_flags = 0;
1323 act.sa_handler = host_alarm_handler;
1324
1325 sigaction(SIGALRM, &act, NULL);
1326
1327 /*
1328 * Initialize ev struct to 0 to avoid valgrind complaining
1329 * about uninitialized data in timer_create call
1330 */
1331 memset(&ev, 0, sizeof(ev));
1332 ev.sigev_value.sival_int = 0;
1333 ev.sigev_notify = SIGEV_SIGNAL;
1334 ev.sigev_signo = SIGALRM;
1335
1336 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1337 perror("timer_create");
1338
1339 /* disable dynticks */
1340 fprintf(stderr, "Dynamic Ticks disabled\n");
1341
1342 return -1;
1343 }
1344
1345 t->priv = (void *)(long)host_timer;
1346
1347 return 0;
1348 }
1349
1350 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1351 {
1352 timer_t host_timer = (timer_t)(long)t->priv;
1353
1354 timer_delete(host_timer);
1355 }
1356
1357 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1358 {
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360 struct itimerspec timeout;
1361 int64_t nearest_delta_us = INT64_MAX;
1362 int64_t current_us;
1363
1364 if (!active_timers[QEMU_TIMER_REALTIME] &&
1365 !active_timers[QEMU_TIMER_VIRTUAL])
1366 return;
1367
1368 nearest_delta_us = qemu_next_deadline_dyntick();
1369
1370 /* check whether a timer is already running */
1371 if (timer_gettime(host_timer, &timeout)) {
1372 perror("gettime");
1373 fprintf(stderr, "Internal timer error: aborting\n");
1374 exit(1);
1375 }
1376 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1377 if (current_us && current_us <= nearest_delta_us)
1378 return;
1379
1380 timeout.it_interval.tv_sec = 0;
1381 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1382 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1383 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1384 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1385 perror("settime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1388 }
1389 }
1390
1391 #endif /* defined(__linux__) */
1392
1393 static int unix_start_timer(struct qemu_alarm_timer *t)
1394 {
1395 struct sigaction act;
1396 struct itimerval itv;
1397 int err;
1398
1399 /* timer signal */
1400 sigfillset(&act.sa_mask);
1401 act.sa_flags = 0;
1402 act.sa_handler = host_alarm_handler;
1403
1404 sigaction(SIGALRM, &act, NULL);
1405
1406 itv.it_interval.tv_sec = 0;
1407 /* for i386 kernel 2.6 to get 1 ms */
1408 itv.it_interval.tv_usec = 999;
1409 itv.it_value.tv_sec = 0;
1410 itv.it_value.tv_usec = 10 * 1000;
1411
1412 err = setitimer(ITIMER_REAL, &itv, NULL);
1413 if (err)
1414 return -1;
1415
1416 return 0;
1417 }
1418
1419 static void unix_stop_timer(struct qemu_alarm_timer *t)
1420 {
1421 struct itimerval itv;
1422
1423 memset(&itv, 0, sizeof(itv));
1424 setitimer(ITIMER_REAL, &itv, NULL);
1425 }
1426
1427 #endif /* !defined(_WIN32) */
1428
1429
1430 #ifdef _WIN32
1431
1432 static int win32_start_timer(struct qemu_alarm_timer *t)
1433 {
1434 TIMECAPS tc;
1435 struct qemu_alarm_win32 *data = t->priv;
1436 UINT flags;
1437
1438 memset(&tc, 0, sizeof(tc));
1439 timeGetDevCaps(&tc, sizeof(tc));
1440
1441 if (data->period < tc.wPeriodMin)
1442 data->period = tc.wPeriodMin;
1443
1444 timeBeginPeriod(data->period);
1445
1446 flags = TIME_CALLBACK_FUNCTION;
1447 if (alarm_has_dynticks(t))
1448 flags |= TIME_ONESHOT;
1449 else
1450 flags |= TIME_PERIODIC;
1451
1452 data->timerId = timeSetEvent(1, // interval (ms)
1453 data->period, // resolution
1454 host_alarm_handler, // function
1455 (DWORD)t, // parameter
1456 flags);
1457
1458 if (!data->timerId) {
1459 perror("Failed to initialize win32 alarm timer");
1460 timeEndPeriod(data->period);
1461 return -1;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static void win32_stop_timer(struct qemu_alarm_timer *t)
1468 {
1469 struct qemu_alarm_win32 *data = t->priv;
1470
1471 timeKillEvent(data->timerId);
1472 timeEndPeriod(data->period);
1473 }
1474
1475 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1476 {
1477 struct qemu_alarm_win32 *data = t->priv;
1478 uint64_t nearest_delta_us;
1479
1480 if (!active_timers[QEMU_TIMER_REALTIME] &&
1481 !active_timers[QEMU_TIMER_VIRTUAL])
1482 return;
1483
1484 nearest_delta_us = qemu_next_deadline_dyntick();
1485 nearest_delta_us /= 1000;
1486
1487 timeKillEvent(data->timerId);
1488
1489 data->timerId = timeSetEvent(1,
1490 data->period,
1491 host_alarm_handler,
1492 (DWORD)t,
1493 TIME_ONESHOT | TIME_PERIODIC);
1494
1495 if (!data->timerId) {
1496 perror("Failed to re-arm win32 alarm timer");
1497
1498 timeEndPeriod(data->period);
1499 exit(1);
1500 }
1501 }
1502
1503 #endif /* _WIN32 */
1504
1505 static int init_timer_alarm(void)
1506 {
1507 struct qemu_alarm_timer *t = NULL;
1508 int i, err = -1;
1509
1510 for (i = 0; alarm_timers[i].name; i++) {
1511 t = &alarm_timers[i];
1512
1513 err = t->start(t);
1514 if (!err)
1515 break;
1516 }
1517
1518 if (err) {
1519 err = -ENOENT;
1520 goto fail;
1521 }
1522
1523 alarm_timer = t;
1524
1525 return 0;
1526
1527 fail:
1528 return err;
1529 }
1530
1531 static void quit_timers(void)
1532 {
1533 alarm_timer->stop(alarm_timer);
1534 alarm_timer = NULL;
1535 }
1536
1537 /***********************************************************/
1538 /* host time/date access */
1539 void qemu_get_timedate(struct tm *tm, int offset)
1540 {
1541 time_t ti;
1542 struct tm *ret;
1543
1544 time(&ti);
1545 ti += offset;
1546 if (rtc_date_offset == -1) {
1547 if (rtc_utc)
1548 ret = gmtime(&ti);
1549 else
1550 ret = localtime(&ti);
1551 } else {
1552 ti -= rtc_date_offset;
1553 ret = gmtime(&ti);
1554 }
1555
1556 memcpy(tm, ret, sizeof(struct tm));
1557 }
1558
1559 int qemu_timedate_diff(struct tm *tm)
1560 {
1561 time_t seconds;
1562
1563 if (rtc_date_offset == -1)
1564 if (rtc_utc)
1565 seconds = mktimegm(tm);
1566 else
1567 seconds = mktime(tm);
1568 else
1569 seconds = mktimegm(tm) + rtc_date_offset;
1570
1571 return seconds - time(NULL);
1572 }
1573
1574 #ifdef _WIN32
1575 static void socket_cleanup(void)
1576 {
1577 WSACleanup();
1578 }
1579
1580 static int socket_init(void)
1581 {
1582 WSADATA Data;
1583 int ret, err;
1584
1585 ret = WSAStartup(MAKEWORD(2,2), &Data);
1586 if (ret != 0) {
1587 err = WSAGetLastError();
1588 fprintf(stderr, "WSAStartup: %d\n", err);
1589 return -1;
1590 }
1591 atexit(socket_cleanup);
1592 return 0;
1593 }
1594 #endif
1595
1596 /***********************************************************/
1597 /* Bluetooth support */
1598 static int nb_hcis;
1599 static int cur_hci;
1600 static struct HCIInfo *hci_table[MAX_NICS];
1601
1602 static struct bt_vlan_s {
1603 struct bt_scatternet_s net;
1604 int id;
1605 struct bt_vlan_s *next;
1606 } *first_bt_vlan;
1607
1608 /* find or alloc a new bluetooth "VLAN" */
1609 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1610 {
1611 struct bt_vlan_s **pvlan, *vlan;
1612 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1613 if (vlan->id == id)
1614 return &vlan->net;
1615 }
1616 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1617 vlan->id = id;
1618 pvlan = &first_bt_vlan;
1619 while (*pvlan != NULL)
1620 pvlan = &(*pvlan)->next;
1621 *pvlan = vlan;
1622 return &vlan->net;
1623 }
1624
1625 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1626 {
1627 }
1628
1629 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1630 {
1631 return -ENOTSUP;
1632 }
1633
1634 static struct HCIInfo null_hci = {
1635 .cmd_send = null_hci_send,
1636 .sco_send = null_hci_send,
1637 .acl_send = null_hci_send,
1638 .bdaddr_set = null_hci_addr_set,
1639 };
1640
1641 struct HCIInfo *qemu_next_hci(void)
1642 {
1643 if (cur_hci == nb_hcis)
1644 return &null_hci;
1645
1646 return hci_table[cur_hci++];
1647 }
1648
1649 static struct HCIInfo *hci_init(const char *str)
1650 {
1651 char *endp;
1652 struct bt_scatternet_s *vlan = 0;
1653
1654 if (!strcmp(str, "null"))
1655 /* null */
1656 return &null_hci;
1657 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1658 /* host[:hciN] */
1659 return bt_host_hci(str[4] ? str + 5 : "hci0");
1660 else if (!strncmp(str, "hci", 3)) {
1661 /* hci[,vlan=n] */
1662 if (str[3]) {
1663 if (!strncmp(str + 3, ",vlan=", 6)) {
1664 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1665 if (*endp)
1666 vlan = 0;
1667 }
1668 } else
1669 vlan = qemu_find_bt_vlan(0);
1670 if (vlan)
1671 return bt_new_hci(vlan);
1672 }
1673
1674 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1675
1676 return 0;
1677 }
1678
1679 static int bt_hci_parse(const char *str)
1680 {
1681 struct HCIInfo *hci;
1682 bdaddr_t bdaddr;
1683
1684 if (nb_hcis >= MAX_NICS) {
1685 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1686 return -1;
1687 }
1688
1689 hci = hci_init(str);
1690 if (!hci)
1691 return -1;
1692
1693 bdaddr.b[0] = 0x52;
1694 bdaddr.b[1] = 0x54;
1695 bdaddr.b[2] = 0x00;
1696 bdaddr.b[3] = 0x12;
1697 bdaddr.b[4] = 0x34;
1698 bdaddr.b[5] = 0x56 + nb_hcis;
1699 hci->bdaddr_set(hci, bdaddr.b);
1700
1701 hci_table[nb_hcis++] = hci;
1702
1703 return 0;
1704 }
1705
1706 static void bt_vhci_add(int vlan_id)
1707 {
1708 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1709
1710 if (!vlan->slave)
1711 fprintf(stderr, "qemu: warning: adding a VHCI to "
1712 "an empty scatternet %i\n", vlan_id);
1713
1714 bt_vhci_init(bt_new_hci(vlan));
1715 }
1716
1717 static struct bt_device_s *bt_device_add(const char *opt)
1718 {
1719 struct bt_scatternet_s *vlan;
1720 int vlan_id = 0;
1721 char *endp = strstr(opt, ",vlan=");
1722 int len = (endp ? endp - opt : strlen(opt)) + 1;
1723 char devname[10];
1724
1725 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1726
1727 if (endp) {
1728 vlan_id = strtol(endp + 6, &endp, 0);
1729 if (*endp) {
1730 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1731 return 0;
1732 }
1733 }
1734
1735 vlan = qemu_find_bt_vlan(vlan_id);
1736
1737 if (!vlan->slave)
1738 fprintf(stderr, "qemu: warning: adding a slave device to "
1739 "an empty scatternet %i\n", vlan_id);
1740
1741 if (!strcmp(devname, "keyboard"))
1742 return bt_keyboard_init(vlan);
1743
1744 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1745 return 0;
1746 }
1747
1748 static int bt_parse(const char *opt)
1749 {
1750 const char *endp, *p;
1751 int vlan;
1752
1753 if (strstart(opt, "hci", &endp)) {
1754 if (!*endp || *endp == ',') {
1755 if (*endp)
1756 if (!strstart(endp, ",vlan=", 0))
1757 opt = endp + 1;
1758
1759 return bt_hci_parse(opt);
1760 }
1761 } else if (strstart(opt, "vhci", &endp)) {
1762 if (!*endp || *endp == ',') {
1763 if (*endp) {
1764 if (strstart(endp, ",vlan=", &p)) {
1765 vlan = strtol(p, (char **) &endp, 0);
1766 if (*endp) {
1767 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1768 return 1;
1769 }
1770 } else {
1771 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1772 return 1;
1773 }
1774 } else
1775 vlan = 0;
1776
1777 bt_vhci_add(vlan);
1778 return 0;
1779 }
1780 } else if (strstart(opt, "device:", &endp))
1781 return !bt_device_add(endp);
1782
1783 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1784 return 1;
1785 }
1786
1787 /***********************************************************/
1788 /* QEMU Block devices */
1789
1790 #define HD_ALIAS "index=%d,media=disk"
1791 #define CDROM_ALIAS "index=2,media=cdrom"
1792 #define FD_ALIAS "index=%d,if=floppy"
1793 #define PFLASH_ALIAS "if=pflash"
1794 #define MTD_ALIAS "if=mtd"
1795 #define SD_ALIAS "index=0,if=sd"
1796
1797 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1798 {
1799 va_list ap;
1800 char optstr[1024];
1801 QemuOpts *opts;
1802
1803 va_start(ap, fmt);
1804 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1805 va_end(ap);
1806
1807 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1808 if (!opts) {
1809 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1810 __FUNCTION__, optstr);
1811 return NULL;
1812 }
1813 if (file)
1814 qemu_opt_set(opts, "file", file);
1815 return opts;
1816 }
1817
1818 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1819 {
1820 DriveInfo *dinfo;
1821
1822 /* seek interface, bus and unit */
1823
1824 TAILQ_FOREACH(dinfo, &drives, next) {
1825 if (dinfo->type == type &&
1826 dinfo->bus == bus &&
1827 dinfo->unit == unit)
1828 return dinfo;
1829 }
1830
1831 return NULL;
1832 }
1833
1834 DriveInfo *drive_get_by_id(const char *id)
1835 {
1836 DriveInfo *dinfo;
1837
1838 TAILQ_FOREACH(dinfo, &drives, next) {
1839 if (strcmp(id, dinfo->id))
1840 continue;
1841 return dinfo;
1842 }
1843 return NULL;
1844 }
1845
1846 int drive_get_max_bus(BlockInterfaceType type)
1847 {
1848 int max_bus;
1849 DriveInfo *dinfo;
1850
1851 max_bus = -1;
1852 TAILQ_FOREACH(dinfo, &drives, next) {
1853 if(dinfo->type == type &&
1854 dinfo->bus > max_bus)
1855 max_bus = dinfo->bus;
1856 }
1857 return max_bus;
1858 }
1859
1860 const char *drive_get_serial(BlockDriverState *bdrv)
1861 {
1862 DriveInfo *dinfo;
1863
1864 TAILQ_FOREACH(dinfo, &drives, next) {
1865 if (dinfo->bdrv == bdrv)
1866 return dinfo->serial;
1867 }
1868
1869 return "\0";
1870 }
1871
1872 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1873 {
1874 DriveInfo *dinfo;
1875
1876 TAILQ_FOREACH(dinfo, &drives, next) {
1877 if (dinfo->bdrv == bdrv)
1878 return dinfo->onerror;
1879 }
1880
1881 return BLOCK_ERR_STOP_ENOSPC;
1882 }
1883
1884 static void bdrv_format_print(void *opaque, const char *name)
1885 {
1886 fprintf(stderr, " %s", name);
1887 }
1888
1889 void drive_uninit(BlockDriverState *bdrv)
1890 {
1891 DriveInfo *dinfo;
1892
1893 TAILQ_FOREACH(dinfo, &drives, next) {
1894 if (dinfo->bdrv != bdrv)
1895 continue;
1896 qemu_opts_del(dinfo->opts);
1897 TAILQ_REMOVE(&drives, dinfo, next);
1898 qemu_free(dinfo);
1899 break;
1900 }
1901 }
1902
1903 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1904 int *fatal_error)
1905 {
1906 const char *buf;
1907 const char *file = NULL;
1908 char devname[128];
1909 const char *serial;
1910 const char *mediastr = "";
1911 BlockInterfaceType type;
1912 enum { MEDIA_DISK, MEDIA_CDROM } media;
1913 int bus_id, unit_id;
1914 int cyls, heads, secs, translation;
1915 BlockDriver *drv = NULL;
1916 QEMUMachine *machine = opaque;
1917 int max_devs;
1918 int index;
1919 int cache;
1920 int aio = 0;
1921 int bdrv_flags, onerror;
1922 const char *devaddr;
1923 DriveInfo *dinfo;
1924 int snapshot = 0;
1925
1926 *fatal_error = 1;
1927
1928 translation = BIOS_ATA_TRANSLATION_AUTO;
1929 cache = 1;
1930
1931 if (machine && machine->use_scsi) {
1932 type = IF_SCSI;
1933 max_devs = MAX_SCSI_DEVS;
1934 pstrcpy(devname, sizeof(devname), "scsi");
1935 } else {
1936 type = IF_IDE;
1937 max_devs = MAX_IDE_DEVS;
1938 pstrcpy(devname, sizeof(devname), "ide");
1939 }
1940 media = MEDIA_DISK;
1941
1942 /* extract parameters */
1943 bus_id = qemu_opt_get_number(opts, "bus", 0);
1944 unit_id = qemu_opt_get_number(opts, "unit", -1);
1945 index = qemu_opt_get_number(opts, "index", -1);
1946
1947 cyls = qemu_opt_get_number(opts, "cyls", 0);
1948 heads = qemu_opt_get_number(opts, "heads", 0);
1949 secs = qemu_opt_get_number(opts, "secs", 0);
1950
1951 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1952
1953 file = qemu_opt_get(opts, "file");
1954 serial = qemu_opt_get(opts, "serial");
1955
1956 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1957 pstrcpy(devname, sizeof(devname), buf);
1958 if (!strcmp(buf, "ide")) {
1959 type = IF_IDE;
1960 max_devs = MAX_IDE_DEVS;
1961 } else if (!strcmp(buf, "scsi")) {
1962 type = IF_SCSI;
1963 max_devs = MAX_SCSI_DEVS;
1964 } else if (!strcmp(buf, "floppy")) {
1965 type = IF_FLOPPY;
1966 max_devs = 0;
1967 } else if (!strcmp(buf, "pflash")) {
1968 type = IF_PFLASH;
1969 max_devs = 0;
1970 } else if (!strcmp(buf, "mtd")) {
1971 type = IF_MTD;
1972 max_devs = 0;
1973 } else if (!strcmp(buf, "sd")) {
1974 type = IF_SD;
1975 max_devs = 0;
1976 } else if (!strcmp(buf, "virtio")) {
1977 type = IF_VIRTIO;
1978 max_devs = 0;
1979 } else if (!strcmp(buf, "xen")) {
1980 type = IF_XEN;
1981 max_devs = 0;
1982 } else if (!strcmp(buf, "none")) {
1983 type = IF_NONE;
1984 max_devs = 0;
1985 } else {
1986 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1987 return NULL;
1988 }
1989 }
1990
1991 if (cyls || heads || secs) {
1992 if (cyls < 1 || cyls > 16383) {
1993 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1994 return NULL;
1995 }
1996 if (heads < 1 || heads > 16) {
1997 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1998 return NULL;
1999 }
2000 if (secs < 1 || secs > 63) {
2001 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2002 return NULL;
2003 }
2004 }
2005
2006 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2007 if (!cyls) {
2008 fprintf(stderr,
2009 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2010 buf);
2011 return NULL;
2012 }
2013 if (!strcmp(buf, "none"))
2014 translation = BIOS_ATA_TRANSLATION_NONE;
2015 else if (!strcmp(buf, "lba"))
2016 translation = BIOS_ATA_TRANSLATION_LBA;
2017 else if (!strcmp(buf, "auto"))
2018 translation = BIOS_ATA_TRANSLATION_AUTO;
2019 else {
2020 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2021 return NULL;
2022 }
2023 }
2024
2025 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2026 if (!strcmp(buf, "disk")) {
2027 media = MEDIA_DISK;
2028 } else if (!strcmp(buf, "cdrom")) {
2029 if (cyls || secs || heads) {
2030 fprintf(stderr,
2031 "qemu: '%s' invalid physical CHS format\n", buf);
2032 return NULL;
2033 }
2034 media = MEDIA_CDROM;
2035 } else {
2036 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2037 return NULL;
2038 }
2039 }
2040
2041 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2042 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2043 cache = 0;
2044 else if (!strcmp(buf, "writethrough"))
2045 cache = 1;
2046 else if (!strcmp(buf, "writeback"))
2047 cache = 2;
2048 else {
2049 fprintf(stderr, "qemu: invalid cache option\n");
2050 return NULL;
2051 }
2052 }
2053
2054 #ifdef CONFIG_LINUX_AIO
2055 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2056 if (!strcmp(buf, "threads"))
2057 aio = 0;
2058 else if (!strcmp(buf, "native"))
2059 aio = 1;
2060 else {
2061 fprintf(stderr, "qemu: invalid aio option\n");
2062 return NULL;
2063 }
2064 }
2065 #endif
2066
2067 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2068 if (strcmp(buf, "?") == 0) {
2069 fprintf(stderr, "qemu: Supported formats:");
2070 bdrv_iterate_format(bdrv_format_print, NULL);
2071 fprintf(stderr, "\n");
2072 return NULL;
2073 }
2074 drv = bdrv_find_format(buf);
2075 if (!drv) {
2076 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2077 return NULL;
2078 }
2079 }
2080
2081 onerror = BLOCK_ERR_STOP_ENOSPC;
2082 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2083 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2084 fprintf(stderr, "werror is no supported by this format\n");
2085 return NULL;
2086 }
2087 if (!strcmp(buf, "ignore"))
2088 onerror = BLOCK_ERR_IGNORE;
2089 else if (!strcmp(buf, "enospc"))
2090 onerror = BLOCK_ERR_STOP_ENOSPC;
2091 else if (!strcmp(buf, "stop"))
2092 onerror = BLOCK_ERR_STOP_ANY;
2093 else if (!strcmp(buf, "report"))
2094 onerror = BLOCK_ERR_REPORT;
2095 else {
2096 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2097 return NULL;
2098 }
2099 }
2100
2101 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2102 if (type != IF_VIRTIO) {
2103 fprintf(stderr, "addr is not supported\n");
2104 return NULL;
2105 }
2106 }
2107
2108 /* compute bus and unit according index */
2109
2110 if (index != -1) {
2111 if (bus_id != 0 || unit_id != -1) {
2112 fprintf(stderr,
2113 "qemu: index cannot be used with bus and unit\n");
2114 return NULL;
2115 }
2116 if (max_devs == 0)
2117 {
2118 unit_id = index;
2119 bus_id = 0;
2120 } else {
2121 unit_id = index % max_devs;
2122 bus_id = index / max_devs;
2123 }
2124 }
2125
2126 /* if user doesn't specify a unit_id,
2127 * try to find the first free
2128 */
2129
2130 if (unit_id == -1) {
2131 unit_id = 0;
2132 while (drive_get(type, bus_id, unit_id) != NULL) {
2133 unit_id++;
2134 if (max_devs && unit_id >= max_devs) {
2135 unit_id -= max_devs;
2136 bus_id++;
2137 }
2138 }
2139 }
2140
2141 /* check unit id */
2142
2143 if (max_devs && unit_id >= max_devs) {
2144 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2145 unit_id, max_devs - 1);
2146 return NULL;
2147 }
2148
2149 /*
2150 * ignore multiple definitions
2151 */
2152
2153 if (drive_get(type, bus_id, unit_id) != NULL) {
2154 *fatal_error = 0;
2155 return NULL;
2156 }
2157
2158 /* init */
2159
2160 dinfo = qemu_mallocz(sizeof(*dinfo));
2161 if ((buf = qemu_opts_id(opts)) != NULL) {
2162 dinfo->id = qemu_strdup(buf);
2163 } else {
2164 /* no id supplied -> create one */
2165 dinfo->id = qemu_mallocz(32);
2166 if (type == IF_IDE || type == IF_SCSI)
2167 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2168 if (max_devs)
2169 snprintf(dinfo->id, 32, "%s%i%s%i",
2170 devname, bus_id, mediastr, unit_id);
2171 else
2172 snprintf(dinfo->id, 32, "%s%s%i",
2173 devname, mediastr, unit_id);
2174 }
2175 dinfo->bdrv = bdrv_new(dinfo->id);
2176 dinfo->devaddr = devaddr;
2177 dinfo->type = type;
2178 dinfo->bus = bus_id;
2179 dinfo->unit = unit_id;
2180 dinfo->onerror = onerror;
2181 dinfo->opts = opts;
2182 if (serial)
2183 strncpy(dinfo->serial, serial, sizeof(serial));
2184 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2185
2186 switch(type) {
2187 case IF_IDE:
2188 case IF_SCSI:
2189 case IF_XEN:
2190 switch(media) {
2191 case MEDIA_DISK:
2192 if (cyls != 0) {
2193 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2194 bdrv_set_translation_hint(dinfo->bdrv, translation);
2195 }
2196 break;
2197 case MEDIA_CDROM:
2198 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2199 break;
2200 }
2201 break;
2202 case IF_SD:
2203 /* FIXME: This isn't really a floppy, but it's a reasonable
2204 approximation. */
2205 case IF_FLOPPY:
2206 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2207 break;
2208 case IF_PFLASH:
2209 case IF_MTD:
2210 case IF_NONE:
2211 break;
2212 case IF_VIRTIO:
2213 /* add virtio block device */
2214 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2215 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2216 qemu_opt_set(opts, "drive", dinfo->id);
2217 if (devaddr)
2218 qemu_opt_set(opts, "addr", devaddr);
2219 break;
2220 case IF_COUNT:
2221 abort();
2222 }
2223 if (!file) {
2224 *fatal_error = 0;
2225 return NULL;
2226 }
2227 bdrv_flags = 0;
2228 if (snapshot) {
2229 bdrv_flags |= BDRV_O_SNAPSHOT;
2230 cache = 2; /* always use write-back with snapshot */
2231 }
2232 if (cache == 0) /* no caching */
2233 bdrv_flags |= BDRV_O_NOCACHE;
2234 else if (cache == 2) /* write-back */
2235 bdrv_flags |= BDRV_O_CACHE_WB;
2236
2237 if (aio == 1) {
2238 bdrv_flags |= BDRV_O_NATIVE_AIO;
2239 } else {
2240 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2241 }
2242
2243 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2244 fprintf(stderr, "qemu: could not open disk image %s\n",
2245 file);
2246 return NULL;
2247 }
2248
2249 if (bdrv_key_required(dinfo->bdrv))
2250 autostart = 0;
2251 *fatal_error = 0;
2252 return dinfo;
2253 }
2254
2255 static int drive_init_func(QemuOpts *opts, void *opaque)
2256 {
2257 QEMUMachine *machine = opaque;
2258 int fatal_error = 0;
2259
2260 if (drive_init(opts, machine, &fatal_error) == NULL) {
2261 if (fatal_error)
2262 return 1;
2263 }
2264 return 0;
2265 }
2266
2267 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2268 {
2269 if (NULL == qemu_opt_get(opts, "snapshot")) {
2270 qemu_opt_set(opts, "snapshot", "on");
2271 }
2272 return 0;
2273 }
2274
2275 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2276 {
2277 boot_set_handler = func;
2278 boot_set_opaque = opaque;
2279 }
2280
2281 int qemu_boot_set(const char *boot_devices)
2282 {
2283 if (!boot_set_handler) {
2284 return -EINVAL;
2285 }
2286 return boot_set_handler(boot_set_opaque, boot_devices);
2287 }
2288
2289 static int parse_bootdevices(char *devices)
2290 {
2291 /* We just do some generic consistency checks */
2292 const char *p;
2293 int bitmap = 0;
2294
2295 for (p = devices; *p != '\0'; p++) {
2296 /* Allowed boot devices are:
2297 * a-b: floppy disk drives
2298 * c-f: IDE disk drives
2299 * g-m: machine implementation dependant drives
2300 * n-p: network devices
2301 * It's up to each machine implementation to check if the given boot
2302 * devices match the actual hardware implementation and firmware
2303 * features.
2304 */
2305 if (*p < 'a' || *p > 'p') {
2306 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2307 exit(1);
2308 }
2309 if (bitmap & (1 << (*p - 'a'))) {
2310 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2311 exit(1);
2312 }
2313 bitmap |= 1 << (*p - 'a');
2314 }
2315 return bitmap;
2316 }
2317
2318 static void restore_boot_devices(void *opaque)
2319 {
2320 char *standard_boot_devices = opaque;
2321
2322 qemu_boot_set(standard_boot_devices);
2323
2324 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2325 qemu_free(standard_boot_devices);
2326 }
2327
2328 static void numa_add(const char *optarg)
2329 {
2330 char option[128];
2331 char *endptr;
2332 unsigned long long value, endvalue;
2333 int nodenr;
2334
2335 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2336 if (!strcmp(option, "node")) {
2337 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2338 nodenr = nb_numa_nodes;
2339 } else {
2340 nodenr = strtoull(option, NULL, 10);
2341 }
2342
2343 if (get_param_value(option, 128, "mem", optarg) == 0) {
2344 node_mem[nodenr] = 0;
2345 } else {
2346 value = strtoull(option, &endptr, 0);
2347 switch (*endptr) {
2348 case 0: case 'M': case 'm':
2349 value <<= 20;
2350 break;
2351 case 'G': case 'g':
2352 value <<= 30;
2353 break;
2354 }
2355 node_mem[nodenr] = value;
2356 }
2357 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2358 node_cpumask[nodenr] = 0;
2359 } else {
2360 value = strtoull(option, &endptr, 10);
2361 if (value >= 64) {
2362 value = 63;
2363 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2364 } else {
2365 if (*endptr == '-') {
2366 endvalue = strtoull(endptr+1, &endptr, 10);
2367 if (endvalue >= 63) {
2368 endvalue = 62;
2369 fprintf(stderr,
2370 "only 63 CPUs in NUMA mode supported.\n");
2371 }
2372 value = (1 << (endvalue + 1)) - (1 << value);
2373 } else {
2374 value = 1 << value;
2375 }
2376 }
2377 node_cpumask[nodenr] = value;
2378 }
2379 nb_numa_nodes++;
2380 }
2381 return;
2382 }
2383
2384 static void smp_parse(const char *optarg)
2385 {
2386 int smp, sockets = 0, threads = 0, cores = 0;
2387 char *endptr;
2388 char option[128];
2389
2390 smp = strtoul(optarg, &endptr, 10);
2391 if (endptr != optarg) {
2392 if (*endptr == ',') {
2393 endptr++;
2394 }
2395 }
2396 if (get_param_value(option, 128, "sockets", endptr) != 0)
2397 sockets = strtoull(option, NULL, 10);
2398 if (get_param_value(option, 128, "cores", endptr) != 0)
2399 cores = strtoull(option, NULL, 10);
2400 if (get_param_value(option, 128, "threads", endptr) != 0)
2401 threads = strtoull(option, NULL, 10);
2402 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2403 max_cpus = strtoull(option, NULL, 10);
2404
2405 /* compute missing values, prefer sockets over cores over threads */
2406 if (smp == 0 || sockets == 0) {
2407 sockets = sockets > 0 ? sockets : 1;
2408 cores = cores > 0 ? cores : 1;
2409 threads = threads > 0 ? threads : 1;
2410 if (smp == 0) {
2411 smp = cores * threads * sockets;
2412 } else {
2413 sockets = smp / (cores * threads);
2414 }
2415 } else {
2416 if (cores == 0) {
2417 threads = threads > 0 ? threads : 1;
2418 cores = smp / (sockets * threads);
2419 } else {
2420 if (sockets == 0) {
2421 sockets = smp / (cores * threads);
2422 } else {
2423 threads = smp / (cores * sockets);
2424 }
2425 }
2426 }
2427 smp_cpus = smp;
2428 smp_cores = cores > 0 ? cores : 1;
2429 smp_threads = threads > 0 ? threads : 1;
2430 if (max_cpus == 0)
2431 max_cpus = smp_cpus;
2432 }
2433
2434 /***********************************************************/
2435 /* USB devices */
2436
2437 static USBPort *used_usb_ports;
2438 static USBPort *free_usb_ports;
2439
2440 /* ??? Maybe change this to register a hub to keep track of the topology. */
2441 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2442 usb_attachfn attach)
2443 {
2444 port->opaque = opaque;
2445 port->index = index;
2446 port->attach = attach;
2447 port->next = free_usb_ports;
2448 free_usb_ports = port;
2449 }
2450
2451 int usb_device_add_dev(USBDevice *dev)
2452 {
2453 USBPort *port;
2454
2455 /* Find a USB port to add the device to. */
2456 port = free_usb_ports;
2457 if (!port->next) {
2458 USBDevice *hub;
2459
2460 /* Create a new hub and chain it on. */
2461 free_usb_ports = NULL;
2462 port->next = used_usb_ports;
2463 used_usb_ports = port;
2464
2465 hub = usb_hub_init(VM_USB_HUB_SIZE);
2466 usb_attach(port, hub);
2467 port = free_usb_ports;
2468 }
2469
2470 free_usb_ports = port->next;
2471 port->next = used_usb_ports;
2472 used_usb_ports = port;
2473 usb_attach(port, dev);
2474 return 0;
2475 }
2476
2477 static void usb_msd_password_cb(void *opaque, int err)
2478 {
2479 USBDevice *dev = opaque;
2480
2481 if (!err)
2482 usb_device_add_dev(dev);
2483 else
2484 dev->info->handle_destroy(dev);
2485 }
2486
2487 static int usb_device_add(const char *devname, int is_hotplug)
2488 {
2489 const char *p;
2490 USBDevice *dev;
2491
2492 if (!free_usb_ports)
2493 return -1;
2494
2495 if (strstart(devname, "host:", &p)) {
2496 dev = usb_host_device_open(p);
2497 } else if (!strcmp(devname, "mouse")) {
2498 dev = usb_mouse_init();
2499 } else if (!strcmp(devname, "tablet")) {
2500 dev = usb_tablet_init();
2501 } else if (!strcmp(devname, "keyboard")) {
2502 dev = usb_keyboard_init();
2503 } else if (strstart(devname, "disk:", &p)) {
2504 BlockDriverState *bs;
2505
2506 dev = usb_msd_init(p);
2507 if (!dev)
2508 return -1;
2509 bs = usb_msd_get_bdrv(dev);
2510 if (bdrv_key_required(bs)) {
2511 autostart = 0;
2512 if (is_hotplug) {
2513 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2514 dev);
2515 return 0;
2516 }
2517 }
2518 } else if (!strcmp(devname, "wacom-tablet")) {
2519 dev = usb_wacom_init();
2520 } else if (strstart(devname, "serial:", &p)) {
2521 dev = usb_serial_init(p);
2522 #ifdef CONFIG_BRLAPI
2523 } else if (!strcmp(devname, "braille")) {
2524 dev = usb_baum_init();
2525 #endif
2526 } else if (strstart(devname, "net:", &p)) {
2527 int nic = nb_nics;
2528
2529 if (net_client_init(NULL, "nic", p) < 0)
2530 return -1;
2531 nd_table[nic].model = "usb";
2532 dev = usb_net_init(&nd_table[nic]);
2533 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2534 dev = usb_bt_init(devname[2] ? hci_init(p) :
2535 bt_new_hci(qemu_find_bt_vlan(0)));
2536 } else {
2537 return -1;
2538 }
2539 if (!dev)
2540 return -1;
2541
2542 return usb_device_add_dev(dev);
2543 }
2544
2545 int usb_device_del_addr(int bus_num, int addr)
2546 {
2547 USBPort *port;
2548 USBPort **lastp;
2549 USBDevice *dev;
2550
2551 if (!used_usb_ports)
2552 return -1;
2553
2554 if (bus_num != 0)
2555 return -1;
2556
2557 lastp = &used_usb_ports;
2558 port = used_usb_ports;
2559 while (port && port->dev->addr != addr) {
2560 lastp = &port->next;
2561 port = port->next;
2562 }
2563
2564 if (!port)
2565 return -1;
2566
2567 dev = port->dev;
2568 *lastp = port->next;
2569 usb_attach(port, NULL);
2570 dev->info->handle_destroy(dev);
2571 port->next = free_usb_ports;
2572 free_usb_ports = port;
2573 return 0;
2574 }
2575
2576 static int usb_device_del(const char *devname)
2577 {
2578 int bus_num, addr;
2579 const char *p;
2580
2581 if (strstart(devname, "host:", &p))
2582 return usb_host_device_close(p);
2583
2584 if (!used_usb_ports)
2585 return -1;
2586
2587 p = strchr(devname, '.');
2588 if (!p)
2589 return -1;
2590 bus_num = strtoul(devname, NULL, 0);
2591 addr = strtoul(p + 1, NULL, 0);
2592
2593 return usb_device_del_addr(bus_num, addr);
2594 }
2595
2596 static int usb_parse(const char *cmdline)
2597 {
2598 return usb_device_add(cmdline, 0);
2599 }
2600
2601 void do_usb_add(Monitor *mon, const QDict *qdict)
2602 {
2603 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2604 }
2605
2606 void do_usb_del(Monitor *mon, const QDict *qdict)
2607 {
2608 usb_device_del(qdict_get_str(qdict, "devname"));
2609 }
2610
2611 void usb_info(Monitor *mon)
2612 {
2613 USBDevice *dev;
2614 USBPort *port;
2615 const char *speed_str;
2616
2617 if (!usb_enabled) {
2618 monitor_printf(mon, "USB support not enabled\n");
2619 return;
2620 }
2621
2622 for (port = used_usb_ports; port; port = port->next) {
2623 dev = port->dev;
2624 if (!dev)
2625 continue;
2626 switch(dev->speed) {
2627 case USB_SPEED_LOW:
2628 speed_str = "1.5";
2629 break;
2630 case USB_SPEED_FULL:
2631 speed_str = "12";
2632 break;
2633 case USB_SPEED_HIGH:
2634 speed_str = "480";
2635 break;
2636 default:
2637 speed_str = "?";
2638 break;
2639 }
2640 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2641 0, dev->addr, speed_str, dev->devname);
2642 }
2643 }
2644
2645 /***********************************************************/
2646 /* PCMCIA/Cardbus */
2647
2648 static struct pcmcia_socket_entry_s {
2649 PCMCIASocket *socket;
2650 struct pcmcia_socket_entry_s *next;
2651 } *pcmcia_sockets = 0;
2652
2653 void pcmcia_socket_register(PCMCIASocket *socket)
2654 {
2655 struct pcmcia_socket_entry_s *entry;
2656
2657 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2658 entry->socket = socket;
2659 entry->next = pcmcia_sockets;
2660 pcmcia_sockets = entry;
2661 }
2662
2663 void pcmcia_socket_unregister(PCMCIASocket *socket)
2664 {
2665 struct pcmcia_socket_entry_s *entry, **ptr;
2666
2667 ptr = &pcmcia_sockets;
2668 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2669 if (entry->socket == socket) {
2670 *ptr = entry->next;
2671 qemu_free(entry);
2672 }
2673 }
2674
2675 void pcmcia_info(Monitor *mon)
2676 {
2677 struct pcmcia_socket_entry_s *iter;
2678
2679 if (!pcmcia_sockets)
2680 monitor_printf(mon, "No PCMCIA sockets\n");
2681
2682 for (iter = pcmcia_sockets; iter; iter = iter->next)
2683 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2684 iter->socket->attached ? iter->socket->card_string :
2685 "Empty");
2686 }
2687
2688 /***********************************************************/
2689 /* register display */
2690
2691 struct DisplayAllocator default_allocator = {
2692 defaultallocator_create_displaysurface,
2693 defaultallocator_resize_displaysurface,
2694 defaultallocator_free_displaysurface
2695 };
2696
2697 void register_displaystate(DisplayState *ds)
2698 {
2699 DisplayState **s;
2700 s = &display_state;
2701 while (*s != NULL)
2702 s = &(*s)->next;
2703 ds->next = NULL;
2704 *s = ds;
2705 }
2706
2707 DisplayState *get_displaystate(void)
2708 {
2709 return display_state;
2710 }
2711
2712 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2713 {
2714 if(ds->allocator == &default_allocator) ds->allocator = da;
2715 return ds->allocator;
2716 }
2717
2718 /* dumb display */
2719
2720 static void dumb_display_init(void)
2721 {
2722 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2723 ds->allocator = &default_allocator;
2724 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2725 register_displaystate(ds);
2726 }
2727
2728 /***********************************************************/
2729 /* I/O handling */
2730
2731 typedef struct IOHandlerRecord {
2732 int fd;
2733 IOCanRWHandler *fd_read_poll;
2734 IOHandler *fd_read;
2735 IOHandler *fd_write;
2736 int deleted;
2737 void *opaque;
2738 /* temporary data */
2739 struct pollfd *ufd;
2740 struct IOHandlerRecord *next;
2741 } IOHandlerRecord;
2742
2743 static IOHandlerRecord *first_io_handler;
2744
2745 /* XXX: fd_read_poll should be suppressed, but an API change is
2746 necessary in the character devices to suppress fd_can_read(). */
2747 int qemu_set_fd_handler2(int fd,
2748 IOCanRWHandler *fd_read_poll,
2749 IOHandler *fd_read,
2750 IOHandler *fd_write,
2751 void *opaque)
2752 {
2753 IOHandlerRecord **pioh, *ioh;
2754
2755 if (!fd_read && !fd_write) {
2756 pioh = &first_io_handler;
2757 for(;;) {
2758 ioh = *pioh;
2759 if (ioh == NULL)
2760 break;
2761 if (ioh->fd == fd) {
2762 ioh->deleted = 1;
2763 break;
2764 }
2765 pioh = &ioh->next;
2766 }
2767 } else {
2768 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2769 if (ioh->fd == fd)
2770 goto found;
2771 }
2772 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2773 ioh->next = first_io_handler;
2774 first_io_handler = ioh;
2775 found:
2776 ioh->fd = fd;
2777 ioh->fd_read_poll = fd_read_poll;
2778 ioh->fd_read = fd_read;
2779 ioh->fd_write = fd_write;
2780 ioh->opaque = opaque;
2781 ioh->deleted = 0;
2782 }
2783 return 0;
2784 }
2785
2786 int qemu_set_fd_handler(int fd,
2787 IOHandler *fd_read,
2788 IOHandler *fd_write,
2789 void *opaque)
2790 {
2791 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2792 }
2793
2794 #ifdef _WIN32
2795 /***********************************************************/
2796 /* Polling handling */
2797
2798 typedef struct PollingEntry {
2799 PollingFunc *func;
2800 void *opaque;
2801 struct PollingEntry *next;
2802 } PollingEntry;
2803
2804 static PollingEntry *first_polling_entry;
2805
2806 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2807 {
2808 PollingEntry **ppe, *pe;
2809 pe = qemu_mallocz(sizeof(PollingEntry));
2810 pe->func = func;
2811 pe->opaque = opaque;
2812 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2813 *ppe = pe;
2814 return 0;
2815 }
2816
2817 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2818 {
2819 PollingEntry **ppe, *pe;
2820 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2821 pe = *ppe;
2822 if (pe->func == func && pe->opaque == opaque) {
2823 *ppe = pe->next;
2824 qemu_free(pe);
2825 break;
2826 }
2827 }
2828 }
2829
2830 /***********************************************************/
2831 /* Wait objects support */
2832 typedef struct WaitObjects {
2833 int num;
2834 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2835 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2836 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2837 } WaitObjects;
2838
2839 static WaitObjects wait_objects = {0};
2840
2841 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2842 {
2843 WaitObjects *w = &wait_objects;
2844
2845 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2846 return -1;
2847 w->events[w->num] = handle;
2848 w->func[w->num] = func;
2849 w->opaque[w->num] = opaque;
2850 w->num++;
2851 return 0;
2852 }
2853
2854 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2855 {
2856 int i, found;
2857 WaitObjects *w = &wait_objects;
2858
2859 found = 0;
2860 for (i = 0; i < w->num; i++) {
2861 if (w->events[i] == handle)
2862 found = 1;
2863 if (found) {
2864 w->events[i] = w->events[i + 1];
2865 w->func[i] = w->func[i + 1];
2866 w->opaque[i] = w->opaque[i + 1];
2867 }
2868 }
2869 if (found)
2870 w->num--;
2871 }
2872 #endif
2873
2874 /***********************************************************/
2875 /* ram save/restore */
2876
2877 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2878 {
2879 int v;
2880
2881 v = qemu_get_byte(f);
2882 switch(v) {
2883 case 0:
2884 if (qemu_get_buffer(f, buf, len) != len)
2885 return -EIO;
2886 break;
2887 case 1:
2888 v = qemu_get_byte(f);
2889 memset(buf, v, len);
2890 break;
2891 default:
2892 return -EINVAL;
2893 }
2894
2895 if (qemu_file_has_error(f))
2896 return -EIO;
2897
2898 return 0;
2899 }
2900
2901 static int ram_load_v1(QEMUFile *f, void *opaque)
2902 {
2903 int ret;
2904 ram_addr_t i;
2905
2906 if (qemu_get_be32(f) != last_ram_offset)
2907 return -EINVAL;
2908 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2909 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2910 if (ret)
2911 return ret;
2912 }
2913 return 0;
2914 }
2915
2916 #define BDRV_HASH_BLOCK_SIZE 1024
2917 #define IOBUF_SIZE 4096
2918 #define RAM_CBLOCK_MAGIC 0xfabe
2919
2920 typedef struct RamDecompressState {
2921 z_stream zstream;
2922 QEMUFile *f;
2923 uint8_t buf[IOBUF_SIZE];
2924 } RamDecompressState;
2925
2926 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2927 {
2928 int ret;
2929 memset(s, 0, sizeof(*s));
2930 s->f = f;
2931 ret = inflateInit(&s->zstream);
2932 if (ret != Z_OK)
2933 return -1;
2934 return 0;
2935 }
2936
2937 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2938 {
2939 int ret, clen;
2940
2941 s->zstream.avail_out = len;
2942 s->zstream.next_out = buf;
2943 while (s->zstream.avail_out > 0) {
2944 if (s->zstream.avail_in == 0) {
2945 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2946 return -1;
2947 clen = qemu_get_be16(s->f);
2948 if (clen > IOBUF_SIZE)
2949 return -1;
2950 qemu_get_buffer(s->f, s->buf, clen);
2951 s->zstream.avail_in = clen;
2952 s->zstream.next_in = s->buf;
2953 }
2954 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2955 if (ret != Z_OK && ret != Z_STREAM_END) {
2956 return -1;
2957 }
2958 }
2959 return 0;
2960 }
2961
2962 static void ram_decompress_close(RamDecompressState *s)
2963 {
2964 inflateEnd(&s->zstream);
2965 }
2966
2967 #define RAM_SAVE_FLAG_FULL 0x01
2968 #define RAM_SAVE_FLAG_COMPRESS 0x02
2969 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2970 #define RAM_SAVE_FLAG_PAGE 0x08
2971 #define RAM_SAVE_FLAG_EOS 0x10
2972
2973 static int is_dup_page(uint8_t *page, uint8_t ch)
2974 {
2975 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2976 uint32_t *array = (uint32_t *)page;
2977 int i;
2978
2979 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2980 if (array[i] != val)
2981 return 0;
2982 }
2983
2984 return 1;
2985 }
2986
2987 static int ram_save_block(QEMUFile *f)
2988 {
2989 static ram_addr_t current_addr = 0;
2990 ram_addr_t saved_addr = current_addr;
2991 ram_addr_t addr = 0;
2992 int found = 0;
2993
2994 while (addr < last_ram_offset) {
2995 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2996 uint8_t *p;
2997
2998 cpu_physical_memory_reset_dirty(current_addr,
2999 current_addr + TARGET_PAGE_SIZE,
3000 MIGRATION_DIRTY_FLAG);
3001
3002 p = qemu_get_ram_ptr(current_addr);
3003
3004 if (is_dup_page(p, *p)) {
3005 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3006 qemu_put_byte(f, *p);
3007 } else {
3008 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3009 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3010 }
3011
3012 found = 1;
3013 break;
3014 }
3015 addr += TARGET_PAGE_SIZE;
3016 current_addr = (saved_addr + addr) % last_ram_offset;
3017 }
3018
3019 return found;
3020 }
3021
3022 static uint64_t bytes_transferred = 0;
3023
3024 static ram_addr_t ram_save_remaining(void)
3025 {
3026 ram_addr_t addr;
3027 ram_addr_t count = 0;
3028
3029 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3030 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3031 count++;
3032 }
3033
3034 return count;
3035 }
3036
3037 uint64_t ram_bytes_remaining(void)
3038 {
3039 return ram_save_remaining() * TARGET_PAGE_SIZE;
3040 }
3041
3042 uint64_t ram_bytes_transferred(void)
3043 {
3044 return bytes_transferred;
3045 }
3046
3047 uint64_t ram_bytes_total(void)
3048 {
3049 return last_ram_offset;
3050 }
3051
3052 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3053 {
3054 ram_addr_t addr;
3055 uint64_t bytes_transferred_last;
3056 double bwidth = 0;
3057 uint64_t expected_time = 0;
3058
3059 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3060 qemu_file_set_error(f);
3061 return 0;
3062 }
3063
3064 if (stage == 1) {
3065 /* Make sure all dirty bits are set */
3066 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3067 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3068 cpu_physical_memory_set_dirty(addr);
3069 }
3070
3071 /* Enable dirty memory tracking */
3072 cpu_physical_memory_set_dirty_tracking(1);
3073
3074 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3075 }
3076
3077 bytes_transferred_last = bytes_transferred;
3078 bwidth = get_clock();
3079
3080 while (!qemu_file_rate_limit(f)) {
3081 int ret;
3082
3083 ret = ram_save_block(f);
3084 bytes_transferred += ret * TARGET_PAGE_SIZE;
3085 if (ret == 0) /* no more blocks */
3086 break;
3087 }
3088
3089 bwidth = get_clock() - bwidth;
3090 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3091
3092 /* if we haven't transferred anything this round, force expected_time to a
3093 * a very high value, but without crashing */
3094 if (bwidth == 0)
3095 bwidth = 0.000001;
3096
3097 /* try transferring iterative blocks of memory */
3098
3099 if (stage == 3) {
3100
3101 /* flush all remaining blocks regardless of rate limiting */
3102 while (ram_save_block(f) != 0) {
3103 bytes_transferred += TARGET_PAGE_SIZE;
3104 }
3105 cpu_physical_memory_set_dirty_tracking(0);
3106 }
3107
3108 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3109
3110 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3111
3112 return (stage == 2) && (expected_time <= migrate_max_downtime());
3113 }
3114
3115 static int ram_load_dead(QEMUFile *f, void *opaque)
3116 {
3117 RamDecompressState s1, *s = &s1;
3118 uint8_t buf[10];
3119 ram_addr_t i;
3120
3121 if (ram_decompress_open(s, f) < 0)
3122 return -EINVAL;
3123 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3124 if (ram_decompress_buf(s, buf, 1) < 0) {
3125 fprintf(stderr, "Error while reading ram block header\n");
3126 goto error;
3127 }
3128 if (buf[0] == 0) {
3129 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3130 BDRV_HASH_BLOCK_SIZE) < 0) {
3131 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3132 goto error;
3133 }
3134 } else {
3135 error:
3136 printf("Error block header\n");
3137 return -EINVAL;
3138 }
3139 }
3140 ram_decompress_close(s);
3141
3142 return 0;
3143 }
3144
3145 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3146 {
3147 ram_addr_t addr;
3148 int flags;
3149
3150 if (version_id == 1)
3151 return ram_load_v1(f, opaque);
3152
3153 if (version_id == 2) {
3154 if (qemu_get_be32(f) != last_ram_offset)
3155 return -EINVAL;
3156 return ram_load_dead(f, opaque);
3157 }
3158
3159 if (version_id != 3)
3160 return -EINVAL;
3161
3162 do {
3163 addr = qemu_get_be64(f);
3164
3165 flags = addr & ~TARGET_PAGE_MASK;
3166 addr &= TARGET_PAGE_MASK;
3167
3168 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3169 if (addr != last_ram_offset)
3170 return -EINVAL;
3171 }
3172
3173 if (flags & RAM_SAVE_FLAG_FULL) {
3174 if (ram_load_dead(f, opaque) < 0)
3175 return -EINVAL;
3176 }
3177
3178 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3179 uint8_t ch = qemu_get_byte(f);
3180 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3181 #ifndef _WIN32
3182 if (ch == 0 &&
3183 (!kvm_enabled() || kvm_has_sync_mmu())) {
3184 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3185 }
3186 #endif
3187 } else if (flags & RAM_SAVE_FLAG_PAGE)
3188 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3189 } while (!(flags & RAM_SAVE_FLAG_EOS));
3190
3191 return 0;
3192 }
3193
3194 void qemu_service_io(void)
3195 {
3196 qemu_notify_event();
3197 }
3198
3199 /***********************************************************/
3200 /* bottom halves (can be seen as timers which expire ASAP) */
3201
3202 struct QEMUBH {
3203 QEMUBHFunc *cb;
3204 void *opaque;
3205 int scheduled;
3206 int idle;
3207 int deleted;
3208 QEMUBH *next;
3209 };
3210
3211 static QEMUBH *first_bh = NULL;
3212
3213 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3214 {
3215 QEMUBH *bh;
3216 bh = qemu_mallocz(sizeof(QEMUBH));
3217 bh->cb = cb;
3218 bh->opaque = opaque;
3219 bh->next = first_bh;
3220 first_bh = bh;
3221 return bh;
3222 }
3223
3224 int qemu_bh_poll(void)
3225 {
3226 QEMUBH *bh, **bhp;
3227 int ret;
3228
3229 ret = 0;
3230 for (bh = first_bh; bh; bh = bh->next) {
3231 if (!bh->deleted && bh->scheduled) {
3232 bh->scheduled = 0;
3233 if (!bh->idle)
3234 ret = 1;
3235 bh->idle = 0;
3236 bh->cb(bh->opaque);
3237 }
3238 }
3239
3240 /* remove deleted bhs */
3241 bhp = &first_bh;
3242 while (*bhp) {
3243 bh = *bhp;
3244 if (bh->deleted) {
3245 *bhp = bh->next;
3246 qemu_free(bh);
3247 } else
3248 bhp = &bh->next;
3249 }
3250
3251 return ret;
3252 }
3253
3254 void qemu_bh_schedule_idle(QEMUBH *bh)
3255 {
3256 if (bh->scheduled)
3257 return;
3258 bh->scheduled = 1;
3259 bh->idle = 1;
3260 }
3261
3262 void qemu_bh_schedule(QEMUBH *bh)
3263 {
3264 if (bh->scheduled)
3265 return;
3266 bh->scheduled = 1;
3267 bh->idle = 0;
3268 /* stop the currently executing CPU to execute the BH ASAP */
3269 qemu_notify_event();
3270 }
3271
3272 void qemu_bh_cancel(QEMUBH *bh)
3273 {
3274 bh->scheduled = 0;
3275 }
3276
3277 void qemu_bh_delete(QEMUBH *bh)
3278 {
3279 bh->scheduled = 0;
3280 bh->deleted = 1;
3281 }
3282
3283 static void qemu_bh_update_timeout(int *timeout)
3284 {
3285 QEMUBH *bh;
3286
3287 for (bh = first_bh; bh; bh = bh->next) {
3288 if (!bh->deleted && bh->scheduled) {
3289 if (bh->idle) {
3290 /* idle bottom halves will be polled at least
3291 * every 10ms */
3292 *timeout = MIN(10, *timeout);
3293 } else {
3294 /* non-idle bottom halves will be executed
3295 * immediately */
3296 *timeout = 0;
3297 break;
3298 }
3299 }
3300 }
3301 }
3302
3303 /***********************************************************/
3304 /* machine registration */
3305
3306 static QEMUMachine *first_machine = NULL;
3307 QEMUMachine *current_machine = NULL;
3308
3309 int qemu_register_machine(QEMUMachine *m)
3310 {
3311 QEMUMachine **pm;
3312 pm = &first_machine;
3313 while (*pm != NULL)
3314 pm = &(*pm)->next;
3315 m->next = NULL;
3316 *pm = m;
3317 return 0;
3318 }
3319
3320 static QEMUMachine *find_machine(const char *name)
3321 {
3322 QEMUMachine *m;
3323
3324 for(m = first_machine; m != NULL; m = m->next) {
3325 if (!strcmp(m->name, name))
3326 return m;
3327 if (m->alias && !strcmp(m->alias, name))
3328 return m;
3329 }
3330 return NULL;
3331 }
3332
3333 static QEMUMachine *find_default_machine(void)
3334 {
3335 QEMUMachine *m;
3336
3337 for(m = first_machine; m != NULL; m = m->next) {
3338 if (m->is_default) {
3339 return m;
3340 }
3341 }
3342 return NULL;
3343 }
3344
3345 /***********************************************************/
3346 /* main execution loop */
3347
3348 static void gui_update(void *opaque)
3349 {
3350 uint64_t interval = GUI_REFRESH_INTERVAL;
3351 DisplayState *ds = opaque;
3352 DisplayChangeListener *dcl = ds->listeners;
3353
3354 dpy_refresh(ds);
3355
3356 while (dcl != NULL) {
3357 if (dcl->gui_timer_interval &&
3358 dcl->gui_timer_interval < interval)
3359 interval = dcl->gui_timer_interval;
3360 dcl = dcl->next;
3361 }
3362 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3363 }
3364
3365 static void nographic_update(void *opaque)
3366 {
3367 uint64_t interval = GUI_REFRESH_INTERVAL;
3368
3369 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3370 }
3371
3372 struct vm_change_state_entry {
3373 VMChangeStateHandler *cb;
3374 void *opaque;
3375 LIST_ENTRY (vm_change_state_entry) entries;
3376 };
3377
3378 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3379
3380 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3381 void *opaque)
3382 {
3383 VMChangeStateEntry *e;
3384
3385 e = qemu_mallocz(sizeof (*e));
3386
3387 e->cb = cb;
3388 e->opaque = opaque;
3389 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3390 return e;
3391 }
3392
3393 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3394 {
3395 LIST_REMOVE (e, entries);
3396 qemu_free (e);
3397 }
3398
3399 static void vm_state_notify(int running, int reason)
3400 {
3401 VMChangeStateEntry *e;
3402
3403 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3404 e->cb(e->opaque, running, reason);
3405 }
3406 }
3407
3408 static void resume_all_vcpus(void);
3409 static void pause_all_vcpus(void);
3410
3411 void vm_start(void)
3412 {
3413 if (!vm_running) {
3414 cpu_enable_ticks();
3415 vm_running = 1;
3416 vm_state_notify(1, 0);
3417 qemu_rearm_alarm_timer(alarm_timer);
3418 resume_all_vcpus();
3419 }
3420 }
3421
3422 /* reset/shutdown handler */
3423
3424 typedef struct QEMUResetEntry {
3425 TAILQ_ENTRY(QEMUResetEntry) entry;
3426 QEMUResetHandler *func;
3427 void *opaque;
3428 } QEMUResetEntry;
3429
3430 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3431 TAILQ_HEAD_INITIALIZER(reset_handlers);
3432 static int reset_requested;
3433 static int shutdown_requested;
3434 static int powerdown_requested;
3435 static int debug_requested;
3436 static int vmstop_requested;
3437
3438 int qemu_shutdown_requested(void)
3439 {
3440 int r = shutdown_requested;
3441 shutdown_requested = 0;
3442 return r;
3443 }
3444
3445 int qemu_reset_requested(void)
3446 {
3447 int r = reset_requested;
3448 reset_requested = 0;
3449 return r;
3450 }
3451
3452 int qemu_powerdown_requested(void)
3453 {
3454 int r = powerdown_requested;
3455 powerdown_requested = 0;
3456 return r;
3457 }
3458
3459 static int qemu_debug_requested(void)
3460 {
3461 int r = debug_requested;
3462 debug_requested = 0;
3463 return r;
3464 }
3465
3466 static int qemu_vmstop_requested(void)
3467 {
3468 int r = vmstop_requested;
3469 vmstop_requested = 0;
3470 return r;
3471 }
3472
3473 static void do_vm_stop(int reason)
3474 {
3475 if (vm_running) {
3476 cpu_disable_ticks();
3477 vm_running = 0;
3478 pause_all_vcpus();
3479 vm_state_notify(0, reason);
3480 }
3481 }
3482
3483 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3484 {
3485 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3486
3487 re->func = func;
3488 re->opaque = opaque;
3489 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3490 }
3491
3492 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3493 {
3494 QEMUResetEntry *re;
3495
3496 TAILQ_FOREACH(re, &reset_handlers, entry) {
3497 if (re->func == func && re->opaque == opaque) {
3498 TAILQ_REMOVE(&reset_handlers, re, entry);
3499 qemu_free(re);
3500 return;
3501 }
3502 }
3503 }
3504
3505 void qemu_system_reset(void)
3506 {
3507 QEMUResetEntry *re, *nre;
3508
3509 /* reset all devices */
3510 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3511 re->func(re->opaque);
3512 }
3513 }
3514
3515 void qemu_system_reset_request(void)
3516 {
3517 if (no_reboot) {
3518 shutdown_requested = 1;
3519 } else {
3520 reset_requested = 1;
3521 }
3522 qemu_notify_event();
3523 }
3524
3525 void qemu_system_shutdown_request(void)
3526 {
3527 shutdown_requested = 1;
3528 qemu_notify_event();
3529 }
3530
3531 void qemu_system_powerdown_request(void)
3532 {
3533 powerdown_requested = 1;
3534 qemu_notify_event();
3535 }
3536
3537 #ifdef CONFIG_IOTHREAD
3538 static void qemu_system_vmstop_request(int reason)
3539 {
3540 vmstop_requested = reason;
3541 qemu_notify_event();
3542 }
3543 #endif
3544
3545 #ifndef _WIN32
3546 static int io_thread_fd = -1;
3547
3548 static void qemu_event_increment(void)
3549 {
3550 static const char byte = 0;
3551
3552 if (io_thread_fd == -1)
3553 return;
3554
3555 write(io_thread_fd, &byte, sizeof(byte));
3556 }
3557
3558 static void qemu_event_read(void *opaque)
3559 {
3560 int fd = (unsigned long)opaque;
3561 ssize_t len;
3562
3563 /* Drain the notify pipe */
3564 do {
3565 char buffer[512];
3566 len = read(fd, buffer, sizeof(buffer));
3567 } while ((len == -1 && errno == EINTR) || len > 0);
3568 }
3569
3570 static int qemu_event_init(void)
3571 {
3572 int err;
3573 int fds[2];
3574
3575 err = pipe(fds);
3576 if (err == -1)
3577 return -errno;
3578
3579 err = fcntl_setfl(fds[0], O_NONBLOCK);
3580 if (err < 0)
3581 goto fail;
3582
3583 err = fcntl_setfl(fds[1], O_NONBLOCK);
3584 if (err < 0)
3585 goto fail;
3586
3587 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3588 (void *)(unsigned long)fds[0]);
3589
3590 io_thread_fd = fds[1];
3591 return 0;
3592
3593 fail:
3594 close(fds[0]);
3595 close(fds[1]);
3596 return err;
3597 }
3598 #else
3599 HANDLE qemu_event_handle;
3600
3601 static void dummy_event_handler(void *opaque)
3602 {
3603 }
3604
3605 static int qemu_event_init(void)
3606 {
3607 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3608 if (!qemu_event_handle) {
3609 perror("Failed CreateEvent");
3610 return -1;
3611 }
3612 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3613 return 0;
3614 }
3615
3616 static void qemu_event_increment(void)
3617 {
3618 SetEvent(qemu_event_handle);
3619 }
3620 #endif
3621
3622 static int cpu_can_run(CPUState *env)
3623 {
3624 if (env->stop)
3625 return 0;
3626 if (env->stopped)
3627 return 0;
3628 return 1;
3629 }
3630
3631 #ifndef CONFIG_IOTHREAD
3632 static int qemu_init_main_loop(void)
3633 {
3634 return qemu_event_init();
3635 }
3636
3637 void qemu_init_vcpu(void *_env)
3638 {
3639 CPUState *env = _env;
3640
3641 if (kvm_enabled())
3642 kvm_init_vcpu(env);
3643 env->nr_cores = smp_cores;
3644 env->nr_threads = smp_threads;
3645 return;
3646 }
3647
3648 int qemu_cpu_self(void *env)
3649 {
3650 return 1;
3651 }
3652
3653 static void resume_all_vcpus(void)
3654 {
3655 }
3656
3657 static void pause_all_vcpus(void)
3658 {
3659 }
3660
3661 void qemu_cpu_kick(void *env)
3662 {
3663 return;
3664 }
3665
3666 void qemu_notify_event(void)
3667 {
3668 CPUState *env = cpu_single_env;
3669
3670 if (env) {
3671 cpu_exit(env);
3672 }
3673 }
3674
3675 #define qemu_mutex_lock_iothread() do { } while (0)
3676 #define qemu_mutex_unlock_iothread() do { } while (0)
3677
3678 void vm_stop(int reason)
3679 {
3680 do_vm_stop(reason);
3681 }
3682
3683 #else /* CONFIG_IOTHREAD */
3684
3685 #include "qemu-thread.h"
3686
3687 QemuMutex qemu_global_mutex;
3688 static QemuMutex qemu_fair_mutex;
3689
3690 static QemuThread io_thread;
3691
3692 static QemuThread *tcg_cpu_thread;
3693 static QemuCond *tcg_halt_cond;
3694
3695 static int qemu_system_ready;
3696 /* cpu creation */
3697 static QemuCond qemu_cpu_cond;
3698 /* system init */
3699 static QemuCond qemu_system_cond;
3700 static QemuCond qemu_pause_cond;
3701
3702 static void block_io_signals(void);
3703 static void unblock_io_signals(void);
3704 static int tcg_has_work(void);
3705
3706 static int qemu_init_main_loop(void)
3707 {
3708 int ret;
3709
3710 ret = qemu_event_init();
3711 if (ret)
3712 return ret;
3713
3714 qemu_cond_init(&qemu_pause_cond);
3715 qemu_mutex_init(&qemu_fair_mutex);
3716 qemu_mutex_init(&qemu_global_mutex);
3717 qemu_mutex_lock(&qemu_global_mutex);
3718
3719 unblock_io_signals();
3720 qemu_thread_self(&io_thread);
3721
3722 return 0;
3723 }
3724
3725 static void qemu_wait_io_event(CPUState *env)
3726 {
3727 while (!tcg_has_work())
3728 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3729
3730 qemu_mutex_unlock(&qemu_global_mutex);
3731
3732 /*
3733 * Users of qemu_global_mutex can be starved, having no chance
3734 * to acquire it since this path will get to it first.
3735 * So use another lock to provide fairness.
3736 */
3737 qemu_mutex_lock(&qemu_fair_mutex);
3738 qemu_mutex_unlock(&qemu_fair_mutex);
3739
3740 qemu_mutex_lock(&qemu_global_mutex);
3741 if (env->stop) {
3742 env->stop = 0;
3743 env->stopped = 1;
3744 qemu_cond_signal(&qemu_pause_cond);
3745 }
3746 }
3747
3748 static int qemu_cpu_exec(CPUState *env);
3749
3750 static void *kvm_cpu_thread_fn(void *arg)
3751 {
3752 CPUState *env = arg;
3753
3754 block_io_signals();
3755 qemu_thread_self(env->thread);
3756 kvm_init_vcpu(env);
3757
3758 /* signal CPU creation */
3759 qemu_mutex_lock(&qemu_global_mutex);
3760 env->created = 1;
3761 qemu_cond_signal(&qemu_cpu_cond);
3762
3763 /* and wait for machine initialization */
3764 while (!qemu_system_ready)
3765 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3766
3767 while (1) {
3768 if (cpu_can_run(env))
3769 qemu_cpu_exec(env);
3770 qemu_wait_io_event(env);
3771 }
3772
3773 return NULL;
3774 }
3775
3776 static void tcg_cpu_exec(void);
3777
3778 static void *tcg_cpu_thread_fn(void *arg)
3779 {
3780 CPUState *env = arg;
3781
3782 block_io_signals();
3783 qemu_thread_self(env->thread);
3784
3785 /* signal CPU creation */
3786 qemu_mutex_lock(&qemu_global_mutex);
3787 for (env = first_cpu; env != NULL; env = env->next_cpu)
3788 env->created = 1;
3789 qemu_cond_signal(&qemu_cpu_cond);
3790
3791 /* and wait for machine initialization */
3792 while (!qemu_system_ready)
3793 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3794
3795 while (1) {
3796 tcg_cpu_exec();
3797 qemu_wait_io_event(cur_cpu);
3798 }
3799
3800 return NULL;
3801 }
3802
3803 void qemu_cpu_kick(void *_env)
3804 {
3805 CPUState *env = _env;
3806 qemu_cond_broadcast(env->halt_cond);
3807 if (kvm_enabled())
3808 qemu_thread_signal(env->thread, SIGUSR1);
3809 }
3810
3811 int qemu_cpu_self(void *env)
3812 {
3813 return (cpu_single_env != NULL);
3814 }
3815
3816 static void cpu_signal(int sig)
3817 {
3818 if (cpu_single_env)
3819 cpu_exit(cpu_single_env);
3820 }
3821
3822 static void block_io_signals(void)
3823 {
3824 sigset_t set;
3825 struct sigaction sigact;
3826
3827 sigemptyset(&set);
3828 sigaddset(&set, SIGUSR2);
3829 sigaddset(&set, SIGIO);
3830 sigaddset(&set, SIGALRM);
3831 pthread_sigmask(SIG_BLOCK, &set, NULL);
3832
3833 sigemptyset(&set);
3834 sigaddset(&set, SIGUSR1);
3835 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3836
3837 memset(&sigact, 0, sizeof(sigact));
3838 sigact.sa_handler = cpu_signal;
3839 sigaction(SIGUSR1, &sigact, NULL);
3840 }
3841
3842 static void unblock_io_signals(void)
3843 {
3844 sigset_t set;
3845
3846 sigemptyset(&set);
3847 sigaddset(&set, SIGUSR2);
3848 sigaddset(&set, SIGIO);
3849 sigaddset(&set, SIGALRM);
3850 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3851
3852 sigemptyset(&set);
3853 sigaddset(&set, SIGUSR1);
3854 pthread_sigmask(SIG_BLOCK, &set, NULL);
3855 }
3856
3857 static void qemu_signal_lock(unsigned int msecs)
3858 {
3859 qemu_mutex_lock(&qemu_fair_mutex);
3860
3861 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3862 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3863 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3864 break;
3865 }
3866 qemu_mutex_unlock(&qemu_fair_mutex);
3867 }
3868
3869 static void qemu_mutex_lock_iothread(void)
3870 {
3871 if (kvm_enabled()) {
3872 qemu_mutex_lock(&qemu_fair_mutex);
3873 qemu_mutex_lock(&qemu_global_mutex);
3874 qemu_mutex_unlock(&qemu_fair_mutex);
3875 } else
3876 qemu_signal_lock(100);
3877 }
3878
3879 static void qemu_mutex_unlock_iothread(void)
3880 {
3881 qemu_mutex_unlock(&qemu_global_mutex);
3882 }
3883
3884 static int all_vcpus_paused(void)
3885 {
3886 CPUState *penv = first_cpu;
3887
3888 while (penv) {
3889 if (!penv->stopped)
3890 return 0;
3891 penv = (CPUState *)penv->next_cpu;
3892 }
3893
3894 return 1;
3895 }
3896
3897 static void pause_all_vcpus(void)
3898 {
3899 CPUState *penv = first_cpu;
3900
3901 while (penv) {
3902 penv->stop = 1;
3903 qemu_thread_signal(penv->thread, SIGUSR1);
3904 qemu_cpu_kick(penv);
3905 penv = (CPUState *)penv->next_cpu;
3906 }
3907
3908 while (!all_vcpus_paused()) {
3909 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3910 penv = first_cpu;
3911 while (penv) {
3912 qemu_thread_signal(penv->thread, SIGUSR1);
3913 penv = (CPUState *)penv->next_cpu;
3914 }
3915 }
3916 }
3917
3918 static void resume_all_vcpus(void)
3919 {
3920 CPUState *penv = first_cpu;
3921
3922 while (penv) {
3923 penv->stop = 0;
3924 penv->stopped = 0;
3925 qemu_thread_signal(penv->thread, SIGUSR1);
3926 qemu_cpu_kick(penv);
3927 penv = (CPUState *)penv->next_cpu;
3928 }
3929 }
3930
3931 static void tcg_init_vcpu(void *_env)
3932 {
3933 CPUState *env = _env;
3934 /* share a single thread for all cpus with TCG */
3935 if (!tcg_cpu_thread) {
3936 env->thread = qemu_mallocz(sizeof(QemuThread));
3937 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3938 qemu_cond_init(env->halt_cond);
3939 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3940 while (env->created == 0)
3941 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3942 tcg_cpu_thread = env->thread;
3943 tcg_halt_cond = env->halt_cond;
3944 } else {
3945 env->thread = tcg_cpu_thread;
3946 env->halt_cond = tcg_halt_cond;
3947 }
3948 }
3949
3950 static void kvm_start_vcpu(CPUState *env)
3951 {
3952 env->thread = qemu_mallocz(sizeof(QemuThread));
3953 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3954 qemu_cond_init(env->halt_cond);
3955 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3956 while (env->created == 0)
3957 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3958 }
3959
3960 void qemu_init_vcpu(void *_env)
3961 {
3962 CPUState *env = _env;
3963
3964 if (kvm_enabled())
3965 kvm_start_vcpu(env);
3966 else
3967 tcg_init_vcpu(env);
3968 env->nr_cores = smp_cores;
3969 env->nr_threads = smp_threads;
3970 }
3971
3972 void qemu_notify_event(void)
3973 {
3974 qemu_event_increment();
3975 }
3976
3977 void vm_stop(int reason)
3978 {
3979 QemuThread me;
3980 qemu_thread_self(&me);
3981
3982 if (!qemu_thread_equal(&me, &io_thread)) {
3983 qemu_system_vmstop_request(reason);
3984 /*
3985 * FIXME: should not return to device code in case
3986 * vm_stop() has been requested.
3987 */
3988 if (cpu_single_env) {
3989 cpu_exit(cpu_single_env);
3990 cpu_single_env->stop = 1;
3991 }
3992 return;
3993 }
3994 do_vm_stop(reason);
3995 }
3996
3997 #endif
3998
3999
4000 #ifdef _WIN32
4001 static void host_main_loop_wait(int *timeout)
4002 {
4003 int ret, ret2, i;
4004 PollingEntry *pe;
4005
4006
4007 /* XXX: need to suppress polling by better using win32 events */
4008 ret = 0;
4009 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4010 ret |= pe->func(pe->opaque);
4011 }
4012 if (ret == 0) {
4013 int err;
4014 WaitObjects *w = &wait_objects;
4015
4016 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4017 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4018 if (w->func[ret - WAIT_OBJECT_0])
4019 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4020
4021 /* Check for additional signaled events */
4022 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4023
4024 /* Check if event is signaled */
4025 ret2 = WaitForSingleObject(w->events[i], 0);
4026 if(ret2 == WAIT_OBJECT_0) {
4027 if (w->func[i])
4028 w->func[i](w->opaque[i]);
4029 } else if (ret2 == WAIT_TIMEOUT) {
4030 } else {
4031 err = GetLastError();
4032 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4033 }
4034 }
4035 } else if (ret == WAIT_TIMEOUT) {
4036 } else {
4037 err = GetLastError();
4038 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4039 }
4040 }
4041
4042 *timeout = 0;
4043 }
4044 #else
4045 static void host_main_loop_wait(int *timeout)
4046 {
4047 }
4048 #endif
4049
4050 void main_loop_wait(int timeout)
4051 {
4052 IOHandlerRecord *ioh;
4053 fd_set rfds, wfds, xfds;
4054 int ret, nfds;
4055 struct timeval tv;
4056
4057 qemu_bh_update_timeout(&timeout);
4058
4059 host_main_loop_wait(&timeout);
4060
4061 /* poll any events */
4062 /* XXX: separate device handlers from system ones */
4063 nfds = -1;
4064 FD_ZERO(&rfds);
4065 FD_ZERO(&wfds);
4066 FD_ZERO(&xfds);
4067 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4068 if (ioh->deleted)
4069 continue;
4070 if (ioh->fd_read &&
4071 (!ioh->fd_read_poll ||
4072 ioh->fd_read_poll(ioh->opaque) != 0)) {
4073 FD_SET(ioh->fd, &rfds);
4074 if (ioh->fd > nfds)
4075 nfds = ioh->fd;
4076 }
4077 if (ioh->fd_write) {
4078 FD_SET(ioh->fd, &wfds);
4079 if (ioh->fd > nfds)
4080 nfds = ioh->fd;
4081 }
4082 }
4083
4084 tv.tv_sec = timeout / 1000;
4085 tv.tv_usec = (timeout % 1000) * 1000;
4086
4087 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4088
4089 qemu_mutex_unlock_iothread();
4090 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4091 qemu_mutex_lock_iothread();
4092 if (ret > 0) {
4093 IOHandlerRecord **pioh;
4094
4095 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4096 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4097 ioh->fd_read(ioh->opaque);
4098 }
4099 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4100 ioh->fd_write(ioh->opaque);
4101 }
4102 }
4103
4104 /* remove deleted IO handlers */
4105 pioh = &first_io_handler;
4106 while (*pioh) {
4107 ioh = *pioh;
4108 if (ioh->deleted) {
4109 *pioh = ioh->next;
4110 qemu_free(ioh);
4111 } else
4112 pioh = &ioh->next;
4113 }
4114 }
4115
4116 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4117
4118 /* rearm timer, if not periodic */
4119 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4120 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4121 qemu_rearm_alarm_timer(alarm_timer);
4122 }
4123
4124 /* vm time timers */
4125 if (vm_running) {
4126 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4127 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4128 qemu_get_clock(vm_clock));
4129 }
4130
4131 /* real time timers */
4132 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4133 qemu_get_clock(rt_clock));
4134
4135 /* Check bottom-halves last in case any of the earlier events triggered
4136 them. */
4137 qemu_bh_poll();
4138
4139 }
4140
4141 static int qemu_cpu_exec(CPUState *env)
4142 {
4143 int ret;
4144 #ifdef CONFIG_PROFILER
4145 int64_t ti;
4146 #endif
4147
4148 #ifdef CONFIG_PROFILER
4149 ti = profile_getclock();
4150 #endif
4151 if (use_icount) {
4152 int64_t count;
4153 int decr;
4154 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4155 env->icount_decr.u16.low = 0;
4156 env->icount_extra = 0;
4157 count = qemu_next_deadline();
4158 count = (count + (1 << icount_time_shift) - 1)
4159 >> icount_time_shift;
4160 qemu_icount += count;
4161 decr = (count > 0xffff) ? 0xffff : count;
4162 count -= decr;
4163 env->icount_decr.u16.low = decr;
4164 env->icount_extra = count;
4165 }
4166 ret = cpu_exec(env);
4167 #ifdef CONFIG_PROFILER
4168 qemu_time += profile_getclock() - ti;
4169 #endif
4170 if (use_icount) {
4171 /* Fold pending instructions back into the
4172 instruction counter, and clear the interrupt flag. */
4173 qemu_icount -= (env->icount_decr.u16.low
4174 + env->icount_extra);
4175 env->icount_decr.u32 = 0;
4176 env->icount_extra = 0;
4177 }
4178 return ret;
4179 }
4180
4181 static void tcg_cpu_exec(void)
4182 {
4183 int ret = 0;
4184
4185 if (next_cpu == NULL)
4186 next_cpu = first_cpu;
4187 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4188 CPUState *env = cur_cpu = next_cpu;
4189
4190 if (!vm_running)
4191 break;
4192 if (timer_alarm_pending) {
4193 timer_alarm_pending = 0;
4194 break;
4195 }
4196 if (cpu_can_run(env))
4197 ret = qemu_cpu_exec(env);
4198 if (ret == EXCP_DEBUG) {
4199 gdb_set_stop_cpu(env);
4200 debug_requested = 1;
4201 break;
4202 }
4203 }
4204 }
4205
4206 static int cpu_has_work(CPUState *env)
4207 {
4208 if (env->stop)
4209 return 1;
4210 if (env->stopped)
4211 return 0;
4212 if (!env->halted)
4213 return 1;
4214 if (qemu_cpu_has_work(env))
4215 return 1;
4216 return 0;
4217 }
4218
4219 static int tcg_has_work(void)
4220 {
4221 CPUState *env;
4222
4223 for (env = first_cpu; env != NULL; env = env->next_cpu)
4224 if (cpu_has_work(env))
4225 return 1;
4226 return 0;
4227 }
4228
4229 static int qemu_calculate_timeout(void)
4230 {
4231 #ifndef CONFIG_IOTHREAD
4232 int timeout;
4233
4234 if (!vm_running)
4235 timeout = 5000;
4236 else if (tcg_has_work())
4237 timeout = 0;
4238 else if (!use_icount)
4239 timeout = 5000;
4240 else {
4241 /* XXX: use timeout computed from timers */
4242 int64_t add;
4243 int64_t delta;
4244 /* Advance virtual time to the next event. */
4245 if (use_icount == 1) {
4246 /* When not using an adaptive execution frequency
4247 we tend to get badly out of sync with real time,
4248 so just delay for a reasonable amount of time. */
4249 delta = 0;
4250 } else {
4251 delta = cpu_get_icount() - cpu_get_clock();
4252 }
4253 if (delta > 0) {
4254 /* If virtual time is ahead of real time then just
4255 wait for IO. */
4256 timeout = (delta / 1000000) + 1;
4257 } else {
4258 /* Wait for either IO to occur or the next
4259 timer event. */
4260 add = qemu_next_deadline();
4261 /* We advance the timer before checking for IO.
4262 Limit the amount we advance so that early IO
4263 activity won't get the guest too far ahead. */
4264 if (add > 10000000)
4265 add = 10000000;
4266 delta += add;
4267 add = (add + (1 << icount_time_shift) - 1)
4268 >> icount_time_shift;
4269 qemu_icount += add;
4270 timeout = delta / 1000000;
4271 if (timeout < 0)
4272 timeout = 0;
4273 }
4274 }
4275
4276 return timeout;
4277 #else /* CONFIG_IOTHREAD */
4278 return 1000;
4279 #endif
4280 }
4281
4282 static int vm_can_run(void)
4283 {
4284 if (powerdown_requested)
4285 return 0;
4286 if (reset_requested)
4287 return 0;
4288 if (shutdown_requested)
4289 return 0;
4290 if (debug_requested)
4291 return 0;
4292 return 1;
4293 }
4294
4295 qemu_irq qemu_system_powerdown;
4296
4297 static void main_loop(void)
4298 {
4299 int r;
4300
4301 #ifdef CONFIG_IOTHREAD
4302 qemu_system_ready = 1;
4303 qemu_cond_broadcast(&qemu_system_cond);
4304 #endif
4305
4306 for (;;) {
4307 do {
4308 #ifdef CONFIG_PROFILER
4309 int64_t ti;
4310 #endif
4311 #ifndef CONFIG_IOTHREAD
4312 tcg_cpu_exec();
4313 #endif
4314 #ifdef CONFIG_PROFILER
4315 ti = profile_getclock();
4316 #endif
4317 main_loop_wait(qemu_calculate_timeout());
4318 #ifdef CONFIG_PROFILER
4319 dev_time += profile_getclock() - ti;
4320 #endif
4321 } while (vm_can_run());
4322
4323 if (qemu_debug_requested())
4324 vm_stop(EXCP_DEBUG);
4325 if (qemu_shutdown_requested()) {
4326 if (no_shutdown) {
4327 vm_stop(0);
4328 no_shutdown = 0;
4329 } else
4330 break;
4331 }
4332 if (qemu_reset_requested()) {
4333 pause_all_vcpus();
4334 qemu_system_reset();
4335 resume_all_vcpus();
4336 }
4337 if (qemu_powerdown_requested()) {
4338 qemu_irq_raise(qemu_system_powerdown);
4339 }
4340 if ((r = qemu_vmstop_requested()))
4341 vm_stop(r);
4342 }
4343 pause_all_vcpus();
4344 }
4345
4346 static void version(void)
4347 {
4348 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4349 }
4350
4351 static void help(int exitcode)
4352 {
4353 version();
4354 printf("usage: %s [options] [disk_image]\n"
4355 "\n"
4356 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4357 "\n"
4358 #define DEF(option, opt_arg, opt_enum, opt_help) \
4359 opt_help
4360 #define DEFHEADING(text) stringify(text) "\n"
4361 #include "qemu-options.h"
4362 #undef DEF
4363 #undef DEFHEADING
4364 #undef GEN_DOCS
4365 "\n"
4366 "During emulation, the following keys are useful:\n"
4367 "ctrl-alt-f toggle full screen\n"
4368 "ctrl-alt-n switch to virtual console 'n'\n"
4369 "ctrl-alt toggle mouse and keyboard grab\n"
4370 "\n"
4371 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4372 ,
4373 "qemu",
4374 DEFAULT_RAM_SIZE,
4375 #ifndef _WIN32
4376 DEFAULT_NETWORK_SCRIPT,
4377 DEFAULT_NETWORK_DOWN_SCRIPT,
4378 #endif
4379 DEFAULT_GDBSTUB_PORT,
4380 "/tmp/qemu.log");
4381 exit(exitcode);
4382 }
4383
4384 #define HAS_ARG 0x0001
4385
4386 enum {
4387 #define DEF(option, opt_arg, opt_enum, opt_help) \
4388 opt_enum,
4389 #define DEFHEADING(text)
4390 #include "qemu-options.h"
4391 #undef DEF
4392 #undef DEFHEADING
4393 #undef GEN_DOCS
4394 };
4395
4396 typedef struct QEMUOption {
4397 const char *name;
4398 int flags;
4399 int index;
4400 } QEMUOption;
4401
4402 static const QEMUOption qemu_options[] = {
4403 { "h", 0, QEMU_OPTION_h },
4404 #define DEF(option, opt_arg, opt_enum, opt_help) \
4405 { option, opt_arg, opt_enum },
4406 #define DEFHEADING(text)
4407 #include "qemu-options.h"
4408 #undef DEF
4409 #undef DEFHEADING
4410 #undef GEN_DOCS
4411 { NULL },
4412 };
4413
4414 #ifdef HAS_AUDIO
4415 struct soundhw soundhw[] = {
4416 #ifdef HAS_AUDIO_CHOICE
4417 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4418 {
4419 "pcspk",
4420 "PC speaker",
4421 0,
4422 1,
4423 { .init_isa = pcspk_audio_init }
4424 },
4425 #endif
4426
4427 #ifdef CONFIG_SB16
4428 {
4429 "sb16",
4430 "Creative Sound Blaster 16",
4431 0,
4432 1,
4433 { .init_isa = SB16_init }
4434 },
4435 #endif
4436
4437 #ifdef CONFIG_CS4231A
4438 {
4439 "cs4231a",
4440 "CS4231A",
4441 0,
4442 1,
4443 { .init_isa = cs4231a_init }
4444 },
4445 #endif
4446
4447 #ifdef CONFIG_ADLIB
4448 {
4449 "adlib",
4450 #ifdef HAS_YMF262
4451 "Yamaha YMF262 (OPL3)",
4452 #else
4453 "Yamaha YM3812 (OPL2)",
4454 #endif
4455 0,
4456 1,
4457 { .init_isa = Adlib_init }
4458 },
4459 #endif
4460
4461 #ifdef CONFIG_GUS
4462 {
4463 "gus",
4464 "Gravis Ultrasound GF1",
4465 0,
4466 1,
4467 { .init_isa = GUS_init }
4468 },
4469 #endif
4470
4471 #ifdef CONFIG_AC97
4472 {
4473 "ac97",
4474 "Intel 82801AA AC97 Audio",
4475 0,
4476 0,
4477 { .init_pci = ac97_init }
4478 },
4479 #endif
4480
4481 #ifdef CONFIG_ES1370
4482 {
4483 "es1370",
4484 "ENSONIQ AudioPCI ES1370",
4485 0,
4486 0,
4487 { .init_pci = es1370_init }
4488 },
4489 #endif
4490
4491 #endif /* HAS_AUDIO_CHOICE */
4492
4493 { NULL, NULL, 0, 0, { NULL } }
4494 };
4495
4496 static void select_soundhw (const char *optarg)
4497 {
4498 struct soundhw *c;
4499
4500 if (*optarg == '?') {
4501 show_valid_cards:
4502
4503 printf ("Valid sound card names (comma separated):\n");
4504 for (c = soundhw; c->name; ++c) {
4505 printf ("%-11s %s\n", c->name, c->descr);
4506 }
4507 printf ("\n-soundhw all will enable all of the above\n");
4508 exit (*optarg != '?');
4509 }
4510 else {
4511 size_t l;
4512 const char *p;
4513 char *e;
4514 int bad_card = 0;
4515
4516 if (!strcmp (optarg, "all")) {
4517 for (c = soundhw; c->name; ++c) {
4518 c->enabled = 1;
4519 }
4520 return;
4521 }
4522
4523 p = optarg;
4524 while (*p) {
4525 e = strchr (p, ',');
4526 l = !e ? strlen (p) : (size_t) (e - p);
4527
4528 for (c = soundhw; c->name; ++c) {
4529 if (!strncmp (c->name, p, l) && !c->name[l]) {
4530 c->enabled = 1;
4531 break;
4532 }
4533 }
4534
4535 if (!c->name) {
4536 if (l > 80) {
4537 fprintf (stderr,
4538 "Unknown sound card name (too big to show)\n");
4539 }
4540 else {
4541 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4542 (int) l, p);
4543 }
4544 bad_card = 1;
4545 }
4546 p += l + (e != NULL);
4547 }
4548
4549 if (bad_card)
4550 goto show_valid_cards;
4551 }
4552 }
4553 #endif
4554
4555 static void select_vgahw (const char *p)
4556 {
4557 const char *opts;
4558
4559 vga_interface_type = VGA_NONE;
4560 if (strstart(p, "std", &opts)) {
4561 vga_interface_type = VGA_STD;
4562 } else if (strstart(p, "cirrus", &opts)) {
4563 vga_interface_type = VGA_CIRRUS;
4564 } else if (strstart(p, "vmware", &opts)) {
4565 vga_interface_type = VGA_VMWARE;
4566 } else if (strstart(p, "xenfb", &opts)) {
4567 vga_interface_type = VGA_XENFB;
4568 } else if (!strstart(p, "none", &opts)) {
4569 invalid_vga:
4570 fprintf(stderr, "Unknown vga type: %s\n", p);
4571 exit(1);
4572 }
4573 while (*opts) {
4574 const char *nextopt;
4575
4576 if (strstart(opts, ",retrace=", &nextopt)) {
4577 opts = nextopt;
4578 if (strstart(opts, "dumb", &nextopt))
4579 vga_retrace_method = VGA_RETRACE_DUMB;
4580 else if (strstart(opts, "precise", &nextopt))
4581 vga_retrace_method = VGA_RETRACE_PRECISE;
4582 else goto invalid_vga;
4583 } else goto invalid_vga;
4584 opts = nextopt;
4585 }
4586 }
4587
4588 #ifdef TARGET_I386
4589 static int balloon_parse(const char *arg)
4590 {
4591 QemuOpts *opts;
4592
4593 if (strcmp(arg, "none") == 0) {
4594 return 0;
4595 }
4596
4597 if (!strncmp(arg, "virtio", 6)) {
4598 if (arg[6] == ',') {
4599 /* have params -> parse them */
4600 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4601 if (!opts)
4602 return -1;
4603 } else {
4604 /* create empty opts */
4605 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4606 }
4607 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4608 return 0;
4609 }
4610
4611 return -1;
4612 }
4613 #endif
4614
4615 #ifdef _WIN32
4616 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4617 {
4618 exit(STATUS_CONTROL_C_EXIT);
4619 return TRUE;
4620 }
4621 #endif
4622
4623 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4624 {
4625 int ret;
4626
4627 if(strlen(str) != 36)
4628 return -1;
4629
4630 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4631 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4632 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4633
4634 if(ret != 16)
4635 return -1;
4636
4637 #ifdef TARGET_I386
4638 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4639 #endif
4640
4641 return 0;
4642 }
4643
4644 #define MAX_NET_CLIENTS 32
4645
4646 #ifndef _WIN32
4647
4648 static void termsig_handler(int signal)
4649 {
4650 qemu_system_shutdown_request();
4651 }
4652
4653 static void sigchld_handler(int signal)
4654 {
4655 waitpid(-1, NULL, WNOHANG);
4656 }
4657
4658 static void sighandler_setup(void)
4659 {
4660 struct sigaction act;
4661
4662 memset(&act, 0, sizeof(act));
4663 act.sa_handler = termsig_handler;
4664 sigaction(SIGINT, &act, NULL);
4665 sigaction(SIGHUP, &act, NULL);
4666 sigaction(SIGTERM, &act, NULL);
4667
4668 act.sa_handler = sigchld_handler;
4669 act.sa_flags = SA_NOCLDSTOP;
4670 sigaction(SIGCHLD, &act, NULL);
4671 }
4672
4673 #endif
4674
4675 #ifdef _WIN32
4676 /* Look for support files in the same directory as the executable. */
4677 static char *find_datadir(const char *argv0)
4678 {
4679 char *p;
4680 char buf[MAX_PATH];
4681 DWORD len;
4682
4683 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4684 if (len == 0) {
4685 return NULL;
4686 }
4687
4688 buf[len] = 0;
4689 p = buf + len - 1;
4690 while (p != buf && *p != '\\')
4691 p--;
4692 *p = 0;
4693 if (access(buf, R_OK) == 0) {
4694 return qemu_strdup(buf);
4695 }
4696 return NULL;
4697 }
4698 #else /* !_WIN32 */
4699
4700 /* Find a likely location for support files using the location of the binary.
4701 For installed binaries this will be "$bindir/../share/qemu". When
4702 running from the build tree this will be "$bindir/../pc-bios". */
4703 #define SHARE_SUFFIX "/share/qemu"
4704 #define BUILD_SUFFIX "/pc-bios"
4705 static char *find_datadir(const char *argv0)
4706 {
4707 char *dir;
4708 char *p = NULL;
4709 char *res;
4710 #ifdef PATH_MAX
4711 char buf[PATH_MAX];
4712 #endif
4713 size_t max_len;
4714
4715 #if defined(__linux__)
4716 {
4717 int len;
4718 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4719 if (len > 0) {
4720 buf[len] = 0;
4721 p = buf;
4722 }
4723 }
4724 #elif defined(__FreeBSD__)
4725 {
4726 int len;
4727 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4728 if (len > 0) {
4729 buf[len] = 0;
4730 p = buf;
4731 }
4732 }
4733 #endif
4734 /* If we don't have any way of figuring out the actual executable
4735 location then try argv[0]. */
4736 if (!p) {
4737 #ifdef PATH_MAX
4738 p = buf;
4739 #endif
4740 p = realpath(argv0, p);
4741 if (!p) {
4742 return NULL;
4743 }
4744 }
4745 dir = dirname(p);
4746 dir = dirname(dir);
4747
4748 max_len = strlen(dir) +
4749 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4750 res = qemu_mallocz(max_len);
4751 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4752 if (access(res, R_OK)) {
4753 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4754 if (access(res, R_OK)) {
4755 qemu_free(res);
4756 res = NULL;
4757 }
4758 }
4759 #ifndef PATH_MAX
4760 free(p);
4761 #endif
4762 return res;
4763 }
4764 #undef SHARE_SUFFIX
4765 #undef BUILD_SUFFIX
4766 #endif
4767
4768 char *qemu_find_file(int type, const char *name)
4769 {
4770 int len;
4771 const char *subdir;
4772 char *buf;
4773
4774 /* If name contains path separators then try it as a straight path. */
4775 if ((strchr(name, '/') || strchr(name, '\\'))
4776 && access(name, R_OK) == 0) {
4777 return strdup(name);
4778 }
4779 switch (type) {
4780 case QEMU_FILE_TYPE_BIOS:
4781 subdir = "";
4782 break;
4783 case QEMU_FILE_TYPE_KEYMAP:
4784 subdir = "keymaps/";
4785 break;
4786 default:
4787 abort();
4788 }
4789 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4790 buf = qemu_mallocz(len);
4791 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4792 if (access(buf, R_OK)) {
4793 qemu_free(buf);
4794 return NULL;
4795 }
4796 return buf;
4797 }
4798
4799 static int device_init_func(QemuOpts *opts, void *opaque)
4800 {
4801 DeviceState *dev;
4802
4803 dev = qdev_device_add(opts);
4804 if (!dev)
4805 return -1;
4806 return 0;
4807 }
4808
4809 struct device_config {
4810 enum {
4811 DEV_USB, /* -usbdevice */
4812 DEV_BT, /* -bt */
4813 } type;
4814 const char *cmdline;
4815 TAILQ_ENTRY(device_config) next;
4816 };
4817 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4818
4819 static void add_device_config(int type, const char *cmdline)
4820 {
4821 struct device_config *conf;
4822
4823 conf = qemu_mallocz(sizeof(*conf));
4824 conf->type = type;
4825 conf->cmdline = cmdline;
4826 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4827 }
4828
4829 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4830 {
4831 struct device_config *conf;
4832 int rc;
4833
4834 TAILQ_FOREACH(conf, &device_configs, next) {
4835 if (conf->type != type)
4836 continue;
4837 rc = func(conf->cmdline);
4838 if (0 != rc)
4839 return rc;
4840 }
4841 return 0;
4842 }
4843
4844 int main(int argc, char **argv, char **envp)
4845 {
4846 const char *gdbstub_dev = NULL;
4847 uint32_t boot_devices_bitmap = 0;
4848 int i;
4849 int snapshot, linux_boot, net_boot;
4850 const char *initrd_filename;
4851 const char *kernel_filename, *kernel_cmdline;
4852 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4853 DisplayState *ds;
4854 DisplayChangeListener *dcl;
4855 int cyls, heads, secs, translation;
4856 const char *net_clients[MAX_NET_CLIENTS];
4857 int nb_net_clients;
4858 QemuOpts *hda_opts = NULL, *opts;
4859 int optind;
4860 const char *r, *optarg;
4861 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4862 const char *monitor_devices[MAX_MONITOR_DEVICES];
4863 int monitor_device_index;
4864 const char *serial_devices[MAX_SERIAL_PORTS];
4865 int serial_device_index;
4866 const char *parallel_devices[MAX_PARALLEL_PORTS];
4867 int parallel_device_index;
4868 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4869 int virtio_console_index;
4870 const char *loadvm = NULL;
4871 QEMUMachine *machine;
4872 const char *cpu_model;
4873 #ifndef _WIN32
4874 int fds[2];
4875 #endif
4876 int tb_size;
4877 const char *pid_file = NULL;
4878 const char *incoming = NULL;
4879 #ifndef _WIN32
4880 int fd = 0;
4881 struct passwd *pwd = NULL;
4882 const char *chroot_dir = NULL;
4883 const char *run_as = NULL;
4884 #endif
4885 CPUState *env;
4886 int show_vnc_port = 0;
4887
4888 qemu_errors_to_file(stderr);
4889 qemu_cache_utils_init(envp);
4890
4891 LIST_INIT (&vm_change_state_head);
4892 #ifndef _WIN32
4893 {
4894 struct sigaction act;
4895 sigfillset(&act.sa_mask);
4896 act.sa_flags = 0;
4897 act.sa_handler = SIG_IGN;
4898 sigaction(SIGPIPE, &act, NULL);
4899 }
4900 #else
4901 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4902 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4903 QEMU to run on a single CPU */
4904 {
4905 HANDLE h;
4906 DWORD mask, smask;
4907 int i;
4908 h = GetCurrentProcess();
4909 if (GetProcessAffinityMask(h, &mask, &smask)) {
4910 for(i = 0; i < 32; i++) {
4911 if (mask & (1 << i))
4912 break;
4913 }
4914 if (i != 32) {
4915 mask = 1 << i;
4916 SetProcessAffinityMask(h, mask);
4917 }
4918 }
4919 }
4920 #endif
4921
4922 module_call_init(MODULE_INIT_MACHINE);
4923 machine = find_default_machine();
4924 cpu_model = NULL;
4925 initrd_filename = NULL;
4926 ram_size = 0;
4927 snapshot = 0;
4928 kernel_filename = NULL;
4929 kernel_cmdline = "";
4930 cyls = heads = secs = 0;
4931 translation = BIOS_ATA_TRANSLATION_AUTO;
4932
4933 serial_devices[0] = "vc:80Cx24C";
4934 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4935 serial_devices[i] = NULL;
4936 serial_device_index = 0;
4937
4938 parallel_devices[0] = "vc:80Cx24C";
4939 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4940 parallel_devices[i] = NULL;
4941 parallel_device_index = 0;
4942
4943 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4944 virtio_consoles[i] = NULL;
4945 virtio_console_index = 0;
4946
4947 monitor_devices[0] = "vc:80Cx24C";
4948 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4949 monitor_devices[i] = NULL;
4950 }
4951 monitor_device_index = 0;
4952
4953 for (i = 0; i < MAX_NODES; i++) {
4954 node_mem[i] = 0;
4955 node_cpumask[i] = 0;
4956 }
4957
4958 nb_net_clients = 0;
4959 nb_numa_nodes = 0;
4960 nb_nics = 0;
4961
4962 tb_size = 0;
4963 autostart= 1;
4964
4965 optind = 1;
4966 for(;;) {
4967 if (optind >= argc)
4968 break;
4969 r = argv[optind];
4970 if (r[0] != '-') {
4971 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4972 } else {
4973 const QEMUOption *popt;
4974
4975 optind++;
4976 /* Treat --foo the same as -foo. */
4977 if (r[1] == '-')
4978 r++;
4979 popt = qemu_options;
4980 for(;;) {
4981 if (!popt->name) {
4982 fprintf(stderr, "%s: invalid option -- '%s'\n",
4983 argv[0], r);
4984 exit(1);
4985 }
4986 if (!strcmp(popt->name, r + 1))
4987 break;
4988 popt++;
4989 }
4990 if (popt->flags & HAS_ARG) {
4991 if (optind >= argc) {
4992 fprintf(stderr, "%s: option '%s' requires an argument\n",
4993 argv[0], r);
4994 exit(1);
4995 }
4996 optarg = argv[optind++];
4997 } else {
4998 optarg = NULL;
4999 }
5000
5001 switch(popt->index) {
5002 case QEMU_OPTION_M:
5003 machine = find_machine(optarg);
5004 if (!machine) {
5005 QEMUMachine *m;
5006 printf("Supported machines are:\n");
5007 for(m = first_machine; m != NULL; m = m->next) {
5008 if (m->alias)
5009 printf("%-10s %s (alias of %s)\n",
5010 m->alias, m->desc, m->name);
5011 printf("%-10s %s%s\n",
5012 m->name, m->desc,
5013 m->is_default ? " (default)" : "");
5014 }
5015 exit(*optarg != '?');
5016 }
5017 break;
5018 case QEMU_OPTION_cpu:
5019 /* hw initialization will check this */
5020 if (*optarg == '?') {
5021 /* XXX: implement xxx_cpu_list for targets that still miss it */
5022 #if defined(cpu_list)
5023 cpu_list(stdout, &fprintf);
5024 #endif
5025 exit(0);
5026 } else {
5027 cpu_model = optarg;
5028 }
5029 break;
5030 case QEMU_OPTION_initrd:
5031 initrd_filename = optarg;
5032 break;
5033 case QEMU_OPTION_hda:
5034 if (cyls == 0)
5035 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5036 else
5037 hda_opts = drive_add(optarg, HD_ALIAS
5038 ",cyls=%d,heads=%d,secs=%d%s",
5039 0, cyls, heads, secs,
5040 translation == BIOS_ATA_TRANSLATION_LBA ?
5041 ",trans=lba" :
5042 translation == BIOS_ATA_TRANSLATION_NONE ?
5043 ",trans=none" : "");
5044 break;
5045 case QEMU_OPTION_hdb:
5046 case QEMU_OPTION_hdc:
5047 case QEMU_OPTION_hdd:
5048 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5049 break;
5050 case QEMU_OPTION_drive:
5051 drive_add(NULL, "%s", optarg);
5052 break;
5053 case QEMU_OPTION_set:
5054 if (qemu_set_option(optarg) != 0)
5055 exit(1);
5056 break;
5057 case QEMU_OPTION_mtdblock:
5058 drive_add(optarg, MTD_ALIAS);
5059 break;
5060 case QEMU_OPTION_sd:
5061 drive_add(optarg, SD_ALIAS);
5062 break;
5063 case QEMU_OPTION_pflash:
5064 drive_add(optarg, PFLASH_ALIAS);
5065 break;
5066 case QEMU_OPTION_snapshot:
5067 snapshot = 1;
5068 break;
5069 case QEMU_OPTION_hdachs:
5070 {
5071 const char *p;
5072 p = optarg;
5073 cyls = strtol(p, (char **)&p, 0);
5074 if (cyls < 1 || cyls > 16383)
5075 goto chs_fail;
5076 if (*p != ',')
5077 goto chs_fail;
5078 p++;
5079 heads = strtol(p, (char **)&p, 0);
5080 if (heads < 1 || heads > 16)
5081 goto chs_fail;
5082 if (*p != ',')
5083 goto chs_fail;
5084 p++;
5085 secs = strtol(p, (char **)&p, 0);
5086 if (secs < 1 || secs > 63)
5087 goto chs_fail;
5088 if (*p == ',') {
5089 p++;
5090 if (!strcmp(p, "none"))
5091 translation = BIOS_ATA_TRANSLATION_NONE;
5092 else if (!strcmp(p, "lba"))
5093 translation = BIOS_ATA_TRANSLATION_LBA;
5094 else if (!strcmp(p, "auto"))
5095 translation = BIOS_ATA_TRANSLATION_AUTO;
5096 else
5097 goto chs_fail;
5098 } else if (*p != '\0') {
5099 chs_fail:
5100 fprintf(stderr, "qemu: invalid physical CHS format\n");
5101 exit(1);
5102 }
5103 if (hda_opts != NULL) {
5104 char num[16];
5105 snprintf(num, sizeof(num), "%d", cyls);
5106 qemu_opt_set(hda_opts, "cyls", num);
5107 snprintf(num, sizeof(num), "%d", heads);
5108 qemu_opt_set(hda_opts, "heads", num);
5109 snprintf(num, sizeof(num), "%d", secs);
5110 qemu_opt_set(hda_opts, "secs", num);
5111 if (translation == BIOS_ATA_TRANSLATION_LBA)
5112 qemu_opt_set(hda_opts, "trans", "lba");
5113 if (translation == BIOS_ATA_TRANSLATION_NONE)
5114 qemu_opt_set(hda_opts, "trans", "none");
5115 }
5116 }
5117 break;
5118 case QEMU_OPTION_numa:
5119 if (nb_numa_nodes >= MAX_NODES) {
5120 fprintf(stderr, "qemu: too many NUMA nodes\n");
5121 exit(1);
5122 }
5123 numa_add(optarg);
5124 break;
5125 case QEMU_OPTION_nographic:
5126 display_type = DT_NOGRAPHIC;
5127 break;
5128 #ifdef CONFIG_CURSES
5129 case QEMU_OPTION_curses:
5130 display_type = DT_CURSES;
5131 break;
5132 #endif
5133 case QEMU_OPTION_portrait:
5134 graphic_rotate = 1;
5135 break;
5136 case QEMU_OPTION_kernel:
5137 kernel_filename = optarg;
5138 break;
5139 case QEMU_OPTION_append:
5140 kernel_cmdline = optarg;
5141 break;
5142 case QEMU_OPTION_cdrom:
5143 drive_add(optarg, CDROM_ALIAS);
5144 break;
5145 case QEMU_OPTION_boot:
5146 {
5147 static const char * const params[] = {
5148 "order", "once", "menu", NULL
5149 };
5150 char buf[sizeof(boot_devices)];
5151 char *standard_boot_devices;
5152 int legacy = 0;
5153
5154 if (!strchr(optarg, '=')) {
5155 legacy = 1;
5156 pstrcpy(buf, sizeof(buf), optarg);
5157 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5158 fprintf(stderr,
5159 "qemu: unknown boot parameter '%s' in '%s'\n",
5160 buf, optarg);
5161 exit(1);
5162 }
5163
5164 if (legacy ||
5165 get_param_value(buf, sizeof(buf), "order", optarg)) {
5166 boot_devices_bitmap = parse_bootdevices(buf);
5167 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5168 }
5169 if (!legacy) {
5170 if (get_param_value(buf, sizeof(buf),
5171 "once", optarg)) {
5172 boot_devices_bitmap |= parse_bootdevices(buf);
5173 standard_boot_devices = qemu_strdup(boot_devices);
5174 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5175 qemu_register_reset(restore_boot_devices,
5176 standard_boot_devices);
5177 }
5178 if (get_param_value(buf, sizeof(buf),
5179 "menu", optarg)) {
5180 if (!strcmp(buf, "on")) {
5181 boot_menu = 1;
5182 } else if (!strcmp(buf, "off")) {
5183 boot_menu = 0;
5184 } else {
5185 fprintf(stderr,
5186 "qemu: invalid option value '%s'\n",
5187 buf);
5188 exit(1);
5189 }
5190 }
5191 }
5192 }
5193 break;
5194 case QEMU_OPTION_fda:
5195 case QEMU_OPTION_fdb:
5196 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5197 break;
5198 #ifdef TARGET_I386
5199 case QEMU_OPTION_no_fd_bootchk:
5200 fd_bootchk = 0;
5201 break;
5202 #endif
5203 case QEMU_OPTION_net:
5204 if (nb_net_clients >= MAX_NET_CLIENTS) {
5205 fprintf(stderr, "qemu: too many network clients\n");
5206 exit(1);
5207 }
5208 net_clients[nb_net_clients] = optarg;
5209 nb_net_clients++;
5210 break;
5211 #ifdef CONFIG_SLIRP
5212 case QEMU_OPTION_tftp:
5213 legacy_tftp_prefix = optarg;
5214 break;
5215 case QEMU_OPTION_bootp:
5216 legacy_bootp_filename = optarg;
5217 break;
5218 #ifndef _WIN32
5219 case QEMU_OPTION_smb:
5220 net_slirp_smb(optarg);
5221 break;
5222 #endif
5223 case QEMU_OPTION_redir:
5224 net_slirp_redir(optarg);
5225 break;
5226 #endif
5227 case QEMU_OPTION_bt:
5228 add_device_config(DEV_BT, optarg);
5229 break;
5230 #ifdef HAS_AUDIO
5231 case QEMU_OPTION_audio_help:
5232 AUD_help ();
5233 exit (0);
5234 break;
5235 case QEMU_OPTION_soundhw:
5236 select_soundhw (optarg);
5237 break;
5238 #endif
5239 case QEMU_OPTION_h:
5240 help(0);
5241 break;
5242 case QEMU_OPTION_version:
5243 version();
5244 exit(0);
5245 break;
5246 case QEMU_OPTION_m: {
5247 uint64_t value;
5248 char *ptr;
5249
5250 value = strtoul(optarg, &ptr, 10);
5251 switch (*ptr) {
5252 case 0: case 'M': case 'm':
5253 value <<= 20;
5254 break;
5255 case 'G': case 'g':
5256 value <<= 30;
5257 break;
5258 default:
5259 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5260 exit(1);
5261 }
5262
5263 /* On 32-bit hosts, QEMU is limited by virtual address space */
5264 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5265 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5266 exit(1);
5267 }
5268 if (value != (uint64_t)(ram_addr_t)value) {
5269 fprintf(stderr, "qemu: ram size too large\n");
5270 exit(1);
5271 }
5272 ram_size = value;
5273 break;
5274 }
5275 case QEMU_OPTION_d:
5276 {
5277 int mask;
5278 const CPULogItem *item;
5279
5280 mask = cpu_str_to_log_mask(optarg);
5281 if (!mask) {
5282 printf("Log items (comma separated):\n");
5283 for(item = cpu_log_items; item->mask != 0; item++) {
5284 printf("%-10s %s\n", item->name, item->help);
5285 }
5286 exit(1);
5287 }
5288 cpu_set_log(mask);
5289 }
5290 break;
5291 case QEMU_OPTION_s:
5292 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5293 break;
5294 case QEMU_OPTION_gdb:
5295 gdbstub_dev = optarg;
5296 break;
5297 case QEMU_OPTION_L:
5298 data_dir = optarg;
5299 break;
5300 case QEMU_OPTION_bios:
5301 bios_name = optarg;
5302 break;
5303 case QEMU_OPTION_singlestep:
5304 singlestep = 1;
5305 break;
5306 case QEMU_OPTION_S:
5307 autostart = 0;
5308 break;
5309 #ifndef _WIN32
5310 case QEMU_OPTION_k:
5311 keyboard_layout = optarg;
5312 break;
5313 #endif
5314 case QEMU_OPTION_localtime:
5315 rtc_utc = 0;
5316 break;
5317 case QEMU_OPTION_vga:
5318 select_vgahw (optarg);
5319 break;
5320 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5321 case QEMU_OPTION_g:
5322 {
5323 const char *p;
5324 int w, h, depth;
5325 p = optarg;
5326 w = strtol(p, (char **)&p, 10);
5327 if (w <= 0) {
5328 graphic_error:
5329 fprintf(stderr, "qemu: invalid resolution or depth\n");
5330 exit(1);
5331 }
5332 if (*p != 'x')
5333 goto graphic_error;
5334 p++;
5335 h = strtol(p, (char **)&p, 10);
5336 if (h <= 0)
5337 goto graphic_error;
5338 if (*p == 'x') {
5339 p++;
5340 depth = strtol(p, (char **)&p, 10);
5341 if (depth != 8 && depth != 15 && depth != 16 &&
5342 depth != 24 && depth != 32)
5343 goto graphic_error;
5344 } else if (*p == '\0') {
5345 depth = graphic_depth;
5346 } else {
5347 goto graphic_error;
5348 }
5349
5350 graphic_width = w;
5351 graphic_height = h;
5352 graphic_depth = depth;
5353 }
5354 break;
5355 #endif
5356 case QEMU_OPTION_echr:
5357 {
5358 char *r;
5359 term_escape_char = strtol(optarg, &r, 0);
5360 if (r == optarg)
5361 printf("Bad argument to echr\n");
5362 break;
5363 }
5364 case QEMU_OPTION_monitor:
5365 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5366 fprintf(stderr, "qemu: too many monitor devices\n");
5367 exit(1);
5368 }
5369 monitor_devices[monitor_device_index] = optarg;
5370 monitor_device_index++;
5371 break;
5372 case QEMU_OPTION_serial:
5373 if (serial_device_index >= MAX_SERIAL_PORTS) {
5374 fprintf(stderr, "qemu: too many serial ports\n");
5375 exit(1);
5376 }
5377 serial_devices[serial_device_index] = optarg;
5378 serial_device_index++;
5379 break;
5380 case QEMU_OPTION_watchdog:
5381 if (watchdog) {
5382 fprintf(stderr,
5383 "qemu: only one watchdog option may be given\n");
5384 return 1;
5385 }
5386 watchdog = optarg;
5387 break;
5388 case QEMU_OPTION_watchdog_action:
5389 if (select_watchdog_action(optarg) == -1) {
5390 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5391 exit(1);
5392 }
5393 break;
5394 case QEMU_OPTION_virtiocon:
5395 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5396 fprintf(stderr, "qemu: too many virtio consoles\n");
5397 exit(1);
5398 }
5399 virtio_consoles[virtio_console_index] = optarg;
5400 virtio_console_index++;
5401 break;
5402 case QEMU_OPTION_parallel:
5403 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5404 fprintf(stderr, "qemu: too many parallel ports\n");
5405 exit(1);
5406 }
5407 parallel_devices[parallel_device_index] = optarg;
5408 parallel_device_index++;
5409 break;
5410 case QEMU_OPTION_loadvm:
5411 loadvm = optarg;
5412 break;
5413 case QEMU_OPTION_full_screen:
5414 full_screen = 1;
5415 break;
5416 #ifdef CONFIG_SDL
5417 case QEMU_OPTION_no_frame:
5418 no_frame = 1;
5419 break;
5420 case QEMU_OPTION_alt_grab:
5421 alt_grab = 1;
5422 break;
5423 case QEMU_OPTION_no_quit:
5424 no_quit = 1;
5425 break;
5426 case QEMU_OPTION_sdl:
5427 display_type = DT_SDL;
5428 break;
5429 #endif
5430 case QEMU_OPTION_pidfile:
5431 pid_file = optarg;
5432 break;
5433 #ifdef TARGET_I386
5434 case QEMU_OPTION_win2k_hack:
5435 win2k_install_hack = 1;
5436 break;
5437 case QEMU_OPTION_rtc_td_hack:
5438 rtc_td_hack = 1;
5439 break;
5440 case QEMU_OPTION_acpitable:
5441 if(acpi_table_add(optarg) < 0) {
5442 fprintf(stderr, "Wrong acpi table provided\n");
5443 exit(1);
5444 }
5445 break;
5446 case QEMU_OPTION_smbios:
5447 if(smbios_entry_add(optarg) < 0) {
5448 fprintf(stderr, "Wrong smbios provided\n");
5449 exit(1);
5450 }
5451 break;
5452 #endif
5453 #ifdef CONFIG_KVM
5454 case QEMU_OPTION_enable_kvm:
5455 kvm_allowed = 1;
5456 break;
5457 #endif
5458 case QEMU_OPTION_usb:
5459 usb_enabled = 1;
5460 break;
5461 case QEMU_OPTION_usbdevice:
5462 usb_enabled = 1;
5463 add_device_config(DEV_USB, optarg);
5464 break;
5465 case QEMU_OPTION_device:
5466 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5467 if (!opts) {
5468 fprintf(stderr, "parse error: %s\n", optarg);
5469 exit(1);
5470 }
5471 break;
5472 case QEMU_OPTION_smp:
5473 smp_parse(optarg);
5474 if (smp_cpus < 1) {
5475 fprintf(stderr, "Invalid number of CPUs\n");
5476 exit(1);
5477 }
5478 if (max_cpus < smp_cpus) {
5479 fprintf(stderr, "maxcpus must be equal to or greater than "
5480 "smp\n");
5481 exit(1);
5482 }
5483 if (max_cpus > 255) {
5484 fprintf(stderr, "Unsupported number of maxcpus\n");
5485 exit(1);
5486 }
5487 break;
5488 case QEMU_OPTION_vnc:
5489 display_type = DT_VNC;
5490 vnc_display = optarg;
5491 break;
5492 #ifdef TARGET_I386
5493 case QEMU_OPTION_no_acpi:
5494 acpi_enabled = 0;
5495 break;
5496 case QEMU_OPTION_no_hpet:
5497 no_hpet = 1;
5498 break;
5499 case QEMU_OPTION_balloon:
5500 if (balloon_parse(optarg) < 0) {
5501 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5502 exit(1);
5503 }
5504 break;
5505 #endif
5506 case QEMU_OPTION_no_reboot:
5507 no_reboot = 1;
5508 break;
5509 case QEMU_OPTION_no_shutdown:
5510 no_shutdown = 1;
5511 break;
5512 case QEMU_OPTION_show_cursor:
5513 cursor_hide = 0;
5514 break;
5515 case QEMU_OPTION_uuid:
5516 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5517 fprintf(stderr, "Fail to parse UUID string."
5518 " Wrong format.\n");
5519 exit(1);
5520 }
5521 break;
5522 #ifndef _WIN32
5523 case QEMU_OPTION_daemonize:
5524 daemonize = 1;
5525 break;
5526 #endif
5527 case QEMU_OPTION_option_rom:
5528 if (nb_option_roms >= MAX_OPTION_ROMS) {
5529 fprintf(stderr, "Too many option ROMs\n");
5530 exit(1);
5531 }
5532 option_rom[nb_option_roms] = optarg;
5533 nb_option_roms++;
5534 break;
5535 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5536 case QEMU_OPTION_semihosting:
5537 semihosting_enabled = 1;
5538 break;
5539 #endif
5540 case QEMU_OPTION_name:
5541 qemu_name = qemu_strdup(optarg);
5542 {
5543 char *p = strchr(qemu_name, ',');
5544 if (p != NULL) {
5545 *p++ = 0;
5546 if (strncmp(p, "process=", 8)) {
5547 fprintf(stderr, "Unknown subargument %s to -name", p);
5548 exit(1);
5549 }
5550 p += 8;
5551 set_proc_name(p);
5552 }
5553 }
5554 break;
5555 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5556 case QEMU_OPTION_prom_env:
5557 if (nb_prom_envs >= MAX_PROM_ENVS) {
5558 fprintf(stderr, "Too many prom variables\n");
5559 exit(1);
5560 }
5561 prom_envs[nb_prom_envs] = optarg;
5562 nb_prom_envs++;
5563 break;
5564 #endif
5565 #ifdef TARGET_ARM
5566 case QEMU_OPTION_old_param:
5567 old_param = 1;
5568 break;
5569 #endif
5570 case QEMU_OPTION_clock:
5571 configure_alarms(optarg);
5572 break;
5573 case QEMU_OPTION_startdate:
5574 {
5575 struct tm tm;
5576 time_t rtc_start_date;
5577 if (!strcmp(optarg, "now")) {
5578 rtc_date_offset = -1;
5579 } else {
5580 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5581 &tm.tm_year,
5582 &tm.tm_mon,
5583 &tm.tm_mday,
5584 &tm.tm_hour,
5585 &tm.tm_min,
5586 &tm.tm_sec) == 6) {
5587 /* OK */
5588 } else if (sscanf(optarg, "%d-%d-%d",
5589 &tm.tm_year,
5590 &tm.tm_mon,
5591 &tm.tm_mday) == 3) {
5592 tm.tm_hour = 0;
5593 tm.tm_min = 0;
5594 tm.tm_sec = 0;
5595 } else {
5596 goto date_fail;
5597 }
5598 tm.tm_year -= 1900;
5599 tm.tm_mon--;
5600 rtc_start_date = mktimegm(&tm);
5601 if (rtc_start_date == -1) {
5602 date_fail:
5603 fprintf(stderr, "Invalid date format. Valid format are:\n"
5604 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5605 exit(1);
5606 }
5607 rtc_date_offset = time(NULL) - rtc_start_date;
5608 }
5609 }
5610 break;
5611 case QEMU_OPTION_tb_size:
5612 tb_size = strtol(optarg, NULL, 0);
5613 if (tb_size < 0)
5614 tb_size = 0;
5615 break;
5616 case QEMU_OPTION_icount:
5617 use_icount = 1;
5618 if (strcmp(optarg, "auto") == 0) {
5619 icount_time_shift = -1;
5620 } else {
5621 icount_time_shift = strtol(optarg, NULL, 0);
5622 }
5623 break;
5624 case QEMU_OPTION_incoming:
5625 incoming = optarg;
5626 break;
5627 #ifndef _WIN32
5628 case QEMU_OPTION_chroot:
5629 chroot_dir = optarg;
5630 break;
5631 case QEMU_OPTION_runas:
5632 run_as = optarg;
5633 break;
5634 #endif
5635 #ifdef CONFIG_XEN
5636 case QEMU_OPTION_xen_domid:
5637 xen_domid = atoi(optarg);
5638 break;
5639 case QEMU_OPTION_xen_create:
5640 xen_mode = XEN_CREATE;
5641 break;
5642 case QEMU_OPTION_xen_attach:
5643 xen_mode = XEN_ATTACH;
5644 break;
5645 #endif
5646 }
5647 }
5648 }
5649
5650 /* If no data_dir is specified then try to find it relative to the
5651 executable path. */
5652 if (!data_dir) {
5653 data_dir = find_datadir(argv[0]);
5654 }
5655 /* If all else fails use the install patch specified when building. */
5656 if (!data_dir) {
5657 data_dir = CONFIG_QEMU_SHAREDIR;
5658 }
5659
5660 /*
5661 * Default to max_cpus = smp_cpus, in case the user doesn't
5662 * specify a max_cpus value.
5663 */
5664 if (!max_cpus)
5665 max_cpus = smp_cpus;
5666
5667 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5668 if (smp_cpus > machine->max_cpus) {
5669 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5670 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5671 machine->max_cpus);
5672 exit(1);
5673 }
5674
5675 if (display_type == DT_NOGRAPHIC) {
5676 if (serial_device_index == 0)
5677 serial_devices[0] = "stdio";
5678 if (parallel_device_index == 0)
5679 parallel_devices[0] = "null";
5680 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5681 monitor_devices[0] = "stdio";
5682 }
5683 }
5684
5685 #ifndef _WIN32
5686 if (daemonize) {
5687 pid_t pid;
5688
5689 if (pipe(fds) == -1)
5690 exit(1);
5691
5692 pid = fork();
5693 if (pid > 0) {
5694 uint8_t status;
5695 ssize_t len;
5696
5697 close(fds[1]);
5698
5699 again:
5700 len = read(fds[0], &status, 1);
5701 if (len == -1 && (errno == EINTR))
5702 goto again;
5703
5704 if (len != 1)
5705 exit(1);
5706 else if (status == 1) {
5707 fprintf(stderr, "Could not acquire pidfile\n");
5708 exit(1);
5709 } else
5710 exit(0);
5711 } else if (pid < 0)
5712 exit(1);
5713
5714 setsid();
5715
5716 pid = fork();
5717 if (pid > 0)
5718 exit(0);
5719 else if (pid < 0)
5720 exit(1);
5721
5722 umask(027);
5723
5724 signal(SIGTSTP, SIG_IGN);
5725 signal(SIGTTOU, SIG_IGN);
5726 signal(SIGTTIN, SIG_IGN);
5727 }
5728
5729 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5730 if (daemonize) {
5731 uint8_t status = 1;
5732 write(fds[1], &status, 1);
5733 } else
5734 fprintf(stderr, "Could not acquire pid file\n");
5735 exit(1);
5736 }
5737 #endif
5738
5739 if (qemu_init_main_loop()) {
5740 fprintf(stderr, "qemu_init_main_loop failed\n");
5741 exit(1);
5742 }
5743 linux_boot = (kernel_filename != NULL);
5744
5745 if (!linux_boot && *kernel_cmdline != '\0') {
5746 fprintf(stderr, "-append only allowed with -kernel option\n");
5747 exit(1);
5748 }
5749
5750 if (!linux_boot && initrd_filename != NULL) {
5751 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5752 exit(1);
5753 }
5754
5755 #ifndef _WIN32
5756 /* Win32 doesn't support line-buffering and requires size >= 2 */
5757 setvbuf(stdout, NULL, _IOLBF, 0);
5758 #endif
5759
5760 init_timers();
5761 if (init_timer_alarm() < 0) {
5762 fprintf(stderr, "could not initialize alarm timer\n");
5763 exit(1);
5764 }
5765 if (use_icount && icount_time_shift < 0) {
5766 use_icount = 2;
5767 /* 125MIPS seems a reasonable initial guess at the guest speed.
5768 It will be corrected fairly quickly anyway. */
5769 icount_time_shift = 3;
5770 init_icount_adjust();
5771 }
5772
5773 #ifdef _WIN32
5774 socket_init();
5775 #endif
5776
5777 /* init network clients */
5778 if (nb_net_clients == 0) {
5779 /* if no clients, we use a default config */
5780 net_clients[nb_net_clients++] = "nic";
5781 #ifdef CONFIG_SLIRP
5782 net_clients[nb_net_clients++] = "user";
5783 #endif
5784 }
5785
5786 for(i = 0;i < nb_net_clients; i++) {
5787 if (net_client_parse(net_clients[i]) < 0)
5788 exit(1);
5789 }
5790
5791 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5792 net_set_boot_mask(net_boot);
5793
5794 net_client_check();
5795
5796 /* init the bluetooth world */
5797 if (foreach_device_config(DEV_BT, bt_parse))
5798 exit(1);
5799
5800 /* init the memory */
5801 if (ram_size == 0)
5802 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5803
5804 /* init the dynamic translator */
5805 cpu_exec_init_all(tb_size * 1024 * 1024);
5806
5807 bdrv_init();
5808
5809 /* we always create the cdrom drive, even if no disk is there */
5810 drive_add(NULL, CDROM_ALIAS);
5811
5812 /* we always create at least one floppy */
5813 drive_add(NULL, FD_ALIAS, 0);
5814
5815 /* we always create one sd slot, even if no card is in it */
5816 drive_add(NULL, SD_ALIAS);
5817
5818 /* open the virtual block devices */
5819 if (snapshot)
5820 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5821 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5822 exit(1);
5823
5824 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5825 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5826
5827 /* Maintain compatibility with multiple stdio monitors */
5828 if (!strcmp(monitor_devices[0],"stdio")) {
5829 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5830 const char *devname = serial_devices[i];
5831 if (devname && !strcmp(devname,"mon:stdio")) {
5832 monitor_devices[0] = NULL;
5833 break;
5834 } else if (devname && !strcmp(devname,"stdio")) {
5835 monitor_devices[0] = NULL;
5836 serial_devices[i] = "mon:stdio";
5837 break;
5838 }
5839 }
5840 }
5841
5842 if (nb_numa_nodes > 0) {
5843 int i;
5844
5845 if (nb_numa_nodes > smp_cpus) {
5846 nb_numa_nodes = smp_cpus;
5847 }
5848
5849 /* If no memory size if given for any node, assume the default case
5850 * and distribute the available memory equally across all nodes
5851 */
5852 for (i = 0; i < nb_numa_nodes; i++) {
5853 if (node_mem[i] != 0)
5854 break;
5855 }
5856 if (i == nb_numa_nodes) {
5857 uint64_t usedmem = 0;
5858
5859 /* On Linux, the each node's border has to be 8MB aligned,
5860 * the final node gets the rest.
5861 */
5862 for (i = 0; i < nb_numa_nodes - 1; i++) {
5863 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5864 usedmem += node_mem[i];
5865 }
5866 node_mem[i] = ram_size - usedmem;
5867 }
5868
5869 for (i = 0; i < nb_numa_nodes; i++) {
5870 if (node_cpumask[i] != 0)
5871 break;
5872 }
5873 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5874 * must cope with this anyway, because there are BIOSes out there in
5875 * real machines which also use this scheme.
5876 */
5877 if (i == nb_numa_nodes) {
5878 for (i = 0; i < smp_cpus; i++) {
5879 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5880 }
5881 }
5882 }
5883
5884 if (kvm_enabled()) {
5885 int ret;
5886
5887 ret = kvm_init(smp_cpus);
5888 if (ret < 0) {
5889 fprintf(stderr, "failed to initialize KVM\n");
5890 exit(1);
5891 }
5892 }
5893
5894 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5895 const char *devname = monitor_devices[i];
5896 if (devname && strcmp(devname, "none")) {
5897 char label[32];
5898 if (i == 0) {
5899 snprintf(label, sizeof(label), "monitor");
5900 } else {
5901 snprintf(label, sizeof(label), "monitor%d", i);
5902 }
5903 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5904 if (!monitor_hds[i]) {
5905 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5906 devname);
5907 exit(1);
5908 }
5909 }
5910 }
5911
5912 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5913 const char *devname = serial_devices[i];
5914 if (devname && strcmp(devname, "none")) {
5915 char label[32];
5916 snprintf(label, sizeof(label), "serial%d", i);
5917 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5918 if (!serial_hds[i]) {
5919 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5920 devname);
5921 exit(1);
5922 }
5923 }
5924 }
5925
5926 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5927 const char *devname = parallel_devices[i];
5928 if (devname && strcmp(devname, "none")) {
5929 char label[32];
5930 snprintf(label, sizeof(label), "parallel%d", i);
5931 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5932 if (!parallel_hds[i]) {
5933 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5934 devname);
5935 exit(1);
5936 }
5937 }
5938 }
5939
5940 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5941 const char *devname = virtio_consoles[i];
5942 if (devname && strcmp(devname, "none")) {
5943 char label[32];
5944 snprintf(label, sizeof(label), "virtcon%d", i);
5945 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5946 if (!virtcon_hds[i]) {
5947 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5948 devname);
5949 exit(1);
5950 }
5951 }
5952 }
5953
5954 module_call_init(MODULE_INIT_DEVICE);
5955
5956 if (watchdog) {
5957 i = select_watchdog(watchdog);
5958 if (i > 0)
5959 exit (i == 1 ? 1 : 0);
5960 }
5961
5962 if (machine->compat_props) {
5963 qdev_prop_register_compat(machine->compat_props);
5964 }
5965 machine->init(ram_size, boot_devices,
5966 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5967
5968
5969 #ifndef _WIN32
5970 /* must be after terminal init, SDL library changes signal handlers */
5971 sighandler_setup();
5972 #endif
5973
5974 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5975 for (i = 0; i < nb_numa_nodes; i++) {
5976 if (node_cpumask[i] & (1 << env->cpu_index)) {
5977 env->numa_node = i;
5978 }
5979 }
5980 }
5981
5982 current_machine = machine;
5983
5984 /* init USB devices */
5985 if (usb_enabled) {
5986 foreach_device_config(DEV_USB, usb_parse);
5987 }
5988
5989 /* init generic devices */
5990 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5991 exit(1);
5992
5993 if (!display_state)
5994 dumb_display_init();
5995 /* just use the first displaystate for the moment */
5996 ds = display_state;
5997
5998 if (display_type == DT_DEFAULT) {
5999 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6000 display_type = DT_SDL;
6001 #else
6002 display_type = DT_VNC;
6003 vnc_display = "localhost:0,to=99";
6004 show_vnc_port = 1;
6005 #endif
6006 }
6007
6008
6009 switch (display_type) {
6010 case DT_NOGRAPHIC:
6011 break;
6012 #if defined(CONFIG_CURSES)
6013 case DT_CURSES:
6014 curses_display_init(ds, full_screen);
6015 break;
6016 #endif
6017 #if defined(CONFIG_SDL)
6018 case DT_SDL:
6019 sdl_display_init(ds, full_screen, no_frame);
6020 break;
6021 #elif defined(CONFIG_COCOA)
6022 case DT_SDL:
6023 cocoa_display_init(ds, full_screen);
6024 break;
6025 #endif
6026 case DT_VNC:
6027 vnc_display_init(ds);
6028 if (vnc_display_open(ds, vnc_display) < 0)
6029 exit(1);
6030
6031 if (show_vnc_port) {
6032 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6033 }
6034 break;
6035 default:
6036 break;
6037 }
6038 dpy_resize(ds);
6039
6040 dcl = ds->listeners;
6041 while (dcl != NULL) {
6042 if (dcl->dpy_refresh != NULL) {
6043 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6044 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6045 }
6046 dcl = dcl->next;
6047 }
6048
6049 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6050 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6051 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6052 }
6053
6054 text_consoles_set_display(display_state);
6055 qemu_chr_initial_reset();
6056
6057 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
6058 if (monitor_devices[i] && monitor_hds[i]) {
6059 monitor_init(monitor_hds[i],
6060 MONITOR_USE_READLINE |
6061 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
6062 }
6063 }
6064
6065 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6066 const char *devname = serial_devices[i];
6067 if (devname && strcmp(devname, "none")) {
6068 if (strstart(devname, "vc", 0))
6069 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6070 }
6071 }
6072
6073 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6074 const char *devname = parallel_devices[i];
6075 if (devname && strcmp(devname, "none")) {
6076 if (strstart(devname, "vc", 0))
6077 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6078 }
6079 }
6080
6081 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6082 const char *devname = virtio_consoles[i];
6083 if (virtcon_hds[i] && devname) {
6084 if (strstart(devname, "vc", 0))
6085 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6086 }
6087 }
6088
6089 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6090 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6091 gdbstub_dev);
6092 exit(1);
6093 }
6094
6095 if (loadvm) {
6096 if (load_vmstate(cur_mon, loadvm) < 0) {
6097 autostart = 0;
6098 }
6099 }
6100
6101 if (incoming) {
6102 qemu_start_incoming_migration(incoming);
6103 } else if (autostart) {
6104 vm_start();
6105 }
6106
6107 #ifndef _WIN32
6108 if (daemonize) {
6109 uint8_t status = 0;
6110 ssize_t len;
6111
6112 again1:
6113 len = write(fds[1], &status, 1);
6114 if (len == -1 && (errno == EINTR))
6115 goto again1;
6116
6117 if (len != 1)
6118 exit(1);
6119
6120 chdir("/");
6121 TFR(fd = open("/dev/null", O_RDWR));
6122 if (fd == -1)
6123 exit(1);
6124 }
6125
6126 if (run_as) {
6127 pwd = getpwnam(run_as);
6128 if (!pwd) {
6129 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6130 exit(1);
6131 }
6132 }
6133
6134 if (chroot_dir) {
6135 if (chroot(chroot_dir) < 0) {
6136 fprintf(stderr, "chroot failed\n");
6137 exit(1);
6138 }
6139 chdir("/");
6140 }
6141
6142 if (run_as) {
6143 if (setgid(pwd->pw_gid) < 0) {
6144 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6145 exit(1);
6146 }
6147 if (setuid(pwd->pw_uid) < 0) {
6148 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6149 exit(1);
6150 }
6151 if (setuid(0) != -1) {
6152 fprintf(stderr, "Dropping privileges failed\n");
6153 exit(1);
6154 }
6155 }
6156
6157 if (daemonize) {
6158 dup2(fd, 0);
6159 dup2(fd, 1);
6160 dup2(fd, 2);
6161
6162 close(fd);
6163 }
6164 #endif
6165
6166 main_loop();
6167 quit_timers();
6168 net_cleanup();
6169
6170 return 0;
6171 }