]> git.proxmox.com Git - qemu.git/blob - vl.c
added generic physical memory dirty bit support
[qemu.git] / vl.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <stdarg.h>
27 #include <string.h>
28 #include <ctype.h>
29 #include <getopt.h>
30 #include <inttypes.h>
31 #include <unistd.h>
32 #include <sys/mman.h>
33 #include <fcntl.h>
34 #include <signal.h>
35 #include <time.h>
36 #include <sys/time.h>
37 #include <malloc.h>
38 #include <termios.h>
39 #include <sys/poll.h>
40 #include <errno.h>
41 #include <sys/wait.h>
42
43 #include <sys/ioctl.h>
44 #include <sys/socket.h>
45 #include <linux/if.h>
46 #include <linux/if_tun.h>
47
48 #include "cpu.h"
49 #include "disas.h"
50 #include "thunk.h"
51
52 #include "vl.h"
53
54 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
55 #define BIOS_FILENAME "bios.bin"
56 #define VGABIOS_FILENAME "vgabios.bin"
57
58 //#define DEBUG_UNUSED_IOPORT
59
60 //#define DEBUG_IRQ_LATENCY
61
62 /* output Bochs bios info messages */
63 //#define DEBUG_BIOS
64
65 //#define DEBUG_CMOS
66
67 /* debug PIC */
68 //#define DEBUG_PIC
69
70 /* debug NE2000 card */
71 //#define DEBUG_NE2000
72
73 /* debug PC keyboard */
74 //#define DEBUG_KBD
75
76 /* debug PC keyboard : only mouse */
77 //#define DEBUG_MOUSE
78
79 //#define DEBUG_SERIAL
80
81 #define PHYS_RAM_BASE 0xac000000
82 #if !defined(CONFIG_SOFTMMU)
83 #define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
84 #else
85 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
86 #endif
87
88 #if defined (TARGET_I386)
89 #define KERNEL_LOAD_ADDR 0x00100000
90 #elif defined (TARGET_PPC)
91 //#define USE_OPEN_FIRMWARE
92 #if !defined (USE_OPEN_FIRMWARE)
93 #define KERNEL_LOAD_ADDR 0x01000000
94 #define KERNEL_STACK_ADDR 0x01200000
95 #else
96 #define KERNEL_LOAD_ADDR 0x00000000
97 #define KERNEL_STACK_ADDR 0x00400000
98 #endif
99 #endif
100 #define INITRD_LOAD_ADDR 0x00400000
101 #define KERNEL_PARAMS_ADDR 0x00090000
102
103 #define GUI_REFRESH_INTERVAL 30
104
105 /* from plex86 (BSD license) */
106 struct __attribute__ ((packed)) linux_params {
107 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
108 // I just padded out the VESA parts, rather than define them.
109
110 /* 0x000 */ uint8_t orig_x;
111 /* 0x001 */ uint8_t orig_y;
112 /* 0x002 */ uint16_t ext_mem_k;
113 /* 0x004 */ uint16_t orig_video_page;
114 /* 0x006 */ uint8_t orig_video_mode;
115 /* 0x007 */ uint8_t orig_video_cols;
116 /* 0x008 */ uint16_t unused1;
117 /* 0x00a */ uint16_t orig_video_ega_bx;
118 /* 0x00c */ uint16_t unused2;
119 /* 0x00e */ uint8_t orig_video_lines;
120 /* 0x00f */ uint8_t orig_video_isVGA;
121 /* 0x010 */ uint16_t orig_video_points;
122 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
123 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
124 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
125 // is calculated as 0x90000 + cl_offset, bu
126 // only if cl_magic == 0xA33F.
127 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
128
129 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
130 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
131
132 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
133 // Might be truncated?
134 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
135 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
136
137 // System description table truncated to 16 bytes
138 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
139 /* 0x0a0 */ uint16_t sys_description_len;
140 /* 0x0a2 */ uint8_t sys_description_table[14];
141 // [0] machine id
142 // [1] machine submodel id
143 // [2] BIOS revision
144 // [3] bit1: MCA bus
145
146 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
147 /* 0x1e0 */ uint32_t alt_mem_k;
148 /* 0x1e4 */ uint8_t pad4[4];
149 /* 0x1e8 */ uint8_t e820map_entries;
150 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
151 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
152 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
153 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
154 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
155 // (b)zImage-file (in 16 byte units, rounded up)
156 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
157 /* 0x1f8 */ uint16_t ramdisk_flags;
158 /* 0x1fa */ uint16_t vga_mode; // (old one)
159 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
160 /* 0x1fe */ uint8_t pad6[1];
161 /* 0x1ff */ uint8_t aux_device_info;
162 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
163 // aka "reserved" field.
164 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
165 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
166 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
167 // boot loaders, look there.
168 /* 0x210 */ uint8_t loader_type;
169 // 0 for old one.
170 // else 0xTV:
171 // T=0: LILO
172 // T=1: Loadlin
173 // T=2: bootsect-loader
174 // T=3: SYSLINUX
175 // T=4: ETHERBOOT
176 // V=version
177 /* 0x211 */ uint8_t loadflags;
178 // bit0 = 1: kernel is loaded high (bzImage)
179 // bit7 = 1: Heap and pointer (see below) set by boot
180 // loader.
181 /* 0x212 */ uint16_t setup_S_temp1;
182 /* 0x214 */ uint32_t kernel_start;
183 /* 0x218 */ uint32_t initrd_start;
184 /* 0x21c */ uint32_t initrd_size;
185 /* 0x220 */ uint8_t setup_S_temp2[4];
186 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
187 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
188
189 /* 0x2d0 : Int 15, ax=e820 memory map. */
190 // (linux/include/asm-i386/e820.h, 'struct e820entry')
191 #define E820MAX 32
192 #define E820_RAM 1
193 #define E820_RESERVED 2
194 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
195 #define E820_NVS 4
196 struct {
197 uint64_t addr;
198 uint64_t size;
199 uint32_t type;
200 } e820map[E820MAX];
201
202 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
203
204 // BIOS Enhanced Disk Drive Services.
205 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
206 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
207 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
208
209 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
210 /* 0x800 */ uint8_t commandline[0x800];
211
212 /* 0x1000 */
213 uint64_t gdt_table[256];
214 uint64_t idt_table[48];
215 };
216
217 #define KERNEL_CS 0x10
218 #define KERNEL_DS 0x18
219
220 /* XXX: use a two level table to limit memory usage */
221 #define MAX_IOPORTS 65536
222
223 static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
224 char phys_ram_file[1024];
225 CPUState *global_env;
226 CPUState *cpu_single_env;
227 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
228 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
229 BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
230 int vga_ram_size;
231 static DisplayState display_state;
232 int nographic;
233 int term_inited;
234 int64_t ticks_per_sec;
235 int boot_device = 'c';
236 static int ram_size;
237
238 /***********************************************************/
239 /* x86 io ports */
240
241 uint32_t default_ioport_readb(CPUState *env, uint32_t address)
242 {
243 #ifdef DEBUG_UNUSED_IOPORT
244 fprintf(stderr, "inb: port=0x%04x\n", address);
245 #endif
246 return 0xff;
247 }
248
249 void default_ioport_writeb(CPUState *env, uint32_t address, uint32_t data)
250 {
251 #ifdef DEBUG_UNUSED_IOPORT
252 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
253 #endif
254 }
255
256 /* default is to make two byte accesses */
257 uint32_t default_ioport_readw(CPUState *env, uint32_t address)
258 {
259 uint32_t data;
260 data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
261 data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
262 return data;
263 }
264
265 void default_ioport_writew(CPUState *env, uint32_t address, uint32_t data)
266 {
267 ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
268 ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
269 }
270
271 uint32_t default_ioport_readl(CPUState *env, uint32_t address)
272 {
273 #ifdef DEBUG_UNUSED_IOPORT
274 fprintf(stderr, "inl: port=0x%04x\n", address);
275 #endif
276 return 0xffffffff;
277 }
278
279 void default_ioport_writel(CPUState *env, uint32_t address, uint32_t data)
280 {
281 #ifdef DEBUG_UNUSED_IOPORT
282 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
283 #endif
284 }
285
286 void init_ioports(void)
287 {
288 int i;
289
290 for(i = 0; i < MAX_IOPORTS; i++) {
291 ioport_read_table[0][i] = default_ioport_readb;
292 ioport_write_table[0][i] = default_ioport_writeb;
293 ioport_read_table[1][i] = default_ioport_readw;
294 ioport_write_table[1][i] = default_ioport_writew;
295 ioport_read_table[2][i] = default_ioport_readl;
296 ioport_write_table[2][i] = default_ioport_writel;
297 }
298 }
299
300 /* size is the word size in byte */
301 int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
302 {
303 int i, bsize;
304
305 if (size == 1)
306 bsize = 0;
307 else if (size == 2)
308 bsize = 1;
309 else if (size == 4)
310 bsize = 2;
311 else
312 return -1;
313 for(i = start; i < start + length; i += size)
314 ioport_read_table[bsize][i] = func;
315 return 0;
316 }
317
318 /* size is the word size in byte */
319 int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
320 {
321 int i, bsize;
322
323 if (size == 1)
324 bsize = 0;
325 else if (size == 2)
326 bsize = 1;
327 else if (size == 4)
328 bsize = 2;
329 else
330 return -1;
331 for(i = start; i < start + length; i += size)
332 ioport_write_table[bsize][i] = func;
333 return 0;
334 }
335
336 void pstrcpy(char *buf, int buf_size, const char *str)
337 {
338 int c;
339 char *q = buf;
340
341 if (buf_size <= 0)
342 return;
343
344 for(;;) {
345 c = *str++;
346 if (c == 0 || q >= buf + buf_size - 1)
347 break;
348 *q++ = c;
349 }
350 *q = '\0';
351 }
352
353 /* strcat and truncate. */
354 char *pstrcat(char *buf, int buf_size, const char *s)
355 {
356 int len;
357 len = strlen(buf);
358 if (len < buf_size)
359 pstrcpy(buf + len, buf_size - len, s);
360 return buf;
361 }
362
363 int load_kernel(const char *filename, uint8_t *addr)
364 {
365 int fd, size;
366 #if defined (TARGET_I386)
367 int setup_sects;
368 uint8_t bootsect[512];
369 #endif
370
371 printf("Load kernel at %p (0x%08x)\n", addr,
372 (uint32_t)addr - (uint32_t)phys_ram_base);
373 fd = open(filename, O_RDONLY);
374 if (fd < 0)
375 return -1;
376 #if defined (TARGET_I386)
377 if (read(fd, bootsect, 512) != 512)
378 goto fail;
379 setup_sects = bootsect[0x1F1];
380 if (!setup_sects)
381 setup_sects = 4;
382 /* skip 16 bit setup code */
383 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
384 #endif
385 size = read(fd, addr, 16 * 1024 * 1024);
386 if (size < 0)
387 goto fail;
388 close(fd);
389 return size;
390 fail:
391 close(fd);
392 return -1;
393 }
394
395 /* return the size or -1 if error */
396 int load_image(const char *filename, uint8_t *addr)
397 {
398 int fd, size;
399 fd = open(filename, O_RDONLY);
400 if (fd < 0)
401 return -1;
402 size = lseek(fd, 0, SEEK_END);
403 lseek(fd, 0, SEEK_SET);
404 if (read(fd, addr, size) != size) {
405 close(fd);
406 return -1;
407 }
408 close(fd);
409 return size;
410 }
411
412 void cpu_outb(CPUState *env, int addr, int val)
413 {
414 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
415 }
416
417 void cpu_outw(CPUState *env, int addr, int val)
418 {
419 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
420 }
421
422 void cpu_outl(CPUState *env, int addr, int val)
423 {
424 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
425 }
426
427 int cpu_inb(CPUState *env, int addr)
428 {
429 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
430 }
431
432 int cpu_inw(CPUState *env, int addr)
433 {
434 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
435 }
436
437 int cpu_inl(CPUState *env, int addr)
438 {
439 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
440 }
441
442 /***********************************************************/
443 void ioport80_write(CPUState *env, uint32_t addr, uint32_t data)
444 {
445 }
446
447 void hw_error(const char *fmt, ...)
448 {
449 va_list ap;
450
451 va_start(ap, fmt);
452 fprintf(stderr, "qemu: hardware error: ");
453 vfprintf(stderr, fmt, ap);
454 fprintf(stderr, "\n");
455 #ifdef TARGET_I386
456 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
457 #else
458 cpu_dump_state(global_env, stderr, 0);
459 #endif
460 va_end(ap);
461 abort();
462 }
463
464 /***********************************************************/
465 /* cmos emulation */
466
467 #if defined (TARGET_I386)
468 #define RTC_SECONDS 0
469 #define RTC_SECONDS_ALARM 1
470 #define RTC_MINUTES 2
471 #define RTC_MINUTES_ALARM 3
472 #define RTC_HOURS 4
473 #define RTC_HOURS_ALARM 5
474 #define RTC_ALARM_DONT_CARE 0xC0
475
476 #define RTC_DAY_OF_WEEK 6
477 #define RTC_DAY_OF_MONTH 7
478 #define RTC_MONTH 8
479 #define RTC_YEAR 9
480
481 #define RTC_REG_A 10
482 #define RTC_REG_B 11
483 #define RTC_REG_C 12
484 #define RTC_REG_D 13
485
486 /* PC cmos mappings */
487 #define REG_EQUIPMENT_BYTE 0x14
488 #define REG_IBM_CENTURY_BYTE 0x32
489
490 uint8_t cmos_data[128];
491 uint8_t cmos_index;
492
493 void cmos_ioport_write(CPUState *env, uint32_t addr, uint32_t data)
494 {
495 if (addr == 0x70) {
496 cmos_index = data & 0x7f;
497 } else {
498 #ifdef DEBUG_CMOS
499 printf("cmos: write index=0x%02x val=0x%02x\n",
500 cmos_index, data);
501 #endif
502 switch(addr) {
503 case RTC_SECONDS_ALARM:
504 case RTC_MINUTES_ALARM:
505 case RTC_HOURS_ALARM:
506 /* XXX: not supported */
507 cmos_data[cmos_index] = data;
508 break;
509 case RTC_SECONDS:
510 case RTC_MINUTES:
511 case RTC_HOURS:
512 case RTC_DAY_OF_WEEK:
513 case RTC_DAY_OF_MONTH:
514 case RTC_MONTH:
515 case RTC_YEAR:
516 cmos_data[cmos_index] = data;
517 break;
518 case RTC_REG_A:
519 case RTC_REG_B:
520 cmos_data[cmos_index] = data;
521 break;
522 case RTC_REG_C:
523 case RTC_REG_D:
524 /* cannot write to them */
525 break;
526 default:
527 cmos_data[cmos_index] = data;
528 break;
529 }
530 }
531 }
532
533 static inline int to_bcd(int a)
534 {
535 return ((a / 10) << 4) | (a % 10);
536 }
537
538 static void cmos_update_time(void)
539 {
540 struct tm *tm;
541 time_t ti;
542
543 ti = time(NULL);
544 tm = gmtime(&ti);
545 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
546 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
547 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
548 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
549 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
550 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
551 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
552 cmos_data[REG_IBM_CENTURY_BYTE] = to_bcd((tm->tm_year / 100) + 19);
553 }
554
555 uint32_t cmos_ioport_read(CPUState *env, uint32_t addr)
556 {
557 int ret;
558
559 if (addr == 0x70) {
560 return 0xff;
561 } else {
562 switch(cmos_index) {
563 case RTC_SECONDS:
564 case RTC_MINUTES:
565 case RTC_HOURS:
566 case RTC_DAY_OF_WEEK:
567 case RTC_DAY_OF_MONTH:
568 case RTC_MONTH:
569 case RTC_YEAR:
570 case REG_IBM_CENTURY_BYTE:
571 cmos_update_time();
572 ret = cmos_data[cmos_index];
573 break;
574 case RTC_REG_A:
575 ret = cmos_data[cmos_index];
576 /* toggle update-in-progress bit for Linux (same hack as
577 plex86) */
578 cmos_data[RTC_REG_A] ^= 0x80;
579 break;
580 case RTC_REG_C:
581 ret = cmos_data[cmos_index];
582 pic_set_irq(8, 0);
583 cmos_data[RTC_REG_C] = 0x00;
584 break;
585 default:
586 ret = cmos_data[cmos_index];
587 break;
588 }
589 #ifdef DEBUG_CMOS
590 printf("cmos: read index=0x%02x val=0x%02x\n",
591 cmos_index, ret);
592 #endif
593 return ret;
594 }
595 }
596
597 void cmos_init(void)
598 {
599 int val;
600
601 cmos_update_time();
602
603 cmos_data[RTC_REG_A] = 0x26;
604 cmos_data[RTC_REG_B] = 0x02;
605 cmos_data[RTC_REG_C] = 0x00;
606 cmos_data[RTC_REG_D] = 0x80;
607
608 /* various important CMOS locations needed by PC/Bochs bios */
609
610 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
611 cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
612
613 /* memory size */
614 val = (ram_size / 1024) - 1024;
615 if (val > 65535)
616 val = 65535;
617 cmos_data[0x17] = val;
618 cmos_data[0x18] = val >> 8;
619 cmos_data[0x30] = val;
620 cmos_data[0x31] = val >> 8;
621
622 val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
623 if (val > 65535)
624 val = 65535;
625 cmos_data[0x34] = val;
626 cmos_data[0x35] = val >> 8;
627
628 switch(boot_device) {
629 case 'a':
630 case 'b':
631 cmos_data[0x3d] = 0x01; /* floppy boot */
632 break;
633 default:
634 case 'c':
635 cmos_data[0x3d] = 0x02; /* hard drive boot */
636 break;
637 case 'd':
638 cmos_data[0x3d] = 0x03; /* CD-ROM boot */
639 break;
640 }
641
642 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
643 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
644 }
645
646 void cmos_register_fd (uint8_t fd0, uint8_t fd1)
647 {
648 int nb = 0;
649
650 cmos_data[0x10] = 0;
651 switch (fd0) {
652 case 0:
653 /* 1.44 Mb 3"5 drive */
654 cmos_data[0x10] |= 0x40;
655 break;
656 case 1:
657 /* 2.88 Mb 3"5 drive */
658 cmos_data[0x10] |= 0x60;
659 break;
660 case 2:
661 /* 1.2 Mb 5"5 drive */
662 cmos_data[0x10] |= 0x20;
663 break;
664 }
665 switch (fd1) {
666 case 0:
667 /* 1.44 Mb 3"5 drive */
668 cmos_data[0x10] |= 0x04;
669 break;
670 case 1:
671 /* 2.88 Mb 3"5 drive */
672 cmos_data[0x10] |= 0x06;
673 break;
674 case 2:
675 /* 1.2 Mb 5"5 drive */
676 cmos_data[0x10] |= 0x02;
677 break;
678 }
679 if (fd0 < 3)
680 nb++;
681 if (fd1 < 3)
682 nb++;
683 switch (nb) {
684 case 0:
685 break;
686 case 1:
687 cmos_data[REG_EQUIPMENT_BYTE] |= 0x01; /* 1 drive, ready for boot */
688 break;
689 case 2:
690 cmos_data[REG_EQUIPMENT_BYTE] |= 0x41; /* 2 drives, ready for boot */
691 break;
692 }
693 }
694 #endif /* TARGET_I386 */
695
696 /***********************************************************/
697 /* 8259 pic emulation */
698
699 typedef struct PicState {
700 uint8_t last_irr; /* edge detection */
701 uint8_t irr; /* interrupt request register */
702 uint8_t imr; /* interrupt mask register */
703 uint8_t isr; /* interrupt service register */
704 uint8_t priority_add; /* highest irq priority */
705 uint8_t irq_base;
706 uint8_t read_reg_select;
707 uint8_t poll;
708 uint8_t special_mask;
709 uint8_t init_state;
710 uint8_t auto_eoi;
711 uint8_t rotate_on_auto_eoi;
712 uint8_t special_fully_nested_mode;
713 uint8_t init4; /* true if 4 byte init */
714 } PicState;
715
716 /* 0 is master pic, 1 is slave pic */
717 PicState pics[2];
718 int pic_irq_requested;
719
720 /* set irq level. If an edge is detected, then the IRR is set to 1 */
721 static inline void pic_set_irq1(PicState *s, int irq, int level)
722 {
723 int mask;
724 mask = 1 << irq;
725 if (level) {
726 if ((s->last_irr & mask) == 0)
727 s->irr |= mask;
728 s->last_irr |= mask;
729 } else {
730 s->last_irr &= ~mask;
731 }
732 }
733
734 /* return the highest priority found in mask (highest = smallest
735 number). Return 8 if no irq */
736 static inline int get_priority(PicState *s, int mask)
737 {
738 int priority;
739 if (mask == 0)
740 return 8;
741 priority = 0;
742 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
743 priority++;
744 return priority;
745 }
746
747 /* return the pic wanted interrupt. return -1 if none */
748 static int pic_get_irq(PicState *s)
749 {
750 int mask, cur_priority, priority;
751
752 mask = s->irr & ~s->imr;
753 priority = get_priority(s, mask);
754 if (priority == 8)
755 return -1;
756 /* compute current priority. If special fully nested mode on the
757 master, the IRQ coming from the slave is not taken into account
758 for the priority computation. */
759 mask = s->isr;
760 if (s->special_fully_nested_mode && s == &pics[0])
761 mask &= ~(1 << 2);
762 cur_priority = get_priority(s, mask);
763 if (priority < cur_priority) {
764 /* higher priority found: an irq should be generated */
765 return (priority + s->priority_add) & 7;
766 } else {
767 return -1;
768 }
769 }
770
771 /* raise irq to CPU if necessary. must be called every time the active
772 irq may change */
773 void pic_update_irq(void)
774 {
775 int irq2, irq;
776
777 /* first look at slave pic */
778 irq2 = pic_get_irq(&pics[1]);
779 if (irq2 >= 0) {
780 /* if irq request by slave pic, signal master PIC */
781 pic_set_irq1(&pics[0], 2, 1);
782 pic_set_irq1(&pics[0], 2, 0);
783 }
784 /* look at requested irq */
785 irq = pic_get_irq(&pics[0]);
786 if (irq >= 0) {
787 if (irq == 2) {
788 /* from slave pic */
789 pic_irq_requested = 8 + irq2;
790 } else {
791 /* from master pic */
792 pic_irq_requested = irq;
793 }
794 #if defined(DEBUG_PIC)
795 {
796 int i;
797 for(i = 0; i < 2; i++) {
798 printf("pic%d: imr=%x irr=%x padd=%d\n",
799 i, pics[i].imr, pics[i].irr, pics[i].priority_add);
800
801 }
802 }
803 printf("pic: cpu_interrupt req=%d\n", pic_irq_requested);
804 #endif
805 cpu_interrupt(global_env, CPU_INTERRUPT_HARD);
806 }
807 }
808
809 #ifdef DEBUG_IRQ_LATENCY
810 int64_t irq_time[16];
811 int64_t cpu_get_ticks(void);
812 #endif
813 #if defined(DEBUG_PIC)
814 int irq_level[16];
815 #endif
816
817 void pic_set_irq(int irq, int level)
818 {
819 #if defined(DEBUG_PIC)
820 if (level != irq_level[irq]) {
821 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
822 irq_level[irq] = level;
823 }
824 #endif
825 #ifdef DEBUG_IRQ_LATENCY
826 if (level) {
827 irq_time[irq] = cpu_get_ticks();
828 }
829 #endif
830 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
831 pic_update_irq();
832 }
833
834 /* acknowledge interrupt 'irq' */
835 static inline void pic_intack(PicState *s, int irq)
836 {
837 if (s->auto_eoi) {
838 if (s->rotate_on_auto_eoi)
839 s->priority_add = (irq + 1) & 7;
840 } else {
841 s->isr |= (1 << irq);
842 }
843 s->irr &= ~(1 << irq);
844 }
845
846 int cpu_x86_get_pic_interrupt(CPUState *env)
847 {
848 int irq, irq2, intno;
849
850 /* signal the pic that the irq was acked by the CPU */
851 irq = pic_irq_requested;
852 #ifdef DEBUG_IRQ_LATENCY
853 printf("IRQ%d latency=%0.3fus\n",
854 irq,
855 (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
856 #endif
857 #if defined(DEBUG_PIC)
858 printf("pic_interrupt: irq=%d\n", irq);
859 #endif
860
861 if (irq >= 8) {
862 irq2 = irq & 7;
863 pic_intack(&pics[1], irq2);
864 irq = 2;
865 intno = pics[1].irq_base + irq2;
866 } else {
867 intno = pics[0].irq_base + irq;
868 }
869 pic_intack(&pics[0], irq);
870 return intno;
871 }
872
873 void pic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
874 {
875 PicState *s;
876 int priority, cmd, irq;
877
878 #ifdef DEBUG_PIC
879 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
880 #endif
881 s = &pics[addr >> 7];
882 addr &= 1;
883 if (addr == 0) {
884 if (val & 0x10) {
885 /* init */
886 memset(s, 0, sizeof(PicState));
887 s->init_state = 1;
888 s->init4 = val & 1;
889 if (val & 0x02)
890 hw_error("single mode not supported");
891 if (val & 0x08)
892 hw_error("level sensitive irq not supported");
893 } else if (val & 0x08) {
894 if (val & 0x04)
895 s->poll = 1;
896 if (val & 0x02)
897 s->read_reg_select = val & 1;
898 if (val & 0x40)
899 s->special_mask = (val >> 5) & 1;
900 } else {
901 cmd = val >> 5;
902 switch(cmd) {
903 case 0:
904 case 4:
905 s->rotate_on_auto_eoi = cmd >> 2;
906 break;
907 case 1: /* end of interrupt */
908 case 5:
909 priority = get_priority(s, s->isr);
910 if (priority != 8) {
911 irq = (priority + s->priority_add) & 7;
912 s->isr &= ~(1 << irq);
913 if (cmd == 5)
914 s->priority_add = (irq + 1) & 7;
915 pic_update_irq();
916 }
917 break;
918 case 3:
919 irq = val & 7;
920 s->isr &= ~(1 << irq);
921 pic_update_irq();
922 break;
923 case 6:
924 s->priority_add = (val + 1) & 7;
925 pic_update_irq();
926 break;
927 case 7:
928 irq = val & 7;
929 s->isr &= ~(1 << irq);
930 s->priority_add = (irq + 1) & 7;
931 pic_update_irq();
932 break;
933 default:
934 /* no operation */
935 break;
936 }
937 }
938 } else {
939 switch(s->init_state) {
940 case 0:
941 /* normal mode */
942 s->imr = val;
943 pic_update_irq();
944 break;
945 case 1:
946 s->irq_base = val & 0xf8;
947 s->init_state = 2;
948 break;
949 case 2:
950 if (s->init4) {
951 s->init_state = 3;
952 } else {
953 s->init_state = 0;
954 }
955 break;
956 case 3:
957 s->special_fully_nested_mode = (val >> 4) & 1;
958 s->auto_eoi = (val >> 1) & 1;
959 s->init_state = 0;
960 break;
961 }
962 }
963 }
964
965 static uint32_t pic_poll_read (PicState *s, uint32_t addr1)
966 {
967 int ret;
968
969 ret = pic_get_irq(s);
970 if (ret >= 0) {
971 if (addr1 >> 7) {
972 pics[0].isr &= ~(1 << 2);
973 pics[0].irr &= ~(1 << 2);
974 }
975 s->irr &= ~(1 << ret);
976 s->isr &= ~(1 << ret);
977 if (addr1 >> 7 || ret != 2)
978 pic_update_irq();
979 } else {
980 ret = 0x07;
981 pic_update_irq();
982 }
983
984 return ret;
985 }
986
987 uint32_t pic_ioport_read(CPUState *env, uint32_t addr1)
988 {
989 PicState *s;
990 unsigned int addr;
991 int ret;
992
993 addr = addr1;
994 s = &pics[addr >> 7];
995 addr &= 1;
996 if (s->poll) {
997 ret = pic_poll_read(s, addr1);
998 s->poll = 0;
999 } else {
1000 if (addr == 0) {
1001 if (s->read_reg_select)
1002 ret = s->isr;
1003 else
1004 ret = s->irr;
1005 } else {
1006 ret = s->imr;
1007 }
1008 }
1009 #ifdef DEBUG_PIC
1010 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
1011 #endif
1012 return ret;
1013 }
1014
1015 /* memory mapped interrupt status */
1016 uint32_t pic_intack_read(CPUState *env)
1017 {
1018 int ret;
1019
1020 ret = pic_poll_read(&pics[0], 0x00);
1021 if (ret == 2)
1022 ret = pic_poll_read(&pics[1], 0x80) + 8;
1023 /* Prepare for ISR read */
1024 pics[0].read_reg_select = 1;
1025
1026 return ret;
1027 }
1028
1029 void pic_init(void)
1030 {
1031 #if defined (TARGET_I386) || defined (TARGET_PPC)
1032 register_ioport_write(0x20, 2, pic_ioport_write, 1);
1033 register_ioport_read(0x20, 2, pic_ioport_read, 1);
1034 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
1035 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
1036 #endif
1037 }
1038
1039 /***********************************************************/
1040 /* 8253 PIT emulation */
1041
1042 #define PIT_FREQ 1193182
1043
1044 #define RW_STATE_LSB 0
1045 #define RW_STATE_MSB 1
1046 #define RW_STATE_WORD0 2
1047 #define RW_STATE_WORD1 3
1048 #define RW_STATE_LATCHED_WORD0 4
1049 #define RW_STATE_LATCHED_WORD1 5
1050
1051 typedef struct PITChannelState {
1052 int count; /* can be 65536 */
1053 uint16_t latched_count;
1054 uint8_t rw_state;
1055 uint8_t mode;
1056 uint8_t bcd; /* not supported */
1057 uint8_t gate; /* timer start */
1058 int64_t count_load_time;
1059 int64_t count_last_edge_check_time;
1060 } PITChannelState;
1061
1062 PITChannelState pit_channels[3];
1063 int speaker_data_on;
1064 int dummy_refresh_clock;
1065 int pit_min_timer_count = 0;
1066
1067
1068 #if defined(__powerpc__)
1069
1070 static inline uint32_t get_tbl(void)
1071 {
1072 uint32_t tbl;
1073 asm volatile("mftb %0" : "=r" (tbl));
1074 return tbl;
1075 }
1076
1077 static inline uint32_t get_tbu(void)
1078 {
1079 uint32_t tbl;
1080 asm volatile("mftbu %0" : "=r" (tbl));
1081 return tbl;
1082 }
1083
1084 int64_t cpu_get_real_ticks(void)
1085 {
1086 uint32_t l, h, h1;
1087 /* NOTE: we test if wrapping has occurred */
1088 do {
1089 h = get_tbu();
1090 l = get_tbl();
1091 h1 = get_tbu();
1092 } while (h != h1);
1093 return ((int64_t)h << 32) | l;
1094 }
1095
1096 #elif defined(__i386__)
1097
1098 int64_t cpu_get_real_ticks(void)
1099 {
1100 int64_t val;
1101 asm("rdtsc" : "=A" (val));
1102 return val;
1103 }
1104
1105 #else
1106 #error unsupported CPU
1107 #endif
1108
1109 static int64_t cpu_ticks_offset;
1110 static int64_t cpu_ticks_last;
1111
1112 int64_t cpu_get_ticks(void)
1113 {
1114 return cpu_get_real_ticks() + cpu_ticks_offset;
1115 }
1116
1117 /* enable cpu_get_ticks() */
1118 void cpu_enable_ticks(void)
1119 {
1120 cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
1121 }
1122
1123 /* disable cpu_get_ticks() : the clock is stopped. You must not call
1124 cpu_get_ticks() after that. */
1125 void cpu_disable_ticks(void)
1126 {
1127 cpu_ticks_last = cpu_get_ticks();
1128 }
1129
1130 int64_t get_clock(void)
1131 {
1132 struct timeval tv;
1133 gettimeofday(&tv, NULL);
1134 return tv.tv_sec * 1000000LL + tv.tv_usec;
1135 }
1136
1137 void cpu_calibrate_ticks(void)
1138 {
1139 int64_t usec, ticks;
1140
1141 usec = get_clock();
1142 ticks = cpu_get_ticks();
1143 usleep(50 * 1000);
1144 usec = get_clock() - usec;
1145 ticks = cpu_get_ticks() - ticks;
1146 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
1147 }
1148
1149 /* compute with 96 bit intermediate result: (a*b)/c */
1150 static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
1151 {
1152 union {
1153 uint64_t ll;
1154 struct {
1155 #ifdef WORDS_BIGENDIAN
1156 uint32_t high, low;
1157 #else
1158 uint32_t low, high;
1159 #endif
1160 } l;
1161 } u, res;
1162 uint64_t rl, rh;
1163
1164 u.ll = a;
1165 rl = (uint64_t)u.l.low * (uint64_t)b;
1166 rh = (uint64_t)u.l.high * (uint64_t)b;
1167 rh += (rl >> 32);
1168 res.l.high = rh / c;
1169 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
1170 return res.ll;
1171 }
1172
1173 static int pit_get_count(PITChannelState *s)
1174 {
1175 uint64_t d;
1176 int counter;
1177
1178 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1179 switch(s->mode) {
1180 case 0:
1181 case 1:
1182 case 4:
1183 case 5:
1184 counter = (s->count - d) & 0xffff;
1185 break;
1186 case 3:
1187 /* XXX: may be incorrect for odd counts */
1188 counter = s->count - ((2 * d) % s->count);
1189 break;
1190 default:
1191 counter = s->count - (d % s->count);
1192 break;
1193 }
1194 return counter;
1195 }
1196
1197 /* get pit output bit */
1198 static int pit_get_out(PITChannelState *s)
1199 {
1200 uint64_t d;
1201 int out;
1202
1203 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1204 switch(s->mode) {
1205 default:
1206 case 0:
1207 out = (d >= s->count);
1208 break;
1209 case 1:
1210 out = (d < s->count);
1211 break;
1212 case 2:
1213 if ((d % s->count) == 0 && d != 0)
1214 out = 1;
1215 else
1216 out = 0;
1217 break;
1218 case 3:
1219 out = (d % s->count) < ((s->count + 1) >> 1);
1220 break;
1221 case 4:
1222 case 5:
1223 out = (d == s->count);
1224 break;
1225 }
1226 return out;
1227 }
1228
1229 /* get the number of 0 to 1 transitions we had since we call this
1230 function */
1231 /* XXX: maybe better to use ticks precision to avoid getting edges
1232 twice if checks are done at very small intervals */
1233 static int pit_get_out_edges(PITChannelState *s)
1234 {
1235 uint64_t d1, d2;
1236 int64_t ticks;
1237 int ret, v;
1238
1239 ticks = cpu_get_ticks();
1240 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
1241 PIT_FREQ, ticks_per_sec);
1242 d2 = muldiv64(ticks - s->count_load_time,
1243 PIT_FREQ, ticks_per_sec);
1244 s->count_last_edge_check_time = ticks;
1245 switch(s->mode) {
1246 default:
1247 case 0:
1248 if (d1 < s->count && d2 >= s->count)
1249 ret = 1;
1250 else
1251 ret = 0;
1252 break;
1253 case 1:
1254 ret = 0;
1255 break;
1256 case 2:
1257 d1 /= s->count;
1258 d2 /= s->count;
1259 ret = d2 - d1;
1260 break;
1261 case 3:
1262 v = s->count - ((s->count + 1) >> 1);
1263 d1 = (d1 + v) / s->count;
1264 d2 = (d2 + v) / s->count;
1265 ret = d2 - d1;
1266 break;
1267 case 4:
1268 case 5:
1269 if (d1 < s->count && d2 >= s->count)
1270 ret = 1;
1271 else
1272 ret = 0;
1273 break;
1274 }
1275 return ret;
1276 }
1277
1278 /* val must be 0 or 1 */
1279 static inline void pit_set_gate(PITChannelState *s, int val)
1280 {
1281 switch(s->mode) {
1282 default:
1283 case 0:
1284 case 4:
1285 /* XXX: just disable/enable counting */
1286 break;
1287 case 1:
1288 case 5:
1289 if (s->gate < val) {
1290 /* restart counting on rising edge */
1291 s->count_load_time = cpu_get_ticks();
1292 s->count_last_edge_check_time = s->count_load_time;
1293 }
1294 break;
1295 case 2:
1296 case 3:
1297 if (s->gate < val) {
1298 /* restart counting on rising edge */
1299 s->count_load_time = cpu_get_ticks();
1300 s->count_last_edge_check_time = s->count_load_time;
1301 }
1302 /* XXX: disable/enable counting */
1303 break;
1304 }
1305 s->gate = val;
1306 }
1307
1308 static inline void pit_load_count(PITChannelState *s, int val)
1309 {
1310 if (val == 0)
1311 val = 0x10000;
1312 s->count_load_time = cpu_get_ticks();
1313 s->count_last_edge_check_time = s->count_load_time;
1314 s->count = val;
1315 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1316 fprintf(stderr,
1317 "\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.6 guest Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
1318 PIT_FREQ / pit_min_timer_count);
1319 }
1320 }
1321
1322 void pit_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1323 {
1324 int channel, access;
1325 PITChannelState *s;
1326
1327 addr &= 3;
1328 if (addr == 3) {
1329 channel = val >> 6;
1330 if (channel == 3)
1331 return;
1332 s = &pit_channels[channel];
1333 access = (val >> 4) & 3;
1334 switch(access) {
1335 case 0:
1336 s->latched_count = pit_get_count(s);
1337 s->rw_state = RW_STATE_LATCHED_WORD0;
1338 break;
1339 default:
1340 s->mode = (val >> 1) & 7;
1341 s->bcd = val & 1;
1342 s->rw_state = access - 1 + RW_STATE_LSB;
1343 break;
1344 }
1345 } else {
1346 s = &pit_channels[addr];
1347 switch(s->rw_state) {
1348 case RW_STATE_LSB:
1349 pit_load_count(s, val);
1350 break;
1351 case RW_STATE_MSB:
1352 pit_load_count(s, val << 8);
1353 break;
1354 case RW_STATE_WORD0:
1355 case RW_STATE_WORD1:
1356 if (s->rw_state & 1) {
1357 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1358 } else {
1359 s->latched_count = val;
1360 }
1361 s->rw_state ^= 1;
1362 break;
1363 }
1364 }
1365 }
1366
1367 uint32_t pit_ioport_read(CPUState *env, uint32_t addr)
1368 {
1369 int ret, count;
1370 PITChannelState *s;
1371
1372 addr &= 3;
1373 s = &pit_channels[addr];
1374 switch(s->rw_state) {
1375 case RW_STATE_LSB:
1376 case RW_STATE_MSB:
1377 case RW_STATE_WORD0:
1378 case RW_STATE_WORD1:
1379 count = pit_get_count(s);
1380 if (s->rw_state & 1)
1381 ret = (count >> 8) & 0xff;
1382 else
1383 ret = count & 0xff;
1384 if (s->rw_state & 2)
1385 s->rw_state ^= 1;
1386 break;
1387 default:
1388 case RW_STATE_LATCHED_WORD0:
1389 case RW_STATE_LATCHED_WORD1:
1390 if (s->rw_state & 1)
1391 ret = s->latched_count >> 8;
1392 else
1393 ret = s->latched_count & 0xff;
1394 s->rw_state ^= 1;
1395 break;
1396 }
1397 return ret;
1398 }
1399
1400 #if defined (TARGET_I386)
1401 void speaker_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1402 {
1403 speaker_data_on = (val >> 1) & 1;
1404 pit_set_gate(&pit_channels[2], val & 1);
1405 }
1406
1407 uint32_t speaker_ioport_read(CPUState *env, uint32_t addr)
1408 {
1409 int out;
1410 out = pit_get_out(&pit_channels[2]);
1411 dummy_refresh_clock ^= 1;
1412 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1413 (dummy_refresh_clock << 4);
1414 }
1415 #endif
1416
1417 void pit_init(void)
1418 {
1419 PITChannelState *s;
1420 int i;
1421
1422 cpu_calibrate_ticks();
1423
1424 for(i = 0;i < 3; i++) {
1425 s = &pit_channels[i];
1426 s->mode = 3;
1427 s->gate = (i != 2);
1428 pit_load_count(s, 0);
1429 }
1430
1431 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1432 register_ioport_read(0x40, 3, pit_ioport_read, 1);
1433
1434 #if defined (TARGET_I386)
1435 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1436 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1437 #endif
1438 }
1439
1440 /***********************************************************/
1441 /* serial port emulation */
1442
1443 #define UART_IRQ 4
1444
1445 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1446
1447 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1448 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1449 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1450 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1451
1452 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1453 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1454
1455 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
1456 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1457 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1458 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1459
1460 /*
1461 * These are the definitions for the Modem Control Register
1462 */
1463 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
1464 #define UART_MCR_OUT2 0x08 /* Out2 complement */
1465 #define UART_MCR_OUT1 0x04 /* Out1 complement */
1466 #define UART_MCR_RTS 0x02 /* RTS complement */
1467 #define UART_MCR_DTR 0x01 /* DTR complement */
1468
1469 /*
1470 * These are the definitions for the Modem Status Register
1471 */
1472 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
1473 #define UART_MSR_RI 0x40 /* Ring Indicator */
1474 #define UART_MSR_DSR 0x20 /* Data Set Ready */
1475 #define UART_MSR_CTS 0x10 /* Clear to Send */
1476 #define UART_MSR_DDCD 0x08 /* Delta DCD */
1477 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
1478 #define UART_MSR_DDSR 0x02 /* Delta DSR */
1479 #define UART_MSR_DCTS 0x01 /* Delta CTS */
1480 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
1481
1482 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
1483 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1484 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
1485 #define UART_LSR_FE 0x08 /* Frame error indicator */
1486 #define UART_LSR_PE 0x04 /* Parity error indicator */
1487 #define UART_LSR_OE 0x02 /* Overrun error indicator */
1488 #define UART_LSR_DR 0x01 /* Receiver data ready */
1489
1490 typedef struct SerialState {
1491 uint8_t divider;
1492 uint8_t rbr; /* receive register */
1493 uint8_t ier;
1494 uint8_t iir; /* read only */
1495 uint8_t lcr;
1496 uint8_t mcr;
1497 uint8_t lsr; /* read only */
1498 uint8_t msr;
1499 uint8_t scr;
1500 /* NOTE: this hidden state is necessary for tx irq generation as
1501 it can be reset while reading iir */
1502 int thr_ipending;
1503 } SerialState;
1504
1505 SerialState serial_ports[1];
1506
1507 void serial_update_irq(void)
1508 {
1509 SerialState *s = &serial_ports[0];
1510
1511 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1512 s->iir = UART_IIR_RDI;
1513 } else if (s->thr_ipending && (s->ier & UART_IER_THRI)) {
1514 s->iir = UART_IIR_THRI;
1515 } else {
1516 s->iir = UART_IIR_NO_INT;
1517 }
1518 if (s->iir != UART_IIR_NO_INT) {
1519 pic_set_irq(UART_IRQ, 1);
1520 } else {
1521 pic_set_irq(UART_IRQ, 0);
1522 }
1523 }
1524
1525 void serial_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1526 {
1527 SerialState *s = &serial_ports[0];
1528 unsigned char ch;
1529 int ret;
1530
1531 addr &= 7;
1532 #ifdef DEBUG_SERIAL
1533 printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
1534 #endif
1535 switch(addr) {
1536 default:
1537 case 0:
1538 if (s->lcr & UART_LCR_DLAB) {
1539 s->divider = (s->divider & 0xff00) | val;
1540 } else {
1541 s->thr_ipending = 0;
1542 s->lsr &= ~UART_LSR_THRE;
1543 serial_update_irq();
1544
1545 ch = val;
1546 do {
1547 ret = write(1, &ch, 1);
1548 } while (ret != 1);
1549 s->thr_ipending = 1;
1550 s->lsr |= UART_LSR_THRE;
1551 s->lsr |= UART_LSR_TEMT;
1552 serial_update_irq();
1553 }
1554 break;
1555 case 1:
1556 if (s->lcr & UART_LCR_DLAB) {
1557 s->divider = (s->divider & 0x00ff) | (val << 8);
1558 } else {
1559 s->ier = val;
1560 serial_update_irq();
1561 }
1562 break;
1563 case 2:
1564 break;
1565 case 3:
1566 s->lcr = val;
1567 break;
1568 case 4:
1569 s->mcr = val;
1570 break;
1571 case 5:
1572 break;
1573 case 6:
1574 s->msr = val;
1575 break;
1576 case 7:
1577 s->scr = val;
1578 break;
1579 }
1580 }
1581
1582 uint32_t serial_ioport_read(CPUState *env, uint32_t addr)
1583 {
1584 SerialState *s = &serial_ports[0];
1585 uint32_t ret;
1586
1587 addr &= 7;
1588 switch(addr) {
1589 default:
1590 case 0:
1591 if (s->lcr & UART_LCR_DLAB) {
1592 ret = s->divider & 0xff;
1593 } else {
1594 ret = s->rbr;
1595 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1596 serial_update_irq();
1597 }
1598 break;
1599 case 1:
1600 if (s->lcr & UART_LCR_DLAB) {
1601 ret = (s->divider >> 8) & 0xff;
1602 } else {
1603 ret = s->ier;
1604 }
1605 break;
1606 case 2:
1607 ret = s->iir;
1608 /* reset THR pending bit */
1609 if ((ret & 0x7) == UART_IIR_THRI)
1610 s->thr_ipending = 0;
1611 serial_update_irq();
1612 break;
1613 case 3:
1614 ret = s->lcr;
1615 break;
1616 case 4:
1617 ret = s->mcr;
1618 break;
1619 case 5:
1620 ret = s->lsr;
1621 break;
1622 case 6:
1623 if (s->mcr & UART_MCR_LOOP) {
1624 /* in loopback, the modem output pins are connected to the
1625 inputs */
1626 ret = (s->mcr & 0x0c) << 4;
1627 ret |= (s->mcr & 0x02) << 3;
1628 ret |= (s->mcr & 0x01) << 5;
1629 } else {
1630 ret = s->msr;
1631 }
1632 break;
1633 case 7:
1634 ret = s->scr;
1635 break;
1636 }
1637 #ifdef DEBUG_SERIAL
1638 printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
1639 #endif
1640 return ret;
1641 }
1642
1643 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1644 static int term_got_escape, term_command;
1645 static unsigned char term_cmd_buf[128];
1646
1647 typedef struct term_cmd_t {
1648 const unsigned char *name;
1649 void (*handler)(unsigned char *params);
1650 } term_cmd_t;
1651
1652 static void do_change_cdrom (unsigned char *params);
1653 static void do_change_fd0 (unsigned char *params);
1654 static void do_change_fd1 (unsigned char *params);
1655
1656 static term_cmd_t term_cmds[] = {
1657 { "changecd", &do_change_cdrom, },
1658 { "changefd0", &do_change_fd0, },
1659 { "changefd1", &do_change_fd1, },
1660 { NULL, NULL, },
1661 };
1662
1663 void term_print_help(void)
1664 {
1665 printf("\n"
1666 "C-a h print this help\n"
1667 "C-a x exit emulatior\n"
1668 "C-a d switch on/off debug log\n"
1669 "C-a s save disk data back to file (if -snapshot)\n"
1670 "C-a b send break (magic sysrq)\n"
1671 "C-a c send qemu internal command\n"
1672 "C-a C-a send C-a\n"
1673 );
1674 }
1675
1676 static void do_change_cdrom (unsigned char *params)
1677 {
1678 /* Dunno how to do it... */
1679 }
1680
1681 static void do_change_fd (int fd, unsigned char *params)
1682 {
1683 unsigned char *name_start, *name_end, *ros;
1684 int ro;
1685
1686 for (name_start = params;
1687 isspace(*name_start); name_start++)
1688 continue;
1689 if (*name_start == '\0')
1690 return;
1691 for (name_end = name_start;
1692 !isspace(*name_end) && *name_end != '\0'; name_end++)
1693 continue;
1694 for (ros = name_end + 1; isspace(*ros); ros++)
1695 continue;
1696 if (ros[0] == 'r' && ros[1] == 'o')
1697 ro = 1;
1698 else
1699 ro = 0;
1700 *name_end = '\0';
1701 printf("Change fd %d to %s (%s)\n", fd, name_start, params);
1702 fdctrl_disk_change(fd, name_start, ro);
1703 }
1704
1705 static void do_change_fd0 (unsigned char *params)
1706 {
1707 do_change_fd(0, params);
1708 }
1709
1710 static void do_change_fd1 (unsigned char *params)
1711 {
1712 do_change_fd(1, params);
1713 }
1714
1715 static void serial_treat_command ()
1716 {
1717 unsigned char *cmd_start, *cmd_end;
1718 int i;
1719
1720 for (cmd_start = term_cmd_buf; isspace(*cmd_start); cmd_start++)
1721 continue;
1722 for (cmd_end = cmd_start;
1723 !isspace(*cmd_end) && *cmd_end != '\0'; cmd_end++)
1724 continue;
1725 for (i = 0; term_cmds[i].name != NULL; i++) {
1726 if (strlen(term_cmds[i].name) == (cmd_end - cmd_start) &&
1727 memcmp(term_cmds[i].name, cmd_start, cmd_end - cmd_start) == 0) {
1728 (*term_cmds[i].handler)(cmd_end + 1);
1729 return;
1730 }
1731 }
1732 *cmd_end = '\0';
1733 printf("Unknown term command: %s\n", cmd_start);
1734 }
1735
1736 extern FILE *logfile;
1737
1738 /* called when a char is received */
1739 void serial_received_byte(SerialState *s, int ch)
1740 {
1741 if (term_command) {
1742 if (ch == '\n' || ch == '\r' || term_command == 127) {
1743 printf("\n");
1744 serial_treat_command();
1745 term_command = 0;
1746 } else {
1747 if (ch == 0x7F || ch == 0x08) {
1748 if (term_command > 1) {
1749 term_cmd_buf[--term_command - 1] = '\0';
1750 printf("\r "
1751 " ");
1752 printf("\r> %s", term_cmd_buf);
1753 }
1754 } else if (ch > 0x1f) {
1755 term_cmd_buf[term_command++ - 1] = ch;
1756 term_cmd_buf[term_command - 1] = '\0';
1757 printf("\r> %s", term_cmd_buf);
1758 }
1759 fflush(stdout);
1760 }
1761 } else if (term_got_escape) {
1762 term_got_escape = 0;
1763 switch(ch) {
1764 case 'h':
1765 term_print_help();
1766 break;
1767 case 'x':
1768 exit(0);
1769 break;
1770 case 's':
1771 {
1772 int i;
1773 for (i = 0; i < MAX_DISKS; i++) {
1774 if (bs_table[i])
1775 bdrv_commit(bs_table[i]);
1776 }
1777 }
1778 break;
1779 case 'b':
1780 /* send break */
1781 s->rbr = 0;
1782 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1783 serial_update_irq();
1784 break;
1785 case 'c':
1786 printf("> ");
1787 fflush(stdout);
1788 term_command = 1;
1789 break;
1790 case 'd':
1791 cpu_set_log(CPU_LOG_ALL);
1792 break;
1793 case TERM_ESCAPE:
1794 goto send_char;
1795 }
1796 } else if (ch == TERM_ESCAPE) {
1797 term_got_escape = 1;
1798 } else {
1799 send_char:
1800 s->rbr = ch;
1801 s->lsr |= UART_LSR_DR;
1802 serial_update_irq();
1803 }
1804 }
1805
1806 void serial_init(void)
1807 {
1808 SerialState *s = &serial_ports[0];
1809
1810 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1811 s->iir = UART_IIR_NO_INT;
1812
1813 #if defined(TARGET_I386) || defined (TARGET_PPC)
1814 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1815 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1816 #endif
1817 }
1818
1819 /***********************************************************/
1820 /* ne2000 emulation */
1821
1822 #if defined (TARGET_I386)
1823 #define NE2000_IOPORT 0x300
1824 #define NE2000_IRQ 9
1825
1826 #define MAX_ETH_FRAME_SIZE 1514
1827
1828 #define E8390_CMD 0x00 /* The command register (for all pages) */
1829 /* Page 0 register offsets. */
1830 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1831 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1832 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1833 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1834 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1835 #define EN0_TSR 0x04 /* Transmit status reg RD */
1836 #define EN0_TPSR 0x04 /* Transmit starting page WR */
1837 #define EN0_NCR 0x05 /* Number of collision reg RD */
1838 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1839 #define EN0_FIFO 0x06 /* FIFO RD */
1840 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1841 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1842 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1843 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1844 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1845 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1846 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1847 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1848 #define EN0_RSR 0x0c /* rx status reg RD */
1849 #define EN0_RXCR 0x0c /* RX configuration reg WR */
1850 #define EN0_TXCR 0x0d /* TX configuration reg WR */
1851 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1852 #define EN0_DCFG 0x0e /* Data configuration reg WR */
1853 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1854 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
1855 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1856
1857 #define EN1_PHYS 0x11
1858 #define EN1_CURPAG 0x17
1859 #define EN1_MULT 0x18
1860
1861 /* Register accessed at EN_CMD, the 8390 base addr. */
1862 #define E8390_STOP 0x01 /* Stop and reset the chip */
1863 #define E8390_START 0x02 /* Start the chip, clear reset */
1864 #define E8390_TRANS 0x04 /* Transmit a frame */
1865 #define E8390_RREAD 0x08 /* Remote read */
1866 #define E8390_RWRITE 0x10 /* Remote write */
1867 #define E8390_NODMA 0x20 /* Remote DMA */
1868 #define E8390_PAGE0 0x00 /* Select page chip registers */
1869 #define E8390_PAGE1 0x40 /* using the two high-order bits */
1870 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1871
1872 /* Bits in EN0_ISR - Interrupt status register */
1873 #define ENISR_RX 0x01 /* Receiver, no error */
1874 #define ENISR_TX 0x02 /* Transmitter, no error */
1875 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
1876 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1877 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1878 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
1879 #define ENISR_RDC 0x40 /* remote dma complete */
1880 #define ENISR_RESET 0x80 /* Reset completed */
1881 #define ENISR_ALL 0x3f /* Interrupts we will enable */
1882
1883 /* Bits in received packet status byte and EN0_RSR*/
1884 #define ENRSR_RXOK 0x01 /* Received a good packet */
1885 #define ENRSR_CRC 0x02 /* CRC error */
1886 #define ENRSR_FAE 0x04 /* frame alignment error */
1887 #define ENRSR_FO 0x08 /* FIFO overrun */
1888 #define ENRSR_MPA 0x10 /* missed pkt */
1889 #define ENRSR_PHY 0x20 /* physical/multicast address */
1890 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1891 #define ENRSR_DEF 0x80 /* deferring */
1892
1893 /* Transmitted packet status, EN0_TSR. */
1894 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
1895 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1896 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
1897 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1898 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1899 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1900 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1901 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1902
1903 #define NE2000_MEM_SIZE 32768
1904
1905 typedef struct NE2000State {
1906 uint8_t cmd;
1907 uint32_t start;
1908 uint32_t stop;
1909 uint8_t boundary;
1910 uint8_t tsr;
1911 uint8_t tpsr;
1912 uint16_t tcnt;
1913 uint16_t rcnt;
1914 uint32_t rsar;
1915 uint8_t isr;
1916 uint8_t dcfg;
1917 uint8_t imr;
1918 uint8_t phys[6]; /* mac address */
1919 uint8_t curpag;
1920 uint8_t mult[8]; /* multicast mask array */
1921 uint8_t mem[NE2000_MEM_SIZE];
1922 } NE2000State;
1923
1924 NE2000State ne2000_state;
1925 int net_fd = -1;
1926 char network_script[1024];
1927
1928 void ne2000_reset(void)
1929 {
1930 NE2000State *s = &ne2000_state;
1931 int i;
1932
1933 s->isr = ENISR_RESET;
1934 s->mem[0] = 0x52;
1935 s->mem[1] = 0x54;
1936 s->mem[2] = 0x00;
1937 s->mem[3] = 0x12;
1938 s->mem[4] = 0x34;
1939 s->mem[5] = 0x56;
1940 s->mem[14] = 0x57;
1941 s->mem[15] = 0x57;
1942
1943 /* duplicate prom data */
1944 for(i = 15;i >= 0; i--) {
1945 s->mem[2 * i] = s->mem[i];
1946 s->mem[2 * i + 1] = s->mem[i];
1947 }
1948 }
1949
1950 void ne2000_update_irq(NE2000State *s)
1951 {
1952 int isr;
1953 isr = s->isr & s->imr;
1954 if (isr)
1955 pic_set_irq(NE2000_IRQ, 1);
1956 else
1957 pic_set_irq(NE2000_IRQ, 0);
1958 }
1959
1960 int net_init(void)
1961 {
1962 struct ifreq ifr;
1963 int fd, ret, pid, status;
1964
1965 fd = open("/dev/net/tun", O_RDWR);
1966 if (fd < 0) {
1967 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1968 return -1;
1969 }
1970 memset(&ifr, 0, sizeof(ifr));
1971 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1972 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1973 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1974 if (ret != 0) {
1975 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1976 close(fd);
1977 return -1;
1978 }
1979 printf("Connected to host network interface: %s\n", ifr.ifr_name);
1980 fcntl(fd, F_SETFL, O_NONBLOCK);
1981 net_fd = fd;
1982
1983 /* try to launch network init script */
1984 pid = fork();
1985 if (pid >= 0) {
1986 if (pid == 0) {
1987 execl(network_script, network_script, ifr.ifr_name, NULL);
1988 exit(1);
1989 }
1990 while (waitpid(pid, &status, 0) != pid);
1991 if (!WIFEXITED(status) ||
1992 WEXITSTATUS(status) != 0) {
1993 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1994 network_script, ifr.ifr_name);
1995 }
1996 }
1997 return 0;
1998 }
1999
2000 void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
2001 {
2002 #ifdef DEBUG_NE2000
2003 printf("NE2000: sending packet size=%d\n", size);
2004 #endif
2005 write(net_fd, buf, size);
2006 }
2007
2008 /* return true if the NE2000 can receive more data */
2009 int ne2000_can_receive(NE2000State *s)
2010 {
2011 int avail, index, boundary;
2012
2013 if (s->cmd & E8390_STOP)
2014 return 0;
2015 index = s->curpag << 8;
2016 boundary = s->boundary << 8;
2017 if (index < boundary)
2018 avail = boundary - index;
2019 else
2020 avail = (s->stop - s->start) - (index - boundary);
2021 if (avail < (MAX_ETH_FRAME_SIZE + 4))
2022 return 0;
2023 return 1;
2024 }
2025
2026 void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
2027 {
2028 uint8_t *p;
2029 int total_len, next, avail, len, index;
2030
2031 #if defined(DEBUG_NE2000)
2032 printf("NE2000: received len=%d\n", size);
2033 #endif
2034
2035 index = s->curpag << 8;
2036 /* 4 bytes for header */
2037 total_len = size + 4;
2038 /* address for next packet (4 bytes for CRC) */
2039 next = index + ((total_len + 4 + 255) & ~0xff);
2040 if (next >= s->stop)
2041 next -= (s->stop - s->start);
2042 /* prepare packet header */
2043 p = s->mem + index;
2044 p[0] = ENRSR_RXOK; /* receive status */
2045 p[1] = next >> 8;
2046 p[2] = total_len;
2047 p[3] = total_len >> 8;
2048 index += 4;
2049
2050 /* write packet data */
2051 while (size > 0) {
2052 avail = s->stop - index;
2053 len = size;
2054 if (len > avail)
2055 len = avail;
2056 memcpy(s->mem + index, buf, len);
2057 buf += len;
2058 index += len;
2059 if (index == s->stop)
2060 index = s->start;
2061 size -= len;
2062 }
2063 s->curpag = next >> 8;
2064
2065 /* now we can signal we have receive something */
2066 s->isr |= ENISR_RX;
2067 ne2000_update_irq(s);
2068 }
2069
2070 void ne2000_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2071 {
2072 NE2000State *s = &ne2000_state;
2073 int offset, page;
2074
2075 addr &= 0xf;
2076 #ifdef DEBUG_NE2000
2077 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
2078 #endif
2079 if (addr == E8390_CMD) {
2080 /* control register */
2081 s->cmd = val;
2082 if (val & E8390_START) {
2083 /* test specific case: zero length transfert */
2084 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
2085 s->rcnt == 0) {
2086 s->isr |= ENISR_RDC;
2087 ne2000_update_irq(s);
2088 }
2089 if (val & E8390_TRANS) {
2090 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
2091 /* signal end of transfert */
2092 s->tsr = ENTSR_PTX;
2093 s->isr |= ENISR_TX;
2094 ne2000_update_irq(s);
2095 }
2096 }
2097 } else {
2098 page = s->cmd >> 6;
2099 offset = addr | (page << 4);
2100 switch(offset) {
2101 case EN0_STARTPG:
2102 s->start = val << 8;
2103 break;
2104 case EN0_STOPPG:
2105 s->stop = val << 8;
2106 break;
2107 case EN0_BOUNDARY:
2108 s->boundary = val;
2109 break;
2110 case EN0_IMR:
2111 s->imr = val;
2112 ne2000_update_irq(s);
2113 break;
2114 case EN0_TPSR:
2115 s->tpsr = val;
2116 break;
2117 case EN0_TCNTLO:
2118 s->tcnt = (s->tcnt & 0xff00) | val;
2119 break;
2120 case EN0_TCNTHI:
2121 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
2122 break;
2123 case EN0_RSARLO:
2124 s->rsar = (s->rsar & 0xff00) | val;
2125 break;
2126 case EN0_RSARHI:
2127 s->rsar = (s->rsar & 0x00ff) | (val << 8);
2128 break;
2129 case EN0_RCNTLO:
2130 s->rcnt = (s->rcnt & 0xff00) | val;
2131 break;
2132 case EN0_RCNTHI:
2133 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
2134 break;
2135 case EN0_DCFG:
2136 s->dcfg = val;
2137 break;
2138 case EN0_ISR:
2139 s->isr &= ~val;
2140 ne2000_update_irq(s);
2141 break;
2142 case EN1_PHYS ... EN1_PHYS + 5:
2143 s->phys[offset - EN1_PHYS] = val;
2144 break;
2145 case EN1_CURPAG:
2146 s->curpag = val;
2147 break;
2148 case EN1_MULT ... EN1_MULT + 7:
2149 s->mult[offset - EN1_MULT] = val;
2150 break;
2151 }
2152 }
2153 }
2154
2155 uint32_t ne2000_ioport_read(CPUState *env, uint32_t addr)
2156 {
2157 NE2000State *s = &ne2000_state;
2158 int offset, page, ret;
2159
2160 addr &= 0xf;
2161 if (addr == E8390_CMD) {
2162 ret = s->cmd;
2163 } else {
2164 page = s->cmd >> 6;
2165 offset = addr | (page << 4);
2166 switch(offset) {
2167 case EN0_TSR:
2168 ret = s->tsr;
2169 break;
2170 case EN0_BOUNDARY:
2171 ret = s->boundary;
2172 break;
2173 case EN0_ISR:
2174 ret = s->isr;
2175 break;
2176 case EN1_PHYS ... EN1_PHYS + 5:
2177 ret = s->phys[offset - EN1_PHYS];
2178 break;
2179 case EN1_CURPAG:
2180 ret = s->curpag;
2181 break;
2182 case EN1_MULT ... EN1_MULT + 7:
2183 ret = s->mult[offset - EN1_MULT];
2184 break;
2185 default:
2186 ret = 0x00;
2187 break;
2188 }
2189 }
2190 #ifdef DEBUG_NE2000
2191 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
2192 #endif
2193 return ret;
2194 }
2195
2196 void ne2000_asic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2197 {
2198 NE2000State *s = &ne2000_state;
2199 uint8_t *p;
2200
2201 #ifdef DEBUG_NE2000
2202 printf("NE2000: asic write val=0x%04x\n", val);
2203 #endif
2204 p = s->mem + s->rsar;
2205 if (s->dcfg & 0x01) {
2206 /* 16 bit access */
2207 p[0] = val;
2208 p[1] = val >> 8;
2209 s->rsar += 2;
2210 s->rcnt -= 2;
2211 } else {
2212 /* 8 bit access */
2213 p[0] = val;
2214 s->rsar++;
2215 s->rcnt--;
2216 }
2217 /* wrap */
2218 if (s->rsar == s->stop)
2219 s->rsar = s->start;
2220 if (s->rcnt == 0) {
2221 /* signal end of transfert */
2222 s->isr |= ENISR_RDC;
2223 ne2000_update_irq(s);
2224 }
2225 }
2226
2227 uint32_t ne2000_asic_ioport_read(CPUState *env, uint32_t addr)
2228 {
2229 NE2000State *s = &ne2000_state;
2230 uint8_t *p;
2231 int ret;
2232
2233 p = s->mem + s->rsar;
2234 if (s->dcfg & 0x01) {
2235 /* 16 bit access */
2236 ret = p[0] | (p[1] << 8);
2237 s->rsar += 2;
2238 s->rcnt -= 2;
2239 } else {
2240 /* 8 bit access */
2241 ret = p[0];
2242 s->rsar++;
2243 s->rcnt--;
2244 }
2245 /* wrap */
2246 if (s->rsar == s->stop)
2247 s->rsar = s->start;
2248 if (s->rcnt == 0) {
2249 /* signal end of transfert */
2250 s->isr |= ENISR_RDC;
2251 ne2000_update_irq(s);
2252 }
2253 #ifdef DEBUG_NE2000
2254 printf("NE2000: asic read val=0x%04x\n", ret);
2255 #endif
2256 return ret;
2257 }
2258
2259 void ne2000_reset_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2260 {
2261 /* nothing to do (end of reset pulse) */
2262 }
2263
2264 uint32_t ne2000_reset_ioport_read(CPUState *env, uint32_t addr)
2265 {
2266 ne2000_reset();
2267 return 0;
2268 }
2269
2270 void ne2000_init(void)
2271 {
2272 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
2273 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
2274
2275 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
2276 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
2277 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
2278 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
2279
2280 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
2281 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
2282 ne2000_reset();
2283 }
2284 #endif
2285
2286 /***********************************************************/
2287 /* PC floppy disk controler emulation glue */
2288 #define PC_FDC_DMA 0x2
2289 #define PC_FDC_IRQ 0x6
2290 #define PC_FDC_BASE 0x3F0
2291
2292 static void fdctrl_register (unsigned char **disknames, int ro,
2293 char boot_device)
2294 {
2295 int i;
2296
2297 fdctrl_init(PC_FDC_IRQ, PC_FDC_DMA, 0, PC_FDC_BASE, boot_device);
2298 for (i = 0; i < MAX_FD; i++) {
2299 if (disknames[i] != NULL)
2300 fdctrl_disk_change(i, disknames[i], ro);
2301 }
2302 }
2303
2304 /***********************************************************/
2305 /* keyboard emulation */
2306
2307 /* Keyboard Controller Commands */
2308 #define KBD_CCMD_READ_MODE 0x20 /* Read mode bits */
2309 #define KBD_CCMD_WRITE_MODE 0x60 /* Write mode bits */
2310 #define KBD_CCMD_GET_VERSION 0xA1 /* Get controller version */
2311 #define KBD_CCMD_MOUSE_DISABLE 0xA7 /* Disable mouse interface */
2312 #define KBD_CCMD_MOUSE_ENABLE 0xA8 /* Enable mouse interface */
2313 #define KBD_CCMD_TEST_MOUSE 0xA9 /* Mouse interface test */
2314 #define KBD_CCMD_SELF_TEST 0xAA /* Controller self test */
2315 #define KBD_CCMD_KBD_TEST 0xAB /* Keyboard interface test */
2316 #define KBD_CCMD_KBD_DISABLE 0xAD /* Keyboard interface disable */
2317 #define KBD_CCMD_KBD_ENABLE 0xAE /* Keyboard interface enable */
2318 #define KBD_CCMD_READ_INPORT 0xC0 /* read input port */
2319 #define KBD_CCMD_READ_OUTPORT 0xD0 /* read output port */
2320 #define KBD_CCMD_WRITE_OUTPORT 0xD1 /* write output port */
2321 #define KBD_CCMD_WRITE_OBUF 0xD2
2322 #define KBD_CCMD_WRITE_AUX_OBUF 0xD3 /* Write to output buffer as if
2323 initiated by the auxiliary device */
2324 #define KBD_CCMD_WRITE_MOUSE 0xD4 /* Write the following byte to the mouse */
2325 #define KBD_CCMD_DISABLE_A20 0xDD /* HP vectra only ? */
2326 #define KBD_CCMD_ENABLE_A20 0xDF /* HP vectra only ? */
2327 #define KBD_CCMD_RESET 0xFE
2328
2329 /* Keyboard Commands */
2330 #define KBD_CMD_SET_LEDS 0xED /* Set keyboard leds */
2331 #define KBD_CMD_ECHO 0xEE
2332 #define KBD_CMD_GET_ID 0xF2 /* get keyboard ID */
2333 #define KBD_CMD_SET_RATE 0xF3 /* Set typematic rate */
2334 #define KBD_CMD_ENABLE 0xF4 /* Enable scanning */
2335 #define KBD_CMD_RESET_DISABLE 0xF5 /* reset and disable scanning */
2336 #define KBD_CMD_RESET_ENABLE 0xF6 /* reset and enable scanning */
2337 #define KBD_CMD_RESET 0xFF /* Reset */
2338
2339 /* Keyboard Replies */
2340 #define KBD_REPLY_POR 0xAA /* Power on reset */
2341 #define KBD_REPLY_ACK 0xFA /* Command ACK */
2342 #define KBD_REPLY_RESEND 0xFE /* Command NACK, send the cmd again */
2343
2344 /* Status Register Bits */
2345 #define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */
2346 #define KBD_STAT_IBF 0x02 /* Keyboard input buffer full */
2347 #define KBD_STAT_SELFTEST 0x04 /* Self test successful */
2348 #define KBD_STAT_CMD 0x08 /* Last write was a command write (0=data) */
2349 #define KBD_STAT_UNLOCKED 0x10 /* Zero if keyboard locked */
2350 #define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */
2351 #define KBD_STAT_GTO 0x40 /* General receive/xmit timeout */
2352 #define KBD_STAT_PERR 0x80 /* Parity error */
2353
2354 /* Controller Mode Register Bits */
2355 #define KBD_MODE_KBD_INT 0x01 /* Keyboard data generate IRQ1 */
2356 #define KBD_MODE_MOUSE_INT 0x02 /* Mouse data generate IRQ12 */
2357 #define KBD_MODE_SYS 0x04 /* The system flag (?) */
2358 #define KBD_MODE_NO_KEYLOCK 0x08 /* The keylock doesn't affect the keyboard if set */
2359 #define KBD_MODE_DISABLE_KBD 0x10 /* Disable keyboard interface */
2360 #define KBD_MODE_DISABLE_MOUSE 0x20 /* Disable mouse interface */
2361 #define KBD_MODE_KCC 0x40 /* Scan code conversion to PC format */
2362 #define KBD_MODE_RFU 0x80
2363
2364 /* Mouse Commands */
2365 #define AUX_SET_SCALE11 0xE6 /* Set 1:1 scaling */
2366 #define AUX_SET_SCALE21 0xE7 /* Set 2:1 scaling */
2367 #define AUX_SET_RES 0xE8 /* Set resolution */
2368 #define AUX_GET_SCALE 0xE9 /* Get scaling factor */
2369 #define AUX_SET_STREAM 0xEA /* Set stream mode */
2370 #define AUX_POLL 0xEB /* Poll */
2371 #define AUX_RESET_WRAP 0xEC /* Reset wrap mode */
2372 #define AUX_SET_WRAP 0xEE /* Set wrap mode */
2373 #define AUX_SET_REMOTE 0xF0 /* Set remote mode */
2374 #define AUX_GET_TYPE 0xF2 /* Get type */
2375 #define AUX_SET_SAMPLE 0xF3 /* Set sample rate */
2376 #define AUX_ENABLE_DEV 0xF4 /* Enable aux device */
2377 #define AUX_DISABLE_DEV 0xF5 /* Disable aux device */
2378 #define AUX_SET_DEFAULT 0xF6
2379 #define AUX_RESET 0xFF /* Reset aux device */
2380 #define AUX_ACK 0xFA /* Command byte ACK. */
2381
2382 #define MOUSE_STATUS_REMOTE 0x40
2383 #define MOUSE_STATUS_ENABLED 0x20
2384 #define MOUSE_STATUS_SCALE21 0x10
2385
2386 #define KBD_QUEUE_SIZE 256
2387
2388 typedef struct {
2389 uint8_t data[KBD_QUEUE_SIZE];
2390 int rptr, wptr, count;
2391 } KBDQueue;
2392
2393 typedef struct KBDState {
2394 KBDQueue queues[2];
2395 uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2396 uint8_t status;
2397 uint8_t mode;
2398 /* keyboard state */
2399 int kbd_write_cmd;
2400 int scan_enabled;
2401 /* mouse state */
2402 int mouse_write_cmd;
2403 uint8_t mouse_status;
2404 uint8_t mouse_resolution;
2405 uint8_t mouse_sample_rate;
2406 uint8_t mouse_wrap;
2407 uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
2408 uint8_t mouse_detect_state;
2409 int mouse_dx; /* current values, needed for 'poll' mode */
2410 int mouse_dy;
2411 int mouse_dz;
2412 uint8_t mouse_buttons;
2413 } KBDState;
2414
2415 KBDState kbd_state;
2416 int reset_requested;
2417
2418 /* update irq and KBD_STAT_[MOUSE_]OBF */
2419 /* XXX: not generating the irqs if KBD_MODE_DISABLE_KBD is set may be
2420 incorrect, but it avoids having to simulate exact delays */
2421 static void kbd_update_irq(KBDState *s)
2422 {
2423 int irq12_level, irq1_level;
2424
2425 irq1_level = 0;
2426 irq12_level = 0;
2427 s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
2428 if (s->queues[0].count != 0 ||
2429 s->queues[1].count != 0) {
2430 s->status |= KBD_STAT_OBF;
2431 if (s->queues[1].count != 0) {
2432 s->status |= KBD_STAT_MOUSE_OBF;
2433 if (s->mode & KBD_MODE_MOUSE_INT)
2434 irq12_level = 1;
2435 } else {
2436 if ((s->mode & KBD_MODE_KBD_INT) &&
2437 !(s->mode & KBD_MODE_DISABLE_KBD))
2438 irq1_level = 1;
2439 }
2440 }
2441 pic_set_irq(1, irq1_level);
2442 pic_set_irq(12, irq12_level);
2443 }
2444
2445 static void kbd_queue(KBDState *s, int b, int aux)
2446 {
2447 KBDQueue *q = &kbd_state.queues[aux];
2448
2449 #if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
2450 if (aux)
2451 printf("mouse event: 0x%02x\n", b);
2452 #ifdef DEBUG_KBD
2453 else
2454 printf("kbd event: 0x%02x\n", b);
2455 #endif
2456 #endif
2457 if (q->count >= KBD_QUEUE_SIZE)
2458 return;
2459 q->data[q->wptr] = b;
2460 if (++q->wptr == KBD_QUEUE_SIZE)
2461 q->wptr = 0;
2462 q->count++;
2463 kbd_update_irq(s);
2464 }
2465
2466 void kbd_put_keycode(int keycode)
2467 {
2468 KBDState *s = &kbd_state;
2469 kbd_queue(s, keycode, 0);
2470 }
2471
2472 uint32_t kbd_read_status(CPUState *env, uint32_t addr)
2473 {
2474 KBDState *s = &kbd_state;
2475 int val;
2476 val = s->status;
2477 #if defined(DEBUG_KBD)
2478 printf("kbd: read status=0x%02x\n", val);
2479 #endif
2480 return val;
2481 }
2482
2483 void kbd_write_command(CPUState *env, uint32_t addr, uint32_t val)
2484 {
2485 KBDState *s = &kbd_state;
2486
2487 #ifdef DEBUG_KBD
2488 printf("kbd: write cmd=0x%02x\n", val);
2489 #endif
2490 switch(val) {
2491 case KBD_CCMD_READ_MODE:
2492 kbd_queue(s, s->mode, 0);
2493 break;
2494 case KBD_CCMD_WRITE_MODE:
2495 case KBD_CCMD_WRITE_OBUF:
2496 case KBD_CCMD_WRITE_AUX_OBUF:
2497 case KBD_CCMD_WRITE_MOUSE:
2498 case KBD_CCMD_WRITE_OUTPORT:
2499 s->write_cmd = val;
2500 break;
2501 case KBD_CCMD_MOUSE_DISABLE:
2502 s->mode |= KBD_MODE_DISABLE_MOUSE;
2503 break;
2504 case KBD_CCMD_MOUSE_ENABLE:
2505 s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2506 break;
2507 case KBD_CCMD_TEST_MOUSE:
2508 kbd_queue(s, 0x00, 0);
2509 break;
2510 case KBD_CCMD_SELF_TEST:
2511 s->status |= KBD_STAT_SELFTEST;
2512 kbd_queue(s, 0x55, 0);
2513 break;
2514 case KBD_CCMD_KBD_TEST:
2515 kbd_queue(s, 0x00, 0);
2516 break;
2517 case KBD_CCMD_KBD_DISABLE:
2518 s->mode |= KBD_MODE_DISABLE_KBD;
2519 kbd_update_irq(s);
2520 break;
2521 case KBD_CCMD_KBD_ENABLE:
2522 s->mode &= ~KBD_MODE_DISABLE_KBD;
2523 kbd_update_irq(s);
2524 break;
2525 case KBD_CCMD_READ_INPORT:
2526 kbd_queue(s, 0x00, 0);
2527 break;
2528 case KBD_CCMD_READ_OUTPORT:
2529 /* XXX: check that */
2530 #ifdef TARGET_I386
2531 val = 0x01 | (((cpu_single_env->a20_mask >> 20) & 1) << 1);
2532 #else
2533 val = 0x01;
2534 #endif
2535 if (s->status & KBD_STAT_OBF)
2536 val |= 0x10;
2537 if (s->status & KBD_STAT_MOUSE_OBF)
2538 val |= 0x20;
2539 kbd_queue(s, val, 0);
2540 break;
2541 #ifdef TARGET_I386
2542 case KBD_CCMD_ENABLE_A20:
2543 cpu_x86_set_a20(env, 1);
2544 break;
2545 case KBD_CCMD_DISABLE_A20:
2546 cpu_x86_set_a20(env, 0);
2547 break;
2548 #endif
2549 case KBD_CCMD_RESET:
2550 reset_requested = 1;
2551 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
2552 break;
2553 case 0xff:
2554 /* ignore that - I don't know what is its use */
2555 break;
2556 default:
2557 fprintf(stderr, "qemu: unsupported keyboard cmd=0x%02x\n", val);
2558 break;
2559 }
2560 }
2561
2562 uint32_t kbd_read_data(CPUState *env, uint32_t addr)
2563 {
2564 KBDState *s = &kbd_state;
2565 KBDQueue *q;
2566 int val, index;
2567
2568 q = &s->queues[0]; /* first check KBD data */
2569 if (q->count == 0)
2570 q = &s->queues[1]; /* then check AUX data */
2571 if (q->count == 0) {
2572 /* NOTE: if no data left, we return the last keyboard one
2573 (needed for EMM386) */
2574 /* XXX: need a timer to do things correctly */
2575 q = &s->queues[0];
2576 index = q->rptr - 1;
2577 if (index < 0)
2578 index = KBD_QUEUE_SIZE - 1;
2579 val = q->data[index];
2580 } else {
2581 val = q->data[q->rptr];
2582 if (++q->rptr == KBD_QUEUE_SIZE)
2583 q->rptr = 0;
2584 q->count--;
2585 /* reading deasserts IRQ */
2586 if (q == &s->queues[0])
2587 pic_set_irq(1, 0);
2588 else
2589 pic_set_irq(12, 0);
2590 }
2591 /* reassert IRQs if data left */
2592 kbd_update_irq(s);
2593 #ifdef DEBUG_KBD
2594 printf("kbd: read data=0x%02x\n", val);
2595 #endif
2596 return val;
2597 }
2598
2599 static void kbd_reset_keyboard(KBDState *s)
2600 {
2601 s->scan_enabled = 1;
2602 }
2603
2604 static void kbd_write_keyboard(KBDState *s, int val)
2605 {
2606 switch(s->kbd_write_cmd) {
2607 default:
2608 case -1:
2609 switch(val) {
2610 case 0x00:
2611 kbd_queue(s, KBD_REPLY_ACK, 0);
2612 break;
2613 case 0x05:
2614 kbd_queue(s, KBD_REPLY_RESEND, 0);
2615 break;
2616 case KBD_CMD_GET_ID:
2617 kbd_queue(s, KBD_REPLY_ACK, 0);
2618 kbd_queue(s, 0xab, 0);
2619 kbd_queue(s, 0x83, 0);
2620 break;
2621 case KBD_CMD_ECHO:
2622 kbd_queue(s, KBD_CMD_ECHO, 0);
2623 break;
2624 case KBD_CMD_ENABLE:
2625 s->scan_enabled = 1;
2626 kbd_queue(s, KBD_REPLY_ACK, 0);
2627 break;
2628 case KBD_CMD_SET_LEDS:
2629 case KBD_CMD_SET_RATE:
2630 s->kbd_write_cmd = val;
2631 kbd_queue(s, KBD_REPLY_ACK, 0);
2632 break;
2633 case KBD_CMD_RESET_DISABLE:
2634 kbd_reset_keyboard(s);
2635 s->scan_enabled = 0;
2636 kbd_queue(s, KBD_REPLY_ACK, 0);
2637 break;
2638 case KBD_CMD_RESET_ENABLE:
2639 kbd_reset_keyboard(s);
2640 s->scan_enabled = 1;
2641 kbd_queue(s, KBD_REPLY_ACK, 0);
2642 break;
2643 case KBD_CMD_RESET:
2644 kbd_reset_keyboard(s);
2645 kbd_queue(s, KBD_REPLY_ACK, 0);
2646 kbd_queue(s, KBD_REPLY_POR, 0);
2647 break;
2648 default:
2649 kbd_queue(s, KBD_REPLY_ACK, 0);
2650 break;
2651 }
2652 break;
2653 case KBD_CMD_SET_LEDS:
2654 kbd_queue(s, KBD_REPLY_ACK, 0);
2655 s->kbd_write_cmd = -1;
2656 break;
2657 case KBD_CMD_SET_RATE:
2658 kbd_queue(s, KBD_REPLY_ACK, 0);
2659 s->kbd_write_cmd = -1;
2660 break;
2661 }
2662 }
2663
2664 static void kbd_mouse_send_packet(KBDState *s)
2665 {
2666 unsigned int b;
2667 int dx1, dy1, dz1;
2668
2669 dx1 = s->mouse_dx;
2670 dy1 = s->mouse_dy;
2671 dz1 = s->mouse_dz;
2672 /* XXX: increase range to 8 bits ? */
2673 if (dx1 > 127)
2674 dx1 = 127;
2675 else if (dx1 < -127)
2676 dx1 = -127;
2677 if (dy1 > 127)
2678 dy1 = 127;
2679 else if (dy1 < -127)
2680 dy1 = -127;
2681 b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
2682 kbd_queue(s, b, 1);
2683 kbd_queue(s, dx1 & 0xff, 1);
2684 kbd_queue(s, dy1 & 0xff, 1);
2685 /* extra byte for IMPS/2 or IMEX */
2686 switch(s->mouse_type) {
2687 default:
2688 break;
2689 case 3:
2690 if (dz1 > 127)
2691 dz1 = 127;
2692 else if (dz1 < -127)
2693 dz1 = -127;
2694 kbd_queue(s, dz1 & 0xff, 1);
2695 break;
2696 case 4:
2697 if (dz1 > 7)
2698 dz1 = 7;
2699 else if (dz1 < -7)
2700 dz1 = -7;
2701 b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
2702 kbd_queue(s, b, 1);
2703 break;
2704 }
2705
2706 /* update deltas */
2707 s->mouse_dx -= dx1;
2708 s->mouse_dy -= dy1;
2709 s->mouse_dz -= dz1;
2710 }
2711
2712 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
2713 {
2714 KBDState *s = &kbd_state;
2715
2716 /* check if deltas are recorded when disabled */
2717 if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
2718 return;
2719
2720 s->mouse_dx += dx;
2721 s->mouse_dy -= dy;
2722 s->mouse_dz += dz;
2723 s->mouse_buttons = buttons_state;
2724
2725 if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
2726 (s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
2727 for(;;) {
2728 /* if not remote, send event. Multiple events are sent if
2729 too big deltas */
2730 kbd_mouse_send_packet(s);
2731 if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
2732 break;
2733 }
2734 }
2735 }
2736
2737 static void kbd_write_mouse(KBDState *s, int val)
2738 {
2739 #ifdef DEBUG_MOUSE
2740 printf("kbd: write mouse 0x%02x\n", val);
2741 #endif
2742 switch(s->mouse_write_cmd) {
2743 default:
2744 case -1:
2745 /* mouse command */
2746 if (s->mouse_wrap) {
2747 if (val == AUX_RESET_WRAP) {
2748 s->mouse_wrap = 0;
2749 kbd_queue(s, AUX_ACK, 1);
2750 return;
2751 } else if (val != AUX_RESET) {
2752 kbd_queue(s, val, 1);
2753 return;
2754 }
2755 }
2756 switch(val) {
2757 case AUX_SET_SCALE11:
2758 s->mouse_status &= ~MOUSE_STATUS_SCALE21;
2759 kbd_queue(s, AUX_ACK, 1);
2760 break;
2761 case AUX_SET_SCALE21:
2762 s->mouse_status |= MOUSE_STATUS_SCALE21;
2763 kbd_queue(s, AUX_ACK, 1);
2764 break;
2765 case AUX_SET_STREAM:
2766 s->mouse_status &= ~MOUSE_STATUS_REMOTE;
2767 kbd_queue(s, AUX_ACK, 1);
2768 break;
2769 case AUX_SET_WRAP:
2770 s->mouse_wrap = 1;
2771 kbd_queue(s, AUX_ACK, 1);
2772 break;
2773 case AUX_SET_REMOTE:
2774 s->mouse_status |= MOUSE_STATUS_REMOTE;
2775 kbd_queue(s, AUX_ACK, 1);
2776 break;
2777 case AUX_GET_TYPE:
2778 kbd_queue(s, AUX_ACK, 1);
2779 kbd_queue(s, s->mouse_type, 1);
2780 break;
2781 case AUX_SET_RES:
2782 case AUX_SET_SAMPLE:
2783 s->mouse_write_cmd = val;
2784 kbd_queue(s, AUX_ACK, 1);
2785 break;
2786 case AUX_GET_SCALE:
2787 kbd_queue(s, AUX_ACK, 1);
2788 kbd_queue(s, s->mouse_status, 1);
2789 kbd_queue(s, s->mouse_resolution, 1);
2790 kbd_queue(s, s->mouse_sample_rate, 1);
2791 break;
2792 case AUX_POLL:
2793 kbd_queue(s, AUX_ACK, 1);
2794 kbd_mouse_send_packet(s);
2795 break;
2796 case AUX_ENABLE_DEV:
2797 s->mouse_status |= MOUSE_STATUS_ENABLED;
2798 kbd_queue(s, AUX_ACK, 1);
2799 break;
2800 case AUX_DISABLE_DEV:
2801 s->mouse_status &= ~MOUSE_STATUS_ENABLED;
2802 kbd_queue(s, AUX_ACK, 1);
2803 break;
2804 case AUX_SET_DEFAULT:
2805 s->mouse_sample_rate = 100;
2806 s->mouse_resolution = 2;
2807 s->mouse_status = 0;
2808 kbd_queue(s, AUX_ACK, 1);
2809 break;
2810 case AUX_RESET:
2811 s->mouse_sample_rate = 100;
2812 s->mouse_resolution = 2;
2813 s->mouse_status = 0;
2814 kbd_queue(s, AUX_ACK, 1);
2815 kbd_queue(s, 0xaa, 1);
2816 kbd_queue(s, s->mouse_type, 1);
2817 break;
2818 default:
2819 break;
2820 }
2821 break;
2822 case AUX_SET_SAMPLE:
2823 s->mouse_sample_rate = val;
2824 #if 0
2825 /* detect IMPS/2 or IMEX */
2826 switch(s->mouse_detect_state) {
2827 default:
2828 case 0:
2829 if (val == 200)
2830 s->mouse_detect_state = 1;
2831 break;
2832 case 1:
2833 if (val == 100)
2834 s->mouse_detect_state = 2;
2835 else if (val == 200)
2836 s->mouse_detect_state = 3;
2837 else
2838 s->mouse_detect_state = 0;
2839 break;
2840 case 2:
2841 if (val == 80)
2842 s->mouse_type = 3; /* IMPS/2 */
2843 s->mouse_detect_state = 0;
2844 break;
2845 case 3:
2846 if (val == 80)
2847 s->mouse_type = 4; /* IMEX */
2848 s->mouse_detect_state = 0;
2849 break;
2850 }
2851 #endif
2852 kbd_queue(s, AUX_ACK, 1);
2853 s->mouse_write_cmd = -1;
2854 break;
2855 case AUX_SET_RES:
2856 s->mouse_resolution = val;
2857 kbd_queue(s, AUX_ACK, 1);
2858 s->mouse_write_cmd = -1;
2859 break;
2860 }
2861 }
2862
2863 void kbd_write_data(CPUState *env, uint32_t addr, uint32_t val)
2864 {
2865 KBDState *s = &kbd_state;
2866
2867 #ifdef DEBUG_KBD
2868 printf("kbd: write data=0x%02x\n", val);
2869 #endif
2870
2871 switch(s->write_cmd) {
2872 case 0:
2873 kbd_write_keyboard(s, val);
2874 break;
2875 case KBD_CCMD_WRITE_MODE:
2876 s->mode = val;
2877 kbd_update_irq(s);
2878 break;
2879 case KBD_CCMD_WRITE_OBUF:
2880 kbd_queue(s, val, 0);
2881 break;
2882 case KBD_CCMD_WRITE_AUX_OBUF:
2883 kbd_queue(s, val, 1);
2884 break;
2885 case KBD_CCMD_WRITE_OUTPORT:
2886 #ifdef TARGET_I386
2887 cpu_x86_set_a20(env, (val >> 1) & 1);
2888 #endif
2889 if (!(val & 1)) {
2890 reset_requested = 1;
2891 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
2892 }
2893 break;
2894 case KBD_CCMD_WRITE_MOUSE:
2895 kbd_write_mouse(s, val);
2896 break;
2897 default:
2898 break;
2899 }
2900 s->write_cmd = 0;
2901 }
2902
2903 void kbd_reset(KBDState *s)
2904 {
2905 KBDQueue *q;
2906 int i;
2907
2908 s->kbd_write_cmd = -1;
2909 s->mouse_write_cmd = -1;
2910 s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2911 s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
2912 for(i = 0; i < 2; i++) {
2913 q = &s->queues[i];
2914 q->rptr = 0;
2915 q->wptr = 0;
2916 q->count = 0;
2917 }
2918 }
2919
2920 void kbd_init(void)
2921 {
2922 kbd_reset(&kbd_state);
2923 #if defined (TARGET_I386) || defined (TARGET_PPC)
2924 register_ioport_read(0x60, 1, kbd_read_data, 1);
2925 register_ioport_write(0x60, 1, kbd_write_data, 1);
2926 register_ioport_read(0x64, 1, kbd_read_status, 1);
2927 register_ioport_write(0x64, 1, kbd_write_command, 1);
2928 #endif
2929 }
2930
2931 /***********************************************************/
2932 /* Bochs BIOS debug ports */
2933 #ifdef TARGET_I386
2934 void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2935 {
2936 switch(addr) {
2937 /* Bochs BIOS messages */
2938 case 0x400:
2939 case 0x401:
2940 fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2941 exit(1);
2942 case 0x402:
2943 case 0x403:
2944 #ifdef DEBUG_BIOS
2945 fprintf(stderr, "%c", val);
2946 #endif
2947 break;
2948
2949 /* LGPL'ed VGA BIOS messages */
2950 case 0x501:
2951 case 0x502:
2952 fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2953 exit(1);
2954 case 0x500:
2955 case 0x503:
2956 #ifdef DEBUG_BIOS
2957 fprintf(stderr, "%c", val);
2958 #endif
2959 break;
2960 }
2961 }
2962
2963 void bochs_bios_init(void)
2964 {
2965 register_ioport_write(0x400, 1, bochs_bios_write, 2);
2966 register_ioport_write(0x401, 1, bochs_bios_write, 2);
2967 register_ioport_write(0x402, 1, bochs_bios_write, 1);
2968 register_ioport_write(0x403, 1, bochs_bios_write, 1);
2969
2970 register_ioport_write(0x501, 1, bochs_bios_write, 2);
2971 register_ioport_write(0x502, 1, bochs_bios_write, 2);
2972 register_ioport_write(0x500, 1, bochs_bios_write, 1);
2973 register_ioport_write(0x503, 1, bochs_bios_write, 1);
2974 }
2975 #endif
2976
2977 /***********************************************************/
2978 /* dumb display */
2979
2980 /* init terminal so that we can grab keys */
2981 static struct termios oldtty;
2982
2983 static void term_exit(void)
2984 {
2985 tcsetattr (0, TCSANOW, &oldtty);
2986 }
2987
2988 static void term_init(void)
2989 {
2990 struct termios tty;
2991
2992 tcgetattr (0, &tty);
2993 oldtty = tty;
2994
2995 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2996 |INLCR|IGNCR|ICRNL|IXON);
2997 tty.c_oflag |= OPOST;
2998 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2999 /* if graphical mode, we allow Ctrl-C handling */
3000 if (nographic)
3001 tty.c_lflag &= ~ISIG;
3002 tty.c_cflag &= ~(CSIZE|PARENB);
3003 tty.c_cflag |= CS8;
3004 tty.c_cc[VMIN] = 1;
3005 tty.c_cc[VTIME] = 0;
3006
3007 tcsetattr (0, TCSANOW, &tty);
3008
3009 atexit(term_exit);
3010
3011 fcntl(0, F_SETFL, O_NONBLOCK);
3012 }
3013
3014 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3015 {
3016 }
3017
3018 static void dumb_resize(DisplayState *ds, int w, int h)
3019 {
3020 }
3021
3022 static void dumb_refresh(DisplayState *ds)
3023 {
3024 vga_update_display();
3025 }
3026
3027 void dumb_display_init(DisplayState *ds)
3028 {
3029 ds->data = NULL;
3030 ds->linesize = 0;
3031 ds->depth = 0;
3032 ds->dpy_update = dumb_update;
3033 ds->dpy_resize = dumb_resize;
3034 ds->dpy_refresh = dumb_refresh;
3035 }
3036
3037 #if !defined(CONFIG_SOFTMMU)
3038 /***********************************************************/
3039 /* cpu signal handler */
3040 static void host_segv_handler(int host_signum, siginfo_t *info,
3041 void *puc)
3042 {
3043 if (cpu_signal_handler(host_signum, info, puc))
3044 return;
3045 term_exit();
3046 abort();
3047 }
3048 #endif
3049
3050 static int timer_irq_pending;
3051 static int timer_irq_count;
3052
3053 static int timer_ms;
3054 static int gui_refresh_pending, gui_refresh_count;
3055
3056 static void host_alarm_handler(int host_signum, siginfo_t *info,
3057 void *puc)
3058 {
3059 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
3060 some drift between cpu_get_ticks() and the interrupt time. So
3061 we queue some interrupts to avoid missing some */
3062 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
3063 if (timer_irq_count) {
3064 if (timer_irq_count > 2)
3065 timer_irq_count = 2;
3066 timer_irq_count--;
3067 timer_irq_pending = 1;
3068 }
3069 gui_refresh_count += timer_ms;
3070 if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
3071 gui_refresh_count = 0;
3072 gui_refresh_pending = 1;
3073 }
3074
3075 /* XXX: seems dangerous to run that here. */
3076 DMA_run();
3077 SB16_run();
3078
3079 if (gui_refresh_pending || timer_irq_pending) {
3080 /* just exit from the cpu to have a chance to handle timers */
3081 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
3082 }
3083 }
3084
3085 #ifdef CONFIG_SOFTMMU
3086 void *get_mmap_addr(unsigned long size)
3087 {
3088 return NULL;
3089 }
3090 #else
3091 unsigned long mmap_addr = PHYS_RAM_BASE;
3092
3093 void *get_mmap_addr(unsigned long size)
3094 {
3095 unsigned long addr;
3096 addr = mmap_addr;
3097 mmap_addr += ((size + 4095) & ~4095) + 4096;
3098 return (void *)addr;
3099 }
3100 #endif
3101
3102 /* main execution loop */
3103
3104 CPUState *cpu_gdbstub_get_env(void *opaque)
3105 {
3106 return global_env;
3107 }
3108
3109 int main_loop(void *opaque)
3110 {
3111 struct pollfd ufds[3], *pf, *serial_ufd, *gdb_ufd;
3112 #if defined (TARGET_I386)
3113 struct pollfd *net_ufd;
3114 #endif
3115 int ret, n, timeout, serial_ok;
3116 uint8_t ch;
3117 CPUState *env = global_env;
3118
3119 if (!term_inited) {
3120 /* initialize terminal only there so that the user has a
3121 chance to stop QEMU with Ctrl-C before the gdb connection
3122 is launched */
3123 term_inited = 1;
3124 term_init();
3125 }
3126
3127 serial_ok = 1;
3128 cpu_enable_ticks();
3129 for(;;) {
3130 #if defined (DO_TB_FLUSH)
3131 tb_flush();
3132 #endif
3133 ret = cpu_exec(env);
3134 if (reset_requested) {
3135 ret = EXCP_INTERRUPT;
3136 break;
3137 }
3138 if (ret == EXCP_DEBUG) {
3139 ret = EXCP_DEBUG;
3140 break;
3141 }
3142 /* if hlt instruction, we wait until the next IRQ */
3143 if (ret == EXCP_HLT)
3144 timeout = 10;
3145 else
3146 timeout = 0;
3147 /* poll any events */
3148 serial_ufd = NULL;
3149 pf = ufds;
3150 if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
3151 serial_ufd = pf;
3152 pf->fd = 0;
3153 pf->events = POLLIN;
3154 pf++;
3155 }
3156 #if defined (TARGET_I386)
3157 net_ufd = NULL;
3158 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
3159 net_ufd = pf;
3160 pf->fd = net_fd;
3161 pf->events = POLLIN;
3162 pf++;
3163 }
3164 #endif
3165 gdb_ufd = NULL;
3166 if (gdbstub_fd > 0) {
3167 gdb_ufd = pf;
3168 pf->fd = gdbstub_fd;
3169 pf->events = POLLIN;
3170 pf++;
3171 }
3172
3173 ret = poll(ufds, pf - ufds, timeout);
3174 if (ret > 0) {
3175 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
3176 n = read(0, &ch, 1);
3177 if (n == 1) {
3178 serial_received_byte(&serial_ports[0], ch);
3179 } else {
3180 /* Closed, stop polling. */
3181 serial_ok = 0;
3182 }
3183 }
3184 #if defined (TARGET_I386)
3185 if (net_ufd && (net_ufd->revents & POLLIN)) {
3186 uint8_t buf[MAX_ETH_FRAME_SIZE];
3187
3188 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
3189 if (n > 0) {
3190 if (n < 60) {
3191 memset(buf + n, 0, 60 - n);
3192 n = 60;
3193 }
3194 ne2000_receive(&ne2000_state, buf, n);
3195 }
3196 }
3197 #endif
3198 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
3199 uint8_t buf[1];
3200 /* stop emulation if requested by gdb */
3201 n = read(gdbstub_fd, buf, 1);
3202 if (n == 1) {
3203 ret = EXCP_INTERRUPT;
3204 break;
3205 }
3206 }
3207 }
3208
3209 /* timer IRQ */
3210 if (timer_irq_pending) {
3211 #if defined (TARGET_I386)
3212 pic_set_irq(0, 1);
3213 pic_set_irq(0, 0);
3214 timer_irq_pending = 0;
3215 /* XXX: RTC test */
3216 if (cmos_data[RTC_REG_B] & 0x50) {
3217 pic_set_irq(8, 1);
3218 }
3219 #endif
3220 }
3221
3222 /* VGA */
3223 if (gui_refresh_pending) {
3224 display_state.dpy_refresh(&display_state);
3225 gui_refresh_pending = 0;
3226 }
3227 }
3228 cpu_disable_ticks();
3229 return ret;
3230 }
3231
3232 void help(void)
3233 {
3234 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
3235 "usage: %s [options] [disk_image]\n"
3236 "\n"
3237 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3238 "\n"
3239 "Standard options:\n"
3240 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3241 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3242 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3243 "-cdrom file use 'file' as IDE cdrom 2 image\n"
3244 "-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
3245 "-snapshot write to temporary files instead of disk image files\n"
3246 "-m megs set virtual RAM size to megs MB\n"
3247 "-n script set network init script [default=%s]\n"
3248 "-tun-fd fd this fd talks to tap/tun, use it.\n"
3249 "-nographic disable graphical output\n"
3250 "\n"
3251 "Linux boot specific (does not require PC BIOS):\n"
3252 "-kernel bzImage use 'bzImage' as kernel image\n"
3253 "-append cmdline use 'cmdline' as kernel command line\n"
3254 "-initrd file use 'file' as initial ram disk\n"
3255 "\n"
3256 "Debug/Expert options:\n"
3257 "-s wait gdb connection to port %d\n"
3258 "-p port change gdb connection port\n"
3259 "-d output log to %s\n"
3260 "-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
3261 "-L path set the directory for the BIOS and VGA BIOS\n"
3262 "\n"
3263 "During emulation, use C-a h to get terminal commands:\n",
3264 #ifdef CONFIG_SOFTMMU
3265 "qemu",
3266 #else
3267 "qemu-fast",
3268 #endif
3269 DEFAULT_NETWORK_SCRIPT,
3270 DEFAULT_GDBSTUB_PORT,
3271 "/tmp/qemu.log");
3272 term_print_help();
3273 #ifndef CONFIG_SOFTMMU
3274 printf("\n"
3275 "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
3276 "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
3277 "PC emulation.\n");
3278 #endif
3279 exit(1);
3280 }
3281
3282 struct option long_options[] = {
3283 { "initrd", 1, NULL, 0, },
3284 { "hda", 1, NULL, 0, },
3285 { "hdb", 1, NULL, 0, },
3286 { "snapshot", 0, NULL, 0, },
3287 { "hdachs", 1, NULL, 0, },
3288 { "nographic", 0, NULL, 0, },
3289 { "kernel", 1, NULL, 0, },
3290 { "append", 1, NULL, 0, },
3291 { "tun-fd", 1, NULL, 0, },
3292 { "hdc", 1, NULL, 0, },
3293 { "hdd", 1, NULL, 0, },
3294 { "cdrom", 1, NULL, 0, },
3295 { "boot", 1, NULL, 0, },
3296 { "fda", 1, NULL, 0, },
3297 { "fdb", 1, NULL, 0, },
3298 { NULL, 0, NULL, 0 },
3299 };
3300
3301 #ifdef CONFIG_SDL
3302 /* SDL use the pthreads and they modify sigaction. We don't
3303 want that. */
3304 #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)
3305 extern void __libc_sigaction();
3306 #define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
3307 #else
3308 extern void __sigaction();
3309 #define sigaction(sig, act, oact) __sigaction(sig, act, oact)
3310 #endif
3311 #endif /* CONFIG_SDL */
3312
3313 int main(int argc, char **argv)
3314 {
3315 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
3316 int snapshot, linux_boot;
3317 #if defined (TARGET_I386)
3318 struct linux_params *params;
3319 #endif
3320 struct sigaction act;
3321 struct itimerval itv;
3322 CPUState *env;
3323 const char *initrd_filename;
3324 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
3325 const char *kernel_filename, *kernel_cmdline;
3326 DisplayState *ds = &display_state;
3327
3328 /* we never want that malloc() uses mmap() */
3329 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
3330 initrd_filename = NULL;
3331 for(i = 0; i < MAX_FD; i++)
3332 fd_filename[i] = NULL;
3333 for(i = 0; i < MAX_DISKS; i++)
3334 hd_filename[i] = NULL;
3335 ram_size = 32 * 1024 * 1024;
3336 vga_ram_size = VGA_RAM_SIZE;
3337 #if defined (TARGET_I386)
3338 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
3339 #endif
3340 use_gdbstub = 0;
3341 gdbstub_port = DEFAULT_GDBSTUB_PORT;
3342 snapshot = 0;
3343 nographic = 0;
3344 kernel_filename = NULL;
3345 kernel_cmdline = "";
3346 for(;;) {
3347 c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
3348 if (c == -1)
3349 break;
3350 switch(c) {
3351 case 0:
3352 switch(long_index) {
3353 case 0:
3354 initrd_filename = optarg;
3355 break;
3356 case 1:
3357 hd_filename[0] = optarg;
3358 break;
3359 case 2:
3360 hd_filename[1] = optarg;
3361 break;
3362 case 3:
3363 snapshot = 1;
3364 break;
3365 case 4:
3366 {
3367 int cyls, heads, secs;
3368 const char *p;
3369 p = optarg;
3370 cyls = strtol(p, (char **)&p, 0);
3371 if (*p != ',')
3372 goto chs_fail;
3373 p++;
3374 heads = strtol(p, (char **)&p, 0);
3375 if (*p != ',')
3376 goto chs_fail;
3377 p++;
3378 secs = strtol(p, (char **)&p, 0);
3379 if (*p != '\0')
3380 goto chs_fail;
3381 ide_set_geometry(0, cyls, heads, secs);
3382 chs_fail: ;
3383 }
3384 break;
3385 case 5:
3386 nographic = 1;
3387 break;
3388 case 6:
3389 kernel_filename = optarg;
3390 break;
3391 case 7:
3392 kernel_cmdline = optarg;
3393 break;
3394 #if defined (TARGET_I386)
3395 case 8:
3396 net_fd = atoi(optarg);
3397 break;
3398 #endif
3399 case 9:
3400 hd_filename[2] = optarg;
3401 break;
3402 case 10:
3403 hd_filename[3] = optarg;
3404 break;
3405 case 11:
3406 hd_filename[2] = optarg;
3407 ide_set_cdrom(2, 1);
3408 break;
3409 case 12:
3410 boot_device = optarg[0];
3411 if (boot_device != 'a' && boot_device != 'b' &&
3412 boot_device != 'c' && boot_device != 'd') {
3413 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
3414 exit(1);
3415 }
3416 break;
3417 case 13:
3418 fd_filename[0] = optarg;
3419 break;
3420 case 14:
3421 fd_filename[1] = optarg;
3422 break;
3423 }
3424 break;
3425 case 'h':
3426 help();
3427 break;
3428 case 'm':
3429 ram_size = atoi(optarg) * 1024 * 1024;
3430 if (ram_size <= 0)
3431 help();
3432 if (ram_size > PHYS_RAM_MAX_SIZE) {
3433 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
3434 PHYS_RAM_MAX_SIZE / (1024 * 1024));
3435 exit(1);
3436 }
3437 break;
3438 case 'd':
3439 cpu_set_log(CPU_LOG_ALL);
3440 break;
3441 #if defined (TARGET_I386)
3442 case 'n':
3443 pstrcpy(network_script, sizeof(network_script), optarg);
3444 break;
3445 #endif
3446 case 's':
3447 use_gdbstub = 1;
3448 break;
3449 case 'p':
3450 gdbstub_port = atoi(optarg);
3451 break;
3452 case 'L':
3453 bios_dir = optarg;
3454 break;
3455 }
3456 }
3457
3458 if (optind < argc) {
3459 hd_filename[0] = argv[optind++];
3460 }
3461
3462 linux_boot = (kernel_filename != NULL);
3463
3464 if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
3465 fd_filename[0] == '\0')
3466 help();
3467
3468 /* boot to cd by default if no hard disk */
3469 if (hd_filename[0] == '\0' && boot_device == 'c') {
3470 if (fd_filename[0] != '\0')
3471 boot_device = 'a';
3472 else
3473 boot_device = 'd';
3474 }
3475
3476 #if !defined(CONFIG_SOFTMMU)
3477 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
3478 {
3479 static uint8_t stdout_buf[4096];
3480 setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
3481 }
3482 #else
3483 setvbuf(stdout, NULL, _IOLBF, 0);
3484 #endif
3485
3486 /* init network tun interface */
3487 #if defined (TARGET_I386)
3488 if (net_fd < 0)
3489 net_init();
3490 #endif
3491
3492 /* init the memory */
3493 phys_ram_size = ram_size + vga_ram_size;
3494
3495 #ifdef CONFIG_SOFTMMU
3496 phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
3497 if (!phys_ram_base) {
3498 fprintf(stderr, "Could not allocate physical memory\n");
3499 exit(1);
3500 }
3501 #else
3502 /* as we must map the same page at several addresses, we must use
3503 a fd */
3504 {
3505 const char *tmpdir;
3506
3507 tmpdir = getenv("QEMU_TMPDIR");
3508 if (!tmpdir)
3509 tmpdir = "/tmp";
3510 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3511 if (mkstemp(phys_ram_file) < 0) {
3512 fprintf(stderr, "Could not create temporary memory file '%s'\n",
3513 phys_ram_file);
3514 exit(1);
3515 }
3516 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3517 if (phys_ram_fd < 0) {
3518 fprintf(stderr, "Could not open temporary memory file '%s'\n",
3519 phys_ram_file);
3520 exit(1);
3521 }
3522 ftruncate(phys_ram_fd, phys_ram_size);
3523 unlink(phys_ram_file);
3524 phys_ram_base = mmap(get_mmap_addr(phys_ram_size),
3525 phys_ram_size,
3526 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
3527 phys_ram_fd, 0);
3528 if (phys_ram_base == MAP_FAILED) {
3529 fprintf(stderr, "Could not map physical memory\n");
3530 exit(1);
3531 }
3532 }
3533 #endif
3534
3535 /* open the virtual block devices */
3536 for(i = 0; i < MAX_DISKS; i++) {
3537 if (hd_filename[i]) {
3538 bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3539 if (!bs_table[i]) {
3540 fprintf(stderr, "qemu: could not open hard disk image '%s\n",
3541 hd_filename[i]);
3542 exit(1);
3543 }
3544 }
3545 }
3546
3547 /* init CPU state */
3548 env = cpu_init();
3549 global_env = env;
3550 cpu_single_env = env;
3551
3552 init_ioports();
3553
3554 /* allocate RAM */
3555 cpu_register_physical_memory(0, ram_size, 0);
3556
3557 if (linux_boot) {
3558 /* now we can load the kernel */
3559 ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
3560 if (ret < 0) {
3561 fprintf(stderr, "qemu: could not load kernel '%s'\n",
3562 kernel_filename);
3563 exit(1);
3564 }
3565
3566 /* load initrd */
3567 initrd_size = 0;
3568 if (initrd_filename) {
3569 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3570 if (initrd_size < 0) {
3571 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
3572 initrd_filename);
3573 exit(1);
3574 }
3575 }
3576
3577 /* init kernel params */
3578 #ifdef TARGET_I386
3579 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3580 memset(params, 0, sizeof(struct linux_params));
3581 params->mount_root_rdonly = 0;
3582 stw_raw(&params->cl_magic, 0xA33F);
3583 stw_raw(&params->cl_offset, params->commandline - (uint8_t *)params);
3584 stl_raw(&params->alt_mem_k, (ram_size / 1024) - 1024);
3585 pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
3586 params->loader_type = 0x01;
3587 if (initrd_size > 0) {
3588 stl_raw(&params->initrd_start, INITRD_LOAD_ADDR);
3589 stl_raw(&params->initrd_size, initrd_size);
3590 }
3591 params->orig_video_lines = 25;
3592 params->orig_video_cols = 80;
3593
3594 /* setup basic memory access */
3595 cpu_x86_update_cr0(env, 0x00000033);
3596
3597 memset(params->idt_table, 0, sizeof(params->idt_table));
3598
3599 stq_raw(&params->gdt_table[2], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3600 stq_raw(&params->gdt_table[3], 0x00cf92000000ffffLL); /* KERNEL_DS */
3601 /* for newer kernels (2.6.0) CS/DS are at different addresses */
3602 stq_raw(&params->gdt_table[12], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3603 stq_raw(&params->gdt_table[13], 0x00cf92000000ffffLL); /* KERNEL_DS */
3604
3605 env->idt.base = (void *)((uint8_t *)params->idt_table - phys_ram_base);
3606 env->idt.limit = sizeof(params->idt_table) - 1;
3607 env->gdt.base = (void *)((uint8_t *)params->gdt_table - phys_ram_base);
3608 env->gdt.limit = sizeof(params->gdt_table) - 1;
3609
3610 cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
3611 cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3612 cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3613 cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3614 cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3615 cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3616
3617 env->eip = KERNEL_LOAD_ADDR;
3618 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3619 env->eflags = 0x2;
3620 #elif defined (TARGET_PPC)
3621 PPC_init_hw(env, ram_size, KERNEL_LOAD_ADDR, ret,
3622 KERNEL_STACK_ADDR, boot_device);
3623 #endif
3624 } else {
3625 char buf[1024];
3626
3627 /* RAW PC boot */
3628 #if defined(TARGET_I386)
3629 /* BIOS load */
3630 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3631 ret = load_image(buf, phys_ram_base + 0x000f0000);
3632 if (ret != 0x10000) {
3633 fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf);
3634 exit(1);
3635 }
3636
3637 /* VGA BIOS load */
3638 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
3639 ret = load_image(buf, phys_ram_base + 0x000c0000);
3640
3641 /* setup basic memory access */
3642 cpu_register_physical_memory(0xc0000, 0x10000, 0xc0000 | IO_MEM_ROM);
3643 cpu_register_physical_memory(0xf0000, 0x10000, 0xf0000 | IO_MEM_ROM);
3644
3645 bochs_bios_init();
3646 #elif defined(TARGET_PPC)
3647 /* allocate ROM */
3648 // snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3649 snprintf(buf, sizeof(buf), "%s", BIOS_FILENAME);
3650 printf("load BIOS at %p\n", phys_ram_base + 0x000f0000);
3651 ret = load_image(buf, phys_ram_base + 0x000f0000);
3652 if (ret != 0x10000) {
3653 fprintf(stderr, "qemu: could not load PPC bios '%s' (%d)\n%m\n",
3654 buf, ret);
3655 exit(1);
3656 }
3657 #endif
3658 }
3659
3660 /* terminal init */
3661 if (nographic) {
3662 dumb_display_init(ds);
3663 } else {
3664 #ifdef CONFIG_SDL
3665 sdl_display_init(ds);
3666 #else
3667 dumb_display_init(ds);
3668 #endif
3669 }
3670 /* init basic PC hardware */
3671 register_ioport_write(0x80, 1, ioport80_write, 1);
3672
3673 vga_initialize(ds, phys_ram_base + ram_size, ram_size,
3674 vga_ram_size);
3675 #if defined (TARGET_I386)
3676 cmos_init();
3677 #endif
3678 pic_init();
3679 pit_init();
3680 serial_init();
3681 #if defined (TARGET_I386)
3682 ne2000_init();
3683 #endif
3684 ide_init();
3685 kbd_init();
3686 AUD_init();
3687 DMA_init();
3688 #if defined (TARGET_I386)
3689 SB16_init();
3690 #endif
3691 #if defined (TARGET_PPC)
3692 PPC_end_init();
3693 #endif
3694 fdctrl_register((unsigned char **)fd_filename, snapshot, boot_device);
3695 /* setup cpu signal handlers for MMU / self modifying code handling */
3696 sigfillset(&act.sa_mask);
3697 act.sa_flags = SA_SIGINFO;
3698 #if !defined(CONFIG_SOFTMMU)
3699 act.sa_sigaction = host_segv_handler;
3700 sigaction(SIGSEGV, &act, NULL);
3701 sigaction(SIGBUS, &act, NULL);
3702 #endif
3703
3704 act.sa_sigaction = host_alarm_handler;
3705 sigaction(SIGALRM, &act, NULL);
3706
3707 itv.it_interval.tv_sec = 0;
3708 itv.it_interval.tv_usec = 1000;
3709 itv.it_value.tv_sec = 0;
3710 itv.it_value.tv_usec = 10 * 1000;
3711 setitimer(ITIMER_REAL, &itv, NULL);
3712 /* we probe the tick duration of the kernel to inform the user if
3713 the emulated kernel requested a too high timer frequency */
3714 getitimer(ITIMER_REAL, &itv);
3715 timer_ms = itv.it_interval.tv_usec / 1000;
3716 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
3717 1000000;
3718
3719 if (use_gdbstub) {
3720 cpu_gdbstub(NULL, main_loop, gdbstub_port);
3721 } else {
3722 main_loop(NULL);
3723 }
3724 return 0;
3725 }