]> git.proxmox.com Git - qemu.git/blob - vl.c
bios: Use the correct mask to size the PCI option ROM BAR
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
159 #include "qemu-option.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #if defined(CONFIG_SLIRP)
168 #include "libslirp.h"
169 #endif
170
171 //#define DEBUG_UNUSED_IOPORT
172 //#define DEBUG_IOPORT
173 //#define DEBUG_NET
174 //#define DEBUG_SLIRP
175
176
177 #ifdef DEBUG_IOPORT
178 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 #else
180 # define LOG_IOPORT(...) do { } while (0)
181 #endif
182
183 #define DEFAULT_RAM_SIZE 128
184
185 /* Max number of USB devices that can be specified on the commandline. */
186 #define MAX_USB_CMDLINE 8
187
188 /* Max number of bluetooth switches on the commandline. */
189 #define MAX_BT_CMDLINE 10
190
191 /* XXX: use a two level table to limit memory usage */
192 #define MAX_IOPORTS 65536
193
194 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
195 const char *bios_name = NULL;
196 static void *ioport_opaque[MAX_IOPORTS];
197 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
198 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
199 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
200 to store the VM snapshots */
201 DriveInfo drives_table[MAX_DRIVES+1];
202 int nb_drives;
203 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
204 static DisplayState *display_state;
205 DisplayType display_type = DT_DEFAULT;
206 const char* keyboard_layout = NULL;
207 int64_t ticks_per_sec;
208 ram_addr_t ram_size;
209 int nb_nics;
210 NICInfo nd_table[MAX_NICS];
211 int vm_running;
212 static int autostart;
213 static int rtc_utc = 1;
214 static int rtc_date_offset = -1; /* -1 means no change */
215 int cirrus_vga_enabled = 1;
216 int std_vga_enabled = 0;
217 int vmsvga_enabled = 0;
218 int xenfb_enabled = 0;
219 #ifdef TARGET_SPARC
220 int graphic_width = 1024;
221 int graphic_height = 768;
222 int graphic_depth = 8;
223 #else
224 int graphic_width = 800;
225 int graphic_height = 600;
226 int graphic_depth = 15;
227 #endif
228 static int full_screen = 0;
229 #ifdef CONFIG_SDL
230 static int no_frame = 0;
231 #endif
232 int no_quit = 0;
233 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
234 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
235 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
236 #ifdef TARGET_I386
237 int win2k_install_hack = 0;
238 int rtc_td_hack = 0;
239 #endif
240 int usb_enabled = 0;
241 int singlestep = 0;
242 int smp_cpus = 1;
243 const char *vnc_display;
244 int acpi_enabled = 1;
245 int no_hpet = 0;
246 int fd_bootchk = 1;
247 int no_reboot = 0;
248 int no_shutdown = 0;
249 int cursor_hide = 1;
250 int graphic_rotate = 0;
251 #ifndef _WIN32
252 int daemonize = 0;
253 #endif
254 WatchdogTimerModel *watchdog = NULL;
255 int watchdog_action = WDT_RESET;
256 const char *option_rom[MAX_OPTION_ROMS];
257 int nb_option_roms;
258 int semihosting_enabled = 0;
259 #ifdef TARGET_ARM
260 int old_param = 0;
261 #endif
262 const char *qemu_name;
263 int alt_grab = 0;
264 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
265 unsigned int nb_prom_envs = 0;
266 const char *prom_envs[MAX_PROM_ENVS];
267 #endif
268 int nb_drives_opt;
269 struct drive_opt drives_opt[MAX_DRIVES];
270
271 int nb_numa_nodes;
272 uint64_t node_mem[MAX_NODES];
273 uint64_t node_cpumask[MAX_NODES];
274
275 static CPUState *cur_cpu;
276 static CPUState *next_cpu;
277 static int timer_alarm_pending = 1;
278 /* Conversion factor from emulated instructions to virtual clock ticks. */
279 static int icount_time_shift;
280 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281 #define MAX_ICOUNT_SHIFT 10
282 /* Compensate for varying guest execution speed. */
283 static int64_t qemu_icount_bias;
284 static QEMUTimer *icount_rt_timer;
285 static QEMUTimer *icount_vm_timer;
286 static QEMUTimer *nographic_timer;
287
288 uint8_t qemu_uuid[16];
289
290 /***********************************************************/
291 /* x86 ISA bus support */
292
293 target_phys_addr_t isa_mem_base = 0;
294 PicState2 *isa_pic;
295
296 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
297 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298
299 static uint32_t ioport_read(int index, uint32_t address)
300 {
301 static IOPortReadFunc *default_func[3] = {
302 default_ioport_readb,
303 default_ioport_readw,
304 default_ioport_readl
305 };
306 IOPortReadFunc *func = ioport_read_table[index][address];
307 if (!func)
308 func = default_func[index];
309 return func(ioport_opaque[address], address);
310 }
311
312 static void ioport_write(int index, uint32_t address, uint32_t data)
313 {
314 static IOPortWriteFunc *default_func[3] = {
315 default_ioport_writeb,
316 default_ioport_writew,
317 default_ioport_writel
318 };
319 IOPortWriteFunc *func = ioport_write_table[index][address];
320 if (!func)
321 func = default_func[index];
322 func(ioport_opaque[address], address, data);
323 }
324
325 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 {
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused inb: port=0x%04x\n", address);
329 #endif
330 return 0xff;
331 }
332
333 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 {
335 #ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
337 #endif
338 }
339
340 /* default is to make two byte accesses */
341 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 {
343 uint32_t data;
344 data = ioport_read(0, address);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 data |= ioport_read(0, address) << 8;
347 return data;
348 }
349
350 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 {
352 ioport_write(0, address, data & 0xff);
353 address = (address + 1) & (MAX_IOPORTS - 1);
354 ioport_write(0, address, (data >> 8) & 0xff);
355 }
356
357 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 {
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused inl: port=0x%04x\n", address);
361 #endif
362 return 0xffffffff;
363 }
364
365 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 {
367 #ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
369 #endif
370 }
371
372 /* size is the word size in byte */
373 int register_ioport_read(int start, int length, int size,
374 IOPortReadFunc *func, void *opaque)
375 {
376 int i, bsize;
377
378 if (size == 1) {
379 bsize = 0;
380 } else if (size == 2) {
381 bsize = 1;
382 } else if (size == 4) {
383 bsize = 2;
384 } else {
385 hw_error("register_ioport_read: invalid size");
386 return -1;
387 }
388 for(i = start; i < start + length; i += size) {
389 ioport_read_table[bsize][i] = func;
390 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque[i] = opaque;
393 }
394 return 0;
395 }
396
397 /* size is the word size in byte */
398 int register_ioport_write(int start, int length, int size,
399 IOPortWriteFunc *func, void *opaque)
400 {
401 int i, bsize;
402
403 if (size == 1) {
404 bsize = 0;
405 } else if (size == 2) {
406 bsize = 1;
407 } else if (size == 4) {
408 bsize = 2;
409 } else {
410 hw_error("register_ioport_write: invalid size");
411 return -1;
412 }
413 for(i = start; i < start + length; i += size) {
414 ioport_write_table[bsize][i] = func;
415 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque[i] = opaque;
418 }
419 return 0;
420 }
421
422 void isa_unassign_ioport(int start, int length)
423 {
424 int i;
425
426 for(i = start; i < start + length; i++) {
427 ioport_read_table[0][i] = default_ioport_readb;
428 ioport_read_table[1][i] = default_ioport_readw;
429 ioport_read_table[2][i] = default_ioport_readl;
430
431 ioport_write_table[0][i] = default_ioport_writeb;
432 ioport_write_table[1][i] = default_ioport_writew;
433 ioport_write_table[2][i] = default_ioport_writel;
434
435 ioport_opaque[i] = NULL;
436 }
437 }
438
439 /***********************************************************/
440
441 void cpu_outb(CPUState *env, int addr, int val)
442 {
443 LOG_IOPORT("outb: %04x %02x\n", addr, val);
444 ioport_write(0, addr, val);
445 #ifdef CONFIG_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
449 }
450
451 void cpu_outw(CPUState *env, int addr, int val)
452 {
453 LOG_IOPORT("outw: %04x %04x\n", addr, val);
454 ioport_write(1, addr, val);
455 #ifdef CONFIG_KQEMU
456 if (env)
457 env->last_io_time = cpu_get_time_fast();
458 #endif
459 }
460
461 void cpu_outl(CPUState *env, int addr, int val)
462 {
463 LOG_IOPORT("outl: %04x %08x\n", addr, val);
464 ioport_write(2, addr, val);
465 #ifdef CONFIG_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468 #endif
469 }
470
471 int cpu_inb(CPUState *env, int addr)
472 {
473 int val;
474 val = ioport_read(0, addr);
475 LOG_IOPORT("inb : %04x %02x\n", addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
481 }
482
483 int cpu_inw(CPUState *env, int addr)
484 {
485 int val;
486 val = ioport_read(1, addr);
487 LOG_IOPORT("inw : %04x %04x\n", addr, val);
488 #ifdef CONFIG_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
493 }
494
495 int cpu_inl(CPUState *env, int addr)
496 {
497 int val;
498 val = ioport_read(2, addr);
499 LOG_IOPORT("inl : %04x %08x\n", addr, val);
500 #ifdef CONFIG_KQEMU
501 if (env)
502 env->last_io_time = cpu_get_time_fast();
503 #endif
504 return val;
505 }
506
507 /***********************************************************/
508 void hw_error(const char *fmt, ...)
509 {
510 va_list ap;
511 CPUState *env;
512
513 va_start(ap, fmt);
514 fprintf(stderr, "qemu: hardware error: ");
515 vfprintf(stderr, fmt, ap);
516 fprintf(stderr, "\n");
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
519 #ifdef TARGET_I386
520 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
521 #else
522 cpu_dump_state(env, stderr, fprintf, 0);
523 #endif
524 }
525 va_end(ap);
526 abort();
527 }
528
529 /***************/
530 /* ballooning */
531
532 static QEMUBalloonEvent *qemu_balloon_event;
533 void *qemu_balloon_event_opaque;
534
535 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 {
537 qemu_balloon_event = func;
538 qemu_balloon_event_opaque = opaque;
539 }
540
541 void qemu_balloon(ram_addr_t target)
542 {
543 if (qemu_balloon_event)
544 qemu_balloon_event(qemu_balloon_event_opaque, target);
545 }
546
547 ram_addr_t qemu_balloon_status(void)
548 {
549 if (qemu_balloon_event)
550 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
551 return 0;
552 }
553
554 /***********************************************************/
555 /* keyboard/mouse */
556
557 static QEMUPutKBDEvent *qemu_put_kbd_event;
558 static void *qemu_put_kbd_event_opaque;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561
562 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 {
564 qemu_put_kbd_event_opaque = opaque;
565 qemu_put_kbd_event = func;
566 }
567
568 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
569 void *opaque, int absolute,
570 const char *name)
571 {
572 QEMUPutMouseEntry *s, *cursor;
573
574 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575
576 s->qemu_put_mouse_event = func;
577 s->qemu_put_mouse_event_opaque = opaque;
578 s->qemu_put_mouse_event_absolute = absolute;
579 s->qemu_put_mouse_event_name = qemu_strdup(name);
580 s->next = NULL;
581
582 if (!qemu_put_mouse_event_head) {
583 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
584 return s;
585 }
586
587 cursor = qemu_put_mouse_event_head;
588 while (cursor->next != NULL)
589 cursor = cursor->next;
590
591 cursor->next = s;
592 qemu_put_mouse_event_current = s;
593
594 return s;
595 }
596
597 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 {
599 QEMUPutMouseEntry *prev = NULL, *cursor;
600
601 if (!qemu_put_mouse_event_head || entry == NULL)
602 return;
603
604 cursor = qemu_put_mouse_event_head;
605 while (cursor != NULL && cursor != entry) {
606 prev = cursor;
607 cursor = cursor->next;
608 }
609
610 if (cursor == NULL) // does not exist or list empty
611 return;
612 else if (prev == NULL) { // entry is head
613 qemu_put_mouse_event_head = cursor->next;
614 if (qemu_put_mouse_event_current == entry)
615 qemu_put_mouse_event_current = cursor->next;
616 qemu_free(entry->qemu_put_mouse_event_name);
617 qemu_free(entry);
618 return;
619 }
620
621 prev->next = entry->next;
622
623 if (qemu_put_mouse_event_current == entry)
624 qemu_put_mouse_event_current = prev;
625
626 qemu_free(entry->qemu_put_mouse_event_name);
627 qemu_free(entry);
628 }
629
630 void kbd_put_keycode(int keycode)
631 {
632 if (qemu_put_kbd_event) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
634 }
635 }
636
637 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 {
639 QEMUPutMouseEvent *mouse_event;
640 void *mouse_event_opaque;
641 int width;
642
643 if (!qemu_put_mouse_event_current) {
644 return;
645 }
646
647 mouse_event =
648 qemu_put_mouse_event_current->qemu_put_mouse_event;
649 mouse_event_opaque =
650 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651
652 if (mouse_event) {
653 if (graphic_rotate) {
654 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
655 width = 0x7fff;
656 else
657 width = graphic_width - 1;
658 mouse_event(mouse_event_opaque,
659 width - dy, dx, dz, buttons_state);
660 } else
661 mouse_event(mouse_event_opaque,
662 dx, dy, dz, buttons_state);
663 }
664 }
665
666 int kbd_mouse_is_absolute(void)
667 {
668 if (!qemu_put_mouse_event_current)
669 return 0;
670
671 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
672 }
673
674 void do_info_mice(Monitor *mon)
675 {
676 QEMUPutMouseEntry *cursor;
677 int index = 0;
678
679 if (!qemu_put_mouse_event_head) {
680 monitor_printf(mon, "No mouse devices connected\n");
681 return;
682 }
683
684 monitor_printf(mon, "Mouse devices available:\n");
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL) {
687 monitor_printf(mon, "%c Mouse #%d: %s\n",
688 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
689 index, cursor->qemu_put_mouse_event_name);
690 index++;
691 cursor = cursor->next;
692 }
693 }
694
695 void do_mouse_set(Monitor *mon, int index)
696 {
697 QEMUPutMouseEntry *cursor;
698 int i = 0;
699
700 if (!qemu_put_mouse_event_head) {
701 monitor_printf(mon, "No mouse devices connected\n");
702 return;
703 }
704
705 cursor = qemu_put_mouse_event_head;
706 while (cursor != NULL && index != i) {
707 i++;
708 cursor = cursor->next;
709 }
710
711 if (cursor != NULL)
712 qemu_put_mouse_event_current = cursor;
713 else
714 monitor_printf(mon, "Mouse at given index not found\n");
715 }
716
717 /* compute with 96 bit intermediate result: (a*b)/c */
718 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 {
720 union {
721 uint64_t ll;
722 struct {
723 #ifdef WORDS_BIGENDIAN
724 uint32_t high, low;
725 #else
726 uint32_t low, high;
727 #endif
728 } l;
729 } u, res;
730 uint64_t rl, rh;
731
732 u.ll = a;
733 rl = (uint64_t)u.l.low * (uint64_t)b;
734 rh = (uint64_t)u.l.high * (uint64_t)b;
735 rh += (rl >> 32);
736 res.l.high = rh / c;
737 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
738 return res.ll;
739 }
740
741 /***********************************************************/
742 /* real time host monotonic timer */
743
744 #define QEMU_TIMER_BASE 1000000000LL
745
746 #ifdef WIN32
747
748 static int64_t clock_freq;
749
750 static void init_get_clock(void)
751 {
752 LARGE_INTEGER freq;
753 int ret;
754 ret = QueryPerformanceFrequency(&freq);
755 if (ret == 0) {
756 fprintf(stderr, "Could not calibrate ticks\n");
757 exit(1);
758 }
759 clock_freq = freq.QuadPart;
760 }
761
762 static int64_t get_clock(void)
763 {
764 LARGE_INTEGER ti;
765 QueryPerformanceCounter(&ti);
766 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
767 }
768
769 #else
770
771 static int use_rt_clock;
772
773 static void init_get_clock(void)
774 {
775 use_rt_clock = 0;
776 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
778 {
779 struct timespec ts;
780 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
781 use_rt_clock = 1;
782 }
783 }
784 #endif
785 }
786
787 static int64_t get_clock(void)
788 {
789 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
791 if (use_rt_clock) {
792 struct timespec ts;
793 clock_gettime(CLOCK_MONOTONIC, &ts);
794 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
795 } else
796 #endif
797 {
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
800 struct timeval tv;
801 gettimeofday(&tv, NULL);
802 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
803 }
804 }
805 #endif
806
807 /* Return the virtual CPU time, based on the instruction counter. */
808 static int64_t cpu_get_icount(void)
809 {
810 int64_t icount;
811 CPUState *env = cpu_single_env;;
812 icount = qemu_icount;
813 if (env) {
814 if (!can_do_io(env))
815 fprintf(stderr, "Bad clock read\n");
816 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 }
818 return qemu_icount_bias + (icount << icount_time_shift);
819 }
820
821 /***********************************************************/
822 /* guest cycle counter */
823
824 static int64_t cpu_ticks_prev;
825 static int64_t cpu_ticks_offset;
826 static int64_t cpu_clock_offset;
827 static int cpu_ticks_enabled;
828
829 /* return the host CPU cycle counter and handle stop/restart */
830 int64_t cpu_get_ticks(void)
831 {
832 if (use_icount) {
833 return cpu_get_icount();
834 }
835 if (!cpu_ticks_enabled) {
836 return cpu_ticks_offset;
837 } else {
838 int64_t ticks;
839 ticks = cpu_get_real_ticks();
840 if (cpu_ticks_prev > ticks) {
841 /* Note: non increasing ticks may happen if the host uses
842 software suspend */
843 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 }
845 cpu_ticks_prev = ticks;
846 return ticks + cpu_ticks_offset;
847 }
848 }
849
850 /* return the host CPU monotonic timer and handle stop/restart */
851 static int64_t cpu_get_clock(void)
852 {
853 int64_t ti;
854 if (!cpu_ticks_enabled) {
855 return cpu_clock_offset;
856 } else {
857 ti = get_clock();
858 return ti + cpu_clock_offset;
859 }
860 }
861
862 /* enable cpu_get_ticks() */
863 void cpu_enable_ticks(void)
864 {
865 if (!cpu_ticks_enabled) {
866 cpu_ticks_offset -= cpu_get_real_ticks();
867 cpu_clock_offset -= get_clock();
868 cpu_ticks_enabled = 1;
869 }
870 }
871
872 /* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874 void cpu_disable_ticks(void)
875 {
876 if (cpu_ticks_enabled) {
877 cpu_ticks_offset = cpu_get_ticks();
878 cpu_clock_offset = cpu_get_clock();
879 cpu_ticks_enabled = 0;
880 }
881 }
882
883 /***********************************************************/
884 /* timers */
885
886 #define QEMU_TIMER_REALTIME 0
887 #define QEMU_TIMER_VIRTUAL 1
888
889 struct QEMUClock {
890 int type;
891 /* XXX: add frequency */
892 };
893
894 struct QEMUTimer {
895 QEMUClock *clock;
896 int64_t expire_time;
897 QEMUTimerCB *cb;
898 void *opaque;
899 struct QEMUTimer *next;
900 };
901
902 struct qemu_alarm_timer {
903 char const *name;
904 unsigned int flags;
905
906 int (*start)(struct qemu_alarm_timer *t);
907 void (*stop)(struct qemu_alarm_timer *t);
908 void (*rearm)(struct qemu_alarm_timer *t);
909 void *priv;
910 };
911
912 #define ALARM_FLAG_DYNTICKS 0x1
913 #define ALARM_FLAG_EXPIRED 0x2
914
915 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 {
917 return t && (t->flags & ALARM_FLAG_DYNTICKS);
918 }
919
920 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 {
922 if (!alarm_has_dynticks(t))
923 return;
924
925 t->rearm(t);
926 }
927
928 /* TODO: MIN_TIMER_REARM_US should be optimized */
929 #define MIN_TIMER_REARM_US 250
930
931 static struct qemu_alarm_timer *alarm_timer;
932
933 #ifdef _WIN32
934
935 struct qemu_alarm_win32 {
936 MMRESULT timerId;
937 unsigned int period;
938 } alarm_win32_data = {0, -1};
939
940 static int win32_start_timer(struct qemu_alarm_timer *t);
941 static void win32_stop_timer(struct qemu_alarm_timer *t);
942 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943
944 #else
945
946 static int unix_start_timer(struct qemu_alarm_timer *t);
947 static void unix_stop_timer(struct qemu_alarm_timer *t);
948
949 #ifdef __linux__
950
951 static int dynticks_start_timer(struct qemu_alarm_timer *t);
952 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
953 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954
955 static int hpet_start_timer(struct qemu_alarm_timer *t);
956 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957
958 static int rtc_start_timer(struct qemu_alarm_timer *t);
959 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960
961 #endif /* __linux__ */
962
963 #endif /* _WIN32 */
964
965 /* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
968 the IO wait loop. */
969 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970
971 static void icount_adjust(void)
972 {
973 int64_t cur_time;
974 int64_t cur_icount;
975 int64_t delta;
976 static int64_t last_delta;
977 /* If the VM is not running, then do nothing. */
978 if (!vm_running)
979 return;
980
981 cur_time = cpu_get_clock();
982 cur_icount = qemu_get_clock(vm_clock);
983 delta = cur_icount - cur_time;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
985 if (delta > 0
986 && last_delta + ICOUNT_WOBBLE < delta * 2
987 && icount_time_shift > 0) {
988 /* The guest is getting too far ahead. Slow time down. */
989 icount_time_shift--;
990 }
991 if (delta < 0
992 && last_delta - ICOUNT_WOBBLE > delta * 2
993 && icount_time_shift < MAX_ICOUNT_SHIFT) {
994 /* The guest is getting too far behind. Speed time up. */
995 icount_time_shift++;
996 }
997 last_delta = delta;
998 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
999 }
1000
1001 static void icount_adjust_rt(void * opaque)
1002 {
1003 qemu_mod_timer(icount_rt_timer,
1004 qemu_get_clock(rt_clock) + 1000);
1005 icount_adjust();
1006 }
1007
1008 static void icount_adjust_vm(void * opaque)
1009 {
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 icount_adjust();
1013 }
1014
1015 static void init_icount_adjust(void)
1016 {
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1023 qemu_mod_timer(icount_rt_timer,
1024 qemu_get_clock(rt_clock) + 1000);
1025 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1026 qemu_mod_timer(icount_vm_timer,
1027 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1028 }
1029
1030 static struct qemu_alarm_timer alarm_timers[] = {
1031 #ifndef _WIN32
1032 #ifdef __linux__
1033 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1034 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1039 #endif
1040 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1041 #else
1042 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1043 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1044 {"win32", 0, win32_start_timer,
1045 win32_stop_timer, NULL, &alarm_win32_data},
1046 #endif
1047 {NULL, }
1048 };
1049
1050 static void show_available_alarms(void)
1051 {
1052 int i;
1053
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i = 0; alarm_timers[i].name; i++)
1056 printf("%s\n", alarm_timers[i].name);
1057 }
1058
1059 static void configure_alarms(char const *opt)
1060 {
1061 int i;
1062 int cur = 0;
1063 int count = ARRAY_SIZE(alarm_timers) - 1;
1064 char *arg;
1065 char *name;
1066 struct qemu_alarm_timer tmp;
1067
1068 if (!strcmp(opt, "?")) {
1069 show_available_alarms();
1070 exit(0);
1071 }
1072
1073 arg = strdup(opt);
1074
1075 /* Reorder the array */
1076 name = strtok(arg, ",");
1077 while (name) {
1078 for (i = 0; i < count && alarm_timers[i].name; i++) {
1079 if (!strcmp(alarm_timers[i].name, name))
1080 break;
1081 }
1082
1083 if (i == count) {
1084 fprintf(stderr, "Unknown clock %s\n", name);
1085 goto next;
1086 }
1087
1088 if (i < cur)
1089 /* Ignore */
1090 goto next;
1091
1092 /* Swap */
1093 tmp = alarm_timers[i];
1094 alarm_timers[i] = alarm_timers[cur];
1095 alarm_timers[cur] = tmp;
1096
1097 cur++;
1098 next:
1099 name = strtok(NULL, ",");
1100 }
1101
1102 free(arg);
1103
1104 if (cur) {
1105 /* Disable remaining timers */
1106 for (i = cur; i < count; i++)
1107 alarm_timers[i].name = NULL;
1108 } else {
1109 show_available_alarms();
1110 exit(1);
1111 }
1112 }
1113
1114 QEMUClock *rt_clock;
1115 QEMUClock *vm_clock;
1116
1117 static QEMUTimer *active_timers[2];
1118
1119 static QEMUClock *qemu_new_clock(int type)
1120 {
1121 QEMUClock *clock;
1122 clock = qemu_mallocz(sizeof(QEMUClock));
1123 clock->type = type;
1124 return clock;
1125 }
1126
1127 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 {
1129 QEMUTimer *ts;
1130
1131 ts = qemu_mallocz(sizeof(QEMUTimer));
1132 ts->clock = clock;
1133 ts->cb = cb;
1134 ts->opaque = opaque;
1135 return ts;
1136 }
1137
1138 void qemu_free_timer(QEMUTimer *ts)
1139 {
1140 qemu_free(ts);
1141 }
1142
1143 /* stop a timer, but do not dealloc it */
1144 void qemu_del_timer(QEMUTimer *ts)
1145 {
1146 QEMUTimer **pt, *t;
1147
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt = &active_timers[ts->clock->type];
1151 for(;;) {
1152 t = *pt;
1153 if (!t)
1154 break;
1155 if (t == ts) {
1156 *pt = t->next;
1157 break;
1158 }
1159 pt = &t->next;
1160 }
1161 }
1162
1163 /* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 {
1167 QEMUTimer **pt, *t;
1168
1169 qemu_del_timer(ts);
1170
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt = &active_timers[ts->clock->type];
1175 for(;;) {
1176 t = *pt;
1177 if (!t)
1178 break;
1179 if (t->expire_time > expire_time)
1180 break;
1181 pt = &t->next;
1182 }
1183 ts->expire_time = expire_time;
1184 ts->next = *pt;
1185 *pt = ts;
1186
1187 /* Rearm if necessary */
1188 if (pt == &active_timers[ts->clock->type]) {
1189 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer);
1191 }
1192 /* Interrupt execution to force deadline recalculation. */
1193 if (use_icount)
1194 qemu_notify_event();
1195 }
1196 }
1197
1198 int qemu_timer_pending(QEMUTimer *ts)
1199 {
1200 QEMUTimer *t;
1201 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1202 if (t == ts)
1203 return 1;
1204 }
1205 return 0;
1206 }
1207
1208 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 {
1210 if (!timer_head)
1211 return 0;
1212 return (timer_head->expire_time <= current_time);
1213 }
1214
1215 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 {
1217 QEMUTimer *ts;
1218
1219 for(;;) {
1220 ts = *ptimer_head;
1221 if (!ts || ts->expire_time > current_time)
1222 break;
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head = ts->next;
1225 ts->next = NULL;
1226
1227 /* run the callback (the timer list can be modified) */
1228 ts->cb(ts->opaque);
1229 }
1230 }
1231
1232 int64_t qemu_get_clock(QEMUClock *clock)
1233 {
1234 switch(clock->type) {
1235 case QEMU_TIMER_REALTIME:
1236 return get_clock() / 1000000;
1237 default:
1238 case QEMU_TIMER_VIRTUAL:
1239 if (use_icount) {
1240 return cpu_get_icount();
1241 } else {
1242 return cpu_get_clock();
1243 }
1244 }
1245 }
1246
1247 static void init_timers(void)
1248 {
1249 init_get_clock();
1250 ticks_per_sec = QEMU_TIMER_BASE;
1251 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1252 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1253 }
1254
1255 /* save a timer */
1256 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 {
1258 uint64_t expire_time;
1259
1260 if (qemu_timer_pending(ts)) {
1261 expire_time = ts->expire_time;
1262 } else {
1263 expire_time = -1;
1264 }
1265 qemu_put_be64(f, expire_time);
1266 }
1267
1268 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 {
1270 uint64_t expire_time;
1271
1272 expire_time = qemu_get_be64(f);
1273 if (expire_time != -1) {
1274 qemu_mod_timer(ts, expire_time);
1275 } else {
1276 qemu_del_timer(ts);
1277 }
1278 }
1279
1280 static void timer_save(QEMUFile *f, void *opaque)
1281 {
1282 if (cpu_ticks_enabled) {
1283 hw_error("cannot save state if virtual timers are running");
1284 }
1285 qemu_put_be64(f, cpu_ticks_offset);
1286 qemu_put_be64(f, ticks_per_sec);
1287 qemu_put_be64(f, cpu_clock_offset);
1288 }
1289
1290 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 {
1292 if (version_id != 1 && version_id != 2)
1293 return -EINVAL;
1294 if (cpu_ticks_enabled) {
1295 return -EINVAL;
1296 }
1297 cpu_ticks_offset=qemu_get_be64(f);
1298 ticks_per_sec=qemu_get_be64(f);
1299 if (version_id == 2) {
1300 cpu_clock_offset=qemu_get_be64(f);
1301 }
1302 return 0;
1303 }
1304
1305 static void qemu_event_increment(void);
1306
1307 #ifdef _WIN32
1308 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1309 DWORD_PTR dwUser, DWORD_PTR dw1,
1310 DWORD_PTR dw2)
1311 #else
1312 static void host_alarm_handler(int host_signum)
1313 #endif
1314 {
1315 #if 0
1316 #define DISP_FREQ 1000
1317 {
1318 static int64_t delta_min = INT64_MAX;
1319 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1320 static int count;
1321 ti = qemu_get_clock(vm_clock);
1322 if (last_clock != 0) {
1323 delta = ti - last_clock;
1324 if (delta < delta_min)
1325 delta_min = delta;
1326 if (delta > delta_max)
1327 delta_max = delta;
1328 delta_cum += delta;
1329 if (++count == DISP_FREQ) {
1330 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min, 1000000, ticks_per_sec),
1332 muldiv64(delta_max, 1000000, ticks_per_sec),
1333 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1334 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1335 count = 0;
1336 delta_min = INT64_MAX;
1337 delta_max = 0;
1338 delta_cum = 0;
1339 }
1340 }
1341 last_clock = ti;
1342 }
1343 #endif
1344 if (alarm_has_dynticks(alarm_timer) ||
1345 (!use_icount &&
1346 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1347 qemu_get_clock(vm_clock))) ||
1348 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1349 qemu_get_clock(rt_clock))) {
1350 qemu_event_increment();
1351 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352
1353 #ifndef CONFIG_IOTHREAD
1354 if (next_cpu) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(next_cpu);
1357 #ifdef CONFIG_KQEMU
1358 if (next_cpu->kqemu_enabled) {
1359 kqemu_cpu_interrupt(next_cpu);
1360 }
1361 #endif
1362 }
1363 #endif
1364 timer_alarm_pending = 1;
1365 qemu_notify_event();
1366 }
1367 }
1368
1369 static int64_t qemu_next_deadline(void)
1370 {
1371 int64_t delta;
1372
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1379 }
1380
1381 if (delta < 0)
1382 delta = 0;
1383
1384 return delta;
1385 }
1386
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1389 {
1390 int64_t delta;
1391 int64_t rtdelta;
1392
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1397
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1403 }
1404
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1407
1408 return delta;
1409 }
1410 #endif
1411
1412 #ifndef _WIN32
1413
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1416 {
1417 int flags;
1418
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1422
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1425
1426 return 0;
1427 }
1428
1429 #if defined(__linux__)
1430
1431 #define RTC_FREQ 1024
1432
1433 static void enable_sigio_timer(int fd)
1434 {
1435 struct sigaction act;
1436
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1441
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1445 }
1446
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 {
1449 struct hpet_info info;
1450 int r, fd;
1451
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1455
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1463 }
1464
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1469
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1474
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1479
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1482
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1487 }
1488
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 {
1491 int fd = (long)t->priv;
1492
1493 close(fd);
1494 }
1495
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 {
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1500
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1511 }
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1516 }
1517
1518 enable_sigio_timer(rtc_fd);
1519
1520 t->priv = (void *)(long)rtc_fd;
1521
1522 return 0;
1523 }
1524
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 {
1527 int rtc_fd = (long)t->priv;
1528
1529 close(rtc_fd);
1530 }
1531
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 {
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1537
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1541
1542 sigaction(SIGALRM, &act, NULL);
1543
1544 /*
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1547 */
1548 memset(&ev, 0, sizeof(ev));
1549 ev.sigev_value.sival_int = 0;
1550 ev.sigev_notify = SIGEV_SIGNAL;
1551 ev.sigev_signo = SIGALRM;
1552
1553 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1554 perror("timer_create");
1555
1556 /* disable dynticks */
1557 fprintf(stderr, "Dynamic Ticks disabled\n");
1558
1559 return -1;
1560 }
1561
1562 t->priv = (void *)(long)host_timer;
1563
1564 return 0;
1565 }
1566
1567 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1568 {
1569 timer_t host_timer = (timer_t)(long)t->priv;
1570
1571 timer_delete(host_timer);
1572 }
1573
1574 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1575 {
1576 timer_t host_timer = (timer_t)(long)t->priv;
1577 struct itimerspec timeout;
1578 int64_t nearest_delta_us = INT64_MAX;
1579 int64_t current_us;
1580
1581 if (!active_timers[QEMU_TIMER_REALTIME] &&
1582 !active_timers[QEMU_TIMER_VIRTUAL])
1583 return;
1584
1585 nearest_delta_us = qemu_next_deadline_dyntick();
1586
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer, &timeout)) {
1589 perror("gettime");
1590 fprintf(stderr, "Internal timer error: aborting\n");
1591 exit(1);
1592 }
1593 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1594 if (current_us && current_us <= nearest_delta_us)
1595 return;
1596
1597 timeout.it_interval.tv_sec = 0;
1598 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1599 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1600 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1601 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1602 perror("settime");
1603 fprintf(stderr, "Internal timer error: aborting\n");
1604 exit(1);
1605 }
1606 }
1607
1608 #endif /* defined(__linux__) */
1609
1610 static int unix_start_timer(struct qemu_alarm_timer *t)
1611 {
1612 struct sigaction act;
1613 struct itimerval itv;
1614 int err;
1615
1616 /* timer signal */
1617 sigfillset(&act.sa_mask);
1618 act.sa_flags = 0;
1619 act.sa_handler = host_alarm_handler;
1620
1621 sigaction(SIGALRM, &act, NULL);
1622
1623 itv.it_interval.tv_sec = 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv.it_interval.tv_usec = 999;
1626 itv.it_value.tv_sec = 0;
1627 itv.it_value.tv_usec = 10 * 1000;
1628
1629 err = setitimer(ITIMER_REAL, &itv, NULL);
1630 if (err)
1631 return -1;
1632
1633 return 0;
1634 }
1635
1636 static void unix_stop_timer(struct qemu_alarm_timer *t)
1637 {
1638 struct itimerval itv;
1639
1640 memset(&itv, 0, sizeof(itv));
1641 setitimer(ITIMER_REAL, &itv, NULL);
1642 }
1643
1644 #endif /* !defined(_WIN32) */
1645
1646
1647 #ifdef _WIN32
1648
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1650 {
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1654
1655 memset(&tc, 0, sizeof(tc));
1656 timeGetDevCaps(&tc, sizeof(tc));
1657
1658 if (data->period < tc.wPeriodMin)
1659 data->period = tc.wPeriodMin;
1660
1661 timeBeginPeriod(data->period);
1662
1663 flags = TIME_CALLBACK_FUNCTION;
1664 if (alarm_has_dynticks(t))
1665 flags |= TIME_ONESHOT;
1666 else
1667 flags |= TIME_PERIODIC;
1668
1669 data->timerId = timeSetEvent(1, // interval (ms)
1670 data->period, // resolution
1671 host_alarm_handler, // function
1672 (DWORD)t, // parameter
1673 flags);
1674
1675 if (!data->timerId) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data->period);
1678 return -1;
1679 }
1680
1681 return 0;
1682 }
1683
1684 static void win32_stop_timer(struct qemu_alarm_timer *t)
1685 {
1686 struct qemu_alarm_win32 *data = t->priv;
1687
1688 timeKillEvent(data->timerId);
1689 timeEndPeriod(data->period);
1690 }
1691
1692 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1693 {
1694 struct qemu_alarm_win32 *data = t->priv;
1695 uint64_t nearest_delta_us;
1696
1697 if (!active_timers[QEMU_TIMER_REALTIME] &&
1698 !active_timers[QEMU_TIMER_VIRTUAL])
1699 return;
1700
1701 nearest_delta_us = qemu_next_deadline_dyntick();
1702 nearest_delta_us /= 1000;
1703
1704 timeKillEvent(data->timerId);
1705
1706 data->timerId = timeSetEvent(1,
1707 data->period,
1708 host_alarm_handler,
1709 (DWORD)t,
1710 TIME_ONESHOT | TIME_PERIODIC);
1711
1712 if (!data->timerId) {
1713 perror("Failed to re-arm win32 alarm timer");
1714
1715 timeEndPeriod(data->period);
1716 exit(1);
1717 }
1718 }
1719
1720 #endif /* _WIN32 */
1721
1722 static int init_timer_alarm(void)
1723 {
1724 struct qemu_alarm_timer *t = NULL;
1725 int i, err = -1;
1726
1727 for (i = 0; alarm_timers[i].name; i++) {
1728 t = &alarm_timers[i];
1729
1730 err = t->start(t);
1731 if (!err)
1732 break;
1733 }
1734
1735 if (err) {
1736 err = -ENOENT;
1737 goto fail;
1738 }
1739
1740 alarm_timer = t;
1741
1742 return 0;
1743
1744 fail:
1745 return err;
1746 }
1747
1748 static void quit_timers(void)
1749 {
1750 alarm_timer->stop(alarm_timer);
1751 alarm_timer = NULL;
1752 }
1753
1754 /***********************************************************/
1755 /* host time/date access */
1756 void qemu_get_timedate(struct tm *tm, int offset)
1757 {
1758 time_t ti;
1759 struct tm *ret;
1760
1761 time(&ti);
1762 ti += offset;
1763 if (rtc_date_offset == -1) {
1764 if (rtc_utc)
1765 ret = gmtime(&ti);
1766 else
1767 ret = localtime(&ti);
1768 } else {
1769 ti -= rtc_date_offset;
1770 ret = gmtime(&ti);
1771 }
1772
1773 memcpy(tm, ret, sizeof(struct tm));
1774 }
1775
1776 int qemu_timedate_diff(struct tm *tm)
1777 {
1778 time_t seconds;
1779
1780 if (rtc_date_offset == -1)
1781 if (rtc_utc)
1782 seconds = mktimegm(tm);
1783 else
1784 seconds = mktime(tm);
1785 else
1786 seconds = mktimegm(tm) + rtc_date_offset;
1787
1788 return seconds - time(NULL);
1789 }
1790
1791 #ifdef _WIN32
1792 static void socket_cleanup(void)
1793 {
1794 WSACleanup();
1795 }
1796
1797 static int socket_init(void)
1798 {
1799 WSADATA Data;
1800 int ret, err;
1801
1802 ret = WSAStartup(MAKEWORD(2,2), &Data);
1803 if (ret != 0) {
1804 err = WSAGetLastError();
1805 fprintf(stderr, "WSAStartup: %d\n", err);
1806 return -1;
1807 }
1808 atexit(socket_cleanup);
1809 return 0;
1810 }
1811 #endif
1812
1813 int get_param_value(char *buf, int buf_size,
1814 const char *tag, const char *str)
1815 {
1816 const char *p;
1817 char option[128];
1818
1819 p = str;
1820 for(;;) {
1821 p = get_opt_name(option, sizeof(option), p, '=');
1822 if (*p != '=')
1823 break;
1824 p++;
1825 if (!strcmp(tag, option)) {
1826 (void)get_opt_value(buf, buf_size, p);
1827 return strlen(buf);
1828 } else {
1829 p = get_opt_value(NULL, 0, p);
1830 }
1831 if (*p != ',')
1832 break;
1833 p++;
1834 }
1835 return 0;
1836 }
1837
1838 int check_params(const char * const *params, const char *str)
1839 {
1840 int name_buf_size = 1;
1841 const char *p;
1842 char *name_buf;
1843 int i, len;
1844 int ret = 0;
1845
1846 for (i = 0; params[i] != NULL; i++) {
1847 len = strlen(params[i]) + 1;
1848 if (len > name_buf_size) {
1849 name_buf_size = len;
1850 }
1851 }
1852 name_buf = qemu_malloc(name_buf_size);
1853
1854 p = str;
1855 while (*p != '\0') {
1856 p = get_opt_name(name_buf, name_buf_size, p, '=');
1857 if (*p != '=') {
1858 ret = -1;
1859 break;
1860 }
1861 p++;
1862 for(i = 0; params[i] != NULL; i++)
1863 if (!strcmp(params[i], name_buf))
1864 break;
1865 if (params[i] == NULL) {
1866 ret = -1;
1867 break;
1868 }
1869 p = get_opt_value(NULL, 0, p);
1870 if (*p != ',')
1871 break;
1872 p++;
1873 }
1874
1875 qemu_free(name_buf);
1876 return ret;
1877 }
1878
1879 /***********************************************************/
1880 /* Bluetooth support */
1881 static int nb_hcis;
1882 static int cur_hci;
1883 static struct HCIInfo *hci_table[MAX_NICS];
1884
1885 static struct bt_vlan_s {
1886 struct bt_scatternet_s net;
1887 int id;
1888 struct bt_vlan_s *next;
1889 } *first_bt_vlan;
1890
1891 /* find or alloc a new bluetooth "VLAN" */
1892 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1893 {
1894 struct bt_vlan_s **pvlan, *vlan;
1895 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1896 if (vlan->id == id)
1897 return &vlan->net;
1898 }
1899 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1900 vlan->id = id;
1901 pvlan = &first_bt_vlan;
1902 while (*pvlan != NULL)
1903 pvlan = &(*pvlan)->next;
1904 *pvlan = vlan;
1905 return &vlan->net;
1906 }
1907
1908 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1909 {
1910 }
1911
1912 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1913 {
1914 return -ENOTSUP;
1915 }
1916
1917 static struct HCIInfo null_hci = {
1918 .cmd_send = null_hci_send,
1919 .sco_send = null_hci_send,
1920 .acl_send = null_hci_send,
1921 .bdaddr_set = null_hci_addr_set,
1922 };
1923
1924 struct HCIInfo *qemu_next_hci(void)
1925 {
1926 if (cur_hci == nb_hcis)
1927 return &null_hci;
1928
1929 return hci_table[cur_hci++];
1930 }
1931
1932 static struct HCIInfo *hci_init(const char *str)
1933 {
1934 char *endp;
1935 struct bt_scatternet_s *vlan = 0;
1936
1937 if (!strcmp(str, "null"))
1938 /* null */
1939 return &null_hci;
1940 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1941 /* host[:hciN] */
1942 return bt_host_hci(str[4] ? str + 5 : "hci0");
1943 else if (!strncmp(str, "hci", 3)) {
1944 /* hci[,vlan=n] */
1945 if (str[3]) {
1946 if (!strncmp(str + 3, ",vlan=", 6)) {
1947 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1948 if (*endp)
1949 vlan = 0;
1950 }
1951 } else
1952 vlan = qemu_find_bt_vlan(0);
1953 if (vlan)
1954 return bt_new_hci(vlan);
1955 }
1956
1957 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1958
1959 return 0;
1960 }
1961
1962 static int bt_hci_parse(const char *str)
1963 {
1964 struct HCIInfo *hci;
1965 bdaddr_t bdaddr;
1966
1967 if (nb_hcis >= MAX_NICS) {
1968 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1969 return -1;
1970 }
1971
1972 hci = hci_init(str);
1973 if (!hci)
1974 return -1;
1975
1976 bdaddr.b[0] = 0x52;
1977 bdaddr.b[1] = 0x54;
1978 bdaddr.b[2] = 0x00;
1979 bdaddr.b[3] = 0x12;
1980 bdaddr.b[4] = 0x34;
1981 bdaddr.b[5] = 0x56 + nb_hcis;
1982 hci->bdaddr_set(hci, bdaddr.b);
1983
1984 hci_table[nb_hcis++] = hci;
1985
1986 return 0;
1987 }
1988
1989 static void bt_vhci_add(int vlan_id)
1990 {
1991 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1992
1993 if (!vlan->slave)
1994 fprintf(stderr, "qemu: warning: adding a VHCI to "
1995 "an empty scatternet %i\n", vlan_id);
1996
1997 bt_vhci_init(bt_new_hci(vlan));
1998 }
1999
2000 static struct bt_device_s *bt_device_add(const char *opt)
2001 {
2002 struct bt_scatternet_s *vlan;
2003 int vlan_id = 0;
2004 char *endp = strstr(opt, ",vlan=");
2005 int len = (endp ? endp - opt : strlen(opt)) + 1;
2006 char devname[10];
2007
2008 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2009
2010 if (endp) {
2011 vlan_id = strtol(endp + 6, &endp, 0);
2012 if (*endp) {
2013 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2014 return 0;
2015 }
2016 }
2017
2018 vlan = qemu_find_bt_vlan(vlan_id);
2019
2020 if (!vlan->slave)
2021 fprintf(stderr, "qemu: warning: adding a slave device to "
2022 "an empty scatternet %i\n", vlan_id);
2023
2024 if (!strcmp(devname, "keyboard"))
2025 return bt_keyboard_init(vlan);
2026
2027 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2028 return 0;
2029 }
2030
2031 static int bt_parse(const char *opt)
2032 {
2033 const char *endp, *p;
2034 int vlan;
2035
2036 if (strstart(opt, "hci", &endp)) {
2037 if (!*endp || *endp == ',') {
2038 if (*endp)
2039 if (!strstart(endp, ",vlan=", 0))
2040 opt = endp + 1;
2041
2042 return bt_hci_parse(opt);
2043 }
2044 } else if (strstart(opt, "vhci", &endp)) {
2045 if (!*endp || *endp == ',') {
2046 if (*endp) {
2047 if (strstart(endp, ",vlan=", &p)) {
2048 vlan = strtol(p, (char **) &endp, 0);
2049 if (*endp) {
2050 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2051 return 1;
2052 }
2053 } else {
2054 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2055 return 1;
2056 }
2057 } else
2058 vlan = 0;
2059
2060 bt_vhci_add(vlan);
2061 return 0;
2062 }
2063 } else if (strstart(opt, "device:", &endp))
2064 return !bt_device_add(endp);
2065
2066 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2067 return 1;
2068 }
2069
2070 /***********************************************************/
2071 /* QEMU Block devices */
2072
2073 #define HD_ALIAS "index=%d,media=disk"
2074 #define CDROM_ALIAS "index=2,media=cdrom"
2075 #define FD_ALIAS "index=%d,if=floppy"
2076 #define PFLASH_ALIAS "if=pflash"
2077 #define MTD_ALIAS "if=mtd"
2078 #define SD_ALIAS "index=0,if=sd"
2079
2080 static int drive_opt_get_free_idx(void)
2081 {
2082 int index;
2083
2084 for (index = 0; index < MAX_DRIVES; index++)
2085 if (!drives_opt[index].used) {
2086 drives_opt[index].used = 1;
2087 return index;
2088 }
2089
2090 return -1;
2091 }
2092
2093 static int drive_get_free_idx(void)
2094 {
2095 int index;
2096
2097 for (index = 0; index < MAX_DRIVES; index++)
2098 if (!drives_table[index].used) {
2099 drives_table[index].used = 1;
2100 return index;
2101 }
2102
2103 return -1;
2104 }
2105
2106 int drive_add(const char *file, const char *fmt, ...)
2107 {
2108 va_list ap;
2109 int index = drive_opt_get_free_idx();
2110
2111 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2112 fprintf(stderr, "qemu: too many drives\n");
2113 return -1;
2114 }
2115
2116 drives_opt[index].file = file;
2117 va_start(ap, fmt);
2118 vsnprintf(drives_opt[index].opt,
2119 sizeof(drives_opt[0].opt), fmt, ap);
2120 va_end(ap);
2121
2122 nb_drives_opt++;
2123 return index;
2124 }
2125
2126 void drive_remove(int index)
2127 {
2128 drives_opt[index].used = 0;
2129 nb_drives_opt--;
2130 }
2131
2132 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2133 {
2134 int index;
2135
2136 /* seek interface, bus and unit */
2137
2138 for (index = 0; index < MAX_DRIVES; index++)
2139 if (drives_table[index].type == type &&
2140 drives_table[index].bus == bus &&
2141 drives_table[index].unit == unit &&
2142 drives_table[index].used)
2143 return index;
2144
2145 return -1;
2146 }
2147
2148 int drive_get_max_bus(BlockInterfaceType type)
2149 {
2150 int max_bus;
2151 int index;
2152
2153 max_bus = -1;
2154 for (index = 0; index < nb_drives; index++) {
2155 if(drives_table[index].type == type &&
2156 drives_table[index].bus > max_bus)
2157 max_bus = drives_table[index].bus;
2158 }
2159 return max_bus;
2160 }
2161
2162 const char *drive_get_serial(BlockDriverState *bdrv)
2163 {
2164 int index;
2165
2166 for (index = 0; index < nb_drives; index++)
2167 if (drives_table[index].bdrv == bdrv)
2168 return drives_table[index].serial;
2169
2170 return "\0";
2171 }
2172
2173 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2174 {
2175 int index;
2176
2177 for (index = 0; index < nb_drives; index++)
2178 if (drives_table[index].bdrv == bdrv)
2179 return drives_table[index].onerror;
2180
2181 return BLOCK_ERR_STOP_ENOSPC;
2182 }
2183
2184 static void bdrv_format_print(void *opaque, const char *name)
2185 {
2186 fprintf(stderr, " %s", name);
2187 }
2188
2189 void drive_uninit(BlockDriverState *bdrv)
2190 {
2191 int i;
2192
2193 for (i = 0; i < MAX_DRIVES; i++)
2194 if (drives_table[i].bdrv == bdrv) {
2195 drives_table[i].bdrv = NULL;
2196 drives_table[i].used = 0;
2197 drive_remove(drives_table[i].drive_opt_idx);
2198 nb_drives--;
2199 break;
2200 }
2201 }
2202
2203 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2204 {
2205 char buf[128];
2206 char file[1024];
2207 char devname[128];
2208 char serial[21];
2209 const char *mediastr = "";
2210 BlockInterfaceType type;
2211 enum { MEDIA_DISK, MEDIA_CDROM } media;
2212 int bus_id, unit_id;
2213 int cyls, heads, secs, translation;
2214 BlockDriverState *bdrv;
2215 BlockDriver *drv = NULL;
2216 QEMUMachine *machine = opaque;
2217 int max_devs;
2218 int index;
2219 int cache;
2220 int bdrv_flags, onerror;
2221 int drives_table_idx;
2222 char *str = arg->opt;
2223 static const char * const params[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial", "werror",
2227 NULL };
2228
2229 if (check_params(params, str) < 0) {
2230 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2231 buf, str);
2232 return -1;
2233 }
2234
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2242
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2251 }
2252 media = MEDIA_DISK;
2253
2254 /* extract parameters */
2255
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2261 }
2262 }
2263
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2269 }
2270 }
2271
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2425 }
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2437 }
2438 }
2439
2440 /* compute bus and unit according index */
2441
2442 if (index != -1) {
2443 if (bus_id != 0 || unit_id != -1) {
2444 fprintf(stderr,
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2446 return -1;
2447 }
2448 if (max_devs == 0)
2449 {
2450 unit_id = index;
2451 bus_id = 0;
2452 } else {
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2455 }
2456 }
2457
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2460 */
2461
2462 if (unit_id == -1) {
2463 unit_id = 0;
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2465 unit_id++;
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2468 bus_id++;
2469 }
2470 }
2471 }
2472
2473 /* check unit id */
2474
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2478 return -1;
2479 }
2480
2481 /*
2482 * ignore multiple definitions
2483 */
2484
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2486 return -2;
2487
2488 /* init */
2489
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2492 if (max_devs)
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2495 else
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2507 nb_drives++;
2508
2509 switch(type) {
2510 case IF_IDE:
2511 case IF_SCSI:
2512 case IF_XEN:
2513 switch(media) {
2514 case MEDIA_DISK:
2515 if (cyls != 0) {
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2518 }
2519 break;
2520 case MEDIA_CDROM:
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2522 break;
2523 }
2524 break;
2525 case IF_SD:
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2527 approximation. */
2528 case IF_FLOPPY:
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2530 break;
2531 case IF_PFLASH:
2532 case IF_MTD:
2533 case IF_VIRTIO:
2534 break;
2535 case IF_COUNT:
2536 abort();
2537 }
2538 if (!file[0])
2539 return -2;
2540 bdrv_flags = 0;
2541 if (snapshot) {
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2544 }
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2553 file);
2554 return -1;
2555 }
2556 if (bdrv_key_required(bdrv))
2557 autostart = 0;
2558 return drives_table_idx;
2559 }
2560
2561 static void numa_add(const char *optarg)
2562 {
2563 char option[128];
2564 char *endptr;
2565 unsigned long long value, endvalue;
2566 int nodenr;
2567
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2572 } else {
2573 nodenr = strtoull(option, NULL, 10);
2574 }
2575
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2578 } else {
2579 value = strtoull(option, &endptr, 0);
2580 switch (*endptr) {
2581 case 0: case 'M': case 'm':
2582 value <<= 20;
2583 break;
2584 case 'G': case 'g':
2585 value <<= 30;
2586 break;
2587 }
2588 node_mem[nodenr] = value;
2589 }
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2592 } else {
2593 value = strtoull(option, &endptr, 10);
2594 if (value >= 64) {
2595 value = 63;
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2597 } else {
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2601 endvalue = 62;
2602 fprintf(stderr,
2603 "only 63 CPUs in NUMA mode supported.\n");
2604 }
2605 value = (1 << (endvalue + 1)) - (1 << value);
2606 } else {
2607 value = 1 << value;
2608 }
2609 }
2610 node_cpumask[nodenr] = value;
2611 }
2612 nb_numa_nodes++;
2613 }
2614 return;
2615 }
2616
2617 /***********************************************************/
2618 /* USB devices */
2619
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2622
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626 {
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632 }
2633
2634 int usb_device_add_dev(USBDevice *dev)
2635 {
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658 }
2659
2660 static void usb_msd_password_cb(void *opaque, int err)
2661 {
2662 USBDevice *dev = opaque;
2663
2664 if (!err)
2665 usb_device_add_dev(dev);
2666 else
2667 dev->handle_destroy(dev);
2668 }
2669
2670 static int usb_device_add(const char *devname, int is_hotplug)
2671 {
2672 const char *p;
2673 USBDevice *dev;
2674
2675 if (!free_usb_ports)
2676 return -1;
2677
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2688
2689 dev = usb_msd_init(p);
2690 if (!dev)
2691 return -1;
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2694 autostart = 0;
2695 if (is_hotplug) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2697 dev);
2698 return 0;
2699 }
2700 }
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2708 #endif
2709 } else if (strstart(devname, "net:", &p)) {
2710 int nic = nb_nics;
2711
2712 if (net_client_init("nic", p) < 0)
2713 return -1;
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2719 } else {
2720 return -1;
2721 }
2722 if (!dev)
2723 return -1;
2724
2725 return usb_device_add_dev(dev);
2726 }
2727
2728 int usb_device_del_addr(int bus_num, int addr)
2729 {
2730 USBPort *port;
2731 USBPort **lastp;
2732 USBDevice *dev;
2733
2734 if (!used_usb_ports)
2735 return -1;
2736
2737 if (bus_num != 0)
2738 return -1;
2739
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2744 port = port->next;
2745 }
2746
2747 if (!port)
2748 return -1;
2749
2750 dev = port->dev;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2756 return 0;
2757 }
2758
2759 static int usb_device_del(const char *devname)
2760 {
2761 int bus_num, addr;
2762 const char *p;
2763
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2766
2767 if (!used_usb_ports)
2768 return -1;
2769
2770 p = strchr(devname, '.');
2771 if (!p)
2772 return -1;
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2775
2776 return usb_device_del_addr(bus_num, addr);
2777 }
2778
2779 void do_usb_add(Monitor *mon, const char *devname)
2780 {
2781 usb_device_add(devname, 1);
2782 }
2783
2784 void do_usb_del(Monitor *mon, const char *devname)
2785 {
2786 usb_device_del(devname);
2787 }
2788
2789 void usb_info(Monitor *mon)
2790 {
2791 USBDevice *dev;
2792 USBPort *port;
2793 const char *speed_str;
2794
2795 if (!usb_enabled) {
2796 monitor_printf(mon, "USB support not enabled\n");
2797 return;
2798 }
2799
2800 for (port = used_usb_ports; port; port = port->next) {
2801 dev = port->dev;
2802 if (!dev)
2803 continue;
2804 switch(dev->speed) {
2805 case USB_SPEED_LOW:
2806 speed_str = "1.5";
2807 break;
2808 case USB_SPEED_FULL:
2809 speed_str = "12";
2810 break;
2811 case USB_SPEED_HIGH:
2812 speed_str = "480";
2813 break;
2814 default:
2815 speed_str = "?";
2816 break;
2817 }
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2820 }
2821 }
2822
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2825
2826 static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829 } *pcmcia_sockets = 0;
2830
2831 void pcmcia_socket_register(PCMCIASocket *socket)
2832 {
2833 struct pcmcia_socket_entry_s *entry;
2834
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2839 }
2840
2841 void pcmcia_socket_unregister(PCMCIASocket *socket)
2842 {
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2844
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2848 *ptr = entry->next;
2849 qemu_free(entry);
2850 }
2851 }
2852
2853 void pcmcia_info(Monitor *mon)
2854 {
2855 struct pcmcia_socket_entry_s *iter;
2856
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2859
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2863 "Empty");
2864 }
2865
2866 /***********************************************************/
2867 /* register display */
2868
2869 struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2873 };
2874
2875 void register_displaystate(DisplayState *ds)
2876 {
2877 DisplayState **s;
2878 s = &display_state;
2879 while (*s != NULL)
2880 s = &(*s)->next;
2881 ds->next = NULL;
2882 *s = ds;
2883 }
2884
2885 DisplayState *get_displaystate(void)
2886 {
2887 return display_state;
2888 }
2889
2890 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2891 {
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2894 }
2895
2896 /* dumb display */
2897
2898 static void dumb_display_init(void)
2899 {
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2904 }
2905
2906 /***********************************************************/
2907 /* I/O handling */
2908
2909 typedef struct IOHandlerRecord {
2910 int fd;
2911 IOCanRWHandler *fd_read_poll;
2912 IOHandler *fd_read;
2913 IOHandler *fd_write;
2914 int deleted;
2915 void *opaque;
2916 /* temporary data */
2917 struct pollfd *ufd;
2918 struct IOHandlerRecord *next;
2919 } IOHandlerRecord;
2920
2921 static IOHandlerRecord *first_io_handler;
2922
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2927 IOHandler *fd_read,
2928 IOHandler *fd_write,
2929 void *opaque)
2930 {
2931 IOHandlerRecord **pioh, *ioh;
2932
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2935 for(;;) {
2936 ioh = *pioh;
2937 if (ioh == NULL)
2938 break;
2939 if (ioh->fd == fd) {
2940 ioh->deleted = 1;
2941 break;
2942 }
2943 pioh = &ioh->next;
2944 }
2945 } else {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2947 if (ioh->fd == fd)
2948 goto found;
2949 }
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2953 found:
2954 ioh->fd = fd;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2959 ioh->deleted = 0;
2960 }
2961 return 0;
2962 }
2963
2964 int qemu_set_fd_handler(int fd,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2968 {
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2970 }
2971
2972 #ifdef _WIN32
2973 /***********************************************************/
2974 /* Polling handling */
2975
2976 typedef struct PollingEntry {
2977 PollingFunc *func;
2978 void *opaque;
2979 struct PollingEntry *next;
2980 } PollingEntry;
2981
2982 static PollingEntry *first_polling_entry;
2983
2984 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2985 {
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2988 pe->func = func;
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2991 *ppe = pe;
2992 return 0;
2993 }
2994
2995 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2996 {
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2999 pe = *ppe;
3000 if (pe->func == func && pe->opaque == opaque) {
3001 *ppe = pe->next;
3002 qemu_free(pe);
3003 break;
3004 }
3005 }
3006 }
3007
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects {
3011 int num;
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3015 } WaitObjects;
3016
3017 static WaitObjects wait_objects = {0};
3018
3019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3020 {
3021 WaitObjects *w = &wait_objects;
3022
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3024 return -1;
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3028 w->num++;
3029 return 0;
3030 }
3031
3032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 {
3034 int i, found;
3035 WaitObjects *w = &wait_objects;
3036
3037 found = 0;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3040 found = 1;
3041 if (found) {
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3045 }
3046 }
3047 if (found)
3048 w->num--;
3049 }
3050 #endif
3051
3052 /***********************************************************/
3053 /* ram save/restore */
3054
3055 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3056 {
3057 int v;
3058
3059 v = qemu_get_byte(f);
3060 switch(v) {
3061 case 0:
3062 if (qemu_get_buffer(f, buf, len) != len)
3063 return -EIO;
3064 break;
3065 case 1:
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3068 break;
3069 default:
3070 return -EINVAL;
3071 }
3072
3073 if (qemu_file_has_error(f))
3074 return -EIO;
3075
3076 return 0;
3077 }
3078
3079 static int ram_load_v1(QEMUFile *f, void *opaque)
3080 {
3081 int ret;
3082 ram_addr_t i;
3083
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3088 if (ret)
3089 return ret;
3090 }
3091 return 0;
3092 }
3093
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3097
3098 typedef struct RamDecompressState {
3099 z_stream zstream;
3100 QEMUFile *f;
3101 uint8_t buf[IOBUF_SIZE];
3102 } RamDecompressState;
3103
3104 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3105 {
3106 int ret;
3107 memset(s, 0, sizeof(*s));
3108 s->f = f;
3109 ret = inflateInit(&s->zstream);
3110 if (ret != Z_OK)
3111 return -1;
3112 return 0;
3113 }
3114
3115 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3116 {
3117 int ret, clen;
3118
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3124 return -1;
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3127 return -1;
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3131 }
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3134 return -1;
3135 }
3136 }
3137 return 0;
3138 }
3139
3140 static void ram_decompress_close(RamDecompressState *s)
3141 {
3142 inflateEnd(&s->zstream);
3143 }
3144
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3150
3151 static int is_dup_page(uint8_t *page, uint8_t ch)
3152 {
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3155 int i;
3156
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3159 return 0;
3160 }
3161
3162 return 1;
3163 }
3164
3165 static int ram_save_block(QEMUFile *f)
3166 {
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3170 int found = 0;
3171
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3174 uint8_t *p;
3175
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3179
3180 p = qemu_get_ram_ptr(current_addr);
3181
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3185 } else {
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3188 }
3189
3190 found = 1;
3191 break;
3192 }
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3195 }
3196
3197 return found;
3198 }
3199
3200 static ram_addr_t ram_save_threshold = 10;
3201 static uint64_t bytes_transferred = 0;
3202
3203 static ram_addr_t ram_save_remaining(void)
3204 {
3205 ram_addr_t addr;
3206 ram_addr_t count = 0;
3207
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3210 count++;
3211 }
3212
3213 return count;
3214 }
3215
3216 uint64_t ram_bytes_remaining(void)
3217 {
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3219 }
3220
3221 uint64_t ram_bytes_transferred(void)
3222 {
3223 return bytes_transferred;
3224 }
3225
3226 uint64_t ram_bytes_total(void)
3227 {
3228 return last_ram_offset;
3229 }
3230
3231 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3232 {
3233 ram_addr_t addr;
3234
3235 if (cpu_physical_sync_dirty_bitmap(0, last_ram_offset) != 0) {
3236 qemu_file_set_error(f);
3237 return 0;
3238 }
3239
3240 if (stage == 1) {
3241 /* Make sure all dirty bits are set */
3242 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3243 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3244 cpu_physical_memory_set_dirty(addr);
3245 }
3246
3247 /* Enable dirty memory tracking */
3248 cpu_physical_memory_set_dirty_tracking(1);
3249
3250 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3251 }
3252
3253 while (!qemu_file_rate_limit(f)) {
3254 int ret;
3255
3256 ret = ram_save_block(f);
3257 bytes_transferred += ret * TARGET_PAGE_SIZE;
3258 if (ret == 0) /* no more blocks */
3259 break;
3260 }
3261
3262 /* try transferring iterative blocks of memory */
3263
3264 if (stage == 3) {
3265
3266 /* flush all remaining blocks regardless of rate limiting */
3267 while (ram_save_block(f) != 0) {
3268 bytes_transferred += TARGET_PAGE_SIZE;
3269 }
3270 cpu_physical_memory_set_dirty_tracking(0);
3271 }
3272
3273 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3274
3275 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3276 }
3277
3278 static int ram_load_dead(QEMUFile *f, void *opaque)
3279 {
3280 RamDecompressState s1, *s = &s1;
3281 uint8_t buf[10];
3282 ram_addr_t i;
3283
3284 if (ram_decompress_open(s, f) < 0)
3285 return -EINVAL;
3286 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3287 if (ram_decompress_buf(s, buf, 1) < 0) {
3288 fprintf(stderr, "Error while reading ram block header\n");
3289 goto error;
3290 }
3291 if (buf[0] == 0) {
3292 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3293 BDRV_HASH_BLOCK_SIZE) < 0) {
3294 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3295 goto error;
3296 }
3297 } else {
3298 error:
3299 printf("Error block header\n");
3300 return -EINVAL;
3301 }
3302 }
3303 ram_decompress_close(s);
3304
3305 return 0;
3306 }
3307
3308 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3309 {
3310 ram_addr_t addr;
3311 int flags;
3312
3313 if (version_id == 1)
3314 return ram_load_v1(f, opaque);
3315
3316 if (version_id == 2) {
3317 if (qemu_get_be32(f) != last_ram_offset)
3318 return -EINVAL;
3319 return ram_load_dead(f, opaque);
3320 }
3321
3322 if (version_id != 3)
3323 return -EINVAL;
3324
3325 do {
3326 addr = qemu_get_be64(f);
3327
3328 flags = addr & ~TARGET_PAGE_MASK;
3329 addr &= TARGET_PAGE_MASK;
3330
3331 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3332 if (addr != last_ram_offset)
3333 return -EINVAL;
3334 }
3335
3336 if (flags & RAM_SAVE_FLAG_FULL) {
3337 if (ram_load_dead(f, opaque) < 0)
3338 return -EINVAL;
3339 }
3340
3341 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3342 uint8_t ch = qemu_get_byte(f);
3343 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3344 } else if (flags & RAM_SAVE_FLAG_PAGE)
3345 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3346 } while (!(flags & RAM_SAVE_FLAG_EOS));
3347
3348 return 0;
3349 }
3350
3351 void qemu_service_io(void)
3352 {
3353 qemu_notify_event();
3354 }
3355
3356 /***********************************************************/
3357 /* bottom halves (can be seen as timers which expire ASAP) */
3358
3359 struct QEMUBH {
3360 QEMUBHFunc *cb;
3361 void *opaque;
3362 int scheduled;
3363 int idle;
3364 int deleted;
3365 QEMUBH *next;
3366 };
3367
3368 static QEMUBH *first_bh = NULL;
3369
3370 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3371 {
3372 QEMUBH *bh;
3373 bh = qemu_mallocz(sizeof(QEMUBH));
3374 bh->cb = cb;
3375 bh->opaque = opaque;
3376 bh->next = first_bh;
3377 first_bh = bh;
3378 return bh;
3379 }
3380
3381 int qemu_bh_poll(void)
3382 {
3383 QEMUBH *bh, **bhp;
3384 int ret;
3385
3386 ret = 0;
3387 for (bh = first_bh; bh; bh = bh->next) {
3388 if (!bh->deleted && bh->scheduled) {
3389 bh->scheduled = 0;
3390 if (!bh->idle)
3391 ret = 1;
3392 bh->idle = 0;
3393 bh->cb(bh->opaque);
3394 }
3395 }
3396
3397 /* remove deleted bhs */
3398 bhp = &first_bh;
3399 while (*bhp) {
3400 bh = *bhp;
3401 if (bh->deleted) {
3402 *bhp = bh->next;
3403 qemu_free(bh);
3404 } else
3405 bhp = &bh->next;
3406 }
3407
3408 return ret;
3409 }
3410
3411 void qemu_bh_schedule_idle(QEMUBH *bh)
3412 {
3413 if (bh->scheduled)
3414 return;
3415 bh->scheduled = 1;
3416 bh->idle = 1;
3417 }
3418
3419 void qemu_bh_schedule(QEMUBH *bh)
3420 {
3421 if (bh->scheduled)
3422 return;
3423 bh->scheduled = 1;
3424 bh->idle = 0;
3425 /* stop the currently executing CPU to execute the BH ASAP */
3426 qemu_notify_event();
3427 }
3428
3429 void qemu_bh_cancel(QEMUBH *bh)
3430 {
3431 bh->scheduled = 0;
3432 }
3433
3434 void qemu_bh_delete(QEMUBH *bh)
3435 {
3436 bh->scheduled = 0;
3437 bh->deleted = 1;
3438 }
3439
3440 static void qemu_bh_update_timeout(int *timeout)
3441 {
3442 QEMUBH *bh;
3443
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3446 if (bh->idle) {
3447 /* idle bottom halves will be polled at least
3448 * every 10ms */
3449 *timeout = MIN(10, *timeout);
3450 } else {
3451 /* non-idle bottom halves will be executed
3452 * immediately */
3453 *timeout = 0;
3454 break;
3455 }
3456 }
3457 }
3458 }
3459
3460 /***********************************************************/
3461 /* machine registration */
3462
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3465
3466 int qemu_register_machine(QEMUMachine *m)
3467 {
3468 QEMUMachine **pm;
3469 pm = &first_machine;
3470 while (*pm != NULL)
3471 pm = &(*pm)->next;
3472 m->next = NULL;
3473 *pm = m;
3474 return 0;
3475 }
3476
3477 static QEMUMachine *find_machine(const char *name)
3478 {
3479 QEMUMachine *m;
3480
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3483 return m;
3484 }
3485 return NULL;
3486 }
3487
3488 static QEMUMachine *find_default_machine(void)
3489 {
3490 QEMUMachine *m;
3491
3492 for(m = first_machine; m != NULL; m = m->next) {
3493 if (m->is_default) {
3494 return m;
3495 }
3496 }
3497 return NULL;
3498 }
3499
3500 /***********************************************************/
3501 /* main execution loop */
3502
3503 static void gui_update(void *opaque)
3504 {
3505 uint64_t interval = GUI_REFRESH_INTERVAL;
3506 DisplayState *ds = opaque;
3507 DisplayChangeListener *dcl = ds->listeners;
3508
3509 dpy_refresh(ds);
3510
3511 while (dcl != NULL) {
3512 if (dcl->gui_timer_interval &&
3513 dcl->gui_timer_interval < interval)
3514 interval = dcl->gui_timer_interval;
3515 dcl = dcl->next;
3516 }
3517 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3518 }
3519
3520 static void nographic_update(void *opaque)
3521 {
3522 uint64_t interval = GUI_REFRESH_INTERVAL;
3523
3524 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3525 }
3526
3527 struct vm_change_state_entry {
3528 VMChangeStateHandler *cb;
3529 void *opaque;
3530 LIST_ENTRY (vm_change_state_entry) entries;
3531 };
3532
3533 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3534
3535 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3536 void *opaque)
3537 {
3538 VMChangeStateEntry *e;
3539
3540 e = qemu_mallocz(sizeof (*e));
3541
3542 e->cb = cb;
3543 e->opaque = opaque;
3544 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3545 return e;
3546 }
3547
3548 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3549 {
3550 LIST_REMOVE (e, entries);
3551 qemu_free (e);
3552 }
3553
3554 static void vm_state_notify(int running, int reason)
3555 {
3556 VMChangeStateEntry *e;
3557
3558 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3559 e->cb(e->opaque, running, reason);
3560 }
3561 }
3562
3563 static void resume_all_vcpus(void);
3564 static void pause_all_vcpus(void);
3565
3566 void vm_start(void)
3567 {
3568 if (!vm_running) {
3569 cpu_enable_ticks();
3570 vm_running = 1;
3571 vm_state_notify(1, 0);
3572 qemu_rearm_alarm_timer(alarm_timer);
3573 resume_all_vcpus();
3574 }
3575 }
3576
3577 /* reset/shutdown handler */
3578
3579 typedef struct QEMUResetEntry {
3580 QEMUResetHandler *func;
3581 void *opaque;
3582 int order;
3583 struct QEMUResetEntry *next;
3584 } QEMUResetEntry;
3585
3586 static QEMUResetEntry *first_reset_entry;
3587 static int reset_requested;
3588 static int shutdown_requested;
3589 static int powerdown_requested;
3590 static int debug_requested;
3591 static int vmstop_requested;
3592
3593 int qemu_shutdown_requested(void)
3594 {
3595 int r = shutdown_requested;
3596 shutdown_requested = 0;
3597 return r;
3598 }
3599
3600 int qemu_reset_requested(void)
3601 {
3602 int r = reset_requested;
3603 reset_requested = 0;
3604 return r;
3605 }
3606
3607 int qemu_powerdown_requested(void)
3608 {
3609 int r = powerdown_requested;
3610 powerdown_requested = 0;
3611 return r;
3612 }
3613
3614 static int qemu_debug_requested(void)
3615 {
3616 int r = debug_requested;
3617 debug_requested = 0;
3618 return r;
3619 }
3620
3621 static int qemu_vmstop_requested(void)
3622 {
3623 int r = vmstop_requested;
3624 vmstop_requested = 0;
3625 return r;
3626 }
3627
3628 static void do_vm_stop(int reason)
3629 {
3630 if (vm_running) {
3631 cpu_disable_ticks();
3632 vm_running = 0;
3633 pause_all_vcpus();
3634 vm_state_notify(0, reason);
3635 }
3636 }
3637
3638 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3639 {
3640 QEMUResetEntry **pre, *re;
3641
3642 pre = &first_reset_entry;
3643 while (*pre != NULL && (*pre)->order >= order) {
3644 pre = &(*pre)->next;
3645 }
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3647 re->func = func;
3648 re->opaque = opaque;
3649 re->order = order;
3650 re->next = NULL;
3651 *pre = re;
3652 }
3653
3654 void qemu_system_reset(void)
3655 {
3656 QEMUResetEntry *re;
3657
3658 /* reset all devices */
3659 for(re = first_reset_entry; re != NULL; re = re->next) {
3660 re->func(re->opaque);
3661 }
3662 }
3663
3664 void qemu_system_reset_request(void)
3665 {
3666 if (no_reboot) {
3667 shutdown_requested = 1;
3668 } else {
3669 reset_requested = 1;
3670 }
3671 qemu_notify_event();
3672 }
3673
3674 void qemu_system_shutdown_request(void)
3675 {
3676 shutdown_requested = 1;
3677 qemu_notify_event();
3678 }
3679
3680 void qemu_system_powerdown_request(void)
3681 {
3682 powerdown_requested = 1;
3683 qemu_notify_event();
3684 }
3685
3686 #ifdef CONFIG_IOTHREAD
3687 static void qemu_system_vmstop_request(int reason)
3688 {
3689 vmstop_requested = reason;
3690 qemu_notify_event();
3691 }
3692 #endif
3693
3694 #ifndef _WIN32
3695 static int io_thread_fd = -1;
3696
3697 static void qemu_event_increment(void)
3698 {
3699 static const char byte = 0;
3700
3701 if (io_thread_fd == -1)
3702 return;
3703
3704 write(io_thread_fd, &byte, sizeof(byte));
3705 }
3706
3707 static void qemu_event_read(void *opaque)
3708 {
3709 int fd = (unsigned long)opaque;
3710 ssize_t len;
3711
3712 /* Drain the notify pipe */
3713 do {
3714 char buffer[512];
3715 len = read(fd, buffer, sizeof(buffer));
3716 } while ((len == -1 && errno == EINTR) || len > 0);
3717 }
3718
3719 static int qemu_event_init(void)
3720 {
3721 int err;
3722 int fds[2];
3723
3724 err = pipe(fds);
3725 if (err == -1)
3726 return -errno;
3727
3728 err = fcntl_setfl(fds[0], O_NONBLOCK);
3729 if (err < 0)
3730 goto fail;
3731
3732 err = fcntl_setfl(fds[1], O_NONBLOCK);
3733 if (err < 0)
3734 goto fail;
3735
3736 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3737 (void *)(unsigned long)fds[0]);
3738
3739 io_thread_fd = fds[1];
3740 return 0;
3741
3742 fail:
3743 close(fds[0]);
3744 close(fds[1]);
3745 return err;
3746 }
3747 #else
3748 HANDLE qemu_event_handle;
3749
3750 static void dummy_event_handler(void *opaque)
3751 {
3752 }
3753
3754 static int qemu_event_init(void)
3755 {
3756 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3757 if (!qemu_event_handle) {
3758 perror("Failed CreateEvent");
3759 return -1;
3760 }
3761 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3762 return 0;
3763 }
3764
3765 static void qemu_event_increment(void)
3766 {
3767 SetEvent(qemu_event_handle);
3768 }
3769 #endif
3770
3771 static int cpu_can_run(CPUState *env)
3772 {
3773 if (env->stop)
3774 return 0;
3775 if (env->stopped)
3776 return 0;
3777 return 1;
3778 }
3779
3780 #ifndef CONFIG_IOTHREAD
3781 static int qemu_init_main_loop(void)
3782 {
3783 return qemu_event_init();
3784 }
3785
3786 void qemu_init_vcpu(void *_env)
3787 {
3788 CPUState *env = _env;
3789
3790 if (kvm_enabled())
3791 kvm_init_vcpu(env);
3792 return;
3793 }
3794
3795 int qemu_cpu_self(void *env)
3796 {
3797 return 1;
3798 }
3799
3800 static void resume_all_vcpus(void)
3801 {
3802 }
3803
3804 static void pause_all_vcpus(void)
3805 {
3806 }
3807
3808 void qemu_cpu_kick(void *env)
3809 {
3810 return;
3811 }
3812
3813 void qemu_notify_event(void)
3814 {
3815 CPUState *env = cpu_single_env;
3816
3817 if (env) {
3818 cpu_exit(env);
3819 #ifdef USE_KQEMU
3820 if (env->kqemu_enabled)
3821 kqemu_cpu_interrupt(env);
3822 #endif
3823 }
3824 }
3825
3826 #define qemu_mutex_lock_iothread() do { } while (0)
3827 #define qemu_mutex_unlock_iothread() do { } while (0)
3828
3829 void vm_stop(int reason)
3830 {
3831 do_vm_stop(reason);
3832 }
3833
3834 #else /* CONFIG_IOTHREAD */
3835
3836 #include "qemu-thread.h"
3837
3838 QemuMutex qemu_global_mutex;
3839 static QemuMutex qemu_fair_mutex;
3840
3841 static QemuThread io_thread;
3842
3843 static QemuThread *tcg_cpu_thread;
3844 static QemuCond *tcg_halt_cond;
3845
3846 static int qemu_system_ready;
3847 /* cpu creation */
3848 static QemuCond qemu_cpu_cond;
3849 /* system init */
3850 static QemuCond qemu_system_cond;
3851 static QemuCond qemu_pause_cond;
3852
3853 static void block_io_signals(void);
3854 static void unblock_io_signals(void);
3855 static int tcg_has_work(void);
3856
3857 static int qemu_init_main_loop(void)
3858 {
3859 int ret;
3860
3861 ret = qemu_event_init();
3862 if (ret)
3863 return ret;
3864
3865 qemu_cond_init(&qemu_pause_cond);
3866 qemu_mutex_init(&qemu_fair_mutex);
3867 qemu_mutex_init(&qemu_global_mutex);
3868 qemu_mutex_lock(&qemu_global_mutex);
3869
3870 unblock_io_signals();
3871 qemu_thread_self(&io_thread);
3872
3873 return 0;
3874 }
3875
3876 static void qemu_wait_io_event(CPUState *env)
3877 {
3878 while (!tcg_has_work())
3879 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3880
3881 qemu_mutex_unlock(&qemu_global_mutex);
3882
3883 /*
3884 * Users of qemu_global_mutex can be starved, having no chance
3885 * to acquire it since this path will get to it first.
3886 * So use another lock to provide fairness.
3887 */
3888 qemu_mutex_lock(&qemu_fair_mutex);
3889 qemu_mutex_unlock(&qemu_fair_mutex);
3890
3891 qemu_mutex_lock(&qemu_global_mutex);
3892 if (env->stop) {
3893 env->stop = 0;
3894 env->stopped = 1;
3895 qemu_cond_signal(&qemu_pause_cond);
3896 }
3897 }
3898
3899 static int qemu_cpu_exec(CPUState *env);
3900
3901 static void *kvm_cpu_thread_fn(void *arg)
3902 {
3903 CPUState *env = arg;
3904
3905 block_io_signals();
3906 qemu_thread_self(env->thread);
3907
3908 /* signal CPU creation */
3909 qemu_mutex_lock(&qemu_global_mutex);
3910 env->created = 1;
3911 qemu_cond_signal(&qemu_cpu_cond);
3912
3913 /* and wait for machine initialization */
3914 while (!qemu_system_ready)
3915 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3916
3917 while (1) {
3918 if (cpu_can_run(env))
3919 qemu_cpu_exec(env);
3920 qemu_wait_io_event(env);
3921 }
3922
3923 return NULL;
3924 }
3925
3926 static void tcg_cpu_exec(void);
3927
3928 static void *tcg_cpu_thread_fn(void *arg)
3929 {
3930 CPUState *env = arg;
3931
3932 block_io_signals();
3933 qemu_thread_self(env->thread);
3934
3935 /* signal CPU creation */
3936 qemu_mutex_lock(&qemu_global_mutex);
3937 for (env = first_cpu; env != NULL; env = env->next_cpu)
3938 env->created = 1;
3939 qemu_cond_signal(&qemu_cpu_cond);
3940
3941 /* and wait for machine initialization */
3942 while (!qemu_system_ready)
3943 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3944
3945 while (1) {
3946 tcg_cpu_exec();
3947 qemu_wait_io_event(cur_cpu);
3948 }
3949
3950 return NULL;
3951 }
3952
3953 void qemu_cpu_kick(void *_env)
3954 {
3955 CPUState *env = _env;
3956 qemu_cond_broadcast(env->halt_cond);
3957 if (kvm_enabled())
3958 qemu_thread_signal(env->thread, SIGUSR1);
3959 }
3960
3961 int qemu_cpu_self(void *env)
3962 {
3963 return (cpu_single_env != NULL);
3964 }
3965
3966 static void cpu_signal(int sig)
3967 {
3968 if (cpu_single_env)
3969 cpu_exit(cpu_single_env);
3970 }
3971
3972 static void block_io_signals(void)
3973 {
3974 sigset_t set;
3975 struct sigaction sigact;
3976
3977 sigemptyset(&set);
3978 sigaddset(&set, SIGUSR2);
3979 sigaddset(&set, SIGIO);
3980 sigaddset(&set, SIGALRM);
3981 pthread_sigmask(SIG_BLOCK, &set, NULL);
3982
3983 sigemptyset(&set);
3984 sigaddset(&set, SIGUSR1);
3985 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3986
3987 memset(&sigact, 0, sizeof(sigact));
3988 sigact.sa_handler = cpu_signal;
3989 sigaction(SIGUSR1, &sigact, NULL);
3990 }
3991
3992 static void unblock_io_signals(void)
3993 {
3994 sigset_t set;
3995
3996 sigemptyset(&set);
3997 sigaddset(&set, SIGUSR2);
3998 sigaddset(&set, SIGIO);
3999 sigaddset(&set, SIGALRM);
4000 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4001
4002 sigemptyset(&set);
4003 sigaddset(&set, SIGUSR1);
4004 pthread_sigmask(SIG_BLOCK, &set, NULL);
4005 }
4006
4007 static void qemu_signal_lock(unsigned int msecs)
4008 {
4009 qemu_mutex_lock(&qemu_fair_mutex);
4010
4011 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4012 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4013 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4014 break;
4015 }
4016 qemu_mutex_unlock(&qemu_fair_mutex);
4017 }
4018
4019 static void qemu_mutex_lock_iothread(void)
4020 {
4021 if (kvm_enabled()) {
4022 qemu_mutex_lock(&qemu_fair_mutex);
4023 qemu_mutex_lock(&qemu_global_mutex);
4024 qemu_mutex_unlock(&qemu_fair_mutex);
4025 } else
4026 qemu_signal_lock(100);
4027 }
4028
4029 static void qemu_mutex_unlock_iothread(void)
4030 {
4031 qemu_mutex_unlock(&qemu_global_mutex);
4032 }
4033
4034 static int all_vcpus_paused(void)
4035 {
4036 CPUState *penv = first_cpu;
4037
4038 while (penv) {
4039 if (!penv->stopped)
4040 return 0;
4041 penv = (CPUState *)penv->next_cpu;
4042 }
4043
4044 return 1;
4045 }
4046
4047 static void pause_all_vcpus(void)
4048 {
4049 CPUState *penv = first_cpu;
4050
4051 while (penv) {
4052 penv->stop = 1;
4053 qemu_thread_signal(penv->thread, SIGUSR1);
4054 qemu_cpu_kick(penv);
4055 penv = (CPUState *)penv->next_cpu;
4056 }
4057
4058 while (!all_vcpus_paused()) {
4059 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4060 penv = first_cpu;
4061 while (penv) {
4062 qemu_thread_signal(penv->thread, SIGUSR1);
4063 penv = (CPUState *)penv->next_cpu;
4064 }
4065 }
4066 }
4067
4068 static void resume_all_vcpus(void)
4069 {
4070 CPUState *penv = first_cpu;
4071
4072 while (penv) {
4073 penv->stop = 0;
4074 penv->stopped = 0;
4075 qemu_thread_signal(penv->thread, SIGUSR1);
4076 qemu_cpu_kick(penv);
4077 penv = (CPUState *)penv->next_cpu;
4078 }
4079 }
4080
4081 static void tcg_init_vcpu(void *_env)
4082 {
4083 CPUState *env = _env;
4084 /* share a single thread for all cpus with TCG */
4085 if (!tcg_cpu_thread) {
4086 env->thread = qemu_mallocz(sizeof(QemuThread));
4087 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4088 qemu_cond_init(env->halt_cond);
4089 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4090 while (env->created == 0)
4091 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4092 tcg_cpu_thread = env->thread;
4093 tcg_halt_cond = env->halt_cond;
4094 } else {
4095 env->thread = tcg_cpu_thread;
4096 env->halt_cond = tcg_halt_cond;
4097 }
4098 }
4099
4100 static void kvm_start_vcpu(CPUState *env)
4101 {
4102 kvm_init_vcpu(env);
4103 env->thread = qemu_mallocz(sizeof(QemuThread));
4104 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4105 qemu_cond_init(env->halt_cond);
4106 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4107 while (env->created == 0)
4108 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4109 }
4110
4111 void qemu_init_vcpu(void *_env)
4112 {
4113 CPUState *env = _env;
4114
4115 if (kvm_enabled())
4116 kvm_start_vcpu(env);
4117 else
4118 tcg_init_vcpu(env);
4119 }
4120
4121 void qemu_notify_event(void)
4122 {
4123 qemu_event_increment();
4124 }
4125
4126 void vm_stop(int reason)
4127 {
4128 QemuThread me;
4129 qemu_thread_self(&me);
4130
4131 if (!qemu_thread_equal(&me, &io_thread)) {
4132 qemu_system_vmstop_request(reason);
4133 /*
4134 * FIXME: should not return to device code in case
4135 * vm_stop() has been requested.
4136 */
4137 if (cpu_single_env) {
4138 cpu_exit(cpu_single_env);
4139 cpu_single_env->stop = 1;
4140 }
4141 return;
4142 }
4143 do_vm_stop(reason);
4144 }
4145
4146 #endif
4147
4148
4149 #ifdef _WIN32
4150 static void host_main_loop_wait(int *timeout)
4151 {
4152 int ret, ret2, i;
4153 PollingEntry *pe;
4154
4155
4156 /* XXX: need to suppress polling by better using win32 events */
4157 ret = 0;
4158 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4159 ret |= pe->func(pe->opaque);
4160 }
4161 if (ret == 0) {
4162 int err;
4163 WaitObjects *w = &wait_objects;
4164
4165 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4166 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4167 if (w->func[ret - WAIT_OBJECT_0])
4168 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4169
4170 /* Check for additional signaled events */
4171 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4172
4173 /* Check if event is signaled */
4174 ret2 = WaitForSingleObject(w->events[i], 0);
4175 if(ret2 == WAIT_OBJECT_0) {
4176 if (w->func[i])
4177 w->func[i](w->opaque[i]);
4178 } else if (ret2 == WAIT_TIMEOUT) {
4179 } else {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4182 }
4183 }
4184 } else if (ret == WAIT_TIMEOUT) {
4185 } else {
4186 err = GetLastError();
4187 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4188 }
4189 }
4190
4191 *timeout = 0;
4192 }
4193 #else
4194 static void host_main_loop_wait(int *timeout)
4195 {
4196 }
4197 #endif
4198
4199 void main_loop_wait(int timeout)
4200 {
4201 IOHandlerRecord *ioh;
4202 fd_set rfds, wfds, xfds;
4203 int ret, nfds;
4204 struct timeval tv;
4205
4206 qemu_bh_update_timeout(&timeout);
4207
4208 host_main_loop_wait(&timeout);
4209
4210 /* poll any events */
4211 /* XXX: separate device handlers from system ones */
4212 nfds = -1;
4213 FD_ZERO(&rfds);
4214 FD_ZERO(&wfds);
4215 FD_ZERO(&xfds);
4216 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4217 if (ioh->deleted)
4218 continue;
4219 if (ioh->fd_read &&
4220 (!ioh->fd_read_poll ||
4221 ioh->fd_read_poll(ioh->opaque) != 0)) {
4222 FD_SET(ioh->fd, &rfds);
4223 if (ioh->fd > nfds)
4224 nfds = ioh->fd;
4225 }
4226 if (ioh->fd_write) {
4227 FD_SET(ioh->fd, &wfds);
4228 if (ioh->fd > nfds)
4229 nfds = ioh->fd;
4230 }
4231 }
4232
4233 tv.tv_sec = timeout / 1000;
4234 tv.tv_usec = (timeout % 1000) * 1000;
4235
4236 #if defined(CONFIG_SLIRP)
4237 if (slirp_is_inited()) {
4238 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4239 }
4240 #endif
4241 qemu_mutex_unlock_iothread();
4242 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4243 qemu_mutex_lock_iothread();
4244 if (ret > 0) {
4245 IOHandlerRecord **pioh;
4246
4247 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4248 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4249 ioh->fd_read(ioh->opaque);
4250 }
4251 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4252 ioh->fd_write(ioh->opaque);
4253 }
4254 }
4255
4256 /* remove deleted IO handlers */
4257 pioh = &first_io_handler;
4258 while (*pioh) {
4259 ioh = *pioh;
4260 if (ioh->deleted) {
4261 *pioh = ioh->next;
4262 qemu_free(ioh);
4263 } else
4264 pioh = &ioh->next;
4265 }
4266 }
4267 #if defined(CONFIG_SLIRP)
4268 if (slirp_is_inited()) {
4269 if (ret < 0) {
4270 FD_ZERO(&rfds);
4271 FD_ZERO(&wfds);
4272 FD_ZERO(&xfds);
4273 }
4274 slirp_select_poll(&rfds, &wfds, &xfds);
4275 }
4276 #endif
4277
4278 /* rearm timer, if not periodic */
4279 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4280 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4281 qemu_rearm_alarm_timer(alarm_timer);
4282 }
4283
4284 /* vm time timers */
4285 if (vm_running) {
4286 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4287 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4288 qemu_get_clock(vm_clock));
4289 }
4290
4291 /* real time timers */
4292 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4293 qemu_get_clock(rt_clock));
4294
4295 /* Check bottom-halves last in case any of the earlier events triggered
4296 them. */
4297 qemu_bh_poll();
4298
4299 }
4300
4301 static int qemu_cpu_exec(CPUState *env)
4302 {
4303 int ret;
4304 #ifdef CONFIG_PROFILER
4305 int64_t ti;
4306 #endif
4307
4308 #ifdef CONFIG_PROFILER
4309 ti = profile_getclock();
4310 #endif
4311 if (use_icount) {
4312 int64_t count;
4313 int decr;
4314 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4315 env->icount_decr.u16.low = 0;
4316 env->icount_extra = 0;
4317 count = qemu_next_deadline();
4318 count = (count + (1 << icount_time_shift) - 1)
4319 >> icount_time_shift;
4320 qemu_icount += count;
4321 decr = (count > 0xffff) ? 0xffff : count;
4322 count -= decr;
4323 env->icount_decr.u16.low = decr;
4324 env->icount_extra = count;
4325 }
4326 ret = cpu_exec(env);
4327 #ifdef CONFIG_PROFILER
4328 qemu_time += profile_getclock() - ti;
4329 #endif
4330 if (use_icount) {
4331 /* Fold pending instructions back into the
4332 instruction counter, and clear the interrupt flag. */
4333 qemu_icount -= (env->icount_decr.u16.low
4334 + env->icount_extra);
4335 env->icount_decr.u32 = 0;
4336 env->icount_extra = 0;
4337 }
4338 return ret;
4339 }
4340
4341 static void tcg_cpu_exec(void)
4342 {
4343 int ret = 0;
4344
4345 if (next_cpu == NULL)
4346 next_cpu = first_cpu;
4347 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4348 CPUState *env = cur_cpu = next_cpu;
4349
4350 if (!vm_running)
4351 break;
4352 if (timer_alarm_pending) {
4353 timer_alarm_pending = 0;
4354 break;
4355 }
4356 if (cpu_can_run(env))
4357 ret = qemu_cpu_exec(env);
4358 if (ret == EXCP_DEBUG) {
4359 gdb_set_stop_cpu(env);
4360 debug_requested = 1;
4361 break;
4362 }
4363 }
4364 }
4365
4366 static int cpu_has_work(CPUState *env)
4367 {
4368 if (env->stop)
4369 return 1;
4370 if (env->stopped)
4371 return 0;
4372 if (!env->halted)
4373 return 1;
4374 if (qemu_cpu_has_work(env))
4375 return 1;
4376 return 0;
4377 }
4378
4379 static int tcg_has_work(void)
4380 {
4381 CPUState *env;
4382
4383 for (env = first_cpu; env != NULL; env = env->next_cpu)
4384 if (cpu_has_work(env))
4385 return 1;
4386 return 0;
4387 }
4388
4389 static int qemu_calculate_timeout(void)
4390 {
4391 int timeout;
4392
4393 if (!vm_running)
4394 timeout = 5000;
4395 else if (tcg_has_work())
4396 timeout = 0;
4397 else if (!use_icount)
4398 timeout = 5000;
4399 else {
4400 /* XXX: use timeout computed from timers */
4401 int64_t add;
4402 int64_t delta;
4403 /* Advance virtual time to the next event. */
4404 if (use_icount == 1) {
4405 /* When not using an adaptive execution frequency
4406 we tend to get badly out of sync with real time,
4407 so just delay for a reasonable amount of time. */
4408 delta = 0;
4409 } else {
4410 delta = cpu_get_icount() - cpu_get_clock();
4411 }
4412 if (delta > 0) {
4413 /* If virtual time is ahead of real time then just
4414 wait for IO. */
4415 timeout = (delta / 1000000) + 1;
4416 } else {
4417 /* Wait for either IO to occur or the next
4418 timer event. */
4419 add = qemu_next_deadline();
4420 /* We advance the timer before checking for IO.
4421 Limit the amount we advance so that early IO
4422 activity won't get the guest too far ahead. */
4423 if (add > 10000000)
4424 add = 10000000;
4425 delta += add;
4426 add = (add + (1 << icount_time_shift) - 1)
4427 >> icount_time_shift;
4428 qemu_icount += add;
4429 timeout = delta / 1000000;
4430 if (timeout < 0)
4431 timeout = 0;
4432 }
4433 }
4434
4435 return timeout;
4436 }
4437
4438 static int vm_can_run(void)
4439 {
4440 if (powerdown_requested)
4441 return 0;
4442 if (reset_requested)
4443 return 0;
4444 if (shutdown_requested)
4445 return 0;
4446 if (debug_requested)
4447 return 0;
4448 return 1;
4449 }
4450
4451 static void main_loop(void)
4452 {
4453 int r;
4454
4455 #ifdef CONFIG_IOTHREAD
4456 qemu_system_ready = 1;
4457 qemu_cond_broadcast(&qemu_system_cond);
4458 #endif
4459
4460 for (;;) {
4461 do {
4462 #ifdef CONFIG_PROFILER
4463 int64_t ti;
4464 #endif
4465 #ifndef CONFIG_IOTHREAD
4466 tcg_cpu_exec();
4467 #endif
4468 #ifdef CONFIG_PROFILER
4469 ti = profile_getclock();
4470 #endif
4471 #ifdef CONFIG_IOTHREAD
4472 main_loop_wait(1000);
4473 #else
4474 main_loop_wait(qemu_calculate_timeout());
4475 #endif
4476 #ifdef CONFIG_PROFILER
4477 dev_time += profile_getclock() - ti;
4478 #endif
4479 } while (vm_can_run());
4480
4481 if (qemu_debug_requested())
4482 vm_stop(EXCP_DEBUG);
4483 if (qemu_shutdown_requested()) {
4484 if (no_shutdown) {
4485 vm_stop(0);
4486 no_shutdown = 0;
4487 } else
4488 break;
4489 }
4490 if (qemu_reset_requested()) {
4491 pause_all_vcpus();
4492 qemu_system_reset();
4493 resume_all_vcpus();
4494 }
4495 if (qemu_powerdown_requested())
4496 qemu_system_powerdown();
4497 if ((r = qemu_vmstop_requested()))
4498 vm_stop(r);
4499 }
4500 pause_all_vcpus();
4501 }
4502
4503 static void version(void)
4504 {
4505 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4506 }
4507
4508 static void help(int exitcode)
4509 {
4510 version();
4511 printf("usage: %s [options] [disk_image]\n"
4512 "\n"
4513 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4514 "\n"
4515 #define DEF(option, opt_arg, opt_enum, opt_help) \
4516 opt_help
4517 #define DEFHEADING(text) stringify(text) "\n"
4518 #include "qemu-options.h"
4519 #undef DEF
4520 #undef DEFHEADING
4521 #undef GEN_DOCS
4522 "\n"
4523 "During emulation, the following keys are useful:\n"
4524 "ctrl-alt-f toggle full screen\n"
4525 "ctrl-alt-n switch to virtual console 'n'\n"
4526 "ctrl-alt toggle mouse and keyboard grab\n"
4527 "\n"
4528 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4529 ,
4530 "qemu",
4531 DEFAULT_RAM_SIZE,
4532 #ifndef _WIN32
4533 DEFAULT_NETWORK_SCRIPT,
4534 DEFAULT_NETWORK_DOWN_SCRIPT,
4535 #endif
4536 DEFAULT_GDBSTUB_PORT,
4537 "/tmp/qemu.log");
4538 exit(exitcode);
4539 }
4540
4541 #define HAS_ARG 0x0001
4542
4543 enum {
4544 #define DEF(option, opt_arg, opt_enum, opt_help) \
4545 opt_enum,
4546 #define DEFHEADING(text)
4547 #include "qemu-options.h"
4548 #undef DEF
4549 #undef DEFHEADING
4550 #undef GEN_DOCS
4551 };
4552
4553 typedef struct QEMUOption {
4554 const char *name;
4555 int flags;
4556 int index;
4557 } QEMUOption;
4558
4559 static const QEMUOption qemu_options[] = {
4560 { "h", 0, QEMU_OPTION_h },
4561 #define DEF(option, opt_arg, opt_enum, opt_help) \
4562 { option, opt_arg, opt_enum },
4563 #define DEFHEADING(text)
4564 #include "qemu-options.h"
4565 #undef DEF
4566 #undef DEFHEADING
4567 #undef GEN_DOCS
4568 { NULL },
4569 };
4570
4571 #ifdef HAS_AUDIO
4572 struct soundhw soundhw[] = {
4573 #ifdef HAS_AUDIO_CHOICE
4574 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4575 {
4576 "pcspk",
4577 "PC speaker",
4578 0,
4579 1,
4580 { .init_isa = pcspk_audio_init }
4581 },
4582 #endif
4583
4584 #ifdef CONFIG_SB16
4585 {
4586 "sb16",
4587 "Creative Sound Blaster 16",
4588 0,
4589 1,
4590 { .init_isa = SB16_init }
4591 },
4592 #endif
4593
4594 #ifdef CONFIG_CS4231A
4595 {
4596 "cs4231a",
4597 "CS4231A",
4598 0,
4599 1,
4600 { .init_isa = cs4231a_init }
4601 },
4602 #endif
4603
4604 #ifdef CONFIG_ADLIB
4605 {
4606 "adlib",
4607 #ifdef HAS_YMF262
4608 "Yamaha YMF262 (OPL3)",
4609 #else
4610 "Yamaha YM3812 (OPL2)",
4611 #endif
4612 0,
4613 1,
4614 { .init_isa = Adlib_init }
4615 },
4616 #endif
4617
4618 #ifdef CONFIG_GUS
4619 {
4620 "gus",
4621 "Gravis Ultrasound GF1",
4622 0,
4623 1,
4624 { .init_isa = GUS_init }
4625 },
4626 #endif
4627
4628 #ifdef CONFIG_AC97
4629 {
4630 "ac97",
4631 "Intel 82801AA AC97 Audio",
4632 0,
4633 0,
4634 { .init_pci = ac97_init }
4635 },
4636 #endif
4637
4638 #ifdef CONFIG_ES1370
4639 {
4640 "es1370",
4641 "ENSONIQ AudioPCI ES1370",
4642 0,
4643 0,
4644 { .init_pci = es1370_init }
4645 },
4646 #endif
4647
4648 #endif /* HAS_AUDIO_CHOICE */
4649
4650 { NULL, NULL, 0, 0, { NULL } }
4651 };
4652
4653 static void select_soundhw (const char *optarg)
4654 {
4655 struct soundhw *c;
4656
4657 if (*optarg == '?') {
4658 show_valid_cards:
4659
4660 printf ("Valid sound card names (comma separated):\n");
4661 for (c = soundhw; c->name; ++c) {
4662 printf ("%-11s %s\n", c->name, c->descr);
4663 }
4664 printf ("\n-soundhw all will enable all of the above\n");
4665 exit (*optarg != '?');
4666 }
4667 else {
4668 size_t l;
4669 const char *p;
4670 char *e;
4671 int bad_card = 0;
4672
4673 if (!strcmp (optarg, "all")) {
4674 for (c = soundhw; c->name; ++c) {
4675 c->enabled = 1;
4676 }
4677 return;
4678 }
4679
4680 p = optarg;
4681 while (*p) {
4682 e = strchr (p, ',');
4683 l = !e ? strlen (p) : (size_t) (e - p);
4684
4685 for (c = soundhw; c->name; ++c) {
4686 if (!strncmp (c->name, p, l)) {
4687 c->enabled = 1;
4688 break;
4689 }
4690 }
4691
4692 if (!c->name) {
4693 if (l > 80) {
4694 fprintf (stderr,
4695 "Unknown sound card name (too big to show)\n");
4696 }
4697 else {
4698 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4699 (int) l, p);
4700 }
4701 bad_card = 1;
4702 }
4703 p += l + (e != NULL);
4704 }
4705
4706 if (bad_card)
4707 goto show_valid_cards;
4708 }
4709 }
4710 #endif
4711
4712 static void select_vgahw (const char *p)
4713 {
4714 const char *opts;
4715
4716 cirrus_vga_enabled = 0;
4717 std_vga_enabled = 0;
4718 vmsvga_enabled = 0;
4719 xenfb_enabled = 0;
4720 if (strstart(p, "std", &opts)) {
4721 std_vga_enabled = 1;
4722 } else if (strstart(p, "cirrus", &opts)) {
4723 cirrus_vga_enabled = 1;
4724 } else if (strstart(p, "vmware", &opts)) {
4725 vmsvga_enabled = 1;
4726 } else if (strstart(p, "xenfb", &opts)) {
4727 xenfb_enabled = 1;
4728 } else if (!strstart(p, "none", &opts)) {
4729 invalid_vga:
4730 fprintf(stderr, "Unknown vga type: %s\n", p);
4731 exit(1);
4732 }
4733 while (*opts) {
4734 const char *nextopt;
4735
4736 if (strstart(opts, ",retrace=", &nextopt)) {
4737 opts = nextopt;
4738 if (strstart(opts, "dumb", &nextopt))
4739 vga_retrace_method = VGA_RETRACE_DUMB;
4740 else if (strstart(opts, "precise", &nextopt))
4741 vga_retrace_method = VGA_RETRACE_PRECISE;
4742 else goto invalid_vga;
4743 } else goto invalid_vga;
4744 opts = nextopt;
4745 }
4746 }
4747
4748 #ifdef _WIN32
4749 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4750 {
4751 exit(STATUS_CONTROL_C_EXIT);
4752 return TRUE;
4753 }
4754 #endif
4755
4756 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4757 {
4758 int ret;
4759
4760 if(strlen(str) != 36)
4761 return -1;
4762
4763 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4764 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4765 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4766
4767 if(ret != 16)
4768 return -1;
4769
4770 #ifdef TARGET_I386
4771 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4772 #endif
4773
4774 return 0;
4775 }
4776
4777 #define MAX_NET_CLIENTS 32
4778
4779 #ifndef _WIN32
4780
4781 static void termsig_handler(int signal)
4782 {
4783 qemu_system_shutdown_request();
4784 }
4785
4786 static void termsig_setup(void)
4787 {
4788 struct sigaction act;
4789
4790 memset(&act, 0, sizeof(act));
4791 act.sa_handler = termsig_handler;
4792 sigaction(SIGINT, &act, NULL);
4793 sigaction(SIGHUP, &act, NULL);
4794 sigaction(SIGTERM, &act, NULL);
4795 }
4796
4797 #endif
4798
4799 int main(int argc, char **argv, char **envp)
4800 {
4801 const char *gdbstub_dev = NULL;
4802 uint32_t boot_devices_bitmap = 0;
4803 int i;
4804 int snapshot, linux_boot, net_boot;
4805 const char *initrd_filename;
4806 const char *kernel_filename, *kernel_cmdline;
4807 const char *boot_devices = "";
4808 DisplayState *ds;
4809 DisplayChangeListener *dcl;
4810 int cyls, heads, secs, translation;
4811 const char *net_clients[MAX_NET_CLIENTS];
4812 int nb_net_clients;
4813 const char *bt_opts[MAX_BT_CMDLINE];
4814 int nb_bt_opts;
4815 int hda_index;
4816 int optind;
4817 const char *r, *optarg;
4818 CharDriverState *monitor_hd = NULL;
4819 const char *monitor_device;
4820 const char *serial_devices[MAX_SERIAL_PORTS];
4821 int serial_device_index;
4822 const char *parallel_devices[MAX_PARALLEL_PORTS];
4823 int parallel_device_index;
4824 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4825 int virtio_console_index;
4826 const char *loadvm = NULL;
4827 QEMUMachine *machine;
4828 const char *cpu_model;
4829 const char *usb_devices[MAX_USB_CMDLINE];
4830 int usb_devices_index;
4831 #ifndef _WIN32
4832 int fds[2];
4833 #endif
4834 int tb_size;
4835 const char *pid_file = NULL;
4836 const char *incoming = NULL;
4837 #ifndef _WIN32
4838 int fd = 0;
4839 struct passwd *pwd = NULL;
4840 const char *chroot_dir = NULL;
4841 const char *run_as = NULL;
4842 #endif
4843 CPUState *env;
4844 int show_vnc_port = 0;
4845
4846 qemu_cache_utils_init(envp);
4847
4848 LIST_INIT (&vm_change_state_head);
4849 #ifndef _WIN32
4850 {
4851 struct sigaction act;
4852 sigfillset(&act.sa_mask);
4853 act.sa_flags = 0;
4854 act.sa_handler = SIG_IGN;
4855 sigaction(SIGPIPE, &act, NULL);
4856 }
4857 #else
4858 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4859 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4860 QEMU to run on a single CPU */
4861 {
4862 HANDLE h;
4863 DWORD mask, smask;
4864 int i;
4865 h = GetCurrentProcess();
4866 if (GetProcessAffinityMask(h, &mask, &smask)) {
4867 for(i = 0; i < 32; i++) {
4868 if (mask & (1 << i))
4869 break;
4870 }
4871 if (i != 32) {
4872 mask = 1 << i;
4873 SetProcessAffinityMask(h, mask);
4874 }
4875 }
4876 }
4877 #endif
4878
4879 module_call_init(MODULE_INIT_MACHINE);
4880 machine = find_default_machine();
4881 cpu_model = NULL;
4882 initrd_filename = NULL;
4883 ram_size = 0;
4884 snapshot = 0;
4885 kernel_filename = NULL;
4886 kernel_cmdline = "";
4887 cyls = heads = secs = 0;
4888 translation = BIOS_ATA_TRANSLATION_AUTO;
4889 monitor_device = "vc:80Cx24C";
4890
4891 serial_devices[0] = "vc:80Cx24C";
4892 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4893 serial_devices[i] = NULL;
4894 serial_device_index = 0;
4895
4896 parallel_devices[0] = "vc:80Cx24C";
4897 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4898 parallel_devices[i] = NULL;
4899 parallel_device_index = 0;
4900
4901 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4902 virtio_consoles[i] = NULL;
4903 virtio_console_index = 0;
4904
4905 for (i = 0; i < MAX_NODES; i++) {
4906 node_mem[i] = 0;
4907 node_cpumask[i] = 0;
4908 }
4909
4910 usb_devices_index = 0;
4911
4912 nb_net_clients = 0;
4913 nb_bt_opts = 0;
4914 nb_drives = 0;
4915 nb_drives_opt = 0;
4916 nb_numa_nodes = 0;
4917 hda_index = -1;
4918
4919 nb_nics = 0;
4920
4921 tb_size = 0;
4922 autostart= 1;
4923
4924 register_watchdogs();
4925
4926 optind = 1;
4927 for(;;) {
4928 if (optind >= argc)
4929 break;
4930 r = argv[optind];
4931 if (r[0] != '-') {
4932 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4933 } else {
4934 const QEMUOption *popt;
4935
4936 optind++;
4937 /* Treat --foo the same as -foo. */
4938 if (r[1] == '-')
4939 r++;
4940 popt = qemu_options;
4941 for(;;) {
4942 if (!popt->name) {
4943 fprintf(stderr, "%s: invalid option -- '%s'\n",
4944 argv[0], r);
4945 exit(1);
4946 }
4947 if (!strcmp(popt->name, r + 1))
4948 break;
4949 popt++;
4950 }
4951 if (popt->flags & HAS_ARG) {
4952 if (optind >= argc) {
4953 fprintf(stderr, "%s: option '%s' requires an argument\n",
4954 argv[0], r);
4955 exit(1);
4956 }
4957 optarg = argv[optind++];
4958 } else {
4959 optarg = NULL;
4960 }
4961
4962 switch(popt->index) {
4963 case QEMU_OPTION_M:
4964 machine = find_machine(optarg);
4965 if (!machine) {
4966 QEMUMachine *m;
4967 printf("Supported machines are:\n");
4968 for(m = first_machine; m != NULL; m = m->next) {
4969 printf("%-10s %s%s\n",
4970 m->name, m->desc,
4971 m->is_default ? " (default)" : "");
4972 }
4973 exit(*optarg != '?');
4974 }
4975 break;
4976 case QEMU_OPTION_cpu:
4977 /* hw initialization will check this */
4978 if (*optarg == '?') {
4979 /* XXX: implement xxx_cpu_list for targets that still miss it */
4980 #if defined(cpu_list)
4981 cpu_list(stdout, &fprintf);
4982 #endif
4983 exit(0);
4984 } else {
4985 cpu_model = optarg;
4986 }
4987 break;
4988 case QEMU_OPTION_initrd:
4989 initrd_filename = optarg;
4990 break;
4991 case QEMU_OPTION_hda:
4992 if (cyls == 0)
4993 hda_index = drive_add(optarg, HD_ALIAS, 0);
4994 else
4995 hda_index = drive_add(optarg, HD_ALIAS
4996 ",cyls=%d,heads=%d,secs=%d%s",
4997 0, cyls, heads, secs,
4998 translation == BIOS_ATA_TRANSLATION_LBA ?
4999 ",trans=lba" :
5000 translation == BIOS_ATA_TRANSLATION_NONE ?
5001 ",trans=none" : "");
5002 break;
5003 case QEMU_OPTION_hdb:
5004 case QEMU_OPTION_hdc:
5005 case QEMU_OPTION_hdd:
5006 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5007 break;
5008 case QEMU_OPTION_drive:
5009 drive_add(NULL, "%s", optarg);
5010 break;
5011 case QEMU_OPTION_mtdblock:
5012 drive_add(optarg, MTD_ALIAS);
5013 break;
5014 case QEMU_OPTION_sd:
5015 drive_add(optarg, SD_ALIAS);
5016 break;
5017 case QEMU_OPTION_pflash:
5018 drive_add(optarg, PFLASH_ALIAS);
5019 break;
5020 case QEMU_OPTION_snapshot:
5021 snapshot = 1;
5022 break;
5023 case QEMU_OPTION_hdachs:
5024 {
5025 const char *p;
5026 p = optarg;
5027 cyls = strtol(p, (char **)&p, 0);
5028 if (cyls < 1 || cyls > 16383)
5029 goto chs_fail;
5030 if (*p != ',')
5031 goto chs_fail;
5032 p++;
5033 heads = strtol(p, (char **)&p, 0);
5034 if (heads < 1 || heads > 16)
5035 goto chs_fail;
5036 if (*p != ',')
5037 goto chs_fail;
5038 p++;
5039 secs = strtol(p, (char **)&p, 0);
5040 if (secs < 1 || secs > 63)
5041 goto chs_fail;
5042 if (*p == ',') {
5043 p++;
5044 if (!strcmp(p, "none"))
5045 translation = BIOS_ATA_TRANSLATION_NONE;
5046 else if (!strcmp(p, "lba"))
5047 translation = BIOS_ATA_TRANSLATION_LBA;
5048 else if (!strcmp(p, "auto"))
5049 translation = BIOS_ATA_TRANSLATION_AUTO;
5050 else
5051 goto chs_fail;
5052 } else if (*p != '\0') {
5053 chs_fail:
5054 fprintf(stderr, "qemu: invalid physical CHS format\n");
5055 exit(1);
5056 }
5057 if (hda_index != -1)
5058 snprintf(drives_opt[hda_index].opt,
5059 sizeof(drives_opt[hda_index].opt),
5060 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5061 0, cyls, heads, secs,
5062 translation == BIOS_ATA_TRANSLATION_LBA ?
5063 ",trans=lba" :
5064 translation == BIOS_ATA_TRANSLATION_NONE ?
5065 ",trans=none" : "");
5066 }
5067 break;
5068 case QEMU_OPTION_numa:
5069 if (nb_numa_nodes >= MAX_NODES) {
5070 fprintf(stderr, "qemu: too many NUMA nodes\n");
5071 exit(1);
5072 }
5073 numa_add(optarg);
5074 break;
5075 case QEMU_OPTION_nographic:
5076 display_type = DT_NOGRAPHIC;
5077 break;
5078 #ifdef CONFIG_CURSES
5079 case QEMU_OPTION_curses:
5080 display_type = DT_CURSES;
5081 break;
5082 #endif
5083 case QEMU_OPTION_portrait:
5084 graphic_rotate = 1;
5085 break;
5086 case QEMU_OPTION_kernel:
5087 kernel_filename = optarg;
5088 break;
5089 case QEMU_OPTION_append:
5090 kernel_cmdline = optarg;
5091 break;
5092 case QEMU_OPTION_cdrom:
5093 drive_add(optarg, CDROM_ALIAS);
5094 break;
5095 case QEMU_OPTION_boot:
5096 boot_devices = optarg;
5097 /* We just do some generic consistency checks */
5098 {
5099 /* Could easily be extended to 64 devices if needed */
5100 const char *p;
5101
5102 boot_devices_bitmap = 0;
5103 for (p = boot_devices; *p != '\0'; p++) {
5104 /* Allowed boot devices are:
5105 * a b : floppy disk drives
5106 * c ... f : IDE disk drives
5107 * g ... m : machine implementation dependant drives
5108 * n ... p : network devices
5109 * It's up to each machine implementation to check
5110 * if the given boot devices match the actual hardware
5111 * implementation and firmware features.
5112 */
5113 if (*p < 'a' || *p > 'q') {
5114 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5115 exit(1);
5116 }
5117 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5118 fprintf(stderr,
5119 "Boot device '%c' was given twice\n",*p);
5120 exit(1);
5121 }
5122 boot_devices_bitmap |= 1 << (*p - 'a');
5123 }
5124 }
5125 break;
5126 case QEMU_OPTION_fda:
5127 case QEMU_OPTION_fdb:
5128 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5129 break;
5130 #ifdef TARGET_I386
5131 case QEMU_OPTION_no_fd_bootchk:
5132 fd_bootchk = 0;
5133 break;
5134 #endif
5135 case QEMU_OPTION_net:
5136 if (nb_net_clients >= MAX_NET_CLIENTS) {
5137 fprintf(stderr, "qemu: too many network clients\n");
5138 exit(1);
5139 }
5140 net_clients[nb_net_clients] = optarg;
5141 nb_net_clients++;
5142 break;
5143 #ifdef CONFIG_SLIRP
5144 case QEMU_OPTION_tftp:
5145 tftp_prefix = optarg;
5146 break;
5147 case QEMU_OPTION_bootp:
5148 bootp_filename = optarg;
5149 break;
5150 #ifndef _WIN32
5151 case QEMU_OPTION_smb:
5152 net_slirp_smb(optarg);
5153 break;
5154 #endif
5155 case QEMU_OPTION_redir:
5156 net_slirp_redir(NULL, optarg);
5157 break;
5158 #endif
5159 case QEMU_OPTION_bt:
5160 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5161 fprintf(stderr, "qemu: too many bluetooth options\n");
5162 exit(1);
5163 }
5164 bt_opts[nb_bt_opts++] = optarg;
5165 break;
5166 #ifdef HAS_AUDIO
5167 case QEMU_OPTION_audio_help:
5168 AUD_help ();
5169 exit (0);
5170 break;
5171 case QEMU_OPTION_soundhw:
5172 select_soundhw (optarg);
5173 break;
5174 #endif
5175 case QEMU_OPTION_h:
5176 help(0);
5177 break;
5178 case QEMU_OPTION_version:
5179 version();
5180 exit(0);
5181 break;
5182 case QEMU_OPTION_m: {
5183 uint64_t value;
5184 char *ptr;
5185
5186 value = strtoul(optarg, &ptr, 10);
5187 switch (*ptr) {
5188 case 0: case 'M': case 'm':
5189 value <<= 20;
5190 break;
5191 case 'G': case 'g':
5192 value <<= 30;
5193 break;
5194 default:
5195 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5196 exit(1);
5197 }
5198
5199 /* On 32-bit hosts, QEMU is limited by virtual address space */
5200 if (value > (2047 << 20)
5201 #ifndef CONFIG_KQEMU
5202 && HOST_LONG_BITS == 32
5203 #endif
5204 ) {
5205 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5206 exit(1);
5207 }
5208 if (value != (uint64_t)(ram_addr_t)value) {
5209 fprintf(stderr, "qemu: ram size too large\n");
5210 exit(1);
5211 }
5212 ram_size = value;
5213 break;
5214 }
5215 case QEMU_OPTION_d:
5216 {
5217 int mask;
5218 const CPULogItem *item;
5219
5220 mask = cpu_str_to_log_mask(optarg);
5221 if (!mask) {
5222 printf("Log items (comma separated):\n");
5223 for(item = cpu_log_items; item->mask != 0; item++) {
5224 printf("%-10s %s\n", item->name, item->help);
5225 }
5226 exit(1);
5227 }
5228 cpu_set_log(mask);
5229 }
5230 break;
5231 case QEMU_OPTION_s:
5232 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5233 break;
5234 case QEMU_OPTION_gdb:
5235 gdbstub_dev = optarg;
5236 break;
5237 case QEMU_OPTION_L:
5238 bios_dir = optarg;
5239 break;
5240 case QEMU_OPTION_bios:
5241 bios_name = optarg;
5242 break;
5243 case QEMU_OPTION_singlestep:
5244 singlestep = 1;
5245 break;
5246 case QEMU_OPTION_S:
5247 autostart = 0;
5248 break;
5249 #ifndef _WIN32
5250 case QEMU_OPTION_k:
5251 keyboard_layout = optarg;
5252 break;
5253 #endif
5254 case QEMU_OPTION_localtime:
5255 rtc_utc = 0;
5256 break;
5257 case QEMU_OPTION_vga:
5258 select_vgahw (optarg);
5259 break;
5260 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5261 case QEMU_OPTION_g:
5262 {
5263 const char *p;
5264 int w, h, depth;
5265 p = optarg;
5266 w = strtol(p, (char **)&p, 10);
5267 if (w <= 0) {
5268 graphic_error:
5269 fprintf(stderr, "qemu: invalid resolution or depth\n");
5270 exit(1);
5271 }
5272 if (*p != 'x')
5273 goto graphic_error;
5274 p++;
5275 h = strtol(p, (char **)&p, 10);
5276 if (h <= 0)
5277 goto graphic_error;
5278 if (*p == 'x') {
5279 p++;
5280 depth = strtol(p, (char **)&p, 10);
5281 if (depth != 8 && depth != 15 && depth != 16 &&
5282 depth != 24 && depth != 32)
5283 goto graphic_error;
5284 } else if (*p == '\0') {
5285 depth = graphic_depth;
5286 } else {
5287 goto graphic_error;
5288 }
5289
5290 graphic_width = w;
5291 graphic_height = h;
5292 graphic_depth = depth;
5293 }
5294 break;
5295 #endif
5296 case QEMU_OPTION_echr:
5297 {
5298 char *r;
5299 term_escape_char = strtol(optarg, &r, 0);
5300 if (r == optarg)
5301 printf("Bad argument to echr\n");
5302 break;
5303 }
5304 case QEMU_OPTION_monitor:
5305 monitor_device = optarg;
5306 break;
5307 case QEMU_OPTION_serial:
5308 if (serial_device_index >= MAX_SERIAL_PORTS) {
5309 fprintf(stderr, "qemu: too many serial ports\n");
5310 exit(1);
5311 }
5312 serial_devices[serial_device_index] = optarg;
5313 serial_device_index++;
5314 break;
5315 case QEMU_OPTION_watchdog:
5316 i = select_watchdog(optarg);
5317 if (i > 0)
5318 exit (i == 1 ? 1 : 0);
5319 break;
5320 case QEMU_OPTION_watchdog_action:
5321 if (select_watchdog_action(optarg) == -1) {
5322 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5323 exit(1);
5324 }
5325 break;
5326 case QEMU_OPTION_virtiocon:
5327 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5328 fprintf(stderr, "qemu: too many virtio consoles\n");
5329 exit(1);
5330 }
5331 virtio_consoles[virtio_console_index] = optarg;
5332 virtio_console_index++;
5333 break;
5334 case QEMU_OPTION_parallel:
5335 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5336 fprintf(stderr, "qemu: too many parallel ports\n");
5337 exit(1);
5338 }
5339 parallel_devices[parallel_device_index] = optarg;
5340 parallel_device_index++;
5341 break;
5342 case QEMU_OPTION_loadvm:
5343 loadvm = optarg;
5344 break;
5345 case QEMU_OPTION_full_screen:
5346 full_screen = 1;
5347 break;
5348 #ifdef CONFIG_SDL
5349 case QEMU_OPTION_no_frame:
5350 no_frame = 1;
5351 break;
5352 case QEMU_OPTION_alt_grab:
5353 alt_grab = 1;
5354 break;
5355 case QEMU_OPTION_no_quit:
5356 no_quit = 1;
5357 break;
5358 case QEMU_OPTION_sdl:
5359 display_type = DT_SDL;
5360 break;
5361 #endif
5362 case QEMU_OPTION_pidfile:
5363 pid_file = optarg;
5364 break;
5365 #ifdef TARGET_I386
5366 case QEMU_OPTION_win2k_hack:
5367 win2k_install_hack = 1;
5368 break;
5369 case QEMU_OPTION_rtc_td_hack:
5370 rtc_td_hack = 1;
5371 break;
5372 case QEMU_OPTION_acpitable:
5373 if(acpi_table_add(optarg) < 0) {
5374 fprintf(stderr, "Wrong acpi table provided\n");
5375 exit(1);
5376 }
5377 break;
5378 case QEMU_OPTION_smbios:
5379 if(smbios_entry_add(optarg) < 0) {
5380 fprintf(stderr, "Wrong smbios provided\n");
5381 exit(1);
5382 }
5383 break;
5384 #endif
5385 #ifdef CONFIG_KQEMU
5386 case QEMU_OPTION_no_kqemu:
5387 kqemu_allowed = 0;
5388 break;
5389 case QEMU_OPTION_kernel_kqemu:
5390 kqemu_allowed = 2;
5391 break;
5392 #endif
5393 #ifdef CONFIG_KVM
5394 case QEMU_OPTION_enable_kvm:
5395 kvm_allowed = 1;
5396 #ifdef CONFIG_KQEMU
5397 kqemu_allowed = 0;
5398 #endif
5399 break;
5400 #endif
5401 case QEMU_OPTION_usb:
5402 usb_enabled = 1;
5403 break;
5404 case QEMU_OPTION_usbdevice:
5405 usb_enabled = 1;
5406 if (usb_devices_index >= MAX_USB_CMDLINE) {
5407 fprintf(stderr, "Too many USB devices\n");
5408 exit(1);
5409 }
5410 usb_devices[usb_devices_index] = optarg;
5411 usb_devices_index++;
5412 break;
5413 case QEMU_OPTION_smp:
5414 smp_cpus = atoi(optarg);
5415 if (smp_cpus < 1) {
5416 fprintf(stderr, "Invalid number of CPUs\n");
5417 exit(1);
5418 }
5419 break;
5420 case QEMU_OPTION_vnc:
5421 display_type = DT_VNC;
5422 vnc_display = optarg;
5423 break;
5424 #ifdef TARGET_I386
5425 case QEMU_OPTION_no_acpi:
5426 acpi_enabled = 0;
5427 break;
5428 case QEMU_OPTION_no_hpet:
5429 no_hpet = 1;
5430 break;
5431 #endif
5432 case QEMU_OPTION_no_reboot:
5433 no_reboot = 1;
5434 break;
5435 case QEMU_OPTION_no_shutdown:
5436 no_shutdown = 1;
5437 break;
5438 case QEMU_OPTION_show_cursor:
5439 cursor_hide = 0;
5440 break;
5441 case QEMU_OPTION_uuid:
5442 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5443 fprintf(stderr, "Fail to parse UUID string."
5444 " Wrong format.\n");
5445 exit(1);
5446 }
5447 break;
5448 #ifndef _WIN32
5449 case QEMU_OPTION_daemonize:
5450 daemonize = 1;
5451 break;
5452 #endif
5453 case QEMU_OPTION_option_rom:
5454 if (nb_option_roms >= MAX_OPTION_ROMS) {
5455 fprintf(stderr, "Too many option ROMs\n");
5456 exit(1);
5457 }
5458 option_rom[nb_option_roms] = optarg;
5459 nb_option_roms++;
5460 break;
5461 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5462 case QEMU_OPTION_semihosting:
5463 semihosting_enabled = 1;
5464 break;
5465 #endif
5466 case QEMU_OPTION_name:
5467 qemu_name = optarg;
5468 break;
5469 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5470 case QEMU_OPTION_prom_env:
5471 if (nb_prom_envs >= MAX_PROM_ENVS) {
5472 fprintf(stderr, "Too many prom variables\n");
5473 exit(1);
5474 }
5475 prom_envs[nb_prom_envs] = optarg;
5476 nb_prom_envs++;
5477 break;
5478 #endif
5479 #ifdef TARGET_ARM
5480 case QEMU_OPTION_old_param:
5481 old_param = 1;
5482 break;
5483 #endif
5484 case QEMU_OPTION_clock:
5485 configure_alarms(optarg);
5486 break;
5487 case QEMU_OPTION_startdate:
5488 {
5489 struct tm tm;
5490 time_t rtc_start_date;
5491 if (!strcmp(optarg, "now")) {
5492 rtc_date_offset = -1;
5493 } else {
5494 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5495 &tm.tm_year,
5496 &tm.tm_mon,
5497 &tm.tm_mday,
5498 &tm.tm_hour,
5499 &tm.tm_min,
5500 &tm.tm_sec) == 6) {
5501 /* OK */
5502 } else if (sscanf(optarg, "%d-%d-%d",
5503 &tm.tm_year,
5504 &tm.tm_mon,
5505 &tm.tm_mday) == 3) {
5506 tm.tm_hour = 0;
5507 tm.tm_min = 0;
5508 tm.tm_sec = 0;
5509 } else {
5510 goto date_fail;
5511 }
5512 tm.tm_year -= 1900;
5513 tm.tm_mon--;
5514 rtc_start_date = mktimegm(&tm);
5515 if (rtc_start_date == -1) {
5516 date_fail:
5517 fprintf(stderr, "Invalid date format. Valid format are:\n"
5518 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5519 exit(1);
5520 }
5521 rtc_date_offset = time(NULL) - rtc_start_date;
5522 }
5523 }
5524 break;
5525 case QEMU_OPTION_tb_size:
5526 tb_size = strtol(optarg, NULL, 0);
5527 if (tb_size < 0)
5528 tb_size = 0;
5529 break;
5530 case QEMU_OPTION_icount:
5531 use_icount = 1;
5532 if (strcmp(optarg, "auto") == 0) {
5533 icount_time_shift = -1;
5534 } else {
5535 icount_time_shift = strtol(optarg, NULL, 0);
5536 }
5537 break;
5538 case QEMU_OPTION_incoming:
5539 incoming = optarg;
5540 break;
5541 #ifndef _WIN32
5542 case QEMU_OPTION_chroot:
5543 chroot_dir = optarg;
5544 break;
5545 case QEMU_OPTION_runas:
5546 run_as = optarg;
5547 break;
5548 #endif
5549 #ifdef CONFIG_XEN
5550 case QEMU_OPTION_xen_domid:
5551 xen_domid = atoi(optarg);
5552 break;
5553 case QEMU_OPTION_xen_create:
5554 xen_mode = XEN_CREATE;
5555 break;
5556 case QEMU_OPTION_xen_attach:
5557 xen_mode = XEN_ATTACH;
5558 break;
5559 #endif
5560 }
5561 }
5562 }
5563
5564 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5565 if (kvm_allowed && kqemu_allowed) {
5566 fprintf(stderr,
5567 "You can not enable both KVM and kqemu at the same time\n");
5568 exit(1);
5569 }
5570 #endif
5571
5572 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5573 if (smp_cpus > machine->max_cpus) {
5574 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5575 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5576 machine->max_cpus);
5577 exit(1);
5578 }
5579
5580 if (display_type == DT_NOGRAPHIC) {
5581 if (serial_device_index == 0)
5582 serial_devices[0] = "stdio";
5583 if (parallel_device_index == 0)
5584 parallel_devices[0] = "null";
5585 if (strncmp(monitor_device, "vc", 2) == 0)
5586 monitor_device = "stdio";
5587 }
5588
5589 #ifndef _WIN32
5590 if (daemonize) {
5591 pid_t pid;
5592
5593 if (pipe(fds) == -1)
5594 exit(1);
5595
5596 pid = fork();
5597 if (pid > 0) {
5598 uint8_t status;
5599 ssize_t len;
5600
5601 close(fds[1]);
5602
5603 again:
5604 len = read(fds[0], &status, 1);
5605 if (len == -1 && (errno == EINTR))
5606 goto again;
5607
5608 if (len != 1)
5609 exit(1);
5610 else if (status == 1) {
5611 fprintf(stderr, "Could not acquire pidfile\n");
5612 exit(1);
5613 } else
5614 exit(0);
5615 } else if (pid < 0)
5616 exit(1);
5617
5618 setsid();
5619
5620 pid = fork();
5621 if (pid > 0)
5622 exit(0);
5623 else if (pid < 0)
5624 exit(1);
5625
5626 umask(027);
5627
5628 signal(SIGTSTP, SIG_IGN);
5629 signal(SIGTTOU, SIG_IGN);
5630 signal(SIGTTIN, SIG_IGN);
5631 }
5632
5633 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5634 if (daemonize) {
5635 uint8_t status = 1;
5636 write(fds[1], &status, 1);
5637 } else
5638 fprintf(stderr, "Could not acquire pid file\n");
5639 exit(1);
5640 }
5641 #endif
5642
5643 #ifdef CONFIG_KQEMU
5644 if (smp_cpus > 1)
5645 kqemu_allowed = 0;
5646 #endif
5647 if (qemu_init_main_loop()) {
5648 fprintf(stderr, "qemu_init_main_loop failed\n");
5649 exit(1);
5650 }
5651 linux_boot = (kernel_filename != NULL);
5652 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5653
5654 if (!linux_boot && *kernel_cmdline != '\0') {
5655 fprintf(stderr, "-append only allowed with -kernel option\n");
5656 exit(1);
5657 }
5658
5659 if (!linux_boot && initrd_filename != NULL) {
5660 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5661 exit(1);
5662 }
5663
5664 /* boot to floppy or the default cd if no hard disk defined yet */
5665 if (!boot_devices[0]) {
5666 boot_devices = "cad";
5667 }
5668 setvbuf(stdout, NULL, _IOLBF, 0);
5669
5670 init_timers();
5671 if (init_timer_alarm() < 0) {
5672 fprintf(stderr, "could not initialize alarm timer\n");
5673 exit(1);
5674 }
5675 if (use_icount && icount_time_shift < 0) {
5676 use_icount = 2;
5677 /* 125MIPS seems a reasonable initial guess at the guest speed.
5678 It will be corrected fairly quickly anyway. */
5679 icount_time_shift = 3;
5680 init_icount_adjust();
5681 }
5682
5683 #ifdef _WIN32
5684 socket_init();
5685 #endif
5686
5687 /* init network clients */
5688 if (nb_net_clients == 0) {
5689 /* if no clients, we use a default config */
5690 net_clients[nb_net_clients++] = "nic";
5691 #ifdef CONFIG_SLIRP
5692 net_clients[nb_net_clients++] = "user";
5693 #endif
5694 }
5695
5696 for(i = 0;i < nb_net_clients; i++) {
5697 if (net_client_parse(net_clients[i]) < 0)
5698 exit(1);
5699 }
5700 net_client_check();
5701
5702 #ifdef TARGET_I386
5703 /* XXX: this should be moved in the PC machine instantiation code */
5704 if (net_boot != 0) {
5705 int netroms = 0;
5706 for (i = 0; i < nb_nics && i < 4; i++) {
5707 const char *model = nd_table[i].model;
5708 char buf[1024];
5709 if (net_boot & (1 << i)) {
5710 if (model == NULL)
5711 model = "ne2k_pci";
5712 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5713 if (get_image_size(buf) > 0) {
5714 if (nb_option_roms >= MAX_OPTION_ROMS) {
5715 fprintf(stderr, "Too many option ROMs\n");
5716 exit(1);
5717 }
5718 option_rom[nb_option_roms] = strdup(buf);
5719 nb_option_roms++;
5720 netroms++;
5721 }
5722 }
5723 }
5724 if (netroms == 0) {
5725 fprintf(stderr, "No valid PXE rom found for network device\n");
5726 exit(1);
5727 }
5728 }
5729 #endif
5730
5731 /* init the bluetooth world */
5732 for (i = 0; i < nb_bt_opts; i++)
5733 if (bt_parse(bt_opts[i]))
5734 exit(1);
5735
5736 /* init the memory */
5737 if (ram_size == 0)
5738 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5739
5740 #ifdef CONFIG_KQEMU
5741 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5742 guest ram allocation. It needs to go away. */
5743 if (kqemu_allowed) {
5744 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5745 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5746 if (!kqemu_phys_ram_base) {
5747 fprintf(stderr, "Could not allocate physical memory\n");
5748 exit(1);
5749 }
5750 }
5751 #endif
5752
5753 /* init the dynamic translator */
5754 cpu_exec_init_all(tb_size * 1024 * 1024);
5755
5756 bdrv_init();
5757 dma_helper_init();
5758
5759 /* we always create the cdrom drive, even if no disk is there */
5760
5761 if (nb_drives_opt < MAX_DRIVES)
5762 drive_add(NULL, CDROM_ALIAS);
5763
5764 /* we always create at least one floppy */
5765
5766 if (nb_drives_opt < MAX_DRIVES)
5767 drive_add(NULL, FD_ALIAS, 0);
5768
5769 /* we always create one sd slot, even if no card is in it */
5770
5771 if (nb_drives_opt < MAX_DRIVES)
5772 drive_add(NULL, SD_ALIAS);
5773
5774 /* open the virtual block devices */
5775
5776 for(i = 0; i < nb_drives_opt; i++)
5777 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5778 exit(1);
5779
5780 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5781 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5782
5783 #ifndef _WIN32
5784 /* must be after terminal init, SDL library changes signal handlers */
5785 termsig_setup();
5786 #endif
5787
5788 /* Maintain compatibility with multiple stdio monitors */
5789 if (!strcmp(monitor_device,"stdio")) {
5790 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5791 const char *devname = serial_devices[i];
5792 if (devname && !strcmp(devname,"mon:stdio")) {
5793 monitor_device = NULL;
5794 break;
5795 } else if (devname && !strcmp(devname,"stdio")) {
5796 monitor_device = NULL;
5797 serial_devices[i] = "mon:stdio";
5798 break;
5799 }
5800 }
5801 }
5802
5803 if (nb_numa_nodes > 0) {
5804 int i;
5805
5806 if (nb_numa_nodes > smp_cpus) {
5807 nb_numa_nodes = smp_cpus;
5808 }
5809
5810 /* If no memory size if given for any node, assume the default case
5811 * and distribute the available memory equally across all nodes
5812 */
5813 for (i = 0; i < nb_numa_nodes; i++) {
5814 if (node_mem[i] != 0)
5815 break;
5816 }
5817 if (i == nb_numa_nodes) {
5818 uint64_t usedmem = 0;
5819
5820 /* On Linux, the each node's border has to be 8MB aligned,
5821 * the final node gets the rest.
5822 */
5823 for (i = 0; i < nb_numa_nodes - 1; i++) {
5824 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5825 usedmem += node_mem[i];
5826 }
5827 node_mem[i] = ram_size - usedmem;
5828 }
5829
5830 for (i = 0; i < nb_numa_nodes; i++) {
5831 if (node_cpumask[i] != 0)
5832 break;
5833 }
5834 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5835 * must cope with this anyway, because there are BIOSes out there in
5836 * real machines which also use this scheme.
5837 */
5838 if (i == nb_numa_nodes) {
5839 for (i = 0; i < smp_cpus; i++) {
5840 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5841 }
5842 }
5843 }
5844
5845 if (kvm_enabled()) {
5846 int ret;
5847
5848 ret = kvm_init(smp_cpus);
5849 if (ret < 0) {
5850 fprintf(stderr, "failed to initialize KVM\n");
5851 exit(1);
5852 }
5853 }
5854
5855 if (monitor_device) {
5856 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5857 if (!monitor_hd) {
5858 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5859 exit(1);
5860 }
5861 }
5862
5863 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5864 const char *devname = serial_devices[i];
5865 if (devname && strcmp(devname, "none")) {
5866 char label[32];
5867 snprintf(label, sizeof(label), "serial%d", i);
5868 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5869 if (!serial_hds[i]) {
5870 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5871 devname);
5872 exit(1);
5873 }
5874 }
5875 }
5876
5877 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5878 const char *devname = parallel_devices[i];
5879 if (devname && strcmp(devname, "none")) {
5880 char label[32];
5881 snprintf(label, sizeof(label), "parallel%d", i);
5882 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5883 if (!parallel_hds[i]) {
5884 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5885 devname);
5886 exit(1);
5887 }
5888 }
5889 }
5890
5891 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5892 const char *devname = virtio_consoles[i];
5893 if (devname && strcmp(devname, "none")) {
5894 char label[32];
5895 snprintf(label, sizeof(label), "virtcon%d", i);
5896 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5897 if (!virtcon_hds[i]) {
5898 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5899 devname);
5900 exit(1);
5901 }
5902 }
5903 }
5904
5905 module_call_init(MODULE_INIT_DEVICE);
5906
5907 machine->init(ram_size, boot_devices,
5908 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5909
5910
5911 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5912 for (i = 0; i < nb_numa_nodes; i++) {
5913 if (node_cpumask[i] & (1 << env->cpu_index)) {
5914 env->numa_node = i;
5915 }
5916 }
5917 }
5918
5919 current_machine = machine;
5920
5921 /* Set KVM's vcpu state to qemu's initial CPUState. */
5922 if (kvm_enabled()) {
5923 int ret;
5924
5925 ret = kvm_sync_vcpus();
5926 if (ret < 0) {
5927 fprintf(stderr, "failed to initialize vcpus\n");
5928 exit(1);
5929 }
5930 }
5931
5932 /* init USB devices */
5933 if (usb_enabled) {
5934 for(i = 0; i < usb_devices_index; i++) {
5935 if (usb_device_add(usb_devices[i], 0) < 0) {
5936 fprintf(stderr, "Warning: could not add USB device %s\n",
5937 usb_devices[i]);
5938 }
5939 }
5940 }
5941
5942 if (!display_state)
5943 dumb_display_init();
5944 /* just use the first displaystate for the moment */
5945 ds = display_state;
5946
5947 if (display_type == DT_DEFAULT) {
5948 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5949 display_type = DT_SDL;
5950 #else
5951 display_type = DT_VNC;
5952 vnc_display = "localhost:0,to=99";
5953 show_vnc_port = 1;
5954 #endif
5955 }
5956
5957
5958 switch (display_type) {
5959 case DT_NOGRAPHIC:
5960 break;
5961 #if defined(CONFIG_CURSES)
5962 case DT_CURSES:
5963 curses_display_init(ds, full_screen);
5964 break;
5965 #endif
5966 #if defined(CONFIG_SDL)
5967 case DT_SDL:
5968 sdl_display_init(ds, full_screen, no_frame);
5969 break;
5970 #elif defined(CONFIG_COCOA)
5971 case DT_SDL:
5972 cocoa_display_init(ds, full_screen);
5973 break;
5974 #endif
5975 case DT_VNC:
5976 vnc_display_init(ds);
5977 if (vnc_display_open(ds, vnc_display) < 0)
5978 exit(1);
5979
5980 if (show_vnc_port) {
5981 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5982 }
5983 break;
5984 default:
5985 break;
5986 }
5987 dpy_resize(ds);
5988
5989 dcl = ds->listeners;
5990 while (dcl != NULL) {
5991 if (dcl->dpy_refresh != NULL) {
5992 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5993 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5994 }
5995 dcl = dcl->next;
5996 }
5997
5998 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5999 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6000 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6001 }
6002
6003 text_consoles_set_display(display_state);
6004 qemu_chr_initial_reset();
6005
6006 if (monitor_device && monitor_hd)
6007 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6008
6009 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6010 const char *devname = serial_devices[i];
6011 if (devname && strcmp(devname, "none")) {
6012 char label[32];
6013 snprintf(label, sizeof(label), "serial%d", i);
6014 if (strstart(devname, "vc", 0))
6015 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6016 }
6017 }
6018
6019 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6020 const char *devname = parallel_devices[i];
6021 if (devname && strcmp(devname, "none")) {
6022 char label[32];
6023 snprintf(label, sizeof(label), "parallel%d", i);
6024 if (strstart(devname, "vc", 0))
6025 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6026 }
6027 }
6028
6029 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6030 const char *devname = virtio_consoles[i];
6031 if (virtcon_hds[i] && devname) {
6032 char label[32];
6033 snprintf(label, sizeof(label), "virtcon%d", i);
6034 if (strstart(devname, "vc", 0))
6035 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6036 }
6037 }
6038
6039 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6040 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6041 gdbstub_dev);
6042 exit(1);
6043 }
6044
6045 if (loadvm)
6046 do_loadvm(cur_mon, loadvm);
6047
6048 if (incoming) {
6049 autostart = 0; /* fixme how to deal with -daemonize */
6050 qemu_start_incoming_migration(incoming);
6051 }
6052
6053 if (autostart)
6054 vm_start();
6055
6056 #ifndef _WIN32
6057 if (daemonize) {
6058 uint8_t status = 0;
6059 ssize_t len;
6060
6061 again1:
6062 len = write(fds[1], &status, 1);
6063 if (len == -1 && (errno == EINTR))
6064 goto again1;
6065
6066 if (len != 1)
6067 exit(1);
6068
6069 chdir("/");
6070 TFR(fd = open("/dev/null", O_RDWR));
6071 if (fd == -1)
6072 exit(1);
6073 }
6074
6075 if (run_as) {
6076 pwd = getpwnam(run_as);
6077 if (!pwd) {
6078 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6079 exit(1);
6080 }
6081 }
6082
6083 if (chroot_dir) {
6084 if (chroot(chroot_dir) < 0) {
6085 fprintf(stderr, "chroot failed\n");
6086 exit(1);
6087 }
6088 chdir("/");
6089 }
6090
6091 if (run_as) {
6092 if (setgid(pwd->pw_gid) < 0) {
6093 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6094 exit(1);
6095 }
6096 if (setuid(pwd->pw_uid) < 0) {
6097 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6098 exit(1);
6099 }
6100 if (setuid(0) != -1) {
6101 fprintf(stderr, "Dropping privileges failed\n");
6102 exit(1);
6103 }
6104 }
6105
6106 if (daemonize) {
6107 dup2(fd, 0);
6108 dup2(fd, 1);
6109 dup2(fd, 2);
6110
6111 close(fd);
6112 }
6113 #endif
6114
6115 main_loop();
6116 quit_timers();
6117 net_cleanup();
6118
6119 return 0;
6120 }