]> git.proxmox.com Git - qemu.git/blob - vl.c
Add new command line option -singlestep for tcg single stepping.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "bt-host.h"
142 #include "net.h"
143 #include "monitor.h"
144 #include "console.h"
145 #include "sysemu.h"
146 #include "gdbstub.h"
147 #include "qemu-timer.h"
148 #include "qemu-char.h"
149 #include "cache-utils.h"
150 #include "block.h"
151 #include "dma.h"
152 #include "audio/audio.h"
153 #include "migration.h"
154 #include "kvm.h"
155 #include "balloon.h"
156
157 #include "disas.h"
158
159 #include "exec-all.h"
160
161 #include "qemu_socket.h"
162
163 #if defined(CONFIG_SLIRP)
164 #include "libslirp.h"
165 #endif
166
167 //#define DEBUG_UNUSED_IOPORT
168 //#define DEBUG_IOPORT
169 //#define DEBUG_NET
170 //#define DEBUG_SLIRP
171
172
173 #ifdef DEBUG_IOPORT
174 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
175 #else
176 # define LOG_IOPORT(...) do { } while (0)
177 #endif
178
179 #define DEFAULT_RAM_SIZE 128
180
181 /* Max number of USB devices that can be specified on the commandline. */
182 #define MAX_USB_CMDLINE 8
183
184 /* Max number of bluetooth switches on the commandline. */
185 #define MAX_BT_CMDLINE 10
186
187 /* XXX: use a two level table to limit memory usage */
188 #define MAX_IOPORTS 65536
189
190 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
191 const char *bios_name = NULL;
192 static void *ioport_opaque[MAX_IOPORTS];
193 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
194 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
195 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
196 to store the VM snapshots */
197 DriveInfo drives_table[MAX_DRIVES+1];
198 int nb_drives;
199 static int vga_ram_size;
200 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
201 static DisplayState *display_state;
202 int nographic;
203 static int curses;
204 static int sdl;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 #ifdef TARGET_SPARC
218 int graphic_width = 1024;
219 int graphic_height = 768;
220 int graphic_depth = 8;
221 #else
222 int graphic_width = 800;
223 int graphic_height = 600;
224 int graphic_depth = 15;
225 #endif
226 static int full_screen = 0;
227 #ifdef CONFIG_SDL
228 static int no_frame = 0;
229 #endif
230 int no_quit = 0;
231 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
232 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
233 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
234 #ifdef TARGET_I386
235 int win2k_install_hack = 0;
236 int rtc_td_hack = 0;
237 #endif
238 int usb_enabled = 0;
239 int singlestep = 0;
240 int smp_cpus = 1;
241 const char *vnc_display;
242 int acpi_enabled = 1;
243 int no_hpet = 0;
244 int fd_bootchk = 1;
245 int no_reboot = 0;
246 int no_shutdown = 0;
247 int cursor_hide = 1;
248 int graphic_rotate = 0;
249 #ifndef _WIN32
250 int daemonize = 0;
251 #endif
252 const char *option_rom[MAX_OPTION_ROMS];
253 int nb_option_roms;
254 int semihosting_enabled = 0;
255 #ifdef TARGET_ARM
256 int old_param = 0;
257 #endif
258 const char *qemu_name;
259 int alt_grab = 0;
260 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
261 unsigned int nb_prom_envs = 0;
262 const char *prom_envs[MAX_PROM_ENVS];
263 #endif
264 int nb_drives_opt;
265 struct drive_opt drives_opt[MAX_DRIVES];
266
267 static CPUState *cur_cpu;
268 static CPUState *next_cpu;
269 static int event_pending = 1;
270 /* Conversion factor from emulated instructions to virtual clock ticks. */
271 static int icount_time_shift;
272 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
273 #define MAX_ICOUNT_SHIFT 10
274 /* Compensate for varying guest execution speed. */
275 static int64_t qemu_icount_bias;
276 static QEMUTimer *icount_rt_timer;
277 static QEMUTimer *icount_vm_timer;
278 static QEMUTimer *nographic_timer;
279
280 uint8_t qemu_uuid[16];
281
282 /***********************************************************/
283 /* x86 ISA bus support */
284
285 target_phys_addr_t isa_mem_base = 0;
286 PicState2 *isa_pic;
287
288 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
289 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
290
291 static uint32_t ioport_read(int index, uint32_t address)
292 {
293 static IOPortReadFunc *default_func[3] = {
294 default_ioport_readb,
295 default_ioport_readw,
296 default_ioport_readl
297 };
298 IOPortReadFunc *func = ioport_read_table[index][address];
299 if (!func)
300 func = default_func[index];
301 return func(ioport_opaque[address], address);
302 }
303
304 static void ioport_write(int index, uint32_t address, uint32_t data)
305 {
306 static IOPortWriteFunc *default_func[3] = {
307 default_ioport_writeb,
308 default_ioport_writew,
309 default_ioport_writel
310 };
311 IOPortWriteFunc *func = ioport_write_table[index][address];
312 if (!func)
313 func = default_func[index];
314 func(ioport_opaque[address], address, data);
315 }
316
317 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
318 {
319 #ifdef DEBUG_UNUSED_IOPORT
320 fprintf(stderr, "unused inb: port=0x%04x\n", address);
321 #endif
322 return 0xff;
323 }
324
325 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
326 {
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
329 #endif
330 }
331
332 /* default is to make two byte accesses */
333 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
334 {
335 uint32_t data;
336 data = ioport_read(0, address);
337 address = (address + 1) & (MAX_IOPORTS - 1);
338 data |= ioport_read(0, address) << 8;
339 return data;
340 }
341
342 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
343 {
344 ioport_write(0, address, data & 0xff);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 ioport_write(0, address, (data >> 8) & 0xff);
347 }
348
349 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
350 {
351 #ifdef DEBUG_UNUSED_IOPORT
352 fprintf(stderr, "unused inl: port=0x%04x\n", address);
353 #endif
354 return 0xffffffff;
355 }
356
357 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
358 {
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
361 #endif
362 }
363
364 /* size is the word size in byte */
365 int register_ioport_read(int start, int length, int size,
366 IOPortReadFunc *func, void *opaque)
367 {
368 int i, bsize;
369
370 if (size == 1) {
371 bsize = 0;
372 } else if (size == 2) {
373 bsize = 1;
374 } else if (size == 4) {
375 bsize = 2;
376 } else {
377 hw_error("register_ioport_read: invalid size");
378 return -1;
379 }
380 for(i = start; i < start + length; i += size) {
381 ioport_read_table[bsize][i] = func;
382 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
383 hw_error("register_ioport_read: invalid opaque");
384 ioport_opaque[i] = opaque;
385 }
386 return 0;
387 }
388
389 /* size is the word size in byte */
390 int register_ioport_write(int start, int length, int size,
391 IOPortWriteFunc *func, void *opaque)
392 {
393 int i, bsize;
394
395 if (size == 1) {
396 bsize = 0;
397 } else if (size == 2) {
398 bsize = 1;
399 } else if (size == 4) {
400 bsize = 2;
401 } else {
402 hw_error("register_ioport_write: invalid size");
403 return -1;
404 }
405 for(i = start; i < start + length; i += size) {
406 ioport_write_table[bsize][i] = func;
407 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
408 hw_error("register_ioport_write: invalid opaque");
409 ioport_opaque[i] = opaque;
410 }
411 return 0;
412 }
413
414 void isa_unassign_ioport(int start, int length)
415 {
416 int i;
417
418 for(i = start; i < start + length; i++) {
419 ioport_read_table[0][i] = default_ioport_readb;
420 ioport_read_table[1][i] = default_ioport_readw;
421 ioport_read_table[2][i] = default_ioport_readl;
422
423 ioport_write_table[0][i] = default_ioport_writeb;
424 ioport_write_table[1][i] = default_ioport_writew;
425 ioport_write_table[2][i] = default_ioport_writel;
426
427 ioport_opaque[i] = NULL;
428 }
429 }
430
431 /***********************************************************/
432
433 void cpu_outb(CPUState *env, int addr, int val)
434 {
435 LOG_IOPORT("outb: %04x %02x\n", addr, val);
436 ioport_write(0, addr, val);
437 #ifdef USE_KQEMU
438 if (env)
439 env->last_io_time = cpu_get_time_fast();
440 #endif
441 }
442
443 void cpu_outw(CPUState *env, int addr, int val)
444 {
445 LOG_IOPORT("outw: %04x %04x\n", addr, val);
446 ioport_write(1, addr, val);
447 #ifdef USE_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
451 }
452
453 void cpu_outl(CPUState *env, int addr, int val)
454 {
455 LOG_IOPORT("outl: %04x %08x\n", addr, val);
456 ioport_write(2, addr, val);
457 #ifdef USE_KQEMU
458 if (env)
459 env->last_io_time = cpu_get_time_fast();
460 #endif
461 }
462
463 int cpu_inb(CPUState *env, int addr)
464 {
465 int val;
466 val = ioport_read(0, addr);
467 LOG_IOPORT("inb : %04x %02x\n", addr, val);
468 #ifdef USE_KQEMU
469 if (env)
470 env->last_io_time = cpu_get_time_fast();
471 #endif
472 return val;
473 }
474
475 int cpu_inw(CPUState *env, int addr)
476 {
477 int val;
478 val = ioport_read(1, addr);
479 LOG_IOPORT("inw : %04x %04x\n", addr, val);
480 #ifdef USE_KQEMU
481 if (env)
482 env->last_io_time = cpu_get_time_fast();
483 #endif
484 return val;
485 }
486
487 int cpu_inl(CPUState *env, int addr)
488 {
489 int val;
490 val = ioport_read(2, addr);
491 LOG_IOPORT("inl : %04x %08x\n", addr, val);
492 #ifdef USE_KQEMU
493 if (env)
494 env->last_io_time = cpu_get_time_fast();
495 #endif
496 return val;
497 }
498
499 /***********************************************************/
500 void hw_error(const char *fmt, ...)
501 {
502 va_list ap;
503 CPUState *env;
504
505 va_start(ap, fmt);
506 fprintf(stderr, "qemu: hardware error: ");
507 vfprintf(stderr, fmt, ap);
508 fprintf(stderr, "\n");
509 for(env = first_cpu; env != NULL; env = env->next_cpu) {
510 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
511 #ifdef TARGET_I386
512 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
513 #else
514 cpu_dump_state(env, stderr, fprintf, 0);
515 #endif
516 }
517 va_end(ap);
518 abort();
519 }
520
521 /***************/
522 /* ballooning */
523
524 static QEMUBalloonEvent *qemu_balloon_event;
525 void *qemu_balloon_event_opaque;
526
527 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
528 {
529 qemu_balloon_event = func;
530 qemu_balloon_event_opaque = opaque;
531 }
532
533 void qemu_balloon(ram_addr_t target)
534 {
535 if (qemu_balloon_event)
536 qemu_balloon_event(qemu_balloon_event_opaque, target);
537 }
538
539 ram_addr_t qemu_balloon_status(void)
540 {
541 if (qemu_balloon_event)
542 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
543 return 0;
544 }
545
546 /***********************************************************/
547 /* keyboard/mouse */
548
549 static QEMUPutKBDEvent *qemu_put_kbd_event;
550 static void *qemu_put_kbd_event_opaque;
551 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
552 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
553
554 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
555 {
556 qemu_put_kbd_event_opaque = opaque;
557 qemu_put_kbd_event = func;
558 }
559
560 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
561 void *opaque, int absolute,
562 const char *name)
563 {
564 QEMUPutMouseEntry *s, *cursor;
565
566 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
567
568 s->qemu_put_mouse_event = func;
569 s->qemu_put_mouse_event_opaque = opaque;
570 s->qemu_put_mouse_event_absolute = absolute;
571 s->qemu_put_mouse_event_name = qemu_strdup(name);
572 s->next = NULL;
573
574 if (!qemu_put_mouse_event_head) {
575 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
576 return s;
577 }
578
579 cursor = qemu_put_mouse_event_head;
580 while (cursor->next != NULL)
581 cursor = cursor->next;
582
583 cursor->next = s;
584 qemu_put_mouse_event_current = s;
585
586 return s;
587 }
588
589 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
590 {
591 QEMUPutMouseEntry *prev = NULL, *cursor;
592
593 if (!qemu_put_mouse_event_head || entry == NULL)
594 return;
595
596 cursor = qemu_put_mouse_event_head;
597 while (cursor != NULL && cursor != entry) {
598 prev = cursor;
599 cursor = cursor->next;
600 }
601
602 if (cursor == NULL) // does not exist or list empty
603 return;
604 else if (prev == NULL) { // entry is head
605 qemu_put_mouse_event_head = cursor->next;
606 if (qemu_put_mouse_event_current == entry)
607 qemu_put_mouse_event_current = cursor->next;
608 qemu_free(entry->qemu_put_mouse_event_name);
609 qemu_free(entry);
610 return;
611 }
612
613 prev->next = entry->next;
614
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = prev;
617
618 qemu_free(entry->qemu_put_mouse_event_name);
619 qemu_free(entry);
620 }
621
622 void kbd_put_keycode(int keycode)
623 {
624 if (qemu_put_kbd_event) {
625 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
626 }
627 }
628
629 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
630 {
631 QEMUPutMouseEvent *mouse_event;
632 void *mouse_event_opaque;
633 int width;
634
635 if (!qemu_put_mouse_event_current) {
636 return;
637 }
638
639 mouse_event =
640 qemu_put_mouse_event_current->qemu_put_mouse_event;
641 mouse_event_opaque =
642 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
643
644 if (mouse_event) {
645 if (graphic_rotate) {
646 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
647 width = 0x7fff;
648 else
649 width = graphic_width - 1;
650 mouse_event(mouse_event_opaque,
651 width - dy, dx, dz, buttons_state);
652 } else
653 mouse_event(mouse_event_opaque,
654 dx, dy, dz, buttons_state);
655 }
656 }
657
658 int kbd_mouse_is_absolute(void)
659 {
660 if (!qemu_put_mouse_event_current)
661 return 0;
662
663 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
664 }
665
666 void do_info_mice(Monitor *mon)
667 {
668 QEMUPutMouseEntry *cursor;
669 int index = 0;
670
671 if (!qemu_put_mouse_event_head) {
672 monitor_printf(mon, "No mouse devices connected\n");
673 return;
674 }
675
676 monitor_printf(mon, "Mouse devices available:\n");
677 cursor = qemu_put_mouse_event_head;
678 while (cursor != NULL) {
679 monitor_printf(mon, "%c Mouse #%d: %s\n",
680 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
681 index, cursor->qemu_put_mouse_event_name);
682 index++;
683 cursor = cursor->next;
684 }
685 }
686
687 void do_mouse_set(Monitor *mon, int index)
688 {
689 QEMUPutMouseEntry *cursor;
690 int i = 0;
691
692 if (!qemu_put_mouse_event_head) {
693 monitor_printf(mon, "No mouse devices connected\n");
694 return;
695 }
696
697 cursor = qemu_put_mouse_event_head;
698 while (cursor != NULL && index != i) {
699 i++;
700 cursor = cursor->next;
701 }
702
703 if (cursor != NULL)
704 qemu_put_mouse_event_current = cursor;
705 else
706 monitor_printf(mon, "Mouse at given index not found\n");
707 }
708
709 /* compute with 96 bit intermediate result: (a*b)/c */
710 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
711 {
712 union {
713 uint64_t ll;
714 struct {
715 #ifdef WORDS_BIGENDIAN
716 uint32_t high, low;
717 #else
718 uint32_t low, high;
719 #endif
720 } l;
721 } u, res;
722 uint64_t rl, rh;
723
724 u.ll = a;
725 rl = (uint64_t)u.l.low * (uint64_t)b;
726 rh = (uint64_t)u.l.high * (uint64_t)b;
727 rh += (rl >> 32);
728 res.l.high = rh / c;
729 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
730 return res.ll;
731 }
732
733 /***********************************************************/
734 /* real time host monotonic timer */
735
736 #define QEMU_TIMER_BASE 1000000000LL
737
738 #ifdef WIN32
739
740 static int64_t clock_freq;
741
742 static void init_get_clock(void)
743 {
744 LARGE_INTEGER freq;
745 int ret;
746 ret = QueryPerformanceFrequency(&freq);
747 if (ret == 0) {
748 fprintf(stderr, "Could not calibrate ticks\n");
749 exit(1);
750 }
751 clock_freq = freq.QuadPart;
752 }
753
754 static int64_t get_clock(void)
755 {
756 LARGE_INTEGER ti;
757 QueryPerformanceCounter(&ti);
758 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
759 }
760
761 #else
762
763 static int use_rt_clock;
764
765 static void init_get_clock(void)
766 {
767 use_rt_clock = 0;
768 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
769 || defined(__DragonFly__)
770 {
771 struct timespec ts;
772 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
773 use_rt_clock = 1;
774 }
775 }
776 #endif
777 }
778
779 static int64_t get_clock(void)
780 {
781 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
782 || defined(__DragonFly__)
783 if (use_rt_clock) {
784 struct timespec ts;
785 clock_gettime(CLOCK_MONOTONIC, &ts);
786 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
787 } else
788 #endif
789 {
790 /* XXX: using gettimeofday leads to problems if the date
791 changes, so it should be avoided. */
792 struct timeval tv;
793 gettimeofday(&tv, NULL);
794 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
795 }
796 }
797 #endif
798
799 /* Return the virtual CPU time, based on the instruction counter. */
800 static int64_t cpu_get_icount(void)
801 {
802 int64_t icount;
803 CPUState *env = cpu_single_env;;
804 icount = qemu_icount;
805 if (env) {
806 if (!can_do_io(env))
807 fprintf(stderr, "Bad clock read\n");
808 icount -= (env->icount_decr.u16.low + env->icount_extra);
809 }
810 return qemu_icount_bias + (icount << icount_time_shift);
811 }
812
813 /***********************************************************/
814 /* guest cycle counter */
815
816 static int64_t cpu_ticks_prev;
817 static int64_t cpu_ticks_offset;
818 static int64_t cpu_clock_offset;
819 static int cpu_ticks_enabled;
820
821 /* return the host CPU cycle counter and handle stop/restart */
822 int64_t cpu_get_ticks(void)
823 {
824 if (use_icount) {
825 return cpu_get_icount();
826 }
827 if (!cpu_ticks_enabled) {
828 return cpu_ticks_offset;
829 } else {
830 int64_t ticks;
831 ticks = cpu_get_real_ticks();
832 if (cpu_ticks_prev > ticks) {
833 /* Note: non increasing ticks may happen if the host uses
834 software suspend */
835 cpu_ticks_offset += cpu_ticks_prev - ticks;
836 }
837 cpu_ticks_prev = ticks;
838 return ticks + cpu_ticks_offset;
839 }
840 }
841
842 /* return the host CPU monotonic timer and handle stop/restart */
843 static int64_t cpu_get_clock(void)
844 {
845 int64_t ti;
846 if (!cpu_ticks_enabled) {
847 return cpu_clock_offset;
848 } else {
849 ti = get_clock();
850 return ti + cpu_clock_offset;
851 }
852 }
853
854 /* enable cpu_get_ticks() */
855 void cpu_enable_ticks(void)
856 {
857 if (!cpu_ticks_enabled) {
858 cpu_ticks_offset -= cpu_get_real_ticks();
859 cpu_clock_offset -= get_clock();
860 cpu_ticks_enabled = 1;
861 }
862 }
863
864 /* disable cpu_get_ticks() : the clock is stopped. You must not call
865 cpu_get_ticks() after that. */
866 void cpu_disable_ticks(void)
867 {
868 if (cpu_ticks_enabled) {
869 cpu_ticks_offset = cpu_get_ticks();
870 cpu_clock_offset = cpu_get_clock();
871 cpu_ticks_enabled = 0;
872 }
873 }
874
875 /***********************************************************/
876 /* timers */
877
878 #define QEMU_TIMER_REALTIME 0
879 #define QEMU_TIMER_VIRTUAL 1
880
881 struct QEMUClock {
882 int type;
883 /* XXX: add frequency */
884 };
885
886 struct QEMUTimer {
887 QEMUClock *clock;
888 int64_t expire_time;
889 QEMUTimerCB *cb;
890 void *opaque;
891 struct QEMUTimer *next;
892 };
893
894 struct qemu_alarm_timer {
895 char const *name;
896 unsigned int flags;
897
898 int (*start)(struct qemu_alarm_timer *t);
899 void (*stop)(struct qemu_alarm_timer *t);
900 void (*rearm)(struct qemu_alarm_timer *t);
901 void *priv;
902 };
903
904 #define ALARM_FLAG_DYNTICKS 0x1
905 #define ALARM_FLAG_EXPIRED 0x2
906
907 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
908 {
909 return t->flags & ALARM_FLAG_DYNTICKS;
910 }
911
912 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
913 {
914 if (!alarm_has_dynticks(t))
915 return;
916
917 t->rearm(t);
918 }
919
920 /* TODO: MIN_TIMER_REARM_US should be optimized */
921 #define MIN_TIMER_REARM_US 250
922
923 static struct qemu_alarm_timer *alarm_timer;
924 #ifndef _WIN32
925 static int alarm_timer_rfd, alarm_timer_wfd;
926 #endif
927
928 #ifdef _WIN32
929
930 struct qemu_alarm_win32 {
931 MMRESULT timerId;
932 HANDLE host_alarm;
933 unsigned int period;
934 } alarm_win32_data = {0, NULL, -1};
935
936 static int win32_start_timer(struct qemu_alarm_timer *t);
937 static void win32_stop_timer(struct qemu_alarm_timer *t);
938 static void win32_rearm_timer(struct qemu_alarm_timer *t);
939
940 #else
941
942 static int unix_start_timer(struct qemu_alarm_timer *t);
943 static void unix_stop_timer(struct qemu_alarm_timer *t);
944
945 #ifdef __linux__
946
947 static int dynticks_start_timer(struct qemu_alarm_timer *t);
948 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
949 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
950
951 static int hpet_start_timer(struct qemu_alarm_timer *t);
952 static void hpet_stop_timer(struct qemu_alarm_timer *t);
953
954 static int rtc_start_timer(struct qemu_alarm_timer *t);
955 static void rtc_stop_timer(struct qemu_alarm_timer *t);
956
957 #endif /* __linux__ */
958
959 #endif /* _WIN32 */
960
961 /* Correlation between real and virtual time is always going to be
962 fairly approximate, so ignore small variation.
963 When the guest is idle real and virtual time will be aligned in
964 the IO wait loop. */
965 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
966
967 static void icount_adjust(void)
968 {
969 int64_t cur_time;
970 int64_t cur_icount;
971 int64_t delta;
972 static int64_t last_delta;
973 /* If the VM is not running, then do nothing. */
974 if (!vm_running)
975 return;
976
977 cur_time = cpu_get_clock();
978 cur_icount = qemu_get_clock(vm_clock);
979 delta = cur_icount - cur_time;
980 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
981 if (delta > 0
982 && last_delta + ICOUNT_WOBBLE < delta * 2
983 && icount_time_shift > 0) {
984 /* The guest is getting too far ahead. Slow time down. */
985 icount_time_shift--;
986 }
987 if (delta < 0
988 && last_delta - ICOUNT_WOBBLE > delta * 2
989 && icount_time_shift < MAX_ICOUNT_SHIFT) {
990 /* The guest is getting too far behind. Speed time up. */
991 icount_time_shift++;
992 }
993 last_delta = delta;
994 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
995 }
996
997 static void icount_adjust_rt(void * opaque)
998 {
999 qemu_mod_timer(icount_rt_timer,
1000 qemu_get_clock(rt_clock) + 1000);
1001 icount_adjust();
1002 }
1003
1004 static void icount_adjust_vm(void * opaque)
1005 {
1006 qemu_mod_timer(icount_vm_timer,
1007 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1008 icount_adjust();
1009 }
1010
1011 static void init_icount_adjust(void)
1012 {
1013 /* Have both realtime and virtual time triggers for speed adjustment.
1014 The realtime trigger catches emulated time passing too slowly,
1015 the virtual time trigger catches emulated time passing too fast.
1016 Realtime triggers occur even when idle, so use them less frequently
1017 than VM triggers. */
1018 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1019 qemu_mod_timer(icount_rt_timer,
1020 qemu_get_clock(rt_clock) + 1000);
1021 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1022 qemu_mod_timer(icount_vm_timer,
1023 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1024 }
1025
1026 static struct qemu_alarm_timer alarm_timers[] = {
1027 #ifndef _WIN32
1028 #ifdef __linux__
1029 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1030 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1031 /* HPET - if available - is preferred */
1032 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1033 /* ...otherwise try RTC */
1034 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1035 #endif
1036 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1037 #else
1038 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1039 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1040 {"win32", 0, win32_start_timer,
1041 win32_stop_timer, NULL, &alarm_win32_data},
1042 #endif
1043 {NULL, }
1044 };
1045
1046 static void show_available_alarms(void)
1047 {
1048 int i;
1049
1050 printf("Available alarm timers, in order of precedence:\n");
1051 for (i = 0; alarm_timers[i].name; i++)
1052 printf("%s\n", alarm_timers[i].name);
1053 }
1054
1055 static void configure_alarms(char const *opt)
1056 {
1057 int i;
1058 int cur = 0;
1059 int count = ARRAY_SIZE(alarm_timers) - 1;
1060 char *arg;
1061 char *name;
1062 struct qemu_alarm_timer tmp;
1063
1064 if (!strcmp(opt, "?")) {
1065 show_available_alarms();
1066 exit(0);
1067 }
1068
1069 arg = strdup(opt);
1070
1071 /* Reorder the array */
1072 name = strtok(arg, ",");
1073 while (name) {
1074 for (i = 0; i < count && alarm_timers[i].name; i++) {
1075 if (!strcmp(alarm_timers[i].name, name))
1076 break;
1077 }
1078
1079 if (i == count) {
1080 fprintf(stderr, "Unknown clock %s\n", name);
1081 goto next;
1082 }
1083
1084 if (i < cur)
1085 /* Ignore */
1086 goto next;
1087
1088 /* Swap */
1089 tmp = alarm_timers[i];
1090 alarm_timers[i] = alarm_timers[cur];
1091 alarm_timers[cur] = tmp;
1092
1093 cur++;
1094 next:
1095 name = strtok(NULL, ",");
1096 }
1097
1098 free(arg);
1099
1100 if (cur) {
1101 /* Disable remaining timers */
1102 for (i = cur; i < count; i++)
1103 alarm_timers[i].name = NULL;
1104 } else {
1105 show_available_alarms();
1106 exit(1);
1107 }
1108 }
1109
1110 QEMUClock *rt_clock;
1111 QEMUClock *vm_clock;
1112
1113 static QEMUTimer *active_timers[2];
1114
1115 static QEMUClock *qemu_new_clock(int type)
1116 {
1117 QEMUClock *clock;
1118 clock = qemu_mallocz(sizeof(QEMUClock));
1119 clock->type = type;
1120 return clock;
1121 }
1122
1123 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1124 {
1125 QEMUTimer *ts;
1126
1127 ts = qemu_mallocz(sizeof(QEMUTimer));
1128 ts->clock = clock;
1129 ts->cb = cb;
1130 ts->opaque = opaque;
1131 return ts;
1132 }
1133
1134 void qemu_free_timer(QEMUTimer *ts)
1135 {
1136 qemu_free(ts);
1137 }
1138
1139 /* stop a timer, but do not dealloc it */
1140 void qemu_del_timer(QEMUTimer *ts)
1141 {
1142 QEMUTimer **pt, *t;
1143
1144 /* NOTE: this code must be signal safe because
1145 qemu_timer_expired() can be called from a signal. */
1146 pt = &active_timers[ts->clock->type];
1147 for(;;) {
1148 t = *pt;
1149 if (!t)
1150 break;
1151 if (t == ts) {
1152 *pt = t->next;
1153 break;
1154 }
1155 pt = &t->next;
1156 }
1157 }
1158
1159 /* modify the current timer so that it will be fired when current_time
1160 >= expire_time. The corresponding callback will be called. */
1161 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1162 {
1163 QEMUTimer **pt, *t;
1164
1165 qemu_del_timer(ts);
1166
1167 /* add the timer in the sorted list */
1168 /* NOTE: this code must be signal safe because
1169 qemu_timer_expired() can be called from a signal. */
1170 pt = &active_timers[ts->clock->type];
1171 for(;;) {
1172 t = *pt;
1173 if (!t)
1174 break;
1175 if (t->expire_time > expire_time)
1176 break;
1177 pt = &t->next;
1178 }
1179 ts->expire_time = expire_time;
1180 ts->next = *pt;
1181 *pt = ts;
1182
1183 /* Rearm if necessary */
1184 if (pt == &active_timers[ts->clock->type]) {
1185 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1186 qemu_rearm_alarm_timer(alarm_timer);
1187 }
1188 /* Interrupt execution to force deadline recalculation. */
1189 if (use_icount && cpu_single_env) {
1190 cpu_exit(cpu_single_env);
1191 }
1192 }
1193 }
1194
1195 int qemu_timer_pending(QEMUTimer *ts)
1196 {
1197 QEMUTimer *t;
1198 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1199 if (t == ts)
1200 return 1;
1201 }
1202 return 0;
1203 }
1204
1205 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1206 {
1207 if (!timer_head)
1208 return 0;
1209 return (timer_head->expire_time <= current_time);
1210 }
1211
1212 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1213 {
1214 QEMUTimer *ts;
1215
1216 for(;;) {
1217 ts = *ptimer_head;
1218 if (!ts || ts->expire_time > current_time)
1219 break;
1220 /* remove timer from the list before calling the callback */
1221 *ptimer_head = ts->next;
1222 ts->next = NULL;
1223
1224 /* run the callback (the timer list can be modified) */
1225 ts->cb(ts->opaque);
1226 }
1227 }
1228
1229 int64_t qemu_get_clock(QEMUClock *clock)
1230 {
1231 switch(clock->type) {
1232 case QEMU_TIMER_REALTIME:
1233 return get_clock() / 1000000;
1234 default:
1235 case QEMU_TIMER_VIRTUAL:
1236 if (use_icount) {
1237 return cpu_get_icount();
1238 } else {
1239 return cpu_get_clock();
1240 }
1241 }
1242 }
1243
1244 static void init_timers(void)
1245 {
1246 init_get_clock();
1247 ticks_per_sec = QEMU_TIMER_BASE;
1248 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1249 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1250 }
1251
1252 /* save a timer */
1253 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1254 {
1255 uint64_t expire_time;
1256
1257 if (qemu_timer_pending(ts)) {
1258 expire_time = ts->expire_time;
1259 } else {
1260 expire_time = -1;
1261 }
1262 qemu_put_be64(f, expire_time);
1263 }
1264
1265 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1266 {
1267 uint64_t expire_time;
1268
1269 expire_time = qemu_get_be64(f);
1270 if (expire_time != -1) {
1271 qemu_mod_timer(ts, expire_time);
1272 } else {
1273 qemu_del_timer(ts);
1274 }
1275 }
1276
1277 static void timer_save(QEMUFile *f, void *opaque)
1278 {
1279 if (cpu_ticks_enabled) {
1280 hw_error("cannot save state if virtual timers are running");
1281 }
1282 qemu_put_be64(f, cpu_ticks_offset);
1283 qemu_put_be64(f, ticks_per_sec);
1284 qemu_put_be64(f, cpu_clock_offset);
1285 }
1286
1287 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1288 {
1289 if (version_id != 1 && version_id != 2)
1290 return -EINVAL;
1291 if (cpu_ticks_enabled) {
1292 return -EINVAL;
1293 }
1294 cpu_ticks_offset=qemu_get_be64(f);
1295 ticks_per_sec=qemu_get_be64(f);
1296 if (version_id == 2) {
1297 cpu_clock_offset=qemu_get_be64(f);
1298 }
1299 return 0;
1300 }
1301
1302 #ifdef _WIN32
1303 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1304 DWORD_PTR dwUser, DWORD_PTR dw1,
1305 DWORD_PTR dw2)
1306 #else
1307 static void host_alarm_handler(int host_signum)
1308 #endif
1309 {
1310 #if 0
1311 #define DISP_FREQ 1000
1312 {
1313 static int64_t delta_min = INT64_MAX;
1314 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1315 static int count;
1316 ti = qemu_get_clock(vm_clock);
1317 if (last_clock != 0) {
1318 delta = ti - last_clock;
1319 if (delta < delta_min)
1320 delta_min = delta;
1321 if (delta > delta_max)
1322 delta_max = delta;
1323 delta_cum += delta;
1324 if (++count == DISP_FREQ) {
1325 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1326 muldiv64(delta_min, 1000000, ticks_per_sec),
1327 muldiv64(delta_max, 1000000, ticks_per_sec),
1328 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1329 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1330 count = 0;
1331 delta_min = INT64_MAX;
1332 delta_max = 0;
1333 delta_cum = 0;
1334 }
1335 }
1336 last_clock = ti;
1337 }
1338 #endif
1339 if (alarm_has_dynticks(alarm_timer) ||
1340 (!use_icount &&
1341 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1342 qemu_get_clock(vm_clock))) ||
1343 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1344 qemu_get_clock(rt_clock))) {
1345 CPUState *env = next_cpu;
1346
1347 #ifdef _WIN32
1348 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1349 SetEvent(data->host_alarm);
1350 #else
1351 static const char byte = 0;
1352 write(alarm_timer_wfd, &byte, sizeof(byte));
1353 #endif
1354 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1355
1356 if (env) {
1357 /* stop the currently executing cpu because a timer occured */
1358 cpu_exit(env);
1359 #ifdef USE_KQEMU
1360 if (env->kqemu_enabled) {
1361 kqemu_cpu_interrupt(env);
1362 }
1363 #endif
1364 }
1365 event_pending = 1;
1366 }
1367 }
1368
1369 static int64_t qemu_next_deadline(void)
1370 {
1371 int64_t delta;
1372
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1379 }
1380
1381 if (delta < 0)
1382 delta = 0;
1383
1384 return delta;
1385 }
1386
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1389 {
1390 int64_t delta;
1391 int64_t rtdelta;
1392
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1397
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1403 }
1404
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1407
1408 return delta;
1409 }
1410 #endif
1411
1412 #ifndef _WIN32
1413
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1416 {
1417 int flags;
1418
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1422
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1425
1426 return 0;
1427 }
1428
1429 #if defined(__linux__)
1430
1431 #define RTC_FREQ 1024
1432
1433 static void enable_sigio_timer(int fd)
1434 {
1435 struct sigaction act;
1436
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1441
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1445 }
1446
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 {
1449 struct hpet_info info;
1450 int r, fd;
1451
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1455
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1463 }
1464
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1469
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1474
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1479
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1482
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1487 }
1488
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 {
1491 int fd = (long)t->priv;
1492
1493 close(fd);
1494 }
1495
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 {
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1500
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1511 }
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1516 }
1517
1518 enable_sigio_timer(rtc_fd);
1519
1520 t->priv = (void *)(long)rtc_fd;
1521
1522 return 0;
1523 }
1524
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 {
1527 int rtc_fd = (long)t->priv;
1528
1529 close(rtc_fd);
1530 }
1531
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 {
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1537
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1541
1542 sigaction(SIGALRM, &act, NULL);
1543
1544 ev.sigev_value.sival_int = 0;
1545 ev.sigev_notify = SIGEV_SIGNAL;
1546 ev.sigev_signo = SIGALRM;
1547
1548 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1549 perror("timer_create");
1550
1551 /* disable dynticks */
1552 fprintf(stderr, "Dynamic Ticks disabled\n");
1553
1554 return -1;
1555 }
1556
1557 t->priv = (void *)(long)host_timer;
1558
1559 return 0;
1560 }
1561
1562 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1563 {
1564 timer_t host_timer = (timer_t)(long)t->priv;
1565
1566 timer_delete(host_timer);
1567 }
1568
1569 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1570 {
1571 timer_t host_timer = (timer_t)(long)t->priv;
1572 struct itimerspec timeout;
1573 int64_t nearest_delta_us = INT64_MAX;
1574 int64_t current_us;
1575
1576 if (!active_timers[QEMU_TIMER_REALTIME] &&
1577 !active_timers[QEMU_TIMER_VIRTUAL])
1578 return;
1579
1580 nearest_delta_us = qemu_next_deadline_dyntick();
1581
1582 /* check whether a timer is already running */
1583 if (timer_gettime(host_timer, &timeout)) {
1584 perror("gettime");
1585 fprintf(stderr, "Internal timer error: aborting\n");
1586 exit(1);
1587 }
1588 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1589 if (current_us && current_us <= nearest_delta_us)
1590 return;
1591
1592 timeout.it_interval.tv_sec = 0;
1593 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1594 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1595 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1596 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1597 perror("settime");
1598 fprintf(stderr, "Internal timer error: aborting\n");
1599 exit(1);
1600 }
1601 }
1602
1603 #endif /* defined(__linux__) */
1604
1605 static int unix_start_timer(struct qemu_alarm_timer *t)
1606 {
1607 struct sigaction act;
1608 struct itimerval itv;
1609 int err;
1610
1611 /* timer signal */
1612 sigfillset(&act.sa_mask);
1613 act.sa_flags = 0;
1614 act.sa_handler = host_alarm_handler;
1615
1616 sigaction(SIGALRM, &act, NULL);
1617
1618 itv.it_interval.tv_sec = 0;
1619 /* for i386 kernel 2.6 to get 1 ms */
1620 itv.it_interval.tv_usec = 999;
1621 itv.it_value.tv_sec = 0;
1622 itv.it_value.tv_usec = 10 * 1000;
1623
1624 err = setitimer(ITIMER_REAL, &itv, NULL);
1625 if (err)
1626 return -1;
1627
1628 return 0;
1629 }
1630
1631 static void unix_stop_timer(struct qemu_alarm_timer *t)
1632 {
1633 struct itimerval itv;
1634
1635 memset(&itv, 0, sizeof(itv));
1636 setitimer(ITIMER_REAL, &itv, NULL);
1637 }
1638
1639 #endif /* !defined(_WIN32) */
1640
1641 static void try_to_rearm_timer(void *opaque)
1642 {
1643 struct qemu_alarm_timer *t = opaque;
1644 #ifndef _WIN32
1645 ssize_t len;
1646
1647 /* Drain the notify pipe */
1648 do {
1649 char buffer[512];
1650 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1651 } while ((len == -1 && errno == EINTR) || len > 0);
1652 #endif
1653
1654 if (t->flags & ALARM_FLAG_EXPIRED) {
1655 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1656 qemu_rearm_alarm_timer(alarm_timer);
1657 }
1658 }
1659
1660 #ifdef _WIN32
1661
1662 static int win32_start_timer(struct qemu_alarm_timer *t)
1663 {
1664 TIMECAPS tc;
1665 struct qemu_alarm_win32 *data = t->priv;
1666 UINT flags;
1667
1668 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1669 if (!data->host_alarm) {
1670 perror("Failed CreateEvent");
1671 return -1;
1672 }
1673
1674 memset(&tc, 0, sizeof(tc));
1675 timeGetDevCaps(&tc, sizeof(tc));
1676
1677 if (data->period < tc.wPeriodMin)
1678 data->period = tc.wPeriodMin;
1679
1680 timeBeginPeriod(data->period);
1681
1682 flags = TIME_CALLBACK_FUNCTION;
1683 if (alarm_has_dynticks(t))
1684 flags |= TIME_ONESHOT;
1685 else
1686 flags |= TIME_PERIODIC;
1687
1688 data->timerId = timeSetEvent(1, // interval (ms)
1689 data->period, // resolution
1690 host_alarm_handler, // function
1691 (DWORD)t, // parameter
1692 flags);
1693
1694 if (!data->timerId) {
1695 perror("Failed to initialize win32 alarm timer");
1696
1697 timeEndPeriod(data->period);
1698 CloseHandle(data->host_alarm);
1699 return -1;
1700 }
1701
1702 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1703
1704 return 0;
1705 }
1706
1707 static void win32_stop_timer(struct qemu_alarm_timer *t)
1708 {
1709 struct qemu_alarm_win32 *data = t->priv;
1710
1711 timeKillEvent(data->timerId);
1712 timeEndPeriod(data->period);
1713
1714 CloseHandle(data->host_alarm);
1715 }
1716
1717 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1718 {
1719 struct qemu_alarm_win32 *data = t->priv;
1720 uint64_t nearest_delta_us;
1721
1722 if (!active_timers[QEMU_TIMER_REALTIME] &&
1723 !active_timers[QEMU_TIMER_VIRTUAL])
1724 return;
1725
1726 nearest_delta_us = qemu_next_deadline_dyntick();
1727 nearest_delta_us /= 1000;
1728
1729 timeKillEvent(data->timerId);
1730
1731 data->timerId = timeSetEvent(1,
1732 data->period,
1733 host_alarm_handler,
1734 (DWORD)t,
1735 TIME_ONESHOT | TIME_PERIODIC);
1736
1737 if (!data->timerId) {
1738 perror("Failed to re-arm win32 alarm timer");
1739
1740 timeEndPeriod(data->period);
1741 CloseHandle(data->host_alarm);
1742 exit(1);
1743 }
1744 }
1745
1746 #endif /* _WIN32 */
1747
1748 static int init_timer_alarm(void)
1749 {
1750 struct qemu_alarm_timer *t = NULL;
1751 int i, err = -1;
1752
1753 #ifndef _WIN32
1754 int fds[2];
1755
1756 err = pipe(fds);
1757 if (err == -1)
1758 return -errno;
1759
1760 err = fcntl_setfl(fds[0], O_NONBLOCK);
1761 if (err < 0)
1762 goto fail;
1763
1764 err = fcntl_setfl(fds[1], O_NONBLOCK);
1765 if (err < 0)
1766 goto fail;
1767
1768 alarm_timer_rfd = fds[0];
1769 alarm_timer_wfd = fds[1];
1770 #endif
1771
1772 for (i = 0; alarm_timers[i].name; i++) {
1773 t = &alarm_timers[i];
1774
1775 err = t->start(t);
1776 if (!err)
1777 break;
1778 }
1779
1780 if (err) {
1781 err = -ENOENT;
1782 goto fail;
1783 }
1784
1785 #ifndef _WIN32
1786 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1787 try_to_rearm_timer, NULL, t);
1788 #endif
1789
1790 alarm_timer = t;
1791
1792 return 0;
1793
1794 fail:
1795 #ifndef _WIN32
1796 close(fds[0]);
1797 close(fds[1]);
1798 #endif
1799 return err;
1800 }
1801
1802 static void quit_timers(void)
1803 {
1804 alarm_timer->stop(alarm_timer);
1805 alarm_timer = NULL;
1806 }
1807
1808 /***********************************************************/
1809 /* host time/date access */
1810 void qemu_get_timedate(struct tm *tm, int offset)
1811 {
1812 time_t ti;
1813 struct tm *ret;
1814
1815 time(&ti);
1816 ti += offset;
1817 if (rtc_date_offset == -1) {
1818 if (rtc_utc)
1819 ret = gmtime(&ti);
1820 else
1821 ret = localtime(&ti);
1822 } else {
1823 ti -= rtc_date_offset;
1824 ret = gmtime(&ti);
1825 }
1826
1827 memcpy(tm, ret, sizeof(struct tm));
1828 }
1829
1830 int qemu_timedate_diff(struct tm *tm)
1831 {
1832 time_t seconds;
1833
1834 if (rtc_date_offset == -1)
1835 if (rtc_utc)
1836 seconds = mktimegm(tm);
1837 else
1838 seconds = mktime(tm);
1839 else
1840 seconds = mktimegm(tm) + rtc_date_offset;
1841
1842 return seconds - time(NULL);
1843 }
1844
1845 #ifdef _WIN32
1846 static void socket_cleanup(void)
1847 {
1848 WSACleanup();
1849 }
1850
1851 static int socket_init(void)
1852 {
1853 WSADATA Data;
1854 int ret, err;
1855
1856 ret = WSAStartup(MAKEWORD(2,2), &Data);
1857 if (ret != 0) {
1858 err = WSAGetLastError();
1859 fprintf(stderr, "WSAStartup: %d\n", err);
1860 return -1;
1861 }
1862 atexit(socket_cleanup);
1863 return 0;
1864 }
1865 #endif
1866
1867 const char *get_opt_name(char *buf, int buf_size, const char *p)
1868 {
1869 char *q;
1870
1871 q = buf;
1872 while (*p != '\0' && *p != '=') {
1873 if (q && (q - buf) < buf_size - 1)
1874 *q++ = *p;
1875 p++;
1876 }
1877 if (q)
1878 *q = '\0';
1879
1880 return p;
1881 }
1882
1883 const char *get_opt_value(char *buf, int buf_size, const char *p)
1884 {
1885 char *q;
1886
1887 q = buf;
1888 while (*p != '\0') {
1889 if (*p == ',') {
1890 if (*(p + 1) != ',')
1891 break;
1892 p++;
1893 }
1894 if (q && (q - buf) < buf_size - 1)
1895 *q++ = *p;
1896 p++;
1897 }
1898 if (q)
1899 *q = '\0';
1900
1901 return p;
1902 }
1903
1904 int get_param_value(char *buf, int buf_size,
1905 const char *tag, const char *str)
1906 {
1907 const char *p;
1908 char option[128];
1909
1910 p = str;
1911 for(;;) {
1912 p = get_opt_name(option, sizeof(option), p);
1913 if (*p != '=')
1914 break;
1915 p++;
1916 if (!strcmp(tag, option)) {
1917 (void)get_opt_value(buf, buf_size, p);
1918 return strlen(buf);
1919 } else {
1920 p = get_opt_value(NULL, 0, p);
1921 }
1922 if (*p != ',')
1923 break;
1924 p++;
1925 }
1926 return 0;
1927 }
1928
1929 int check_params(char *buf, int buf_size,
1930 const char * const *params, const char *str)
1931 {
1932 const char *p;
1933 int i;
1934
1935 p = str;
1936 for(;;) {
1937 p = get_opt_name(buf, buf_size, p);
1938 if (*p != '=')
1939 return -1;
1940 p++;
1941 for(i = 0; params[i] != NULL; i++)
1942 if (!strcmp(params[i], buf))
1943 break;
1944 if (params[i] == NULL)
1945 return -1;
1946 p = get_opt_value(NULL, 0, p);
1947 if (*p != ',')
1948 break;
1949 p++;
1950 }
1951 return 0;
1952 }
1953
1954 /***********************************************************/
1955 /* Bluetooth support */
1956 static int nb_hcis;
1957 static int cur_hci;
1958 static struct HCIInfo *hci_table[MAX_NICS];
1959
1960 static struct bt_vlan_s {
1961 struct bt_scatternet_s net;
1962 int id;
1963 struct bt_vlan_s *next;
1964 } *first_bt_vlan;
1965
1966 /* find or alloc a new bluetooth "VLAN" */
1967 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1968 {
1969 struct bt_vlan_s **pvlan, *vlan;
1970 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1971 if (vlan->id == id)
1972 return &vlan->net;
1973 }
1974 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1975 vlan->id = id;
1976 pvlan = &first_bt_vlan;
1977 while (*pvlan != NULL)
1978 pvlan = &(*pvlan)->next;
1979 *pvlan = vlan;
1980 return &vlan->net;
1981 }
1982
1983 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1984 {
1985 }
1986
1987 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1988 {
1989 return -ENOTSUP;
1990 }
1991
1992 static struct HCIInfo null_hci = {
1993 .cmd_send = null_hci_send,
1994 .sco_send = null_hci_send,
1995 .acl_send = null_hci_send,
1996 .bdaddr_set = null_hci_addr_set,
1997 };
1998
1999 struct HCIInfo *qemu_next_hci(void)
2000 {
2001 if (cur_hci == nb_hcis)
2002 return &null_hci;
2003
2004 return hci_table[cur_hci++];
2005 }
2006
2007 static struct HCIInfo *hci_init(const char *str)
2008 {
2009 char *endp;
2010 struct bt_scatternet_s *vlan = 0;
2011
2012 if (!strcmp(str, "null"))
2013 /* null */
2014 return &null_hci;
2015 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2016 /* host[:hciN] */
2017 return bt_host_hci(str[4] ? str + 5 : "hci0");
2018 else if (!strncmp(str, "hci", 3)) {
2019 /* hci[,vlan=n] */
2020 if (str[3]) {
2021 if (!strncmp(str + 3, ",vlan=", 6)) {
2022 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2023 if (*endp)
2024 vlan = 0;
2025 }
2026 } else
2027 vlan = qemu_find_bt_vlan(0);
2028 if (vlan)
2029 return bt_new_hci(vlan);
2030 }
2031
2032 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2033
2034 return 0;
2035 }
2036
2037 static int bt_hci_parse(const char *str)
2038 {
2039 struct HCIInfo *hci;
2040 bdaddr_t bdaddr;
2041
2042 if (nb_hcis >= MAX_NICS) {
2043 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2044 return -1;
2045 }
2046
2047 hci = hci_init(str);
2048 if (!hci)
2049 return -1;
2050
2051 bdaddr.b[0] = 0x52;
2052 bdaddr.b[1] = 0x54;
2053 bdaddr.b[2] = 0x00;
2054 bdaddr.b[3] = 0x12;
2055 bdaddr.b[4] = 0x34;
2056 bdaddr.b[5] = 0x56 + nb_hcis;
2057 hci->bdaddr_set(hci, bdaddr.b);
2058
2059 hci_table[nb_hcis++] = hci;
2060
2061 return 0;
2062 }
2063
2064 static void bt_vhci_add(int vlan_id)
2065 {
2066 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2067
2068 if (!vlan->slave)
2069 fprintf(stderr, "qemu: warning: adding a VHCI to "
2070 "an empty scatternet %i\n", vlan_id);
2071
2072 bt_vhci_init(bt_new_hci(vlan));
2073 }
2074
2075 static struct bt_device_s *bt_device_add(const char *opt)
2076 {
2077 struct bt_scatternet_s *vlan;
2078 int vlan_id = 0;
2079 char *endp = strstr(opt, ",vlan=");
2080 int len = (endp ? endp - opt : strlen(opt)) + 1;
2081 char devname[10];
2082
2083 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2084
2085 if (endp) {
2086 vlan_id = strtol(endp + 6, &endp, 0);
2087 if (*endp) {
2088 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2089 return 0;
2090 }
2091 }
2092
2093 vlan = qemu_find_bt_vlan(vlan_id);
2094
2095 if (!vlan->slave)
2096 fprintf(stderr, "qemu: warning: adding a slave device to "
2097 "an empty scatternet %i\n", vlan_id);
2098
2099 if (!strcmp(devname, "keyboard"))
2100 return bt_keyboard_init(vlan);
2101
2102 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2103 return 0;
2104 }
2105
2106 static int bt_parse(const char *opt)
2107 {
2108 const char *endp, *p;
2109 int vlan;
2110
2111 if (strstart(opt, "hci", &endp)) {
2112 if (!*endp || *endp == ',') {
2113 if (*endp)
2114 if (!strstart(endp, ",vlan=", 0))
2115 opt = endp + 1;
2116
2117 return bt_hci_parse(opt);
2118 }
2119 } else if (strstart(opt, "vhci", &endp)) {
2120 if (!*endp || *endp == ',') {
2121 if (*endp) {
2122 if (strstart(endp, ",vlan=", &p)) {
2123 vlan = strtol(p, (char **) &endp, 0);
2124 if (*endp) {
2125 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2126 return 1;
2127 }
2128 } else {
2129 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2130 return 1;
2131 }
2132 } else
2133 vlan = 0;
2134
2135 bt_vhci_add(vlan);
2136 return 0;
2137 }
2138 } else if (strstart(opt, "device:", &endp))
2139 return !bt_device_add(endp);
2140
2141 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2142 return 1;
2143 }
2144
2145 /***********************************************************/
2146 /* QEMU Block devices */
2147
2148 #define HD_ALIAS "index=%d,media=disk"
2149 #define CDROM_ALIAS "index=2,media=cdrom"
2150 #define FD_ALIAS "index=%d,if=floppy"
2151 #define PFLASH_ALIAS "if=pflash"
2152 #define MTD_ALIAS "if=mtd"
2153 #define SD_ALIAS "index=0,if=sd"
2154
2155 static int drive_opt_get_free_idx(void)
2156 {
2157 int index;
2158
2159 for (index = 0; index < MAX_DRIVES; index++)
2160 if (!drives_opt[index].used) {
2161 drives_opt[index].used = 1;
2162 return index;
2163 }
2164
2165 return -1;
2166 }
2167
2168 static int drive_get_free_idx(void)
2169 {
2170 int index;
2171
2172 for (index = 0; index < MAX_DRIVES; index++)
2173 if (!drives_table[index].used) {
2174 drives_table[index].used = 1;
2175 return index;
2176 }
2177
2178 return -1;
2179 }
2180
2181 int drive_add(const char *file, const char *fmt, ...)
2182 {
2183 va_list ap;
2184 int index = drive_opt_get_free_idx();
2185
2186 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2187 fprintf(stderr, "qemu: too many drives\n");
2188 return -1;
2189 }
2190
2191 drives_opt[index].file = file;
2192 va_start(ap, fmt);
2193 vsnprintf(drives_opt[index].opt,
2194 sizeof(drives_opt[0].opt), fmt, ap);
2195 va_end(ap);
2196
2197 nb_drives_opt++;
2198 return index;
2199 }
2200
2201 void drive_remove(int index)
2202 {
2203 drives_opt[index].used = 0;
2204 nb_drives_opt--;
2205 }
2206
2207 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2208 {
2209 int index;
2210
2211 /* seek interface, bus and unit */
2212
2213 for (index = 0; index < MAX_DRIVES; index++)
2214 if (drives_table[index].type == type &&
2215 drives_table[index].bus == bus &&
2216 drives_table[index].unit == unit &&
2217 drives_table[index].used)
2218 return index;
2219
2220 return -1;
2221 }
2222
2223 int drive_get_max_bus(BlockInterfaceType type)
2224 {
2225 int max_bus;
2226 int index;
2227
2228 max_bus = -1;
2229 for (index = 0; index < nb_drives; index++) {
2230 if(drives_table[index].type == type &&
2231 drives_table[index].bus > max_bus)
2232 max_bus = drives_table[index].bus;
2233 }
2234 return max_bus;
2235 }
2236
2237 const char *drive_get_serial(BlockDriverState *bdrv)
2238 {
2239 int index;
2240
2241 for (index = 0; index < nb_drives; index++)
2242 if (drives_table[index].bdrv == bdrv)
2243 return drives_table[index].serial;
2244
2245 return "\0";
2246 }
2247
2248 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2249 {
2250 int index;
2251
2252 for (index = 0; index < nb_drives; index++)
2253 if (drives_table[index].bdrv == bdrv)
2254 return drives_table[index].onerror;
2255
2256 return BLOCK_ERR_STOP_ENOSPC;
2257 }
2258
2259 static void bdrv_format_print(void *opaque, const char *name)
2260 {
2261 fprintf(stderr, " %s", name);
2262 }
2263
2264 void drive_uninit(BlockDriverState *bdrv)
2265 {
2266 int i;
2267
2268 for (i = 0; i < MAX_DRIVES; i++)
2269 if (drives_table[i].bdrv == bdrv) {
2270 drives_table[i].bdrv = NULL;
2271 drives_table[i].used = 0;
2272 drive_remove(drives_table[i].drive_opt_idx);
2273 nb_drives--;
2274 break;
2275 }
2276 }
2277
2278 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2279 {
2280 char buf[128];
2281 char file[1024];
2282 char devname[128];
2283 char serial[21];
2284 const char *mediastr = "";
2285 BlockInterfaceType type;
2286 enum { MEDIA_DISK, MEDIA_CDROM } media;
2287 int bus_id, unit_id;
2288 int cyls, heads, secs, translation;
2289 BlockDriverState *bdrv;
2290 BlockDriver *drv = NULL;
2291 QEMUMachine *machine = opaque;
2292 int max_devs;
2293 int index;
2294 int cache;
2295 int bdrv_flags, onerror;
2296 int drives_table_idx;
2297 char *str = arg->opt;
2298 static const char * const params[] = { "bus", "unit", "if", "index",
2299 "cyls", "heads", "secs", "trans",
2300 "media", "snapshot", "file",
2301 "cache", "format", "serial", "werror",
2302 NULL };
2303
2304 if (check_params(buf, sizeof(buf), params, str) < 0) {
2305 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2306 buf, str);
2307 return -1;
2308 }
2309
2310 file[0] = 0;
2311 cyls = heads = secs = 0;
2312 bus_id = 0;
2313 unit_id = -1;
2314 translation = BIOS_ATA_TRANSLATION_AUTO;
2315 index = -1;
2316 cache = 3;
2317
2318 if (machine->use_scsi) {
2319 type = IF_SCSI;
2320 max_devs = MAX_SCSI_DEVS;
2321 pstrcpy(devname, sizeof(devname), "scsi");
2322 } else {
2323 type = IF_IDE;
2324 max_devs = MAX_IDE_DEVS;
2325 pstrcpy(devname, sizeof(devname), "ide");
2326 }
2327 media = MEDIA_DISK;
2328
2329 /* extract parameters */
2330
2331 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2332 bus_id = strtol(buf, NULL, 0);
2333 if (bus_id < 0) {
2334 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2340 unit_id = strtol(buf, NULL, 0);
2341 if (unit_id < 0) {
2342 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2343 return -1;
2344 }
2345 }
2346
2347 if (get_param_value(buf, sizeof(buf), "if", str)) {
2348 pstrcpy(devname, sizeof(devname), buf);
2349 if (!strcmp(buf, "ide")) {
2350 type = IF_IDE;
2351 max_devs = MAX_IDE_DEVS;
2352 } else if (!strcmp(buf, "scsi")) {
2353 type = IF_SCSI;
2354 max_devs = MAX_SCSI_DEVS;
2355 } else if (!strcmp(buf, "floppy")) {
2356 type = IF_FLOPPY;
2357 max_devs = 0;
2358 } else if (!strcmp(buf, "pflash")) {
2359 type = IF_PFLASH;
2360 max_devs = 0;
2361 } else if (!strcmp(buf, "mtd")) {
2362 type = IF_MTD;
2363 max_devs = 0;
2364 } else if (!strcmp(buf, "sd")) {
2365 type = IF_SD;
2366 max_devs = 0;
2367 } else if (!strcmp(buf, "virtio")) {
2368 type = IF_VIRTIO;
2369 max_devs = 0;
2370 } else {
2371 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2372 return -1;
2373 }
2374 }
2375
2376 if (get_param_value(buf, sizeof(buf), "index", str)) {
2377 index = strtol(buf, NULL, 0);
2378 if (index < 0) {
2379 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2380 return -1;
2381 }
2382 }
2383
2384 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2385 cyls = strtol(buf, NULL, 0);
2386 }
2387
2388 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2389 heads = strtol(buf, NULL, 0);
2390 }
2391
2392 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2393 secs = strtol(buf, NULL, 0);
2394 }
2395
2396 if (cyls || heads || secs) {
2397 if (cyls < 1 || cyls > 16383) {
2398 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2399 return -1;
2400 }
2401 if (heads < 1 || heads > 16) {
2402 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2403 return -1;
2404 }
2405 if (secs < 1 || secs > 63) {
2406 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2407 return -1;
2408 }
2409 }
2410
2411 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2412 if (!cyls) {
2413 fprintf(stderr,
2414 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2415 str);
2416 return -1;
2417 }
2418 if (!strcmp(buf, "none"))
2419 translation = BIOS_ATA_TRANSLATION_NONE;
2420 else if (!strcmp(buf, "lba"))
2421 translation = BIOS_ATA_TRANSLATION_LBA;
2422 else if (!strcmp(buf, "auto"))
2423 translation = BIOS_ATA_TRANSLATION_AUTO;
2424 else {
2425 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2426 return -1;
2427 }
2428 }
2429
2430 if (get_param_value(buf, sizeof(buf), "media", str)) {
2431 if (!strcmp(buf, "disk")) {
2432 media = MEDIA_DISK;
2433 } else if (!strcmp(buf, "cdrom")) {
2434 if (cyls || secs || heads) {
2435 fprintf(stderr,
2436 "qemu: '%s' invalid physical CHS format\n", str);
2437 return -1;
2438 }
2439 media = MEDIA_CDROM;
2440 } else {
2441 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2442 return -1;
2443 }
2444 }
2445
2446 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2447 if (!strcmp(buf, "on"))
2448 snapshot = 1;
2449 else if (!strcmp(buf, "off"))
2450 snapshot = 0;
2451 else {
2452 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2453 return -1;
2454 }
2455 }
2456
2457 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2458 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2459 cache = 0;
2460 else if (!strcmp(buf, "writethrough"))
2461 cache = 1;
2462 else if (!strcmp(buf, "writeback"))
2463 cache = 2;
2464 else {
2465 fprintf(stderr, "qemu: invalid cache option\n");
2466 return -1;
2467 }
2468 }
2469
2470 if (get_param_value(buf, sizeof(buf), "format", str)) {
2471 if (strcmp(buf, "?") == 0) {
2472 fprintf(stderr, "qemu: Supported formats:");
2473 bdrv_iterate_format(bdrv_format_print, NULL);
2474 fprintf(stderr, "\n");
2475 return -1;
2476 }
2477 drv = bdrv_find_format(buf);
2478 if (!drv) {
2479 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2480 return -1;
2481 }
2482 }
2483
2484 if (arg->file == NULL)
2485 get_param_value(file, sizeof(file), "file", str);
2486 else
2487 pstrcpy(file, sizeof(file), arg->file);
2488
2489 if (!get_param_value(serial, sizeof(serial), "serial", str))
2490 memset(serial, 0, sizeof(serial));
2491
2492 onerror = BLOCK_ERR_STOP_ENOSPC;
2493 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2494 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2495 fprintf(stderr, "werror is no supported by this format\n");
2496 return -1;
2497 }
2498 if (!strcmp(buf, "ignore"))
2499 onerror = BLOCK_ERR_IGNORE;
2500 else if (!strcmp(buf, "enospc"))
2501 onerror = BLOCK_ERR_STOP_ENOSPC;
2502 else if (!strcmp(buf, "stop"))
2503 onerror = BLOCK_ERR_STOP_ANY;
2504 else if (!strcmp(buf, "report"))
2505 onerror = BLOCK_ERR_REPORT;
2506 else {
2507 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2508 return -1;
2509 }
2510 }
2511
2512 /* compute bus and unit according index */
2513
2514 if (index != -1) {
2515 if (bus_id != 0 || unit_id != -1) {
2516 fprintf(stderr,
2517 "qemu: '%s' index cannot be used with bus and unit\n", str);
2518 return -1;
2519 }
2520 if (max_devs == 0)
2521 {
2522 unit_id = index;
2523 bus_id = 0;
2524 } else {
2525 unit_id = index % max_devs;
2526 bus_id = index / max_devs;
2527 }
2528 }
2529
2530 /* if user doesn't specify a unit_id,
2531 * try to find the first free
2532 */
2533
2534 if (unit_id == -1) {
2535 unit_id = 0;
2536 while (drive_get_index(type, bus_id, unit_id) != -1) {
2537 unit_id++;
2538 if (max_devs && unit_id >= max_devs) {
2539 unit_id -= max_devs;
2540 bus_id++;
2541 }
2542 }
2543 }
2544
2545 /* check unit id */
2546
2547 if (max_devs && unit_id >= max_devs) {
2548 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2549 str, unit_id, max_devs - 1);
2550 return -1;
2551 }
2552
2553 /*
2554 * ignore multiple definitions
2555 */
2556
2557 if (drive_get_index(type, bus_id, unit_id) != -1)
2558 return -2;
2559
2560 /* init */
2561
2562 if (type == IF_IDE || type == IF_SCSI)
2563 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2564 if (max_devs)
2565 snprintf(buf, sizeof(buf), "%s%i%s%i",
2566 devname, bus_id, mediastr, unit_id);
2567 else
2568 snprintf(buf, sizeof(buf), "%s%s%i",
2569 devname, mediastr, unit_id);
2570 bdrv = bdrv_new(buf);
2571 drives_table_idx = drive_get_free_idx();
2572 drives_table[drives_table_idx].bdrv = bdrv;
2573 drives_table[drives_table_idx].type = type;
2574 drives_table[drives_table_idx].bus = bus_id;
2575 drives_table[drives_table_idx].unit = unit_id;
2576 drives_table[drives_table_idx].onerror = onerror;
2577 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2578 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2579 nb_drives++;
2580
2581 switch(type) {
2582 case IF_IDE:
2583 case IF_SCSI:
2584 switch(media) {
2585 case MEDIA_DISK:
2586 if (cyls != 0) {
2587 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2588 bdrv_set_translation_hint(bdrv, translation);
2589 }
2590 break;
2591 case MEDIA_CDROM:
2592 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2593 break;
2594 }
2595 break;
2596 case IF_SD:
2597 /* FIXME: This isn't really a floppy, but it's a reasonable
2598 approximation. */
2599 case IF_FLOPPY:
2600 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2601 break;
2602 case IF_PFLASH:
2603 case IF_MTD:
2604 case IF_VIRTIO:
2605 break;
2606 }
2607 if (!file[0])
2608 return -2;
2609 bdrv_flags = 0;
2610 if (snapshot) {
2611 bdrv_flags |= BDRV_O_SNAPSHOT;
2612 cache = 2; /* always use write-back with snapshot */
2613 }
2614 if (cache == 0) /* no caching */
2615 bdrv_flags |= BDRV_O_NOCACHE;
2616 else if (cache == 2) /* write-back */
2617 bdrv_flags |= BDRV_O_CACHE_WB;
2618 else if (cache == 3) /* not specified */
2619 bdrv_flags |= BDRV_O_CACHE_DEF;
2620 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2621 fprintf(stderr, "qemu: could not open disk image %s\n",
2622 file);
2623 return -1;
2624 }
2625 if (bdrv_key_required(bdrv))
2626 autostart = 0;
2627 return drives_table_idx;
2628 }
2629
2630 /***********************************************************/
2631 /* USB devices */
2632
2633 static USBPort *used_usb_ports;
2634 static USBPort *free_usb_ports;
2635
2636 /* ??? Maybe change this to register a hub to keep track of the topology. */
2637 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2639 {
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2645 }
2646
2647 int usb_device_add_dev(USBDevice *dev)
2648 {
2649 USBPort *port;
2650
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2655
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2664 }
2665
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2671 }
2672
2673 static void usb_msd_password_cb(void *opaque, int err)
2674 {
2675 USBDevice *dev = opaque;
2676
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2681 }
2682
2683 static int usb_device_add(const char *devname, int is_hotplug)
2684 {
2685 const char *p;
2686 USBDevice *dev;
2687
2688 if (!free_usb_ports)
2689 return -1;
2690
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2701
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2712 }
2713 }
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718 #ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721 #endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2724
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2734 }
2735 if (!dev)
2736 return -1;
2737
2738 return usb_device_add_dev(dev);
2739 }
2740
2741 int usb_device_del_addr(int bus_num, int addr)
2742 {
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2746
2747 if (!used_usb_ports)
2748 return -1;
2749
2750 if (bus_num != 0)
2751 return -1;
2752
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2758 }
2759
2760 if (!port)
2761 return -1;
2762
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2770 }
2771
2772 static int usb_device_del(const char *devname)
2773 {
2774 int bus_num, addr;
2775 const char *p;
2776
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2779
2780 if (!used_usb_ports)
2781 return -1;
2782
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2788
2789 return usb_device_del_addr(bus_num, addr);
2790 }
2791
2792 void do_usb_add(Monitor *mon, const char *devname)
2793 {
2794 usb_device_add(devname, 1);
2795 }
2796
2797 void do_usb_del(Monitor *mon, const char *devname)
2798 {
2799 usb_device_del(devname);
2800 }
2801
2802 void usb_info(Monitor *mon)
2803 {
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2807
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2811 }
2812
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2830 }
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2833 }
2834 }
2835
2836 /***********************************************************/
2837 /* PCMCIA/Cardbus */
2838
2839 static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842 } *pcmcia_sockets = 0;
2843
2844 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845 {
2846 struct pcmcia_socket_entry_s *entry;
2847
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2852 }
2853
2854 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855 {
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2857
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2863 }
2864 }
2865
2866 void pcmcia_info(Monitor *mon)
2867 {
2868 struct pcmcia_socket_entry_s *iter;
2869
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2872
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2877 }
2878
2879 /***********************************************************/
2880 /* register display */
2881
2882 struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2886 };
2887
2888 void register_displaystate(DisplayState *ds)
2889 {
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2896 }
2897
2898 DisplayState *get_displaystate(void)
2899 {
2900 return display_state;
2901 }
2902
2903 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904 {
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2907 }
2908
2909 /* dumb display */
2910
2911 static void dumb_display_init(void)
2912 {
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2917 }
2918
2919 /***********************************************************/
2920 /* I/O handling */
2921
2922 typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932 } IOHandlerRecord;
2933
2934 static IOHandlerRecord *first_io_handler;
2935
2936 /* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938 int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2943 {
2944 IOHandlerRecord **pioh, *ioh;
2945
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2955 }
2956 pioh = &ioh->next;
2957 }
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2962 }
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2973 }
2974 return 0;
2975 }
2976
2977 int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2981 {
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983 }
2984
2985 #ifdef _WIN32
2986 /***********************************************************/
2987 /* Polling handling */
2988
2989 typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993 } PollingEntry;
2994
2995 static PollingEntry *first_polling_entry;
2996
2997 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998 {
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3006 }
3007
3008 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009 {
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3017 }
3018 }
3019 }
3020
3021 /***********************************************************/
3022 /* Wait objects support */
3023 typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028 } WaitObjects;
3029
3030 static WaitObjects wait_objects = {0};
3031
3032 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 {
3034 WaitObjects *w = &wait_objects;
3035
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3043 }
3044
3045 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046 {
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3049
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3058 }
3059 }
3060 if (found)
3061 w->num--;
3062 }
3063 #endif
3064
3065 /***********************************************************/
3066 /* ram save/restore */
3067
3068 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069 {
3070 int v;
3071
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3084 }
3085
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3088
3089 return 0;
3090 }
3091
3092 static int ram_load_v1(QEMUFile *f, void *opaque)
3093 {
3094 int ret;
3095 ram_addr_t i;
3096
3097 if (qemu_get_be32(f) != phys_ram_size)
3098 return -EINVAL;
3099 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3103 }
3104 return 0;
3105 }
3106
3107 #define BDRV_HASH_BLOCK_SIZE 1024
3108 #define IOBUF_SIZE 4096
3109 #define RAM_CBLOCK_MAGIC 0xfabe
3110
3111 typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115 } RamDecompressState;
3116
3117 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118 {
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3126 }
3127
3128 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129 {
3130 int ret, clen;
3131
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3144 }
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3148 }
3149 }
3150 return 0;
3151 }
3152
3153 static void ram_decompress_close(RamDecompressState *s)
3154 {
3155 inflateEnd(&s->zstream);
3156 }
3157
3158 #define RAM_SAVE_FLAG_FULL 0x01
3159 #define RAM_SAVE_FLAG_COMPRESS 0x02
3160 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161 #define RAM_SAVE_FLAG_PAGE 0x08
3162 #define RAM_SAVE_FLAG_EOS 0x10
3163
3164 static int is_dup_page(uint8_t *page, uint8_t ch)
3165 {
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3169
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3173 }
3174
3175 return 1;
3176 }
3177
3178 static int ram_save_block(QEMUFile *f)
3179 {
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3184
3185 while (addr < phys_ram_size) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t ch;
3188
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3192
3193 ch = *(phys_ram_base + current_addr);
3194
3195 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, ch);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3201 }
3202
3203 found = 1;
3204 break;
3205 }
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % phys_ram_size;
3208 }
3209
3210 return found;
3211 }
3212
3213 static ram_addr_t ram_save_threshold = 10;
3214
3215 static ram_addr_t ram_save_remaining(void)
3216 {
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3219
3220 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3223 }
3224
3225 return count;
3226 }
3227
3228 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229 {
3230 ram_addr_t addr;
3231
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3237 }
3238
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3241
3242 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3243 }
3244
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3247
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3251 }
3252
3253 /* try transferring iterative blocks of memory */
3254
3255 if (stage == 3) {
3256
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3260 }
3261
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265 }
3266
3267 static int ram_load_dead(QEMUFile *f, void *opaque)
3268 {
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3272
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3279 }
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3282 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3283 goto error;
3284 }
3285 } else {
3286 error:
3287 printf("Error block header\n");
3288 return -EINVAL;
3289 }
3290 }
3291 ram_decompress_close(s);
3292
3293 return 0;
3294 }
3295
3296 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3297 {
3298 ram_addr_t addr;
3299 int flags;
3300
3301 if (version_id == 1)
3302 return ram_load_v1(f, opaque);
3303
3304 if (version_id == 2) {
3305 if (qemu_get_be32(f) != phys_ram_size)
3306 return -EINVAL;
3307 return ram_load_dead(f, opaque);
3308 }
3309
3310 if (version_id != 3)
3311 return -EINVAL;
3312
3313 do {
3314 addr = qemu_get_be64(f);
3315
3316 flags = addr & ~TARGET_PAGE_MASK;
3317 addr &= TARGET_PAGE_MASK;
3318
3319 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3320 if (addr != phys_ram_size)
3321 return -EINVAL;
3322 }
3323
3324 if (flags & RAM_SAVE_FLAG_FULL) {
3325 if (ram_load_dead(f, opaque) < 0)
3326 return -EINVAL;
3327 }
3328
3329 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3330 uint8_t ch = qemu_get_byte(f);
3331 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3332 } else if (flags & RAM_SAVE_FLAG_PAGE)
3333 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3334 } while (!(flags & RAM_SAVE_FLAG_EOS));
3335
3336 return 0;
3337 }
3338
3339 void qemu_service_io(void)
3340 {
3341 CPUState *env = cpu_single_env;
3342 if (env) {
3343 cpu_exit(env);
3344 #ifdef USE_KQEMU
3345 if (env->kqemu_enabled) {
3346 kqemu_cpu_interrupt(env);
3347 }
3348 #endif
3349 }
3350 }
3351
3352 /***********************************************************/
3353 /* bottom halves (can be seen as timers which expire ASAP) */
3354
3355 struct QEMUBH {
3356 QEMUBHFunc *cb;
3357 void *opaque;
3358 int scheduled;
3359 int idle;
3360 int deleted;
3361 QEMUBH *next;
3362 };
3363
3364 static QEMUBH *first_bh = NULL;
3365
3366 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3367 {
3368 QEMUBH *bh;
3369 bh = qemu_mallocz(sizeof(QEMUBH));
3370 bh->cb = cb;
3371 bh->opaque = opaque;
3372 bh->next = first_bh;
3373 first_bh = bh;
3374 return bh;
3375 }
3376
3377 int qemu_bh_poll(void)
3378 {
3379 QEMUBH *bh, **bhp;
3380 int ret;
3381
3382 ret = 0;
3383 for (bh = first_bh; bh; bh = bh->next) {
3384 if (!bh->deleted && bh->scheduled) {
3385 bh->scheduled = 0;
3386 if (!bh->idle)
3387 ret = 1;
3388 bh->idle = 0;
3389 bh->cb(bh->opaque);
3390 }
3391 }
3392
3393 /* remove deleted bhs */
3394 bhp = &first_bh;
3395 while (*bhp) {
3396 bh = *bhp;
3397 if (bh->deleted) {
3398 *bhp = bh->next;
3399 qemu_free(bh);
3400 } else
3401 bhp = &bh->next;
3402 }
3403
3404 return ret;
3405 }
3406
3407 void qemu_bh_schedule_idle(QEMUBH *bh)
3408 {
3409 if (bh->scheduled)
3410 return;
3411 bh->scheduled = 1;
3412 bh->idle = 1;
3413 }
3414
3415 void qemu_bh_schedule(QEMUBH *bh)
3416 {
3417 CPUState *env = cpu_single_env;
3418 if (bh->scheduled)
3419 return;
3420 bh->scheduled = 1;
3421 bh->idle = 0;
3422 /* stop the currently executing CPU to execute the BH ASAP */
3423 if (env) {
3424 cpu_exit(env);
3425 }
3426 }
3427
3428 void qemu_bh_cancel(QEMUBH *bh)
3429 {
3430 bh->scheduled = 0;
3431 }
3432
3433 void qemu_bh_delete(QEMUBH *bh)
3434 {
3435 bh->scheduled = 0;
3436 bh->deleted = 1;
3437 }
3438
3439 static void qemu_bh_update_timeout(int *timeout)
3440 {
3441 QEMUBH *bh;
3442
3443 for (bh = first_bh; bh; bh = bh->next) {
3444 if (!bh->deleted && bh->scheduled) {
3445 if (bh->idle) {
3446 /* idle bottom halves will be polled at least
3447 * every 10ms */
3448 *timeout = MIN(10, *timeout);
3449 } else {
3450 /* non-idle bottom halves will be executed
3451 * immediately */
3452 *timeout = 0;
3453 break;
3454 }
3455 }
3456 }
3457 }
3458
3459 /***********************************************************/
3460 /* machine registration */
3461
3462 static QEMUMachine *first_machine = NULL;
3463 QEMUMachine *current_machine = NULL;
3464
3465 int qemu_register_machine(QEMUMachine *m)
3466 {
3467 QEMUMachine **pm;
3468 pm = &first_machine;
3469 while (*pm != NULL)
3470 pm = &(*pm)->next;
3471 m->next = NULL;
3472 *pm = m;
3473 return 0;
3474 }
3475
3476 static QEMUMachine *find_machine(const char *name)
3477 {
3478 QEMUMachine *m;
3479
3480 for(m = first_machine; m != NULL; m = m->next) {
3481 if (!strcmp(m->name, name))
3482 return m;
3483 }
3484 return NULL;
3485 }
3486
3487 /***********************************************************/
3488 /* main execution loop */
3489
3490 static void gui_update(void *opaque)
3491 {
3492 uint64_t interval = GUI_REFRESH_INTERVAL;
3493 DisplayState *ds = opaque;
3494 DisplayChangeListener *dcl = ds->listeners;
3495
3496 dpy_refresh(ds);
3497
3498 while (dcl != NULL) {
3499 if (dcl->gui_timer_interval &&
3500 dcl->gui_timer_interval < interval)
3501 interval = dcl->gui_timer_interval;
3502 dcl = dcl->next;
3503 }
3504 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3505 }
3506
3507 static void nographic_update(void *opaque)
3508 {
3509 uint64_t interval = GUI_REFRESH_INTERVAL;
3510
3511 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3512 }
3513
3514 struct vm_change_state_entry {
3515 VMChangeStateHandler *cb;
3516 void *opaque;
3517 LIST_ENTRY (vm_change_state_entry) entries;
3518 };
3519
3520 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3521
3522 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3523 void *opaque)
3524 {
3525 VMChangeStateEntry *e;
3526
3527 e = qemu_mallocz(sizeof (*e));
3528
3529 e->cb = cb;
3530 e->opaque = opaque;
3531 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3532 return e;
3533 }
3534
3535 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3536 {
3537 LIST_REMOVE (e, entries);
3538 qemu_free (e);
3539 }
3540
3541 static void vm_state_notify(int running, int reason)
3542 {
3543 VMChangeStateEntry *e;
3544
3545 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3546 e->cb(e->opaque, running, reason);
3547 }
3548 }
3549
3550 void vm_start(void)
3551 {
3552 if (!vm_running) {
3553 cpu_enable_ticks();
3554 vm_running = 1;
3555 vm_state_notify(1, 0);
3556 qemu_rearm_alarm_timer(alarm_timer);
3557 }
3558 }
3559
3560 void vm_stop(int reason)
3561 {
3562 if (vm_running) {
3563 cpu_disable_ticks();
3564 vm_running = 0;
3565 vm_state_notify(0, reason);
3566 }
3567 }
3568
3569 /* reset/shutdown handler */
3570
3571 typedef struct QEMUResetEntry {
3572 QEMUResetHandler *func;
3573 void *opaque;
3574 struct QEMUResetEntry *next;
3575 } QEMUResetEntry;
3576
3577 static QEMUResetEntry *first_reset_entry;
3578 static int reset_requested;
3579 static int shutdown_requested;
3580 static int powerdown_requested;
3581
3582 int qemu_shutdown_requested(void)
3583 {
3584 int r = shutdown_requested;
3585 shutdown_requested = 0;
3586 return r;
3587 }
3588
3589 int qemu_reset_requested(void)
3590 {
3591 int r = reset_requested;
3592 reset_requested = 0;
3593 return r;
3594 }
3595
3596 int qemu_powerdown_requested(void)
3597 {
3598 int r = powerdown_requested;
3599 powerdown_requested = 0;
3600 return r;
3601 }
3602
3603 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3604 {
3605 QEMUResetEntry **pre, *re;
3606
3607 pre = &first_reset_entry;
3608 while (*pre != NULL)
3609 pre = &(*pre)->next;
3610 re = qemu_mallocz(sizeof(QEMUResetEntry));
3611 re->func = func;
3612 re->opaque = opaque;
3613 re->next = NULL;
3614 *pre = re;
3615 }
3616
3617 void qemu_system_reset(void)
3618 {
3619 QEMUResetEntry *re;
3620
3621 /* reset all devices */
3622 for(re = first_reset_entry; re != NULL; re = re->next) {
3623 re->func(re->opaque);
3624 }
3625 }
3626
3627 void qemu_system_reset_request(void)
3628 {
3629 if (no_reboot) {
3630 shutdown_requested = 1;
3631 } else {
3632 reset_requested = 1;
3633 }
3634 if (cpu_single_env)
3635 cpu_exit(cpu_single_env);
3636 }
3637
3638 void qemu_system_shutdown_request(void)
3639 {
3640 shutdown_requested = 1;
3641 if (cpu_single_env)
3642 cpu_exit(cpu_single_env);
3643 }
3644
3645 void qemu_system_powerdown_request(void)
3646 {
3647 powerdown_requested = 1;
3648 if (cpu_single_env)
3649 cpu_exit(cpu_single_env);
3650 }
3651
3652 #ifdef _WIN32
3653 static void host_main_loop_wait(int *timeout)
3654 {
3655 int ret, ret2, i;
3656 PollingEntry *pe;
3657
3658
3659 /* XXX: need to suppress polling by better using win32 events */
3660 ret = 0;
3661 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3662 ret |= pe->func(pe->opaque);
3663 }
3664 if (ret == 0) {
3665 int err;
3666 WaitObjects *w = &wait_objects;
3667
3668 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3669 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3670 if (w->func[ret - WAIT_OBJECT_0])
3671 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3672
3673 /* Check for additional signaled events */
3674 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3675
3676 /* Check if event is signaled */
3677 ret2 = WaitForSingleObject(w->events[i], 0);
3678 if(ret2 == WAIT_OBJECT_0) {
3679 if (w->func[i])
3680 w->func[i](w->opaque[i]);
3681 } else if (ret2 == WAIT_TIMEOUT) {
3682 } else {
3683 err = GetLastError();
3684 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3685 }
3686 }
3687 } else if (ret == WAIT_TIMEOUT) {
3688 } else {
3689 err = GetLastError();
3690 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3691 }
3692 }
3693
3694 *timeout = 0;
3695 }
3696 #else
3697 static void host_main_loop_wait(int *timeout)
3698 {
3699 }
3700 #endif
3701
3702 void main_loop_wait(int timeout)
3703 {
3704 IOHandlerRecord *ioh;
3705 fd_set rfds, wfds, xfds;
3706 int ret, nfds;
3707 struct timeval tv;
3708
3709 qemu_bh_update_timeout(&timeout);
3710
3711 host_main_loop_wait(&timeout);
3712
3713 /* poll any events */
3714 /* XXX: separate device handlers from system ones */
3715 nfds = -1;
3716 FD_ZERO(&rfds);
3717 FD_ZERO(&wfds);
3718 FD_ZERO(&xfds);
3719 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3720 if (ioh->deleted)
3721 continue;
3722 if (ioh->fd_read &&
3723 (!ioh->fd_read_poll ||
3724 ioh->fd_read_poll(ioh->opaque) != 0)) {
3725 FD_SET(ioh->fd, &rfds);
3726 if (ioh->fd > nfds)
3727 nfds = ioh->fd;
3728 }
3729 if (ioh->fd_write) {
3730 FD_SET(ioh->fd, &wfds);
3731 if (ioh->fd > nfds)
3732 nfds = ioh->fd;
3733 }
3734 }
3735
3736 tv.tv_sec = timeout / 1000;
3737 tv.tv_usec = (timeout % 1000) * 1000;
3738
3739 #if defined(CONFIG_SLIRP)
3740 if (slirp_is_inited()) {
3741 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3742 }
3743 #endif
3744 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3745 if (ret > 0) {
3746 IOHandlerRecord **pioh;
3747
3748 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3749 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3750 ioh->fd_read(ioh->opaque);
3751 }
3752 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3753 ioh->fd_write(ioh->opaque);
3754 }
3755 }
3756
3757 /* remove deleted IO handlers */
3758 pioh = &first_io_handler;
3759 while (*pioh) {
3760 ioh = *pioh;
3761 if (ioh->deleted) {
3762 *pioh = ioh->next;
3763 qemu_free(ioh);
3764 } else
3765 pioh = &ioh->next;
3766 }
3767 }
3768 #if defined(CONFIG_SLIRP)
3769 if (slirp_is_inited()) {
3770 if (ret < 0) {
3771 FD_ZERO(&rfds);
3772 FD_ZERO(&wfds);
3773 FD_ZERO(&xfds);
3774 }
3775 slirp_select_poll(&rfds, &wfds, &xfds);
3776 }
3777 #endif
3778
3779 /* vm time timers */
3780 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3781 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3782 qemu_get_clock(vm_clock));
3783
3784 /* real time timers */
3785 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3786 qemu_get_clock(rt_clock));
3787
3788 /* Check bottom-halves last in case any of the earlier events triggered
3789 them. */
3790 qemu_bh_poll();
3791
3792 }
3793
3794 static int main_loop(void)
3795 {
3796 int ret, timeout;
3797 #ifdef CONFIG_PROFILER
3798 int64_t ti;
3799 #endif
3800 CPUState *env;
3801
3802 cur_cpu = first_cpu;
3803 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3804 for(;;) {
3805 if (vm_running) {
3806
3807 for(;;) {
3808 /* get next cpu */
3809 env = next_cpu;
3810 #ifdef CONFIG_PROFILER
3811 ti = profile_getclock();
3812 #endif
3813 if (use_icount) {
3814 int64_t count;
3815 int decr;
3816 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3817 env->icount_decr.u16.low = 0;
3818 env->icount_extra = 0;
3819 count = qemu_next_deadline();
3820 count = (count + (1 << icount_time_shift) - 1)
3821 >> icount_time_shift;
3822 qemu_icount += count;
3823 decr = (count > 0xffff) ? 0xffff : count;
3824 count -= decr;
3825 env->icount_decr.u16.low = decr;
3826 env->icount_extra = count;
3827 }
3828 ret = cpu_exec(env);
3829 #ifdef CONFIG_PROFILER
3830 qemu_time += profile_getclock() - ti;
3831 #endif
3832 if (use_icount) {
3833 /* Fold pending instructions back into the
3834 instruction counter, and clear the interrupt flag. */
3835 qemu_icount -= (env->icount_decr.u16.low
3836 + env->icount_extra);
3837 env->icount_decr.u32 = 0;
3838 env->icount_extra = 0;
3839 }
3840 next_cpu = env->next_cpu ?: first_cpu;
3841 if (event_pending && likely(ret != EXCP_DEBUG)) {
3842 ret = EXCP_INTERRUPT;
3843 event_pending = 0;
3844 break;
3845 }
3846 if (ret == EXCP_HLT) {
3847 /* Give the next CPU a chance to run. */
3848 cur_cpu = env;
3849 continue;
3850 }
3851 if (ret != EXCP_HALTED)
3852 break;
3853 /* all CPUs are halted ? */
3854 if (env == cur_cpu)
3855 break;
3856 }
3857 cur_cpu = env;
3858
3859 if (shutdown_requested) {
3860 ret = EXCP_INTERRUPT;
3861 if (no_shutdown) {
3862 vm_stop(0);
3863 no_shutdown = 0;
3864 }
3865 else
3866 break;
3867 }
3868 if (reset_requested) {
3869 reset_requested = 0;
3870 qemu_system_reset();
3871 ret = EXCP_INTERRUPT;
3872 }
3873 if (powerdown_requested) {
3874 powerdown_requested = 0;
3875 qemu_system_powerdown();
3876 ret = EXCP_INTERRUPT;
3877 }
3878 if (unlikely(ret == EXCP_DEBUG)) {
3879 gdb_set_stop_cpu(cur_cpu);
3880 vm_stop(EXCP_DEBUG);
3881 }
3882 /* If all cpus are halted then wait until the next IRQ */
3883 /* XXX: use timeout computed from timers */
3884 if (ret == EXCP_HALTED) {
3885 if (use_icount) {
3886 int64_t add;
3887 int64_t delta;
3888 /* Advance virtual time to the next event. */
3889 if (use_icount == 1) {
3890 /* When not using an adaptive execution frequency
3891 we tend to get badly out of sync with real time,
3892 so just delay for a reasonable amount of time. */
3893 delta = 0;
3894 } else {
3895 delta = cpu_get_icount() - cpu_get_clock();
3896 }
3897 if (delta > 0) {
3898 /* If virtual time is ahead of real time then just
3899 wait for IO. */
3900 timeout = (delta / 1000000) + 1;
3901 } else {
3902 /* Wait for either IO to occur or the next
3903 timer event. */
3904 add = qemu_next_deadline();
3905 /* We advance the timer before checking for IO.
3906 Limit the amount we advance so that early IO
3907 activity won't get the guest too far ahead. */
3908 if (add > 10000000)
3909 add = 10000000;
3910 delta += add;
3911 add = (add + (1 << icount_time_shift) - 1)
3912 >> icount_time_shift;
3913 qemu_icount += add;
3914 timeout = delta / 1000000;
3915 if (timeout < 0)
3916 timeout = 0;
3917 }
3918 } else {
3919 timeout = 5000;
3920 }
3921 } else {
3922 timeout = 0;
3923 }
3924 } else {
3925 if (shutdown_requested) {
3926 ret = EXCP_INTERRUPT;
3927 break;
3928 }
3929 timeout = 5000;
3930 }
3931 #ifdef CONFIG_PROFILER
3932 ti = profile_getclock();
3933 #endif
3934 main_loop_wait(timeout);
3935 #ifdef CONFIG_PROFILER
3936 dev_time += profile_getclock() - ti;
3937 #endif
3938 }
3939 cpu_disable_ticks();
3940 return ret;
3941 }
3942
3943 static void help(int exitcode)
3944 {
3945 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3946 "usage: %s [options] [disk_image]\n"
3947 "\n"
3948 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3949 "\n"
3950 #define DEF(option, opt_arg, opt_enum, opt_help) \
3951 opt_help
3952 #define DEFHEADING(text) stringify(text) "\n"
3953 #include "qemu-options.h"
3954 #undef DEF
3955 #undef DEFHEADING
3956 #undef GEN_DOCS
3957 "\n"
3958 "During emulation, the following keys are useful:\n"
3959 "ctrl-alt-f toggle full screen\n"
3960 "ctrl-alt-n switch to virtual console 'n'\n"
3961 "ctrl-alt toggle mouse and keyboard grab\n"
3962 "\n"
3963 "When using -nographic, press 'ctrl-a h' to get some help.\n"
3964 ,
3965 "qemu",
3966 DEFAULT_RAM_SIZE,
3967 #ifndef _WIN32
3968 DEFAULT_NETWORK_SCRIPT,
3969 DEFAULT_NETWORK_DOWN_SCRIPT,
3970 #endif
3971 DEFAULT_GDBSTUB_PORT,
3972 "/tmp/qemu.log");
3973 exit(exitcode);
3974 }
3975
3976 #define HAS_ARG 0x0001
3977
3978 enum {
3979 #define DEF(option, opt_arg, opt_enum, opt_help) \
3980 opt_enum,
3981 #define DEFHEADING(text)
3982 #include "qemu-options.h"
3983 #undef DEF
3984 #undef DEFHEADING
3985 #undef GEN_DOCS
3986 };
3987
3988 typedef struct QEMUOption {
3989 const char *name;
3990 int flags;
3991 int index;
3992 } QEMUOption;
3993
3994 static const QEMUOption qemu_options[] = {
3995 { "h", 0, QEMU_OPTION_h },
3996 #define DEF(option, opt_arg, opt_enum, opt_help) \
3997 { option, opt_arg, opt_enum },
3998 #define DEFHEADING(text)
3999 #include "qemu-options.h"
4000 #undef DEF
4001 #undef DEFHEADING
4002 #undef GEN_DOCS
4003 { NULL },
4004 };
4005
4006 #ifdef HAS_AUDIO
4007 struct soundhw soundhw[] = {
4008 #ifdef HAS_AUDIO_CHOICE
4009 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4010 {
4011 "pcspk",
4012 "PC speaker",
4013 0,
4014 1,
4015 { .init_isa = pcspk_audio_init }
4016 },
4017 #endif
4018
4019 #ifdef CONFIG_SB16
4020 {
4021 "sb16",
4022 "Creative Sound Blaster 16",
4023 0,
4024 1,
4025 { .init_isa = SB16_init }
4026 },
4027 #endif
4028
4029 #ifdef CONFIG_CS4231A
4030 {
4031 "cs4231a",
4032 "CS4231A",
4033 0,
4034 1,
4035 { .init_isa = cs4231a_init }
4036 },
4037 #endif
4038
4039 #ifdef CONFIG_ADLIB
4040 {
4041 "adlib",
4042 #ifdef HAS_YMF262
4043 "Yamaha YMF262 (OPL3)",
4044 #else
4045 "Yamaha YM3812 (OPL2)",
4046 #endif
4047 0,
4048 1,
4049 { .init_isa = Adlib_init }
4050 },
4051 #endif
4052
4053 #ifdef CONFIG_GUS
4054 {
4055 "gus",
4056 "Gravis Ultrasound GF1",
4057 0,
4058 1,
4059 { .init_isa = GUS_init }
4060 },
4061 #endif
4062
4063 #ifdef CONFIG_AC97
4064 {
4065 "ac97",
4066 "Intel 82801AA AC97 Audio",
4067 0,
4068 0,
4069 { .init_pci = ac97_init }
4070 },
4071 #endif
4072
4073 #ifdef CONFIG_ES1370
4074 {
4075 "es1370",
4076 "ENSONIQ AudioPCI ES1370",
4077 0,
4078 0,
4079 { .init_pci = es1370_init }
4080 },
4081 #endif
4082
4083 #endif /* HAS_AUDIO_CHOICE */
4084
4085 { NULL, NULL, 0, 0, { NULL } }
4086 };
4087
4088 static void select_soundhw (const char *optarg)
4089 {
4090 struct soundhw *c;
4091
4092 if (*optarg == '?') {
4093 show_valid_cards:
4094
4095 printf ("Valid sound card names (comma separated):\n");
4096 for (c = soundhw; c->name; ++c) {
4097 printf ("%-11s %s\n", c->name, c->descr);
4098 }
4099 printf ("\n-soundhw all will enable all of the above\n");
4100 exit (*optarg != '?');
4101 }
4102 else {
4103 size_t l;
4104 const char *p;
4105 char *e;
4106 int bad_card = 0;
4107
4108 if (!strcmp (optarg, "all")) {
4109 for (c = soundhw; c->name; ++c) {
4110 c->enabled = 1;
4111 }
4112 return;
4113 }
4114
4115 p = optarg;
4116 while (*p) {
4117 e = strchr (p, ',');
4118 l = !e ? strlen (p) : (size_t) (e - p);
4119
4120 for (c = soundhw; c->name; ++c) {
4121 if (!strncmp (c->name, p, l)) {
4122 c->enabled = 1;
4123 break;
4124 }
4125 }
4126
4127 if (!c->name) {
4128 if (l > 80) {
4129 fprintf (stderr,
4130 "Unknown sound card name (too big to show)\n");
4131 }
4132 else {
4133 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4134 (int) l, p);
4135 }
4136 bad_card = 1;
4137 }
4138 p += l + (e != NULL);
4139 }
4140
4141 if (bad_card)
4142 goto show_valid_cards;
4143 }
4144 }
4145 #endif
4146
4147 static void select_vgahw (const char *p)
4148 {
4149 const char *opts;
4150
4151 if (strstart(p, "std", &opts)) {
4152 std_vga_enabled = 1;
4153 cirrus_vga_enabled = 0;
4154 vmsvga_enabled = 0;
4155 } else if (strstart(p, "cirrus", &opts)) {
4156 cirrus_vga_enabled = 1;
4157 std_vga_enabled = 0;
4158 vmsvga_enabled = 0;
4159 } else if (strstart(p, "vmware", &opts)) {
4160 cirrus_vga_enabled = 0;
4161 std_vga_enabled = 0;
4162 vmsvga_enabled = 1;
4163 } else if (strstart(p, "none", &opts)) {
4164 cirrus_vga_enabled = 0;
4165 std_vga_enabled = 0;
4166 vmsvga_enabled = 0;
4167 } else {
4168 invalid_vga:
4169 fprintf(stderr, "Unknown vga type: %s\n", p);
4170 exit(1);
4171 }
4172 while (*opts) {
4173 const char *nextopt;
4174
4175 if (strstart(opts, ",retrace=", &nextopt)) {
4176 opts = nextopt;
4177 if (strstart(opts, "dumb", &nextopt))
4178 vga_retrace_method = VGA_RETRACE_DUMB;
4179 else if (strstart(opts, "precise", &nextopt))
4180 vga_retrace_method = VGA_RETRACE_PRECISE;
4181 else goto invalid_vga;
4182 } else goto invalid_vga;
4183 opts = nextopt;
4184 }
4185 }
4186
4187 #ifdef _WIN32
4188 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4189 {
4190 exit(STATUS_CONTROL_C_EXIT);
4191 return TRUE;
4192 }
4193 #endif
4194
4195 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4196 {
4197 int ret;
4198
4199 if(strlen(str) != 36)
4200 return -1;
4201
4202 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4203 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4204 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4205
4206 if(ret != 16)
4207 return -1;
4208
4209 return 0;
4210 }
4211
4212 #define MAX_NET_CLIENTS 32
4213
4214 #ifndef _WIN32
4215
4216 static void termsig_handler(int signal)
4217 {
4218 qemu_system_shutdown_request();
4219 }
4220
4221 static void termsig_setup(void)
4222 {
4223 struct sigaction act;
4224
4225 memset(&act, 0, sizeof(act));
4226 act.sa_handler = termsig_handler;
4227 sigaction(SIGINT, &act, NULL);
4228 sigaction(SIGHUP, &act, NULL);
4229 sigaction(SIGTERM, &act, NULL);
4230 }
4231
4232 #endif
4233
4234 int main(int argc, char **argv, char **envp)
4235 {
4236 #ifdef CONFIG_GDBSTUB
4237 const char *gdbstub_dev = NULL;
4238 #endif
4239 uint32_t boot_devices_bitmap = 0;
4240 int i;
4241 int snapshot, linux_boot, net_boot;
4242 const char *initrd_filename;
4243 const char *kernel_filename, *kernel_cmdline;
4244 const char *boot_devices = "";
4245 DisplayState *ds;
4246 DisplayChangeListener *dcl;
4247 int cyls, heads, secs, translation;
4248 const char *net_clients[MAX_NET_CLIENTS];
4249 int nb_net_clients;
4250 const char *bt_opts[MAX_BT_CMDLINE];
4251 int nb_bt_opts;
4252 int hda_index;
4253 int optind;
4254 const char *r, *optarg;
4255 CharDriverState *monitor_hd = NULL;
4256 const char *monitor_device;
4257 const char *serial_devices[MAX_SERIAL_PORTS];
4258 int serial_device_index;
4259 const char *parallel_devices[MAX_PARALLEL_PORTS];
4260 int parallel_device_index;
4261 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4262 int virtio_console_index;
4263 const char *loadvm = NULL;
4264 QEMUMachine *machine;
4265 const char *cpu_model;
4266 const char *usb_devices[MAX_USB_CMDLINE];
4267 int usb_devices_index;
4268 #ifndef _WIN32
4269 int fds[2];
4270 #endif
4271 int tb_size;
4272 const char *pid_file = NULL;
4273 const char *incoming = NULL;
4274 #ifndef _WIN32
4275 int fd = 0;
4276 struct passwd *pwd = NULL;
4277 const char *chroot_dir = NULL;
4278 const char *run_as = NULL;
4279 #endif
4280
4281 qemu_cache_utils_init(envp);
4282
4283 LIST_INIT (&vm_change_state_head);
4284 #ifndef _WIN32
4285 {
4286 struct sigaction act;
4287 sigfillset(&act.sa_mask);
4288 act.sa_flags = 0;
4289 act.sa_handler = SIG_IGN;
4290 sigaction(SIGPIPE, &act, NULL);
4291 }
4292 #else
4293 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4294 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4295 QEMU to run on a single CPU */
4296 {
4297 HANDLE h;
4298 DWORD mask, smask;
4299 int i;
4300 h = GetCurrentProcess();
4301 if (GetProcessAffinityMask(h, &mask, &smask)) {
4302 for(i = 0; i < 32; i++) {
4303 if (mask & (1 << i))
4304 break;
4305 }
4306 if (i != 32) {
4307 mask = 1 << i;
4308 SetProcessAffinityMask(h, mask);
4309 }
4310 }
4311 }
4312 #endif
4313
4314 register_machines();
4315 machine = first_machine;
4316 cpu_model = NULL;
4317 initrd_filename = NULL;
4318 ram_size = 0;
4319 vga_ram_size = VGA_RAM_SIZE;
4320 snapshot = 0;
4321 nographic = 0;
4322 curses = 0;
4323 kernel_filename = NULL;
4324 kernel_cmdline = "";
4325 cyls = heads = secs = 0;
4326 translation = BIOS_ATA_TRANSLATION_AUTO;
4327 monitor_device = "vc:80Cx24C";
4328
4329 serial_devices[0] = "vc:80Cx24C";
4330 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4331 serial_devices[i] = NULL;
4332 serial_device_index = 0;
4333
4334 parallel_devices[0] = "vc:80Cx24C";
4335 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4336 parallel_devices[i] = NULL;
4337 parallel_device_index = 0;
4338
4339 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4340 virtio_consoles[i] = NULL;
4341 virtio_console_index = 0;
4342
4343 usb_devices_index = 0;
4344
4345 nb_net_clients = 0;
4346 nb_bt_opts = 0;
4347 nb_drives = 0;
4348 nb_drives_opt = 0;
4349 hda_index = -1;
4350
4351 nb_nics = 0;
4352
4353 tb_size = 0;
4354 autostart= 1;
4355
4356 optind = 1;
4357 for(;;) {
4358 if (optind >= argc)
4359 break;
4360 r = argv[optind];
4361 if (r[0] != '-') {
4362 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4363 } else {
4364 const QEMUOption *popt;
4365
4366 optind++;
4367 /* Treat --foo the same as -foo. */
4368 if (r[1] == '-')
4369 r++;
4370 popt = qemu_options;
4371 for(;;) {
4372 if (!popt->name) {
4373 fprintf(stderr, "%s: invalid option -- '%s'\n",
4374 argv[0], r);
4375 exit(1);
4376 }
4377 if (!strcmp(popt->name, r + 1))
4378 break;
4379 popt++;
4380 }
4381 if (popt->flags & HAS_ARG) {
4382 if (optind >= argc) {
4383 fprintf(stderr, "%s: option '%s' requires an argument\n",
4384 argv[0], r);
4385 exit(1);
4386 }
4387 optarg = argv[optind++];
4388 } else {
4389 optarg = NULL;
4390 }
4391
4392 switch(popt->index) {
4393 case QEMU_OPTION_M:
4394 machine = find_machine(optarg);
4395 if (!machine) {
4396 QEMUMachine *m;
4397 printf("Supported machines are:\n");
4398 for(m = first_machine; m != NULL; m = m->next) {
4399 printf("%-10s %s%s\n",
4400 m->name, m->desc,
4401 m == first_machine ? " (default)" : "");
4402 }
4403 exit(*optarg != '?');
4404 }
4405 break;
4406 case QEMU_OPTION_cpu:
4407 /* hw initialization will check this */
4408 if (*optarg == '?') {
4409 /* XXX: implement xxx_cpu_list for targets that still miss it */
4410 #if defined(cpu_list)
4411 cpu_list(stdout, &fprintf);
4412 #endif
4413 exit(0);
4414 } else {
4415 cpu_model = optarg;
4416 }
4417 break;
4418 case QEMU_OPTION_initrd:
4419 initrd_filename = optarg;
4420 break;
4421 case QEMU_OPTION_hda:
4422 if (cyls == 0)
4423 hda_index = drive_add(optarg, HD_ALIAS, 0);
4424 else
4425 hda_index = drive_add(optarg, HD_ALIAS
4426 ",cyls=%d,heads=%d,secs=%d%s",
4427 0, cyls, heads, secs,
4428 translation == BIOS_ATA_TRANSLATION_LBA ?
4429 ",trans=lba" :
4430 translation == BIOS_ATA_TRANSLATION_NONE ?
4431 ",trans=none" : "");
4432 break;
4433 case QEMU_OPTION_hdb:
4434 case QEMU_OPTION_hdc:
4435 case QEMU_OPTION_hdd:
4436 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4437 break;
4438 case QEMU_OPTION_drive:
4439 drive_add(NULL, "%s", optarg);
4440 break;
4441 case QEMU_OPTION_mtdblock:
4442 drive_add(optarg, MTD_ALIAS);
4443 break;
4444 case QEMU_OPTION_sd:
4445 drive_add(optarg, SD_ALIAS);
4446 break;
4447 case QEMU_OPTION_pflash:
4448 drive_add(optarg, PFLASH_ALIAS);
4449 break;
4450 case QEMU_OPTION_snapshot:
4451 snapshot = 1;
4452 break;
4453 case QEMU_OPTION_hdachs:
4454 {
4455 const char *p;
4456 p = optarg;
4457 cyls = strtol(p, (char **)&p, 0);
4458 if (cyls < 1 || cyls > 16383)
4459 goto chs_fail;
4460 if (*p != ',')
4461 goto chs_fail;
4462 p++;
4463 heads = strtol(p, (char **)&p, 0);
4464 if (heads < 1 || heads > 16)
4465 goto chs_fail;
4466 if (*p != ',')
4467 goto chs_fail;
4468 p++;
4469 secs = strtol(p, (char **)&p, 0);
4470 if (secs < 1 || secs > 63)
4471 goto chs_fail;
4472 if (*p == ',') {
4473 p++;
4474 if (!strcmp(p, "none"))
4475 translation = BIOS_ATA_TRANSLATION_NONE;
4476 else if (!strcmp(p, "lba"))
4477 translation = BIOS_ATA_TRANSLATION_LBA;
4478 else if (!strcmp(p, "auto"))
4479 translation = BIOS_ATA_TRANSLATION_AUTO;
4480 else
4481 goto chs_fail;
4482 } else if (*p != '\0') {
4483 chs_fail:
4484 fprintf(stderr, "qemu: invalid physical CHS format\n");
4485 exit(1);
4486 }
4487 if (hda_index != -1)
4488 snprintf(drives_opt[hda_index].opt,
4489 sizeof(drives_opt[hda_index].opt),
4490 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4491 0, cyls, heads, secs,
4492 translation == BIOS_ATA_TRANSLATION_LBA ?
4493 ",trans=lba" :
4494 translation == BIOS_ATA_TRANSLATION_NONE ?
4495 ",trans=none" : "");
4496 }
4497 break;
4498 case QEMU_OPTION_nographic:
4499 nographic = 1;
4500 break;
4501 #ifdef CONFIG_CURSES
4502 case QEMU_OPTION_curses:
4503 curses = 1;
4504 break;
4505 #endif
4506 case QEMU_OPTION_portrait:
4507 graphic_rotate = 1;
4508 break;
4509 case QEMU_OPTION_kernel:
4510 kernel_filename = optarg;
4511 break;
4512 case QEMU_OPTION_append:
4513 kernel_cmdline = optarg;
4514 break;
4515 case QEMU_OPTION_cdrom:
4516 drive_add(optarg, CDROM_ALIAS);
4517 break;
4518 case QEMU_OPTION_boot:
4519 boot_devices = optarg;
4520 /* We just do some generic consistency checks */
4521 {
4522 /* Could easily be extended to 64 devices if needed */
4523 const char *p;
4524
4525 boot_devices_bitmap = 0;
4526 for (p = boot_devices; *p != '\0'; p++) {
4527 /* Allowed boot devices are:
4528 * a b : floppy disk drives
4529 * c ... f : IDE disk drives
4530 * g ... m : machine implementation dependant drives
4531 * n ... p : network devices
4532 * It's up to each machine implementation to check
4533 * if the given boot devices match the actual hardware
4534 * implementation and firmware features.
4535 */
4536 if (*p < 'a' || *p > 'q') {
4537 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4538 exit(1);
4539 }
4540 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4541 fprintf(stderr,
4542 "Boot device '%c' was given twice\n",*p);
4543 exit(1);
4544 }
4545 boot_devices_bitmap |= 1 << (*p - 'a');
4546 }
4547 }
4548 break;
4549 case QEMU_OPTION_fda:
4550 case QEMU_OPTION_fdb:
4551 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4552 break;
4553 #ifdef TARGET_I386
4554 case QEMU_OPTION_no_fd_bootchk:
4555 fd_bootchk = 0;
4556 break;
4557 #endif
4558 case QEMU_OPTION_net:
4559 if (nb_net_clients >= MAX_NET_CLIENTS) {
4560 fprintf(stderr, "qemu: too many network clients\n");
4561 exit(1);
4562 }
4563 net_clients[nb_net_clients] = optarg;
4564 nb_net_clients++;
4565 break;
4566 #ifdef CONFIG_SLIRP
4567 case QEMU_OPTION_tftp:
4568 tftp_prefix = optarg;
4569 break;
4570 case QEMU_OPTION_bootp:
4571 bootp_filename = optarg;
4572 break;
4573 #ifndef _WIN32
4574 case QEMU_OPTION_smb:
4575 net_slirp_smb(optarg);
4576 break;
4577 #endif
4578 case QEMU_OPTION_redir:
4579 net_slirp_redir(optarg);
4580 break;
4581 #endif
4582 case QEMU_OPTION_bt:
4583 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4584 fprintf(stderr, "qemu: too many bluetooth options\n");
4585 exit(1);
4586 }
4587 bt_opts[nb_bt_opts++] = optarg;
4588 break;
4589 #ifdef HAS_AUDIO
4590 case QEMU_OPTION_audio_help:
4591 AUD_help ();
4592 exit (0);
4593 break;
4594 case QEMU_OPTION_soundhw:
4595 select_soundhw (optarg);
4596 break;
4597 #endif
4598 case QEMU_OPTION_h:
4599 help(0);
4600 break;
4601 case QEMU_OPTION_m: {
4602 uint64_t value;
4603 char *ptr;
4604
4605 value = strtoul(optarg, &ptr, 10);
4606 switch (*ptr) {
4607 case 0: case 'M': case 'm':
4608 value <<= 20;
4609 break;
4610 case 'G': case 'g':
4611 value <<= 30;
4612 break;
4613 default:
4614 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4615 exit(1);
4616 }
4617
4618 /* On 32-bit hosts, QEMU is limited by virtual address space */
4619 if (value > (2047 << 20)
4620 #ifndef USE_KQEMU
4621 && HOST_LONG_BITS == 32
4622 #endif
4623 ) {
4624 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4625 exit(1);
4626 }
4627 if (value != (uint64_t)(ram_addr_t)value) {
4628 fprintf(stderr, "qemu: ram size too large\n");
4629 exit(1);
4630 }
4631 ram_size = value;
4632 break;
4633 }
4634 case QEMU_OPTION_d:
4635 {
4636 int mask;
4637 const CPULogItem *item;
4638
4639 mask = cpu_str_to_log_mask(optarg);
4640 if (!mask) {
4641 printf("Log items (comma separated):\n");
4642 for(item = cpu_log_items; item->mask != 0; item++) {
4643 printf("%-10s %s\n", item->name, item->help);
4644 }
4645 exit(1);
4646 }
4647 cpu_set_log(mask);
4648 }
4649 break;
4650 #ifdef CONFIG_GDBSTUB
4651 case QEMU_OPTION_s:
4652 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4653 break;
4654 case QEMU_OPTION_gdb:
4655 gdbstub_dev = optarg;
4656 break;
4657 #endif
4658 case QEMU_OPTION_L:
4659 bios_dir = optarg;
4660 break;
4661 case QEMU_OPTION_bios:
4662 bios_name = optarg;
4663 break;
4664 case QEMU_OPTION_singlestep:
4665 singlestep = 1;
4666 break;
4667 case QEMU_OPTION_S:
4668 autostart = 0;
4669 break;
4670 #ifndef _WIN32
4671 case QEMU_OPTION_k:
4672 keyboard_layout = optarg;
4673 break;
4674 #endif
4675 case QEMU_OPTION_localtime:
4676 rtc_utc = 0;
4677 break;
4678 case QEMU_OPTION_vga:
4679 select_vgahw (optarg);
4680 break;
4681 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4682 case QEMU_OPTION_g:
4683 {
4684 const char *p;
4685 int w, h, depth;
4686 p = optarg;
4687 w = strtol(p, (char **)&p, 10);
4688 if (w <= 0) {
4689 graphic_error:
4690 fprintf(stderr, "qemu: invalid resolution or depth\n");
4691 exit(1);
4692 }
4693 if (*p != 'x')
4694 goto graphic_error;
4695 p++;
4696 h = strtol(p, (char **)&p, 10);
4697 if (h <= 0)
4698 goto graphic_error;
4699 if (*p == 'x') {
4700 p++;
4701 depth = strtol(p, (char **)&p, 10);
4702 if (depth != 8 && depth != 15 && depth != 16 &&
4703 depth != 24 && depth != 32)
4704 goto graphic_error;
4705 } else if (*p == '\0') {
4706 depth = graphic_depth;
4707 } else {
4708 goto graphic_error;
4709 }
4710
4711 graphic_width = w;
4712 graphic_height = h;
4713 graphic_depth = depth;
4714 }
4715 break;
4716 #endif
4717 case QEMU_OPTION_echr:
4718 {
4719 char *r;
4720 term_escape_char = strtol(optarg, &r, 0);
4721 if (r == optarg)
4722 printf("Bad argument to echr\n");
4723 break;
4724 }
4725 case QEMU_OPTION_monitor:
4726 monitor_device = optarg;
4727 break;
4728 case QEMU_OPTION_serial:
4729 if (serial_device_index >= MAX_SERIAL_PORTS) {
4730 fprintf(stderr, "qemu: too many serial ports\n");
4731 exit(1);
4732 }
4733 serial_devices[serial_device_index] = optarg;
4734 serial_device_index++;
4735 break;
4736 case QEMU_OPTION_virtiocon:
4737 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4738 fprintf(stderr, "qemu: too many virtio consoles\n");
4739 exit(1);
4740 }
4741 virtio_consoles[virtio_console_index] = optarg;
4742 virtio_console_index++;
4743 break;
4744 case QEMU_OPTION_parallel:
4745 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4746 fprintf(stderr, "qemu: too many parallel ports\n");
4747 exit(1);
4748 }
4749 parallel_devices[parallel_device_index] = optarg;
4750 parallel_device_index++;
4751 break;
4752 case QEMU_OPTION_loadvm:
4753 loadvm = optarg;
4754 break;
4755 case QEMU_OPTION_full_screen:
4756 full_screen = 1;
4757 break;
4758 #ifdef CONFIG_SDL
4759 case QEMU_OPTION_no_frame:
4760 no_frame = 1;
4761 break;
4762 case QEMU_OPTION_alt_grab:
4763 alt_grab = 1;
4764 break;
4765 case QEMU_OPTION_no_quit:
4766 no_quit = 1;
4767 break;
4768 case QEMU_OPTION_sdl:
4769 sdl = 1;
4770 break;
4771 #endif
4772 case QEMU_OPTION_pidfile:
4773 pid_file = optarg;
4774 break;
4775 #ifdef TARGET_I386
4776 case QEMU_OPTION_win2k_hack:
4777 win2k_install_hack = 1;
4778 break;
4779 case QEMU_OPTION_rtc_td_hack:
4780 rtc_td_hack = 1;
4781 break;
4782 case QEMU_OPTION_acpitable:
4783 if(acpi_table_add(optarg) < 0) {
4784 fprintf(stderr, "Wrong acpi table provided\n");
4785 exit(1);
4786 }
4787 break;
4788 #endif
4789 #ifdef USE_KQEMU
4790 case QEMU_OPTION_no_kqemu:
4791 kqemu_allowed = 0;
4792 break;
4793 case QEMU_OPTION_kernel_kqemu:
4794 kqemu_allowed = 2;
4795 break;
4796 #endif
4797 #ifdef CONFIG_KVM
4798 case QEMU_OPTION_enable_kvm:
4799 kvm_allowed = 1;
4800 #ifdef USE_KQEMU
4801 kqemu_allowed = 0;
4802 #endif
4803 break;
4804 #endif
4805 case QEMU_OPTION_usb:
4806 usb_enabled = 1;
4807 break;
4808 case QEMU_OPTION_usbdevice:
4809 usb_enabled = 1;
4810 if (usb_devices_index >= MAX_USB_CMDLINE) {
4811 fprintf(stderr, "Too many USB devices\n");
4812 exit(1);
4813 }
4814 usb_devices[usb_devices_index] = optarg;
4815 usb_devices_index++;
4816 break;
4817 case QEMU_OPTION_smp:
4818 smp_cpus = atoi(optarg);
4819 if (smp_cpus < 1) {
4820 fprintf(stderr, "Invalid number of CPUs\n");
4821 exit(1);
4822 }
4823 break;
4824 case QEMU_OPTION_vnc:
4825 vnc_display = optarg;
4826 break;
4827 #ifdef TARGET_I386
4828 case QEMU_OPTION_no_acpi:
4829 acpi_enabled = 0;
4830 break;
4831 case QEMU_OPTION_no_hpet:
4832 no_hpet = 1;
4833 break;
4834 #endif
4835 case QEMU_OPTION_no_reboot:
4836 no_reboot = 1;
4837 break;
4838 case QEMU_OPTION_no_shutdown:
4839 no_shutdown = 1;
4840 break;
4841 case QEMU_OPTION_show_cursor:
4842 cursor_hide = 0;
4843 break;
4844 case QEMU_OPTION_uuid:
4845 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
4846 fprintf(stderr, "Fail to parse UUID string."
4847 " Wrong format.\n");
4848 exit(1);
4849 }
4850 break;
4851 #ifndef _WIN32
4852 case QEMU_OPTION_daemonize:
4853 daemonize = 1;
4854 break;
4855 #endif
4856 case QEMU_OPTION_option_rom:
4857 if (nb_option_roms >= MAX_OPTION_ROMS) {
4858 fprintf(stderr, "Too many option ROMs\n");
4859 exit(1);
4860 }
4861 option_rom[nb_option_roms] = optarg;
4862 nb_option_roms++;
4863 break;
4864 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4865 case QEMU_OPTION_semihosting:
4866 semihosting_enabled = 1;
4867 break;
4868 #endif
4869 case QEMU_OPTION_name:
4870 qemu_name = optarg;
4871 break;
4872 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4873 case QEMU_OPTION_prom_env:
4874 if (nb_prom_envs >= MAX_PROM_ENVS) {
4875 fprintf(stderr, "Too many prom variables\n");
4876 exit(1);
4877 }
4878 prom_envs[nb_prom_envs] = optarg;
4879 nb_prom_envs++;
4880 break;
4881 #endif
4882 #ifdef TARGET_ARM
4883 case QEMU_OPTION_old_param:
4884 old_param = 1;
4885 break;
4886 #endif
4887 case QEMU_OPTION_clock:
4888 configure_alarms(optarg);
4889 break;
4890 case QEMU_OPTION_startdate:
4891 {
4892 struct tm tm;
4893 time_t rtc_start_date;
4894 if (!strcmp(optarg, "now")) {
4895 rtc_date_offset = -1;
4896 } else {
4897 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
4898 &tm.tm_year,
4899 &tm.tm_mon,
4900 &tm.tm_mday,
4901 &tm.tm_hour,
4902 &tm.tm_min,
4903 &tm.tm_sec) == 6) {
4904 /* OK */
4905 } else if (sscanf(optarg, "%d-%d-%d",
4906 &tm.tm_year,
4907 &tm.tm_mon,
4908 &tm.tm_mday) == 3) {
4909 tm.tm_hour = 0;
4910 tm.tm_min = 0;
4911 tm.tm_sec = 0;
4912 } else {
4913 goto date_fail;
4914 }
4915 tm.tm_year -= 1900;
4916 tm.tm_mon--;
4917 rtc_start_date = mktimegm(&tm);
4918 if (rtc_start_date == -1) {
4919 date_fail:
4920 fprintf(stderr, "Invalid date format. Valid format are:\n"
4921 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
4922 exit(1);
4923 }
4924 rtc_date_offset = time(NULL) - rtc_start_date;
4925 }
4926 }
4927 break;
4928 case QEMU_OPTION_tb_size:
4929 tb_size = strtol(optarg, NULL, 0);
4930 if (tb_size < 0)
4931 tb_size = 0;
4932 break;
4933 case QEMU_OPTION_icount:
4934 use_icount = 1;
4935 if (strcmp(optarg, "auto") == 0) {
4936 icount_time_shift = -1;
4937 } else {
4938 icount_time_shift = strtol(optarg, NULL, 0);
4939 }
4940 break;
4941 case QEMU_OPTION_incoming:
4942 incoming = optarg;
4943 break;
4944 #ifndef _WIN32
4945 case QEMU_OPTION_chroot:
4946 chroot_dir = optarg;
4947 break;
4948 case QEMU_OPTION_runas:
4949 run_as = optarg;
4950 break;
4951 #endif
4952 }
4953 }
4954 }
4955
4956 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
4957 if (kvm_allowed && kqemu_allowed) {
4958 fprintf(stderr,
4959 "You can not enable both KVM and kqemu at the same time\n");
4960 exit(1);
4961 }
4962 #endif
4963
4964 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
4965 if (smp_cpus > machine->max_cpus) {
4966 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
4967 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
4968 machine->max_cpus);
4969 exit(1);
4970 }
4971
4972 if (nographic) {
4973 if (serial_device_index == 0)
4974 serial_devices[0] = "stdio";
4975 if (parallel_device_index == 0)
4976 parallel_devices[0] = "null";
4977 if (strncmp(monitor_device, "vc", 2) == 0)
4978 monitor_device = "stdio";
4979 }
4980
4981 #ifndef _WIN32
4982 if (daemonize) {
4983 pid_t pid;
4984
4985 if (pipe(fds) == -1)
4986 exit(1);
4987
4988 pid = fork();
4989 if (pid > 0) {
4990 uint8_t status;
4991 ssize_t len;
4992
4993 close(fds[1]);
4994
4995 again:
4996 len = read(fds[0], &status, 1);
4997 if (len == -1 && (errno == EINTR))
4998 goto again;
4999
5000 if (len != 1)
5001 exit(1);
5002 else if (status == 1) {
5003 fprintf(stderr, "Could not acquire pidfile\n");
5004 exit(1);
5005 } else
5006 exit(0);
5007 } else if (pid < 0)
5008 exit(1);
5009
5010 setsid();
5011
5012 pid = fork();
5013 if (pid > 0)
5014 exit(0);
5015 else if (pid < 0)
5016 exit(1);
5017
5018 umask(027);
5019
5020 signal(SIGTSTP, SIG_IGN);
5021 signal(SIGTTOU, SIG_IGN);
5022 signal(SIGTTIN, SIG_IGN);
5023 }
5024
5025 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5026 if (daemonize) {
5027 uint8_t status = 1;
5028 write(fds[1], &status, 1);
5029 } else
5030 fprintf(stderr, "Could not acquire pid file\n");
5031 exit(1);
5032 }
5033 #endif
5034
5035 #ifdef USE_KQEMU
5036 if (smp_cpus > 1)
5037 kqemu_allowed = 0;
5038 #endif
5039 linux_boot = (kernel_filename != NULL);
5040 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5041
5042 if (!linux_boot && *kernel_cmdline != '\0') {
5043 fprintf(stderr, "-append only allowed with -kernel option\n");
5044 exit(1);
5045 }
5046
5047 if (!linux_boot && initrd_filename != NULL) {
5048 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5049 exit(1);
5050 }
5051
5052 /* boot to floppy or the default cd if no hard disk defined yet */
5053 if (!boot_devices[0]) {
5054 boot_devices = "cad";
5055 }
5056 setvbuf(stdout, NULL, _IOLBF, 0);
5057
5058 init_timers();
5059 if (init_timer_alarm() < 0) {
5060 fprintf(stderr, "could not initialize alarm timer\n");
5061 exit(1);
5062 }
5063 if (use_icount && icount_time_shift < 0) {
5064 use_icount = 2;
5065 /* 125MIPS seems a reasonable initial guess at the guest speed.
5066 It will be corrected fairly quickly anyway. */
5067 icount_time_shift = 3;
5068 init_icount_adjust();
5069 }
5070
5071 #ifdef _WIN32
5072 socket_init();
5073 #endif
5074
5075 /* init network clients */
5076 if (nb_net_clients == 0) {
5077 /* if no clients, we use a default config */
5078 net_clients[nb_net_clients++] = "nic";
5079 #ifdef CONFIG_SLIRP
5080 net_clients[nb_net_clients++] = "user";
5081 #endif
5082 }
5083
5084 for(i = 0;i < nb_net_clients; i++) {
5085 if (net_client_parse(net_clients[i]) < 0)
5086 exit(1);
5087 }
5088 net_client_check();
5089
5090 #ifdef TARGET_I386
5091 /* XXX: this should be moved in the PC machine instantiation code */
5092 if (net_boot != 0) {
5093 int netroms = 0;
5094 for (i = 0; i < nb_nics && i < 4; i++) {
5095 const char *model = nd_table[i].model;
5096 char buf[1024];
5097 if (net_boot & (1 << i)) {
5098 if (model == NULL)
5099 model = "ne2k_pci";
5100 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5101 if (get_image_size(buf) > 0) {
5102 if (nb_option_roms >= MAX_OPTION_ROMS) {
5103 fprintf(stderr, "Too many option ROMs\n");
5104 exit(1);
5105 }
5106 option_rom[nb_option_roms] = strdup(buf);
5107 nb_option_roms++;
5108 netroms++;
5109 }
5110 }
5111 }
5112 if (netroms == 0) {
5113 fprintf(stderr, "No valid PXE rom found for network device\n");
5114 exit(1);
5115 }
5116 }
5117 #endif
5118
5119 /* init the bluetooth world */
5120 for (i = 0; i < nb_bt_opts; i++)
5121 if (bt_parse(bt_opts[i]))
5122 exit(1);
5123
5124 /* init the memory */
5125 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5126
5127 if (machine->ram_require & RAMSIZE_FIXED) {
5128 if (ram_size > 0) {
5129 if (ram_size < phys_ram_size) {
5130 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5131 machine->name, (unsigned long long) phys_ram_size);
5132 exit(-1);
5133 }
5134
5135 phys_ram_size = ram_size;
5136 } else
5137 ram_size = phys_ram_size;
5138 } else {
5139 if (ram_size == 0)
5140 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5141
5142 phys_ram_size += ram_size;
5143 }
5144
5145 phys_ram_base = qemu_vmalloc(phys_ram_size);
5146 if (!phys_ram_base) {
5147 fprintf(stderr, "Could not allocate physical memory\n");
5148 exit(1);
5149 }
5150
5151 /* init the dynamic translator */
5152 cpu_exec_init_all(tb_size * 1024 * 1024);
5153
5154 bdrv_init();
5155 dma_helper_init();
5156
5157 /* we always create the cdrom drive, even if no disk is there */
5158
5159 if (nb_drives_opt < MAX_DRIVES)
5160 drive_add(NULL, CDROM_ALIAS);
5161
5162 /* we always create at least one floppy */
5163
5164 if (nb_drives_opt < MAX_DRIVES)
5165 drive_add(NULL, FD_ALIAS, 0);
5166
5167 /* we always create one sd slot, even if no card is in it */
5168
5169 if (nb_drives_opt < MAX_DRIVES)
5170 drive_add(NULL, SD_ALIAS);
5171
5172 /* open the virtual block devices */
5173
5174 for(i = 0; i < nb_drives_opt; i++)
5175 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5176 exit(1);
5177
5178 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5179 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5180
5181 #ifndef _WIN32
5182 /* must be after terminal init, SDL library changes signal handlers */
5183 termsig_setup();
5184 #endif
5185
5186 /* Maintain compatibility with multiple stdio monitors */
5187 if (!strcmp(monitor_device,"stdio")) {
5188 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5189 const char *devname = serial_devices[i];
5190 if (devname && !strcmp(devname,"mon:stdio")) {
5191 monitor_device = NULL;
5192 break;
5193 } else if (devname && !strcmp(devname,"stdio")) {
5194 monitor_device = NULL;
5195 serial_devices[i] = "mon:stdio";
5196 break;
5197 }
5198 }
5199 }
5200
5201 if (kvm_enabled()) {
5202 int ret;
5203
5204 ret = kvm_init(smp_cpus);
5205 if (ret < 0) {
5206 fprintf(stderr, "failed to initialize KVM\n");
5207 exit(1);
5208 }
5209 }
5210
5211 if (monitor_device) {
5212 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5213 if (!monitor_hd) {
5214 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5215 exit(1);
5216 }
5217 }
5218
5219 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5220 const char *devname = serial_devices[i];
5221 if (devname && strcmp(devname, "none")) {
5222 char label[32];
5223 snprintf(label, sizeof(label), "serial%d", i);
5224 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5225 if (!serial_hds[i]) {
5226 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5227 devname);
5228 exit(1);
5229 }
5230 }
5231 }
5232
5233 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5234 const char *devname = parallel_devices[i];
5235 if (devname && strcmp(devname, "none")) {
5236 char label[32];
5237 snprintf(label, sizeof(label), "parallel%d", i);
5238 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5239 if (!parallel_hds[i]) {
5240 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5241 devname);
5242 exit(1);
5243 }
5244 }
5245 }
5246
5247 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5248 const char *devname = virtio_consoles[i];
5249 if (devname && strcmp(devname, "none")) {
5250 char label[32];
5251 snprintf(label, sizeof(label), "virtcon%d", i);
5252 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5253 if (!virtcon_hds[i]) {
5254 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5255 devname);
5256 exit(1);
5257 }
5258 }
5259 }
5260
5261 machine->init(ram_size, vga_ram_size, boot_devices,
5262 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5263
5264 current_machine = machine;
5265
5266 /* Set KVM's vcpu state to qemu's initial CPUState. */
5267 if (kvm_enabled()) {
5268 int ret;
5269
5270 ret = kvm_sync_vcpus();
5271 if (ret < 0) {
5272 fprintf(stderr, "failed to initialize vcpus\n");
5273 exit(1);
5274 }
5275 }
5276
5277 /* init USB devices */
5278 if (usb_enabled) {
5279 for(i = 0; i < usb_devices_index; i++) {
5280 if (usb_device_add(usb_devices[i], 0) < 0) {
5281 fprintf(stderr, "Warning: could not add USB device %s\n",
5282 usb_devices[i]);
5283 }
5284 }
5285 }
5286
5287 if (!display_state)
5288 dumb_display_init();
5289 /* just use the first displaystate for the moment */
5290 ds = display_state;
5291 /* terminal init */
5292 if (nographic) {
5293 if (curses) {
5294 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5295 exit(1);
5296 }
5297 } else {
5298 #if defined(CONFIG_CURSES)
5299 if (curses) {
5300 /* At the moment curses cannot be used with other displays */
5301 curses_display_init(ds, full_screen);
5302 } else
5303 #endif
5304 {
5305 if (vnc_display != NULL) {
5306 vnc_display_init(ds);
5307 if (vnc_display_open(ds, vnc_display) < 0)
5308 exit(1);
5309 }
5310 #if defined(CONFIG_SDL)
5311 if (sdl || !vnc_display)
5312 sdl_display_init(ds, full_screen, no_frame);
5313 #elif defined(CONFIG_COCOA)
5314 if (sdl || !vnc_display)
5315 cocoa_display_init(ds, full_screen);
5316 #endif
5317 }
5318 }
5319 dpy_resize(ds);
5320
5321 dcl = ds->listeners;
5322 while (dcl != NULL) {
5323 if (dcl->dpy_refresh != NULL) {
5324 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5325 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5326 }
5327 dcl = dcl->next;
5328 }
5329
5330 if (nographic || (vnc_display && !sdl)) {
5331 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5332 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5333 }
5334
5335 text_consoles_set_display(display_state);
5336 qemu_chr_initial_reset();
5337
5338 if (monitor_device && monitor_hd)
5339 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5340
5341 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5342 const char *devname = serial_devices[i];
5343 if (devname && strcmp(devname, "none")) {
5344 char label[32];
5345 snprintf(label, sizeof(label), "serial%d", i);
5346 if (strstart(devname, "vc", 0))
5347 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5348 }
5349 }
5350
5351 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5352 const char *devname = parallel_devices[i];
5353 if (devname && strcmp(devname, "none")) {
5354 char label[32];
5355 snprintf(label, sizeof(label), "parallel%d", i);
5356 if (strstart(devname, "vc", 0))
5357 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5358 }
5359 }
5360
5361 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5362 const char *devname = virtio_consoles[i];
5363 if (virtcon_hds[i] && devname) {
5364 char label[32];
5365 snprintf(label, sizeof(label), "virtcon%d", i);
5366 if (strstart(devname, "vc", 0))
5367 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5368 }
5369 }
5370
5371 #ifdef CONFIG_GDBSTUB
5372 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5373 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5374 gdbstub_dev);
5375 exit(1);
5376 }
5377 #endif
5378
5379 if (loadvm)
5380 do_loadvm(cur_mon, loadvm);
5381
5382 if (incoming) {
5383 autostart = 0; /* fixme how to deal with -daemonize */
5384 qemu_start_incoming_migration(incoming);
5385 }
5386
5387 if (autostart)
5388 vm_start();
5389
5390 #ifndef _WIN32
5391 if (daemonize) {
5392 uint8_t status = 0;
5393 ssize_t len;
5394
5395 again1:
5396 len = write(fds[1], &status, 1);
5397 if (len == -1 && (errno == EINTR))
5398 goto again1;
5399
5400 if (len != 1)
5401 exit(1);
5402
5403 chdir("/");
5404 TFR(fd = open("/dev/null", O_RDWR));
5405 if (fd == -1)
5406 exit(1);
5407 }
5408
5409 if (run_as) {
5410 pwd = getpwnam(run_as);
5411 if (!pwd) {
5412 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5413 exit(1);
5414 }
5415 }
5416
5417 if (chroot_dir) {
5418 if (chroot(chroot_dir) < 0) {
5419 fprintf(stderr, "chroot failed\n");
5420 exit(1);
5421 }
5422 chdir("/");
5423 }
5424
5425 if (run_as) {
5426 if (setgid(pwd->pw_gid) < 0) {
5427 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5428 exit(1);
5429 }
5430 if (setuid(pwd->pw_uid) < 0) {
5431 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5432 exit(1);
5433 }
5434 if (setuid(0) != -1) {
5435 fprintf(stderr, "Dropping privileges failed\n");
5436 exit(1);
5437 }
5438 }
5439
5440 if (daemonize) {
5441 dup2(fd, 0);
5442 dup2(fd, 1);
5443 dup2(fd, 2);
5444
5445 close(fd);
5446 }
5447 #endif
5448
5449 main_loop();
5450 quit_timers();
5451 net_cleanup();
5452
5453 return 0;
5454 }