]> git.proxmox.com Git - qemu.git/blob - vl.c
Fix wrong signedness, by Andre Przywara.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/fdc.h"
30 #include "hw/audiodev.h"
31 #include "hw/isa.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
48
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
76
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
81
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
104
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
108
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <windows.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
116
117 #include "qemu_socket.h"
118
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
124
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
129
130 #include "disas.h"
131
132 #include "exec-all.h"
133
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
141
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
144
145 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146
147 #ifdef TARGET_PPC
148 #define DEFAULT_RAM_SIZE 144
149 #else
150 #define DEFAULT_RAM_SIZE 128
151 #endif
152 /* in ms */
153 #define GUI_REFRESH_INTERVAL 30
154
155 /* Max number of USB devices that can be specified on the commandline. */
156 #define MAX_USB_CMDLINE 8
157
158 /* XXX: use a two level table to limit memory usage */
159 #define MAX_IOPORTS 65536
160
161 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162 const char *bios_name = NULL;
163 void *ioport_opaque[MAX_IOPORTS];
164 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167 to store the VM snapshots */
168 DriveInfo drives_table[MAX_DRIVES+1];
169 int nb_drives;
170 /* point to the block driver where the snapshots are managed */
171 BlockDriverState *bs_snapshots;
172 int vga_ram_size;
173 static DisplayState display_state;
174 int nographic;
175 const char* keyboard_layout = NULL;
176 int64_t ticks_per_sec;
177 int ram_size;
178 int pit_min_timer_count = 0;
179 int nb_nics;
180 NICInfo nd_table[MAX_NICS];
181 int vm_running;
182 int rtc_utc = 1;
183 int rtc_start_date = -1; /* -1 means now */
184 int cirrus_vga_enabled = 1;
185 int vmsvga_enabled = 0;
186 #ifdef TARGET_SPARC
187 int graphic_width = 1024;
188 int graphic_height = 768;
189 int graphic_depth = 8;
190 #else
191 int graphic_width = 800;
192 int graphic_height = 600;
193 int graphic_depth = 15;
194 #endif
195 int full_screen = 0;
196 int no_frame = 0;
197 int no_quit = 0;
198 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
199 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
200 #ifdef TARGET_I386
201 int win2k_install_hack = 0;
202 #endif
203 int usb_enabled = 0;
204 static VLANState *first_vlan;
205 int smp_cpus = 1;
206 const char *vnc_display;
207 #if defined(TARGET_SPARC)
208 #define MAX_CPUS 16
209 #elif defined(TARGET_I386)
210 #define MAX_CPUS 255
211 #else
212 #define MAX_CPUS 1
213 #endif
214 int acpi_enabled = 1;
215 int fd_bootchk = 1;
216 int no_reboot = 0;
217 int cursor_hide = 1;
218 int graphic_rotate = 0;
219 int daemonize = 0;
220 const char *option_rom[MAX_OPTION_ROMS];
221 int nb_option_roms;
222 int semihosting_enabled = 0;
223 int autostart = 1;
224 #ifdef TARGET_ARM
225 int old_param = 0;
226 #endif
227 const char *qemu_name;
228 int alt_grab = 0;
229 #ifdef TARGET_SPARC
230 unsigned int nb_prom_envs = 0;
231 const char *prom_envs[MAX_PROM_ENVS];
232 #endif
233 int nb_drives_opt;
234 char drives_opt[MAX_DRIVES][1024];
235
236 static CPUState *cur_cpu;
237 static CPUState *next_cpu;
238 static int event_pending;
239
240 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
241
242 /***********************************************************/
243 /* x86 ISA bus support */
244
245 target_phys_addr_t isa_mem_base = 0;
246 PicState2 *isa_pic;
247
248 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
249 {
250 #ifdef DEBUG_UNUSED_IOPORT
251 fprintf(stderr, "unused inb: port=0x%04x\n", address);
252 #endif
253 return 0xff;
254 }
255
256 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
257 {
258 #ifdef DEBUG_UNUSED_IOPORT
259 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
260 #endif
261 }
262
263 /* default is to make two byte accesses */
264 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
265 {
266 uint32_t data;
267 data = ioport_read_table[0][address](ioport_opaque[address], address);
268 address = (address + 1) & (MAX_IOPORTS - 1);
269 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
270 return data;
271 }
272
273 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
274 {
275 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
276 address = (address + 1) & (MAX_IOPORTS - 1);
277 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
278 }
279
280 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
281 {
282 #ifdef DEBUG_UNUSED_IOPORT
283 fprintf(stderr, "unused inl: port=0x%04x\n", address);
284 #endif
285 return 0xffffffff;
286 }
287
288 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
289 {
290 #ifdef DEBUG_UNUSED_IOPORT
291 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
292 #endif
293 }
294
295 static void init_ioports(void)
296 {
297 int i;
298
299 for(i = 0; i < MAX_IOPORTS; i++) {
300 ioport_read_table[0][i] = default_ioport_readb;
301 ioport_write_table[0][i] = default_ioport_writeb;
302 ioport_read_table[1][i] = default_ioport_readw;
303 ioport_write_table[1][i] = default_ioport_writew;
304 ioport_read_table[2][i] = default_ioport_readl;
305 ioport_write_table[2][i] = default_ioport_writel;
306 }
307 }
308
309 /* size is the word size in byte */
310 int register_ioport_read(int start, int length, int size,
311 IOPortReadFunc *func, void *opaque)
312 {
313 int i, bsize;
314
315 if (size == 1) {
316 bsize = 0;
317 } else if (size == 2) {
318 bsize = 1;
319 } else if (size == 4) {
320 bsize = 2;
321 } else {
322 hw_error("register_ioport_read: invalid size");
323 return -1;
324 }
325 for(i = start; i < start + length; i += size) {
326 ioport_read_table[bsize][i] = func;
327 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
328 hw_error("register_ioport_read: invalid opaque");
329 ioport_opaque[i] = opaque;
330 }
331 return 0;
332 }
333
334 /* size is the word size in byte */
335 int register_ioport_write(int start, int length, int size,
336 IOPortWriteFunc *func, void *opaque)
337 {
338 int i, bsize;
339
340 if (size == 1) {
341 bsize = 0;
342 } else if (size == 2) {
343 bsize = 1;
344 } else if (size == 4) {
345 bsize = 2;
346 } else {
347 hw_error("register_ioport_write: invalid size");
348 return -1;
349 }
350 for(i = start; i < start + length; i += size) {
351 ioport_write_table[bsize][i] = func;
352 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
353 hw_error("register_ioport_write: invalid opaque");
354 ioport_opaque[i] = opaque;
355 }
356 return 0;
357 }
358
359 void isa_unassign_ioport(int start, int length)
360 {
361 int i;
362
363 for(i = start; i < start + length; i++) {
364 ioport_read_table[0][i] = default_ioport_readb;
365 ioport_read_table[1][i] = default_ioport_readw;
366 ioport_read_table[2][i] = default_ioport_readl;
367
368 ioport_write_table[0][i] = default_ioport_writeb;
369 ioport_write_table[1][i] = default_ioport_writew;
370 ioport_write_table[2][i] = default_ioport_writel;
371 }
372 }
373
374 /***********************************************************/
375
376 void cpu_outb(CPUState *env, int addr, int val)
377 {
378 #ifdef DEBUG_IOPORT
379 if (loglevel & CPU_LOG_IOPORT)
380 fprintf(logfile, "outb: %04x %02x\n", addr, val);
381 #endif
382 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
383 #ifdef USE_KQEMU
384 if (env)
385 env->last_io_time = cpu_get_time_fast();
386 #endif
387 }
388
389 void cpu_outw(CPUState *env, int addr, int val)
390 {
391 #ifdef DEBUG_IOPORT
392 if (loglevel & CPU_LOG_IOPORT)
393 fprintf(logfile, "outw: %04x %04x\n", addr, val);
394 #endif
395 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
396 #ifdef USE_KQEMU
397 if (env)
398 env->last_io_time = cpu_get_time_fast();
399 #endif
400 }
401
402 void cpu_outl(CPUState *env, int addr, int val)
403 {
404 #ifdef DEBUG_IOPORT
405 if (loglevel & CPU_LOG_IOPORT)
406 fprintf(logfile, "outl: %04x %08x\n", addr, val);
407 #endif
408 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
409 #ifdef USE_KQEMU
410 if (env)
411 env->last_io_time = cpu_get_time_fast();
412 #endif
413 }
414
415 int cpu_inb(CPUState *env, int addr)
416 {
417 int val;
418 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
419 #ifdef DEBUG_IOPORT
420 if (loglevel & CPU_LOG_IOPORT)
421 fprintf(logfile, "inb : %04x %02x\n", addr, val);
422 #endif
423 #ifdef USE_KQEMU
424 if (env)
425 env->last_io_time = cpu_get_time_fast();
426 #endif
427 return val;
428 }
429
430 int cpu_inw(CPUState *env, int addr)
431 {
432 int val;
433 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
434 #ifdef DEBUG_IOPORT
435 if (loglevel & CPU_LOG_IOPORT)
436 fprintf(logfile, "inw : %04x %04x\n", addr, val);
437 #endif
438 #ifdef USE_KQEMU
439 if (env)
440 env->last_io_time = cpu_get_time_fast();
441 #endif
442 return val;
443 }
444
445 int cpu_inl(CPUState *env, int addr)
446 {
447 int val;
448 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
449 #ifdef DEBUG_IOPORT
450 if (loglevel & CPU_LOG_IOPORT)
451 fprintf(logfile, "inl : %04x %08x\n", addr, val);
452 #endif
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 return val;
458 }
459
460 /***********************************************************/
461 void hw_error(const char *fmt, ...)
462 {
463 va_list ap;
464 CPUState *env;
465
466 va_start(ap, fmt);
467 fprintf(stderr, "qemu: hardware error: ");
468 vfprintf(stderr, fmt, ap);
469 fprintf(stderr, "\n");
470 for(env = first_cpu; env != NULL; env = env->next_cpu) {
471 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
472 #ifdef TARGET_I386
473 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
474 #else
475 cpu_dump_state(env, stderr, fprintf, 0);
476 #endif
477 }
478 va_end(ap);
479 abort();
480 }
481
482 /***********************************************************/
483 /* keyboard/mouse */
484
485 static QEMUPutKBDEvent *qemu_put_kbd_event;
486 static void *qemu_put_kbd_event_opaque;
487 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
488 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
489
490 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
491 {
492 qemu_put_kbd_event_opaque = opaque;
493 qemu_put_kbd_event = func;
494 }
495
496 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
497 void *opaque, int absolute,
498 const char *name)
499 {
500 QEMUPutMouseEntry *s, *cursor;
501
502 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
503 if (!s)
504 return NULL;
505
506 s->qemu_put_mouse_event = func;
507 s->qemu_put_mouse_event_opaque = opaque;
508 s->qemu_put_mouse_event_absolute = absolute;
509 s->qemu_put_mouse_event_name = qemu_strdup(name);
510 s->next = NULL;
511
512 if (!qemu_put_mouse_event_head) {
513 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
514 return s;
515 }
516
517 cursor = qemu_put_mouse_event_head;
518 while (cursor->next != NULL)
519 cursor = cursor->next;
520
521 cursor->next = s;
522 qemu_put_mouse_event_current = s;
523
524 return s;
525 }
526
527 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
528 {
529 QEMUPutMouseEntry *prev = NULL, *cursor;
530
531 if (!qemu_put_mouse_event_head || entry == NULL)
532 return;
533
534 cursor = qemu_put_mouse_event_head;
535 while (cursor != NULL && cursor != entry) {
536 prev = cursor;
537 cursor = cursor->next;
538 }
539
540 if (cursor == NULL) // does not exist or list empty
541 return;
542 else if (prev == NULL) { // entry is head
543 qemu_put_mouse_event_head = cursor->next;
544 if (qemu_put_mouse_event_current == entry)
545 qemu_put_mouse_event_current = cursor->next;
546 qemu_free(entry->qemu_put_mouse_event_name);
547 qemu_free(entry);
548 return;
549 }
550
551 prev->next = entry->next;
552
553 if (qemu_put_mouse_event_current == entry)
554 qemu_put_mouse_event_current = prev;
555
556 qemu_free(entry->qemu_put_mouse_event_name);
557 qemu_free(entry);
558 }
559
560 void kbd_put_keycode(int keycode)
561 {
562 if (qemu_put_kbd_event) {
563 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
564 }
565 }
566
567 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
568 {
569 QEMUPutMouseEvent *mouse_event;
570 void *mouse_event_opaque;
571 int width;
572
573 if (!qemu_put_mouse_event_current) {
574 return;
575 }
576
577 mouse_event =
578 qemu_put_mouse_event_current->qemu_put_mouse_event;
579 mouse_event_opaque =
580 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
581
582 if (mouse_event) {
583 if (graphic_rotate) {
584 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
585 width = 0x7fff;
586 else
587 width = graphic_width;
588 mouse_event(mouse_event_opaque,
589 width - dy, dx, dz, buttons_state);
590 } else
591 mouse_event(mouse_event_opaque,
592 dx, dy, dz, buttons_state);
593 }
594 }
595
596 int kbd_mouse_is_absolute(void)
597 {
598 if (!qemu_put_mouse_event_current)
599 return 0;
600
601 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
602 }
603
604 void do_info_mice(void)
605 {
606 QEMUPutMouseEntry *cursor;
607 int index = 0;
608
609 if (!qemu_put_mouse_event_head) {
610 term_printf("No mouse devices connected\n");
611 return;
612 }
613
614 term_printf("Mouse devices available:\n");
615 cursor = qemu_put_mouse_event_head;
616 while (cursor != NULL) {
617 term_printf("%c Mouse #%d: %s\n",
618 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
619 index, cursor->qemu_put_mouse_event_name);
620 index++;
621 cursor = cursor->next;
622 }
623 }
624
625 void do_mouse_set(int index)
626 {
627 QEMUPutMouseEntry *cursor;
628 int i = 0;
629
630 if (!qemu_put_mouse_event_head) {
631 term_printf("No mouse devices connected\n");
632 return;
633 }
634
635 cursor = qemu_put_mouse_event_head;
636 while (cursor != NULL && index != i) {
637 i++;
638 cursor = cursor->next;
639 }
640
641 if (cursor != NULL)
642 qemu_put_mouse_event_current = cursor;
643 else
644 term_printf("Mouse at given index not found\n");
645 }
646
647 /* compute with 96 bit intermediate result: (a*b)/c */
648 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
649 {
650 union {
651 uint64_t ll;
652 struct {
653 #ifdef WORDS_BIGENDIAN
654 uint32_t high, low;
655 #else
656 uint32_t low, high;
657 #endif
658 } l;
659 } u, res;
660 uint64_t rl, rh;
661
662 u.ll = a;
663 rl = (uint64_t)u.l.low * (uint64_t)b;
664 rh = (uint64_t)u.l.high * (uint64_t)b;
665 rh += (rl >> 32);
666 res.l.high = rh / c;
667 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
668 return res.ll;
669 }
670
671 /***********************************************************/
672 /* real time host monotonic timer */
673
674 #define QEMU_TIMER_BASE 1000000000LL
675
676 #ifdef WIN32
677
678 static int64_t clock_freq;
679
680 static void init_get_clock(void)
681 {
682 LARGE_INTEGER freq;
683 int ret;
684 ret = QueryPerformanceFrequency(&freq);
685 if (ret == 0) {
686 fprintf(stderr, "Could not calibrate ticks\n");
687 exit(1);
688 }
689 clock_freq = freq.QuadPart;
690 }
691
692 static int64_t get_clock(void)
693 {
694 LARGE_INTEGER ti;
695 QueryPerformanceCounter(&ti);
696 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
697 }
698
699 #else
700
701 static int use_rt_clock;
702
703 static void init_get_clock(void)
704 {
705 use_rt_clock = 0;
706 #if defined(__linux__)
707 {
708 struct timespec ts;
709 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
710 use_rt_clock = 1;
711 }
712 }
713 #endif
714 }
715
716 static int64_t get_clock(void)
717 {
718 #if defined(__linux__)
719 if (use_rt_clock) {
720 struct timespec ts;
721 clock_gettime(CLOCK_MONOTONIC, &ts);
722 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
723 } else
724 #endif
725 {
726 /* XXX: using gettimeofday leads to problems if the date
727 changes, so it should be avoided. */
728 struct timeval tv;
729 gettimeofday(&tv, NULL);
730 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
731 }
732 }
733
734 #endif
735
736 /***********************************************************/
737 /* guest cycle counter */
738
739 static int64_t cpu_ticks_prev;
740 static int64_t cpu_ticks_offset;
741 static int64_t cpu_clock_offset;
742 static int cpu_ticks_enabled;
743
744 /* return the host CPU cycle counter and handle stop/restart */
745 int64_t cpu_get_ticks(void)
746 {
747 if (!cpu_ticks_enabled) {
748 return cpu_ticks_offset;
749 } else {
750 int64_t ticks;
751 ticks = cpu_get_real_ticks();
752 if (cpu_ticks_prev > ticks) {
753 /* Note: non increasing ticks may happen if the host uses
754 software suspend */
755 cpu_ticks_offset += cpu_ticks_prev - ticks;
756 }
757 cpu_ticks_prev = ticks;
758 return ticks + cpu_ticks_offset;
759 }
760 }
761
762 /* return the host CPU monotonic timer and handle stop/restart */
763 static int64_t cpu_get_clock(void)
764 {
765 int64_t ti;
766 if (!cpu_ticks_enabled) {
767 return cpu_clock_offset;
768 } else {
769 ti = get_clock();
770 return ti + cpu_clock_offset;
771 }
772 }
773
774 /* enable cpu_get_ticks() */
775 void cpu_enable_ticks(void)
776 {
777 if (!cpu_ticks_enabled) {
778 cpu_ticks_offset -= cpu_get_real_ticks();
779 cpu_clock_offset -= get_clock();
780 cpu_ticks_enabled = 1;
781 }
782 }
783
784 /* disable cpu_get_ticks() : the clock is stopped. You must not call
785 cpu_get_ticks() after that. */
786 void cpu_disable_ticks(void)
787 {
788 if (cpu_ticks_enabled) {
789 cpu_ticks_offset = cpu_get_ticks();
790 cpu_clock_offset = cpu_get_clock();
791 cpu_ticks_enabled = 0;
792 }
793 }
794
795 /***********************************************************/
796 /* timers */
797
798 #define QEMU_TIMER_REALTIME 0
799 #define QEMU_TIMER_VIRTUAL 1
800
801 struct QEMUClock {
802 int type;
803 /* XXX: add frequency */
804 };
805
806 struct QEMUTimer {
807 QEMUClock *clock;
808 int64_t expire_time;
809 QEMUTimerCB *cb;
810 void *opaque;
811 struct QEMUTimer *next;
812 };
813
814 struct qemu_alarm_timer {
815 char const *name;
816 unsigned int flags;
817
818 int (*start)(struct qemu_alarm_timer *t);
819 void (*stop)(struct qemu_alarm_timer *t);
820 void (*rearm)(struct qemu_alarm_timer *t);
821 void *priv;
822 };
823
824 #define ALARM_FLAG_DYNTICKS 0x1
825
826 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
827 {
828 return t->flags & ALARM_FLAG_DYNTICKS;
829 }
830
831 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
832 {
833 if (!alarm_has_dynticks(t))
834 return;
835
836 t->rearm(t);
837 }
838
839 /* TODO: MIN_TIMER_REARM_US should be optimized */
840 #define MIN_TIMER_REARM_US 250
841
842 static struct qemu_alarm_timer *alarm_timer;
843
844 #ifdef _WIN32
845
846 struct qemu_alarm_win32 {
847 MMRESULT timerId;
848 HANDLE host_alarm;
849 unsigned int period;
850 } alarm_win32_data = {0, NULL, -1};
851
852 static int win32_start_timer(struct qemu_alarm_timer *t);
853 static void win32_stop_timer(struct qemu_alarm_timer *t);
854 static void win32_rearm_timer(struct qemu_alarm_timer *t);
855
856 #else
857
858 static int unix_start_timer(struct qemu_alarm_timer *t);
859 static void unix_stop_timer(struct qemu_alarm_timer *t);
860
861 #ifdef __linux__
862
863 static int dynticks_start_timer(struct qemu_alarm_timer *t);
864 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
865 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
866
867 static int hpet_start_timer(struct qemu_alarm_timer *t);
868 static void hpet_stop_timer(struct qemu_alarm_timer *t);
869
870 static int rtc_start_timer(struct qemu_alarm_timer *t);
871 static void rtc_stop_timer(struct qemu_alarm_timer *t);
872
873 #endif /* __linux__ */
874
875 #endif /* _WIN32 */
876
877 static struct qemu_alarm_timer alarm_timers[] = {
878 #ifndef _WIN32
879 #ifdef __linux__
880 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
881 dynticks_stop_timer, dynticks_rearm_timer, NULL},
882 /* HPET - if available - is preferred */
883 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
884 /* ...otherwise try RTC */
885 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
886 #endif
887 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
888 #else
889 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
890 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
891 {"win32", 0, win32_start_timer,
892 win32_stop_timer, NULL, &alarm_win32_data},
893 #endif
894 {NULL, }
895 };
896
897 static void show_available_alarms()
898 {
899 int i;
900
901 printf("Available alarm timers, in order of precedence:\n");
902 for (i = 0; alarm_timers[i].name; i++)
903 printf("%s\n", alarm_timers[i].name);
904 }
905
906 static void configure_alarms(char const *opt)
907 {
908 int i;
909 int cur = 0;
910 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
911 char *arg;
912 char *name;
913
914 if (!strcmp(opt, "help")) {
915 show_available_alarms();
916 exit(0);
917 }
918
919 arg = strdup(opt);
920
921 /* Reorder the array */
922 name = strtok(arg, ",");
923 while (name) {
924 struct qemu_alarm_timer tmp;
925
926 for (i = 0; i < count && alarm_timers[i].name; i++) {
927 if (!strcmp(alarm_timers[i].name, name))
928 break;
929 }
930
931 if (i == count) {
932 fprintf(stderr, "Unknown clock %s\n", name);
933 goto next;
934 }
935
936 if (i < cur)
937 /* Ignore */
938 goto next;
939
940 /* Swap */
941 tmp = alarm_timers[i];
942 alarm_timers[i] = alarm_timers[cur];
943 alarm_timers[cur] = tmp;
944
945 cur++;
946 next:
947 name = strtok(NULL, ",");
948 }
949
950 free(arg);
951
952 if (cur) {
953 /* Disable remaining timers */
954 for (i = cur; i < count; i++)
955 alarm_timers[i].name = NULL;
956 }
957
958 /* debug */
959 show_available_alarms();
960 }
961
962 QEMUClock *rt_clock;
963 QEMUClock *vm_clock;
964
965 static QEMUTimer *active_timers[2];
966
967 static QEMUClock *qemu_new_clock(int type)
968 {
969 QEMUClock *clock;
970 clock = qemu_mallocz(sizeof(QEMUClock));
971 if (!clock)
972 return NULL;
973 clock->type = type;
974 return clock;
975 }
976
977 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
978 {
979 QEMUTimer *ts;
980
981 ts = qemu_mallocz(sizeof(QEMUTimer));
982 ts->clock = clock;
983 ts->cb = cb;
984 ts->opaque = opaque;
985 return ts;
986 }
987
988 void qemu_free_timer(QEMUTimer *ts)
989 {
990 qemu_free(ts);
991 }
992
993 /* stop a timer, but do not dealloc it */
994 void qemu_del_timer(QEMUTimer *ts)
995 {
996 QEMUTimer **pt, *t;
997
998 /* NOTE: this code must be signal safe because
999 qemu_timer_expired() can be called from a signal. */
1000 pt = &active_timers[ts->clock->type];
1001 for(;;) {
1002 t = *pt;
1003 if (!t)
1004 break;
1005 if (t == ts) {
1006 *pt = t->next;
1007 break;
1008 }
1009 pt = &t->next;
1010 }
1011 }
1012
1013 /* modify the current timer so that it will be fired when current_time
1014 >= expire_time. The corresponding callback will be called. */
1015 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1016 {
1017 QEMUTimer **pt, *t;
1018
1019 qemu_del_timer(ts);
1020
1021 /* add the timer in the sorted list */
1022 /* NOTE: this code must be signal safe because
1023 qemu_timer_expired() can be called from a signal. */
1024 pt = &active_timers[ts->clock->type];
1025 for(;;) {
1026 t = *pt;
1027 if (!t)
1028 break;
1029 if (t->expire_time > expire_time)
1030 break;
1031 pt = &t->next;
1032 }
1033 ts->expire_time = expire_time;
1034 ts->next = *pt;
1035 *pt = ts;
1036 }
1037
1038 int qemu_timer_pending(QEMUTimer *ts)
1039 {
1040 QEMUTimer *t;
1041 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1042 if (t == ts)
1043 return 1;
1044 }
1045 return 0;
1046 }
1047
1048 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1049 {
1050 if (!timer_head)
1051 return 0;
1052 return (timer_head->expire_time <= current_time);
1053 }
1054
1055 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1056 {
1057 QEMUTimer *ts;
1058
1059 for(;;) {
1060 ts = *ptimer_head;
1061 if (!ts || ts->expire_time > current_time)
1062 break;
1063 /* remove timer from the list before calling the callback */
1064 *ptimer_head = ts->next;
1065 ts->next = NULL;
1066
1067 /* run the callback (the timer list can be modified) */
1068 ts->cb(ts->opaque);
1069 }
1070 qemu_rearm_alarm_timer(alarm_timer);
1071 }
1072
1073 int64_t qemu_get_clock(QEMUClock *clock)
1074 {
1075 switch(clock->type) {
1076 case QEMU_TIMER_REALTIME:
1077 return get_clock() / 1000000;
1078 default:
1079 case QEMU_TIMER_VIRTUAL:
1080 return cpu_get_clock();
1081 }
1082 }
1083
1084 static void init_timers(void)
1085 {
1086 init_get_clock();
1087 ticks_per_sec = QEMU_TIMER_BASE;
1088 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1089 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1090 }
1091
1092 /* save a timer */
1093 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1094 {
1095 uint64_t expire_time;
1096
1097 if (qemu_timer_pending(ts)) {
1098 expire_time = ts->expire_time;
1099 } else {
1100 expire_time = -1;
1101 }
1102 qemu_put_be64(f, expire_time);
1103 }
1104
1105 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1106 {
1107 uint64_t expire_time;
1108
1109 expire_time = qemu_get_be64(f);
1110 if (expire_time != -1) {
1111 qemu_mod_timer(ts, expire_time);
1112 } else {
1113 qemu_del_timer(ts);
1114 }
1115 }
1116
1117 static void timer_save(QEMUFile *f, void *opaque)
1118 {
1119 if (cpu_ticks_enabled) {
1120 hw_error("cannot save state if virtual timers are running");
1121 }
1122 qemu_put_be64s(f, &cpu_ticks_offset);
1123 qemu_put_be64s(f, &ticks_per_sec);
1124 qemu_put_be64s(f, &cpu_clock_offset);
1125 }
1126
1127 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1128 {
1129 if (version_id != 1 && version_id != 2)
1130 return -EINVAL;
1131 if (cpu_ticks_enabled) {
1132 return -EINVAL;
1133 }
1134 qemu_get_be64s(f, &cpu_ticks_offset);
1135 qemu_get_be64s(f, &ticks_per_sec);
1136 if (version_id == 2) {
1137 qemu_get_be64s(f, &cpu_clock_offset);
1138 }
1139 return 0;
1140 }
1141
1142 #ifdef _WIN32
1143 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1144 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1145 #else
1146 static void host_alarm_handler(int host_signum)
1147 #endif
1148 {
1149 #if 0
1150 #define DISP_FREQ 1000
1151 {
1152 static int64_t delta_min = INT64_MAX;
1153 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1154 static int count;
1155 ti = qemu_get_clock(vm_clock);
1156 if (last_clock != 0) {
1157 delta = ti - last_clock;
1158 if (delta < delta_min)
1159 delta_min = delta;
1160 if (delta > delta_max)
1161 delta_max = delta;
1162 delta_cum += delta;
1163 if (++count == DISP_FREQ) {
1164 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1165 muldiv64(delta_min, 1000000, ticks_per_sec),
1166 muldiv64(delta_max, 1000000, ticks_per_sec),
1167 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1168 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1169 count = 0;
1170 delta_min = INT64_MAX;
1171 delta_max = 0;
1172 delta_cum = 0;
1173 }
1174 }
1175 last_clock = ti;
1176 }
1177 #endif
1178 if (alarm_has_dynticks(alarm_timer) ||
1179 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1180 qemu_get_clock(vm_clock)) ||
1181 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1182 qemu_get_clock(rt_clock))) {
1183 #ifdef _WIN32
1184 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1185 SetEvent(data->host_alarm);
1186 #endif
1187 CPUState *env = next_cpu;
1188
1189 /* stop the currently executing cpu because a timer occured */
1190 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1191 #ifdef USE_KQEMU
1192 if (env->kqemu_enabled) {
1193 kqemu_cpu_interrupt(env);
1194 }
1195 #endif
1196 event_pending = 1;
1197 }
1198 }
1199
1200 static uint64_t qemu_next_deadline(void)
1201 {
1202 int64_t nearest_delta_us = INT64_MAX;
1203 int64_t vmdelta_us;
1204
1205 if (active_timers[QEMU_TIMER_REALTIME])
1206 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1207 qemu_get_clock(rt_clock))*1000;
1208
1209 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1210 /* round up */
1211 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1212 qemu_get_clock(vm_clock)+999)/1000;
1213 if (vmdelta_us < nearest_delta_us)
1214 nearest_delta_us = vmdelta_us;
1215 }
1216
1217 /* Avoid arming the timer to negative, zero, or too low values */
1218 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1219 nearest_delta_us = MIN_TIMER_REARM_US;
1220
1221 return nearest_delta_us;
1222 }
1223
1224 #ifndef _WIN32
1225
1226 #if defined(__linux__)
1227
1228 #define RTC_FREQ 1024
1229
1230 static void enable_sigio_timer(int fd)
1231 {
1232 struct sigaction act;
1233
1234 /* timer signal */
1235 sigfillset(&act.sa_mask);
1236 act.sa_flags = 0;
1237 act.sa_handler = host_alarm_handler;
1238
1239 sigaction(SIGIO, &act, NULL);
1240 fcntl(fd, F_SETFL, O_ASYNC);
1241 fcntl(fd, F_SETOWN, getpid());
1242 }
1243
1244 static int hpet_start_timer(struct qemu_alarm_timer *t)
1245 {
1246 struct hpet_info info;
1247 int r, fd;
1248
1249 fd = open("/dev/hpet", O_RDONLY);
1250 if (fd < 0)
1251 return -1;
1252
1253 /* Set frequency */
1254 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1255 if (r < 0) {
1256 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1257 "error, but for better emulation accuracy type:\n"
1258 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1259 goto fail;
1260 }
1261
1262 /* Check capabilities */
1263 r = ioctl(fd, HPET_INFO, &info);
1264 if (r < 0)
1265 goto fail;
1266
1267 /* Enable periodic mode */
1268 r = ioctl(fd, HPET_EPI, 0);
1269 if (info.hi_flags && (r < 0))
1270 goto fail;
1271
1272 /* Enable interrupt */
1273 r = ioctl(fd, HPET_IE_ON, 0);
1274 if (r < 0)
1275 goto fail;
1276
1277 enable_sigio_timer(fd);
1278 t->priv = (void *)(long)fd;
1279
1280 return 0;
1281 fail:
1282 close(fd);
1283 return -1;
1284 }
1285
1286 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1287 {
1288 int fd = (long)t->priv;
1289
1290 close(fd);
1291 }
1292
1293 static int rtc_start_timer(struct qemu_alarm_timer *t)
1294 {
1295 int rtc_fd;
1296
1297 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1298 if (rtc_fd < 0)
1299 return -1;
1300 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1305 }
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1310 }
1311
1312 enable_sigio_timer(rtc_fd);
1313
1314 t->priv = (void *)(long)rtc_fd;
1315
1316 return 0;
1317 }
1318
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 {
1321 int rtc_fd = (long)t->priv;
1322
1323 close(rtc_fd);
1324 }
1325
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 {
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1331
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1335
1336 sigaction(SIGALRM, &act, NULL);
1337
1338 ev.sigev_value.sival_int = 0;
1339 ev.sigev_notify = SIGEV_SIGNAL;
1340 ev.sigev_signo = SIGALRM;
1341
1342 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1343 perror("timer_create");
1344
1345 /* disable dynticks */
1346 fprintf(stderr, "Dynamic Ticks disabled\n");
1347
1348 return -1;
1349 }
1350
1351 t->priv = (void *)host_timer;
1352
1353 return 0;
1354 }
1355
1356 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1357 {
1358 timer_t host_timer = (timer_t)t->priv;
1359
1360 timer_delete(host_timer);
1361 }
1362
1363 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1364 {
1365 timer_t host_timer = (timer_t)t->priv;
1366 struct itimerspec timeout;
1367 int64_t nearest_delta_us = INT64_MAX;
1368 int64_t current_us;
1369
1370 if (!active_timers[QEMU_TIMER_REALTIME] &&
1371 !active_timers[QEMU_TIMER_VIRTUAL])
1372 return;
1373
1374 nearest_delta_us = qemu_next_deadline();
1375
1376 /* check whether a timer is already running */
1377 if (timer_gettime(host_timer, &timeout)) {
1378 perror("gettime");
1379 fprintf(stderr, "Internal timer error: aborting\n");
1380 exit(1);
1381 }
1382 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1383 if (current_us && current_us <= nearest_delta_us)
1384 return;
1385
1386 timeout.it_interval.tv_sec = 0;
1387 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1388 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1389 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1390 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1391 perror("settime");
1392 fprintf(stderr, "Internal timer error: aborting\n");
1393 exit(1);
1394 }
1395 }
1396
1397 #endif /* defined(__linux__) */
1398
1399 static int unix_start_timer(struct qemu_alarm_timer *t)
1400 {
1401 struct sigaction act;
1402 struct itimerval itv;
1403 int err;
1404
1405 /* timer signal */
1406 sigfillset(&act.sa_mask);
1407 act.sa_flags = 0;
1408 act.sa_handler = host_alarm_handler;
1409
1410 sigaction(SIGALRM, &act, NULL);
1411
1412 itv.it_interval.tv_sec = 0;
1413 /* for i386 kernel 2.6 to get 1 ms */
1414 itv.it_interval.tv_usec = 999;
1415 itv.it_value.tv_sec = 0;
1416 itv.it_value.tv_usec = 10 * 1000;
1417
1418 err = setitimer(ITIMER_REAL, &itv, NULL);
1419 if (err)
1420 return -1;
1421
1422 return 0;
1423 }
1424
1425 static void unix_stop_timer(struct qemu_alarm_timer *t)
1426 {
1427 struct itimerval itv;
1428
1429 memset(&itv, 0, sizeof(itv));
1430 setitimer(ITIMER_REAL, &itv, NULL);
1431 }
1432
1433 #endif /* !defined(_WIN32) */
1434
1435 #ifdef _WIN32
1436
1437 static int win32_start_timer(struct qemu_alarm_timer *t)
1438 {
1439 TIMECAPS tc;
1440 struct qemu_alarm_win32 *data = t->priv;
1441 UINT flags;
1442
1443 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1444 if (!data->host_alarm) {
1445 perror("Failed CreateEvent");
1446 return -1;
1447 }
1448
1449 memset(&tc, 0, sizeof(tc));
1450 timeGetDevCaps(&tc, sizeof(tc));
1451
1452 if (data->period < tc.wPeriodMin)
1453 data->period = tc.wPeriodMin;
1454
1455 timeBeginPeriod(data->period);
1456
1457 flags = TIME_CALLBACK_FUNCTION;
1458 if (alarm_has_dynticks(t))
1459 flags |= TIME_ONESHOT;
1460 else
1461 flags |= TIME_PERIODIC;
1462
1463 data->timerId = timeSetEvent(1, // interval (ms)
1464 data->period, // resolution
1465 host_alarm_handler, // function
1466 (DWORD)t, // parameter
1467 flags);
1468
1469 if (!data->timerId) {
1470 perror("Failed to initialize win32 alarm timer");
1471
1472 timeEndPeriod(data->period);
1473 CloseHandle(data->host_alarm);
1474 return -1;
1475 }
1476
1477 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1478
1479 return 0;
1480 }
1481
1482 static void win32_stop_timer(struct qemu_alarm_timer *t)
1483 {
1484 struct qemu_alarm_win32 *data = t->priv;
1485
1486 timeKillEvent(data->timerId);
1487 timeEndPeriod(data->period);
1488
1489 CloseHandle(data->host_alarm);
1490 }
1491
1492 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1493 {
1494 struct qemu_alarm_win32 *data = t->priv;
1495 uint64_t nearest_delta_us;
1496
1497 if (!active_timers[QEMU_TIMER_REALTIME] &&
1498 !active_timers[QEMU_TIMER_VIRTUAL])
1499 return;
1500
1501 nearest_delta_us = qemu_next_deadline();
1502 nearest_delta_us /= 1000;
1503
1504 timeKillEvent(data->timerId);
1505
1506 data->timerId = timeSetEvent(1,
1507 data->period,
1508 host_alarm_handler,
1509 (DWORD)t,
1510 TIME_ONESHOT | TIME_PERIODIC);
1511
1512 if (!data->timerId) {
1513 perror("Failed to re-arm win32 alarm timer");
1514
1515 timeEndPeriod(data->period);
1516 CloseHandle(data->host_alarm);
1517 exit(1);
1518 }
1519 }
1520
1521 #endif /* _WIN32 */
1522
1523 static void init_timer_alarm(void)
1524 {
1525 struct qemu_alarm_timer *t;
1526 int i, err = -1;
1527
1528 for (i = 0; alarm_timers[i].name; i++) {
1529 t = &alarm_timers[i];
1530
1531 err = t->start(t);
1532 if (!err)
1533 break;
1534 }
1535
1536 if (err) {
1537 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1538 fprintf(stderr, "Terminating\n");
1539 exit(1);
1540 }
1541
1542 alarm_timer = t;
1543 }
1544
1545 static void quit_timers(void)
1546 {
1547 alarm_timer->stop(alarm_timer);
1548 alarm_timer = NULL;
1549 }
1550
1551 /***********************************************************/
1552 /* character device */
1553
1554 static void qemu_chr_event(CharDriverState *s, int event)
1555 {
1556 if (!s->chr_event)
1557 return;
1558 s->chr_event(s->handler_opaque, event);
1559 }
1560
1561 static void qemu_chr_reset_bh(void *opaque)
1562 {
1563 CharDriverState *s = opaque;
1564 qemu_chr_event(s, CHR_EVENT_RESET);
1565 qemu_bh_delete(s->bh);
1566 s->bh = NULL;
1567 }
1568
1569 void qemu_chr_reset(CharDriverState *s)
1570 {
1571 if (s->bh == NULL) {
1572 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1573 qemu_bh_schedule(s->bh);
1574 }
1575 }
1576
1577 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1578 {
1579 return s->chr_write(s, buf, len);
1580 }
1581
1582 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1583 {
1584 if (!s->chr_ioctl)
1585 return -ENOTSUP;
1586 return s->chr_ioctl(s, cmd, arg);
1587 }
1588
1589 int qemu_chr_can_read(CharDriverState *s)
1590 {
1591 if (!s->chr_can_read)
1592 return 0;
1593 return s->chr_can_read(s->handler_opaque);
1594 }
1595
1596 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1597 {
1598 s->chr_read(s->handler_opaque, buf, len);
1599 }
1600
1601 void qemu_chr_accept_input(CharDriverState *s)
1602 {
1603 if (s->chr_accept_input)
1604 s->chr_accept_input(s);
1605 }
1606
1607 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1608 {
1609 char buf[4096];
1610 va_list ap;
1611 va_start(ap, fmt);
1612 vsnprintf(buf, sizeof(buf), fmt, ap);
1613 qemu_chr_write(s, buf, strlen(buf));
1614 va_end(ap);
1615 }
1616
1617 void qemu_chr_send_event(CharDriverState *s, int event)
1618 {
1619 if (s->chr_send_event)
1620 s->chr_send_event(s, event);
1621 }
1622
1623 void qemu_chr_add_handlers(CharDriverState *s,
1624 IOCanRWHandler *fd_can_read,
1625 IOReadHandler *fd_read,
1626 IOEventHandler *fd_event,
1627 void *opaque)
1628 {
1629 s->chr_can_read = fd_can_read;
1630 s->chr_read = fd_read;
1631 s->chr_event = fd_event;
1632 s->handler_opaque = opaque;
1633 if (s->chr_update_read_handler)
1634 s->chr_update_read_handler(s);
1635 }
1636
1637 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1638 {
1639 return len;
1640 }
1641
1642 static CharDriverState *qemu_chr_open_null(void)
1643 {
1644 CharDriverState *chr;
1645
1646 chr = qemu_mallocz(sizeof(CharDriverState));
1647 if (!chr)
1648 return NULL;
1649 chr->chr_write = null_chr_write;
1650 return chr;
1651 }
1652
1653 /* MUX driver for serial I/O splitting */
1654 static int term_timestamps;
1655 static int64_t term_timestamps_start;
1656 #define MAX_MUX 4
1657 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1658 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1659 typedef struct {
1660 IOCanRWHandler *chr_can_read[MAX_MUX];
1661 IOReadHandler *chr_read[MAX_MUX];
1662 IOEventHandler *chr_event[MAX_MUX];
1663 void *ext_opaque[MAX_MUX];
1664 CharDriverState *drv;
1665 unsigned char buffer[MUX_BUFFER_SIZE];
1666 int prod;
1667 int cons;
1668 int mux_cnt;
1669 int term_got_escape;
1670 int max_size;
1671 } MuxDriver;
1672
1673
1674 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1675 {
1676 MuxDriver *d = chr->opaque;
1677 int ret;
1678 if (!term_timestamps) {
1679 ret = d->drv->chr_write(d->drv, buf, len);
1680 } else {
1681 int i;
1682
1683 ret = 0;
1684 for(i = 0; i < len; i++) {
1685 ret += d->drv->chr_write(d->drv, buf+i, 1);
1686 if (buf[i] == '\n') {
1687 char buf1[64];
1688 int64_t ti;
1689 int secs;
1690
1691 ti = get_clock();
1692 if (term_timestamps_start == -1)
1693 term_timestamps_start = ti;
1694 ti -= term_timestamps_start;
1695 secs = ti / 1000000000;
1696 snprintf(buf1, sizeof(buf1),
1697 "[%02d:%02d:%02d.%03d] ",
1698 secs / 3600,
1699 (secs / 60) % 60,
1700 secs % 60,
1701 (int)((ti / 1000000) % 1000));
1702 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1703 }
1704 }
1705 }
1706 return ret;
1707 }
1708
1709 static char *mux_help[] = {
1710 "% h print this help\n\r",
1711 "% x exit emulator\n\r",
1712 "% s save disk data back to file (if -snapshot)\n\r",
1713 "% t toggle console timestamps\n\r"
1714 "% b send break (magic sysrq)\n\r",
1715 "% c switch between console and monitor\n\r",
1716 "% % sends %\n\r",
1717 NULL
1718 };
1719
1720 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1721 static void mux_print_help(CharDriverState *chr)
1722 {
1723 int i, j;
1724 char ebuf[15] = "Escape-Char";
1725 char cbuf[50] = "\n\r";
1726
1727 if (term_escape_char > 0 && term_escape_char < 26) {
1728 sprintf(cbuf,"\n\r");
1729 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1730 } else {
1731 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1732 }
1733 chr->chr_write(chr, cbuf, strlen(cbuf));
1734 for (i = 0; mux_help[i] != NULL; i++) {
1735 for (j=0; mux_help[i][j] != '\0'; j++) {
1736 if (mux_help[i][j] == '%')
1737 chr->chr_write(chr, ebuf, strlen(ebuf));
1738 else
1739 chr->chr_write(chr, &mux_help[i][j], 1);
1740 }
1741 }
1742 }
1743
1744 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1745 {
1746 if (d->term_got_escape) {
1747 d->term_got_escape = 0;
1748 if (ch == term_escape_char)
1749 goto send_char;
1750 switch(ch) {
1751 case '?':
1752 case 'h':
1753 mux_print_help(chr);
1754 break;
1755 case 'x':
1756 {
1757 char *term = "QEMU: Terminated\n\r";
1758 chr->chr_write(chr,term,strlen(term));
1759 exit(0);
1760 break;
1761 }
1762 case 's':
1763 {
1764 int i;
1765 for (i = 0; i < nb_drives; i++) {
1766 bdrv_commit(drives_table[i].bdrv);
1767 }
1768 }
1769 break;
1770 case 'b':
1771 qemu_chr_event(chr, CHR_EVENT_BREAK);
1772 break;
1773 case 'c':
1774 /* Switch to the next registered device */
1775 chr->focus++;
1776 if (chr->focus >= d->mux_cnt)
1777 chr->focus = 0;
1778 break;
1779 case 't':
1780 term_timestamps = !term_timestamps;
1781 term_timestamps_start = -1;
1782 break;
1783 }
1784 } else if (ch == term_escape_char) {
1785 d->term_got_escape = 1;
1786 } else {
1787 send_char:
1788 return 1;
1789 }
1790 return 0;
1791 }
1792
1793 static void mux_chr_accept_input(CharDriverState *chr)
1794 {
1795 int m = chr->focus;
1796 MuxDriver *d = chr->opaque;
1797
1798 while (d->prod != d->cons &&
1799 d->chr_can_read[m] &&
1800 d->chr_can_read[m](d->ext_opaque[m])) {
1801 d->chr_read[m](d->ext_opaque[m],
1802 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1803 }
1804 }
1805
1806 static int mux_chr_can_read(void *opaque)
1807 {
1808 CharDriverState *chr = opaque;
1809 MuxDriver *d = chr->opaque;
1810
1811 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1812 return 1;
1813 if (d->chr_can_read[chr->focus])
1814 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1815 return 0;
1816 }
1817
1818 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1819 {
1820 CharDriverState *chr = opaque;
1821 MuxDriver *d = chr->opaque;
1822 int m = chr->focus;
1823 int i;
1824
1825 mux_chr_accept_input (opaque);
1826
1827 for(i = 0; i < size; i++)
1828 if (mux_proc_byte(chr, d, buf[i])) {
1829 if (d->prod == d->cons &&
1830 d->chr_can_read[m] &&
1831 d->chr_can_read[m](d->ext_opaque[m]))
1832 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1833 else
1834 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1835 }
1836 }
1837
1838 static void mux_chr_event(void *opaque, int event)
1839 {
1840 CharDriverState *chr = opaque;
1841 MuxDriver *d = chr->opaque;
1842 int i;
1843
1844 /* Send the event to all registered listeners */
1845 for (i = 0; i < d->mux_cnt; i++)
1846 if (d->chr_event[i])
1847 d->chr_event[i](d->ext_opaque[i], event);
1848 }
1849
1850 static void mux_chr_update_read_handler(CharDriverState *chr)
1851 {
1852 MuxDriver *d = chr->opaque;
1853
1854 if (d->mux_cnt >= MAX_MUX) {
1855 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1856 return;
1857 }
1858 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1859 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1860 d->chr_read[d->mux_cnt] = chr->chr_read;
1861 d->chr_event[d->mux_cnt] = chr->chr_event;
1862 /* Fix up the real driver with mux routines */
1863 if (d->mux_cnt == 0) {
1864 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1865 mux_chr_event, chr);
1866 }
1867 chr->focus = d->mux_cnt;
1868 d->mux_cnt++;
1869 }
1870
1871 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1872 {
1873 CharDriverState *chr;
1874 MuxDriver *d;
1875
1876 chr = qemu_mallocz(sizeof(CharDriverState));
1877 if (!chr)
1878 return NULL;
1879 d = qemu_mallocz(sizeof(MuxDriver));
1880 if (!d) {
1881 free(chr);
1882 return NULL;
1883 }
1884
1885 chr->opaque = d;
1886 d->drv = drv;
1887 chr->focus = -1;
1888 chr->chr_write = mux_chr_write;
1889 chr->chr_update_read_handler = mux_chr_update_read_handler;
1890 chr->chr_accept_input = mux_chr_accept_input;
1891 return chr;
1892 }
1893
1894
1895 #ifdef _WIN32
1896
1897 static void socket_cleanup(void)
1898 {
1899 WSACleanup();
1900 }
1901
1902 static int socket_init(void)
1903 {
1904 WSADATA Data;
1905 int ret, err;
1906
1907 ret = WSAStartup(MAKEWORD(2,2), &Data);
1908 if (ret != 0) {
1909 err = WSAGetLastError();
1910 fprintf(stderr, "WSAStartup: %d\n", err);
1911 return -1;
1912 }
1913 atexit(socket_cleanup);
1914 return 0;
1915 }
1916
1917 static int send_all(int fd, const uint8_t *buf, int len1)
1918 {
1919 int ret, len;
1920
1921 len = len1;
1922 while (len > 0) {
1923 ret = send(fd, buf, len, 0);
1924 if (ret < 0) {
1925 int errno;
1926 errno = WSAGetLastError();
1927 if (errno != WSAEWOULDBLOCK) {
1928 return -1;
1929 }
1930 } else if (ret == 0) {
1931 break;
1932 } else {
1933 buf += ret;
1934 len -= ret;
1935 }
1936 }
1937 return len1 - len;
1938 }
1939
1940 void socket_set_nonblock(int fd)
1941 {
1942 unsigned long opt = 1;
1943 ioctlsocket(fd, FIONBIO, &opt);
1944 }
1945
1946 #else
1947
1948 static int unix_write(int fd, const uint8_t *buf, int len1)
1949 {
1950 int ret, len;
1951
1952 len = len1;
1953 while (len > 0) {
1954 ret = write(fd, buf, len);
1955 if (ret < 0) {
1956 if (errno != EINTR && errno != EAGAIN)
1957 return -1;
1958 } else if (ret == 0) {
1959 break;
1960 } else {
1961 buf += ret;
1962 len -= ret;
1963 }
1964 }
1965 return len1 - len;
1966 }
1967
1968 static inline int send_all(int fd, const uint8_t *buf, int len1)
1969 {
1970 return unix_write(fd, buf, len1);
1971 }
1972
1973 void socket_set_nonblock(int fd)
1974 {
1975 fcntl(fd, F_SETFL, O_NONBLOCK);
1976 }
1977 #endif /* !_WIN32 */
1978
1979 #ifndef _WIN32
1980
1981 typedef struct {
1982 int fd_in, fd_out;
1983 int max_size;
1984 } FDCharDriver;
1985
1986 #define STDIO_MAX_CLIENTS 1
1987 static int stdio_nb_clients = 0;
1988
1989 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1990 {
1991 FDCharDriver *s = chr->opaque;
1992 return unix_write(s->fd_out, buf, len);
1993 }
1994
1995 static int fd_chr_read_poll(void *opaque)
1996 {
1997 CharDriverState *chr = opaque;
1998 FDCharDriver *s = chr->opaque;
1999
2000 s->max_size = qemu_chr_can_read(chr);
2001 return s->max_size;
2002 }
2003
2004 static void fd_chr_read(void *opaque)
2005 {
2006 CharDriverState *chr = opaque;
2007 FDCharDriver *s = chr->opaque;
2008 int size, len;
2009 uint8_t buf[1024];
2010
2011 len = sizeof(buf);
2012 if (len > s->max_size)
2013 len = s->max_size;
2014 if (len == 0)
2015 return;
2016 size = read(s->fd_in, buf, len);
2017 if (size == 0) {
2018 /* FD has been closed. Remove it from the active list. */
2019 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2020 return;
2021 }
2022 if (size > 0) {
2023 qemu_chr_read(chr, buf, size);
2024 }
2025 }
2026
2027 static void fd_chr_update_read_handler(CharDriverState *chr)
2028 {
2029 FDCharDriver *s = chr->opaque;
2030
2031 if (s->fd_in >= 0) {
2032 if (nographic && s->fd_in == 0) {
2033 } else {
2034 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2035 fd_chr_read, NULL, chr);
2036 }
2037 }
2038 }
2039
2040 /* open a character device to a unix fd */
2041 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2042 {
2043 CharDriverState *chr;
2044 FDCharDriver *s;
2045
2046 chr = qemu_mallocz(sizeof(CharDriverState));
2047 if (!chr)
2048 return NULL;
2049 s = qemu_mallocz(sizeof(FDCharDriver));
2050 if (!s) {
2051 free(chr);
2052 return NULL;
2053 }
2054 s->fd_in = fd_in;
2055 s->fd_out = fd_out;
2056 chr->opaque = s;
2057 chr->chr_write = fd_chr_write;
2058 chr->chr_update_read_handler = fd_chr_update_read_handler;
2059
2060 qemu_chr_reset(chr);
2061
2062 return chr;
2063 }
2064
2065 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2066 {
2067 int fd_out;
2068
2069 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2070 if (fd_out < 0)
2071 return NULL;
2072 return qemu_chr_open_fd(-1, fd_out);
2073 }
2074
2075 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2076 {
2077 int fd_in, fd_out;
2078 char filename_in[256], filename_out[256];
2079
2080 snprintf(filename_in, 256, "%s.in", filename);
2081 snprintf(filename_out, 256, "%s.out", filename);
2082 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2083 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2084 if (fd_in < 0 || fd_out < 0) {
2085 if (fd_in >= 0)
2086 close(fd_in);
2087 if (fd_out >= 0)
2088 close(fd_out);
2089 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2090 if (fd_in < 0)
2091 return NULL;
2092 }
2093 return qemu_chr_open_fd(fd_in, fd_out);
2094 }
2095
2096
2097 /* for STDIO, we handle the case where several clients use it
2098 (nographic mode) */
2099
2100 #define TERM_FIFO_MAX_SIZE 1
2101
2102 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2103 static int term_fifo_size;
2104
2105 static int stdio_read_poll(void *opaque)
2106 {
2107 CharDriverState *chr = opaque;
2108
2109 /* try to flush the queue if needed */
2110 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2111 qemu_chr_read(chr, term_fifo, 1);
2112 term_fifo_size = 0;
2113 }
2114 /* see if we can absorb more chars */
2115 if (term_fifo_size == 0)
2116 return 1;
2117 else
2118 return 0;
2119 }
2120
2121 static void stdio_read(void *opaque)
2122 {
2123 int size;
2124 uint8_t buf[1];
2125 CharDriverState *chr = opaque;
2126
2127 size = read(0, buf, 1);
2128 if (size == 0) {
2129 /* stdin has been closed. Remove it from the active list. */
2130 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2131 return;
2132 }
2133 if (size > 0) {
2134 if (qemu_chr_can_read(chr) > 0) {
2135 qemu_chr_read(chr, buf, 1);
2136 } else if (term_fifo_size == 0) {
2137 term_fifo[term_fifo_size++] = buf[0];
2138 }
2139 }
2140 }
2141
2142 /* init terminal so that we can grab keys */
2143 static struct termios oldtty;
2144 static int old_fd0_flags;
2145
2146 static void term_exit(void)
2147 {
2148 tcsetattr (0, TCSANOW, &oldtty);
2149 fcntl(0, F_SETFL, old_fd0_flags);
2150 }
2151
2152 static void term_init(void)
2153 {
2154 struct termios tty;
2155
2156 tcgetattr (0, &tty);
2157 oldtty = tty;
2158 old_fd0_flags = fcntl(0, F_GETFL);
2159
2160 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2161 |INLCR|IGNCR|ICRNL|IXON);
2162 tty.c_oflag |= OPOST;
2163 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2164 /* if graphical mode, we allow Ctrl-C handling */
2165 if (nographic)
2166 tty.c_lflag &= ~ISIG;
2167 tty.c_cflag &= ~(CSIZE|PARENB);
2168 tty.c_cflag |= CS8;
2169 tty.c_cc[VMIN] = 1;
2170 tty.c_cc[VTIME] = 0;
2171
2172 tcsetattr (0, TCSANOW, &tty);
2173
2174 atexit(term_exit);
2175
2176 fcntl(0, F_SETFL, O_NONBLOCK);
2177 }
2178
2179 static CharDriverState *qemu_chr_open_stdio(void)
2180 {
2181 CharDriverState *chr;
2182
2183 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2184 return NULL;
2185 chr = qemu_chr_open_fd(0, 1);
2186 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2187 stdio_nb_clients++;
2188 term_init();
2189
2190 return chr;
2191 }
2192
2193 #if defined(__linux__) || defined(__sun__)
2194 static CharDriverState *qemu_chr_open_pty(void)
2195 {
2196 struct termios tty;
2197 char slave_name[1024];
2198 int master_fd, slave_fd;
2199
2200 #if defined(__linux__)
2201 /* Not satisfying */
2202 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2203 return NULL;
2204 }
2205 #endif
2206
2207 /* Disabling local echo and line-buffered output */
2208 tcgetattr (master_fd, &tty);
2209 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2210 tty.c_cc[VMIN] = 1;
2211 tty.c_cc[VTIME] = 0;
2212 tcsetattr (master_fd, TCSAFLUSH, &tty);
2213
2214 fprintf(stderr, "char device redirected to %s\n", slave_name);
2215 return qemu_chr_open_fd(master_fd, master_fd);
2216 }
2217
2218 static void tty_serial_init(int fd, int speed,
2219 int parity, int data_bits, int stop_bits)
2220 {
2221 struct termios tty;
2222 speed_t spd;
2223
2224 #if 0
2225 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2226 speed, parity, data_bits, stop_bits);
2227 #endif
2228 tcgetattr (fd, &tty);
2229
2230 switch(speed) {
2231 case 50:
2232 spd = B50;
2233 break;
2234 case 75:
2235 spd = B75;
2236 break;
2237 case 300:
2238 spd = B300;
2239 break;
2240 case 600:
2241 spd = B600;
2242 break;
2243 case 1200:
2244 spd = B1200;
2245 break;
2246 case 2400:
2247 spd = B2400;
2248 break;
2249 case 4800:
2250 spd = B4800;
2251 break;
2252 case 9600:
2253 spd = B9600;
2254 break;
2255 case 19200:
2256 spd = B19200;
2257 break;
2258 case 38400:
2259 spd = B38400;
2260 break;
2261 case 57600:
2262 spd = B57600;
2263 break;
2264 default:
2265 case 115200:
2266 spd = B115200;
2267 break;
2268 }
2269
2270 cfsetispeed(&tty, spd);
2271 cfsetospeed(&tty, spd);
2272
2273 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2274 |INLCR|IGNCR|ICRNL|IXON);
2275 tty.c_oflag |= OPOST;
2276 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2277 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2278 switch(data_bits) {
2279 default:
2280 case 8:
2281 tty.c_cflag |= CS8;
2282 break;
2283 case 7:
2284 tty.c_cflag |= CS7;
2285 break;
2286 case 6:
2287 tty.c_cflag |= CS6;
2288 break;
2289 case 5:
2290 tty.c_cflag |= CS5;
2291 break;
2292 }
2293 switch(parity) {
2294 default:
2295 case 'N':
2296 break;
2297 case 'E':
2298 tty.c_cflag |= PARENB;
2299 break;
2300 case 'O':
2301 tty.c_cflag |= PARENB | PARODD;
2302 break;
2303 }
2304 if (stop_bits == 2)
2305 tty.c_cflag |= CSTOPB;
2306
2307 tcsetattr (fd, TCSANOW, &tty);
2308 }
2309
2310 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2311 {
2312 FDCharDriver *s = chr->opaque;
2313
2314 switch(cmd) {
2315 case CHR_IOCTL_SERIAL_SET_PARAMS:
2316 {
2317 QEMUSerialSetParams *ssp = arg;
2318 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2319 ssp->data_bits, ssp->stop_bits);
2320 }
2321 break;
2322 case CHR_IOCTL_SERIAL_SET_BREAK:
2323 {
2324 int enable = *(int *)arg;
2325 if (enable)
2326 tcsendbreak(s->fd_in, 1);
2327 }
2328 break;
2329 default:
2330 return -ENOTSUP;
2331 }
2332 return 0;
2333 }
2334
2335 static CharDriverState *qemu_chr_open_tty(const char *filename)
2336 {
2337 CharDriverState *chr;
2338 int fd;
2339
2340 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2341 fcntl(fd, F_SETFL, O_NONBLOCK);
2342 tty_serial_init(fd, 115200, 'N', 8, 1);
2343 chr = qemu_chr_open_fd(fd, fd);
2344 if (!chr) {
2345 close(fd);
2346 return NULL;
2347 }
2348 chr->chr_ioctl = tty_serial_ioctl;
2349 qemu_chr_reset(chr);
2350 return chr;
2351 }
2352 #else /* ! __linux__ && ! __sun__ */
2353 static CharDriverState *qemu_chr_open_pty(void)
2354 {
2355 return NULL;
2356 }
2357 #endif /* __linux__ || __sun__ */
2358
2359 #if defined(__linux__)
2360 typedef struct {
2361 int fd;
2362 int mode;
2363 } ParallelCharDriver;
2364
2365 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2366 {
2367 if (s->mode != mode) {
2368 int m = mode;
2369 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2370 return 0;
2371 s->mode = mode;
2372 }
2373 return 1;
2374 }
2375
2376 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2377 {
2378 ParallelCharDriver *drv = chr->opaque;
2379 int fd = drv->fd;
2380 uint8_t b;
2381
2382 switch(cmd) {
2383 case CHR_IOCTL_PP_READ_DATA:
2384 if (ioctl(fd, PPRDATA, &b) < 0)
2385 return -ENOTSUP;
2386 *(uint8_t *)arg = b;
2387 break;
2388 case CHR_IOCTL_PP_WRITE_DATA:
2389 b = *(uint8_t *)arg;
2390 if (ioctl(fd, PPWDATA, &b) < 0)
2391 return -ENOTSUP;
2392 break;
2393 case CHR_IOCTL_PP_READ_CONTROL:
2394 if (ioctl(fd, PPRCONTROL, &b) < 0)
2395 return -ENOTSUP;
2396 /* Linux gives only the lowest bits, and no way to know data
2397 direction! For better compatibility set the fixed upper
2398 bits. */
2399 *(uint8_t *)arg = b | 0xc0;
2400 break;
2401 case CHR_IOCTL_PP_WRITE_CONTROL:
2402 b = *(uint8_t *)arg;
2403 if (ioctl(fd, PPWCONTROL, &b) < 0)
2404 return -ENOTSUP;
2405 break;
2406 case CHR_IOCTL_PP_READ_STATUS:
2407 if (ioctl(fd, PPRSTATUS, &b) < 0)
2408 return -ENOTSUP;
2409 *(uint8_t *)arg = b;
2410 break;
2411 case CHR_IOCTL_PP_EPP_READ_ADDR:
2412 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2413 struct ParallelIOArg *parg = arg;
2414 int n = read(fd, parg->buffer, parg->count);
2415 if (n != parg->count) {
2416 return -EIO;
2417 }
2418 }
2419 break;
2420 case CHR_IOCTL_PP_EPP_READ:
2421 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2422 struct ParallelIOArg *parg = arg;
2423 int n = read(fd, parg->buffer, parg->count);
2424 if (n != parg->count) {
2425 return -EIO;
2426 }
2427 }
2428 break;
2429 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2430 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2431 struct ParallelIOArg *parg = arg;
2432 int n = write(fd, parg->buffer, parg->count);
2433 if (n != parg->count) {
2434 return -EIO;
2435 }
2436 }
2437 break;
2438 case CHR_IOCTL_PP_EPP_WRITE:
2439 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2440 struct ParallelIOArg *parg = arg;
2441 int n = write(fd, parg->buffer, parg->count);
2442 if (n != parg->count) {
2443 return -EIO;
2444 }
2445 }
2446 break;
2447 default:
2448 return -ENOTSUP;
2449 }
2450 return 0;
2451 }
2452
2453 static void pp_close(CharDriverState *chr)
2454 {
2455 ParallelCharDriver *drv = chr->opaque;
2456 int fd = drv->fd;
2457
2458 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2459 ioctl(fd, PPRELEASE);
2460 close(fd);
2461 qemu_free(drv);
2462 }
2463
2464 static CharDriverState *qemu_chr_open_pp(const char *filename)
2465 {
2466 CharDriverState *chr;
2467 ParallelCharDriver *drv;
2468 int fd;
2469
2470 TFR(fd = open(filename, O_RDWR));
2471 if (fd < 0)
2472 return NULL;
2473
2474 if (ioctl(fd, PPCLAIM) < 0) {
2475 close(fd);
2476 return NULL;
2477 }
2478
2479 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2480 if (!drv) {
2481 close(fd);
2482 return NULL;
2483 }
2484 drv->fd = fd;
2485 drv->mode = IEEE1284_MODE_COMPAT;
2486
2487 chr = qemu_mallocz(sizeof(CharDriverState));
2488 if (!chr) {
2489 qemu_free(drv);
2490 close(fd);
2491 return NULL;
2492 }
2493 chr->chr_write = null_chr_write;
2494 chr->chr_ioctl = pp_ioctl;
2495 chr->chr_close = pp_close;
2496 chr->opaque = drv;
2497
2498 qemu_chr_reset(chr);
2499
2500 return chr;
2501 }
2502 #endif /* __linux__ */
2503
2504 #else /* _WIN32 */
2505
2506 typedef struct {
2507 int max_size;
2508 HANDLE hcom, hrecv, hsend;
2509 OVERLAPPED orecv, osend;
2510 BOOL fpipe;
2511 DWORD len;
2512 } WinCharState;
2513
2514 #define NSENDBUF 2048
2515 #define NRECVBUF 2048
2516 #define MAXCONNECT 1
2517 #define NTIMEOUT 5000
2518
2519 static int win_chr_poll(void *opaque);
2520 static int win_chr_pipe_poll(void *opaque);
2521
2522 static void win_chr_close(CharDriverState *chr)
2523 {
2524 WinCharState *s = chr->opaque;
2525
2526 if (s->hsend) {
2527 CloseHandle(s->hsend);
2528 s->hsend = NULL;
2529 }
2530 if (s->hrecv) {
2531 CloseHandle(s->hrecv);
2532 s->hrecv = NULL;
2533 }
2534 if (s->hcom) {
2535 CloseHandle(s->hcom);
2536 s->hcom = NULL;
2537 }
2538 if (s->fpipe)
2539 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2540 else
2541 qemu_del_polling_cb(win_chr_poll, chr);
2542 }
2543
2544 static int win_chr_init(CharDriverState *chr, const char *filename)
2545 {
2546 WinCharState *s = chr->opaque;
2547 COMMCONFIG comcfg;
2548 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2549 COMSTAT comstat;
2550 DWORD size;
2551 DWORD err;
2552
2553 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2554 if (!s->hsend) {
2555 fprintf(stderr, "Failed CreateEvent\n");
2556 goto fail;
2557 }
2558 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2559 if (!s->hrecv) {
2560 fprintf(stderr, "Failed CreateEvent\n");
2561 goto fail;
2562 }
2563
2564 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2565 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2566 if (s->hcom == INVALID_HANDLE_VALUE) {
2567 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2568 s->hcom = NULL;
2569 goto fail;
2570 }
2571
2572 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2573 fprintf(stderr, "Failed SetupComm\n");
2574 goto fail;
2575 }
2576
2577 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2578 size = sizeof(COMMCONFIG);
2579 GetDefaultCommConfig(filename, &comcfg, &size);
2580 comcfg.dcb.DCBlength = sizeof(DCB);
2581 CommConfigDialog(filename, NULL, &comcfg);
2582
2583 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2584 fprintf(stderr, "Failed SetCommState\n");
2585 goto fail;
2586 }
2587
2588 if (!SetCommMask(s->hcom, EV_ERR)) {
2589 fprintf(stderr, "Failed SetCommMask\n");
2590 goto fail;
2591 }
2592
2593 cto.ReadIntervalTimeout = MAXDWORD;
2594 if (!SetCommTimeouts(s->hcom, &cto)) {
2595 fprintf(stderr, "Failed SetCommTimeouts\n");
2596 goto fail;
2597 }
2598
2599 if (!ClearCommError(s->hcom, &err, &comstat)) {
2600 fprintf(stderr, "Failed ClearCommError\n");
2601 goto fail;
2602 }
2603 qemu_add_polling_cb(win_chr_poll, chr);
2604 return 0;
2605
2606 fail:
2607 win_chr_close(chr);
2608 return -1;
2609 }
2610
2611 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2612 {
2613 WinCharState *s = chr->opaque;
2614 DWORD len, ret, size, err;
2615
2616 len = len1;
2617 ZeroMemory(&s->osend, sizeof(s->osend));
2618 s->osend.hEvent = s->hsend;
2619 while (len > 0) {
2620 if (s->hsend)
2621 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2622 else
2623 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2624 if (!ret) {
2625 err = GetLastError();
2626 if (err == ERROR_IO_PENDING) {
2627 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2628 if (ret) {
2629 buf += size;
2630 len -= size;
2631 } else {
2632 break;
2633 }
2634 } else {
2635 break;
2636 }
2637 } else {
2638 buf += size;
2639 len -= size;
2640 }
2641 }
2642 return len1 - len;
2643 }
2644
2645 static int win_chr_read_poll(CharDriverState *chr)
2646 {
2647 WinCharState *s = chr->opaque;
2648
2649 s->max_size = qemu_chr_can_read(chr);
2650 return s->max_size;
2651 }
2652
2653 static void win_chr_readfile(CharDriverState *chr)
2654 {
2655 WinCharState *s = chr->opaque;
2656 int ret, err;
2657 uint8_t buf[1024];
2658 DWORD size;
2659
2660 ZeroMemory(&s->orecv, sizeof(s->orecv));
2661 s->orecv.hEvent = s->hrecv;
2662 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2663 if (!ret) {
2664 err = GetLastError();
2665 if (err == ERROR_IO_PENDING) {
2666 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2667 }
2668 }
2669
2670 if (size > 0) {
2671 qemu_chr_read(chr, buf, size);
2672 }
2673 }
2674
2675 static void win_chr_read(CharDriverState *chr)
2676 {
2677 WinCharState *s = chr->opaque;
2678
2679 if (s->len > s->max_size)
2680 s->len = s->max_size;
2681 if (s->len == 0)
2682 return;
2683
2684 win_chr_readfile(chr);
2685 }
2686
2687 static int win_chr_poll(void *opaque)
2688 {
2689 CharDriverState *chr = opaque;
2690 WinCharState *s = chr->opaque;
2691 COMSTAT status;
2692 DWORD comerr;
2693
2694 ClearCommError(s->hcom, &comerr, &status);
2695 if (status.cbInQue > 0) {
2696 s->len = status.cbInQue;
2697 win_chr_read_poll(chr);
2698 win_chr_read(chr);
2699 return 1;
2700 }
2701 return 0;
2702 }
2703
2704 static CharDriverState *qemu_chr_open_win(const char *filename)
2705 {
2706 CharDriverState *chr;
2707 WinCharState *s;
2708
2709 chr = qemu_mallocz(sizeof(CharDriverState));
2710 if (!chr)
2711 return NULL;
2712 s = qemu_mallocz(sizeof(WinCharState));
2713 if (!s) {
2714 free(chr);
2715 return NULL;
2716 }
2717 chr->opaque = s;
2718 chr->chr_write = win_chr_write;
2719 chr->chr_close = win_chr_close;
2720
2721 if (win_chr_init(chr, filename) < 0) {
2722 free(s);
2723 free(chr);
2724 return NULL;
2725 }
2726 qemu_chr_reset(chr);
2727 return chr;
2728 }
2729
2730 static int win_chr_pipe_poll(void *opaque)
2731 {
2732 CharDriverState *chr = opaque;
2733 WinCharState *s = chr->opaque;
2734 DWORD size;
2735
2736 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2737 if (size > 0) {
2738 s->len = size;
2739 win_chr_read_poll(chr);
2740 win_chr_read(chr);
2741 return 1;
2742 }
2743 return 0;
2744 }
2745
2746 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2747 {
2748 WinCharState *s = chr->opaque;
2749 OVERLAPPED ov;
2750 int ret;
2751 DWORD size;
2752 char openname[256];
2753
2754 s->fpipe = TRUE;
2755
2756 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2757 if (!s->hsend) {
2758 fprintf(stderr, "Failed CreateEvent\n");
2759 goto fail;
2760 }
2761 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2762 if (!s->hrecv) {
2763 fprintf(stderr, "Failed CreateEvent\n");
2764 goto fail;
2765 }
2766
2767 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2768 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2769 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2770 PIPE_WAIT,
2771 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2772 if (s->hcom == INVALID_HANDLE_VALUE) {
2773 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2774 s->hcom = NULL;
2775 goto fail;
2776 }
2777
2778 ZeroMemory(&ov, sizeof(ov));
2779 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2780 ret = ConnectNamedPipe(s->hcom, &ov);
2781 if (ret) {
2782 fprintf(stderr, "Failed ConnectNamedPipe\n");
2783 goto fail;
2784 }
2785
2786 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2787 if (!ret) {
2788 fprintf(stderr, "Failed GetOverlappedResult\n");
2789 if (ov.hEvent) {
2790 CloseHandle(ov.hEvent);
2791 ov.hEvent = NULL;
2792 }
2793 goto fail;
2794 }
2795
2796 if (ov.hEvent) {
2797 CloseHandle(ov.hEvent);
2798 ov.hEvent = NULL;
2799 }
2800 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2801 return 0;
2802
2803 fail:
2804 win_chr_close(chr);
2805 return -1;
2806 }
2807
2808
2809 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2810 {
2811 CharDriverState *chr;
2812 WinCharState *s;
2813
2814 chr = qemu_mallocz(sizeof(CharDriverState));
2815 if (!chr)
2816 return NULL;
2817 s = qemu_mallocz(sizeof(WinCharState));
2818 if (!s) {
2819 free(chr);
2820 return NULL;
2821 }
2822 chr->opaque = s;
2823 chr->chr_write = win_chr_write;
2824 chr->chr_close = win_chr_close;
2825
2826 if (win_chr_pipe_init(chr, filename) < 0) {
2827 free(s);
2828 free(chr);
2829 return NULL;
2830 }
2831 qemu_chr_reset(chr);
2832 return chr;
2833 }
2834
2835 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2836 {
2837 CharDriverState *chr;
2838 WinCharState *s;
2839
2840 chr = qemu_mallocz(sizeof(CharDriverState));
2841 if (!chr)
2842 return NULL;
2843 s = qemu_mallocz(sizeof(WinCharState));
2844 if (!s) {
2845 free(chr);
2846 return NULL;
2847 }
2848 s->hcom = fd_out;
2849 chr->opaque = s;
2850 chr->chr_write = win_chr_write;
2851 qemu_chr_reset(chr);
2852 return chr;
2853 }
2854
2855 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2856 {
2857 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2858 }
2859
2860 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2861 {
2862 HANDLE fd_out;
2863
2864 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2865 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2866 if (fd_out == INVALID_HANDLE_VALUE)
2867 return NULL;
2868
2869 return qemu_chr_open_win_file(fd_out);
2870 }
2871 #endif /* !_WIN32 */
2872
2873 /***********************************************************/
2874 /* UDP Net console */
2875
2876 typedef struct {
2877 int fd;
2878 struct sockaddr_in daddr;
2879 uint8_t buf[1024];
2880 int bufcnt;
2881 int bufptr;
2882 int max_size;
2883 } NetCharDriver;
2884
2885 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2886 {
2887 NetCharDriver *s = chr->opaque;
2888
2889 return sendto(s->fd, buf, len, 0,
2890 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2891 }
2892
2893 static int udp_chr_read_poll(void *opaque)
2894 {
2895 CharDriverState *chr = opaque;
2896 NetCharDriver *s = chr->opaque;
2897
2898 s->max_size = qemu_chr_can_read(chr);
2899
2900 /* If there were any stray characters in the queue process them
2901 * first
2902 */
2903 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2904 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2905 s->bufptr++;
2906 s->max_size = qemu_chr_can_read(chr);
2907 }
2908 return s->max_size;
2909 }
2910
2911 static void udp_chr_read(void *opaque)
2912 {
2913 CharDriverState *chr = opaque;
2914 NetCharDriver *s = chr->opaque;
2915
2916 if (s->max_size == 0)
2917 return;
2918 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2919 s->bufptr = s->bufcnt;
2920 if (s->bufcnt <= 0)
2921 return;
2922
2923 s->bufptr = 0;
2924 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2925 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2926 s->bufptr++;
2927 s->max_size = qemu_chr_can_read(chr);
2928 }
2929 }
2930
2931 static void udp_chr_update_read_handler(CharDriverState *chr)
2932 {
2933 NetCharDriver *s = chr->opaque;
2934
2935 if (s->fd >= 0) {
2936 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2937 udp_chr_read, NULL, chr);
2938 }
2939 }
2940
2941 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2942 #ifndef _WIN32
2943 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2944 #endif
2945 int parse_host_src_port(struct sockaddr_in *haddr,
2946 struct sockaddr_in *saddr,
2947 const char *str);
2948
2949 static CharDriverState *qemu_chr_open_udp(const char *def)
2950 {
2951 CharDriverState *chr = NULL;
2952 NetCharDriver *s = NULL;
2953 int fd = -1;
2954 struct sockaddr_in saddr;
2955
2956 chr = qemu_mallocz(sizeof(CharDriverState));
2957 if (!chr)
2958 goto return_err;
2959 s = qemu_mallocz(sizeof(NetCharDriver));
2960 if (!s)
2961 goto return_err;
2962
2963 fd = socket(PF_INET, SOCK_DGRAM, 0);
2964 if (fd < 0) {
2965 perror("socket(PF_INET, SOCK_DGRAM)");
2966 goto return_err;
2967 }
2968
2969 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2970 printf("Could not parse: %s\n", def);
2971 goto return_err;
2972 }
2973
2974 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2975 {
2976 perror("bind");
2977 goto return_err;
2978 }
2979
2980 s->fd = fd;
2981 s->bufcnt = 0;
2982 s->bufptr = 0;
2983 chr->opaque = s;
2984 chr->chr_write = udp_chr_write;
2985 chr->chr_update_read_handler = udp_chr_update_read_handler;
2986 return chr;
2987
2988 return_err:
2989 if (chr)
2990 free(chr);
2991 if (s)
2992 free(s);
2993 if (fd >= 0)
2994 closesocket(fd);
2995 return NULL;
2996 }
2997
2998 /***********************************************************/
2999 /* TCP Net console */
3000
3001 typedef struct {
3002 int fd, listen_fd;
3003 int connected;
3004 int max_size;
3005 int do_telnetopt;
3006 int do_nodelay;
3007 int is_unix;
3008 } TCPCharDriver;
3009
3010 static void tcp_chr_accept(void *opaque);
3011
3012 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3013 {
3014 TCPCharDriver *s = chr->opaque;
3015 if (s->connected) {
3016 return send_all(s->fd, buf, len);
3017 } else {
3018 /* XXX: indicate an error ? */
3019 return len;
3020 }
3021 }
3022
3023 static int tcp_chr_read_poll(void *opaque)
3024 {
3025 CharDriverState *chr = opaque;
3026 TCPCharDriver *s = chr->opaque;
3027 if (!s->connected)
3028 return 0;
3029 s->max_size = qemu_chr_can_read(chr);
3030 return s->max_size;
3031 }
3032
3033 #define IAC 255
3034 #define IAC_BREAK 243
3035 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3036 TCPCharDriver *s,
3037 uint8_t *buf, int *size)
3038 {
3039 /* Handle any telnet client's basic IAC options to satisfy char by
3040 * char mode with no echo. All IAC options will be removed from
3041 * the buf and the do_telnetopt variable will be used to track the
3042 * state of the width of the IAC information.
3043 *
3044 * IAC commands come in sets of 3 bytes with the exception of the
3045 * "IAC BREAK" command and the double IAC.
3046 */
3047
3048 int i;
3049 int j = 0;
3050
3051 for (i = 0; i < *size; i++) {
3052 if (s->do_telnetopt > 1) {
3053 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3054 /* Double IAC means send an IAC */
3055 if (j != i)
3056 buf[j] = buf[i];
3057 j++;
3058 s->do_telnetopt = 1;
3059 } else {
3060 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3061 /* Handle IAC break commands by sending a serial break */
3062 qemu_chr_event(chr, CHR_EVENT_BREAK);
3063 s->do_telnetopt++;
3064 }
3065 s->do_telnetopt++;
3066 }
3067 if (s->do_telnetopt >= 4) {
3068 s->do_telnetopt = 1;
3069 }
3070 } else {
3071 if ((unsigned char)buf[i] == IAC) {
3072 s->do_telnetopt = 2;
3073 } else {
3074 if (j != i)
3075 buf[j] = buf[i];
3076 j++;
3077 }
3078 }
3079 }
3080 *size = j;
3081 }
3082
3083 static void tcp_chr_read(void *opaque)
3084 {
3085 CharDriverState *chr = opaque;
3086 TCPCharDriver *s = chr->opaque;
3087 uint8_t buf[1024];
3088 int len, size;
3089
3090 if (!s->connected || s->max_size <= 0)
3091 return;
3092 len = sizeof(buf);
3093 if (len > s->max_size)
3094 len = s->max_size;
3095 size = recv(s->fd, buf, len, 0);
3096 if (size == 0) {
3097 /* connection closed */
3098 s->connected = 0;
3099 if (s->listen_fd >= 0) {
3100 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3101 }
3102 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3103 closesocket(s->fd);
3104 s->fd = -1;
3105 } else if (size > 0) {
3106 if (s->do_telnetopt)
3107 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3108 if (size > 0)
3109 qemu_chr_read(chr, buf, size);
3110 }
3111 }
3112
3113 static void tcp_chr_connect(void *opaque)
3114 {
3115 CharDriverState *chr = opaque;
3116 TCPCharDriver *s = chr->opaque;
3117
3118 s->connected = 1;
3119 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3120 tcp_chr_read, NULL, chr);
3121 qemu_chr_reset(chr);
3122 }
3123
3124 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3125 static void tcp_chr_telnet_init(int fd)
3126 {
3127 char buf[3];
3128 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3129 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3130 send(fd, (char *)buf, 3, 0);
3131 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3132 send(fd, (char *)buf, 3, 0);
3133 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3134 send(fd, (char *)buf, 3, 0);
3135 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3136 send(fd, (char *)buf, 3, 0);
3137 }
3138
3139 static void socket_set_nodelay(int fd)
3140 {
3141 int val = 1;
3142 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3143 }
3144
3145 static void tcp_chr_accept(void *opaque)
3146 {
3147 CharDriverState *chr = opaque;
3148 TCPCharDriver *s = chr->opaque;
3149 struct sockaddr_in saddr;
3150 #ifndef _WIN32
3151 struct sockaddr_un uaddr;
3152 #endif
3153 struct sockaddr *addr;
3154 socklen_t len;
3155 int fd;
3156
3157 for(;;) {
3158 #ifndef _WIN32
3159 if (s->is_unix) {
3160 len = sizeof(uaddr);
3161 addr = (struct sockaddr *)&uaddr;
3162 } else
3163 #endif
3164 {
3165 len = sizeof(saddr);
3166 addr = (struct sockaddr *)&saddr;
3167 }
3168 fd = accept(s->listen_fd, addr, &len);
3169 if (fd < 0 && errno != EINTR) {
3170 return;
3171 } else if (fd >= 0) {
3172 if (s->do_telnetopt)
3173 tcp_chr_telnet_init(fd);
3174 break;
3175 }
3176 }
3177 socket_set_nonblock(fd);
3178 if (s->do_nodelay)
3179 socket_set_nodelay(fd);
3180 s->fd = fd;
3181 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3182 tcp_chr_connect(chr);
3183 }
3184
3185 static void tcp_chr_close(CharDriverState *chr)
3186 {
3187 TCPCharDriver *s = chr->opaque;
3188 if (s->fd >= 0)
3189 closesocket(s->fd);
3190 if (s->listen_fd >= 0)
3191 closesocket(s->listen_fd);
3192 qemu_free(s);
3193 }
3194
3195 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3196 int is_telnet,
3197 int is_unix)
3198 {
3199 CharDriverState *chr = NULL;
3200 TCPCharDriver *s = NULL;
3201 int fd = -1, ret, err, val;
3202 int is_listen = 0;
3203 int is_waitconnect = 1;
3204 int do_nodelay = 0;
3205 const char *ptr;
3206 struct sockaddr_in saddr;
3207 #ifndef _WIN32
3208 struct sockaddr_un uaddr;
3209 #endif
3210 struct sockaddr *addr;
3211 socklen_t addrlen;
3212
3213 #ifndef _WIN32
3214 if (is_unix) {
3215 addr = (struct sockaddr *)&uaddr;
3216 addrlen = sizeof(uaddr);
3217 if (parse_unix_path(&uaddr, host_str) < 0)
3218 goto fail;
3219 } else
3220 #endif
3221 {
3222 addr = (struct sockaddr *)&saddr;
3223 addrlen = sizeof(saddr);
3224 if (parse_host_port(&saddr, host_str) < 0)
3225 goto fail;
3226 }
3227
3228 ptr = host_str;
3229 while((ptr = strchr(ptr,','))) {
3230 ptr++;
3231 if (!strncmp(ptr,"server",6)) {
3232 is_listen = 1;
3233 } else if (!strncmp(ptr,"nowait",6)) {
3234 is_waitconnect = 0;
3235 } else if (!strncmp(ptr,"nodelay",6)) {
3236 do_nodelay = 1;
3237 } else {
3238 printf("Unknown option: %s\n", ptr);
3239 goto fail;
3240 }
3241 }
3242 if (!is_listen)
3243 is_waitconnect = 0;
3244
3245 chr = qemu_mallocz(sizeof(CharDriverState));
3246 if (!chr)
3247 goto fail;
3248 s = qemu_mallocz(sizeof(TCPCharDriver));
3249 if (!s)
3250 goto fail;
3251
3252 #ifndef _WIN32
3253 if (is_unix)
3254 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3255 else
3256 #endif
3257 fd = socket(PF_INET, SOCK_STREAM, 0);
3258
3259 if (fd < 0)
3260 goto fail;
3261
3262 if (!is_waitconnect)
3263 socket_set_nonblock(fd);
3264
3265 s->connected = 0;
3266 s->fd = -1;
3267 s->listen_fd = -1;
3268 s->is_unix = is_unix;
3269 s->do_nodelay = do_nodelay && !is_unix;
3270
3271 chr->opaque = s;
3272 chr->chr_write = tcp_chr_write;
3273 chr->chr_close = tcp_chr_close;
3274
3275 if (is_listen) {
3276 /* allow fast reuse */
3277 #ifndef _WIN32
3278 if (is_unix) {
3279 char path[109];
3280 strncpy(path, uaddr.sun_path, 108);
3281 path[108] = 0;
3282 unlink(path);
3283 } else
3284 #endif
3285 {
3286 val = 1;
3287 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3288 }
3289
3290 ret = bind(fd, addr, addrlen);
3291 if (ret < 0)
3292 goto fail;
3293
3294 ret = listen(fd, 0);
3295 if (ret < 0)
3296 goto fail;
3297
3298 s->listen_fd = fd;
3299 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3300 if (is_telnet)
3301 s->do_telnetopt = 1;
3302 } else {
3303 for(;;) {
3304 ret = connect(fd, addr, addrlen);
3305 if (ret < 0) {
3306 err = socket_error();
3307 if (err == EINTR || err == EWOULDBLOCK) {
3308 } else if (err == EINPROGRESS) {
3309 break;
3310 #ifdef _WIN32
3311 } else if (err == WSAEALREADY) {
3312 break;
3313 #endif
3314 } else {
3315 goto fail;
3316 }
3317 } else {
3318 s->connected = 1;
3319 break;
3320 }
3321 }
3322 s->fd = fd;
3323 socket_set_nodelay(fd);
3324 if (s->connected)
3325 tcp_chr_connect(chr);
3326 else
3327 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3328 }
3329
3330 if (is_listen && is_waitconnect) {
3331 printf("QEMU waiting for connection on: %s\n", host_str);
3332 tcp_chr_accept(chr);
3333 socket_set_nonblock(s->listen_fd);
3334 }
3335
3336 return chr;
3337 fail:
3338 if (fd >= 0)
3339 closesocket(fd);
3340 qemu_free(s);
3341 qemu_free(chr);
3342 return NULL;
3343 }
3344
3345 CharDriverState *qemu_chr_open(const char *filename)
3346 {
3347 const char *p;
3348
3349 if (!strcmp(filename, "vc")) {
3350 return text_console_init(&display_state, 0);
3351 } else if (strstart(filename, "vc:", &p)) {
3352 return text_console_init(&display_state, p);
3353 } else if (!strcmp(filename, "null")) {
3354 return qemu_chr_open_null();
3355 } else
3356 if (strstart(filename, "tcp:", &p)) {
3357 return qemu_chr_open_tcp(p, 0, 0);
3358 } else
3359 if (strstart(filename, "telnet:", &p)) {
3360 return qemu_chr_open_tcp(p, 1, 0);
3361 } else
3362 if (strstart(filename, "udp:", &p)) {
3363 return qemu_chr_open_udp(p);
3364 } else
3365 if (strstart(filename, "mon:", &p)) {
3366 CharDriverState *drv = qemu_chr_open(p);
3367 if (drv) {
3368 drv = qemu_chr_open_mux(drv);
3369 monitor_init(drv, !nographic);
3370 return drv;
3371 }
3372 printf("Unable to open driver: %s\n", p);
3373 return 0;
3374 } else
3375 #ifndef _WIN32
3376 if (strstart(filename, "unix:", &p)) {
3377 return qemu_chr_open_tcp(p, 0, 1);
3378 } else if (strstart(filename, "file:", &p)) {
3379 return qemu_chr_open_file_out(p);
3380 } else if (strstart(filename, "pipe:", &p)) {
3381 return qemu_chr_open_pipe(p);
3382 } else if (!strcmp(filename, "pty")) {
3383 return qemu_chr_open_pty();
3384 } else if (!strcmp(filename, "stdio")) {
3385 return qemu_chr_open_stdio();
3386 } else
3387 #if defined(__linux__)
3388 if (strstart(filename, "/dev/parport", NULL)) {
3389 return qemu_chr_open_pp(filename);
3390 } else
3391 #endif
3392 #if defined(__linux__) || defined(__sun__)
3393 if (strstart(filename, "/dev/", NULL)) {
3394 return qemu_chr_open_tty(filename);
3395 } else
3396 #endif
3397 #else /* !_WIN32 */
3398 if (strstart(filename, "COM", NULL)) {
3399 return qemu_chr_open_win(filename);
3400 } else
3401 if (strstart(filename, "pipe:", &p)) {
3402 return qemu_chr_open_win_pipe(p);
3403 } else
3404 if (strstart(filename, "con:", NULL)) {
3405 return qemu_chr_open_win_con(filename);
3406 } else
3407 if (strstart(filename, "file:", &p)) {
3408 return qemu_chr_open_win_file_out(p);
3409 }
3410 #endif
3411 {
3412 return NULL;
3413 }
3414 }
3415
3416 void qemu_chr_close(CharDriverState *chr)
3417 {
3418 if (chr->chr_close)
3419 chr->chr_close(chr);
3420 }
3421
3422 /***********************************************************/
3423 /* network device redirectors */
3424
3425 __attribute__ (( unused ))
3426 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3427 {
3428 int len, i, j, c;
3429
3430 for(i=0;i<size;i+=16) {
3431 len = size - i;
3432 if (len > 16)
3433 len = 16;
3434 fprintf(f, "%08x ", i);
3435 for(j=0;j<16;j++) {
3436 if (j < len)
3437 fprintf(f, " %02x", buf[i+j]);
3438 else
3439 fprintf(f, " ");
3440 }
3441 fprintf(f, " ");
3442 for(j=0;j<len;j++) {
3443 c = buf[i+j];
3444 if (c < ' ' || c > '~')
3445 c = '.';
3446 fprintf(f, "%c", c);
3447 }
3448 fprintf(f, "\n");
3449 }
3450 }
3451
3452 static int parse_macaddr(uint8_t *macaddr, const char *p)
3453 {
3454 int i;
3455 for(i = 0; i < 6; i++) {
3456 macaddr[i] = strtol(p, (char **)&p, 16);
3457 if (i == 5) {
3458 if (*p != '\0')
3459 return -1;
3460 } else {
3461 if (*p != ':')
3462 return -1;
3463 p++;
3464 }
3465 }
3466 return 0;
3467 }
3468
3469 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3470 {
3471 const char *p, *p1;
3472 int len;
3473 p = *pp;
3474 p1 = strchr(p, sep);
3475 if (!p1)
3476 return -1;
3477 len = p1 - p;
3478 p1++;
3479 if (buf_size > 0) {
3480 if (len > buf_size - 1)
3481 len = buf_size - 1;
3482 memcpy(buf, p, len);
3483 buf[len] = '\0';
3484 }
3485 *pp = p1;
3486 return 0;
3487 }
3488
3489 int parse_host_src_port(struct sockaddr_in *haddr,
3490 struct sockaddr_in *saddr,
3491 const char *input_str)
3492 {
3493 char *str = strdup(input_str);
3494 char *host_str = str;
3495 char *src_str;
3496 char *ptr;
3497
3498 /*
3499 * Chop off any extra arguments at the end of the string which
3500 * would start with a comma, then fill in the src port information
3501 * if it was provided else use the "any address" and "any port".
3502 */
3503 if ((ptr = strchr(str,',')))
3504 *ptr = '\0';
3505
3506 if ((src_str = strchr(input_str,'@'))) {
3507 *src_str = '\0';
3508 src_str++;
3509 }
3510
3511 if (parse_host_port(haddr, host_str) < 0)
3512 goto fail;
3513
3514 if (!src_str || *src_str == '\0')
3515 src_str = ":0";
3516
3517 if (parse_host_port(saddr, src_str) < 0)
3518 goto fail;
3519
3520 free(str);
3521 return(0);
3522
3523 fail:
3524 free(str);
3525 return -1;
3526 }
3527
3528 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3529 {
3530 char buf[512];
3531 struct hostent *he;
3532 const char *p, *r;
3533 int port;
3534
3535 p = str;
3536 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3537 return -1;
3538 saddr->sin_family = AF_INET;
3539 if (buf[0] == '\0') {
3540 saddr->sin_addr.s_addr = 0;
3541 } else {
3542 if (isdigit(buf[0])) {
3543 if (!inet_aton(buf, &saddr->sin_addr))
3544 return -1;
3545 } else {
3546 if ((he = gethostbyname(buf)) == NULL)
3547 return - 1;
3548 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3549 }
3550 }
3551 port = strtol(p, (char **)&r, 0);
3552 if (r == p)
3553 return -1;
3554 saddr->sin_port = htons(port);
3555 return 0;
3556 }
3557
3558 #ifndef _WIN32
3559 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3560 {
3561 const char *p;
3562 int len;
3563
3564 len = MIN(108, strlen(str));
3565 p = strchr(str, ',');
3566 if (p)
3567 len = MIN(len, p - str);
3568
3569 memset(uaddr, 0, sizeof(*uaddr));
3570
3571 uaddr->sun_family = AF_UNIX;
3572 memcpy(uaddr->sun_path, str, len);
3573
3574 return 0;
3575 }
3576 #endif
3577
3578 /* find or alloc a new VLAN */
3579 VLANState *qemu_find_vlan(int id)
3580 {
3581 VLANState **pvlan, *vlan;
3582 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3583 if (vlan->id == id)
3584 return vlan;
3585 }
3586 vlan = qemu_mallocz(sizeof(VLANState));
3587 if (!vlan)
3588 return NULL;
3589 vlan->id = id;
3590 vlan->next = NULL;
3591 pvlan = &first_vlan;
3592 while (*pvlan != NULL)
3593 pvlan = &(*pvlan)->next;
3594 *pvlan = vlan;
3595 return vlan;
3596 }
3597
3598 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3599 IOReadHandler *fd_read,
3600 IOCanRWHandler *fd_can_read,
3601 void *opaque)
3602 {
3603 VLANClientState *vc, **pvc;
3604 vc = qemu_mallocz(sizeof(VLANClientState));
3605 if (!vc)
3606 return NULL;
3607 vc->fd_read = fd_read;
3608 vc->fd_can_read = fd_can_read;
3609 vc->opaque = opaque;
3610 vc->vlan = vlan;
3611
3612 vc->next = NULL;
3613 pvc = &vlan->first_client;
3614 while (*pvc != NULL)
3615 pvc = &(*pvc)->next;
3616 *pvc = vc;
3617 return vc;
3618 }
3619
3620 int qemu_can_send_packet(VLANClientState *vc1)
3621 {
3622 VLANState *vlan = vc1->vlan;
3623 VLANClientState *vc;
3624
3625 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3626 if (vc != vc1) {
3627 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3628 return 1;
3629 }
3630 }
3631 return 0;
3632 }
3633
3634 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3635 {
3636 VLANState *vlan = vc1->vlan;
3637 VLANClientState *vc;
3638
3639 #if 0
3640 printf("vlan %d send:\n", vlan->id);
3641 hex_dump(stdout, buf, size);
3642 #endif
3643 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3644 if (vc != vc1) {
3645 vc->fd_read(vc->opaque, buf, size);
3646 }
3647 }
3648 }
3649
3650 #if defined(CONFIG_SLIRP)
3651
3652 /* slirp network adapter */
3653
3654 static int slirp_inited;
3655 static VLANClientState *slirp_vc;
3656
3657 int slirp_can_output(void)
3658 {
3659 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3660 }
3661
3662 void slirp_output(const uint8_t *pkt, int pkt_len)
3663 {
3664 #if 0
3665 printf("slirp output:\n");
3666 hex_dump(stdout, pkt, pkt_len);
3667 #endif
3668 if (!slirp_vc)
3669 return;
3670 qemu_send_packet(slirp_vc, pkt, pkt_len);
3671 }
3672
3673 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3674 {
3675 #if 0
3676 printf("slirp input:\n");
3677 hex_dump(stdout, buf, size);
3678 #endif
3679 slirp_input(buf, size);
3680 }
3681
3682 static int net_slirp_init(VLANState *vlan)
3683 {
3684 if (!slirp_inited) {
3685 slirp_inited = 1;
3686 slirp_init();
3687 }
3688 slirp_vc = qemu_new_vlan_client(vlan,
3689 slirp_receive, NULL, NULL);
3690 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3691 return 0;
3692 }
3693
3694 static void net_slirp_redir(const char *redir_str)
3695 {
3696 int is_udp;
3697 char buf[256], *r;
3698 const char *p;
3699 struct in_addr guest_addr;
3700 int host_port, guest_port;
3701
3702 if (!slirp_inited) {
3703 slirp_inited = 1;
3704 slirp_init();
3705 }
3706
3707 p = redir_str;
3708 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3709 goto fail;
3710 if (!strcmp(buf, "tcp")) {
3711 is_udp = 0;
3712 } else if (!strcmp(buf, "udp")) {
3713 is_udp = 1;
3714 } else {
3715 goto fail;
3716 }
3717
3718 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3719 goto fail;
3720 host_port = strtol(buf, &r, 0);
3721 if (r == buf)
3722 goto fail;
3723
3724 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3725 goto fail;
3726 if (buf[0] == '\0') {
3727 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3728 }
3729 if (!inet_aton(buf, &guest_addr))
3730 goto fail;
3731
3732 guest_port = strtol(p, &r, 0);
3733 if (r == p)
3734 goto fail;
3735
3736 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3737 fprintf(stderr, "qemu: could not set up redirection\n");
3738 exit(1);
3739 }
3740 return;
3741 fail:
3742 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3743 exit(1);
3744 }
3745
3746 #ifndef _WIN32
3747
3748 char smb_dir[1024];
3749
3750 static void smb_exit(void)
3751 {
3752 DIR *d;
3753 struct dirent *de;
3754 char filename[1024];
3755
3756 /* erase all the files in the directory */
3757 d = opendir(smb_dir);
3758 for(;;) {
3759 de = readdir(d);
3760 if (!de)
3761 break;
3762 if (strcmp(de->d_name, ".") != 0 &&
3763 strcmp(de->d_name, "..") != 0) {
3764 snprintf(filename, sizeof(filename), "%s/%s",
3765 smb_dir, de->d_name);
3766 unlink(filename);
3767 }
3768 }
3769 closedir(d);
3770 rmdir(smb_dir);
3771 }
3772
3773 /* automatic user mode samba server configuration */
3774 static void net_slirp_smb(const char *exported_dir)
3775 {
3776 char smb_conf[1024];
3777 char smb_cmdline[1024];
3778 FILE *f;
3779
3780 if (!slirp_inited) {
3781 slirp_inited = 1;
3782 slirp_init();
3783 }
3784
3785 /* XXX: better tmp dir construction */
3786 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3787 if (mkdir(smb_dir, 0700) < 0) {
3788 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3789 exit(1);
3790 }
3791 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3792
3793 f = fopen(smb_conf, "w");
3794 if (!f) {
3795 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3796 exit(1);
3797 }
3798 fprintf(f,
3799 "[global]\n"
3800 "private dir=%s\n"
3801 "smb ports=0\n"
3802 "socket address=127.0.0.1\n"
3803 "pid directory=%s\n"
3804 "lock directory=%s\n"
3805 "log file=%s/log.smbd\n"
3806 "smb passwd file=%s/smbpasswd\n"
3807 "security = share\n"
3808 "[qemu]\n"
3809 "path=%s\n"
3810 "read only=no\n"
3811 "guest ok=yes\n",
3812 smb_dir,
3813 smb_dir,
3814 smb_dir,
3815 smb_dir,
3816 smb_dir,
3817 exported_dir
3818 );
3819 fclose(f);
3820 atexit(smb_exit);
3821
3822 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3823 SMBD_COMMAND, smb_conf);
3824
3825 slirp_add_exec(0, smb_cmdline, 4, 139);
3826 }
3827
3828 #endif /* !defined(_WIN32) */
3829 void do_info_slirp(void)
3830 {
3831 slirp_stats();
3832 }
3833
3834 #endif /* CONFIG_SLIRP */
3835
3836 #if !defined(_WIN32)
3837
3838 typedef struct TAPState {
3839 VLANClientState *vc;
3840 int fd;
3841 char down_script[1024];
3842 } TAPState;
3843
3844 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3845 {
3846 TAPState *s = opaque;
3847 int ret;
3848 for(;;) {
3849 ret = write(s->fd, buf, size);
3850 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3851 } else {
3852 break;
3853 }
3854 }
3855 }
3856
3857 static void tap_send(void *opaque)
3858 {
3859 TAPState *s = opaque;
3860 uint8_t buf[4096];
3861 int size;
3862
3863 #ifdef __sun__
3864 struct strbuf sbuf;
3865 int f = 0;
3866 sbuf.maxlen = sizeof(buf);
3867 sbuf.buf = buf;
3868 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3869 #else
3870 size = read(s->fd, buf, sizeof(buf));
3871 #endif
3872 if (size > 0) {
3873 qemu_send_packet(s->vc, buf, size);
3874 }
3875 }
3876
3877 /* fd support */
3878
3879 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3880 {
3881 TAPState *s;
3882
3883 s = qemu_mallocz(sizeof(TAPState));
3884 if (!s)
3885 return NULL;
3886 s->fd = fd;
3887 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3888 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3889 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3890 return s;
3891 }
3892
3893 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3894 static int tap_open(char *ifname, int ifname_size)
3895 {
3896 int fd;
3897 char *dev;
3898 struct stat s;
3899
3900 TFR(fd = open("/dev/tap", O_RDWR));
3901 if (fd < 0) {
3902 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3903 return -1;
3904 }
3905
3906 fstat(fd, &s);
3907 dev = devname(s.st_rdev, S_IFCHR);
3908 pstrcpy(ifname, ifname_size, dev);
3909
3910 fcntl(fd, F_SETFL, O_NONBLOCK);
3911 return fd;
3912 }
3913 #elif defined(__sun__)
3914 #define TUNNEWPPA (('T'<<16) | 0x0001)
3915 /*
3916 * Allocate TAP device, returns opened fd.
3917 * Stores dev name in the first arg(must be large enough).
3918 */
3919 int tap_alloc(char *dev)
3920 {
3921 int tap_fd, if_fd, ppa = -1;
3922 static int ip_fd = 0;
3923 char *ptr;
3924
3925 static int arp_fd = 0;
3926 int ip_muxid, arp_muxid;
3927 struct strioctl strioc_if, strioc_ppa;
3928 int link_type = I_PLINK;;
3929 struct lifreq ifr;
3930 char actual_name[32] = "";
3931
3932 memset(&ifr, 0x0, sizeof(ifr));
3933
3934 if( *dev ){
3935 ptr = dev;
3936 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3937 ppa = atoi(ptr);
3938 }
3939
3940 /* Check if IP device was opened */
3941 if( ip_fd )
3942 close(ip_fd);
3943
3944 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3945 if (ip_fd < 0) {
3946 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3947 return -1;
3948 }
3949
3950 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3951 if (tap_fd < 0) {
3952 syslog(LOG_ERR, "Can't open /dev/tap");
3953 return -1;
3954 }
3955
3956 /* Assign a new PPA and get its unit number. */
3957 strioc_ppa.ic_cmd = TUNNEWPPA;
3958 strioc_ppa.ic_timout = 0;
3959 strioc_ppa.ic_len = sizeof(ppa);
3960 strioc_ppa.ic_dp = (char *)&ppa;
3961 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3962 syslog (LOG_ERR, "Can't assign new interface");
3963
3964 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3965 if (if_fd < 0) {
3966 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3967 return -1;
3968 }
3969 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3970 syslog(LOG_ERR, "Can't push IP module");
3971 return -1;
3972 }
3973
3974 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3975 syslog(LOG_ERR, "Can't get flags\n");
3976
3977 snprintf (actual_name, 32, "tap%d", ppa);
3978 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3979
3980 ifr.lifr_ppa = ppa;
3981 /* Assign ppa according to the unit number returned by tun device */
3982
3983 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3984 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3985 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3986 syslog (LOG_ERR, "Can't get flags\n");
3987 /* Push arp module to if_fd */
3988 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3989 syslog (LOG_ERR, "Can't push ARP module (2)");
3990
3991 /* Push arp module to ip_fd */
3992 if (ioctl (ip_fd, I_POP, NULL) < 0)
3993 syslog (LOG_ERR, "I_POP failed\n");
3994 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3995 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3996 /* Open arp_fd */
3997 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3998 if (arp_fd < 0)
3999 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4000
4001 /* Set ifname to arp */
4002 strioc_if.ic_cmd = SIOCSLIFNAME;
4003 strioc_if.ic_timout = 0;
4004 strioc_if.ic_len = sizeof(ifr);
4005 strioc_if.ic_dp = (char *)&ifr;
4006 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4007 syslog (LOG_ERR, "Can't set ifname to arp\n");
4008 }
4009
4010 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4011 syslog(LOG_ERR, "Can't link TAP device to IP");
4012 return -1;
4013 }
4014
4015 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4016 syslog (LOG_ERR, "Can't link TAP device to ARP");
4017
4018 close (if_fd);
4019
4020 memset(&ifr, 0x0, sizeof(ifr));
4021 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4022 ifr.lifr_ip_muxid = ip_muxid;
4023 ifr.lifr_arp_muxid = arp_muxid;
4024
4025 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4026 {
4027 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4028 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4029 syslog (LOG_ERR, "Can't set multiplexor id");
4030 }
4031
4032 sprintf(dev, "tap%d", ppa);
4033 return tap_fd;
4034 }
4035
4036 static int tap_open(char *ifname, int ifname_size)
4037 {
4038 char dev[10]="";
4039 int fd;
4040 if( (fd = tap_alloc(dev)) < 0 ){
4041 fprintf(stderr, "Cannot allocate TAP device\n");
4042 return -1;
4043 }
4044 pstrcpy(ifname, ifname_size, dev);
4045 fcntl(fd, F_SETFL, O_NONBLOCK);
4046 return fd;
4047 }
4048 #else
4049 static int tap_open(char *ifname, int ifname_size)
4050 {
4051 struct ifreq ifr;
4052 int fd, ret;
4053
4054 TFR(fd = open("/dev/net/tun", O_RDWR));
4055 if (fd < 0) {
4056 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4057 return -1;
4058 }
4059 memset(&ifr, 0, sizeof(ifr));
4060 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4061 if (ifname[0] != '\0')
4062 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4063 else
4064 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4065 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4066 if (ret != 0) {
4067 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4068 close(fd);
4069 return -1;
4070 }
4071 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4072 fcntl(fd, F_SETFL, O_NONBLOCK);
4073 return fd;
4074 }
4075 #endif
4076
4077 static int launch_script(const char *setup_script, const char *ifname, int fd)
4078 {
4079 int pid, status;
4080 char *args[3];
4081 char **parg;
4082
4083 /* try to launch network script */
4084 pid = fork();
4085 if (pid >= 0) {
4086 if (pid == 0) {
4087 int open_max = sysconf (_SC_OPEN_MAX), i;
4088 for (i = 0; i < open_max; i++)
4089 if (i != STDIN_FILENO &&
4090 i != STDOUT_FILENO &&
4091 i != STDERR_FILENO &&
4092 i != fd)
4093 close(i);
4094
4095 parg = args;
4096 *parg++ = (char *)setup_script;
4097 *parg++ = (char *)ifname;
4098 *parg++ = NULL;
4099 execv(setup_script, args);
4100 _exit(1);
4101 }
4102 while (waitpid(pid, &status, 0) != pid);
4103 if (!WIFEXITED(status) ||
4104 WEXITSTATUS(status) != 0) {
4105 fprintf(stderr, "%s: could not launch network script\n",
4106 setup_script);
4107 return -1;
4108 }
4109 }
4110 return 0;
4111 }
4112
4113 static int net_tap_init(VLANState *vlan, const char *ifname1,
4114 const char *setup_script, const char *down_script)
4115 {
4116 TAPState *s;
4117 int fd;
4118 char ifname[128];
4119
4120 if (ifname1 != NULL)
4121 pstrcpy(ifname, sizeof(ifname), ifname1);
4122 else
4123 ifname[0] = '\0';
4124 TFR(fd = tap_open(ifname, sizeof(ifname)));
4125 if (fd < 0)
4126 return -1;
4127
4128 if (!setup_script || !strcmp(setup_script, "no"))
4129 setup_script = "";
4130 if (setup_script[0] != '\0') {
4131 if (launch_script(setup_script, ifname, fd))
4132 return -1;
4133 }
4134 s = net_tap_fd_init(vlan, fd);
4135 if (!s)
4136 return -1;
4137 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4138 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4139 if (down_script && strcmp(down_script, "no"))
4140 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4141 return 0;
4142 }
4143
4144 #endif /* !_WIN32 */
4145
4146 /* network connection */
4147 typedef struct NetSocketState {
4148 VLANClientState *vc;
4149 int fd;
4150 int state; /* 0 = getting length, 1 = getting data */
4151 int index;
4152 int packet_len;
4153 uint8_t buf[4096];
4154 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4155 } NetSocketState;
4156
4157 typedef struct NetSocketListenState {
4158 VLANState *vlan;
4159 int fd;
4160 } NetSocketListenState;
4161
4162 /* XXX: we consider we can send the whole packet without blocking */
4163 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4164 {
4165 NetSocketState *s = opaque;
4166 uint32_t len;
4167 len = htonl(size);
4168
4169 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4170 send_all(s->fd, buf, size);
4171 }
4172
4173 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4174 {
4175 NetSocketState *s = opaque;
4176 sendto(s->fd, buf, size, 0,
4177 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4178 }
4179
4180 static void net_socket_send(void *opaque)
4181 {
4182 NetSocketState *s = opaque;
4183 int l, size, err;
4184 uint8_t buf1[4096];
4185 const uint8_t *buf;
4186
4187 size = recv(s->fd, buf1, sizeof(buf1), 0);
4188 if (size < 0) {
4189 err = socket_error();
4190 if (err != EWOULDBLOCK)
4191 goto eoc;
4192 } else if (size == 0) {
4193 /* end of connection */
4194 eoc:
4195 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4196 closesocket(s->fd);
4197 return;
4198 }
4199 buf = buf1;
4200 while (size > 0) {
4201 /* reassemble a packet from the network */
4202 switch(s->state) {
4203 case 0:
4204 l = 4 - s->index;
4205 if (l > size)
4206 l = size;
4207 memcpy(s->buf + s->index, buf, l);
4208 buf += l;
4209 size -= l;
4210 s->index += l;
4211 if (s->index == 4) {
4212 /* got length */
4213 s->packet_len = ntohl(*(uint32_t *)s->buf);
4214 s->index = 0;
4215 s->state = 1;
4216 }
4217 break;
4218 case 1:
4219 l = s->packet_len - s->index;
4220 if (l > size)
4221 l = size;
4222 memcpy(s->buf + s->index, buf, l);
4223 s->index += l;
4224 buf += l;
4225 size -= l;
4226 if (s->index >= s->packet_len) {
4227 qemu_send_packet(s->vc, s->buf, s->packet_len);
4228 s->index = 0;
4229 s->state = 0;
4230 }
4231 break;
4232 }
4233 }
4234 }
4235
4236 static void net_socket_send_dgram(void *opaque)
4237 {
4238 NetSocketState *s = opaque;
4239 int size;
4240
4241 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4242 if (size < 0)
4243 return;
4244 if (size == 0) {
4245 /* end of connection */
4246 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4247 return;
4248 }
4249 qemu_send_packet(s->vc, s->buf, size);
4250 }
4251
4252 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4253 {
4254 struct ip_mreq imr;
4255 int fd;
4256 int val, ret;
4257 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4258 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4259 inet_ntoa(mcastaddr->sin_addr),
4260 (int)ntohl(mcastaddr->sin_addr.s_addr));
4261 return -1;
4262
4263 }
4264 fd = socket(PF_INET, SOCK_DGRAM, 0);
4265 if (fd < 0) {
4266 perror("socket(PF_INET, SOCK_DGRAM)");
4267 return -1;
4268 }
4269
4270 val = 1;
4271 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4272 (const char *)&val, sizeof(val));
4273 if (ret < 0) {
4274 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4275 goto fail;
4276 }
4277
4278 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4279 if (ret < 0) {
4280 perror("bind");
4281 goto fail;
4282 }
4283
4284 /* Add host to multicast group */
4285 imr.imr_multiaddr = mcastaddr->sin_addr;
4286 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4287
4288 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4289 (const char *)&imr, sizeof(struct ip_mreq));
4290 if (ret < 0) {
4291 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4292 goto fail;
4293 }
4294
4295 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4296 val = 1;
4297 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4298 (const char *)&val, sizeof(val));
4299 if (ret < 0) {
4300 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4301 goto fail;
4302 }
4303
4304 socket_set_nonblock(fd);
4305 return fd;
4306 fail:
4307 if (fd >= 0)
4308 closesocket(fd);
4309 return -1;
4310 }
4311
4312 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4313 int is_connected)
4314 {
4315 struct sockaddr_in saddr;
4316 int newfd;
4317 socklen_t saddr_len;
4318 NetSocketState *s;
4319
4320 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4321 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4322 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4323 */
4324
4325 if (is_connected) {
4326 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4327 /* must be bound */
4328 if (saddr.sin_addr.s_addr==0) {
4329 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4330 fd);
4331 return NULL;
4332 }
4333 /* clone dgram socket */
4334 newfd = net_socket_mcast_create(&saddr);
4335 if (newfd < 0) {
4336 /* error already reported by net_socket_mcast_create() */
4337 close(fd);
4338 return NULL;
4339 }
4340 /* clone newfd to fd, close newfd */
4341 dup2(newfd, fd);
4342 close(newfd);
4343
4344 } else {
4345 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4346 fd, strerror(errno));
4347 return NULL;
4348 }
4349 }
4350
4351 s = qemu_mallocz(sizeof(NetSocketState));
4352 if (!s)
4353 return NULL;
4354 s->fd = fd;
4355
4356 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4357 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4358
4359 /* mcast: save bound address as dst */
4360 if (is_connected) s->dgram_dst=saddr;
4361
4362 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4363 "socket: fd=%d (%s mcast=%s:%d)",
4364 fd, is_connected? "cloned" : "",
4365 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4366 return s;
4367 }
4368
4369 static void net_socket_connect(void *opaque)
4370 {
4371 NetSocketState *s = opaque;
4372 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4373 }
4374
4375 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4376 int is_connected)
4377 {
4378 NetSocketState *s;
4379 s = qemu_mallocz(sizeof(NetSocketState));
4380 if (!s)
4381 return NULL;
4382 s->fd = fd;
4383 s->vc = qemu_new_vlan_client(vlan,
4384 net_socket_receive, NULL, s);
4385 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4386 "socket: fd=%d", fd);
4387 if (is_connected) {
4388 net_socket_connect(s);
4389 } else {
4390 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4391 }
4392 return s;
4393 }
4394
4395 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4396 int is_connected)
4397 {
4398 int so_type=-1, optlen=sizeof(so_type);
4399
4400 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4401 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4402 return NULL;
4403 }
4404 switch(so_type) {
4405 case SOCK_DGRAM:
4406 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4407 case SOCK_STREAM:
4408 return net_socket_fd_init_stream(vlan, fd, is_connected);
4409 default:
4410 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4411 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4412 return net_socket_fd_init_stream(vlan, fd, is_connected);
4413 }
4414 return NULL;
4415 }
4416
4417 static void net_socket_accept(void *opaque)
4418 {
4419 NetSocketListenState *s = opaque;
4420 NetSocketState *s1;
4421 struct sockaddr_in saddr;
4422 socklen_t len;
4423 int fd;
4424
4425 for(;;) {
4426 len = sizeof(saddr);
4427 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4428 if (fd < 0 && errno != EINTR) {
4429 return;
4430 } else if (fd >= 0) {
4431 break;
4432 }
4433 }
4434 s1 = net_socket_fd_init(s->vlan, fd, 1);
4435 if (!s1) {
4436 closesocket(fd);
4437 } else {
4438 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4439 "socket: connection from %s:%d",
4440 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4441 }
4442 }
4443
4444 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4445 {
4446 NetSocketListenState *s;
4447 int fd, val, ret;
4448 struct sockaddr_in saddr;
4449
4450 if (parse_host_port(&saddr, host_str) < 0)
4451 return -1;
4452
4453 s = qemu_mallocz(sizeof(NetSocketListenState));
4454 if (!s)
4455 return -1;
4456
4457 fd = socket(PF_INET, SOCK_STREAM, 0);
4458 if (fd < 0) {
4459 perror("socket");
4460 return -1;
4461 }
4462 socket_set_nonblock(fd);
4463
4464 /* allow fast reuse */
4465 val = 1;
4466 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4467
4468 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4469 if (ret < 0) {
4470 perror("bind");
4471 return -1;
4472 }
4473 ret = listen(fd, 0);
4474 if (ret < 0) {
4475 perror("listen");
4476 return -1;
4477 }
4478 s->vlan = vlan;
4479 s->fd = fd;
4480 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4481 return 0;
4482 }
4483
4484 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4485 {
4486 NetSocketState *s;
4487 int fd, connected, ret, err;
4488 struct sockaddr_in saddr;
4489
4490 if (parse_host_port(&saddr, host_str) < 0)
4491 return -1;
4492
4493 fd = socket(PF_INET, SOCK_STREAM, 0);
4494 if (fd < 0) {
4495 perror("socket");
4496 return -1;
4497 }
4498 socket_set_nonblock(fd);
4499
4500 connected = 0;
4501 for(;;) {
4502 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4503 if (ret < 0) {
4504 err = socket_error();
4505 if (err == EINTR || err == EWOULDBLOCK) {
4506 } else if (err == EINPROGRESS) {
4507 break;
4508 #ifdef _WIN32
4509 } else if (err == WSAEALREADY) {
4510 break;
4511 #endif
4512 } else {
4513 perror("connect");
4514 closesocket(fd);
4515 return -1;
4516 }
4517 } else {
4518 connected = 1;
4519 break;
4520 }
4521 }
4522 s = net_socket_fd_init(vlan, fd, connected);
4523 if (!s)
4524 return -1;
4525 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4526 "socket: connect to %s:%d",
4527 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4528 return 0;
4529 }
4530
4531 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4532 {
4533 NetSocketState *s;
4534 int fd;
4535 struct sockaddr_in saddr;
4536
4537 if (parse_host_port(&saddr, host_str) < 0)
4538 return -1;
4539
4540
4541 fd = net_socket_mcast_create(&saddr);
4542 if (fd < 0)
4543 return -1;
4544
4545 s = net_socket_fd_init(vlan, fd, 0);
4546 if (!s)
4547 return -1;
4548
4549 s->dgram_dst = saddr;
4550
4551 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4552 "socket: mcast=%s:%d",
4553 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4554 return 0;
4555
4556 }
4557
4558 static const char *get_word(char *buf, int buf_size, const char *p)
4559 {
4560 char *q;
4561 int substring;
4562
4563 substring = 0;
4564 q = buf;
4565 while (*p != '\0') {
4566 if (*p == '\\') {
4567 p++;
4568 if (*p == '\0')
4569 break;
4570 } else if (*p == '\"') {
4571 substring = !substring;
4572 p++;
4573 continue;
4574 } else if (!substring && (*p == ',' || *p == '='))
4575 break;
4576 if (q && (q - buf) < buf_size - 1)
4577 *q++ = *p;
4578 p++;
4579 }
4580 if (q)
4581 *q = '\0';
4582
4583 return p;
4584 }
4585
4586 static int get_param_value(char *buf, int buf_size,
4587 const char *tag, const char *str)
4588 {
4589 const char *p;
4590 char option[128];
4591
4592 p = str;
4593 for(;;) {
4594 p = get_word(option, sizeof(option), p);
4595 if (*p != '=')
4596 break;
4597 p++;
4598 if (!strcmp(tag, option)) {
4599 (void)get_word(buf, buf_size, p);
4600 return strlen(buf);
4601 } else {
4602 p = get_word(NULL, 0, p);
4603 }
4604 if (*p != ',')
4605 break;
4606 p++;
4607 }
4608 return 0;
4609 }
4610
4611 static int check_params(char *buf, int buf_size,
4612 char **params, const char *str)
4613 {
4614 const char *p;
4615 int i;
4616
4617 p = str;
4618 for(;;) {
4619 p = get_word(buf, buf_size, p);
4620 if (*p != '=')
4621 return -1;
4622 p++;
4623 for(i = 0; params[i] != NULL; i++)
4624 if (!strcmp(params[i], buf))
4625 break;
4626 if (params[i] == NULL)
4627 return -1;
4628 p = get_word(NULL, 0, p);
4629 if (*p != ',')
4630 break;
4631 p++;
4632 }
4633 return 0;
4634 }
4635
4636
4637 static int net_client_init(const char *str)
4638 {
4639 const char *p;
4640 char *q;
4641 char device[64];
4642 char buf[1024];
4643 int vlan_id, ret;
4644 VLANState *vlan;
4645
4646 p = str;
4647 q = device;
4648 while (*p != '\0' && *p != ',') {
4649 if ((q - device) < sizeof(device) - 1)
4650 *q++ = *p;
4651 p++;
4652 }
4653 *q = '\0';
4654 if (*p == ',')
4655 p++;
4656 vlan_id = 0;
4657 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4658 vlan_id = strtol(buf, NULL, 0);
4659 }
4660 vlan = qemu_find_vlan(vlan_id);
4661 if (!vlan) {
4662 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4663 return -1;
4664 }
4665 if (!strcmp(device, "nic")) {
4666 NICInfo *nd;
4667 uint8_t *macaddr;
4668
4669 if (nb_nics >= MAX_NICS) {
4670 fprintf(stderr, "Too Many NICs\n");
4671 return -1;
4672 }
4673 nd = &nd_table[nb_nics];
4674 macaddr = nd->macaddr;
4675 macaddr[0] = 0x52;
4676 macaddr[1] = 0x54;
4677 macaddr[2] = 0x00;
4678 macaddr[3] = 0x12;
4679 macaddr[4] = 0x34;
4680 macaddr[5] = 0x56 + nb_nics;
4681
4682 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4683 if (parse_macaddr(macaddr, buf) < 0) {
4684 fprintf(stderr, "invalid syntax for ethernet address\n");
4685 return -1;
4686 }
4687 }
4688 if (get_param_value(buf, sizeof(buf), "model", p)) {
4689 nd->model = strdup(buf);
4690 }
4691 nd->vlan = vlan;
4692 nb_nics++;
4693 vlan->nb_guest_devs++;
4694 ret = 0;
4695 } else
4696 if (!strcmp(device, "none")) {
4697 /* does nothing. It is needed to signal that no network cards
4698 are wanted */
4699 ret = 0;
4700 } else
4701 #ifdef CONFIG_SLIRP
4702 if (!strcmp(device, "user")) {
4703 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4704 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4705 }
4706 vlan->nb_host_devs++;
4707 ret = net_slirp_init(vlan);
4708 } else
4709 #endif
4710 #ifdef _WIN32
4711 if (!strcmp(device, "tap")) {
4712 char ifname[64];
4713 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4714 fprintf(stderr, "tap: no interface name\n");
4715 return -1;
4716 }
4717 vlan->nb_host_devs++;
4718 ret = tap_win32_init(vlan, ifname);
4719 } else
4720 #else
4721 if (!strcmp(device, "tap")) {
4722 char ifname[64];
4723 char setup_script[1024], down_script[1024];
4724 int fd;
4725 vlan->nb_host_devs++;
4726 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4727 fd = strtol(buf, NULL, 0);
4728 ret = -1;
4729 if (net_tap_fd_init(vlan, fd))
4730 ret = 0;
4731 } else {
4732 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4733 ifname[0] = '\0';
4734 }
4735 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4736 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4737 }
4738 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4739 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4740 }
4741 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4742 }
4743 } else
4744 #endif
4745 if (!strcmp(device, "socket")) {
4746 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4747 int fd;
4748 fd = strtol(buf, NULL, 0);
4749 ret = -1;
4750 if (net_socket_fd_init(vlan, fd, 1))
4751 ret = 0;
4752 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4753 ret = net_socket_listen_init(vlan, buf);
4754 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4755 ret = net_socket_connect_init(vlan, buf);
4756 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4757 ret = net_socket_mcast_init(vlan, buf);
4758 } else {
4759 fprintf(stderr, "Unknown socket options: %s\n", p);
4760 return -1;
4761 }
4762 vlan->nb_host_devs++;
4763 } else
4764 {
4765 fprintf(stderr, "Unknown network device: %s\n", device);
4766 return -1;
4767 }
4768 if (ret < 0) {
4769 fprintf(stderr, "Could not initialize device '%s'\n", device);
4770 }
4771
4772 return ret;
4773 }
4774
4775 void do_info_network(void)
4776 {
4777 VLANState *vlan;
4778 VLANClientState *vc;
4779
4780 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4781 term_printf("VLAN %d devices:\n", vlan->id);
4782 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4783 term_printf(" %s\n", vc->info_str);
4784 }
4785 }
4786
4787 #define HD_ALIAS "file=\"%s\",index=%d,media=disk"
4788 #ifdef TARGET_PPC
4789 #define CDROM_ALIAS "index=1,media=cdrom"
4790 #else
4791 #define CDROM_ALIAS "index=2,media=cdrom"
4792 #endif
4793 #define FD_ALIAS "index=%d,if=floppy"
4794 #define PFLASH_ALIAS "file=\"%s\",if=pflash"
4795 #define MTD_ALIAS "file=\"%s\",if=mtd"
4796 #define SD_ALIAS "index=0,if=sd"
4797
4798 static int drive_add(const char *fmt, ...)
4799 {
4800 va_list ap;
4801
4802 if (nb_drives_opt >= MAX_DRIVES) {
4803 fprintf(stderr, "qemu: too many drives\n");
4804 exit(1);
4805 }
4806
4807 va_start(ap, fmt);
4808 vsnprintf(drives_opt[nb_drives_opt], sizeof(drives_opt[0]), fmt, ap);
4809 va_end(ap);
4810
4811 return nb_drives_opt++;
4812 }
4813
4814 int drive_get_index(BlockInterfaceType interface, int bus, int unit)
4815 {
4816 int index;
4817
4818 /* seek interface, bus and unit */
4819
4820 for (index = 0; index < nb_drives; index++)
4821 if (drives_table[index].interface == interface &&
4822 drives_table[index].bus == bus &&
4823 drives_table[index].unit == unit)
4824 return index;
4825
4826 return -1;
4827 }
4828
4829 int drive_get_max_bus(BlockInterfaceType interface)
4830 {
4831 int max_bus;
4832 int index;
4833
4834 max_bus = -1;
4835 for (index = 0; index < nb_drives; index++) {
4836 if(drives_table[index].interface == interface &&
4837 drives_table[index].bus > max_bus)
4838 max_bus = drives_table[index].bus;
4839 }
4840 return max_bus;
4841 }
4842
4843 static int drive_init(const char *str, int snapshot, QEMUMachine *machine)
4844 {
4845 char buf[128];
4846 char file[1024];
4847 char devname[128];
4848 const char *mediastr = "";
4849 BlockInterfaceType interface;
4850 enum { MEDIA_DISK, MEDIA_CDROM } media;
4851 int bus_id, unit_id;
4852 int cyls, heads, secs, translation;
4853 BlockDriverState *bdrv;
4854 int max_devs;
4855 int index;
4856 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4857 "secs", "trans", "media", "snapshot", "file", NULL };
4858
4859 if (check_params(buf, sizeof(buf), params, str) < 0) {
4860 fprintf(stderr, "qemu: unknowm parameter '%s' in '%s'\n",
4861 buf, str);
4862 return -1;
4863 }
4864
4865 file[0] = 0;
4866 cyls = heads = secs = 0;
4867 bus_id = 0;
4868 unit_id = -1;
4869 translation = BIOS_ATA_TRANSLATION_AUTO;
4870 index = -1;
4871
4872 if (!strcmp(machine->name, "realview") ||
4873 !strcmp(machine->name, "SS-5") ||
4874 !strcmp(machine->name, "SS-10") ||
4875 !strcmp(machine->name, "SS-600MP") ||
4876 !strcmp(machine->name, "versatilepb") ||
4877 !strcmp(machine->name, "versatileab")) {
4878 interface = IF_SCSI;
4879 max_devs = MAX_SCSI_DEVS;
4880 strcpy(devname, "scsi");
4881 } else {
4882 interface = IF_IDE;
4883 max_devs = MAX_IDE_DEVS;
4884 strcpy(devname, "ide");
4885 }
4886 media = MEDIA_DISK;
4887
4888 /* extract parameters */
4889
4890 if (get_param_value(buf, sizeof(buf), "bus", str)) {
4891 bus_id = strtol(buf, NULL, 0);
4892 if (bus_id < 0) {
4893 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
4894 return -1;
4895 }
4896 }
4897
4898 if (get_param_value(buf, sizeof(buf), "unit", str)) {
4899 unit_id = strtol(buf, NULL, 0);
4900 if (unit_id < 0) {
4901 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
4902 return -1;
4903 }
4904 }
4905
4906 if (get_param_value(buf, sizeof(buf), "if", str)) {
4907 strncpy(devname, buf, sizeof(devname));
4908 if (!strcmp(buf, "ide")) {
4909 interface = IF_IDE;
4910 max_devs = MAX_IDE_DEVS;
4911 } else if (!strcmp(buf, "scsi")) {
4912 interface = IF_SCSI;
4913 max_devs = MAX_SCSI_DEVS;
4914 } else if (!strcmp(buf, "floppy")) {
4915 interface = IF_FLOPPY;
4916 max_devs = 0;
4917 } else if (!strcmp(buf, "pflash")) {
4918 interface = IF_PFLASH;
4919 max_devs = 0;
4920 } else if (!strcmp(buf, "mtd")) {
4921 interface = IF_MTD;
4922 max_devs = 0;
4923 } else if (!strcmp(buf, "sd")) {
4924 interface = IF_SD;
4925 max_devs = 0;
4926 } else {
4927 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
4928 return -1;
4929 }
4930 }
4931
4932 if (get_param_value(buf, sizeof(buf), "index", str)) {
4933 index = strtol(buf, NULL, 0);
4934 if (index < 0) {
4935 fprintf(stderr, "qemu: '%s' invalid index\n", str);
4936 return -1;
4937 }
4938 }
4939
4940 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
4941 cyls = strtol(buf, NULL, 0);
4942 }
4943
4944 if (get_param_value(buf, sizeof(buf), "heads", str)) {
4945 heads = strtol(buf, NULL, 0);
4946 }
4947
4948 if (get_param_value(buf, sizeof(buf), "secs", str)) {
4949 secs = strtol(buf, NULL, 0);
4950 }
4951
4952 if (cyls || heads || secs) {
4953 if (cyls < 1 || cyls > 16383) {
4954 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
4955 return -1;
4956 }
4957 if (heads < 1 || heads > 16) {
4958 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
4959 return -1;
4960 }
4961 if (secs < 1 || secs > 63) {
4962 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
4963 return -1;
4964 }
4965 }
4966
4967 if (get_param_value(buf, sizeof(buf), "trans", str)) {
4968 if (!cyls) {
4969 fprintf(stderr,
4970 "qemu: '%s' trans must be used with cyls,heads and secs\n",
4971 str);
4972 return -1;
4973 }
4974 if (!strcmp(buf, "none"))
4975 translation = BIOS_ATA_TRANSLATION_NONE;
4976 else if (!strcmp(buf, "lba"))
4977 translation = BIOS_ATA_TRANSLATION_LBA;
4978 else if (!strcmp(buf, "auto"))
4979 translation = BIOS_ATA_TRANSLATION_AUTO;
4980 else {
4981 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
4982 return -1;
4983 }
4984 }
4985
4986 if (get_param_value(buf, sizeof(buf), "media", str)) {
4987 if (!strcmp(buf, "disk")) {
4988 media = MEDIA_DISK;
4989 } else if (!strcmp(buf, "cdrom")) {
4990 if (cyls || secs || heads) {
4991 fprintf(stderr,
4992 "qemu: '%s' invalid physical CHS format\n", str);
4993 return -1;
4994 }
4995 media = MEDIA_CDROM;
4996 } else {
4997 fprintf(stderr, "qemu: '%s' invalid media\n", str);
4998 return -1;
4999 }
5000 }
5001
5002 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5003 if (!strcmp(buf, "on"))
5004 snapshot = 1;
5005 else if (!strcmp(buf, "off"))
5006 snapshot = 0;
5007 else {
5008 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5009 return -1;
5010 }
5011 }
5012
5013 get_param_value(file, sizeof(file), "file", str);
5014
5015 /* compute bus and unit according index */
5016
5017 if (index != -1) {
5018 if (bus_id != 0 || unit_id != -1) {
5019 fprintf(stderr,
5020 "qemu: '%s' index cannot be used with bus and unit\n", str);
5021 return -1;
5022 }
5023 if (max_devs == 0)
5024 {
5025 unit_id = index;
5026 bus_id = 0;
5027 } else {
5028 unit_id = index % max_devs;
5029 bus_id = index / max_devs;
5030 }
5031 }
5032
5033 /* if user doesn't specify a unit_id,
5034 * try to find the first free
5035 */
5036
5037 if (unit_id == -1) {
5038 unit_id = 0;
5039 while (drive_get_index(interface, bus_id, unit_id) != -1) {
5040 unit_id++;
5041 if (max_devs && unit_id >= max_devs) {
5042 unit_id -= max_devs;
5043 bus_id++;
5044 }
5045 }
5046 }
5047
5048 /* check unit id */
5049
5050 if (max_devs && unit_id >= max_devs) {
5051 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5052 str, unit_id, max_devs - 1);
5053 return -1;
5054 }
5055
5056 /*
5057 * ignore multiple definitions
5058 */
5059
5060 if (drive_get_index(interface, bus_id, unit_id) != -1)
5061 return 0;
5062
5063 /* init */
5064
5065 if (interface == IF_IDE || interface == IF_SCSI)
5066 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5067 snprintf(buf, sizeof(buf), max_devs ? "%1$s%4$i%2$s%3$i" : "%s%s%i",
5068 devname, mediastr, unit_id, bus_id);
5069 bdrv = bdrv_new(buf);
5070 drives_table[nb_drives].bdrv = bdrv;
5071 drives_table[nb_drives].interface = interface;
5072 drives_table[nb_drives].bus = bus_id;
5073 drives_table[nb_drives].unit = unit_id;
5074 nb_drives++;
5075
5076 switch(interface) {
5077 case IF_IDE:
5078 case IF_SCSI:
5079 switch(media) {
5080 case MEDIA_DISK:
5081 if (cyls != 0) {
5082 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5083 bdrv_set_translation_hint(bdrv, translation);
5084 }
5085 break;
5086 case MEDIA_CDROM:
5087 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5088 break;
5089 }
5090 break;
5091 case IF_SD:
5092 /* FIXME: This isn't really a floppy, but it's a reasonable
5093 approximation. */
5094 case IF_FLOPPY:
5095 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5096 break;
5097 case IF_PFLASH:
5098 case IF_MTD:
5099 break;
5100 }
5101 if (!file[0])
5102 return 0;
5103 if (bdrv_open(bdrv, file, snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
5104 qemu_key_check(bdrv, file)) {
5105 fprintf(stderr, "qemu: could not open disk image %s\n",
5106 file);
5107 return -1;
5108 }
5109 return 0;
5110 }
5111
5112 /***********************************************************/
5113 /* USB devices */
5114
5115 static USBPort *used_usb_ports;
5116 static USBPort *free_usb_ports;
5117
5118 /* ??? Maybe change this to register a hub to keep track of the topology. */
5119 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5120 usb_attachfn attach)
5121 {
5122 port->opaque = opaque;
5123 port->index = index;
5124 port->attach = attach;
5125 port->next = free_usb_ports;
5126 free_usb_ports = port;
5127 }
5128
5129 static int usb_device_add(const char *devname)
5130 {
5131 const char *p;
5132 USBDevice *dev;
5133 USBPort *port;
5134
5135 if (!free_usb_ports)
5136 return -1;
5137
5138 if (strstart(devname, "host:", &p)) {
5139 dev = usb_host_device_open(p);
5140 } else if (!strcmp(devname, "mouse")) {
5141 dev = usb_mouse_init();
5142 } else if (!strcmp(devname, "tablet")) {
5143 dev = usb_tablet_init();
5144 } else if (!strcmp(devname, "keyboard")) {
5145 dev = usb_keyboard_init();
5146 } else if (strstart(devname, "disk:", &p)) {
5147 dev = usb_msd_init(p);
5148 } else if (!strcmp(devname, "wacom-tablet")) {
5149 dev = usb_wacom_init();
5150 } else {
5151 return -1;
5152 }
5153 if (!dev)
5154 return -1;
5155
5156 /* Find a USB port to add the device to. */
5157 port = free_usb_ports;
5158 if (!port->next) {
5159 USBDevice *hub;
5160
5161 /* Create a new hub and chain it on. */
5162 free_usb_ports = NULL;
5163 port->next = used_usb_ports;
5164 used_usb_ports = port;
5165
5166 hub = usb_hub_init(VM_USB_HUB_SIZE);
5167 usb_attach(port, hub);
5168 port = free_usb_ports;
5169 }
5170
5171 free_usb_ports = port->next;
5172 port->next = used_usb_ports;
5173 used_usb_ports = port;
5174 usb_attach(port, dev);
5175 return 0;
5176 }
5177
5178 static int usb_device_del(const char *devname)
5179 {
5180 USBPort *port;
5181 USBPort **lastp;
5182 USBDevice *dev;
5183 int bus_num, addr;
5184 const char *p;
5185
5186 if (!used_usb_ports)
5187 return -1;
5188
5189 p = strchr(devname, '.');
5190 if (!p)
5191 return -1;
5192 bus_num = strtoul(devname, NULL, 0);
5193 addr = strtoul(p + 1, NULL, 0);
5194 if (bus_num != 0)
5195 return -1;
5196
5197 lastp = &used_usb_ports;
5198 port = used_usb_ports;
5199 while (port && port->dev->addr != addr) {
5200 lastp = &port->next;
5201 port = port->next;
5202 }
5203
5204 if (!port)
5205 return -1;
5206
5207 dev = port->dev;
5208 *lastp = port->next;
5209 usb_attach(port, NULL);
5210 dev->handle_destroy(dev);
5211 port->next = free_usb_ports;
5212 free_usb_ports = port;
5213 return 0;
5214 }
5215
5216 void do_usb_add(const char *devname)
5217 {
5218 int ret;
5219 ret = usb_device_add(devname);
5220 if (ret < 0)
5221 term_printf("Could not add USB device '%s'\n", devname);
5222 }
5223
5224 void do_usb_del(const char *devname)
5225 {
5226 int ret;
5227 ret = usb_device_del(devname);
5228 if (ret < 0)
5229 term_printf("Could not remove USB device '%s'\n", devname);
5230 }
5231
5232 void usb_info(void)
5233 {
5234 USBDevice *dev;
5235 USBPort *port;
5236 const char *speed_str;
5237
5238 if (!usb_enabled) {
5239 term_printf("USB support not enabled\n");
5240 return;
5241 }
5242
5243 for (port = used_usb_ports; port; port = port->next) {
5244 dev = port->dev;
5245 if (!dev)
5246 continue;
5247 switch(dev->speed) {
5248 case USB_SPEED_LOW:
5249 speed_str = "1.5";
5250 break;
5251 case USB_SPEED_FULL:
5252 speed_str = "12";
5253 break;
5254 case USB_SPEED_HIGH:
5255 speed_str = "480";
5256 break;
5257 default:
5258 speed_str = "?";
5259 break;
5260 }
5261 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5262 0, dev->addr, speed_str, dev->devname);
5263 }
5264 }
5265
5266 /***********************************************************/
5267 /* PCMCIA/Cardbus */
5268
5269 static struct pcmcia_socket_entry_s {
5270 struct pcmcia_socket_s *socket;
5271 struct pcmcia_socket_entry_s *next;
5272 } *pcmcia_sockets = 0;
5273
5274 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5275 {
5276 struct pcmcia_socket_entry_s *entry;
5277
5278 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5279 entry->socket = socket;
5280 entry->next = pcmcia_sockets;
5281 pcmcia_sockets = entry;
5282 }
5283
5284 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5285 {
5286 struct pcmcia_socket_entry_s *entry, **ptr;
5287
5288 ptr = &pcmcia_sockets;
5289 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5290 if (entry->socket == socket) {
5291 *ptr = entry->next;
5292 qemu_free(entry);
5293 }
5294 }
5295
5296 void pcmcia_info(void)
5297 {
5298 struct pcmcia_socket_entry_s *iter;
5299 if (!pcmcia_sockets)
5300 term_printf("No PCMCIA sockets\n");
5301
5302 for (iter = pcmcia_sockets; iter; iter = iter->next)
5303 term_printf("%s: %s\n", iter->socket->slot_string,
5304 iter->socket->attached ? iter->socket->card_string :
5305 "Empty");
5306 }
5307
5308 /***********************************************************/
5309 /* dumb display */
5310
5311 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5312 {
5313 }
5314
5315 static void dumb_resize(DisplayState *ds, int w, int h)
5316 {
5317 }
5318
5319 static void dumb_refresh(DisplayState *ds)
5320 {
5321 #if defined(CONFIG_SDL)
5322 vga_hw_update();
5323 #endif
5324 }
5325
5326 static void dumb_display_init(DisplayState *ds)
5327 {
5328 ds->data = NULL;
5329 ds->linesize = 0;
5330 ds->depth = 0;
5331 ds->dpy_update = dumb_update;
5332 ds->dpy_resize = dumb_resize;
5333 ds->dpy_refresh = dumb_refresh;
5334 }
5335
5336 /***********************************************************/
5337 /* I/O handling */
5338
5339 #define MAX_IO_HANDLERS 64
5340
5341 typedef struct IOHandlerRecord {
5342 int fd;
5343 IOCanRWHandler *fd_read_poll;
5344 IOHandler *fd_read;
5345 IOHandler *fd_write;
5346 int deleted;
5347 void *opaque;
5348 /* temporary data */
5349 struct pollfd *ufd;
5350 struct IOHandlerRecord *next;
5351 } IOHandlerRecord;
5352
5353 static IOHandlerRecord *first_io_handler;
5354
5355 /* XXX: fd_read_poll should be suppressed, but an API change is
5356 necessary in the character devices to suppress fd_can_read(). */
5357 int qemu_set_fd_handler2(int fd,
5358 IOCanRWHandler *fd_read_poll,
5359 IOHandler *fd_read,
5360 IOHandler *fd_write,
5361 void *opaque)
5362 {
5363 IOHandlerRecord **pioh, *ioh;
5364
5365 if (!fd_read && !fd_write) {
5366 pioh = &first_io_handler;
5367 for(;;) {
5368 ioh = *pioh;
5369 if (ioh == NULL)
5370 break;
5371 if (ioh->fd == fd) {
5372 ioh->deleted = 1;
5373 break;
5374 }
5375 pioh = &ioh->next;
5376 }
5377 } else {
5378 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5379 if (ioh->fd == fd)
5380 goto found;
5381 }
5382 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5383 if (!ioh)
5384 return -1;
5385 ioh->next = first_io_handler;
5386 first_io_handler = ioh;
5387 found:
5388 ioh->fd = fd;
5389 ioh->fd_read_poll = fd_read_poll;
5390 ioh->fd_read = fd_read;
5391 ioh->fd_write = fd_write;
5392 ioh->opaque = opaque;
5393 ioh->deleted = 0;
5394 }
5395 return 0;
5396 }
5397
5398 int qemu_set_fd_handler(int fd,
5399 IOHandler *fd_read,
5400 IOHandler *fd_write,
5401 void *opaque)
5402 {
5403 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5404 }
5405
5406 /***********************************************************/
5407 /* Polling handling */
5408
5409 typedef struct PollingEntry {
5410 PollingFunc *func;
5411 void *opaque;
5412 struct PollingEntry *next;
5413 } PollingEntry;
5414
5415 static PollingEntry *first_polling_entry;
5416
5417 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5418 {
5419 PollingEntry **ppe, *pe;
5420 pe = qemu_mallocz(sizeof(PollingEntry));
5421 if (!pe)
5422 return -1;
5423 pe->func = func;
5424 pe->opaque = opaque;
5425 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5426 *ppe = pe;
5427 return 0;
5428 }
5429
5430 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5431 {
5432 PollingEntry **ppe, *pe;
5433 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5434 pe = *ppe;
5435 if (pe->func == func && pe->opaque == opaque) {
5436 *ppe = pe->next;
5437 qemu_free(pe);
5438 break;
5439 }
5440 }
5441 }
5442
5443 #ifdef _WIN32
5444 /***********************************************************/
5445 /* Wait objects support */
5446 typedef struct WaitObjects {
5447 int num;
5448 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5449 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5450 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5451 } WaitObjects;
5452
5453 static WaitObjects wait_objects = {0};
5454
5455 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5456 {
5457 WaitObjects *w = &wait_objects;
5458
5459 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5460 return -1;
5461 w->events[w->num] = handle;
5462 w->func[w->num] = func;
5463 w->opaque[w->num] = opaque;
5464 w->num++;
5465 return 0;
5466 }
5467
5468 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5469 {
5470 int i, found;
5471 WaitObjects *w = &wait_objects;
5472
5473 found = 0;
5474 for (i = 0; i < w->num; i++) {
5475 if (w->events[i] == handle)
5476 found = 1;
5477 if (found) {
5478 w->events[i] = w->events[i + 1];
5479 w->func[i] = w->func[i + 1];
5480 w->opaque[i] = w->opaque[i + 1];
5481 }
5482 }
5483 if (found)
5484 w->num--;
5485 }
5486 #endif
5487
5488 /***********************************************************/
5489 /* savevm/loadvm support */
5490
5491 #define IO_BUF_SIZE 32768
5492
5493 struct QEMUFile {
5494 FILE *outfile;
5495 BlockDriverState *bs;
5496 int is_file;
5497 int is_writable;
5498 int64_t base_offset;
5499 int64_t buf_offset; /* start of buffer when writing, end of buffer
5500 when reading */
5501 int buf_index;
5502 int buf_size; /* 0 when writing */
5503 uint8_t buf[IO_BUF_SIZE];
5504 };
5505
5506 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5507 {
5508 QEMUFile *f;
5509
5510 f = qemu_mallocz(sizeof(QEMUFile));
5511 if (!f)
5512 return NULL;
5513 if (!strcmp(mode, "wb")) {
5514 f->is_writable = 1;
5515 } else if (!strcmp(mode, "rb")) {
5516 f->is_writable = 0;
5517 } else {
5518 goto fail;
5519 }
5520 f->outfile = fopen(filename, mode);
5521 if (!f->outfile)
5522 goto fail;
5523 f->is_file = 1;
5524 return f;
5525 fail:
5526 if (f->outfile)
5527 fclose(f->outfile);
5528 qemu_free(f);
5529 return NULL;
5530 }
5531
5532 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5533 {
5534 QEMUFile *f;
5535
5536 f = qemu_mallocz(sizeof(QEMUFile));
5537 if (!f)
5538 return NULL;
5539 f->is_file = 0;
5540 f->bs = bs;
5541 f->is_writable = is_writable;
5542 f->base_offset = offset;
5543 return f;
5544 }
5545
5546 void qemu_fflush(QEMUFile *f)
5547 {
5548 if (!f->is_writable)
5549 return;
5550 if (f->buf_index > 0) {
5551 if (f->is_file) {
5552 fseek(f->outfile, f->buf_offset, SEEK_SET);
5553 fwrite(f->buf, 1, f->buf_index, f->outfile);
5554 } else {
5555 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5556 f->buf, f->buf_index);
5557 }
5558 f->buf_offset += f->buf_index;
5559 f->buf_index = 0;
5560 }
5561 }
5562
5563 static void qemu_fill_buffer(QEMUFile *f)
5564 {
5565 int len;
5566
5567 if (f->is_writable)
5568 return;
5569 if (f->is_file) {
5570 fseek(f->outfile, f->buf_offset, SEEK_SET);
5571 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5572 if (len < 0)
5573 len = 0;
5574 } else {
5575 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5576 f->buf, IO_BUF_SIZE);
5577 if (len < 0)
5578 len = 0;
5579 }
5580 f->buf_index = 0;
5581 f->buf_size = len;
5582 f->buf_offset += len;
5583 }
5584
5585 void qemu_fclose(QEMUFile *f)
5586 {
5587 if (f->is_writable)
5588 qemu_fflush(f);
5589 if (f->is_file) {
5590 fclose(f->outfile);
5591 }
5592 qemu_free(f);
5593 }
5594
5595 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5596 {
5597 int l;
5598 while (size > 0) {
5599 l = IO_BUF_SIZE - f->buf_index;
5600 if (l > size)
5601 l = size;
5602 memcpy(f->buf + f->buf_index, buf, l);
5603 f->buf_index += l;
5604 buf += l;
5605 size -= l;
5606 if (f->buf_index >= IO_BUF_SIZE)
5607 qemu_fflush(f);
5608 }
5609 }
5610
5611 void qemu_put_byte(QEMUFile *f, int v)
5612 {
5613 f->buf[f->buf_index++] = v;
5614 if (f->buf_index >= IO_BUF_SIZE)
5615 qemu_fflush(f);
5616 }
5617
5618 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5619 {
5620 int size, l;
5621
5622 size = size1;
5623 while (size > 0) {
5624 l = f->buf_size - f->buf_index;
5625 if (l == 0) {
5626 qemu_fill_buffer(f);
5627 l = f->buf_size - f->buf_index;
5628 if (l == 0)
5629 break;
5630 }
5631 if (l > size)
5632 l = size;
5633 memcpy(buf, f->buf + f->buf_index, l);
5634 f->buf_index += l;
5635 buf += l;
5636 size -= l;
5637 }
5638 return size1 - size;
5639 }
5640
5641 int qemu_get_byte(QEMUFile *f)
5642 {
5643 if (f->buf_index >= f->buf_size) {
5644 qemu_fill_buffer(f);
5645 if (f->buf_index >= f->buf_size)
5646 return 0;
5647 }
5648 return f->buf[f->buf_index++];
5649 }
5650
5651 int64_t qemu_ftell(QEMUFile *f)
5652 {
5653 return f->buf_offset - f->buf_size + f->buf_index;
5654 }
5655
5656 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5657 {
5658 if (whence == SEEK_SET) {
5659 /* nothing to do */
5660 } else if (whence == SEEK_CUR) {
5661 pos += qemu_ftell(f);
5662 } else {
5663 /* SEEK_END not supported */
5664 return -1;
5665 }
5666 if (f->is_writable) {
5667 qemu_fflush(f);
5668 f->buf_offset = pos;
5669 } else {
5670 f->buf_offset = pos;
5671 f->buf_index = 0;
5672 f->buf_size = 0;
5673 }
5674 return pos;
5675 }
5676
5677 void qemu_put_be16(QEMUFile *f, unsigned int v)
5678 {
5679 qemu_put_byte(f, v >> 8);
5680 qemu_put_byte(f, v);
5681 }
5682
5683 void qemu_put_be32(QEMUFile *f, unsigned int v)
5684 {
5685 qemu_put_byte(f, v >> 24);
5686 qemu_put_byte(f, v >> 16);
5687 qemu_put_byte(f, v >> 8);
5688 qemu_put_byte(f, v);
5689 }
5690
5691 void qemu_put_be64(QEMUFile *f, uint64_t v)
5692 {
5693 qemu_put_be32(f, v >> 32);
5694 qemu_put_be32(f, v);
5695 }
5696
5697 unsigned int qemu_get_be16(QEMUFile *f)
5698 {
5699 unsigned int v;
5700 v = qemu_get_byte(f) << 8;
5701 v |= qemu_get_byte(f);
5702 return v;
5703 }
5704
5705 unsigned int qemu_get_be32(QEMUFile *f)
5706 {
5707 unsigned int v;
5708 v = qemu_get_byte(f) << 24;
5709 v |= qemu_get_byte(f) << 16;
5710 v |= qemu_get_byte(f) << 8;
5711 v |= qemu_get_byte(f);
5712 return v;
5713 }
5714
5715 uint64_t qemu_get_be64(QEMUFile *f)
5716 {
5717 uint64_t v;
5718 v = (uint64_t)qemu_get_be32(f) << 32;
5719 v |= qemu_get_be32(f);
5720 return v;
5721 }
5722
5723 typedef struct SaveStateEntry {
5724 char idstr[256];
5725 int instance_id;
5726 int version_id;
5727 SaveStateHandler *save_state;
5728 LoadStateHandler *load_state;
5729 void *opaque;
5730 struct SaveStateEntry *next;
5731 } SaveStateEntry;
5732
5733 static SaveStateEntry *first_se;
5734
5735 int register_savevm(const char *idstr,
5736 int instance_id,
5737 int version_id,
5738 SaveStateHandler *save_state,
5739 LoadStateHandler *load_state,
5740 void *opaque)
5741 {
5742 SaveStateEntry *se, **pse;
5743
5744 se = qemu_malloc(sizeof(SaveStateEntry));
5745 if (!se)
5746 return -1;
5747 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5748 se->instance_id = instance_id;
5749 se->version_id = version_id;
5750 se->save_state = save_state;
5751 se->load_state = load_state;
5752 se->opaque = opaque;
5753 se->next = NULL;
5754
5755 /* add at the end of list */
5756 pse = &first_se;
5757 while (*pse != NULL)
5758 pse = &(*pse)->next;
5759 *pse = se;
5760 return 0;
5761 }
5762
5763 #define QEMU_VM_FILE_MAGIC 0x5145564d
5764 #define QEMU_VM_FILE_VERSION 0x00000002
5765
5766 static int qemu_savevm_state(QEMUFile *f)
5767 {
5768 SaveStateEntry *se;
5769 int len, ret;
5770 int64_t cur_pos, len_pos, total_len_pos;
5771
5772 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5773 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5774 total_len_pos = qemu_ftell(f);
5775 qemu_put_be64(f, 0); /* total size */
5776
5777 for(se = first_se; se != NULL; se = se->next) {
5778 /* ID string */
5779 len = strlen(se->idstr);
5780 qemu_put_byte(f, len);
5781 qemu_put_buffer(f, se->idstr, len);
5782
5783 qemu_put_be32(f, se->instance_id);
5784 qemu_put_be32(f, se->version_id);
5785
5786 /* record size: filled later */
5787 len_pos = qemu_ftell(f);
5788 qemu_put_be32(f, 0);
5789 se->save_state(f, se->opaque);
5790
5791 /* fill record size */
5792 cur_pos = qemu_ftell(f);
5793 len = cur_pos - len_pos - 4;
5794 qemu_fseek(f, len_pos, SEEK_SET);
5795 qemu_put_be32(f, len);
5796 qemu_fseek(f, cur_pos, SEEK_SET);
5797 }
5798 cur_pos = qemu_ftell(f);
5799 qemu_fseek(f, total_len_pos, SEEK_SET);
5800 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5801 qemu_fseek(f, cur_pos, SEEK_SET);
5802
5803 ret = 0;
5804 return ret;
5805 }
5806
5807 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5808 {
5809 SaveStateEntry *se;
5810
5811 for(se = first_se; se != NULL; se = se->next) {
5812 if (!strcmp(se->idstr, idstr) &&
5813 instance_id == se->instance_id)
5814 return se;
5815 }
5816 return NULL;
5817 }
5818
5819 static int qemu_loadvm_state(QEMUFile *f)
5820 {
5821 SaveStateEntry *se;
5822 int len, ret, instance_id, record_len, version_id;
5823 int64_t total_len, end_pos, cur_pos;
5824 unsigned int v;
5825 char idstr[256];
5826
5827 v = qemu_get_be32(f);
5828 if (v != QEMU_VM_FILE_MAGIC)
5829 goto fail;
5830 v = qemu_get_be32(f);
5831 if (v != QEMU_VM_FILE_VERSION) {
5832 fail:
5833 ret = -1;
5834 goto the_end;
5835 }
5836 total_len = qemu_get_be64(f);
5837 end_pos = total_len + qemu_ftell(f);
5838 for(;;) {
5839 if (qemu_ftell(f) >= end_pos)
5840 break;
5841 len = qemu_get_byte(f);
5842 qemu_get_buffer(f, idstr, len);
5843 idstr[len] = '\0';
5844 instance_id = qemu_get_be32(f);
5845 version_id = qemu_get_be32(f);
5846 record_len = qemu_get_be32(f);
5847 #if 0
5848 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5849 idstr, instance_id, version_id, record_len);
5850 #endif
5851 cur_pos = qemu_ftell(f);
5852 se = find_se(idstr, instance_id);
5853 if (!se) {
5854 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5855 instance_id, idstr);
5856 } else {
5857 ret = se->load_state(f, se->opaque, version_id);
5858 if (ret < 0) {
5859 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5860 instance_id, idstr);
5861 }
5862 }
5863 /* always seek to exact end of record */
5864 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5865 }
5866 ret = 0;
5867 the_end:
5868 return ret;
5869 }
5870
5871 /* device can contain snapshots */
5872 static int bdrv_can_snapshot(BlockDriverState *bs)
5873 {
5874 return (bs &&
5875 !bdrv_is_removable(bs) &&
5876 !bdrv_is_read_only(bs));
5877 }
5878
5879 /* device must be snapshots in order to have a reliable snapshot */
5880 static int bdrv_has_snapshot(BlockDriverState *bs)
5881 {
5882 return (bs &&
5883 !bdrv_is_removable(bs) &&
5884 !bdrv_is_read_only(bs));
5885 }
5886
5887 static BlockDriverState *get_bs_snapshots(void)
5888 {
5889 BlockDriverState *bs;
5890 int i;
5891
5892 if (bs_snapshots)
5893 return bs_snapshots;
5894 for(i = 0; i <= nb_drives; i++) {
5895 bs = drives_table[i].bdrv;
5896 if (bdrv_can_snapshot(bs))
5897 goto ok;
5898 }
5899 return NULL;
5900 ok:
5901 bs_snapshots = bs;
5902 return bs;
5903 }
5904
5905 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5906 const char *name)
5907 {
5908 QEMUSnapshotInfo *sn_tab, *sn;
5909 int nb_sns, i, ret;
5910
5911 ret = -ENOENT;
5912 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5913 if (nb_sns < 0)
5914 return ret;
5915 for(i = 0; i < nb_sns; i++) {
5916 sn = &sn_tab[i];
5917 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5918 *sn_info = *sn;
5919 ret = 0;
5920 break;
5921 }
5922 }
5923 qemu_free(sn_tab);
5924 return ret;
5925 }
5926
5927 void do_savevm(const char *name)
5928 {
5929 BlockDriverState *bs, *bs1;
5930 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5931 int must_delete, ret, i;
5932 BlockDriverInfo bdi1, *bdi = &bdi1;
5933 QEMUFile *f;
5934 int saved_vm_running;
5935 #ifdef _WIN32
5936 struct _timeb tb;
5937 #else
5938 struct timeval tv;
5939 #endif
5940
5941 bs = get_bs_snapshots();
5942 if (!bs) {
5943 term_printf("No block device can accept snapshots\n");
5944 return;
5945 }
5946
5947 /* ??? Should this occur after vm_stop? */
5948 qemu_aio_flush();
5949
5950 saved_vm_running = vm_running;
5951 vm_stop(0);
5952
5953 must_delete = 0;
5954 if (name) {
5955 ret = bdrv_snapshot_find(bs, old_sn, name);
5956 if (ret >= 0) {
5957 must_delete = 1;
5958 }
5959 }
5960 memset(sn, 0, sizeof(*sn));
5961 if (must_delete) {
5962 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5963 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5964 } else {
5965 if (name)
5966 pstrcpy(sn->name, sizeof(sn->name), name);
5967 }
5968
5969 /* fill auxiliary fields */
5970 #ifdef _WIN32
5971 _ftime(&tb);
5972 sn->date_sec = tb.time;
5973 sn->date_nsec = tb.millitm * 1000000;
5974 #else
5975 gettimeofday(&tv, NULL);
5976 sn->date_sec = tv.tv_sec;
5977 sn->date_nsec = tv.tv_usec * 1000;
5978 #endif
5979 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5980
5981 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5982 term_printf("Device %s does not support VM state snapshots\n",
5983 bdrv_get_device_name(bs));
5984 goto the_end;
5985 }
5986
5987 /* save the VM state */
5988 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5989 if (!f) {
5990 term_printf("Could not open VM state file\n");
5991 goto the_end;
5992 }
5993 ret = qemu_savevm_state(f);
5994 sn->vm_state_size = qemu_ftell(f);
5995 qemu_fclose(f);
5996 if (ret < 0) {
5997 term_printf("Error %d while writing VM\n", ret);
5998 goto the_end;
5999 }
6000
6001 /* create the snapshots */
6002
6003 for(i = 0; i < nb_drives; i++) {
6004 bs1 = drives_table[i].bdrv;
6005 if (bdrv_has_snapshot(bs1)) {
6006 if (must_delete) {
6007 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6008 if (ret < 0) {
6009 term_printf("Error while deleting snapshot on '%s'\n",
6010 bdrv_get_device_name(bs1));
6011 }
6012 }
6013 ret = bdrv_snapshot_create(bs1, sn);
6014 if (ret < 0) {
6015 term_printf("Error while creating snapshot on '%s'\n",
6016 bdrv_get_device_name(bs1));
6017 }
6018 }
6019 }
6020
6021 the_end:
6022 if (saved_vm_running)
6023 vm_start();
6024 }
6025
6026 void do_loadvm(const char *name)
6027 {
6028 BlockDriverState *bs, *bs1;
6029 BlockDriverInfo bdi1, *bdi = &bdi1;
6030 QEMUFile *f;
6031 int i, ret;
6032 int saved_vm_running;
6033
6034 bs = get_bs_snapshots();
6035 if (!bs) {
6036 term_printf("No block device supports snapshots\n");
6037 return;
6038 }
6039
6040 /* Flush all IO requests so they don't interfere with the new state. */
6041 qemu_aio_flush();
6042
6043 saved_vm_running = vm_running;
6044 vm_stop(0);
6045
6046 for(i = 0; i <= nb_drives; i++) {
6047 bs1 = drives_table[i].bdrv;
6048 if (bdrv_has_snapshot(bs1)) {
6049 ret = bdrv_snapshot_goto(bs1, name);
6050 if (ret < 0) {
6051 if (bs != bs1)
6052 term_printf("Warning: ");
6053 switch(ret) {
6054 case -ENOTSUP:
6055 term_printf("Snapshots not supported on device '%s'\n",
6056 bdrv_get_device_name(bs1));
6057 break;
6058 case -ENOENT:
6059 term_printf("Could not find snapshot '%s' on device '%s'\n",
6060 name, bdrv_get_device_name(bs1));
6061 break;
6062 default:
6063 term_printf("Error %d while activating snapshot on '%s'\n",
6064 ret, bdrv_get_device_name(bs1));
6065 break;
6066 }
6067 /* fatal on snapshot block device */
6068 if (bs == bs1)
6069 goto the_end;
6070 }
6071 }
6072 }
6073
6074 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6075 term_printf("Device %s does not support VM state snapshots\n",
6076 bdrv_get_device_name(bs));
6077 return;
6078 }
6079
6080 /* restore the VM state */
6081 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6082 if (!f) {
6083 term_printf("Could not open VM state file\n");
6084 goto the_end;
6085 }
6086 ret = qemu_loadvm_state(f);
6087 qemu_fclose(f);
6088 if (ret < 0) {
6089 term_printf("Error %d while loading VM state\n", ret);
6090 }
6091 the_end:
6092 if (saved_vm_running)
6093 vm_start();
6094 }
6095
6096 void do_delvm(const char *name)
6097 {
6098 BlockDriverState *bs, *bs1;
6099 int i, ret;
6100
6101 bs = get_bs_snapshots();
6102 if (!bs) {
6103 term_printf("No block device supports snapshots\n");
6104 return;
6105 }
6106
6107 for(i = 0; i <= nb_drives; i++) {
6108 bs1 = drives_table[i].bdrv;
6109 if (bdrv_has_snapshot(bs1)) {
6110 ret = bdrv_snapshot_delete(bs1, name);
6111 if (ret < 0) {
6112 if (ret == -ENOTSUP)
6113 term_printf("Snapshots not supported on device '%s'\n",
6114 bdrv_get_device_name(bs1));
6115 else
6116 term_printf("Error %d while deleting snapshot on '%s'\n",
6117 ret, bdrv_get_device_name(bs1));
6118 }
6119 }
6120 }
6121 }
6122
6123 void do_info_snapshots(void)
6124 {
6125 BlockDriverState *bs, *bs1;
6126 QEMUSnapshotInfo *sn_tab, *sn;
6127 int nb_sns, i;
6128 char buf[256];
6129
6130 bs = get_bs_snapshots();
6131 if (!bs) {
6132 term_printf("No available block device supports snapshots\n");
6133 return;
6134 }
6135 term_printf("Snapshot devices:");
6136 for(i = 0; i <= nb_drives; i++) {
6137 bs1 = drives_table[i].bdrv;
6138 if (bdrv_has_snapshot(bs1)) {
6139 if (bs == bs1)
6140 term_printf(" %s", bdrv_get_device_name(bs1));
6141 }
6142 }
6143 term_printf("\n");
6144
6145 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6146 if (nb_sns < 0) {
6147 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6148 return;
6149 }
6150 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6151 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6152 for(i = 0; i < nb_sns; i++) {
6153 sn = &sn_tab[i];
6154 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6155 }
6156 qemu_free(sn_tab);
6157 }
6158
6159 /***********************************************************/
6160 /* cpu save/restore */
6161
6162 #if defined(TARGET_I386)
6163
6164 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6165 {
6166 qemu_put_be32(f, dt->selector);
6167 qemu_put_betl(f, dt->base);
6168 qemu_put_be32(f, dt->limit);
6169 qemu_put_be32(f, dt->flags);
6170 }
6171
6172 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6173 {
6174 dt->selector = qemu_get_be32(f);
6175 dt->base = qemu_get_betl(f);
6176 dt->limit = qemu_get_be32(f);
6177 dt->flags = qemu_get_be32(f);
6178 }
6179
6180 void cpu_save(QEMUFile *f, void *opaque)
6181 {
6182 CPUState *env = opaque;
6183 uint16_t fptag, fpus, fpuc, fpregs_format;
6184 uint32_t hflags;
6185 int i;
6186
6187 for(i = 0; i < CPU_NB_REGS; i++)
6188 qemu_put_betls(f, &env->regs[i]);
6189 qemu_put_betls(f, &env->eip);
6190 qemu_put_betls(f, &env->eflags);
6191 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6192 qemu_put_be32s(f, &hflags);
6193
6194 /* FPU */
6195 fpuc = env->fpuc;
6196 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6197 fptag = 0;
6198 for(i = 0; i < 8; i++) {
6199 fptag |= ((!env->fptags[i]) << i);
6200 }
6201
6202 qemu_put_be16s(f, &fpuc);
6203 qemu_put_be16s(f, &fpus);
6204 qemu_put_be16s(f, &fptag);
6205
6206 #ifdef USE_X86LDOUBLE
6207 fpregs_format = 0;
6208 #else
6209 fpregs_format = 1;
6210 #endif
6211 qemu_put_be16s(f, &fpregs_format);
6212
6213 for(i = 0; i < 8; i++) {
6214 #ifdef USE_X86LDOUBLE
6215 {
6216 uint64_t mant;
6217 uint16_t exp;
6218 /* we save the real CPU data (in case of MMX usage only 'mant'
6219 contains the MMX register */
6220 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6221 qemu_put_be64(f, mant);
6222 qemu_put_be16(f, exp);
6223 }
6224 #else
6225 /* if we use doubles for float emulation, we save the doubles to
6226 avoid losing information in case of MMX usage. It can give
6227 problems if the image is restored on a CPU where long
6228 doubles are used instead. */
6229 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6230 #endif
6231 }
6232
6233 for(i = 0; i < 6; i++)
6234 cpu_put_seg(f, &env->segs[i]);
6235 cpu_put_seg(f, &env->ldt);
6236 cpu_put_seg(f, &env->tr);
6237 cpu_put_seg(f, &env->gdt);
6238 cpu_put_seg(f, &env->idt);
6239
6240 qemu_put_be32s(f, &env->sysenter_cs);
6241 qemu_put_be32s(f, &env->sysenter_esp);
6242 qemu_put_be32s(f, &env->sysenter_eip);
6243
6244 qemu_put_betls(f, &env->cr[0]);
6245 qemu_put_betls(f, &env->cr[2]);
6246 qemu_put_betls(f, &env->cr[3]);
6247 qemu_put_betls(f, &env->cr[4]);
6248
6249 for(i = 0; i < 8; i++)
6250 qemu_put_betls(f, &env->dr[i]);
6251
6252 /* MMU */
6253 qemu_put_be32s(f, &env->a20_mask);
6254
6255 /* XMM */
6256 qemu_put_be32s(f, &env->mxcsr);
6257 for(i = 0; i < CPU_NB_REGS; i++) {
6258 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6259 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6260 }
6261
6262 #ifdef TARGET_X86_64
6263 qemu_put_be64s(f, &env->efer);
6264 qemu_put_be64s(f, &env->star);
6265 qemu_put_be64s(f, &env->lstar);
6266 qemu_put_be64s(f, &env->cstar);
6267 qemu_put_be64s(f, &env->fmask);
6268 qemu_put_be64s(f, &env->kernelgsbase);
6269 #endif
6270 qemu_put_be32s(f, &env->smbase);
6271 }
6272
6273 #ifdef USE_X86LDOUBLE
6274 /* XXX: add that in a FPU generic layer */
6275 union x86_longdouble {
6276 uint64_t mant;
6277 uint16_t exp;
6278 };
6279
6280 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
6281 #define EXPBIAS1 1023
6282 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
6283 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
6284
6285 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6286 {
6287 int e;
6288 /* mantissa */
6289 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6290 /* exponent + sign */
6291 e = EXPD1(temp) - EXPBIAS1 + 16383;
6292 e |= SIGND1(temp) >> 16;
6293 p->exp = e;
6294 }
6295 #endif
6296
6297 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6298 {
6299 CPUState *env = opaque;
6300 int i, guess_mmx;
6301 uint32_t hflags;
6302 uint16_t fpus, fpuc, fptag, fpregs_format;
6303
6304 if (version_id != 3 && version_id != 4)
6305 return -EINVAL;
6306 for(i = 0; i < CPU_NB_REGS; i++)
6307 qemu_get_betls(f, &env->regs[i]);
6308 qemu_get_betls(f, &env->eip);
6309 qemu_get_betls(f, &env->eflags);
6310 qemu_get_be32s(f, &hflags);
6311
6312 qemu_get_be16s(f, &fpuc);
6313 qemu_get_be16s(f, &fpus);
6314 qemu_get_be16s(f, &fptag);
6315 qemu_get_be16s(f, &fpregs_format);
6316
6317 /* NOTE: we cannot always restore the FPU state if the image come
6318 from a host with a different 'USE_X86LDOUBLE' define. We guess
6319 if we are in an MMX state to restore correctly in that case. */
6320 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6321 for(i = 0; i < 8; i++) {
6322 uint64_t mant;
6323 uint16_t exp;
6324
6325 switch(fpregs_format) {
6326 case 0:
6327 mant = qemu_get_be64(f);
6328 exp = qemu_get_be16(f);
6329 #ifdef USE_X86LDOUBLE
6330 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6331 #else
6332 /* difficult case */
6333 if (guess_mmx)
6334 env->fpregs[i].mmx.MMX_Q(0) = mant;
6335 else
6336 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6337 #endif
6338 break;
6339 case 1:
6340 mant = qemu_get_be64(f);
6341 #ifdef USE_X86LDOUBLE
6342 {
6343 union x86_longdouble *p;
6344 /* difficult case */
6345 p = (void *)&env->fpregs[i];
6346 if (guess_mmx) {
6347 p->mant = mant;
6348 p->exp = 0xffff;
6349 } else {
6350 fp64_to_fp80(p, mant);
6351 }
6352 }
6353 #else
6354 env->fpregs[i].mmx.MMX_Q(0) = mant;
6355 #endif
6356 break;
6357 default:
6358 return -EINVAL;
6359 }
6360 }
6361
6362 env->fpuc = fpuc;
6363 /* XXX: restore FPU round state */
6364 env->fpstt = (fpus >> 11) & 7;
6365 env->fpus = fpus & ~0x3800;
6366 fptag ^= 0xff;
6367 for(i = 0; i < 8; i++) {
6368 env->fptags[i] = (fptag >> i) & 1;
6369 }
6370
6371 for(i = 0; i < 6; i++)
6372 cpu_get_seg(f, &env->segs[i]);
6373 cpu_get_seg(f, &env->ldt);
6374 cpu_get_seg(f, &env->tr);
6375 cpu_get_seg(f, &env->gdt);
6376 cpu_get_seg(f, &env->idt);
6377
6378 qemu_get_be32s(f, &env->sysenter_cs);
6379 qemu_get_be32s(f, &env->sysenter_esp);
6380 qemu_get_be32s(f, &env->sysenter_eip);
6381
6382 qemu_get_betls(f, &env->cr[0]);
6383 qemu_get_betls(f, &env->cr[2]);
6384 qemu_get_betls(f, &env->cr[3]);
6385 qemu_get_betls(f, &env->cr[4]);
6386
6387 for(i = 0; i < 8; i++)
6388 qemu_get_betls(f, &env->dr[i]);
6389
6390 /* MMU */
6391 qemu_get_be32s(f, &env->a20_mask);
6392
6393 qemu_get_be32s(f, &env->mxcsr);
6394 for(i = 0; i < CPU_NB_REGS; i++) {
6395 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6396 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6397 }
6398
6399 #ifdef TARGET_X86_64
6400 qemu_get_be64s(f, &env->efer);
6401 qemu_get_be64s(f, &env->star);
6402 qemu_get_be64s(f, &env->lstar);
6403 qemu_get_be64s(f, &env->cstar);
6404 qemu_get_be64s(f, &env->fmask);
6405 qemu_get_be64s(f, &env->kernelgsbase);
6406 #endif
6407 if (version_id >= 4)
6408 qemu_get_be32s(f, &env->smbase);
6409
6410 /* XXX: compute hflags from scratch, except for CPL and IIF */
6411 env->hflags = hflags;
6412 tlb_flush(env, 1);
6413 return 0;
6414 }
6415
6416 #elif defined(TARGET_PPC)
6417 void cpu_save(QEMUFile *f, void *opaque)
6418 {
6419 }
6420
6421 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6422 {
6423 return 0;
6424 }
6425
6426 #elif defined(TARGET_MIPS)
6427 void cpu_save(QEMUFile *f, void *opaque)
6428 {
6429 }
6430
6431 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6432 {
6433 return 0;
6434 }
6435
6436 #elif defined(TARGET_SPARC)
6437 void cpu_save(QEMUFile *f, void *opaque)
6438 {
6439 CPUState *env = opaque;
6440 int i;
6441 uint32_t tmp;
6442
6443 for(i = 0; i < 8; i++)
6444 qemu_put_betls(f, &env->gregs[i]);
6445 for(i = 0; i < NWINDOWS * 16; i++)
6446 qemu_put_betls(f, &env->regbase[i]);
6447
6448 /* FPU */
6449 for(i = 0; i < TARGET_FPREGS; i++) {
6450 union {
6451 float32 f;
6452 uint32_t i;
6453 } u;
6454 u.f = env->fpr[i];
6455 qemu_put_be32(f, u.i);
6456 }
6457
6458 qemu_put_betls(f, &env->pc);
6459 qemu_put_betls(f, &env->npc);
6460 qemu_put_betls(f, &env->y);
6461 tmp = GET_PSR(env);
6462 qemu_put_be32(f, tmp);
6463 qemu_put_betls(f, &env->fsr);
6464 qemu_put_betls(f, &env->tbr);
6465 #ifndef TARGET_SPARC64
6466 qemu_put_be32s(f, &env->wim);
6467 /* MMU */
6468 for(i = 0; i < 16; i++)
6469 qemu_put_be32s(f, &env->mmuregs[i]);
6470 #endif
6471 }
6472
6473 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6474 {
6475 CPUState *env = opaque;
6476 int i;
6477 uint32_t tmp;
6478
6479 for(i = 0; i < 8; i++)
6480 qemu_get_betls(f, &env->gregs[i]);
6481 for(i = 0; i < NWINDOWS * 16; i++)
6482 qemu_get_betls(f, &env->regbase[i]);
6483
6484 /* FPU */
6485 for(i = 0; i < TARGET_FPREGS; i++) {
6486 union {
6487 float32 f;
6488 uint32_t i;
6489 } u;
6490 u.i = qemu_get_be32(f);
6491 env->fpr[i] = u.f;
6492 }
6493
6494 qemu_get_betls(f, &env->pc);
6495 qemu_get_betls(f, &env->npc);
6496 qemu_get_betls(f, &env->y);
6497 tmp = qemu_get_be32(f);
6498 env->cwp = 0; /* needed to ensure that the wrapping registers are
6499 correctly updated */
6500 PUT_PSR(env, tmp);
6501 qemu_get_betls(f, &env->fsr);
6502 qemu_get_betls(f, &env->tbr);
6503 #ifndef TARGET_SPARC64
6504 qemu_get_be32s(f, &env->wim);
6505 /* MMU */
6506 for(i = 0; i < 16; i++)
6507 qemu_get_be32s(f, &env->mmuregs[i]);
6508 #endif
6509 tlb_flush(env, 1);
6510 return 0;
6511 }
6512
6513 #elif defined(TARGET_ARM)
6514
6515 void cpu_save(QEMUFile *f, void *opaque)
6516 {
6517 int i;
6518 CPUARMState *env = (CPUARMState *)opaque;
6519
6520 for (i = 0; i < 16; i++) {
6521 qemu_put_be32(f, env->regs[i]);
6522 }
6523 qemu_put_be32(f, cpsr_read(env));
6524 qemu_put_be32(f, env->spsr);
6525 for (i = 0; i < 6; i++) {
6526 qemu_put_be32(f, env->banked_spsr[i]);
6527 qemu_put_be32(f, env->banked_r13[i]);
6528 qemu_put_be32(f, env->banked_r14[i]);
6529 }
6530 for (i = 0; i < 5; i++) {
6531 qemu_put_be32(f, env->usr_regs[i]);
6532 qemu_put_be32(f, env->fiq_regs[i]);
6533 }
6534 qemu_put_be32(f, env->cp15.c0_cpuid);
6535 qemu_put_be32(f, env->cp15.c0_cachetype);
6536 qemu_put_be32(f, env->cp15.c1_sys);
6537 qemu_put_be32(f, env->cp15.c1_coproc);
6538 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6539 qemu_put_be32(f, env->cp15.c2_base0);
6540 qemu_put_be32(f, env->cp15.c2_base1);
6541 qemu_put_be32(f, env->cp15.c2_mask);
6542 qemu_put_be32(f, env->cp15.c2_data);
6543 qemu_put_be32(f, env->cp15.c2_insn);
6544 qemu_put_be32(f, env->cp15.c3);
6545 qemu_put_be32(f, env->cp15.c5_insn);
6546 qemu_put_be32(f, env->cp15.c5_data);
6547 for (i = 0; i < 8; i++) {
6548 qemu_put_be32(f, env->cp15.c6_region[i]);
6549 }
6550 qemu_put_be32(f, env->cp15.c6_insn);
6551 qemu_put_be32(f, env->cp15.c6_data);
6552 qemu_put_be32(f, env->cp15.c9_insn);
6553 qemu_put_be32(f, env->cp15.c9_data);
6554 qemu_put_be32(f, env->cp15.c13_fcse);
6555 qemu_put_be32(f, env->cp15.c13_context);
6556 qemu_put_be32(f, env->cp15.c13_tls1);
6557 qemu_put_be32(f, env->cp15.c13_tls2);
6558 qemu_put_be32(f, env->cp15.c13_tls3);
6559 qemu_put_be32(f, env->cp15.c15_cpar);
6560
6561 qemu_put_be32(f, env->features);
6562
6563 if (arm_feature(env, ARM_FEATURE_VFP)) {
6564 for (i = 0; i < 16; i++) {
6565 CPU_DoubleU u;
6566 u.d = env->vfp.regs[i];
6567 qemu_put_be32(f, u.l.upper);
6568 qemu_put_be32(f, u.l.lower);
6569 }
6570 for (i = 0; i < 16; i++) {
6571 qemu_put_be32(f, env->vfp.xregs[i]);
6572 }
6573
6574 /* TODO: Should use proper FPSCR access functions. */
6575 qemu_put_be32(f, env->vfp.vec_len);
6576 qemu_put_be32(f, env->vfp.vec_stride);
6577
6578 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6579 for (i = 16; i < 32; i++) {
6580 CPU_DoubleU u;
6581 u.d = env->vfp.regs[i];
6582 qemu_put_be32(f, u.l.upper);
6583 qemu_put_be32(f, u.l.lower);
6584 }
6585 }
6586 }
6587
6588 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6589 for (i = 0; i < 16; i++) {
6590 qemu_put_be64(f, env->iwmmxt.regs[i]);
6591 }
6592 for (i = 0; i < 16; i++) {
6593 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6594 }
6595 }
6596
6597 if (arm_feature(env, ARM_FEATURE_M)) {
6598 qemu_put_be32(f, env->v7m.other_sp);
6599 qemu_put_be32(f, env->v7m.vecbase);
6600 qemu_put_be32(f, env->v7m.basepri);
6601 qemu_put_be32(f, env->v7m.control);
6602 qemu_put_be32(f, env->v7m.current_sp);
6603 qemu_put_be32(f, env->v7m.exception);
6604 }
6605 }
6606
6607 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6608 {
6609 CPUARMState *env = (CPUARMState *)opaque;
6610 int i;
6611
6612 if (version_id != ARM_CPU_SAVE_VERSION)
6613 return -EINVAL;
6614
6615 for (i = 0; i < 16; i++) {
6616 env->regs[i] = qemu_get_be32(f);
6617 }
6618 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6619 env->spsr = qemu_get_be32(f);
6620 for (i = 0; i < 6; i++) {
6621 env->banked_spsr[i] = qemu_get_be32(f);
6622 env->banked_r13[i] = qemu_get_be32(f);
6623 env->banked_r14[i] = qemu_get_be32(f);
6624 }
6625 for (i = 0; i < 5; i++) {
6626 env->usr_regs[i] = qemu_get_be32(f);
6627 env->fiq_regs[i] = qemu_get_be32(f);
6628 }
6629 env->cp15.c0_cpuid = qemu_get_be32(f);
6630 env->cp15.c0_cachetype = qemu_get_be32(f);
6631 env->cp15.c1_sys = qemu_get_be32(f);
6632 env->cp15.c1_coproc = qemu_get_be32(f);
6633 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6634 env->cp15.c2_base0 = qemu_get_be32(f);
6635 env->cp15.c2_base1 = qemu_get_be32(f);
6636 env->cp15.c2_mask = qemu_get_be32(f);
6637 env->cp15.c2_data = qemu_get_be32(f);
6638 env->cp15.c2_insn = qemu_get_be32(f);
6639 env->cp15.c3 = qemu_get_be32(f);
6640 env->cp15.c5_insn = qemu_get_be32(f);
6641 env->cp15.c5_data = qemu_get_be32(f);
6642 for (i = 0; i < 8; i++) {
6643 env->cp15.c6_region[i] = qemu_get_be32(f);
6644 }
6645 env->cp15.c6_insn = qemu_get_be32(f);
6646 env->cp15.c6_data = qemu_get_be32(f);
6647 env->cp15.c9_insn = qemu_get_be32(f);
6648 env->cp15.c9_data = qemu_get_be32(f);
6649 env->cp15.c13_fcse = qemu_get_be32(f);
6650 env->cp15.c13_context = qemu_get_be32(f);
6651 env->cp15.c13_tls1 = qemu_get_be32(f);
6652 env->cp15.c13_tls2 = qemu_get_be32(f);
6653 env->cp15.c13_tls3 = qemu_get_be32(f);
6654 env->cp15.c15_cpar = qemu_get_be32(f);
6655
6656 env->features = qemu_get_be32(f);
6657
6658 if (arm_feature(env, ARM_FEATURE_VFP)) {
6659 for (i = 0; i < 16; i++) {
6660 CPU_DoubleU u;
6661 u.l.upper = qemu_get_be32(f);
6662 u.l.lower = qemu_get_be32(f);
6663 env->vfp.regs[i] = u.d;
6664 }
6665 for (i = 0; i < 16; i++) {
6666 env->vfp.xregs[i] = qemu_get_be32(f);
6667 }
6668
6669 /* TODO: Should use proper FPSCR access functions. */
6670 env->vfp.vec_len = qemu_get_be32(f);
6671 env->vfp.vec_stride = qemu_get_be32(f);
6672
6673 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6674 for (i = 0; i < 16; i++) {
6675 CPU_DoubleU u;
6676 u.l.upper = qemu_get_be32(f);
6677 u.l.lower = qemu_get_be32(f);
6678 env->vfp.regs[i] = u.d;
6679 }
6680 }
6681 }
6682
6683 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6684 for (i = 0; i < 16; i++) {
6685 env->iwmmxt.regs[i] = qemu_get_be64(f);
6686 }
6687 for (i = 0; i < 16; i++) {
6688 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6689 }
6690 }
6691
6692 if (arm_feature(env, ARM_FEATURE_M)) {
6693 env->v7m.other_sp = qemu_get_be32(f);
6694 env->v7m.vecbase = qemu_get_be32(f);
6695 env->v7m.basepri = qemu_get_be32(f);
6696 env->v7m.control = qemu_get_be32(f);
6697 env->v7m.current_sp = qemu_get_be32(f);
6698 env->v7m.exception = qemu_get_be32(f);
6699 }
6700
6701 return 0;
6702 }
6703
6704 #else
6705
6706 //#warning No CPU save/restore functions
6707
6708 #endif
6709
6710 /***********************************************************/
6711 /* ram save/restore */
6712
6713 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6714 {
6715 int v;
6716
6717 v = qemu_get_byte(f);
6718 switch(v) {
6719 case 0:
6720 if (qemu_get_buffer(f, buf, len) != len)
6721 return -EIO;
6722 break;
6723 case 1:
6724 v = qemu_get_byte(f);
6725 memset(buf, v, len);
6726 break;
6727 default:
6728 return -EINVAL;
6729 }
6730 return 0;
6731 }
6732
6733 static int ram_load_v1(QEMUFile *f, void *opaque)
6734 {
6735 int i, ret;
6736
6737 if (qemu_get_be32(f) != phys_ram_size)
6738 return -EINVAL;
6739 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6740 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6741 if (ret)
6742 return ret;
6743 }
6744 return 0;
6745 }
6746
6747 #define BDRV_HASH_BLOCK_SIZE 1024
6748 #define IOBUF_SIZE 4096
6749 #define RAM_CBLOCK_MAGIC 0xfabe
6750
6751 typedef struct RamCompressState {
6752 z_stream zstream;
6753 QEMUFile *f;
6754 uint8_t buf[IOBUF_SIZE];
6755 } RamCompressState;
6756
6757 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6758 {
6759 int ret;
6760 memset(s, 0, sizeof(*s));
6761 s->f = f;
6762 ret = deflateInit2(&s->zstream, 1,
6763 Z_DEFLATED, 15,
6764 9, Z_DEFAULT_STRATEGY);
6765 if (ret != Z_OK)
6766 return -1;
6767 s->zstream.avail_out = IOBUF_SIZE;
6768 s->zstream.next_out = s->buf;
6769 return 0;
6770 }
6771
6772 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6773 {
6774 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6775 qemu_put_be16(s->f, len);
6776 qemu_put_buffer(s->f, buf, len);
6777 }
6778
6779 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6780 {
6781 int ret;
6782
6783 s->zstream.avail_in = len;
6784 s->zstream.next_in = (uint8_t *)buf;
6785 while (s->zstream.avail_in > 0) {
6786 ret = deflate(&s->zstream, Z_NO_FLUSH);
6787 if (ret != Z_OK)
6788 return -1;
6789 if (s->zstream.avail_out == 0) {
6790 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6791 s->zstream.avail_out = IOBUF_SIZE;
6792 s->zstream.next_out = s->buf;
6793 }
6794 }
6795 return 0;
6796 }
6797
6798 static void ram_compress_close(RamCompressState *s)
6799 {
6800 int len, ret;
6801
6802 /* compress last bytes */
6803 for(;;) {
6804 ret = deflate(&s->zstream, Z_FINISH);
6805 if (ret == Z_OK || ret == Z_STREAM_END) {
6806 len = IOBUF_SIZE - s->zstream.avail_out;
6807 if (len > 0) {
6808 ram_put_cblock(s, s->buf, len);
6809 }
6810 s->zstream.avail_out = IOBUF_SIZE;
6811 s->zstream.next_out = s->buf;
6812 if (ret == Z_STREAM_END)
6813 break;
6814 } else {
6815 goto fail;
6816 }
6817 }
6818 fail:
6819 deflateEnd(&s->zstream);
6820 }
6821
6822 typedef struct RamDecompressState {
6823 z_stream zstream;
6824 QEMUFile *f;
6825 uint8_t buf[IOBUF_SIZE];
6826 } RamDecompressState;
6827
6828 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6829 {
6830 int ret;
6831 memset(s, 0, sizeof(*s));
6832 s->f = f;
6833 ret = inflateInit(&s->zstream);
6834 if (ret != Z_OK)
6835 return -1;
6836 return 0;
6837 }
6838
6839 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6840 {
6841 int ret, clen;
6842
6843 s->zstream.avail_out = len;
6844 s->zstream.next_out = buf;
6845 while (s->zstream.avail_out > 0) {
6846 if (s->zstream.avail_in == 0) {
6847 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6848 return -1;
6849 clen = qemu_get_be16(s->f);
6850 if (clen > IOBUF_SIZE)
6851 return -1;
6852 qemu_get_buffer(s->f, s->buf, clen);
6853 s->zstream.avail_in = clen;
6854 s->zstream.next_in = s->buf;
6855 }
6856 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6857 if (ret != Z_OK && ret != Z_STREAM_END) {
6858 return -1;
6859 }
6860 }
6861 return 0;
6862 }
6863
6864 static void ram_decompress_close(RamDecompressState *s)
6865 {
6866 inflateEnd(&s->zstream);
6867 }
6868
6869 static void ram_save(QEMUFile *f, void *opaque)
6870 {
6871 int i;
6872 RamCompressState s1, *s = &s1;
6873 uint8_t buf[10];
6874
6875 qemu_put_be32(f, phys_ram_size);
6876 if (ram_compress_open(s, f) < 0)
6877 return;
6878 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6879 #if 0
6880 if (tight_savevm_enabled) {
6881 int64_t sector_num;
6882 int j;
6883
6884 /* find if the memory block is available on a virtual
6885 block device */
6886 sector_num = -1;
6887 for(j = 0; j < nb_drives; j++) {
6888 sector_num = bdrv_hash_find(drives_table[j].bdrv,
6889 phys_ram_base + i,
6890 BDRV_HASH_BLOCK_SIZE);
6891 if (sector_num >= 0)
6892 break;
6893 }
6894 if (j == nb_drives)
6895 goto normal_compress;
6896 buf[0] = 1;
6897 buf[1] = j;
6898 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6899 ram_compress_buf(s, buf, 10);
6900 } else
6901 #endif
6902 {
6903 // normal_compress:
6904 buf[0] = 0;
6905 ram_compress_buf(s, buf, 1);
6906 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6907 }
6908 }
6909 ram_compress_close(s);
6910 }
6911
6912 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6913 {
6914 RamDecompressState s1, *s = &s1;
6915 uint8_t buf[10];
6916 int i;
6917
6918 if (version_id == 1)
6919 return ram_load_v1(f, opaque);
6920 if (version_id != 2)
6921 return -EINVAL;
6922 if (qemu_get_be32(f) != phys_ram_size)
6923 return -EINVAL;
6924 if (ram_decompress_open(s, f) < 0)
6925 return -EINVAL;
6926 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6927 if (ram_decompress_buf(s, buf, 1) < 0) {
6928 fprintf(stderr, "Error while reading ram block header\n");
6929 goto error;
6930 }
6931 if (buf[0] == 0) {
6932 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6933 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6934 goto error;
6935 }
6936 } else
6937 #if 0
6938 if (buf[0] == 1) {
6939 int bs_index;
6940 int64_t sector_num;
6941
6942 ram_decompress_buf(s, buf + 1, 9);
6943 bs_index = buf[1];
6944 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6945 if (bs_index >= nb_drives) {
6946 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6947 goto error;
6948 }
6949 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
6950 phys_ram_base + i,
6951 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6952 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6953 bs_index, sector_num);
6954 goto error;
6955 }
6956 } else
6957 #endif
6958 {
6959 error:
6960 printf("Error block header\n");
6961 return -EINVAL;
6962 }
6963 }
6964 ram_decompress_close(s);
6965 return 0;
6966 }
6967
6968 /***********************************************************/
6969 /* bottom halves (can be seen as timers which expire ASAP) */
6970
6971 struct QEMUBH {
6972 QEMUBHFunc *cb;
6973 void *opaque;
6974 int scheduled;
6975 QEMUBH *next;
6976 };
6977
6978 static QEMUBH *first_bh = NULL;
6979
6980 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6981 {
6982 QEMUBH *bh;
6983 bh = qemu_mallocz(sizeof(QEMUBH));
6984 if (!bh)
6985 return NULL;
6986 bh->cb = cb;
6987 bh->opaque = opaque;
6988 return bh;
6989 }
6990
6991 int qemu_bh_poll(void)
6992 {
6993 QEMUBH *bh, **pbh;
6994 int ret;
6995
6996 ret = 0;
6997 for(;;) {
6998 pbh = &first_bh;
6999 bh = *pbh;
7000 if (!bh)
7001 break;
7002 ret = 1;
7003 *pbh = bh->next;
7004 bh->scheduled = 0;
7005 bh->cb(bh->opaque);
7006 }
7007 return ret;
7008 }
7009
7010 void qemu_bh_schedule(QEMUBH *bh)
7011 {
7012 CPUState *env = cpu_single_env;
7013 if (bh->scheduled)
7014 return;
7015 bh->scheduled = 1;
7016 bh->next = first_bh;
7017 first_bh = bh;
7018
7019 /* stop the currently executing CPU to execute the BH ASAP */
7020 if (env) {
7021 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7022 }
7023 }
7024
7025 void qemu_bh_cancel(QEMUBH *bh)
7026 {
7027 QEMUBH **pbh;
7028 if (bh->scheduled) {
7029 pbh = &first_bh;
7030 while (*pbh != bh)
7031 pbh = &(*pbh)->next;
7032 *pbh = bh->next;
7033 bh->scheduled = 0;
7034 }
7035 }
7036
7037 void qemu_bh_delete(QEMUBH *bh)
7038 {
7039 qemu_bh_cancel(bh);
7040 qemu_free(bh);
7041 }
7042
7043 /***********************************************************/
7044 /* machine registration */
7045
7046 QEMUMachine *first_machine = NULL;
7047
7048 int qemu_register_machine(QEMUMachine *m)
7049 {
7050 QEMUMachine **pm;
7051 pm = &first_machine;
7052 while (*pm != NULL)
7053 pm = &(*pm)->next;
7054 m->next = NULL;
7055 *pm = m;
7056 return 0;
7057 }
7058
7059 static QEMUMachine *find_machine(const char *name)
7060 {
7061 QEMUMachine *m;
7062
7063 for(m = first_machine; m != NULL; m = m->next) {
7064 if (!strcmp(m->name, name))
7065 return m;
7066 }
7067 return NULL;
7068 }
7069
7070 /***********************************************************/
7071 /* main execution loop */
7072
7073 static void gui_update(void *opaque)
7074 {
7075 DisplayState *ds = opaque;
7076 ds->dpy_refresh(ds);
7077 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
7078 }
7079
7080 struct vm_change_state_entry {
7081 VMChangeStateHandler *cb;
7082 void *opaque;
7083 LIST_ENTRY (vm_change_state_entry) entries;
7084 };
7085
7086 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7087
7088 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7089 void *opaque)
7090 {
7091 VMChangeStateEntry *e;
7092
7093 e = qemu_mallocz(sizeof (*e));
7094 if (!e)
7095 return NULL;
7096
7097 e->cb = cb;
7098 e->opaque = opaque;
7099 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7100 return e;
7101 }
7102
7103 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7104 {
7105 LIST_REMOVE (e, entries);
7106 qemu_free (e);
7107 }
7108
7109 static void vm_state_notify(int running)
7110 {
7111 VMChangeStateEntry *e;
7112
7113 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7114 e->cb(e->opaque, running);
7115 }
7116 }
7117
7118 /* XXX: support several handlers */
7119 static VMStopHandler *vm_stop_cb;
7120 static void *vm_stop_opaque;
7121
7122 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7123 {
7124 vm_stop_cb = cb;
7125 vm_stop_opaque = opaque;
7126 return 0;
7127 }
7128
7129 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7130 {
7131 vm_stop_cb = NULL;
7132 }
7133
7134 void vm_start(void)
7135 {
7136 if (!vm_running) {
7137 cpu_enable_ticks();
7138 vm_running = 1;
7139 vm_state_notify(1);
7140 qemu_rearm_alarm_timer(alarm_timer);
7141 }
7142 }
7143
7144 void vm_stop(int reason)
7145 {
7146 if (vm_running) {
7147 cpu_disable_ticks();
7148 vm_running = 0;
7149 if (reason != 0) {
7150 if (vm_stop_cb) {
7151 vm_stop_cb(vm_stop_opaque, reason);
7152 }
7153 }
7154 vm_state_notify(0);
7155 }
7156 }
7157
7158 /* reset/shutdown handler */
7159
7160 typedef struct QEMUResetEntry {
7161 QEMUResetHandler *func;
7162 void *opaque;
7163 struct QEMUResetEntry *next;
7164 } QEMUResetEntry;
7165
7166 static QEMUResetEntry *first_reset_entry;
7167 static int reset_requested;
7168 static int shutdown_requested;
7169 static int powerdown_requested;
7170
7171 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7172 {
7173 QEMUResetEntry **pre, *re;
7174
7175 pre = &first_reset_entry;
7176 while (*pre != NULL)
7177 pre = &(*pre)->next;
7178 re = qemu_mallocz(sizeof(QEMUResetEntry));
7179 re->func = func;
7180 re->opaque = opaque;
7181 re->next = NULL;
7182 *pre = re;
7183 }
7184
7185 static void qemu_system_reset(void)
7186 {
7187 QEMUResetEntry *re;
7188
7189 /* reset all devices */
7190 for(re = first_reset_entry; re != NULL; re = re->next) {
7191 re->func(re->opaque);
7192 }
7193 }
7194
7195 void qemu_system_reset_request(void)
7196 {
7197 if (no_reboot) {
7198 shutdown_requested = 1;
7199 } else {
7200 reset_requested = 1;
7201 }
7202 if (cpu_single_env)
7203 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7204 }
7205
7206 void qemu_system_shutdown_request(void)
7207 {
7208 shutdown_requested = 1;
7209 if (cpu_single_env)
7210 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7211 }
7212
7213 void qemu_system_powerdown_request(void)
7214 {
7215 powerdown_requested = 1;
7216 if (cpu_single_env)
7217 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7218 }
7219
7220 void main_loop_wait(int timeout)
7221 {
7222 IOHandlerRecord *ioh;
7223 fd_set rfds, wfds, xfds;
7224 int ret, nfds;
7225 #ifdef _WIN32
7226 int ret2, i;
7227 #endif
7228 struct timeval tv;
7229 PollingEntry *pe;
7230
7231
7232 /* XXX: need to suppress polling by better using win32 events */
7233 ret = 0;
7234 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7235 ret |= pe->func(pe->opaque);
7236 }
7237 #ifdef _WIN32
7238 if (ret == 0) {
7239 int err;
7240 WaitObjects *w = &wait_objects;
7241
7242 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7243 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7244 if (w->func[ret - WAIT_OBJECT_0])
7245 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7246
7247 /* Check for additional signaled events */
7248 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7249
7250 /* Check if event is signaled */
7251 ret2 = WaitForSingleObject(w->events[i], 0);
7252 if(ret2 == WAIT_OBJECT_0) {
7253 if (w->func[i])
7254 w->func[i](w->opaque[i]);
7255 } else if (ret2 == WAIT_TIMEOUT) {
7256 } else {
7257 err = GetLastError();
7258 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7259 }
7260 }
7261 } else if (ret == WAIT_TIMEOUT) {
7262 } else {
7263 err = GetLastError();
7264 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7265 }
7266 }
7267 #endif
7268 /* poll any events */
7269 /* XXX: separate device handlers from system ones */
7270 nfds = -1;
7271 FD_ZERO(&rfds);
7272 FD_ZERO(&wfds);
7273 FD_ZERO(&xfds);
7274 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7275 if (ioh->deleted)
7276 continue;
7277 if (ioh->fd_read &&
7278 (!ioh->fd_read_poll ||
7279 ioh->fd_read_poll(ioh->opaque) != 0)) {
7280 FD_SET(ioh->fd, &rfds);
7281 if (ioh->fd > nfds)
7282 nfds = ioh->fd;
7283 }
7284 if (ioh->fd_write) {
7285 FD_SET(ioh->fd, &wfds);
7286 if (ioh->fd > nfds)
7287 nfds = ioh->fd;
7288 }
7289 }
7290
7291 tv.tv_sec = 0;
7292 #ifdef _WIN32
7293 tv.tv_usec = 0;
7294 #else
7295 tv.tv_usec = timeout * 1000;
7296 #endif
7297 #if defined(CONFIG_SLIRP)
7298 if (slirp_inited) {
7299 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7300 }
7301 #endif
7302 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7303 if (ret > 0) {
7304 IOHandlerRecord **pioh;
7305
7306 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7307 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7308 ioh->fd_read(ioh->opaque);
7309 }
7310 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7311 ioh->fd_write(ioh->opaque);
7312 }
7313 }
7314
7315 /* remove deleted IO handlers */
7316 pioh = &first_io_handler;
7317 while (*pioh) {
7318 ioh = *pioh;
7319 if (ioh->deleted) {
7320 *pioh = ioh->next;
7321 qemu_free(ioh);
7322 } else
7323 pioh = &ioh->next;
7324 }
7325 }
7326 #if defined(CONFIG_SLIRP)
7327 if (slirp_inited) {
7328 if (ret < 0) {
7329 FD_ZERO(&rfds);
7330 FD_ZERO(&wfds);
7331 FD_ZERO(&xfds);
7332 }
7333 slirp_select_poll(&rfds, &wfds, &xfds);
7334 }
7335 #endif
7336 qemu_aio_poll();
7337
7338 if (vm_running) {
7339 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7340 qemu_get_clock(vm_clock));
7341 /* run dma transfers, if any */
7342 DMA_run();
7343 }
7344
7345 /* real time timers */
7346 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7347 qemu_get_clock(rt_clock));
7348
7349 /* Check bottom-halves last in case any of the earlier events triggered
7350 them. */
7351 qemu_bh_poll();
7352
7353 }
7354
7355 static int main_loop(void)
7356 {
7357 int ret, timeout;
7358 #ifdef CONFIG_PROFILER
7359 int64_t ti;
7360 #endif
7361 CPUState *env;
7362
7363 cur_cpu = first_cpu;
7364 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7365 for(;;) {
7366 if (vm_running) {
7367
7368 for(;;) {
7369 /* get next cpu */
7370 env = next_cpu;
7371 #ifdef CONFIG_PROFILER
7372 ti = profile_getclock();
7373 #endif
7374 ret = cpu_exec(env);
7375 #ifdef CONFIG_PROFILER
7376 qemu_time += profile_getclock() - ti;
7377 #endif
7378 next_cpu = env->next_cpu ?: first_cpu;
7379 if (event_pending) {
7380 ret = EXCP_INTERRUPT;
7381 event_pending = 0;
7382 break;
7383 }
7384 if (ret == EXCP_HLT) {
7385 /* Give the next CPU a chance to run. */
7386 cur_cpu = env;
7387 continue;
7388 }
7389 if (ret != EXCP_HALTED)
7390 break;
7391 /* all CPUs are halted ? */
7392 if (env == cur_cpu)
7393 break;
7394 }
7395 cur_cpu = env;
7396
7397 if (shutdown_requested) {
7398 ret = EXCP_INTERRUPT;
7399 break;
7400 }
7401 if (reset_requested) {
7402 reset_requested = 0;
7403 qemu_system_reset();
7404 ret = EXCP_INTERRUPT;
7405 }
7406 if (powerdown_requested) {
7407 powerdown_requested = 0;
7408 qemu_system_powerdown();
7409 ret = EXCP_INTERRUPT;
7410 }
7411 if (ret == EXCP_DEBUG) {
7412 vm_stop(EXCP_DEBUG);
7413 }
7414 /* If all cpus are halted then wait until the next IRQ */
7415 /* XXX: use timeout computed from timers */
7416 if (ret == EXCP_HALTED)
7417 timeout = 10;
7418 else
7419 timeout = 0;
7420 } else {
7421 timeout = 10;
7422 }
7423 #ifdef CONFIG_PROFILER
7424 ti = profile_getclock();
7425 #endif
7426 main_loop_wait(timeout);
7427 #ifdef CONFIG_PROFILER
7428 dev_time += profile_getclock() - ti;
7429 #endif
7430 }
7431 cpu_disable_ticks();
7432 return ret;
7433 }
7434
7435 static void help(int exitcode)
7436 {
7437 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7438 "usage: %s [options] [disk_image]\n"
7439 "\n"
7440 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7441 "\n"
7442 "Standard options:\n"
7443 "-M machine select emulated machine (-M ? for list)\n"
7444 "-cpu cpu select CPU (-cpu ? for list)\n"
7445 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7446 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7447 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7448 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7449 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7450 " [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]\n"
7451 " use 'file' as a drive image\n"
7452 "-mtdblock file use 'file' as on-board Flash memory image\n"
7453 "-sd file use 'file' as SecureDigital card image\n"
7454 "-pflash file use 'file' as a parallel flash image\n"
7455 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7456 "-snapshot write to temporary files instead of disk image files\n"
7457 #ifdef CONFIG_SDL
7458 "-no-frame open SDL window without a frame and window decorations\n"
7459 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7460 "-no-quit disable SDL window close capability\n"
7461 #endif
7462 #ifdef TARGET_I386
7463 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7464 #endif
7465 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7466 "-smp n set the number of CPUs to 'n' [default=1]\n"
7467 "-nographic disable graphical output and redirect serial I/Os to console\n"
7468 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7469 #ifndef _WIN32
7470 "-k language use keyboard layout (for example \"fr\" for French)\n"
7471 #endif
7472 #ifdef HAS_AUDIO
7473 "-audio-help print list of audio drivers and their options\n"
7474 "-soundhw c1,... enable audio support\n"
7475 " and only specified sound cards (comma separated list)\n"
7476 " use -soundhw ? to get the list of supported cards\n"
7477 " use -soundhw all to enable all of them\n"
7478 #endif
7479 "-localtime set the real time clock to local time [default=utc]\n"
7480 "-full-screen start in full screen\n"
7481 #ifdef TARGET_I386
7482 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7483 #endif
7484 "-usb enable the USB driver (will be the default soon)\n"
7485 "-usbdevice name add the host or guest USB device 'name'\n"
7486 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7487 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7488 #endif
7489 "-name string set the name of the guest\n"
7490 "\n"
7491 "Network options:\n"
7492 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7493 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7494 #ifdef CONFIG_SLIRP
7495 "-net user[,vlan=n][,hostname=host]\n"
7496 " connect the user mode network stack to VLAN 'n' and send\n"
7497 " hostname 'host' to DHCP clients\n"
7498 #endif
7499 #ifdef _WIN32
7500 "-net tap[,vlan=n],ifname=name\n"
7501 " connect the host TAP network interface to VLAN 'n'\n"
7502 #else
7503 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7504 " connect the host TAP network interface to VLAN 'n' and use the\n"
7505 " network scripts 'file' (default=%s)\n"
7506 " and 'dfile' (default=%s);\n"
7507 " use '[down]script=no' to disable script execution;\n"
7508 " use 'fd=h' to connect to an already opened TAP interface\n"
7509 #endif
7510 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7511 " connect the vlan 'n' to another VLAN using a socket connection\n"
7512 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7513 " connect the vlan 'n' to multicast maddr and port\n"
7514 "-net none use it alone to have zero network devices; if no -net option\n"
7515 " is provided, the default is '-net nic -net user'\n"
7516 "\n"
7517 #ifdef CONFIG_SLIRP
7518 "-tftp dir allow tftp access to files in dir [-net user]\n"
7519 "-bootp file advertise file in BOOTP replies\n"
7520 #ifndef _WIN32
7521 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7522 #endif
7523 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7524 " redirect TCP or UDP connections from host to guest [-net user]\n"
7525 #endif
7526 "\n"
7527 "Linux boot specific:\n"
7528 "-kernel bzImage use 'bzImage' as kernel image\n"
7529 "-append cmdline use 'cmdline' as kernel command line\n"
7530 "-initrd file use 'file' as initial ram disk\n"
7531 "\n"
7532 "Debug/Expert options:\n"
7533 "-monitor dev redirect the monitor to char device 'dev'\n"
7534 "-serial dev redirect the serial port to char device 'dev'\n"
7535 "-parallel dev redirect the parallel port to char device 'dev'\n"
7536 "-pidfile file Write PID to 'file'\n"
7537 "-S freeze CPU at startup (use 'c' to start execution)\n"
7538 "-s wait gdb connection to port\n"
7539 "-p port set gdb connection port [default=%s]\n"
7540 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7541 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7542 " translation (t=none or lba) (usually qemu can guess them)\n"
7543 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7544 #ifdef USE_KQEMU
7545 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7546 "-no-kqemu disable KQEMU kernel module usage\n"
7547 #endif
7548 #ifdef TARGET_I386
7549 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7550 " (default is CL-GD5446 PCI VGA)\n"
7551 "-no-acpi disable ACPI\n"
7552 #endif
7553 "-no-reboot exit instead of rebooting\n"
7554 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7555 "-vnc display start a VNC server on display\n"
7556 #ifndef _WIN32
7557 "-daemonize daemonize QEMU after initializing\n"
7558 #endif
7559 "-option-rom rom load a file, rom, into the option ROM space\n"
7560 #ifdef TARGET_SPARC
7561 "-prom-env variable=value set OpenBIOS nvram variables\n"
7562 #endif
7563 "-clock force the use of the given methods for timer alarm.\n"
7564 " To see what timers are available use -clock help\n"
7565 "\n"
7566 "During emulation, the following keys are useful:\n"
7567 "ctrl-alt-f toggle full screen\n"
7568 "ctrl-alt-n switch to virtual console 'n'\n"
7569 "ctrl-alt toggle mouse and keyboard grab\n"
7570 "\n"
7571 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7572 ,
7573 "qemu",
7574 DEFAULT_RAM_SIZE,
7575 #ifndef _WIN32
7576 DEFAULT_NETWORK_SCRIPT,
7577 DEFAULT_NETWORK_DOWN_SCRIPT,
7578 #endif
7579 DEFAULT_GDBSTUB_PORT,
7580 "/tmp/qemu.log");
7581 exit(exitcode);
7582 }
7583
7584 #define HAS_ARG 0x0001
7585
7586 enum {
7587 QEMU_OPTION_h,
7588
7589 QEMU_OPTION_M,
7590 QEMU_OPTION_cpu,
7591 QEMU_OPTION_fda,
7592 QEMU_OPTION_fdb,
7593 QEMU_OPTION_hda,
7594 QEMU_OPTION_hdb,
7595 QEMU_OPTION_hdc,
7596 QEMU_OPTION_hdd,
7597 QEMU_OPTION_drive,
7598 QEMU_OPTION_cdrom,
7599 QEMU_OPTION_mtdblock,
7600 QEMU_OPTION_sd,
7601 QEMU_OPTION_pflash,
7602 QEMU_OPTION_boot,
7603 QEMU_OPTION_snapshot,
7604 #ifdef TARGET_I386
7605 QEMU_OPTION_no_fd_bootchk,
7606 #endif
7607 QEMU_OPTION_m,
7608 QEMU_OPTION_nographic,
7609 QEMU_OPTION_portrait,
7610 #ifdef HAS_AUDIO
7611 QEMU_OPTION_audio_help,
7612 QEMU_OPTION_soundhw,
7613 #endif
7614
7615 QEMU_OPTION_net,
7616 QEMU_OPTION_tftp,
7617 QEMU_OPTION_bootp,
7618 QEMU_OPTION_smb,
7619 QEMU_OPTION_redir,
7620
7621 QEMU_OPTION_kernel,
7622 QEMU_OPTION_append,
7623 QEMU_OPTION_initrd,
7624
7625 QEMU_OPTION_S,
7626 QEMU_OPTION_s,
7627 QEMU_OPTION_p,
7628 QEMU_OPTION_d,
7629 QEMU_OPTION_hdachs,
7630 QEMU_OPTION_L,
7631 QEMU_OPTION_bios,
7632 QEMU_OPTION_no_code_copy,
7633 QEMU_OPTION_k,
7634 QEMU_OPTION_localtime,
7635 QEMU_OPTION_cirrusvga,
7636 QEMU_OPTION_vmsvga,
7637 QEMU_OPTION_g,
7638 QEMU_OPTION_std_vga,
7639 QEMU_OPTION_echr,
7640 QEMU_OPTION_monitor,
7641 QEMU_OPTION_serial,
7642 QEMU_OPTION_parallel,
7643 QEMU_OPTION_loadvm,
7644 QEMU_OPTION_full_screen,
7645 QEMU_OPTION_no_frame,
7646 QEMU_OPTION_alt_grab,
7647 QEMU_OPTION_no_quit,
7648 QEMU_OPTION_pidfile,
7649 QEMU_OPTION_no_kqemu,
7650 QEMU_OPTION_kernel_kqemu,
7651 QEMU_OPTION_win2k_hack,
7652 QEMU_OPTION_usb,
7653 QEMU_OPTION_usbdevice,
7654 QEMU_OPTION_smp,
7655 QEMU_OPTION_vnc,
7656 QEMU_OPTION_no_acpi,
7657 QEMU_OPTION_no_reboot,
7658 QEMU_OPTION_show_cursor,
7659 QEMU_OPTION_daemonize,
7660 QEMU_OPTION_option_rom,
7661 QEMU_OPTION_semihosting,
7662 QEMU_OPTION_name,
7663 QEMU_OPTION_prom_env,
7664 QEMU_OPTION_old_param,
7665 QEMU_OPTION_clock,
7666 QEMU_OPTION_startdate,
7667 };
7668
7669 typedef struct QEMUOption {
7670 const char *name;
7671 int flags;
7672 int index;
7673 } QEMUOption;
7674
7675 const QEMUOption qemu_options[] = {
7676 { "h", 0, QEMU_OPTION_h },
7677 { "help", 0, QEMU_OPTION_h },
7678
7679 { "M", HAS_ARG, QEMU_OPTION_M },
7680 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7681 { "fda", HAS_ARG, QEMU_OPTION_fda },
7682 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7683 { "hda", HAS_ARG, QEMU_OPTION_hda },
7684 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7685 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7686 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7687 { "drive", HAS_ARG, QEMU_OPTION_drive },
7688 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7689 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7690 { "sd", HAS_ARG, QEMU_OPTION_sd },
7691 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7692 { "boot", HAS_ARG, QEMU_OPTION_boot },
7693 { "snapshot", 0, QEMU_OPTION_snapshot },
7694 #ifdef TARGET_I386
7695 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7696 #endif
7697 { "m", HAS_ARG, QEMU_OPTION_m },
7698 { "nographic", 0, QEMU_OPTION_nographic },
7699 { "portrait", 0, QEMU_OPTION_portrait },
7700 { "k", HAS_ARG, QEMU_OPTION_k },
7701 #ifdef HAS_AUDIO
7702 { "audio-help", 0, QEMU_OPTION_audio_help },
7703 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7704 #endif
7705
7706 { "net", HAS_ARG, QEMU_OPTION_net},
7707 #ifdef CONFIG_SLIRP
7708 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7709 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7710 #ifndef _WIN32
7711 { "smb", HAS_ARG, QEMU_OPTION_smb },
7712 #endif
7713 { "redir", HAS_ARG, QEMU_OPTION_redir },
7714 #endif
7715
7716 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7717 { "append", HAS_ARG, QEMU_OPTION_append },
7718 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7719
7720 { "S", 0, QEMU_OPTION_S },
7721 { "s", 0, QEMU_OPTION_s },
7722 { "p", HAS_ARG, QEMU_OPTION_p },
7723 { "d", HAS_ARG, QEMU_OPTION_d },
7724 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7725 { "L", HAS_ARG, QEMU_OPTION_L },
7726 { "bios", HAS_ARG, QEMU_OPTION_bios },
7727 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7728 #ifdef USE_KQEMU
7729 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7730 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7731 #endif
7732 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7733 { "g", 1, QEMU_OPTION_g },
7734 #endif
7735 { "localtime", 0, QEMU_OPTION_localtime },
7736 { "std-vga", 0, QEMU_OPTION_std_vga },
7737 { "echr", HAS_ARG, QEMU_OPTION_echr },
7738 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7739 { "serial", HAS_ARG, QEMU_OPTION_serial },
7740 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7741 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7742 { "full-screen", 0, QEMU_OPTION_full_screen },
7743 #ifdef CONFIG_SDL
7744 { "no-frame", 0, QEMU_OPTION_no_frame },
7745 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7746 { "no-quit", 0, QEMU_OPTION_no_quit },
7747 #endif
7748 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7749 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7750 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7751 { "smp", HAS_ARG, QEMU_OPTION_smp },
7752 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7753
7754 /* temporary options */
7755 { "usb", 0, QEMU_OPTION_usb },
7756 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7757 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7758 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7759 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7760 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7761 { "daemonize", 0, QEMU_OPTION_daemonize },
7762 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7763 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7764 { "semihosting", 0, QEMU_OPTION_semihosting },
7765 #endif
7766 { "name", HAS_ARG, QEMU_OPTION_name },
7767 #if defined(TARGET_SPARC)
7768 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7769 #endif
7770 #if defined(TARGET_ARM)
7771 { "old-param", 0, QEMU_OPTION_old_param },
7772 #endif
7773 { "clock", HAS_ARG, QEMU_OPTION_clock },
7774 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7775 { NULL },
7776 };
7777
7778 /* password input */
7779
7780 int qemu_key_check(BlockDriverState *bs, const char *name)
7781 {
7782 char password[256];
7783 int i;
7784
7785 if (!bdrv_is_encrypted(bs))
7786 return 0;
7787
7788 term_printf("%s is encrypted.\n", name);
7789 for(i = 0; i < 3; i++) {
7790 monitor_readline("Password: ", 1, password, sizeof(password));
7791 if (bdrv_set_key(bs, password) == 0)
7792 return 0;
7793 term_printf("invalid password\n");
7794 }
7795 return -EPERM;
7796 }
7797
7798 static BlockDriverState *get_bdrv(int index)
7799 {
7800 if (index > nb_drives)
7801 return NULL;
7802 return drives_table[index].bdrv;
7803 }
7804
7805 static void read_passwords(void)
7806 {
7807 BlockDriverState *bs;
7808 int i;
7809
7810 for(i = 0; i < 6; i++) {
7811 bs = get_bdrv(i);
7812 if (bs)
7813 qemu_key_check(bs, bdrv_get_device_name(bs));
7814 }
7815 }
7816
7817 /* XXX: currently we cannot use simultaneously different CPUs */
7818 static void register_machines(void)
7819 {
7820 #if defined(TARGET_I386)
7821 qemu_register_machine(&pc_machine);
7822 qemu_register_machine(&isapc_machine);
7823 #elif defined(TARGET_PPC)
7824 qemu_register_machine(&heathrow_machine);
7825 qemu_register_machine(&core99_machine);
7826 qemu_register_machine(&prep_machine);
7827 qemu_register_machine(&ref405ep_machine);
7828 qemu_register_machine(&taihu_machine);
7829 #elif defined(TARGET_MIPS)
7830 qemu_register_machine(&mips_machine);
7831 qemu_register_machine(&mips_malta_machine);
7832 qemu_register_machine(&mips_pica61_machine);
7833 qemu_register_machine(&mips_mipssim_machine);
7834 #elif defined(TARGET_SPARC)
7835 #ifdef TARGET_SPARC64
7836 qemu_register_machine(&sun4u_machine);
7837 #else
7838 qemu_register_machine(&ss5_machine);
7839 qemu_register_machine(&ss10_machine);
7840 qemu_register_machine(&ss600mp_machine);
7841 qemu_register_machine(&ss20_machine);
7842 #endif
7843 #elif defined(TARGET_ARM)
7844 qemu_register_machine(&integratorcp_machine);
7845 qemu_register_machine(&versatilepb_machine);
7846 qemu_register_machine(&versatileab_machine);
7847 qemu_register_machine(&realview_machine);
7848 qemu_register_machine(&akitapda_machine);
7849 qemu_register_machine(&spitzpda_machine);
7850 qemu_register_machine(&borzoipda_machine);
7851 qemu_register_machine(&terrierpda_machine);
7852 qemu_register_machine(&palmte_machine);
7853 qemu_register_machine(&lm3s811evb_machine);
7854 qemu_register_machine(&lm3s6965evb_machine);
7855 qemu_register_machine(&connex_machine);
7856 qemu_register_machine(&verdex_machine);
7857 qemu_register_machine(&mainstone2_machine);
7858 #elif defined(TARGET_SH4)
7859 qemu_register_machine(&shix_machine);
7860 qemu_register_machine(&r2d_machine);
7861 #elif defined(TARGET_ALPHA)
7862 /* XXX: TODO */
7863 #elif defined(TARGET_M68K)
7864 qemu_register_machine(&mcf5208evb_machine);
7865 qemu_register_machine(&an5206_machine);
7866 qemu_register_machine(&dummy_m68k_machine);
7867 #elif defined(TARGET_CRIS)
7868 qemu_register_machine(&bareetraxfs_machine);
7869 #else
7870 #error unsupported CPU
7871 #endif
7872 }
7873
7874 #ifdef HAS_AUDIO
7875 struct soundhw soundhw[] = {
7876 #ifdef HAS_AUDIO_CHOICE
7877 #ifdef TARGET_I386
7878 {
7879 "pcspk",
7880 "PC speaker",
7881 0,
7882 1,
7883 { .init_isa = pcspk_audio_init }
7884 },
7885 #endif
7886 {
7887 "sb16",
7888 "Creative Sound Blaster 16",
7889 0,
7890 1,
7891 { .init_isa = SB16_init }
7892 },
7893
7894 #ifdef CONFIG_ADLIB
7895 {
7896 "adlib",
7897 #ifdef HAS_YMF262
7898 "Yamaha YMF262 (OPL3)",
7899 #else
7900 "Yamaha YM3812 (OPL2)",
7901 #endif
7902 0,
7903 1,
7904 { .init_isa = Adlib_init }
7905 },
7906 #endif
7907
7908 #ifdef CONFIG_GUS
7909 {
7910 "gus",
7911 "Gravis Ultrasound GF1",
7912 0,
7913 1,
7914 { .init_isa = GUS_init }
7915 },
7916 #endif
7917
7918 {
7919 "es1370",
7920 "ENSONIQ AudioPCI ES1370",
7921 0,
7922 0,
7923 { .init_pci = es1370_init }
7924 },
7925 #endif
7926
7927 { NULL, NULL, 0, 0, { NULL } }
7928 };
7929
7930 static void select_soundhw (const char *optarg)
7931 {
7932 struct soundhw *c;
7933
7934 if (*optarg == '?') {
7935 show_valid_cards:
7936
7937 printf ("Valid sound card names (comma separated):\n");
7938 for (c = soundhw; c->name; ++c) {
7939 printf ("%-11s %s\n", c->name, c->descr);
7940 }
7941 printf ("\n-soundhw all will enable all of the above\n");
7942 exit (*optarg != '?');
7943 }
7944 else {
7945 size_t l;
7946 const char *p;
7947 char *e;
7948 int bad_card = 0;
7949
7950 if (!strcmp (optarg, "all")) {
7951 for (c = soundhw; c->name; ++c) {
7952 c->enabled = 1;
7953 }
7954 return;
7955 }
7956
7957 p = optarg;
7958 while (*p) {
7959 e = strchr (p, ',');
7960 l = !e ? strlen (p) : (size_t) (e - p);
7961
7962 for (c = soundhw; c->name; ++c) {
7963 if (!strncmp (c->name, p, l)) {
7964 c->enabled = 1;
7965 break;
7966 }
7967 }
7968
7969 if (!c->name) {
7970 if (l > 80) {
7971 fprintf (stderr,
7972 "Unknown sound card name (too big to show)\n");
7973 }
7974 else {
7975 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7976 (int) l, p);
7977 }
7978 bad_card = 1;
7979 }
7980 p += l + (e != NULL);
7981 }
7982
7983 if (bad_card)
7984 goto show_valid_cards;
7985 }
7986 }
7987 #endif
7988
7989 #ifdef _WIN32
7990 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7991 {
7992 exit(STATUS_CONTROL_C_EXIT);
7993 return TRUE;
7994 }
7995 #endif
7996
7997 #define MAX_NET_CLIENTS 32
7998
7999 int main(int argc, char **argv)
8000 {
8001 #ifdef CONFIG_GDBSTUB
8002 int use_gdbstub;
8003 const char *gdbstub_port;
8004 #endif
8005 uint32_t boot_devices_bitmap = 0;
8006 int i;
8007 int snapshot, linux_boot, net_boot;
8008 const char *initrd_filename;
8009 const char *kernel_filename, *kernel_cmdline;
8010 const char *boot_devices = "";
8011 DisplayState *ds = &display_state;
8012 int cyls, heads, secs, translation;
8013 char net_clients[MAX_NET_CLIENTS][256];
8014 int nb_net_clients;
8015 int hda_index;
8016 int optind;
8017 const char *r, *optarg;
8018 CharDriverState *monitor_hd;
8019 char monitor_device[128];
8020 char serial_devices[MAX_SERIAL_PORTS][128];
8021 int serial_device_index;
8022 char parallel_devices[MAX_PARALLEL_PORTS][128];
8023 int parallel_device_index;
8024 const char *loadvm = NULL;
8025 QEMUMachine *machine;
8026 const char *cpu_model;
8027 char usb_devices[MAX_USB_CMDLINE][128];
8028 int usb_devices_index;
8029 int fds[2];
8030 const char *pid_file = NULL;
8031 VLANState *vlan;
8032
8033 LIST_INIT (&vm_change_state_head);
8034 #ifndef _WIN32
8035 {
8036 struct sigaction act;
8037 sigfillset(&act.sa_mask);
8038 act.sa_flags = 0;
8039 act.sa_handler = SIG_IGN;
8040 sigaction(SIGPIPE, &act, NULL);
8041 }
8042 #else
8043 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8044 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8045 QEMU to run on a single CPU */
8046 {
8047 HANDLE h;
8048 DWORD mask, smask;
8049 int i;
8050 h = GetCurrentProcess();
8051 if (GetProcessAffinityMask(h, &mask, &smask)) {
8052 for(i = 0; i < 32; i++) {
8053 if (mask & (1 << i))
8054 break;
8055 }
8056 if (i != 32) {
8057 mask = 1 << i;
8058 SetProcessAffinityMask(h, mask);
8059 }
8060 }
8061 }
8062 #endif
8063
8064 register_machines();
8065 machine = first_machine;
8066 cpu_model = NULL;
8067 initrd_filename = NULL;
8068 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8069 vga_ram_size = VGA_RAM_SIZE;
8070 #ifdef CONFIG_GDBSTUB
8071 use_gdbstub = 0;
8072 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8073 #endif
8074 snapshot = 0;
8075 nographic = 0;
8076 kernel_filename = NULL;
8077 kernel_cmdline = "";
8078 cyls = heads = secs = 0;
8079 translation = BIOS_ATA_TRANSLATION_AUTO;
8080 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
8081
8082 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
8083 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8084 serial_devices[i][0] = '\0';
8085 serial_device_index = 0;
8086
8087 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
8088 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8089 parallel_devices[i][0] = '\0';
8090 parallel_device_index = 0;
8091
8092 usb_devices_index = 0;
8093
8094 nb_net_clients = 0;
8095 nb_drives = 0;
8096 nb_drives_opt = 0;
8097 hda_index = -1;
8098
8099 nb_nics = 0;
8100 /* default mac address of the first network interface */
8101
8102 optind = 1;
8103 for(;;) {
8104 if (optind >= argc)
8105 break;
8106 r = argv[optind];
8107 if (r[0] != '-') {
8108 hda_index = drive_add(HD_ALIAS, argv[optind++], 0);
8109 } else {
8110 const QEMUOption *popt;
8111
8112 optind++;
8113 /* Treat --foo the same as -foo. */
8114 if (r[1] == '-')
8115 r++;
8116 popt = qemu_options;
8117 for(;;) {
8118 if (!popt->name) {
8119 fprintf(stderr, "%s: invalid option -- '%s'\n",
8120 argv[0], r);
8121 exit(1);
8122 }
8123 if (!strcmp(popt->name, r + 1))
8124 break;
8125 popt++;
8126 }
8127 if (popt->flags & HAS_ARG) {
8128 if (optind >= argc) {
8129 fprintf(stderr, "%s: option '%s' requires an argument\n",
8130 argv[0], r);
8131 exit(1);
8132 }
8133 optarg = argv[optind++];
8134 } else {
8135 optarg = NULL;
8136 }
8137
8138 switch(popt->index) {
8139 case QEMU_OPTION_M:
8140 machine = find_machine(optarg);
8141 if (!machine) {
8142 QEMUMachine *m;
8143 printf("Supported machines are:\n");
8144 for(m = first_machine; m != NULL; m = m->next) {
8145 printf("%-10s %s%s\n",
8146 m->name, m->desc,
8147 m == first_machine ? " (default)" : "");
8148 }
8149 exit(*optarg != '?');
8150 }
8151 break;
8152 case QEMU_OPTION_cpu:
8153 /* hw initialization will check this */
8154 if (*optarg == '?') {
8155 /* XXX: implement xxx_cpu_list for targets that still miss it */
8156 #if defined(cpu_list)
8157 cpu_list(stdout, &fprintf);
8158 #endif
8159 exit(0);
8160 } else {
8161 cpu_model = optarg;
8162 }
8163 break;
8164 case QEMU_OPTION_initrd:
8165 initrd_filename = optarg;
8166 break;
8167 case QEMU_OPTION_hda:
8168 if (cyls == 0)
8169 hda_index = drive_add(HD_ALIAS, optarg, 0);
8170 else
8171 hda_index = drive_add(HD_ALIAS
8172 ",cyls=%d,heads=%d,secs=%d%s",
8173 optarg, 0, cyls, heads, secs,
8174 translation == BIOS_ATA_TRANSLATION_LBA ?
8175 ",trans=lba" :
8176 translation == BIOS_ATA_TRANSLATION_NONE ?
8177 ",trans=none" : "");
8178 break;
8179 case QEMU_OPTION_hdb:
8180 case QEMU_OPTION_hdc:
8181 case QEMU_OPTION_hdd:
8182 drive_add(HD_ALIAS, optarg, popt->index - QEMU_OPTION_hda);
8183 break;
8184 case QEMU_OPTION_drive:
8185 drive_add("%s", optarg);
8186 break;
8187 case QEMU_OPTION_mtdblock:
8188 drive_add(MTD_ALIAS, optarg);
8189 break;
8190 case QEMU_OPTION_sd:
8191 drive_add("file=\"%s\"," SD_ALIAS, optarg);
8192 break;
8193 case QEMU_OPTION_pflash:
8194 drive_add(PFLASH_ALIAS, optarg);
8195 break;
8196 case QEMU_OPTION_snapshot:
8197 snapshot = 1;
8198 break;
8199 case QEMU_OPTION_hdachs:
8200 {
8201 const char *p;
8202 p = optarg;
8203 cyls = strtol(p, (char **)&p, 0);
8204 if (cyls < 1 || cyls > 16383)
8205 goto chs_fail;
8206 if (*p != ',')
8207 goto chs_fail;
8208 p++;
8209 heads = strtol(p, (char **)&p, 0);
8210 if (heads < 1 || heads > 16)
8211 goto chs_fail;
8212 if (*p != ',')
8213 goto chs_fail;
8214 p++;
8215 secs = strtol(p, (char **)&p, 0);
8216 if (secs < 1 || secs > 63)
8217 goto chs_fail;
8218 if (*p == ',') {
8219 p++;
8220 if (!strcmp(p, "none"))
8221 translation = BIOS_ATA_TRANSLATION_NONE;
8222 else if (!strcmp(p, "lba"))
8223 translation = BIOS_ATA_TRANSLATION_LBA;
8224 else if (!strcmp(p, "auto"))
8225 translation = BIOS_ATA_TRANSLATION_AUTO;
8226 else
8227 goto chs_fail;
8228 } else if (*p != '\0') {
8229 chs_fail:
8230 fprintf(stderr, "qemu: invalid physical CHS format\n");
8231 exit(1);
8232 }
8233 if (hda_index != -1)
8234 snprintf(drives_opt[hda_index] +
8235 strlen(drives_opt[hda_index]),
8236 sizeof(drives_opt[0]) -
8237 strlen(drives_opt[hda_index]),
8238 ",cyls=%d,heads=%d,secs=%d%s",
8239 cyls, heads, secs,
8240 translation == BIOS_ATA_TRANSLATION_LBA ?
8241 ",trans=lba" :
8242 translation == BIOS_ATA_TRANSLATION_NONE ?
8243 ",trans=none" : "");
8244 }
8245 break;
8246 case QEMU_OPTION_nographic:
8247 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
8248 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
8249 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
8250 nographic = 1;
8251 break;
8252 case QEMU_OPTION_portrait:
8253 graphic_rotate = 1;
8254 break;
8255 case QEMU_OPTION_kernel:
8256 kernel_filename = optarg;
8257 break;
8258 case QEMU_OPTION_append:
8259 kernel_cmdline = optarg;
8260 break;
8261 case QEMU_OPTION_cdrom:
8262 drive_add("file=\"%s\"," CDROM_ALIAS, optarg);
8263 break;
8264 case QEMU_OPTION_boot:
8265 boot_devices = optarg;
8266 /* We just do some generic consistency checks */
8267 {
8268 /* Could easily be extended to 64 devices if needed */
8269 const char *p;
8270
8271 boot_devices_bitmap = 0;
8272 for (p = boot_devices; *p != '\0'; p++) {
8273 /* Allowed boot devices are:
8274 * a b : floppy disk drives
8275 * c ... f : IDE disk drives
8276 * g ... m : machine implementation dependant drives
8277 * n ... p : network devices
8278 * It's up to each machine implementation to check
8279 * if the given boot devices match the actual hardware
8280 * implementation and firmware features.
8281 */
8282 if (*p < 'a' || *p > 'q') {
8283 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8284 exit(1);
8285 }
8286 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8287 fprintf(stderr,
8288 "Boot device '%c' was given twice\n",*p);
8289 exit(1);
8290 }
8291 boot_devices_bitmap |= 1 << (*p - 'a');
8292 }
8293 }
8294 break;
8295 case QEMU_OPTION_fda:
8296 case QEMU_OPTION_fdb:
8297 drive_add("file=\"%s\"," FD_ALIAS, optarg,
8298 popt->index - QEMU_OPTION_fda);
8299 break;
8300 #ifdef TARGET_I386
8301 case QEMU_OPTION_no_fd_bootchk:
8302 fd_bootchk = 0;
8303 break;
8304 #endif
8305 case QEMU_OPTION_no_code_copy:
8306 code_copy_enabled = 0;
8307 break;
8308 case QEMU_OPTION_net:
8309 if (nb_net_clients >= MAX_NET_CLIENTS) {
8310 fprintf(stderr, "qemu: too many network clients\n");
8311 exit(1);
8312 }
8313 pstrcpy(net_clients[nb_net_clients],
8314 sizeof(net_clients[0]),
8315 optarg);
8316 nb_net_clients++;
8317 break;
8318 #ifdef CONFIG_SLIRP
8319 case QEMU_OPTION_tftp:
8320 tftp_prefix = optarg;
8321 break;
8322 case QEMU_OPTION_bootp:
8323 bootp_filename = optarg;
8324 break;
8325 #ifndef _WIN32
8326 case QEMU_OPTION_smb:
8327 net_slirp_smb(optarg);
8328 break;
8329 #endif
8330 case QEMU_OPTION_redir:
8331 net_slirp_redir(optarg);
8332 break;
8333 #endif
8334 #ifdef HAS_AUDIO
8335 case QEMU_OPTION_audio_help:
8336 AUD_help ();
8337 exit (0);
8338 break;
8339 case QEMU_OPTION_soundhw:
8340 select_soundhw (optarg);
8341 break;
8342 #endif
8343 case QEMU_OPTION_h:
8344 help(0);
8345 break;
8346 case QEMU_OPTION_m:
8347 ram_size = atoi(optarg) * 1024 * 1024;
8348 if (ram_size <= 0)
8349 help(1);
8350 if (ram_size > PHYS_RAM_MAX_SIZE) {
8351 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8352 PHYS_RAM_MAX_SIZE / (1024 * 1024));
8353 exit(1);
8354 }
8355 break;
8356 case QEMU_OPTION_d:
8357 {
8358 int mask;
8359 CPULogItem *item;
8360
8361 mask = cpu_str_to_log_mask(optarg);
8362 if (!mask) {
8363 printf("Log items (comma separated):\n");
8364 for(item = cpu_log_items; item->mask != 0; item++) {
8365 printf("%-10s %s\n", item->name, item->help);
8366 }
8367 exit(1);
8368 }
8369 cpu_set_log(mask);
8370 }
8371 break;
8372 #ifdef CONFIG_GDBSTUB
8373 case QEMU_OPTION_s:
8374 use_gdbstub = 1;
8375 break;
8376 case QEMU_OPTION_p:
8377 gdbstub_port = optarg;
8378 break;
8379 #endif
8380 case QEMU_OPTION_L:
8381 bios_dir = optarg;
8382 break;
8383 case QEMU_OPTION_bios:
8384 bios_name = optarg;
8385 break;
8386 case QEMU_OPTION_S:
8387 autostart = 0;
8388 break;
8389 case QEMU_OPTION_k:
8390 keyboard_layout = optarg;
8391 break;
8392 case QEMU_OPTION_localtime:
8393 rtc_utc = 0;
8394 break;
8395 case QEMU_OPTION_cirrusvga:
8396 cirrus_vga_enabled = 1;
8397 vmsvga_enabled = 0;
8398 break;
8399 case QEMU_OPTION_vmsvga:
8400 cirrus_vga_enabled = 0;
8401 vmsvga_enabled = 1;
8402 break;
8403 case QEMU_OPTION_std_vga:
8404 cirrus_vga_enabled = 0;
8405 vmsvga_enabled = 0;
8406 break;
8407 case QEMU_OPTION_g:
8408 {
8409 const char *p;
8410 int w, h, depth;
8411 p = optarg;
8412 w = strtol(p, (char **)&p, 10);
8413 if (w <= 0) {
8414 graphic_error:
8415 fprintf(stderr, "qemu: invalid resolution or depth\n");
8416 exit(1);
8417 }
8418 if (*p != 'x')
8419 goto graphic_error;
8420 p++;
8421 h = strtol(p, (char **)&p, 10);
8422 if (h <= 0)
8423 goto graphic_error;
8424 if (*p == 'x') {
8425 p++;
8426 depth = strtol(p, (char **)&p, 10);
8427 if (depth != 8 && depth != 15 && depth != 16 &&
8428 depth != 24 && depth != 32)
8429 goto graphic_error;
8430 } else if (*p == '\0') {
8431 depth = graphic_depth;
8432 } else {
8433 goto graphic_error;
8434 }
8435
8436 graphic_width = w;
8437 graphic_height = h;
8438 graphic_depth = depth;
8439 }
8440 break;
8441 case QEMU_OPTION_echr:
8442 {
8443 char *r;
8444 term_escape_char = strtol(optarg, &r, 0);
8445 if (r == optarg)
8446 printf("Bad argument to echr\n");
8447 break;
8448 }
8449 case QEMU_OPTION_monitor:
8450 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8451 break;
8452 case QEMU_OPTION_serial:
8453 if (serial_device_index >= MAX_SERIAL_PORTS) {
8454 fprintf(stderr, "qemu: too many serial ports\n");
8455 exit(1);
8456 }
8457 pstrcpy(serial_devices[serial_device_index],
8458 sizeof(serial_devices[0]), optarg);
8459 serial_device_index++;
8460 break;
8461 case QEMU_OPTION_parallel:
8462 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8463 fprintf(stderr, "qemu: too many parallel ports\n");
8464 exit(1);
8465 }
8466 pstrcpy(parallel_devices[parallel_device_index],
8467 sizeof(parallel_devices[0]), optarg);
8468 parallel_device_index++;
8469 break;
8470 case QEMU_OPTION_loadvm:
8471 loadvm = optarg;
8472 break;
8473 case QEMU_OPTION_full_screen:
8474 full_screen = 1;
8475 break;
8476 #ifdef CONFIG_SDL
8477 case QEMU_OPTION_no_frame:
8478 no_frame = 1;
8479 break;
8480 case QEMU_OPTION_alt_grab:
8481 alt_grab = 1;
8482 break;
8483 case QEMU_OPTION_no_quit:
8484 no_quit = 1;
8485 break;
8486 #endif
8487 case QEMU_OPTION_pidfile:
8488 pid_file = optarg;
8489 break;
8490 #ifdef TARGET_I386
8491 case QEMU_OPTION_win2k_hack:
8492 win2k_install_hack = 1;
8493 break;
8494 #endif
8495 #ifdef USE_KQEMU
8496 case QEMU_OPTION_no_kqemu:
8497 kqemu_allowed = 0;
8498 break;
8499 case QEMU_OPTION_kernel_kqemu:
8500 kqemu_allowed = 2;
8501 break;
8502 #endif
8503 case QEMU_OPTION_usb:
8504 usb_enabled = 1;
8505 break;
8506 case QEMU_OPTION_usbdevice:
8507 usb_enabled = 1;
8508 if (usb_devices_index >= MAX_USB_CMDLINE) {
8509 fprintf(stderr, "Too many USB devices\n");
8510 exit(1);
8511 }
8512 pstrcpy(usb_devices[usb_devices_index],
8513 sizeof(usb_devices[usb_devices_index]),
8514 optarg);
8515 usb_devices_index++;
8516 break;
8517 case QEMU_OPTION_smp:
8518 smp_cpus = atoi(optarg);
8519 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8520 fprintf(stderr, "Invalid number of CPUs\n");
8521 exit(1);
8522 }
8523 break;
8524 case QEMU_OPTION_vnc:
8525 vnc_display = optarg;
8526 break;
8527 case QEMU_OPTION_no_acpi:
8528 acpi_enabled = 0;
8529 break;
8530 case QEMU_OPTION_no_reboot:
8531 no_reboot = 1;
8532 break;
8533 case QEMU_OPTION_show_cursor:
8534 cursor_hide = 0;
8535 break;
8536 case QEMU_OPTION_daemonize:
8537 daemonize = 1;
8538 break;
8539 case QEMU_OPTION_option_rom:
8540 if (nb_option_roms >= MAX_OPTION_ROMS) {
8541 fprintf(stderr, "Too many option ROMs\n");
8542 exit(1);
8543 }
8544 option_rom[nb_option_roms] = optarg;
8545 nb_option_roms++;
8546 break;
8547 case QEMU_OPTION_semihosting:
8548 semihosting_enabled = 1;
8549 break;
8550 case QEMU_OPTION_name:
8551 qemu_name = optarg;
8552 break;
8553 #ifdef TARGET_SPARC
8554 case QEMU_OPTION_prom_env:
8555 if (nb_prom_envs >= MAX_PROM_ENVS) {
8556 fprintf(stderr, "Too many prom variables\n");
8557 exit(1);
8558 }
8559 prom_envs[nb_prom_envs] = optarg;
8560 nb_prom_envs++;
8561 break;
8562 #endif
8563 #ifdef TARGET_ARM
8564 case QEMU_OPTION_old_param:
8565 old_param = 1;
8566 #endif
8567 case QEMU_OPTION_clock:
8568 configure_alarms(optarg);
8569 break;
8570 case QEMU_OPTION_startdate:
8571 {
8572 struct tm tm;
8573 if (!strcmp(optarg, "now")) {
8574 rtc_start_date = -1;
8575 } else {
8576 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8577 &tm.tm_year,
8578 &tm.tm_mon,
8579 &tm.tm_mday,
8580 &tm.tm_hour,
8581 &tm.tm_min,
8582 &tm.tm_sec) == 6) {
8583 /* OK */
8584 } else if (sscanf(optarg, "%d-%d-%d",
8585 &tm.tm_year,
8586 &tm.tm_mon,
8587 &tm.tm_mday) == 3) {
8588 tm.tm_hour = 0;
8589 tm.tm_min = 0;
8590 tm.tm_sec = 0;
8591 } else {
8592 goto date_fail;
8593 }
8594 tm.tm_year -= 1900;
8595 tm.tm_mon--;
8596 rtc_start_date = mktimegm(&tm);
8597 if (rtc_start_date == -1) {
8598 date_fail:
8599 fprintf(stderr, "Invalid date format. Valid format are:\n"
8600 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8601 exit(1);
8602 }
8603 }
8604 }
8605 break;
8606 }
8607 }
8608 }
8609
8610 #ifndef _WIN32
8611 if (daemonize && !nographic && vnc_display == NULL) {
8612 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8613 daemonize = 0;
8614 }
8615
8616 if (daemonize) {
8617 pid_t pid;
8618
8619 if (pipe(fds) == -1)
8620 exit(1);
8621
8622 pid = fork();
8623 if (pid > 0) {
8624 uint8_t status;
8625 ssize_t len;
8626
8627 close(fds[1]);
8628
8629 again:
8630 len = read(fds[0], &status, 1);
8631 if (len == -1 && (errno == EINTR))
8632 goto again;
8633
8634 if (len != 1)
8635 exit(1);
8636 else if (status == 1) {
8637 fprintf(stderr, "Could not acquire pidfile\n");
8638 exit(1);
8639 } else
8640 exit(0);
8641 } else if (pid < 0)
8642 exit(1);
8643
8644 setsid();
8645
8646 pid = fork();
8647 if (pid > 0)
8648 exit(0);
8649 else if (pid < 0)
8650 exit(1);
8651
8652 umask(027);
8653 chdir("/");
8654
8655 signal(SIGTSTP, SIG_IGN);
8656 signal(SIGTTOU, SIG_IGN);
8657 signal(SIGTTIN, SIG_IGN);
8658 }
8659 #endif
8660
8661 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8662 if (daemonize) {
8663 uint8_t status = 1;
8664 write(fds[1], &status, 1);
8665 } else
8666 fprintf(stderr, "Could not acquire pid file\n");
8667 exit(1);
8668 }
8669
8670 #ifdef USE_KQEMU
8671 if (smp_cpus > 1)
8672 kqemu_allowed = 0;
8673 #endif
8674 linux_boot = (kernel_filename != NULL);
8675 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8676
8677 /* XXX: this should not be: some embedded targets just have flash */
8678 if (!linux_boot && net_boot == 0 &&
8679 nb_drives_opt == 0)
8680 help(1);
8681
8682 /* boot to floppy or the default cd if no hard disk defined yet */
8683 if (!boot_devices[0]) {
8684 boot_devices = "cad";
8685 }
8686 setvbuf(stdout, NULL, _IOLBF, 0);
8687
8688 init_timers();
8689 init_timer_alarm();
8690 qemu_aio_init();
8691
8692 #ifdef _WIN32
8693 socket_init();
8694 #endif
8695
8696 /* init network clients */
8697 if (nb_net_clients == 0) {
8698 /* if no clients, we use a default config */
8699 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8700 "nic");
8701 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8702 "user");
8703 nb_net_clients = 2;
8704 }
8705
8706 for(i = 0;i < nb_net_clients; i++) {
8707 if (net_client_init(net_clients[i]) < 0)
8708 exit(1);
8709 }
8710 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8711 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8712 continue;
8713 if (vlan->nb_guest_devs == 0) {
8714 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8715 exit(1);
8716 }
8717 if (vlan->nb_host_devs == 0)
8718 fprintf(stderr,
8719 "Warning: vlan %d is not connected to host network\n",
8720 vlan->id);
8721 }
8722
8723 #ifdef TARGET_I386
8724 /* XXX: this should be moved in the PC machine instantiation code */
8725 if (net_boot != 0) {
8726 int netroms = 0;
8727 for (i = 0; i < nb_nics && i < 4; i++) {
8728 const char *model = nd_table[i].model;
8729 char buf[1024];
8730 if (net_boot & (1 << i)) {
8731 if (model == NULL)
8732 model = "ne2k_pci";
8733 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8734 if (get_image_size(buf) > 0) {
8735 if (nb_option_roms >= MAX_OPTION_ROMS) {
8736 fprintf(stderr, "Too many option ROMs\n");
8737 exit(1);
8738 }
8739 option_rom[nb_option_roms] = strdup(buf);
8740 nb_option_roms++;
8741 netroms++;
8742 }
8743 }
8744 }
8745 if (netroms == 0) {
8746 fprintf(stderr, "No valid PXE rom found for network device\n");
8747 exit(1);
8748 }
8749 }
8750 #endif
8751
8752 /* init the memory */
8753 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8754
8755 phys_ram_base = qemu_vmalloc(phys_ram_size);
8756 if (!phys_ram_base) {
8757 fprintf(stderr, "Could not allocate physical memory\n");
8758 exit(1);
8759 }
8760
8761 bdrv_init();
8762
8763 /* we always create the cdrom drive, even if no disk is there */
8764
8765 if (nb_drives_opt < MAX_DRIVES)
8766 drive_add(CDROM_ALIAS);
8767
8768 /* we always create at least one floppy */
8769
8770 if (nb_drives_opt < MAX_DRIVES)
8771 drive_add(FD_ALIAS, 0);
8772
8773 /* we always create one sd slot, even if no card is in it */
8774
8775 if (nb_drives_opt < MAX_DRIVES)
8776 drive_add(SD_ALIAS);
8777
8778 /* open the virtual block devices */
8779
8780 for(i = 0; i < nb_drives_opt; i++)
8781 if (drive_init(drives_opt[i], snapshot, machine) == -1)
8782 exit(1);
8783
8784 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8785 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8786
8787 init_ioports();
8788
8789 /* terminal init */
8790 memset(&display_state, 0, sizeof(display_state));
8791 if (nographic) {
8792 /* nearly nothing to do */
8793 dumb_display_init(ds);
8794 } else if (vnc_display != NULL) {
8795 vnc_display_init(ds);
8796 if (vnc_display_open(ds, vnc_display) < 0)
8797 exit(1);
8798 } else {
8799 #if defined(CONFIG_SDL)
8800 sdl_display_init(ds, full_screen, no_frame);
8801 #elif defined(CONFIG_COCOA)
8802 cocoa_display_init(ds, full_screen);
8803 #else
8804 dumb_display_init(ds);
8805 #endif
8806 }
8807
8808 /* Maintain compatibility with multiple stdio monitors */
8809 if (!strcmp(monitor_device,"stdio")) {
8810 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8811 if (!strcmp(serial_devices[i],"mon:stdio")) {
8812 monitor_device[0] = '\0';
8813 break;
8814 } else if (!strcmp(serial_devices[i],"stdio")) {
8815 monitor_device[0] = '\0';
8816 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8817 break;
8818 }
8819 }
8820 }
8821 if (monitor_device[0] != '\0') {
8822 monitor_hd = qemu_chr_open(monitor_device);
8823 if (!monitor_hd) {
8824 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8825 exit(1);
8826 }
8827 monitor_init(monitor_hd, !nographic);
8828 }
8829
8830 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8831 const char *devname = serial_devices[i];
8832 if (devname[0] != '\0' && strcmp(devname, "none")) {
8833 serial_hds[i] = qemu_chr_open(devname);
8834 if (!serial_hds[i]) {
8835 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8836 devname);
8837 exit(1);
8838 }
8839 if (strstart(devname, "vc", 0))
8840 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8841 }
8842 }
8843
8844 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8845 const char *devname = parallel_devices[i];
8846 if (devname[0] != '\0' && strcmp(devname, "none")) {
8847 parallel_hds[i] = qemu_chr_open(devname);
8848 if (!parallel_hds[i]) {
8849 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8850 devname);
8851 exit(1);
8852 }
8853 if (strstart(devname, "vc", 0))
8854 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8855 }
8856 }
8857
8858 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8859 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8860
8861 /* init USB devices */
8862 if (usb_enabled) {
8863 for(i = 0; i < usb_devices_index; i++) {
8864 if (usb_device_add(usb_devices[i]) < 0) {
8865 fprintf(stderr, "Warning: could not add USB device %s\n",
8866 usb_devices[i]);
8867 }
8868 }
8869 }
8870
8871 if (display_state.dpy_refresh) {
8872 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8873 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8874 }
8875
8876 #ifdef CONFIG_GDBSTUB
8877 if (use_gdbstub) {
8878 /* XXX: use standard host:port notation and modify options
8879 accordingly. */
8880 if (gdbserver_start(gdbstub_port) < 0) {
8881 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8882 gdbstub_port);
8883 exit(1);
8884 }
8885 }
8886 #endif
8887
8888 if (loadvm)
8889 do_loadvm(loadvm);
8890
8891 {
8892 /* XXX: simplify init */
8893 read_passwords();
8894 if (autostart) {
8895 vm_start();
8896 }
8897 }
8898
8899 if (daemonize) {
8900 uint8_t status = 0;
8901 ssize_t len;
8902 int fd;
8903
8904 again1:
8905 len = write(fds[1], &status, 1);
8906 if (len == -1 && (errno == EINTR))
8907 goto again1;
8908
8909 if (len != 1)
8910 exit(1);
8911
8912 TFR(fd = open("/dev/null", O_RDWR));
8913 if (fd == -1)
8914 exit(1);
8915
8916 dup2(fd, 0);
8917 dup2(fd, 1);
8918 dup2(fd, 2);
8919
8920 close(fd);
8921 }
8922
8923 main_loop();
8924 quit_timers();
8925
8926 #if !defined(_WIN32)
8927 /* close network clients */
8928 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8929 VLANClientState *vc;
8930
8931 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8932 if (vc->fd_read == tap_receive) {
8933 char ifname[64];
8934 TAPState *s = vc->opaque;
8935
8936 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8937 s->down_script[0])
8938 launch_script(s->down_script, ifname, s->fd);
8939 }
8940 }
8941 }
8942 #endif
8943 return 0;
8944 }