]> git.proxmox.com Git - qemu.git/blob - vl.c
vl.c: avoid preprocessor directives in a printf call
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 #define MAX_VIRTIO_CONSOLES 1
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_NONE;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 static int default_serial = 1;
275 static int default_parallel = 1;
276 static int default_virtcon = 1;
277 static int default_monitor = 1;
278 static int default_vga = 1;
279 static int default_floppy = 1;
280 static int default_cdrom = 1;
281 static int default_sdcard = 1;
282
283 static struct {
284 const char *driver;
285 int *flag;
286 } default_list[] = {
287 { .driver = "isa-serial", .flag = &default_serial },
288 { .driver = "isa-parallel", .flag = &default_parallel },
289 { .driver = "isa-fdc", .flag = &default_floppy },
290 { .driver = "ide-drive", .flag = &default_cdrom },
291 { .driver = "virtio-serial-pci", .flag = &default_virtcon },
292 { .driver = "virtio-serial-s390", .flag = &default_virtcon },
293 { .driver = "virtio-serial", .flag = &default_virtcon },
294 { .driver = "VGA", .flag = &default_vga },
295 { .driver = "cirrus-vga", .flag = &default_vga },
296 { .driver = "vmware-svga", .flag = &default_vga },
297 };
298
299 static int default_driver_check(QemuOpts *opts, void *opaque)
300 {
301 const char *driver = qemu_opt_get(opts, "driver");
302 int i;
303
304 if (!driver)
305 return 0;
306 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
307 if (strcmp(default_list[i].driver, driver) != 0)
308 continue;
309 *(default_list[i].flag) = 0;
310 }
311 return 0;
312 }
313
314 /***********************************************************/
315 /* x86 ISA bus support */
316
317 target_phys_addr_t isa_mem_base = 0;
318 PicState2 *isa_pic;
319
320 /***********************************************************/
321 void hw_error(const char *fmt, ...)
322 {
323 va_list ap;
324 CPUState *env;
325
326 va_start(ap, fmt);
327 fprintf(stderr, "qemu: hardware error: ");
328 vfprintf(stderr, fmt, ap);
329 fprintf(stderr, "\n");
330 for(env = first_cpu; env != NULL; env = env->next_cpu) {
331 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
332 #ifdef TARGET_I386
333 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
334 #else
335 cpu_dump_state(env, stderr, fprintf, 0);
336 #endif
337 }
338 va_end(ap);
339 abort();
340 }
341
342 static void set_proc_name(const char *s)
343 {
344 #if defined(__linux__) && defined(PR_SET_NAME)
345 char name[16];
346 if (!s)
347 return;
348 name[sizeof(name) - 1] = 0;
349 strncpy(name, s, sizeof(name));
350 /* Could rewrite argv[0] too, but that's a bit more complicated.
351 This simple way is enough for `top'. */
352 prctl(PR_SET_NAME, name);
353 #endif
354 }
355
356 /***************/
357 /* ballooning */
358
359 static QEMUBalloonEvent *qemu_balloon_event;
360 void *qemu_balloon_event_opaque;
361
362 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
363 {
364 qemu_balloon_event = func;
365 qemu_balloon_event_opaque = opaque;
366 }
367
368 int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque)
369 {
370 if (qemu_balloon_event) {
371 qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque);
372 return 1;
373 } else {
374 return 0;
375 }
376 }
377
378 int qemu_balloon_status(MonitorCompletion cb, void *opaque)
379 {
380 if (qemu_balloon_event) {
381 qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque);
382 return 1;
383 } else {
384 return 0;
385 }
386 }
387
388
389 /***********************************************************/
390 /* real time host monotonic timer */
391
392 /* compute with 96 bit intermediate result: (a*b)/c */
393 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
394 {
395 union {
396 uint64_t ll;
397 struct {
398 #ifdef HOST_WORDS_BIGENDIAN
399 uint32_t high, low;
400 #else
401 uint32_t low, high;
402 #endif
403 } l;
404 } u, res;
405 uint64_t rl, rh;
406
407 u.ll = a;
408 rl = (uint64_t)u.l.low * (uint64_t)b;
409 rh = (uint64_t)u.l.high * (uint64_t)b;
410 rh += (rl >> 32);
411 res.l.high = rh / c;
412 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
413 return res.ll;
414 }
415
416 static int64_t get_clock_realtime(void)
417 {
418 struct timeval tv;
419
420 gettimeofday(&tv, NULL);
421 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
422 }
423
424 #ifdef WIN32
425
426 static int64_t clock_freq;
427
428 static void init_get_clock(void)
429 {
430 LARGE_INTEGER freq;
431 int ret;
432 ret = QueryPerformanceFrequency(&freq);
433 if (ret == 0) {
434 fprintf(stderr, "Could not calibrate ticks\n");
435 exit(1);
436 }
437 clock_freq = freq.QuadPart;
438 }
439
440 static int64_t get_clock(void)
441 {
442 LARGE_INTEGER ti;
443 QueryPerformanceCounter(&ti);
444 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
445 }
446
447 #else
448
449 static int use_rt_clock;
450
451 static void init_get_clock(void)
452 {
453 use_rt_clock = 0;
454 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
455 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
456 {
457 struct timespec ts;
458 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
459 use_rt_clock = 1;
460 }
461 }
462 #endif
463 }
464
465 static int64_t get_clock(void)
466 {
467 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
468 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
469 if (use_rt_clock) {
470 struct timespec ts;
471 clock_gettime(CLOCK_MONOTONIC, &ts);
472 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
473 } else
474 #endif
475 {
476 /* XXX: using gettimeofday leads to problems if the date
477 changes, so it should be avoided. */
478 return get_clock_realtime();
479 }
480 }
481 #endif
482
483 /* Return the virtual CPU time, based on the instruction counter. */
484 static int64_t cpu_get_icount(void)
485 {
486 int64_t icount;
487 CPUState *env = cpu_single_env;;
488 icount = qemu_icount;
489 if (env) {
490 if (!can_do_io(env))
491 fprintf(stderr, "Bad clock read\n");
492 icount -= (env->icount_decr.u16.low + env->icount_extra);
493 }
494 return qemu_icount_bias + (icount << icount_time_shift);
495 }
496
497 /***********************************************************/
498 /* guest cycle counter */
499
500 typedef struct TimersState {
501 int64_t cpu_ticks_prev;
502 int64_t cpu_ticks_offset;
503 int64_t cpu_clock_offset;
504 int32_t cpu_ticks_enabled;
505 int64_t dummy;
506 } TimersState;
507
508 TimersState timers_state;
509
510 /* return the host CPU cycle counter and handle stop/restart */
511 int64_t cpu_get_ticks(void)
512 {
513 if (use_icount) {
514 return cpu_get_icount();
515 }
516 if (!timers_state.cpu_ticks_enabled) {
517 return timers_state.cpu_ticks_offset;
518 } else {
519 int64_t ticks;
520 ticks = cpu_get_real_ticks();
521 if (timers_state.cpu_ticks_prev > ticks) {
522 /* Note: non increasing ticks may happen if the host uses
523 software suspend */
524 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
525 }
526 timers_state.cpu_ticks_prev = ticks;
527 return ticks + timers_state.cpu_ticks_offset;
528 }
529 }
530
531 /* return the host CPU monotonic timer and handle stop/restart */
532 static int64_t cpu_get_clock(void)
533 {
534 int64_t ti;
535 if (!timers_state.cpu_ticks_enabled) {
536 return timers_state.cpu_clock_offset;
537 } else {
538 ti = get_clock();
539 return ti + timers_state.cpu_clock_offset;
540 }
541 }
542
543 /* enable cpu_get_ticks() */
544 void cpu_enable_ticks(void)
545 {
546 if (!timers_state.cpu_ticks_enabled) {
547 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
548 timers_state.cpu_clock_offset -= get_clock();
549 timers_state.cpu_ticks_enabled = 1;
550 }
551 }
552
553 /* disable cpu_get_ticks() : the clock is stopped. You must not call
554 cpu_get_ticks() after that. */
555 void cpu_disable_ticks(void)
556 {
557 if (timers_state.cpu_ticks_enabled) {
558 timers_state.cpu_ticks_offset = cpu_get_ticks();
559 timers_state.cpu_clock_offset = cpu_get_clock();
560 timers_state.cpu_ticks_enabled = 0;
561 }
562 }
563
564 /***********************************************************/
565 /* timers */
566
567 #define QEMU_CLOCK_REALTIME 0
568 #define QEMU_CLOCK_VIRTUAL 1
569 #define QEMU_CLOCK_HOST 2
570
571 struct QEMUClock {
572 int type;
573 /* XXX: add frequency */
574 };
575
576 struct QEMUTimer {
577 QEMUClock *clock;
578 int64_t expire_time;
579 QEMUTimerCB *cb;
580 void *opaque;
581 struct QEMUTimer *next;
582 };
583
584 struct qemu_alarm_timer {
585 char const *name;
586 unsigned int flags;
587
588 int (*start)(struct qemu_alarm_timer *t);
589 void (*stop)(struct qemu_alarm_timer *t);
590 void (*rearm)(struct qemu_alarm_timer *t);
591 void *priv;
592 };
593
594 #define ALARM_FLAG_DYNTICKS 0x1
595 #define ALARM_FLAG_EXPIRED 0x2
596
597 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
598 {
599 return t && (t->flags & ALARM_FLAG_DYNTICKS);
600 }
601
602 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
603 {
604 if (!alarm_has_dynticks(t))
605 return;
606
607 t->rearm(t);
608 }
609
610 /* TODO: MIN_TIMER_REARM_US should be optimized */
611 #define MIN_TIMER_REARM_US 250
612
613 static struct qemu_alarm_timer *alarm_timer;
614
615 #ifdef _WIN32
616
617 struct qemu_alarm_win32 {
618 MMRESULT timerId;
619 unsigned int period;
620 } alarm_win32_data = {0, -1};
621
622 static int win32_start_timer(struct qemu_alarm_timer *t);
623 static void win32_stop_timer(struct qemu_alarm_timer *t);
624 static void win32_rearm_timer(struct qemu_alarm_timer *t);
625
626 #else
627
628 static int unix_start_timer(struct qemu_alarm_timer *t);
629 static void unix_stop_timer(struct qemu_alarm_timer *t);
630
631 #ifdef __linux__
632
633 static int dynticks_start_timer(struct qemu_alarm_timer *t);
634 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
635 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
636
637 static int hpet_start_timer(struct qemu_alarm_timer *t);
638 static void hpet_stop_timer(struct qemu_alarm_timer *t);
639
640 static int rtc_start_timer(struct qemu_alarm_timer *t);
641 static void rtc_stop_timer(struct qemu_alarm_timer *t);
642
643 #endif /* __linux__ */
644
645 #endif /* _WIN32 */
646
647 /* Correlation between real and virtual time is always going to be
648 fairly approximate, so ignore small variation.
649 When the guest is idle real and virtual time will be aligned in
650 the IO wait loop. */
651 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
652
653 static void icount_adjust(void)
654 {
655 int64_t cur_time;
656 int64_t cur_icount;
657 int64_t delta;
658 static int64_t last_delta;
659 /* If the VM is not running, then do nothing. */
660 if (!vm_running)
661 return;
662
663 cur_time = cpu_get_clock();
664 cur_icount = qemu_get_clock(vm_clock);
665 delta = cur_icount - cur_time;
666 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
667 if (delta > 0
668 && last_delta + ICOUNT_WOBBLE < delta * 2
669 && icount_time_shift > 0) {
670 /* The guest is getting too far ahead. Slow time down. */
671 icount_time_shift--;
672 }
673 if (delta < 0
674 && last_delta - ICOUNT_WOBBLE > delta * 2
675 && icount_time_shift < MAX_ICOUNT_SHIFT) {
676 /* The guest is getting too far behind. Speed time up. */
677 icount_time_shift++;
678 }
679 last_delta = delta;
680 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
681 }
682
683 static void icount_adjust_rt(void * opaque)
684 {
685 qemu_mod_timer(icount_rt_timer,
686 qemu_get_clock(rt_clock) + 1000);
687 icount_adjust();
688 }
689
690 static void icount_adjust_vm(void * opaque)
691 {
692 qemu_mod_timer(icount_vm_timer,
693 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
694 icount_adjust();
695 }
696
697 static void init_icount_adjust(void)
698 {
699 /* Have both realtime and virtual time triggers for speed adjustment.
700 The realtime trigger catches emulated time passing too slowly,
701 the virtual time trigger catches emulated time passing too fast.
702 Realtime triggers occur even when idle, so use them less frequently
703 than VM triggers. */
704 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
705 qemu_mod_timer(icount_rt_timer,
706 qemu_get_clock(rt_clock) + 1000);
707 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
708 qemu_mod_timer(icount_vm_timer,
709 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
710 }
711
712 static struct qemu_alarm_timer alarm_timers[] = {
713 #ifndef _WIN32
714 #ifdef __linux__
715 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
716 dynticks_stop_timer, dynticks_rearm_timer, NULL},
717 /* HPET - if available - is preferred */
718 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
719 /* ...otherwise try RTC */
720 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
721 #endif
722 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
723 #else
724 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
725 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
726 {"win32", 0, win32_start_timer,
727 win32_stop_timer, NULL, &alarm_win32_data},
728 #endif
729 {NULL, }
730 };
731
732 static void show_available_alarms(void)
733 {
734 int i;
735
736 printf("Available alarm timers, in order of precedence:\n");
737 for (i = 0; alarm_timers[i].name; i++)
738 printf("%s\n", alarm_timers[i].name);
739 }
740
741 static void configure_alarms(char const *opt)
742 {
743 int i;
744 int cur = 0;
745 int count = ARRAY_SIZE(alarm_timers) - 1;
746 char *arg;
747 char *name;
748 struct qemu_alarm_timer tmp;
749
750 if (!strcmp(opt, "?")) {
751 show_available_alarms();
752 exit(0);
753 }
754
755 arg = qemu_strdup(opt);
756
757 /* Reorder the array */
758 name = strtok(arg, ",");
759 while (name) {
760 for (i = 0; i < count && alarm_timers[i].name; i++) {
761 if (!strcmp(alarm_timers[i].name, name))
762 break;
763 }
764
765 if (i == count) {
766 fprintf(stderr, "Unknown clock %s\n", name);
767 goto next;
768 }
769
770 if (i < cur)
771 /* Ignore */
772 goto next;
773
774 /* Swap */
775 tmp = alarm_timers[i];
776 alarm_timers[i] = alarm_timers[cur];
777 alarm_timers[cur] = tmp;
778
779 cur++;
780 next:
781 name = strtok(NULL, ",");
782 }
783
784 qemu_free(arg);
785
786 if (cur) {
787 /* Disable remaining timers */
788 for (i = cur; i < count; i++)
789 alarm_timers[i].name = NULL;
790 } else {
791 show_available_alarms();
792 exit(1);
793 }
794 }
795
796 #define QEMU_NUM_CLOCKS 3
797
798 QEMUClock *rt_clock;
799 QEMUClock *vm_clock;
800 QEMUClock *host_clock;
801
802 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
803
804 static QEMUClock *qemu_new_clock(int type)
805 {
806 QEMUClock *clock;
807 clock = qemu_mallocz(sizeof(QEMUClock));
808 clock->type = type;
809 return clock;
810 }
811
812 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
813 {
814 QEMUTimer *ts;
815
816 ts = qemu_mallocz(sizeof(QEMUTimer));
817 ts->clock = clock;
818 ts->cb = cb;
819 ts->opaque = opaque;
820 return ts;
821 }
822
823 void qemu_free_timer(QEMUTimer *ts)
824 {
825 qemu_free(ts);
826 }
827
828 /* stop a timer, but do not dealloc it */
829 void qemu_del_timer(QEMUTimer *ts)
830 {
831 QEMUTimer **pt, *t;
832
833 /* NOTE: this code must be signal safe because
834 qemu_timer_expired() can be called from a signal. */
835 pt = &active_timers[ts->clock->type];
836 for(;;) {
837 t = *pt;
838 if (!t)
839 break;
840 if (t == ts) {
841 *pt = t->next;
842 break;
843 }
844 pt = &t->next;
845 }
846 }
847
848 /* modify the current timer so that it will be fired when current_time
849 >= expire_time. The corresponding callback will be called. */
850 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
851 {
852 QEMUTimer **pt, *t;
853
854 qemu_del_timer(ts);
855
856 /* add the timer in the sorted list */
857 /* NOTE: this code must be signal safe because
858 qemu_timer_expired() can be called from a signal. */
859 pt = &active_timers[ts->clock->type];
860 for(;;) {
861 t = *pt;
862 if (!t)
863 break;
864 if (t->expire_time > expire_time)
865 break;
866 pt = &t->next;
867 }
868 ts->expire_time = expire_time;
869 ts->next = *pt;
870 *pt = ts;
871
872 /* Rearm if necessary */
873 if (pt == &active_timers[ts->clock->type]) {
874 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
875 qemu_rearm_alarm_timer(alarm_timer);
876 }
877 /* Interrupt execution to force deadline recalculation. */
878 if (use_icount)
879 qemu_notify_event();
880 }
881 }
882
883 int qemu_timer_pending(QEMUTimer *ts)
884 {
885 QEMUTimer *t;
886 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
887 if (t == ts)
888 return 1;
889 }
890 return 0;
891 }
892
893 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
894 {
895 if (!timer_head)
896 return 0;
897 return (timer_head->expire_time <= current_time);
898 }
899
900 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
901 {
902 QEMUTimer *ts;
903
904 for(;;) {
905 ts = *ptimer_head;
906 if (!ts || ts->expire_time > current_time)
907 break;
908 /* remove timer from the list before calling the callback */
909 *ptimer_head = ts->next;
910 ts->next = NULL;
911
912 /* run the callback (the timer list can be modified) */
913 ts->cb(ts->opaque);
914 }
915 }
916
917 int64_t qemu_get_clock(QEMUClock *clock)
918 {
919 switch(clock->type) {
920 case QEMU_CLOCK_REALTIME:
921 return get_clock() / 1000000;
922 default:
923 case QEMU_CLOCK_VIRTUAL:
924 if (use_icount) {
925 return cpu_get_icount();
926 } else {
927 return cpu_get_clock();
928 }
929 case QEMU_CLOCK_HOST:
930 return get_clock_realtime();
931 }
932 }
933
934 static void init_clocks(void)
935 {
936 init_get_clock();
937 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
938 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
939 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
940
941 rtc_clock = host_clock;
942 }
943
944 /* save a timer */
945 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
946 {
947 uint64_t expire_time;
948
949 if (qemu_timer_pending(ts)) {
950 expire_time = ts->expire_time;
951 } else {
952 expire_time = -1;
953 }
954 qemu_put_be64(f, expire_time);
955 }
956
957 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
958 {
959 uint64_t expire_time;
960
961 expire_time = qemu_get_be64(f);
962 if (expire_time != -1) {
963 qemu_mod_timer(ts, expire_time);
964 } else {
965 qemu_del_timer(ts);
966 }
967 }
968
969 static const VMStateDescription vmstate_timers = {
970 .name = "timer",
971 .version_id = 2,
972 .minimum_version_id = 1,
973 .minimum_version_id_old = 1,
974 .fields = (VMStateField []) {
975 VMSTATE_INT64(cpu_ticks_offset, TimersState),
976 VMSTATE_INT64(dummy, TimersState),
977 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
978 VMSTATE_END_OF_LIST()
979 }
980 };
981
982 static void qemu_event_increment(void);
983
984 #ifdef _WIN32
985 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
986 DWORD_PTR dwUser, DWORD_PTR dw1,
987 DWORD_PTR dw2)
988 #else
989 static void host_alarm_handler(int host_signum)
990 #endif
991 {
992 #if 0
993 #define DISP_FREQ 1000
994 {
995 static int64_t delta_min = INT64_MAX;
996 static int64_t delta_max, delta_cum, last_clock, delta, ti;
997 static int count;
998 ti = qemu_get_clock(vm_clock);
999 if (last_clock != 0) {
1000 delta = ti - last_clock;
1001 if (delta < delta_min)
1002 delta_min = delta;
1003 if (delta > delta_max)
1004 delta_max = delta;
1005 delta_cum += delta;
1006 if (++count == DISP_FREQ) {
1007 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1008 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1009 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1010 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1011 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1012 count = 0;
1013 delta_min = INT64_MAX;
1014 delta_max = 0;
1015 delta_cum = 0;
1016 }
1017 }
1018 last_clock = ti;
1019 }
1020 #endif
1021 if (alarm_has_dynticks(alarm_timer) ||
1022 (!use_icount &&
1023 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1024 qemu_get_clock(vm_clock))) ||
1025 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1026 qemu_get_clock(rt_clock)) ||
1027 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1028 qemu_get_clock(host_clock))) {
1029 qemu_event_increment();
1030 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1031
1032 #ifndef CONFIG_IOTHREAD
1033 if (next_cpu) {
1034 /* stop the currently executing cpu because a timer occured */
1035 cpu_exit(next_cpu);
1036 }
1037 #endif
1038 timer_alarm_pending = 1;
1039 qemu_notify_event();
1040 }
1041 }
1042
1043 static int64_t qemu_next_deadline(void)
1044 {
1045 /* To avoid problems with overflow limit this to 2^32. */
1046 int64_t delta = INT32_MAX;
1047
1048 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1049 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1050 qemu_get_clock(vm_clock);
1051 }
1052 if (active_timers[QEMU_CLOCK_HOST]) {
1053 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1054 qemu_get_clock(host_clock);
1055 if (hdelta < delta)
1056 delta = hdelta;
1057 }
1058
1059 if (delta < 0)
1060 delta = 0;
1061
1062 return delta;
1063 }
1064
1065 #if defined(__linux__)
1066 static uint64_t qemu_next_deadline_dyntick(void)
1067 {
1068 int64_t delta;
1069 int64_t rtdelta;
1070
1071 if (use_icount)
1072 delta = INT32_MAX;
1073 else
1074 delta = (qemu_next_deadline() + 999) / 1000;
1075
1076 if (active_timers[QEMU_CLOCK_REALTIME]) {
1077 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1078 qemu_get_clock(rt_clock))*1000;
1079 if (rtdelta < delta)
1080 delta = rtdelta;
1081 }
1082
1083 if (delta < MIN_TIMER_REARM_US)
1084 delta = MIN_TIMER_REARM_US;
1085
1086 return delta;
1087 }
1088 #endif
1089
1090 #ifndef _WIN32
1091
1092 /* Sets a specific flag */
1093 static int fcntl_setfl(int fd, int flag)
1094 {
1095 int flags;
1096
1097 flags = fcntl(fd, F_GETFL);
1098 if (flags == -1)
1099 return -errno;
1100
1101 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1102 return -errno;
1103
1104 return 0;
1105 }
1106
1107 #if defined(__linux__)
1108
1109 #define RTC_FREQ 1024
1110
1111 static void enable_sigio_timer(int fd)
1112 {
1113 struct sigaction act;
1114
1115 /* timer signal */
1116 sigfillset(&act.sa_mask);
1117 act.sa_flags = 0;
1118 act.sa_handler = host_alarm_handler;
1119
1120 sigaction(SIGIO, &act, NULL);
1121 fcntl_setfl(fd, O_ASYNC);
1122 fcntl(fd, F_SETOWN, getpid());
1123 }
1124
1125 static int hpet_start_timer(struct qemu_alarm_timer *t)
1126 {
1127 struct hpet_info info;
1128 int r, fd;
1129
1130 fd = qemu_open("/dev/hpet", O_RDONLY);
1131 if (fd < 0)
1132 return -1;
1133
1134 /* Set frequency */
1135 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1136 if (r < 0) {
1137 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1138 "error, but for better emulation accuracy type:\n"
1139 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1140 goto fail;
1141 }
1142
1143 /* Check capabilities */
1144 r = ioctl(fd, HPET_INFO, &info);
1145 if (r < 0)
1146 goto fail;
1147
1148 /* Enable periodic mode */
1149 r = ioctl(fd, HPET_EPI, 0);
1150 if (info.hi_flags && (r < 0))
1151 goto fail;
1152
1153 /* Enable interrupt */
1154 r = ioctl(fd, HPET_IE_ON, 0);
1155 if (r < 0)
1156 goto fail;
1157
1158 enable_sigio_timer(fd);
1159 t->priv = (void *)(long)fd;
1160
1161 return 0;
1162 fail:
1163 close(fd);
1164 return -1;
1165 }
1166
1167 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1168 {
1169 int fd = (long)t->priv;
1170
1171 close(fd);
1172 }
1173
1174 static int rtc_start_timer(struct qemu_alarm_timer *t)
1175 {
1176 int rtc_fd;
1177 unsigned long current_rtc_freq = 0;
1178
1179 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1180 if (rtc_fd < 0)
1181 return -1;
1182 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1183 if (current_rtc_freq != RTC_FREQ &&
1184 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1185 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1186 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1187 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1188 goto fail;
1189 }
1190 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1191 fail:
1192 close(rtc_fd);
1193 return -1;
1194 }
1195
1196 enable_sigio_timer(rtc_fd);
1197
1198 t->priv = (void *)(long)rtc_fd;
1199
1200 return 0;
1201 }
1202
1203 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1204 {
1205 int rtc_fd = (long)t->priv;
1206
1207 close(rtc_fd);
1208 }
1209
1210 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1211 {
1212 struct sigevent ev;
1213 timer_t host_timer;
1214 struct sigaction act;
1215
1216 sigfillset(&act.sa_mask);
1217 act.sa_flags = 0;
1218 act.sa_handler = host_alarm_handler;
1219
1220 sigaction(SIGALRM, &act, NULL);
1221
1222 /*
1223 * Initialize ev struct to 0 to avoid valgrind complaining
1224 * about uninitialized data in timer_create call
1225 */
1226 memset(&ev, 0, sizeof(ev));
1227 ev.sigev_value.sival_int = 0;
1228 ev.sigev_notify = SIGEV_SIGNAL;
1229 ev.sigev_signo = SIGALRM;
1230
1231 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1232 perror("timer_create");
1233
1234 /* disable dynticks */
1235 fprintf(stderr, "Dynamic Ticks disabled\n");
1236
1237 return -1;
1238 }
1239
1240 t->priv = (void *)(long)host_timer;
1241
1242 return 0;
1243 }
1244
1245 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1246 {
1247 timer_t host_timer = (timer_t)(long)t->priv;
1248
1249 timer_delete(host_timer);
1250 }
1251
1252 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1253 {
1254 timer_t host_timer = (timer_t)(long)t->priv;
1255 struct itimerspec timeout;
1256 int64_t nearest_delta_us = INT64_MAX;
1257 int64_t current_us;
1258
1259 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1260 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1261 !active_timers[QEMU_CLOCK_HOST])
1262 return;
1263
1264 nearest_delta_us = qemu_next_deadline_dyntick();
1265
1266 /* check whether a timer is already running */
1267 if (timer_gettime(host_timer, &timeout)) {
1268 perror("gettime");
1269 fprintf(stderr, "Internal timer error: aborting\n");
1270 exit(1);
1271 }
1272 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1273 if (current_us && current_us <= nearest_delta_us)
1274 return;
1275
1276 timeout.it_interval.tv_sec = 0;
1277 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1278 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1279 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1280 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1281 perror("settime");
1282 fprintf(stderr, "Internal timer error: aborting\n");
1283 exit(1);
1284 }
1285 }
1286
1287 #endif /* defined(__linux__) */
1288
1289 static int unix_start_timer(struct qemu_alarm_timer *t)
1290 {
1291 struct sigaction act;
1292 struct itimerval itv;
1293 int err;
1294
1295 /* timer signal */
1296 sigfillset(&act.sa_mask);
1297 act.sa_flags = 0;
1298 act.sa_handler = host_alarm_handler;
1299
1300 sigaction(SIGALRM, &act, NULL);
1301
1302 itv.it_interval.tv_sec = 0;
1303 /* for i386 kernel 2.6 to get 1 ms */
1304 itv.it_interval.tv_usec = 999;
1305 itv.it_value.tv_sec = 0;
1306 itv.it_value.tv_usec = 10 * 1000;
1307
1308 err = setitimer(ITIMER_REAL, &itv, NULL);
1309 if (err)
1310 return -1;
1311
1312 return 0;
1313 }
1314
1315 static void unix_stop_timer(struct qemu_alarm_timer *t)
1316 {
1317 struct itimerval itv;
1318
1319 memset(&itv, 0, sizeof(itv));
1320 setitimer(ITIMER_REAL, &itv, NULL);
1321 }
1322
1323 #endif /* !defined(_WIN32) */
1324
1325
1326 #ifdef _WIN32
1327
1328 static int win32_start_timer(struct qemu_alarm_timer *t)
1329 {
1330 TIMECAPS tc;
1331 struct qemu_alarm_win32 *data = t->priv;
1332 UINT flags;
1333
1334 memset(&tc, 0, sizeof(tc));
1335 timeGetDevCaps(&tc, sizeof(tc));
1336
1337 if (data->period < tc.wPeriodMin)
1338 data->period = tc.wPeriodMin;
1339
1340 timeBeginPeriod(data->period);
1341
1342 flags = TIME_CALLBACK_FUNCTION;
1343 if (alarm_has_dynticks(t))
1344 flags |= TIME_ONESHOT;
1345 else
1346 flags |= TIME_PERIODIC;
1347
1348 data->timerId = timeSetEvent(1, // interval (ms)
1349 data->period, // resolution
1350 host_alarm_handler, // function
1351 (DWORD)t, // parameter
1352 flags);
1353
1354 if (!data->timerId) {
1355 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1356 GetLastError());
1357 timeEndPeriod(data->period);
1358 return -1;
1359 }
1360
1361 return 0;
1362 }
1363
1364 static void win32_stop_timer(struct qemu_alarm_timer *t)
1365 {
1366 struct qemu_alarm_win32 *data = t->priv;
1367
1368 timeKillEvent(data->timerId);
1369 timeEndPeriod(data->period);
1370 }
1371
1372 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1373 {
1374 struct qemu_alarm_win32 *data = t->priv;
1375
1376 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1377 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1378 !active_timers[QEMU_CLOCK_HOST])
1379 return;
1380
1381 timeKillEvent(data->timerId);
1382
1383 data->timerId = timeSetEvent(1,
1384 data->period,
1385 host_alarm_handler,
1386 (DWORD)t,
1387 TIME_ONESHOT | TIME_PERIODIC);
1388
1389 if (!data->timerId) {
1390 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1391 GetLastError());
1392
1393 timeEndPeriod(data->period);
1394 exit(1);
1395 }
1396 }
1397
1398 #endif /* _WIN32 */
1399
1400 static int init_timer_alarm(void)
1401 {
1402 struct qemu_alarm_timer *t = NULL;
1403 int i, err = -1;
1404
1405 for (i = 0; alarm_timers[i].name; i++) {
1406 t = &alarm_timers[i];
1407
1408 err = t->start(t);
1409 if (!err)
1410 break;
1411 }
1412
1413 if (err) {
1414 err = -ENOENT;
1415 goto fail;
1416 }
1417
1418 alarm_timer = t;
1419
1420 return 0;
1421
1422 fail:
1423 return err;
1424 }
1425
1426 static void quit_timers(void)
1427 {
1428 alarm_timer->stop(alarm_timer);
1429 alarm_timer = NULL;
1430 }
1431
1432 /***********************************************************/
1433 /* host time/date access */
1434 void qemu_get_timedate(struct tm *tm, int offset)
1435 {
1436 time_t ti;
1437 struct tm *ret;
1438
1439 time(&ti);
1440 ti += offset;
1441 if (rtc_date_offset == -1) {
1442 if (rtc_utc)
1443 ret = gmtime(&ti);
1444 else
1445 ret = localtime(&ti);
1446 } else {
1447 ti -= rtc_date_offset;
1448 ret = gmtime(&ti);
1449 }
1450
1451 memcpy(tm, ret, sizeof(struct tm));
1452 }
1453
1454 int qemu_timedate_diff(struct tm *tm)
1455 {
1456 time_t seconds;
1457
1458 if (rtc_date_offset == -1)
1459 if (rtc_utc)
1460 seconds = mktimegm(tm);
1461 else
1462 seconds = mktime(tm);
1463 else
1464 seconds = mktimegm(tm) + rtc_date_offset;
1465
1466 return seconds - time(NULL);
1467 }
1468
1469 static void configure_rtc_date_offset(const char *startdate, int legacy)
1470 {
1471 time_t rtc_start_date;
1472 struct tm tm;
1473
1474 if (!strcmp(startdate, "now") && legacy) {
1475 rtc_date_offset = -1;
1476 } else {
1477 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1478 &tm.tm_year,
1479 &tm.tm_mon,
1480 &tm.tm_mday,
1481 &tm.tm_hour,
1482 &tm.tm_min,
1483 &tm.tm_sec) == 6) {
1484 /* OK */
1485 } else if (sscanf(startdate, "%d-%d-%d",
1486 &tm.tm_year,
1487 &tm.tm_mon,
1488 &tm.tm_mday) == 3) {
1489 tm.tm_hour = 0;
1490 tm.tm_min = 0;
1491 tm.tm_sec = 0;
1492 } else {
1493 goto date_fail;
1494 }
1495 tm.tm_year -= 1900;
1496 tm.tm_mon--;
1497 rtc_start_date = mktimegm(&tm);
1498 if (rtc_start_date == -1) {
1499 date_fail:
1500 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1501 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1502 exit(1);
1503 }
1504 rtc_date_offset = time(NULL) - rtc_start_date;
1505 }
1506 }
1507
1508 static void configure_rtc(QemuOpts *opts)
1509 {
1510 const char *value;
1511
1512 value = qemu_opt_get(opts, "base");
1513 if (value) {
1514 if (!strcmp(value, "utc")) {
1515 rtc_utc = 1;
1516 } else if (!strcmp(value, "localtime")) {
1517 rtc_utc = 0;
1518 } else {
1519 configure_rtc_date_offset(value, 0);
1520 }
1521 }
1522 value = qemu_opt_get(opts, "clock");
1523 if (value) {
1524 if (!strcmp(value, "host")) {
1525 rtc_clock = host_clock;
1526 } else if (!strcmp(value, "vm")) {
1527 rtc_clock = vm_clock;
1528 } else {
1529 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1530 exit(1);
1531 }
1532 }
1533 #ifdef CONFIG_TARGET_I386
1534 value = qemu_opt_get(opts, "driftfix");
1535 if (value) {
1536 if (!strcmp(buf, "slew")) {
1537 rtc_td_hack = 1;
1538 } else if (!strcmp(buf, "none")) {
1539 rtc_td_hack = 0;
1540 } else {
1541 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1542 exit(1);
1543 }
1544 }
1545 #endif
1546 }
1547
1548 #ifdef _WIN32
1549 static void socket_cleanup(void)
1550 {
1551 WSACleanup();
1552 }
1553
1554 static int socket_init(void)
1555 {
1556 WSADATA Data;
1557 int ret, err;
1558
1559 ret = WSAStartup(MAKEWORD(2,2), &Data);
1560 if (ret != 0) {
1561 err = WSAGetLastError();
1562 fprintf(stderr, "WSAStartup: %d\n", err);
1563 return -1;
1564 }
1565 atexit(socket_cleanup);
1566 return 0;
1567 }
1568 #endif
1569
1570 /***********************************************************/
1571 /* Bluetooth support */
1572 static int nb_hcis;
1573 static int cur_hci;
1574 static struct HCIInfo *hci_table[MAX_NICS];
1575
1576 static struct bt_vlan_s {
1577 struct bt_scatternet_s net;
1578 int id;
1579 struct bt_vlan_s *next;
1580 } *first_bt_vlan;
1581
1582 /* find or alloc a new bluetooth "VLAN" */
1583 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1584 {
1585 struct bt_vlan_s **pvlan, *vlan;
1586 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1587 if (vlan->id == id)
1588 return &vlan->net;
1589 }
1590 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1591 vlan->id = id;
1592 pvlan = &first_bt_vlan;
1593 while (*pvlan != NULL)
1594 pvlan = &(*pvlan)->next;
1595 *pvlan = vlan;
1596 return &vlan->net;
1597 }
1598
1599 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1600 {
1601 }
1602
1603 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1604 {
1605 return -ENOTSUP;
1606 }
1607
1608 static struct HCIInfo null_hci = {
1609 .cmd_send = null_hci_send,
1610 .sco_send = null_hci_send,
1611 .acl_send = null_hci_send,
1612 .bdaddr_set = null_hci_addr_set,
1613 };
1614
1615 struct HCIInfo *qemu_next_hci(void)
1616 {
1617 if (cur_hci == nb_hcis)
1618 return &null_hci;
1619
1620 return hci_table[cur_hci++];
1621 }
1622
1623 static struct HCIInfo *hci_init(const char *str)
1624 {
1625 char *endp;
1626 struct bt_scatternet_s *vlan = 0;
1627
1628 if (!strcmp(str, "null"))
1629 /* null */
1630 return &null_hci;
1631 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1632 /* host[:hciN] */
1633 return bt_host_hci(str[4] ? str + 5 : "hci0");
1634 else if (!strncmp(str, "hci", 3)) {
1635 /* hci[,vlan=n] */
1636 if (str[3]) {
1637 if (!strncmp(str + 3, ",vlan=", 6)) {
1638 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1639 if (*endp)
1640 vlan = 0;
1641 }
1642 } else
1643 vlan = qemu_find_bt_vlan(0);
1644 if (vlan)
1645 return bt_new_hci(vlan);
1646 }
1647
1648 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1649
1650 return 0;
1651 }
1652
1653 static int bt_hci_parse(const char *str)
1654 {
1655 struct HCIInfo *hci;
1656 bdaddr_t bdaddr;
1657
1658 if (nb_hcis >= MAX_NICS) {
1659 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1660 return -1;
1661 }
1662
1663 hci = hci_init(str);
1664 if (!hci)
1665 return -1;
1666
1667 bdaddr.b[0] = 0x52;
1668 bdaddr.b[1] = 0x54;
1669 bdaddr.b[2] = 0x00;
1670 bdaddr.b[3] = 0x12;
1671 bdaddr.b[4] = 0x34;
1672 bdaddr.b[5] = 0x56 + nb_hcis;
1673 hci->bdaddr_set(hci, bdaddr.b);
1674
1675 hci_table[nb_hcis++] = hci;
1676
1677 return 0;
1678 }
1679
1680 static void bt_vhci_add(int vlan_id)
1681 {
1682 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1683
1684 if (!vlan->slave)
1685 fprintf(stderr, "qemu: warning: adding a VHCI to "
1686 "an empty scatternet %i\n", vlan_id);
1687
1688 bt_vhci_init(bt_new_hci(vlan));
1689 }
1690
1691 static struct bt_device_s *bt_device_add(const char *opt)
1692 {
1693 struct bt_scatternet_s *vlan;
1694 int vlan_id = 0;
1695 char *endp = strstr(opt, ",vlan=");
1696 int len = (endp ? endp - opt : strlen(opt)) + 1;
1697 char devname[10];
1698
1699 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1700
1701 if (endp) {
1702 vlan_id = strtol(endp + 6, &endp, 0);
1703 if (*endp) {
1704 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1705 return 0;
1706 }
1707 }
1708
1709 vlan = qemu_find_bt_vlan(vlan_id);
1710
1711 if (!vlan->slave)
1712 fprintf(stderr, "qemu: warning: adding a slave device to "
1713 "an empty scatternet %i\n", vlan_id);
1714
1715 if (!strcmp(devname, "keyboard"))
1716 return bt_keyboard_init(vlan);
1717
1718 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1719 return 0;
1720 }
1721
1722 static int bt_parse(const char *opt)
1723 {
1724 const char *endp, *p;
1725 int vlan;
1726
1727 if (strstart(opt, "hci", &endp)) {
1728 if (!*endp || *endp == ',') {
1729 if (*endp)
1730 if (!strstart(endp, ",vlan=", 0))
1731 opt = endp + 1;
1732
1733 return bt_hci_parse(opt);
1734 }
1735 } else if (strstart(opt, "vhci", &endp)) {
1736 if (!*endp || *endp == ',') {
1737 if (*endp) {
1738 if (strstart(endp, ",vlan=", &p)) {
1739 vlan = strtol(p, (char **) &endp, 0);
1740 if (*endp) {
1741 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1742 return 1;
1743 }
1744 } else {
1745 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1746 return 1;
1747 }
1748 } else
1749 vlan = 0;
1750
1751 bt_vhci_add(vlan);
1752 return 0;
1753 }
1754 } else if (strstart(opt, "device:", &endp))
1755 return !bt_device_add(endp);
1756
1757 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1758 return 1;
1759 }
1760
1761 /***********************************************************/
1762 /* QEMU Block devices */
1763
1764 #define HD_ALIAS "index=%d,media=disk"
1765 #define CDROM_ALIAS "index=2,media=cdrom"
1766 #define FD_ALIAS "index=%d,if=floppy"
1767 #define PFLASH_ALIAS "if=pflash"
1768 #define MTD_ALIAS "if=mtd"
1769 #define SD_ALIAS "index=0,if=sd"
1770
1771 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1772 {
1773 va_list ap;
1774 char optstr[1024];
1775 QemuOpts *opts;
1776
1777 va_start(ap, fmt);
1778 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1779 va_end(ap);
1780
1781 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1782 if (!opts) {
1783 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1784 __FUNCTION__, optstr);
1785 return NULL;
1786 }
1787 if (file)
1788 qemu_opt_set(opts, "file", file);
1789 return opts;
1790 }
1791
1792 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1793 {
1794 DriveInfo *dinfo;
1795
1796 /* seek interface, bus and unit */
1797
1798 QTAILQ_FOREACH(dinfo, &drives, next) {
1799 if (dinfo->type == type &&
1800 dinfo->bus == bus &&
1801 dinfo->unit == unit)
1802 return dinfo;
1803 }
1804
1805 return NULL;
1806 }
1807
1808 DriveInfo *drive_get_by_id(const char *id)
1809 {
1810 DriveInfo *dinfo;
1811
1812 QTAILQ_FOREACH(dinfo, &drives, next) {
1813 if (strcmp(id, dinfo->id))
1814 continue;
1815 return dinfo;
1816 }
1817 return NULL;
1818 }
1819
1820 int drive_get_max_bus(BlockInterfaceType type)
1821 {
1822 int max_bus;
1823 DriveInfo *dinfo;
1824
1825 max_bus = -1;
1826 QTAILQ_FOREACH(dinfo, &drives, next) {
1827 if(dinfo->type == type &&
1828 dinfo->bus > max_bus)
1829 max_bus = dinfo->bus;
1830 }
1831 return max_bus;
1832 }
1833
1834 const char *drive_get_serial(BlockDriverState *bdrv)
1835 {
1836 DriveInfo *dinfo;
1837
1838 QTAILQ_FOREACH(dinfo, &drives, next) {
1839 if (dinfo->bdrv == bdrv)
1840 return dinfo->serial;
1841 }
1842
1843 return "\0";
1844 }
1845
1846 BlockInterfaceErrorAction drive_get_on_error(
1847 BlockDriverState *bdrv, int is_read)
1848 {
1849 DriveInfo *dinfo;
1850
1851 QTAILQ_FOREACH(dinfo, &drives, next) {
1852 if (dinfo->bdrv == bdrv)
1853 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1854 }
1855
1856 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1857 }
1858
1859 static void bdrv_format_print(void *opaque, const char *name)
1860 {
1861 fprintf(stderr, " %s", name);
1862 }
1863
1864 void drive_uninit(DriveInfo *dinfo)
1865 {
1866 qemu_opts_del(dinfo->opts);
1867 bdrv_delete(dinfo->bdrv);
1868 QTAILQ_REMOVE(&drives, dinfo, next);
1869 qemu_free(dinfo);
1870 }
1871
1872 static int parse_block_error_action(const char *buf, int is_read)
1873 {
1874 if (!strcmp(buf, "ignore")) {
1875 return BLOCK_ERR_IGNORE;
1876 } else if (!is_read && !strcmp(buf, "enospc")) {
1877 return BLOCK_ERR_STOP_ENOSPC;
1878 } else if (!strcmp(buf, "stop")) {
1879 return BLOCK_ERR_STOP_ANY;
1880 } else if (!strcmp(buf, "report")) {
1881 return BLOCK_ERR_REPORT;
1882 } else {
1883 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
1884 buf, is_read ? "read" : "write");
1885 return -1;
1886 }
1887 }
1888
1889 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1890 int *fatal_error)
1891 {
1892 const char *buf;
1893 const char *file = NULL;
1894 char devname[128];
1895 const char *serial;
1896 const char *mediastr = "";
1897 BlockInterfaceType type;
1898 enum { MEDIA_DISK, MEDIA_CDROM } media;
1899 int bus_id, unit_id;
1900 int cyls, heads, secs, translation;
1901 BlockDriver *drv = NULL;
1902 QEMUMachine *machine = opaque;
1903 int max_devs;
1904 int index;
1905 int cache;
1906 int aio = 0;
1907 int ro = 0;
1908 int bdrv_flags;
1909 int on_read_error, on_write_error;
1910 const char *devaddr;
1911 DriveInfo *dinfo;
1912 int snapshot = 0;
1913
1914 *fatal_error = 1;
1915
1916 translation = BIOS_ATA_TRANSLATION_AUTO;
1917 cache = 1;
1918
1919 if (machine && machine->use_scsi) {
1920 type = IF_SCSI;
1921 max_devs = MAX_SCSI_DEVS;
1922 pstrcpy(devname, sizeof(devname), "scsi");
1923 } else {
1924 type = IF_IDE;
1925 max_devs = MAX_IDE_DEVS;
1926 pstrcpy(devname, sizeof(devname), "ide");
1927 }
1928 media = MEDIA_DISK;
1929
1930 /* extract parameters */
1931 bus_id = qemu_opt_get_number(opts, "bus", 0);
1932 unit_id = qemu_opt_get_number(opts, "unit", -1);
1933 index = qemu_opt_get_number(opts, "index", -1);
1934
1935 cyls = qemu_opt_get_number(opts, "cyls", 0);
1936 heads = qemu_opt_get_number(opts, "heads", 0);
1937 secs = qemu_opt_get_number(opts, "secs", 0);
1938
1939 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1940 ro = qemu_opt_get_bool(opts, "readonly", 0);
1941
1942 file = qemu_opt_get(opts, "file");
1943 serial = qemu_opt_get(opts, "serial");
1944
1945 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1946 pstrcpy(devname, sizeof(devname), buf);
1947 if (!strcmp(buf, "ide")) {
1948 type = IF_IDE;
1949 max_devs = MAX_IDE_DEVS;
1950 } else if (!strcmp(buf, "scsi")) {
1951 type = IF_SCSI;
1952 max_devs = MAX_SCSI_DEVS;
1953 } else if (!strcmp(buf, "floppy")) {
1954 type = IF_FLOPPY;
1955 max_devs = 0;
1956 } else if (!strcmp(buf, "pflash")) {
1957 type = IF_PFLASH;
1958 max_devs = 0;
1959 } else if (!strcmp(buf, "mtd")) {
1960 type = IF_MTD;
1961 max_devs = 0;
1962 } else if (!strcmp(buf, "sd")) {
1963 type = IF_SD;
1964 max_devs = 0;
1965 } else if (!strcmp(buf, "virtio")) {
1966 type = IF_VIRTIO;
1967 max_devs = 0;
1968 } else if (!strcmp(buf, "xen")) {
1969 type = IF_XEN;
1970 max_devs = 0;
1971 } else if (!strcmp(buf, "none")) {
1972 type = IF_NONE;
1973 max_devs = 0;
1974 } else {
1975 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1976 return NULL;
1977 }
1978 }
1979
1980 if (cyls || heads || secs) {
1981 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
1982 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1983 return NULL;
1984 }
1985 if (heads < 1 || (type == IF_IDE && heads > 16)) {
1986 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1987 return NULL;
1988 }
1989 if (secs < 1 || (type == IF_IDE && secs > 63)) {
1990 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
1991 return NULL;
1992 }
1993 }
1994
1995 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
1996 if (!cyls) {
1997 fprintf(stderr,
1998 "qemu: '%s' trans must be used with cyls,heads and secs\n",
1999 buf);
2000 return NULL;
2001 }
2002 if (!strcmp(buf, "none"))
2003 translation = BIOS_ATA_TRANSLATION_NONE;
2004 else if (!strcmp(buf, "lba"))
2005 translation = BIOS_ATA_TRANSLATION_LBA;
2006 else if (!strcmp(buf, "auto"))
2007 translation = BIOS_ATA_TRANSLATION_AUTO;
2008 else {
2009 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2010 return NULL;
2011 }
2012 }
2013
2014 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2015 if (!strcmp(buf, "disk")) {
2016 media = MEDIA_DISK;
2017 } else if (!strcmp(buf, "cdrom")) {
2018 if (cyls || secs || heads) {
2019 fprintf(stderr,
2020 "qemu: '%s' invalid physical CHS format\n", buf);
2021 return NULL;
2022 }
2023 media = MEDIA_CDROM;
2024 } else {
2025 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2026 return NULL;
2027 }
2028 }
2029
2030 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2031 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2032 cache = 0;
2033 else if (!strcmp(buf, "writethrough"))
2034 cache = 1;
2035 else if (!strcmp(buf, "writeback"))
2036 cache = 2;
2037 else {
2038 fprintf(stderr, "qemu: invalid cache option\n");
2039 return NULL;
2040 }
2041 }
2042
2043 #ifdef CONFIG_LINUX_AIO
2044 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2045 if (!strcmp(buf, "threads"))
2046 aio = 0;
2047 else if (!strcmp(buf, "native"))
2048 aio = 1;
2049 else {
2050 fprintf(stderr, "qemu: invalid aio option\n");
2051 return NULL;
2052 }
2053 }
2054 #endif
2055
2056 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2057 if (strcmp(buf, "?") == 0) {
2058 fprintf(stderr, "qemu: Supported formats:");
2059 bdrv_iterate_format(bdrv_format_print, NULL);
2060 fprintf(stderr, "\n");
2061 return NULL;
2062 }
2063 drv = bdrv_find_whitelisted_format(buf);
2064 if (!drv) {
2065 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2066 return NULL;
2067 }
2068 }
2069
2070 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2071 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2072 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2073 fprintf(stderr, "werror is no supported by this format\n");
2074 return NULL;
2075 }
2076
2077 on_write_error = parse_block_error_action(buf, 0);
2078 if (on_write_error < 0) {
2079 return NULL;
2080 }
2081 }
2082
2083 on_read_error = BLOCK_ERR_REPORT;
2084 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2085 if (type != IF_IDE && type != IF_VIRTIO) {
2086 fprintf(stderr, "rerror is no supported by this format\n");
2087 return NULL;
2088 }
2089
2090 on_read_error = parse_block_error_action(buf, 1);
2091 if (on_read_error < 0) {
2092 return NULL;
2093 }
2094 }
2095
2096 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2097 if (type != IF_VIRTIO) {
2098 fprintf(stderr, "addr is not supported\n");
2099 return NULL;
2100 }
2101 }
2102
2103 /* compute bus and unit according index */
2104
2105 if (index != -1) {
2106 if (bus_id != 0 || unit_id != -1) {
2107 fprintf(stderr,
2108 "qemu: index cannot be used with bus and unit\n");
2109 return NULL;
2110 }
2111 if (max_devs == 0)
2112 {
2113 unit_id = index;
2114 bus_id = 0;
2115 } else {
2116 unit_id = index % max_devs;
2117 bus_id = index / max_devs;
2118 }
2119 }
2120
2121 /* if user doesn't specify a unit_id,
2122 * try to find the first free
2123 */
2124
2125 if (unit_id == -1) {
2126 unit_id = 0;
2127 while (drive_get(type, bus_id, unit_id) != NULL) {
2128 unit_id++;
2129 if (max_devs && unit_id >= max_devs) {
2130 unit_id -= max_devs;
2131 bus_id++;
2132 }
2133 }
2134 }
2135
2136 /* check unit id */
2137
2138 if (max_devs && unit_id >= max_devs) {
2139 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2140 unit_id, max_devs - 1);
2141 return NULL;
2142 }
2143
2144 /*
2145 * ignore multiple definitions
2146 */
2147
2148 if (drive_get(type, bus_id, unit_id) != NULL) {
2149 *fatal_error = 0;
2150 return NULL;
2151 }
2152
2153 /* init */
2154
2155 dinfo = qemu_mallocz(sizeof(*dinfo));
2156 if ((buf = qemu_opts_id(opts)) != NULL) {
2157 dinfo->id = qemu_strdup(buf);
2158 } else {
2159 /* no id supplied -> create one */
2160 dinfo->id = qemu_mallocz(32);
2161 if (type == IF_IDE || type == IF_SCSI)
2162 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2163 if (max_devs)
2164 snprintf(dinfo->id, 32, "%s%i%s%i",
2165 devname, bus_id, mediastr, unit_id);
2166 else
2167 snprintf(dinfo->id, 32, "%s%s%i",
2168 devname, mediastr, unit_id);
2169 }
2170 dinfo->bdrv = bdrv_new(dinfo->id);
2171 dinfo->devaddr = devaddr;
2172 dinfo->type = type;
2173 dinfo->bus = bus_id;
2174 dinfo->unit = unit_id;
2175 dinfo->on_read_error = on_read_error;
2176 dinfo->on_write_error = on_write_error;
2177 dinfo->opts = opts;
2178 if (serial)
2179 strncpy(dinfo->serial, serial, sizeof(serial));
2180 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2181
2182 switch(type) {
2183 case IF_IDE:
2184 case IF_SCSI:
2185 case IF_XEN:
2186 case IF_NONE:
2187 switch(media) {
2188 case MEDIA_DISK:
2189 if (cyls != 0) {
2190 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2191 bdrv_set_translation_hint(dinfo->bdrv, translation);
2192 }
2193 break;
2194 case MEDIA_CDROM:
2195 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2196 break;
2197 }
2198 break;
2199 case IF_SD:
2200 /* FIXME: This isn't really a floppy, but it's a reasonable
2201 approximation. */
2202 case IF_FLOPPY:
2203 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2204 break;
2205 case IF_PFLASH:
2206 case IF_MTD:
2207 break;
2208 case IF_VIRTIO:
2209 /* add virtio block device */
2210 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2211 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2212 qemu_opt_set(opts, "drive", dinfo->id);
2213 if (devaddr)
2214 qemu_opt_set(opts, "addr", devaddr);
2215 break;
2216 case IF_COUNT:
2217 abort();
2218 }
2219 if (!file) {
2220 *fatal_error = 0;
2221 return NULL;
2222 }
2223 bdrv_flags = 0;
2224 if (snapshot) {
2225 bdrv_flags |= BDRV_O_SNAPSHOT;
2226 cache = 2; /* always use write-back with snapshot */
2227 }
2228 if (cache == 0) /* no caching */
2229 bdrv_flags |= BDRV_O_NOCACHE;
2230 else if (cache == 2) /* write-back */
2231 bdrv_flags |= BDRV_O_CACHE_WB;
2232
2233 if (aio == 1) {
2234 bdrv_flags |= BDRV_O_NATIVE_AIO;
2235 } else {
2236 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2237 }
2238
2239 if (ro == 1) {
2240 if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) {
2241 fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n");
2242 return NULL;
2243 }
2244 }
2245 /*
2246 * cdrom is read-only. Set it now, after above interface checking
2247 * since readonly attribute not explicitly required, so no error.
2248 */
2249 if (media == MEDIA_CDROM) {
2250 ro = 1;
2251 }
2252 bdrv_flags |= ro ? 0 : BDRV_O_RDWR;
2253
2254 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2255 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2256 file, strerror(errno));
2257 return NULL;
2258 }
2259
2260 if (bdrv_key_required(dinfo->bdrv))
2261 autostart = 0;
2262 *fatal_error = 0;
2263 return dinfo;
2264 }
2265
2266 static int drive_init_func(QemuOpts *opts, void *opaque)
2267 {
2268 QEMUMachine *machine = opaque;
2269 int fatal_error = 0;
2270
2271 if (drive_init(opts, machine, &fatal_error) == NULL) {
2272 if (fatal_error)
2273 return 1;
2274 }
2275 return 0;
2276 }
2277
2278 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2279 {
2280 if (NULL == qemu_opt_get(opts, "snapshot")) {
2281 qemu_opt_set(opts, "snapshot", "on");
2282 }
2283 return 0;
2284 }
2285
2286 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2287 {
2288 boot_set_handler = func;
2289 boot_set_opaque = opaque;
2290 }
2291
2292 int qemu_boot_set(const char *boot_devices)
2293 {
2294 if (!boot_set_handler) {
2295 return -EINVAL;
2296 }
2297 return boot_set_handler(boot_set_opaque, boot_devices);
2298 }
2299
2300 static int parse_bootdevices(char *devices)
2301 {
2302 /* We just do some generic consistency checks */
2303 const char *p;
2304 int bitmap = 0;
2305
2306 for (p = devices; *p != '\0'; p++) {
2307 /* Allowed boot devices are:
2308 * a-b: floppy disk drives
2309 * c-f: IDE disk drives
2310 * g-m: machine implementation dependant drives
2311 * n-p: network devices
2312 * It's up to each machine implementation to check if the given boot
2313 * devices match the actual hardware implementation and firmware
2314 * features.
2315 */
2316 if (*p < 'a' || *p > 'p') {
2317 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2318 exit(1);
2319 }
2320 if (bitmap & (1 << (*p - 'a'))) {
2321 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2322 exit(1);
2323 }
2324 bitmap |= 1 << (*p - 'a');
2325 }
2326 return bitmap;
2327 }
2328
2329 static void restore_boot_devices(void *opaque)
2330 {
2331 char *standard_boot_devices = opaque;
2332
2333 qemu_boot_set(standard_boot_devices);
2334
2335 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2336 qemu_free(standard_boot_devices);
2337 }
2338
2339 static void numa_add(const char *optarg)
2340 {
2341 char option[128];
2342 char *endptr;
2343 unsigned long long value, endvalue;
2344 int nodenr;
2345
2346 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2347 if (!strcmp(option, "node")) {
2348 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2349 nodenr = nb_numa_nodes;
2350 } else {
2351 nodenr = strtoull(option, NULL, 10);
2352 }
2353
2354 if (get_param_value(option, 128, "mem", optarg) == 0) {
2355 node_mem[nodenr] = 0;
2356 } else {
2357 value = strtoull(option, &endptr, 0);
2358 switch (*endptr) {
2359 case 0: case 'M': case 'm':
2360 value <<= 20;
2361 break;
2362 case 'G': case 'g':
2363 value <<= 30;
2364 break;
2365 }
2366 node_mem[nodenr] = value;
2367 }
2368 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2369 node_cpumask[nodenr] = 0;
2370 } else {
2371 value = strtoull(option, &endptr, 10);
2372 if (value >= 64) {
2373 value = 63;
2374 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2375 } else {
2376 if (*endptr == '-') {
2377 endvalue = strtoull(endptr+1, &endptr, 10);
2378 if (endvalue >= 63) {
2379 endvalue = 62;
2380 fprintf(stderr,
2381 "only 63 CPUs in NUMA mode supported.\n");
2382 }
2383 value = (2ULL << endvalue) - (1ULL << value);
2384 } else {
2385 value = 1ULL << value;
2386 }
2387 }
2388 node_cpumask[nodenr] = value;
2389 }
2390 nb_numa_nodes++;
2391 }
2392 return;
2393 }
2394
2395 static void smp_parse(const char *optarg)
2396 {
2397 int smp, sockets = 0, threads = 0, cores = 0;
2398 char *endptr;
2399 char option[128];
2400
2401 smp = strtoul(optarg, &endptr, 10);
2402 if (endptr != optarg) {
2403 if (*endptr == ',') {
2404 endptr++;
2405 }
2406 }
2407 if (get_param_value(option, 128, "sockets", endptr) != 0)
2408 sockets = strtoull(option, NULL, 10);
2409 if (get_param_value(option, 128, "cores", endptr) != 0)
2410 cores = strtoull(option, NULL, 10);
2411 if (get_param_value(option, 128, "threads", endptr) != 0)
2412 threads = strtoull(option, NULL, 10);
2413 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2414 max_cpus = strtoull(option, NULL, 10);
2415
2416 /* compute missing values, prefer sockets over cores over threads */
2417 if (smp == 0 || sockets == 0) {
2418 sockets = sockets > 0 ? sockets : 1;
2419 cores = cores > 0 ? cores : 1;
2420 threads = threads > 0 ? threads : 1;
2421 if (smp == 0) {
2422 smp = cores * threads * sockets;
2423 }
2424 } else {
2425 if (cores == 0) {
2426 threads = threads > 0 ? threads : 1;
2427 cores = smp / (sockets * threads);
2428 } else {
2429 if (sockets) {
2430 threads = smp / (cores * sockets);
2431 }
2432 }
2433 }
2434 smp_cpus = smp;
2435 smp_cores = cores > 0 ? cores : 1;
2436 smp_threads = threads > 0 ? threads : 1;
2437 if (max_cpus == 0)
2438 max_cpus = smp_cpus;
2439 }
2440
2441 /***********************************************************/
2442 /* USB devices */
2443
2444 static int usb_device_add(const char *devname, int is_hotplug)
2445 {
2446 const char *p;
2447 USBDevice *dev = NULL;
2448
2449 if (!usb_enabled)
2450 return -1;
2451
2452 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2453 dev = usbdevice_create(devname);
2454 if (dev)
2455 goto done;
2456
2457 /* the other ones */
2458 if (strstart(devname, "host:", &p)) {
2459 dev = usb_host_device_open(p);
2460 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2461 dev = usb_bt_init(devname[2] ? hci_init(p) :
2462 bt_new_hci(qemu_find_bt_vlan(0)));
2463 } else {
2464 return -1;
2465 }
2466 if (!dev)
2467 return -1;
2468
2469 done:
2470 return 0;
2471 }
2472
2473 static int usb_device_del(const char *devname)
2474 {
2475 int bus_num, addr;
2476 const char *p;
2477
2478 if (strstart(devname, "host:", &p))
2479 return usb_host_device_close(p);
2480
2481 if (!usb_enabled)
2482 return -1;
2483
2484 p = strchr(devname, '.');
2485 if (!p)
2486 return -1;
2487 bus_num = strtoul(devname, NULL, 0);
2488 addr = strtoul(p + 1, NULL, 0);
2489
2490 return usb_device_delete_addr(bus_num, addr);
2491 }
2492
2493 static int usb_parse(const char *cmdline)
2494 {
2495 int r;
2496 r = usb_device_add(cmdline, 0);
2497 if (r < 0) {
2498 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2499 }
2500 return r;
2501 }
2502
2503 void do_usb_add(Monitor *mon, const QDict *qdict)
2504 {
2505 const char *devname = qdict_get_str(qdict, "devname");
2506 if (usb_device_add(devname, 1) < 0) {
2507 qemu_error("could not add USB device '%s'\n", devname);
2508 }
2509 }
2510
2511 void do_usb_del(Monitor *mon, const QDict *qdict)
2512 {
2513 const char *devname = qdict_get_str(qdict, "devname");
2514 if (usb_device_del(devname) < 0) {
2515 qemu_error("could not delete USB device '%s'\n", devname);
2516 }
2517 }
2518
2519 /***********************************************************/
2520 /* PCMCIA/Cardbus */
2521
2522 static struct pcmcia_socket_entry_s {
2523 PCMCIASocket *socket;
2524 struct pcmcia_socket_entry_s *next;
2525 } *pcmcia_sockets = 0;
2526
2527 void pcmcia_socket_register(PCMCIASocket *socket)
2528 {
2529 struct pcmcia_socket_entry_s *entry;
2530
2531 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2532 entry->socket = socket;
2533 entry->next = pcmcia_sockets;
2534 pcmcia_sockets = entry;
2535 }
2536
2537 void pcmcia_socket_unregister(PCMCIASocket *socket)
2538 {
2539 struct pcmcia_socket_entry_s *entry, **ptr;
2540
2541 ptr = &pcmcia_sockets;
2542 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2543 if (entry->socket == socket) {
2544 *ptr = entry->next;
2545 qemu_free(entry);
2546 }
2547 }
2548
2549 void pcmcia_info(Monitor *mon)
2550 {
2551 struct pcmcia_socket_entry_s *iter;
2552
2553 if (!pcmcia_sockets)
2554 monitor_printf(mon, "No PCMCIA sockets\n");
2555
2556 for (iter = pcmcia_sockets; iter; iter = iter->next)
2557 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2558 iter->socket->attached ? iter->socket->card_string :
2559 "Empty");
2560 }
2561
2562 /***********************************************************/
2563 /* register display */
2564
2565 struct DisplayAllocator default_allocator = {
2566 defaultallocator_create_displaysurface,
2567 defaultallocator_resize_displaysurface,
2568 defaultallocator_free_displaysurface
2569 };
2570
2571 void register_displaystate(DisplayState *ds)
2572 {
2573 DisplayState **s;
2574 s = &display_state;
2575 while (*s != NULL)
2576 s = &(*s)->next;
2577 ds->next = NULL;
2578 *s = ds;
2579 }
2580
2581 DisplayState *get_displaystate(void)
2582 {
2583 return display_state;
2584 }
2585
2586 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2587 {
2588 if(ds->allocator == &default_allocator) ds->allocator = da;
2589 return ds->allocator;
2590 }
2591
2592 /* dumb display */
2593
2594 static void dumb_display_init(void)
2595 {
2596 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2597 ds->allocator = &default_allocator;
2598 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2599 register_displaystate(ds);
2600 }
2601
2602 /***********************************************************/
2603 /* I/O handling */
2604
2605 typedef struct IOHandlerRecord {
2606 int fd;
2607 IOCanRWHandler *fd_read_poll;
2608 IOHandler *fd_read;
2609 IOHandler *fd_write;
2610 int deleted;
2611 void *opaque;
2612 /* temporary data */
2613 struct pollfd *ufd;
2614 struct IOHandlerRecord *next;
2615 } IOHandlerRecord;
2616
2617 static IOHandlerRecord *first_io_handler;
2618
2619 /* XXX: fd_read_poll should be suppressed, but an API change is
2620 necessary in the character devices to suppress fd_can_read(). */
2621 int qemu_set_fd_handler2(int fd,
2622 IOCanRWHandler *fd_read_poll,
2623 IOHandler *fd_read,
2624 IOHandler *fd_write,
2625 void *opaque)
2626 {
2627 IOHandlerRecord **pioh, *ioh;
2628
2629 if (!fd_read && !fd_write) {
2630 pioh = &first_io_handler;
2631 for(;;) {
2632 ioh = *pioh;
2633 if (ioh == NULL)
2634 break;
2635 if (ioh->fd == fd) {
2636 ioh->deleted = 1;
2637 break;
2638 }
2639 pioh = &ioh->next;
2640 }
2641 } else {
2642 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2643 if (ioh->fd == fd)
2644 goto found;
2645 }
2646 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2647 ioh->next = first_io_handler;
2648 first_io_handler = ioh;
2649 found:
2650 ioh->fd = fd;
2651 ioh->fd_read_poll = fd_read_poll;
2652 ioh->fd_read = fd_read;
2653 ioh->fd_write = fd_write;
2654 ioh->opaque = opaque;
2655 ioh->deleted = 0;
2656 }
2657 return 0;
2658 }
2659
2660 int qemu_set_fd_handler(int fd,
2661 IOHandler *fd_read,
2662 IOHandler *fd_write,
2663 void *opaque)
2664 {
2665 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2666 }
2667
2668 #ifdef _WIN32
2669 /***********************************************************/
2670 /* Polling handling */
2671
2672 typedef struct PollingEntry {
2673 PollingFunc *func;
2674 void *opaque;
2675 struct PollingEntry *next;
2676 } PollingEntry;
2677
2678 static PollingEntry *first_polling_entry;
2679
2680 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2681 {
2682 PollingEntry **ppe, *pe;
2683 pe = qemu_mallocz(sizeof(PollingEntry));
2684 pe->func = func;
2685 pe->opaque = opaque;
2686 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2687 *ppe = pe;
2688 return 0;
2689 }
2690
2691 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2692 {
2693 PollingEntry **ppe, *pe;
2694 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2695 pe = *ppe;
2696 if (pe->func == func && pe->opaque == opaque) {
2697 *ppe = pe->next;
2698 qemu_free(pe);
2699 break;
2700 }
2701 }
2702 }
2703
2704 /***********************************************************/
2705 /* Wait objects support */
2706 typedef struct WaitObjects {
2707 int num;
2708 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2709 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2710 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2711 } WaitObjects;
2712
2713 static WaitObjects wait_objects = {0};
2714
2715 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2716 {
2717 WaitObjects *w = &wait_objects;
2718
2719 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2720 return -1;
2721 w->events[w->num] = handle;
2722 w->func[w->num] = func;
2723 w->opaque[w->num] = opaque;
2724 w->num++;
2725 return 0;
2726 }
2727
2728 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2729 {
2730 int i, found;
2731 WaitObjects *w = &wait_objects;
2732
2733 found = 0;
2734 for (i = 0; i < w->num; i++) {
2735 if (w->events[i] == handle)
2736 found = 1;
2737 if (found) {
2738 w->events[i] = w->events[i + 1];
2739 w->func[i] = w->func[i + 1];
2740 w->opaque[i] = w->opaque[i + 1];
2741 }
2742 }
2743 if (found)
2744 w->num--;
2745 }
2746 #endif
2747
2748 /***********************************************************/
2749 /* ram save/restore */
2750
2751 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2752 #define RAM_SAVE_FLAG_COMPRESS 0x02
2753 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2754 #define RAM_SAVE_FLAG_PAGE 0x08
2755 #define RAM_SAVE_FLAG_EOS 0x10
2756
2757 static int is_dup_page(uint8_t *page, uint8_t ch)
2758 {
2759 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2760 uint32_t *array = (uint32_t *)page;
2761 int i;
2762
2763 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2764 if (array[i] != val)
2765 return 0;
2766 }
2767
2768 return 1;
2769 }
2770
2771 static int ram_save_block(QEMUFile *f)
2772 {
2773 static ram_addr_t current_addr = 0;
2774 ram_addr_t saved_addr = current_addr;
2775 ram_addr_t addr = 0;
2776 int found = 0;
2777
2778 while (addr < last_ram_offset) {
2779 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2780 uint8_t *p;
2781
2782 cpu_physical_memory_reset_dirty(current_addr,
2783 current_addr + TARGET_PAGE_SIZE,
2784 MIGRATION_DIRTY_FLAG);
2785
2786 p = qemu_get_ram_ptr(current_addr);
2787
2788 if (is_dup_page(p, *p)) {
2789 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2790 qemu_put_byte(f, *p);
2791 } else {
2792 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2793 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2794 }
2795
2796 found = 1;
2797 break;
2798 }
2799 addr += TARGET_PAGE_SIZE;
2800 current_addr = (saved_addr + addr) % last_ram_offset;
2801 }
2802
2803 return found;
2804 }
2805
2806 static uint64_t bytes_transferred;
2807
2808 static ram_addr_t ram_save_remaining(void)
2809 {
2810 ram_addr_t addr;
2811 ram_addr_t count = 0;
2812
2813 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2814 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2815 count++;
2816 }
2817
2818 return count;
2819 }
2820
2821 uint64_t ram_bytes_remaining(void)
2822 {
2823 return ram_save_remaining() * TARGET_PAGE_SIZE;
2824 }
2825
2826 uint64_t ram_bytes_transferred(void)
2827 {
2828 return bytes_transferred;
2829 }
2830
2831 uint64_t ram_bytes_total(void)
2832 {
2833 return last_ram_offset;
2834 }
2835
2836 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2837 {
2838 ram_addr_t addr;
2839 uint64_t bytes_transferred_last;
2840 double bwidth = 0;
2841 uint64_t expected_time = 0;
2842
2843 if (stage < 0) {
2844 cpu_physical_memory_set_dirty_tracking(0);
2845 return 0;
2846 }
2847
2848 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2849 qemu_file_set_error(f);
2850 return 0;
2851 }
2852
2853 if (stage == 1) {
2854 bytes_transferred = 0;
2855
2856 /* Make sure all dirty bits are set */
2857 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2858 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2859 cpu_physical_memory_set_dirty(addr);
2860 }
2861
2862 /* Enable dirty memory tracking */
2863 cpu_physical_memory_set_dirty_tracking(1);
2864
2865 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2866 }
2867
2868 bytes_transferred_last = bytes_transferred;
2869 bwidth = get_clock();
2870
2871 while (!qemu_file_rate_limit(f)) {
2872 int ret;
2873
2874 ret = ram_save_block(f);
2875 bytes_transferred += ret * TARGET_PAGE_SIZE;
2876 if (ret == 0) /* no more blocks */
2877 break;
2878 }
2879
2880 bwidth = get_clock() - bwidth;
2881 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2882
2883 /* if we haven't transferred anything this round, force expected_time to a
2884 * a very high value, but without crashing */
2885 if (bwidth == 0)
2886 bwidth = 0.000001;
2887
2888 /* try transferring iterative blocks of memory */
2889 if (stage == 3) {
2890 /* flush all remaining blocks regardless of rate limiting */
2891 while (ram_save_block(f) != 0) {
2892 bytes_transferred += TARGET_PAGE_SIZE;
2893 }
2894 cpu_physical_memory_set_dirty_tracking(0);
2895 }
2896
2897 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2898
2899 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2900
2901 return (stage == 2) && (expected_time <= migrate_max_downtime());
2902 }
2903
2904 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2905 {
2906 ram_addr_t addr;
2907 int flags;
2908
2909 if (version_id != 3)
2910 return -EINVAL;
2911
2912 do {
2913 addr = qemu_get_be64(f);
2914
2915 flags = addr & ~TARGET_PAGE_MASK;
2916 addr &= TARGET_PAGE_MASK;
2917
2918 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2919 if (addr != last_ram_offset)
2920 return -EINVAL;
2921 }
2922
2923 if (flags & RAM_SAVE_FLAG_COMPRESS) {
2924 uint8_t ch = qemu_get_byte(f);
2925 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2926 #ifndef _WIN32
2927 if (ch == 0 &&
2928 (!kvm_enabled() || kvm_has_sync_mmu())) {
2929 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2930 }
2931 #endif
2932 } else if (flags & RAM_SAVE_FLAG_PAGE) {
2933 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2934 }
2935 if (qemu_file_has_error(f)) {
2936 return -EIO;
2937 }
2938 } while (!(flags & RAM_SAVE_FLAG_EOS));
2939
2940 return 0;
2941 }
2942
2943 void qemu_service_io(void)
2944 {
2945 qemu_notify_event();
2946 }
2947
2948 /***********************************************************/
2949 /* machine registration */
2950
2951 static QEMUMachine *first_machine = NULL;
2952 QEMUMachine *current_machine = NULL;
2953
2954 int qemu_register_machine(QEMUMachine *m)
2955 {
2956 QEMUMachine **pm;
2957 pm = &first_machine;
2958 while (*pm != NULL)
2959 pm = &(*pm)->next;
2960 m->next = NULL;
2961 *pm = m;
2962 return 0;
2963 }
2964
2965 static QEMUMachine *find_machine(const char *name)
2966 {
2967 QEMUMachine *m;
2968
2969 for(m = first_machine; m != NULL; m = m->next) {
2970 if (!strcmp(m->name, name))
2971 return m;
2972 if (m->alias && !strcmp(m->alias, name))
2973 return m;
2974 }
2975 return NULL;
2976 }
2977
2978 static QEMUMachine *find_default_machine(void)
2979 {
2980 QEMUMachine *m;
2981
2982 for(m = first_machine; m != NULL; m = m->next) {
2983 if (m->is_default) {
2984 return m;
2985 }
2986 }
2987 return NULL;
2988 }
2989
2990 /***********************************************************/
2991 /* main execution loop */
2992
2993 static void gui_update(void *opaque)
2994 {
2995 uint64_t interval = GUI_REFRESH_INTERVAL;
2996 DisplayState *ds = opaque;
2997 DisplayChangeListener *dcl = ds->listeners;
2998
2999 dpy_refresh(ds);
3000
3001 while (dcl != NULL) {
3002 if (dcl->gui_timer_interval &&
3003 dcl->gui_timer_interval < interval)
3004 interval = dcl->gui_timer_interval;
3005 dcl = dcl->next;
3006 }
3007 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3008 }
3009
3010 static void nographic_update(void *opaque)
3011 {
3012 uint64_t interval = GUI_REFRESH_INTERVAL;
3013
3014 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3015 }
3016
3017 struct vm_change_state_entry {
3018 VMChangeStateHandler *cb;
3019 void *opaque;
3020 QLIST_ENTRY (vm_change_state_entry) entries;
3021 };
3022
3023 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3024
3025 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3026 void *opaque)
3027 {
3028 VMChangeStateEntry *e;
3029
3030 e = qemu_mallocz(sizeof (*e));
3031
3032 e->cb = cb;
3033 e->opaque = opaque;
3034 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3035 return e;
3036 }
3037
3038 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3039 {
3040 QLIST_REMOVE (e, entries);
3041 qemu_free (e);
3042 }
3043
3044 static void vm_state_notify(int running, int reason)
3045 {
3046 VMChangeStateEntry *e;
3047
3048 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3049 e->cb(e->opaque, running, reason);
3050 }
3051 }
3052
3053 static void resume_all_vcpus(void);
3054 static void pause_all_vcpus(void);
3055
3056 void vm_start(void)
3057 {
3058 if (!vm_running) {
3059 cpu_enable_ticks();
3060 vm_running = 1;
3061 vm_state_notify(1, 0);
3062 qemu_rearm_alarm_timer(alarm_timer);
3063 resume_all_vcpus();
3064 }
3065 }
3066
3067 /* reset/shutdown handler */
3068
3069 typedef struct QEMUResetEntry {
3070 QTAILQ_ENTRY(QEMUResetEntry) entry;
3071 QEMUResetHandler *func;
3072 void *opaque;
3073 } QEMUResetEntry;
3074
3075 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3076 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3077 static int reset_requested;
3078 static int shutdown_requested;
3079 static int powerdown_requested;
3080 static int debug_requested;
3081 static int vmstop_requested;
3082
3083 int qemu_shutdown_requested(void)
3084 {
3085 int r = shutdown_requested;
3086 shutdown_requested = 0;
3087 return r;
3088 }
3089
3090 int qemu_reset_requested(void)
3091 {
3092 int r = reset_requested;
3093 reset_requested = 0;
3094 return r;
3095 }
3096
3097 int qemu_powerdown_requested(void)
3098 {
3099 int r = powerdown_requested;
3100 powerdown_requested = 0;
3101 return r;
3102 }
3103
3104 static int qemu_debug_requested(void)
3105 {
3106 int r = debug_requested;
3107 debug_requested = 0;
3108 return r;
3109 }
3110
3111 static int qemu_vmstop_requested(void)
3112 {
3113 int r = vmstop_requested;
3114 vmstop_requested = 0;
3115 return r;
3116 }
3117
3118 static void do_vm_stop(int reason)
3119 {
3120 if (vm_running) {
3121 cpu_disable_ticks();
3122 vm_running = 0;
3123 pause_all_vcpus();
3124 vm_state_notify(0, reason);
3125 }
3126 }
3127
3128 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3129 {
3130 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3131
3132 re->func = func;
3133 re->opaque = opaque;
3134 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3135 }
3136
3137 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3138 {
3139 QEMUResetEntry *re;
3140
3141 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3142 if (re->func == func && re->opaque == opaque) {
3143 QTAILQ_REMOVE(&reset_handlers, re, entry);
3144 qemu_free(re);
3145 return;
3146 }
3147 }
3148 }
3149
3150 void qemu_system_reset(void)
3151 {
3152 QEMUResetEntry *re, *nre;
3153
3154 /* reset all devices */
3155 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3156 re->func(re->opaque);
3157 }
3158 }
3159
3160 void qemu_system_reset_request(void)
3161 {
3162 if (no_reboot) {
3163 shutdown_requested = 1;
3164 } else {
3165 reset_requested = 1;
3166 }
3167 qemu_notify_event();
3168 }
3169
3170 void qemu_system_shutdown_request(void)
3171 {
3172 shutdown_requested = 1;
3173 qemu_notify_event();
3174 }
3175
3176 void qemu_system_powerdown_request(void)
3177 {
3178 powerdown_requested = 1;
3179 qemu_notify_event();
3180 }
3181
3182 #ifdef CONFIG_IOTHREAD
3183 static void qemu_system_vmstop_request(int reason)
3184 {
3185 vmstop_requested = reason;
3186 qemu_notify_event();
3187 }
3188 #endif
3189
3190 #ifndef _WIN32
3191 static int io_thread_fd = -1;
3192
3193 static void qemu_event_increment(void)
3194 {
3195 static const char byte = 0;
3196 ssize_t ret;
3197
3198 if (io_thread_fd == -1)
3199 return;
3200
3201 ret = write(io_thread_fd, &byte, sizeof(byte));
3202 if (ret < 0 && (errno != EINTR && errno != EAGAIN)) {
3203 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
3204 strerror(errno));
3205 exit (1);
3206 }
3207 }
3208
3209 static void qemu_event_read(void *opaque)
3210 {
3211 int fd = (unsigned long)opaque;
3212 ssize_t len;
3213
3214 /* Drain the notify pipe */
3215 do {
3216 char buffer[512];
3217 len = read(fd, buffer, sizeof(buffer));
3218 } while ((len == -1 && errno == EINTR) || len > 0);
3219 }
3220
3221 static int qemu_event_init(void)
3222 {
3223 int err;
3224 int fds[2];
3225
3226 err = qemu_pipe(fds);
3227 if (err == -1)
3228 return -errno;
3229
3230 err = fcntl_setfl(fds[0], O_NONBLOCK);
3231 if (err < 0)
3232 goto fail;
3233
3234 err = fcntl_setfl(fds[1], O_NONBLOCK);
3235 if (err < 0)
3236 goto fail;
3237
3238 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3239 (void *)(unsigned long)fds[0]);
3240
3241 io_thread_fd = fds[1];
3242 return 0;
3243
3244 fail:
3245 close(fds[0]);
3246 close(fds[1]);
3247 return err;
3248 }
3249 #else
3250 HANDLE qemu_event_handle;
3251
3252 static void dummy_event_handler(void *opaque)
3253 {
3254 }
3255
3256 static int qemu_event_init(void)
3257 {
3258 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3259 if (!qemu_event_handle) {
3260 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3261 return -1;
3262 }
3263 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3264 return 0;
3265 }
3266
3267 static void qemu_event_increment(void)
3268 {
3269 if (!SetEvent(qemu_event_handle)) {
3270 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3271 GetLastError());
3272 exit (1);
3273 }
3274 }
3275 #endif
3276
3277 static int cpu_can_run(CPUState *env)
3278 {
3279 if (env->stop)
3280 return 0;
3281 if (env->stopped)
3282 return 0;
3283 return 1;
3284 }
3285
3286 #ifndef CONFIG_IOTHREAD
3287 static int qemu_init_main_loop(void)
3288 {
3289 return qemu_event_init();
3290 }
3291
3292 void qemu_init_vcpu(void *_env)
3293 {
3294 CPUState *env = _env;
3295
3296 env->nr_cores = smp_cores;
3297 env->nr_threads = smp_threads;
3298 if (kvm_enabled())
3299 kvm_init_vcpu(env);
3300 return;
3301 }
3302
3303 int qemu_cpu_self(void *env)
3304 {
3305 return 1;
3306 }
3307
3308 static void resume_all_vcpus(void)
3309 {
3310 }
3311
3312 static void pause_all_vcpus(void)
3313 {
3314 }
3315
3316 void qemu_cpu_kick(void *env)
3317 {
3318 return;
3319 }
3320
3321 void qemu_notify_event(void)
3322 {
3323 CPUState *env = cpu_single_env;
3324
3325 if (env) {
3326 cpu_exit(env);
3327 }
3328 }
3329
3330 void qemu_mutex_lock_iothread(void) {}
3331 void qemu_mutex_unlock_iothread(void) {}
3332
3333 void vm_stop(int reason)
3334 {
3335 do_vm_stop(reason);
3336 }
3337
3338 #else /* CONFIG_IOTHREAD */
3339
3340 #include "qemu-thread.h"
3341
3342 QemuMutex qemu_global_mutex;
3343 static QemuMutex qemu_fair_mutex;
3344
3345 static QemuThread io_thread;
3346
3347 static QemuThread *tcg_cpu_thread;
3348 static QemuCond *tcg_halt_cond;
3349
3350 static int qemu_system_ready;
3351 /* cpu creation */
3352 static QemuCond qemu_cpu_cond;
3353 /* system init */
3354 static QemuCond qemu_system_cond;
3355 static QemuCond qemu_pause_cond;
3356
3357 static void block_io_signals(void);
3358 static void unblock_io_signals(void);
3359 static int tcg_has_work(void);
3360
3361 static int qemu_init_main_loop(void)
3362 {
3363 int ret;
3364
3365 ret = qemu_event_init();
3366 if (ret)
3367 return ret;
3368
3369 qemu_cond_init(&qemu_pause_cond);
3370 qemu_mutex_init(&qemu_fair_mutex);
3371 qemu_mutex_init(&qemu_global_mutex);
3372 qemu_mutex_lock(&qemu_global_mutex);
3373
3374 unblock_io_signals();
3375 qemu_thread_self(&io_thread);
3376
3377 return 0;
3378 }
3379
3380 static void qemu_wait_io_event(CPUState *env)
3381 {
3382 while (!tcg_has_work())
3383 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3384
3385 qemu_mutex_unlock(&qemu_global_mutex);
3386
3387 /*
3388 * Users of qemu_global_mutex can be starved, having no chance
3389 * to acquire it since this path will get to it first.
3390 * So use another lock to provide fairness.
3391 */
3392 qemu_mutex_lock(&qemu_fair_mutex);
3393 qemu_mutex_unlock(&qemu_fair_mutex);
3394
3395 qemu_mutex_lock(&qemu_global_mutex);
3396 if (env->stop) {
3397 env->stop = 0;
3398 env->stopped = 1;
3399 qemu_cond_signal(&qemu_pause_cond);
3400 }
3401 }
3402
3403 static int qemu_cpu_exec(CPUState *env);
3404
3405 static void *kvm_cpu_thread_fn(void *arg)
3406 {
3407 CPUState *env = arg;
3408
3409 block_io_signals();
3410 qemu_thread_self(env->thread);
3411 if (kvm_enabled())
3412 kvm_init_vcpu(env);
3413
3414 /* signal CPU creation */
3415 qemu_mutex_lock(&qemu_global_mutex);
3416 env->created = 1;
3417 qemu_cond_signal(&qemu_cpu_cond);
3418
3419 /* and wait for machine initialization */
3420 while (!qemu_system_ready)
3421 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3422
3423 while (1) {
3424 if (cpu_can_run(env))
3425 qemu_cpu_exec(env);
3426 qemu_wait_io_event(env);
3427 }
3428
3429 return NULL;
3430 }
3431
3432 static void tcg_cpu_exec(void);
3433
3434 static void *tcg_cpu_thread_fn(void *arg)
3435 {
3436 CPUState *env = arg;
3437
3438 block_io_signals();
3439 qemu_thread_self(env->thread);
3440
3441 /* signal CPU creation */
3442 qemu_mutex_lock(&qemu_global_mutex);
3443 for (env = first_cpu; env != NULL; env = env->next_cpu)
3444 env->created = 1;
3445 qemu_cond_signal(&qemu_cpu_cond);
3446
3447 /* and wait for machine initialization */
3448 while (!qemu_system_ready)
3449 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3450
3451 while (1) {
3452 tcg_cpu_exec();
3453 qemu_wait_io_event(cur_cpu);
3454 }
3455
3456 return NULL;
3457 }
3458
3459 void qemu_cpu_kick(void *_env)
3460 {
3461 CPUState *env = _env;
3462 qemu_cond_broadcast(env->halt_cond);
3463 if (kvm_enabled())
3464 qemu_thread_signal(env->thread, SIGUSR1);
3465 }
3466
3467 int qemu_cpu_self(void *_env)
3468 {
3469 CPUState *env = _env;
3470 QemuThread this;
3471
3472 qemu_thread_self(&this);
3473
3474 return qemu_thread_equal(&this, env->thread);
3475 }
3476
3477 static void cpu_signal(int sig)
3478 {
3479 if (cpu_single_env)
3480 cpu_exit(cpu_single_env);
3481 }
3482
3483 static void block_io_signals(void)
3484 {
3485 sigset_t set;
3486 struct sigaction sigact;
3487
3488 sigemptyset(&set);
3489 sigaddset(&set, SIGUSR2);
3490 sigaddset(&set, SIGIO);
3491 sigaddset(&set, SIGALRM);
3492 pthread_sigmask(SIG_BLOCK, &set, NULL);
3493
3494 sigemptyset(&set);
3495 sigaddset(&set, SIGUSR1);
3496 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3497
3498 memset(&sigact, 0, sizeof(sigact));
3499 sigact.sa_handler = cpu_signal;
3500 sigaction(SIGUSR1, &sigact, NULL);
3501 }
3502
3503 static void unblock_io_signals(void)
3504 {
3505 sigset_t set;
3506
3507 sigemptyset(&set);
3508 sigaddset(&set, SIGUSR2);
3509 sigaddset(&set, SIGIO);
3510 sigaddset(&set, SIGALRM);
3511 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3512
3513 sigemptyset(&set);
3514 sigaddset(&set, SIGUSR1);
3515 pthread_sigmask(SIG_BLOCK, &set, NULL);
3516 }
3517
3518 static void qemu_signal_lock(unsigned int msecs)
3519 {
3520 qemu_mutex_lock(&qemu_fair_mutex);
3521
3522 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3523 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3524 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3525 break;
3526 }
3527 qemu_mutex_unlock(&qemu_fair_mutex);
3528 }
3529
3530 void qemu_mutex_lock_iothread(void)
3531 {
3532 if (kvm_enabled()) {
3533 qemu_mutex_lock(&qemu_fair_mutex);
3534 qemu_mutex_lock(&qemu_global_mutex);
3535 qemu_mutex_unlock(&qemu_fair_mutex);
3536 } else
3537 qemu_signal_lock(100);
3538 }
3539
3540 void qemu_mutex_unlock_iothread(void)
3541 {
3542 qemu_mutex_unlock(&qemu_global_mutex);
3543 }
3544
3545 static int all_vcpus_paused(void)
3546 {
3547 CPUState *penv = first_cpu;
3548
3549 while (penv) {
3550 if (!penv->stopped)
3551 return 0;
3552 penv = (CPUState *)penv->next_cpu;
3553 }
3554
3555 return 1;
3556 }
3557
3558 static void pause_all_vcpus(void)
3559 {
3560 CPUState *penv = first_cpu;
3561
3562 while (penv) {
3563 penv->stop = 1;
3564 qemu_thread_signal(penv->thread, SIGUSR1);
3565 qemu_cpu_kick(penv);
3566 penv = (CPUState *)penv->next_cpu;
3567 }
3568
3569 while (!all_vcpus_paused()) {
3570 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3571 penv = first_cpu;
3572 while (penv) {
3573 qemu_thread_signal(penv->thread, SIGUSR1);
3574 penv = (CPUState *)penv->next_cpu;
3575 }
3576 }
3577 }
3578
3579 static void resume_all_vcpus(void)
3580 {
3581 CPUState *penv = first_cpu;
3582
3583 while (penv) {
3584 penv->stop = 0;
3585 penv->stopped = 0;
3586 qemu_thread_signal(penv->thread, SIGUSR1);
3587 qemu_cpu_kick(penv);
3588 penv = (CPUState *)penv->next_cpu;
3589 }
3590 }
3591
3592 static void tcg_init_vcpu(void *_env)
3593 {
3594 CPUState *env = _env;
3595 /* share a single thread for all cpus with TCG */
3596 if (!tcg_cpu_thread) {
3597 env->thread = qemu_mallocz(sizeof(QemuThread));
3598 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3599 qemu_cond_init(env->halt_cond);
3600 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3601 while (env->created == 0)
3602 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3603 tcg_cpu_thread = env->thread;
3604 tcg_halt_cond = env->halt_cond;
3605 } else {
3606 env->thread = tcg_cpu_thread;
3607 env->halt_cond = tcg_halt_cond;
3608 }
3609 }
3610
3611 static void kvm_start_vcpu(CPUState *env)
3612 {
3613 env->thread = qemu_mallocz(sizeof(QemuThread));
3614 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3615 qemu_cond_init(env->halt_cond);
3616 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3617 while (env->created == 0)
3618 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3619 }
3620
3621 void qemu_init_vcpu(void *_env)
3622 {
3623 CPUState *env = _env;
3624
3625 env->nr_cores = smp_cores;
3626 env->nr_threads = smp_threads;
3627 if (kvm_enabled())
3628 kvm_start_vcpu(env);
3629 else
3630 tcg_init_vcpu(env);
3631 }
3632
3633 void qemu_notify_event(void)
3634 {
3635 qemu_event_increment();
3636 }
3637
3638 void vm_stop(int reason)
3639 {
3640 QemuThread me;
3641 qemu_thread_self(&me);
3642
3643 if (!qemu_thread_equal(&me, &io_thread)) {
3644 qemu_system_vmstop_request(reason);
3645 /*
3646 * FIXME: should not return to device code in case
3647 * vm_stop() has been requested.
3648 */
3649 if (cpu_single_env) {
3650 cpu_exit(cpu_single_env);
3651 cpu_single_env->stop = 1;
3652 }
3653 return;
3654 }
3655 do_vm_stop(reason);
3656 }
3657
3658 #endif
3659
3660
3661 #ifdef _WIN32
3662 static void host_main_loop_wait(int *timeout)
3663 {
3664 int ret, ret2, i;
3665 PollingEntry *pe;
3666
3667
3668 /* XXX: need to suppress polling by better using win32 events */
3669 ret = 0;
3670 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3671 ret |= pe->func(pe->opaque);
3672 }
3673 if (ret == 0) {
3674 int err;
3675 WaitObjects *w = &wait_objects;
3676
3677 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3678 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3679 if (w->func[ret - WAIT_OBJECT_0])
3680 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3681
3682 /* Check for additional signaled events */
3683 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3684
3685 /* Check if event is signaled */
3686 ret2 = WaitForSingleObject(w->events[i], 0);
3687 if(ret2 == WAIT_OBJECT_0) {
3688 if (w->func[i])
3689 w->func[i](w->opaque[i]);
3690 } else if (ret2 == WAIT_TIMEOUT) {
3691 } else {
3692 err = GetLastError();
3693 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3694 }
3695 }
3696 } else if (ret == WAIT_TIMEOUT) {
3697 } else {
3698 err = GetLastError();
3699 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3700 }
3701 }
3702
3703 *timeout = 0;
3704 }
3705 #else
3706 static void host_main_loop_wait(int *timeout)
3707 {
3708 }
3709 #endif
3710
3711 void main_loop_wait(int timeout)
3712 {
3713 IOHandlerRecord *ioh;
3714 fd_set rfds, wfds, xfds;
3715 int ret, nfds;
3716 struct timeval tv;
3717
3718 qemu_bh_update_timeout(&timeout);
3719
3720 host_main_loop_wait(&timeout);
3721
3722 /* poll any events */
3723 /* XXX: separate device handlers from system ones */
3724 nfds = -1;
3725 FD_ZERO(&rfds);
3726 FD_ZERO(&wfds);
3727 FD_ZERO(&xfds);
3728 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3729 if (ioh->deleted)
3730 continue;
3731 if (ioh->fd_read &&
3732 (!ioh->fd_read_poll ||
3733 ioh->fd_read_poll(ioh->opaque) != 0)) {
3734 FD_SET(ioh->fd, &rfds);
3735 if (ioh->fd > nfds)
3736 nfds = ioh->fd;
3737 }
3738 if (ioh->fd_write) {
3739 FD_SET(ioh->fd, &wfds);
3740 if (ioh->fd > nfds)
3741 nfds = ioh->fd;
3742 }
3743 }
3744
3745 tv.tv_sec = timeout / 1000;
3746 tv.tv_usec = (timeout % 1000) * 1000;
3747
3748 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3749
3750 qemu_mutex_unlock_iothread();
3751 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3752 qemu_mutex_lock_iothread();
3753 if (ret > 0) {
3754 IOHandlerRecord **pioh;
3755
3756 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3757 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3758 ioh->fd_read(ioh->opaque);
3759 }
3760 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3761 ioh->fd_write(ioh->opaque);
3762 }
3763 }
3764
3765 /* remove deleted IO handlers */
3766 pioh = &first_io_handler;
3767 while (*pioh) {
3768 ioh = *pioh;
3769 if (ioh->deleted) {
3770 *pioh = ioh->next;
3771 qemu_free(ioh);
3772 } else
3773 pioh = &ioh->next;
3774 }
3775 }
3776
3777 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3778
3779 /* rearm timer, if not periodic */
3780 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3781 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3782 qemu_rearm_alarm_timer(alarm_timer);
3783 }
3784
3785 /* vm time timers */
3786 if (vm_running) {
3787 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3788 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3789 qemu_get_clock(vm_clock));
3790 }
3791
3792 /* real time timers */
3793 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3794 qemu_get_clock(rt_clock));
3795
3796 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3797 qemu_get_clock(host_clock));
3798
3799 /* Check bottom-halves last in case any of the earlier events triggered
3800 them. */
3801 qemu_bh_poll();
3802
3803 }
3804
3805 static int qemu_cpu_exec(CPUState *env)
3806 {
3807 int ret;
3808 #ifdef CONFIG_PROFILER
3809 int64_t ti;
3810 #endif
3811
3812 #ifdef CONFIG_PROFILER
3813 ti = profile_getclock();
3814 #endif
3815 if (use_icount) {
3816 int64_t count;
3817 int decr;
3818 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3819 env->icount_decr.u16.low = 0;
3820 env->icount_extra = 0;
3821 count = qemu_next_deadline();
3822 count = (count + (1 << icount_time_shift) - 1)
3823 >> icount_time_shift;
3824 qemu_icount += count;
3825 decr = (count > 0xffff) ? 0xffff : count;
3826 count -= decr;
3827 env->icount_decr.u16.low = decr;
3828 env->icount_extra = count;
3829 }
3830 ret = cpu_exec(env);
3831 #ifdef CONFIG_PROFILER
3832 qemu_time += profile_getclock() - ti;
3833 #endif
3834 if (use_icount) {
3835 /* Fold pending instructions back into the
3836 instruction counter, and clear the interrupt flag. */
3837 qemu_icount -= (env->icount_decr.u16.low
3838 + env->icount_extra);
3839 env->icount_decr.u32 = 0;
3840 env->icount_extra = 0;
3841 }
3842 return ret;
3843 }
3844
3845 static void tcg_cpu_exec(void)
3846 {
3847 int ret = 0;
3848
3849 if (next_cpu == NULL)
3850 next_cpu = first_cpu;
3851 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3852 CPUState *env = cur_cpu = next_cpu;
3853
3854 if (!vm_running)
3855 break;
3856 if (timer_alarm_pending) {
3857 timer_alarm_pending = 0;
3858 break;
3859 }
3860 if (cpu_can_run(env))
3861 ret = qemu_cpu_exec(env);
3862 if (ret == EXCP_DEBUG) {
3863 gdb_set_stop_cpu(env);
3864 debug_requested = 1;
3865 break;
3866 }
3867 }
3868 }
3869
3870 static int cpu_has_work(CPUState *env)
3871 {
3872 if (env->stop)
3873 return 1;
3874 if (env->stopped)
3875 return 0;
3876 if (!env->halted)
3877 return 1;
3878 if (qemu_cpu_has_work(env))
3879 return 1;
3880 return 0;
3881 }
3882
3883 static int tcg_has_work(void)
3884 {
3885 CPUState *env;
3886
3887 for (env = first_cpu; env != NULL; env = env->next_cpu)
3888 if (cpu_has_work(env))
3889 return 1;
3890 return 0;
3891 }
3892
3893 static int qemu_calculate_timeout(void)
3894 {
3895 #ifndef CONFIG_IOTHREAD
3896 int timeout;
3897
3898 if (!vm_running)
3899 timeout = 5000;
3900 else if (tcg_has_work())
3901 timeout = 0;
3902 else if (!use_icount)
3903 timeout = 5000;
3904 else {
3905 /* XXX: use timeout computed from timers */
3906 int64_t add;
3907 int64_t delta;
3908 /* Advance virtual time to the next event. */
3909 if (use_icount == 1) {
3910 /* When not using an adaptive execution frequency
3911 we tend to get badly out of sync with real time,
3912 so just delay for a reasonable amount of time. */
3913 delta = 0;
3914 } else {
3915 delta = cpu_get_icount() - cpu_get_clock();
3916 }
3917 if (delta > 0) {
3918 /* If virtual time is ahead of real time then just
3919 wait for IO. */
3920 timeout = (delta / 1000000) + 1;
3921 } else {
3922 /* Wait for either IO to occur or the next
3923 timer event. */
3924 add = qemu_next_deadline();
3925 /* We advance the timer before checking for IO.
3926 Limit the amount we advance so that early IO
3927 activity won't get the guest too far ahead. */
3928 if (add > 10000000)
3929 add = 10000000;
3930 delta += add;
3931 add = (add + (1 << icount_time_shift) - 1)
3932 >> icount_time_shift;
3933 qemu_icount += add;
3934 timeout = delta / 1000000;
3935 if (timeout < 0)
3936 timeout = 0;
3937 }
3938 }
3939
3940 return timeout;
3941 #else /* CONFIG_IOTHREAD */
3942 return 1000;
3943 #endif
3944 }
3945
3946 static int vm_can_run(void)
3947 {
3948 if (powerdown_requested)
3949 return 0;
3950 if (reset_requested)
3951 return 0;
3952 if (shutdown_requested)
3953 return 0;
3954 if (debug_requested)
3955 return 0;
3956 return 1;
3957 }
3958
3959 qemu_irq qemu_system_powerdown;
3960
3961 static void main_loop(void)
3962 {
3963 int r;
3964
3965 #ifdef CONFIG_IOTHREAD
3966 qemu_system_ready = 1;
3967 qemu_cond_broadcast(&qemu_system_cond);
3968 #endif
3969
3970 for (;;) {
3971 do {
3972 #ifdef CONFIG_PROFILER
3973 int64_t ti;
3974 #endif
3975 #ifndef CONFIG_IOTHREAD
3976 tcg_cpu_exec();
3977 #endif
3978 #ifdef CONFIG_PROFILER
3979 ti = profile_getclock();
3980 #endif
3981 main_loop_wait(qemu_calculate_timeout());
3982 #ifdef CONFIG_PROFILER
3983 dev_time += profile_getclock() - ti;
3984 #endif
3985 } while (vm_can_run());
3986
3987 if (qemu_debug_requested()) {
3988 monitor_protocol_event(QEVENT_DEBUG, NULL);
3989 vm_stop(EXCP_DEBUG);
3990 }
3991 if (qemu_shutdown_requested()) {
3992 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
3993 if (no_shutdown) {
3994 vm_stop(0);
3995 no_shutdown = 0;
3996 } else
3997 break;
3998 }
3999 if (qemu_reset_requested()) {
4000 monitor_protocol_event(QEVENT_RESET, NULL);
4001 pause_all_vcpus();
4002 qemu_system_reset();
4003 resume_all_vcpus();
4004 }
4005 if (qemu_powerdown_requested()) {
4006 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4007 qemu_irq_raise(qemu_system_powerdown);
4008 }
4009 if ((r = qemu_vmstop_requested())) {
4010 monitor_protocol_event(QEVENT_STOP, NULL);
4011 vm_stop(r);
4012 }
4013 }
4014 pause_all_vcpus();
4015 }
4016
4017 static void version(void)
4018 {
4019 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4020 }
4021
4022 static void help(int exitcode)
4023 {
4024 const char *options_help =
4025 #define DEF(option, opt_arg, opt_enum, opt_help) \
4026 opt_help
4027 #define DEFHEADING(text) stringify(text) "\n"
4028 #include "qemu-options.h"
4029 #undef DEF
4030 #undef DEFHEADING
4031 #undef GEN_DOCS
4032 ;
4033 version();
4034 printf("usage: %s [options] [disk_image]\n"
4035 "\n"
4036 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4037 "\n"
4038 "%s\n"
4039 "During emulation, the following keys are useful:\n"
4040 "ctrl-alt-f toggle full screen\n"
4041 "ctrl-alt-n switch to virtual console 'n'\n"
4042 "ctrl-alt toggle mouse and keyboard grab\n"
4043 "\n"
4044 "When using -nographic, press 'ctrl-a h' to get some help.\n",
4045 "qemu",
4046 options_help);
4047 exit(exitcode);
4048 }
4049
4050 #define HAS_ARG 0x0001
4051
4052 enum {
4053 #define DEF(option, opt_arg, opt_enum, opt_help) \
4054 opt_enum,
4055 #define DEFHEADING(text)
4056 #include "qemu-options.h"
4057 #undef DEF
4058 #undef DEFHEADING
4059 #undef GEN_DOCS
4060 };
4061
4062 typedef struct QEMUOption {
4063 const char *name;
4064 int flags;
4065 int index;
4066 } QEMUOption;
4067
4068 static const QEMUOption qemu_options[] = {
4069 { "h", 0, QEMU_OPTION_h },
4070 #define DEF(option, opt_arg, opt_enum, opt_help) \
4071 { option, opt_arg, opt_enum },
4072 #define DEFHEADING(text)
4073 #include "qemu-options.h"
4074 #undef DEF
4075 #undef DEFHEADING
4076 #undef GEN_DOCS
4077 { NULL },
4078 };
4079
4080 #ifdef HAS_AUDIO
4081 struct soundhw soundhw[] = {
4082 #ifdef HAS_AUDIO_CHOICE
4083 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4084 {
4085 "pcspk",
4086 "PC speaker",
4087 0,
4088 1,
4089 { .init_isa = pcspk_audio_init }
4090 },
4091 #endif
4092
4093 #ifdef CONFIG_SB16
4094 {
4095 "sb16",
4096 "Creative Sound Blaster 16",
4097 0,
4098 1,
4099 { .init_isa = SB16_init }
4100 },
4101 #endif
4102
4103 #ifdef CONFIG_CS4231A
4104 {
4105 "cs4231a",
4106 "CS4231A",
4107 0,
4108 1,
4109 { .init_isa = cs4231a_init }
4110 },
4111 #endif
4112
4113 #ifdef CONFIG_ADLIB
4114 {
4115 "adlib",
4116 #ifdef HAS_YMF262
4117 "Yamaha YMF262 (OPL3)",
4118 #else
4119 "Yamaha YM3812 (OPL2)",
4120 #endif
4121 0,
4122 1,
4123 { .init_isa = Adlib_init }
4124 },
4125 #endif
4126
4127 #ifdef CONFIG_GUS
4128 {
4129 "gus",
4130 "Gravis Ultrasound GF1",
4131 0,
4132 1,
4133 { .init_isa = GUS_init }
4134 },
4135 #endif
4136
4137 #ifdef CONFIG_AC97
4138 {
4139 "ac97",
4140 "Intel 82801AA AC97 Audio",
4141 0,
4142 0,
4143 { .init_pci = ac97_init }
4144 },
4145 #endif
4146
4147 #ifdef CONFIG_ES1370
4148 {
4149 "es1370",
4150 "ENSONIQ AudioPCI ES1370",
4151 0,
4152 0,
4153 { .init_pci = es1370_init }
4154 },
4155 #endif
4156
4157 #endif /* HAS_AUDIO_CHOICE */
4158
4159 { NULL, NULL, 0, 0, { NULL } }
4160 };
4161
4162 static void select_soundhw (const char *optarg)
4163 {
4164 struct soundhw *c;
4165
4166 if (*optarg == '?') {
4167 show_valid_cards:
4168
4169 printf ("Valid sound card names (comma separated):\n");
4170 for (c = soundhw; c->name; ++c) {
4171 printf ("%-11s %s\n", c->name, c->descr);
4172 }
4173 printf ("\n-soundhw all will enable all of the above\n");
4174 exit (*optarg != '?');
4175 }
4176 else {
4177 size_t l;
4178 const char *p;
4179 char *e;
4180 int bad_card = 0;
4181
4182 if (!strcmp (optarg, "all")) {
4183 for (c = soundhw; c->name; ++c) {
4184 c->enabled = 1;
4185 }
4186 return;
4187 }
4188
4189 p = optarg;
4190 while (*p) {
4191 e = strchr (p, ',');
4192 l = !e ? strlen (p) : (size_t) (e - p);
4193
4194 for (c = soundhw; c->name; ++c) {
4195 if (!strncmp (c->name, p, l) && !c->name[l]) {
4196 c->enabled = 1;
4197 break;
4198 }
4199 }
4200
4201 if (!c->name) {
4202 if (l > 80) {
4203 fprintf (stderr,
4204 "Unknown sound card name (too big to show)\n");
4205 }
4206 else {
4207 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4208 (int) l, p);
4209 }
4210 bad_card = 1;
4211 }
4212 p += l + (e != NULL);
4213 }
4214
4215 if (bad_card)
4216 goto show_valid_cards;
4217 }
4218 }
4219 #endif
4220
4221 static void select_vgahw (const char *p)
4222 {
4223 const char *opts;
4224
4225 default_vga = 0;
4226 vga_interface_type = VGA_NONE;
4227 if (strstart(p, "std", &opts)) {
4228 vga_interface_type = VGA_STD;
4229 } else if (strstart(p, "cirrus", &opts)) {
4230 vga_interface_type = VGA_CIRRUS;
4231 } else if (strstart(p, "vmware", &opts)) {
4232 vga_interface_type = VGA_VMWARE;
4233 } else if (strstart(p, "xenfb", &opts)) {
4234 vga_interface_type = VGA_XENFB;
4235 } else if (!strstart(p, "none", &opts)) {
4236 invalid_vga:
4237 fprintf(stderr, "Unknown vga type: %s\n", p);
4238 exit(1);
4239 }
4240 while (*opts) {
4241 const char *nextopt;
4242
4243 if (strstart(opts, ",retrace=", &nextopt)) {
4244 opts = nextopt;
4245 if (strstart(opts, "dumb", &nextopt))
4246 vga_retrace_method = VGA_RETRACE_DUMB;
4247 else if (strstart(opts, "precise", &nextopt))
4248 vga_retrace_method = VGA_RETRACE_PRECISE;
4249 else goto invalid_vga;
4250 } else goto invalid_vga;
4251 opts = nextopt;
4252 }
4253 }
4254
4255 #ifdef TARGET_I386
4256 static int balloon_parse(const char *arg)
4257 {
4258 QemuOpts *opts;
4259
4260 if (strcmp(arg, "none") == 0) {
4261 return 0;
4262 }
4263
4264 if (!strncmp(arg, "virtio", 6)) {
4265 if (arg[6] == ',') {
4266 /* have params -> parse them */
4267 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4268 if (!opts)
4269 return -1;
4270 } else {
4271 /* create empty opts */
4272 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4273 }
4274 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4275 return 0;
4276 }
4277
4278 return -1;
4279 }
4280 #endif
4281
4282 #ifdef _WIN32
4283 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4284 {
4285 exit(STATUS_CONTROL_C_EXIT);
4286 return TRUE;
4287 }
4288 #endif
4289
4290 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4291 {
4292 int ret;
4293
4294 if(strlen(str) != 36)
4295 return -1;
4296
4297 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4298 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4299 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4300
4301 if(ret != 16)
4302 return -1;
4303
4304 #ifdef TARGET_I386
4305 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4306 #endif
4307
4308 return 0;
4309 }
4310
4311 #ifndef _WIN32
4312
4313 static void termsig_handler(int signal)
4314 {
4315 qemu_system_shutdown_request();
4316 }
4317
4318 static void sigchld_handler(int signal)
4319 {
4320 waitpid(-1, NULL, WNOHANG);
4321 }
4322
4323 static void sighandler_setup(void)
4324 {
4325 struct sigaction act;
4326
4327 memset(&act, 0, sizeof(act));
4328 act.sa_handler = termsig_handler;
4329 sigaction(SIGINT, &act, NULL);
4330 sigaction(SIGHUP, &act, NULL);
4331 sigaction(SIGTERM, &act, NULL);
4332
4333 act.sa_handler = sigchld_handler;
4334 act.sa_flags = SA_NOCLDSTOP;
4335 sigaction(SIGCHLD, &act, NULL);
4336 }
4337
4338 #endif
4339
4340 #ifdef _WIN32
4341 /* Look for support files in the same directory as the executable. */
4342 static char *find_datadir(const char *argv0)
4343 {
4344 char *p;
4345 char buf[MAX_PATH];
4346 DWORD len;
4347
4348 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4349 if (len == 0) {
4350 return NULL;
4351 }
4352
4353 buf[len] = 0;
4354 p = buf + len - 1;
4355 while (p != buf && *p != '\\')
4356 p--;
4357 *p = 0;
4358 if (access(buf, R_OK) == 0) {
4359 return qemu_strdup(buf);
4360 }
4361 return NULL;
4362 }
4363 #else /* !_WIN32 */
4364
4365 /* Find a likely location for support files using the location of the binary.
4366 For installed binaries this will be "$bindir/../share/qemu". When
4367 running from the build tree this will be "$bindir/../pc-bios". */
4368 #define SHARE_SUFFIX "/share/qemu"
4369 #define BUILD_SUFFIX "/pc-bios"
4370 static char *find_datadir(const char *argv0)
4371 {
4372 char *dir;
4373 char *p = NULL;
4374 char *res;
4375 char buf[PATH_MAX];
4376 size_t max_len;
4377
4378 #if defined(__linux__)
4379 {
4380 int len;
4381 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4382 if (len > 0) {
4383 buf[len] = 0;
4384 p = buf;
4385 }
4386 }
4387 #elif defined(__FreeBSD__)
4388 {
4389 int len;
4390 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4391 if (len > 0) {
4392 buf[len] = 0;
4393 p = buf;
4394 }
4395 }
4396 #endif
4397 /* If we don't have any way of figuring out the actual executable
4398 location then try argv[0]. */
4399 if (!p) {
4400 p = realpath(argv0, buf);
4401 if (!p) {
4402 return NULL;
4403 }
4404 }
4405 dir = dirname(p);
4406 dir = dirname(dir);
4407
4408 max_len = strlen(dir) +
4409 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4410 res = qemu_mallocz(max_len);
4411 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4412 if (access(res, R_OK)) {
4413 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4414 if (access(res, R_OK)) {
4415 qemu_free(res);
4416 res = NULL;
4417 }
4418 }
4419
4420 return res;
4421 }
4422 #undef SHARE_SUFFIX
4423 #undef BUILD_SUFFIX
4424 #endif
4425
4426 char *qemu_find_file(int type, const char *name)
4427 {
4428 int len;
4429 const char *subdir;
4430 char *buf;
4431
4432 /* If name contains path separators then try it as a straight path. */
4433 if ((strchr(name, '/') || strchr(name, '\\'))
4434 && access(name, R_OK) == 0) {
4435 return qemu_strdup(name);
4436 }
4437 switch (type) {
4438 case QEMU_FILE_TYPE_BIOS:
4439 subdir = "";
4440 break;
4441 case QEMU_FILE_TYPE_KEYMAP:
4442 subdir = "keymaps/";
4443 break;
4444 default:
4445 abort();
4446 }
4447 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4448 buf = qemu_mallocz(len);
4449 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4450 if (access(buf, R_OK)) {
4451 qemu_free(buf);
4452 return NULL;
4453 }
4454 return buf;
4455 }
4456
4457 static int device_help_func(QemuOpts *opts, void *opaque)
4458 {
4459 return qdev_device_help(opts);
4460 }
4461
4462 static int device_init_func(QemuOpts *opts, void *opaque)
4463 {
4464 DeviceState *dev;
4465
4466 dev = qdev_device_add(opts);
4467 if (!dev)
4468 return -1;
4469 return 0;
4470 }
4471
4472 static int chardev_init_func(QemuOpts *opts, void *opaque)
4473 {
4474 CharDriverState *chr;
4475
4476 chr = qemu_chr_open_opts(opts, NULL);
4477 if (!chr)
4478 return -1;
4479 return 0;
4480 }
4481
4482 static int mon_init_func(QemuOpts *opts, void *opaque)
4483 {
4484 CharDriverState *chr;
4485 const char *chardev;
4486 const char *mode;
4487 int flags;
4488
4489 mode = qemu_opt_get(opts, "mode");
4490 if (mode == NULL) {
4491 mode = "readline";
4492 }
4493 if (strcmp(mode, "readline") == 0) {
4494 flags = MONITOR_USE_READLINE;
4495 } else if (strcmp(mode, "control") == 0) {
4496 flags = MONITOR_USE_CONTROL;
4497 } else {
4498 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4499 exit(1);
4500 }
4501
4502 if (qemu_opt_get_bool(opts, "default", 0))
4503 flags |= MONITOR_IS_DEFAULT;
4504
4505 chardev = qemu_opt_get(opts, "chardev");
4506 chr = qemu_chr_find(chardev);
4507 if (chr == NULL) {
4508 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4509 exit(1);
4510 }
4511
4512 monitor_init(chr, flags);
4513 return 0;
4514 }
4515
4516 static void monitor_parse(const char *optarg, const char *mode)
4517 {
4518 static int monitor_device_index = 0;
4519 QemuOpts *opts;
4520 const char *p;
4521 char label[32];
4522 int def = 0;
4523
4524 if (strstart(optarg, "chardev:", &p)) {
4525 snprintf(label, sizeof(label), "%s", p);
4526 } else {
4527 if (monitor_device_index) {
4528 snprintf(label, sizeof(label), "monitor%d",
4529 monitor_device_index);
4530 } else {
4531 snprintf(label, sizeof(label), "monitor");
4532 def = 1;
4533 }
4534 opts = qemu_chr_parse_compat(label, optarg);
4535 if (!opts) {
4536 fprintf(stderr, "parse error: %s\n", optarg);
4537 exit(1);
4538 }
4539 }
4540
4541 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4542 if (!opts) {
4543 fprintf(stderr, "duplicate chardev: %s\n", label);
4544 exit(1);
4545 }
4546 qemu_opt_set(opts, "mode", mode);
4547 qemu_opt_set(opts, "chardev", label);
4548 if (def)
4549 qemu_opt_set(opts, "default", "on");
4550 monitor_device_index++;
4551 }
4552
4553 struct device_config {
4554 enum {
4555 DEV_USB, /* -usbdevice */
4556 DEV_BT, /* -bt */
4557 DEV_SERIAL, /* -serial */
4558 DEV_PARALLEL, /* -parallel */
4559 DEV_VIRTCON, /* -virtioconsole */
4560 DEV_DEBUGCON, /* -debugcon */
4561 } type;
4562 const char *cmdline;
4563 QTAILQ_ENTRY(device_config) next;
4564 };
4565 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4566
4567 static void add_device_config(int type, const char *cmdline)
4568 {
4569 struct device_config *conf;
4570
4571 conf = qemu_mallocz(sizeof(*conf));
4572 conf->type = type;
4573 conf->cmdline = cmdline;
4574 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4575 }
4576
4577 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4578 {
4579 struct device_config *conf;
4580 int rc;
4581
4582 QTAILQ_FOREACH(conf, &device_configs, next) {
4583 if (conf->type != type)
4584 continue;
4585 rc = func(conf->cmdline);
4586 if (0 != rc)
4587 return rc;
4588 }
4589 return 0;
4590 }
4591
4592 static int serial_parse(const char *devname)
4593 {
4594 static int index = 0;
4595 char label[32];
4596
4597 if (strcmp(devname, "none") == 0)
4598 return 0;
4599 if (index == MAX_SERIAL_PORTS) {
4600 fprintf(stderr, "qemu: too many serial ports\n");
4601 exit(1);
4602 }
4603 snprintf(label, sizeof(label), "serial%d", index);
4604 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4605 if (!serial_hds[index]) {
4606 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4607 devname, strerror(errno));
4608 return -1;
4609 }
4610 index++;
4611 return 0;
4612 }
4613
4614 static int parallel_parse(const char *devname)
4615 {
4616 static int index = 0;
4617 char label[32];
4618
4619 if (strcmp(devname, "none") == 0)
4620 return 0;
4621 if (index == MAX_PARALLEL_PORTS) {
4622 fprintf(stderr, "qemu: too many parallel ports\n");
4623 exit(1);
4624 }
4625 snprintf(label, sizeof(label), "parallel%d", index);
4626 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4627 if (!parallel_hds[index]) {
4628 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4629 devname, strerror(errno));
4630 return -1;
4631 }
4632 index++;
4633 return 0;
4634 }
4635
4636 static int virtcon_parse(const char *devname)
4637 {
4638 static int index = 0;
4639 char label[32];
4640 QemuOpts *bus_opts, *dev_opts;
4641
4642 if (strcmp(devname, "none") == 0)
4643 return 0;
4644 if (index == MAX_VIRTIO_CONSOLES) {
4645 fprintf(stderr, "qemu: too many virtio consoles\n");
4646 exit(1);
4647 }
4648
4649 bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4650 qemu_opt_set(bus_opts, "driver", "virtio-serial");
4651
4652 dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4653 qemu_opt_set(dev_opts, "driver", "virtconsole");
4654
4655 snprintf(label, sizeof(label), "virtcon%d", index);
4656 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4657 if (!virtcon_hds[index]) {
4658 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4659 devname, strerror(errno));
4660 return -1;
4661 }
4662 qemu_opt_set(dev_opts, "chardev", label);
4663
4664 index++;
4665 return 0;
4666 }
4667
4668 static int debugcon_parse(const char *devname)
4669 {
4670 QemuOpts *opts;
4671
4672 if (!qemu_chr_open("debugcon", devname, NULL)) {
4673 exit(1);
4674 }
4675 opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1);
4676 if (!opts) {
4677 fprintf(stderr, "qemu: already have a debugcon device\n");
4678 exit(1);
4679 }
4680 qemu_opt_set(opts, "driver", "isa-debugcon");
4681 qemu_opt_set(opts, "chardev", "debugcon");
4682 return 0;
4683 }
4684
4685 static const QEMUOption *lookup_opt(int argc, char **argv,
4686 const char **poptarg, int *poptind)
4687 {
4688 const QEMUOption *popt;
4689 int optind = *poptind;
4690 char *r = argv[optind];
4691 const char *optarg;
4692
4693 optind++;
4694 /* Treat --foo the same as -foo. */
4695 if (r[1] == '-')
4696 r++;
4697 popt = qemu_options;
4698 for(;;) {
4699 if (!popt->name) {
4700 fprintf(stderr, "%s: invalid option -- '%s'\n",
4701 argv[0], r);
4702 exit(1);
4703 }
4704 if (!strcmp(popt->name, r + 1))
4705 break;
4706 popt++;
4707 }
4708 if (popt->flags & HAS_ARG) {
4709 if (optind >= argc) {
4710 fprintf(stderr, "%s: option '%s' requires an argument\n",
4711 argv[0], r);
4712 exit(1);
4713 }
4714 optarg = argv[optind++];
4715 } else {
4716 optarg = NULL;
4717 }
4718
4719 *poptarg = optarg;
4720 *poptind = optind;
4721
4722 return popt;
4723 }
4724
4725 int main(int argc, char **argv, char **envp)
4726 {
4727 const char *gdbstub_dev = NULL;
4728 uint32_t boot_devices_bitmap = 0;
4729 int i;
4730 int snapshot, linux_boot, net_boot;
4731 const char *initrd_filename;
4732 const char *kernel_filename, *kernel_cmdline;
4733 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4734 DisplayState *ds;
4735 DisplayChangeListener *dcl;
4736 int cyls, heads, secs, translation;
4737 QemuOpts *hda_opts = NULL, *opts;
4738 int optind;
4739 const char *optarg;
4740 const char *loadvm = NULL;
4741 QEMUMachine *machine;
4742 const char *cpu_model;
4743 #ifndef _WIN32
4744 int fds[2];
4745 #endif
4746 int tb_size;
4747 const char *pid_file = NULL;
4748 const char *incoming = NULL;
4749 #ifndef _WIN32
4750 int fd = 0;
4751 struct passwd *pwd = NULL;
4752 const char *chroot_dir = NULL;
4753 const char *run_as = NULL;
4754 #endif
4755 CPUState *env;
4756 int show_vnc_port = 0;
4757 int defconfig = 1;
4758
4759 init_clocks();
4760
4761 qemu_errors_to_file(stderr);
4762 qemu_cache_utils_init(envp);
4763
4764 QLIST_INIT (&vm_change_state_head);
4765 #ifndef _WIN32
4766 {
4767 struct sigaction act;
4768 sigfillset(&act.sa_mask);
4769 act.sa_flags = 0;
4770 act.sa_handler = SIG_IGN;
4771 sigaction(SIGPIPE, &act, NULL);
4772 }
4773 #else
4774 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4775 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4776 QEMU to run on a single CPU */
4777 {
4778 HANDLE h;
4779 DWORD mask, smask;
4780 int i;
4781 h = GetCurrentProcess();
4782 if (GetProcessAffinityMask(h, &mask, &smask)) {
4783 for(i = 0; i < 32; i++) {
4784 if (mask & (1 << i))
4785 break;
4786 }
4787 if (i != 32) {
4788 mask = 1 << i;
4789 SetProcessAffinityMask(h, mask);
4790 }
4791 }
4792 }
4793 #endif
4794
4795 module_call_init(MODULE_INIT_MACHINE);
4796 machine = find_default_machine();
4797 cpu_model = NULL;
4798 initrd_filename = NULL;
4799 ram_size = 0;
4800 snapshot = 0;
4801 kernel_filename = NULL;
4802 kernel_cmdline = "";
4803 cyls = heads = secs = 0;
4804 translation = BIOS_ATA_TRANSLATION_AUTO;
4805
4806 for (i = 0; i < MAX_NODES; i++) {
4807 node_mem[i] = 0;
4808 node_cpumask[i] = 0;
4809 }
4810
4811 nb_numa_nodes = 0;
4812 nb_nics = 0;
4813
4814 tb_size = 0;
4815 autostart= 1;
4816
4817 /* first pass of option parsing */
4818 optind = 1;
4819 while (optind < argc) {
4820 if (argv[optind][0] != '-') {
4821 /* disk image */
4822 optind++;
4823 continue;
4824 } else {
4825 const QEMUOption *popt;
4826
4827 popt = lookup_opt(argc, argv, &optarg, &optind);
4828 switch (popt->index) {
4829 case QEMU_OPTION_nodefconfig:
4830 defconfig=0;
4831 break;
4832 }
4833 }
4834 }
4835
4836 if (defconfig) {
4837 FILE *fp;
4838 fp = fopen(CONFIG_QEMU_CONFDIR "/qemu.conf", "r");
4839 if (fp) {
4840 if (qemu_config_parse(fp) != 0) {
4841 exit(1);
4842 }
4843 fclose(fp);
4844 }
4845
4846 fp = fopen(CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", "r");
4847 if (fp) {
4848 if (qemu_config_parse(fp) != 0) {
4849 exit(1);
4850 }
4851 fclose(fp);
4852 }
4853 }
4854
4855 /* second pass of option parsing */
4856 optind = 1;
4857 for(;;) {
4858 if (optind >= argc)
4859 break;
4860 if (argv[optind][0] != '-') {
4861 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4862 } else {
4863 const QEMUOption *popt;
4864
4865 popt = lookup_opt(argc, argv, &optarg, &optind);
4866 switch(popt->index) {
4867 case QEMU_OPTION_M:
4868 machine = find_machine(optarg);
4869 if (!machine) {
4870 QEMUMachine *m;
4871 printf("Supported machines are:\n");
4872 for(m = first_machine; m != NULL; m = m->next) {
4873 if (m->alias)
4874 printf("%-10s %s (alias of %s)\n",
4875 m->alias, m->desc, m->name);
4876 printf("%-10s %s%s\n",
4877 m->name, m->desc,
4878 m->is_default ? " (default)" : "");
4879 }
4880 exit(*optarg != '?');
4881 }
4882 break;
4883 case QEMU_OPTION_cpu:
4884 /* hw initialization will check this */
4885 if (*optarg == '?') {
4886 /* XXX: implement xxx_cpu_list for targets that still miss it */
4887 #if defined(cpu_list)
4888 cpu_list(stdout, &fprintf);
4889 #endif
4890 exit(0);
4891 } else {
4892 cpu_model = optarg;
4893 }
4894 break;
4895 case QEMU_OPTION_initrd:
4896 initrd_filename = optarg;
4897 break;
4898 case QEMU_OPTION_hda:
4899 if (cyls == 0)
4900 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4901 else
4902 hda_opts = drive_add(optarg, HD_ALIAS
4903 ",cyls=%d,heads=%d,secs=%d%s",
4904 0, cyls, heads, secs,
4905 translation == BIOS_ATA_TRANSLATION_LBA ?
4906 ",trans=lba" :
4907 translation == BIOS_ATA_TRANSLATION_NONE ?
4908 ",trans=none" : "");
4909 break;
4910 case QEMU_OPTION_hdb:
4911 case QEMU_OPTION_hdc:
4912 case QEMU_OPTION_hdd:
4913 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4914 break;
4915 case QEMU_OPTION_drive:
4916 drive_add(NULL, "%s", optarg);
4917 break;
4918 case QEMU_OPTION_set:
4919 if (qemu_set_option(optarg) != 0)
4920 exit(1);
4921 break;
4922 case QEMU_OPTION_global:
4923 if (qemu_global_option(optarg) != 0)
4924 exit(1);
4925 break;
4926 case QEMU_OPTION_mtdblock:
4927 drive_add(optarg, MTD_ALIAS);
4928 break;
4929 case QEMU_OPTION_sd:
4930 drive_add(optarg, SD_ALIAS);
4931 break;
4932 case QEMU_OPTION_pflash:
4933 drive_add(optarg, PFLASH_ALIAS);
4934 break;
4935 case QEMU_OPTION_snapshot:
4936 snapshot = 1;
4937 break;
4938 case QEMU_OPTION_hdachs:
4939 {
4940 const char *p;
4941 p = optarg;
4942 cyls = strtol(p, (char **)&p, 0);
4943 if (cyls < 1 || cyls > 16383)
4944 goto chs_fail;
4945 if (*p != ',')
4946 goto chs_fail;
4947 p++;
4948 heads = strtol(p, (char **)&p, 0);
4949 if (heads < 1 || heads > 16)
4950 goto chs_fail;
4951 if (*p != ',')
4952 goto chs_fail;
4953 p++;
4954 secs = strtol(p, (char **)&p, 0);
4955 if (secs < 1 || secs > 63)
4956 goto chs_fail;
4957 if (*p == ',') {
4958 p++;
4959 if (!strcmp(p, "none"))
4960 translation = BIOS_ATA_TRANSLATION_NONE;
4961 else if (!strcmp(p, "lba"))
4962 translation = BIOS_ATA_TRANSLATION_LBA;
4963 else if (!strcmp(p, "auto"))
4964 translation = BIOS_ATA_TRANSLATION_AUTO;
4965 else
4966 goto chs_fail;
4967 } else if (*p != '\0') {
4968 chs_fail:
4969 fprintf(stderr, "qemu: invalid physical CHS format\n");
4970 exit(1);
4971 }
4972 if (hda_opts != NULL) {
4973 char num[16];
4974 snprintf(num, sizeof(num), "%d", cyls);
4975 qemu_opt_set(hda_opts, "cyls", num);
4976 snprintf(num, sizeof(num), "%d", heads);
4977 qemu_opt_set(hda_opts, "heads", num);
4978 snprintf(num, sizeof(num), "%d", secs);
4979 qemu_opt_set(hda_opts, "secs", num);
4980 if (translation == BIOS_ATA_TRANSLATION_LBA)
4981 qemu_opt_set(hda_opts, "trans", "lba");
4982 if (translation == BIOS_ATA_TRANSLATION_NONE)
4983 qemu_opt_set(hda_opts, "trans", "none");
4984 }
4985 }
4986 break;
4987 case QEMU_OPTION_numa:
4988 if (nb_numa_nodes >= MAX_NODES) {
4989 fprintf(stderr, "qemu: too many NUMA nodes\n");
4990 exit(1);
4991 }
4992 numa_add(optarg);
4993 break;
4994 case QEMU_OPTION_nographic:
4995 display_type = DT_NOGRAPHIC;
4996 break;
4997 #ifdef CONFIG_CURSES
4998 case QEMU_OPTION_curses:
4999 display_type = DT_CURSES;
5000 break;
5001 #endif
5002 case QEMU_OPTION_portrait:
5003 graphic_rotate = 1;
5004 break;
5005 case QEMU_OPTION_kernel:
5006 kernel_filename = optarg;
5007 break;
5008 case QEMU_OPTION_append:
5009 kernel_cmdline = optarg;
5010 break;
5011 case QEMU_OPTION_cdrom:
5012 drive_add(optarg, CDROM_ALIAS);
5013 break;
5014 case QEMU_OPTION_boot:
5015 {
5016 static const char * const params[] = {
5017 "order", "once", "menu", NULL
5018 };
5019 char buf[sizeof(boot_devices)];
5020 char *standard_boot_devices;
5021 int legacy = 0;
5022
5023 if (!strchr(optarg, '=')) {
5024 legacy = 1;
5025 pstrcpy(buf, sizeof(buf), optarg);
5026 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5027 fprintf(stderr,
5028 "qemu: unknown boot parameter '%s' in '%s'\n",
5029 buf, optarg);
5030 exit(1);
5031 }
5032
5033 if (legacy ||
5034 get_param_value(buf, sizeof(buf), "order", optarg)) {
5035 boot_devices_bitmap = parse_bootdevices(buf);
5036 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5037 }
5038 if (!legacy) {
5039 if (get_param_value(buf, sizeof(buf),
5040 "once", optarg)) {
5041 boot_devices_bitmap |= parse_bootdevices(buf);
5042 standard_boot_devices = qemu_strdup(boot_devices);
5043 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5044 qemu_register_reset(restore_boot_devices,
5045 standard_boot_devices);
5046 }
5047 if (get_param_value(buf, sizeof(buf),
5048 "menu", optarg)) {
5049 if (!strcmp(buf, "on")) {
5050 boot_menu = 1;
5051 } else if (!strcmp(buf, "off")) {
5052 boot_menu = 0;
5053 } else {
5054 fprintf(stderr,
5055 "qemu: invalid option value '%s'\n",
5056 buf);
5057 exit(1);
5058 }
5059 }
5060 }
5061 }
5062 break;
5063 case QEMU_OPTION_fda:
5064 case QEMU_OPTION_fdb:
5065 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5066 break;
5067 #ifdef TARGET_I386
5068 case QEMU_OPTION_no_fd_bootchk:
5069 fd_bootchk = 0;
5070 break;
5071 #endif
5072 case QEMU_OPTION_netdev:
5073 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5074 exit(1);
5075 }
5076 break;
5077 case QEMU_OPTION_net:
5078 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5079 exit(1);
5080 }
5081 break;
5082 #ifdef CONFIG_SLIRP
5083 case QEMU_OPTION_tftp:
5084 legacy_tftp_prefix = optarg;
5085 break;
5086 case QEMU_OPTION_bootp:
5087 legacy_bootp_filename = optarg;
5088 break;
5089 #ifndef _WIN32
5090 case QEMU_OPTION_smb:
5091 if (net_slirp_smb(optarg) < 0)
5092 exit(1);
5093 break;
5094 #endif
5095 case QEMU_OPTION_redir:
5096 if (net_slirp_redir(optarg) < 0)
5097 exit(1);
5098 break;
5099 #endif
5100 case QEMU_OPTION_bt:
5101 add_device_config(DEV_BT, optarg);
5102 break;
5103 #ifdef HAS_AUDIO
5104 case QEMU_OPTION_audio_help:
5105 AUD_help ();
5106 exit (0);
5107 break;
5108 case QEMU_OPTION_soundhw:
5109 select_soundhw (optarg);
5110 break;
5111 #endif
5112 case QEMU_OPTION_h:
5113 help(0);
5114 break;
5115 case QEMU_OPTION_version:
5116 version();
5117 exit(0);
5118 break;
5119 case QEMU_OPTION_m: {
5120 uint64_t value;
5121 char *ptr;
5122
5123 value = strtoul(optarg, &ptr, 10);
5124 switch (*ptr) {
5125 case 0: case 'M': case 'm':
5126 value <<= 20;
5127 break;
5128 case 'G': case 'g':
5129 value <<= 30;
5130 break;
5131 default:
5132 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5133 exit(1);
5134 }
5135
5136 /* On 32-bit hosts, QEMU is limited by virtual address space */
5137 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5138 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5139 exit(1);
5140 }
5141 if (value != (uint64_t)(ram_addr_t)value) {
5142 fprintf(stderr, "qemu: ram size too large\n");
5143 exit(1);
5144 }
5145 ram_size = value;
5146 break;
5147 }
5148 case QEMU_OPTION_d:
5149 {
5150 int mask;
5151 const CPULogItem *item;
5152
5153 mask = cpu_str_to_log_mask(optarg);
5154 if (!mask) {
5155 printf("Log items (comma separated):\n");
5156 for(item = cpu_log_items; item->mask != 0; item++) {
5157 printf("%-10s %s\n", item->name, item->help);
5158 }
5159 exit(1);
5160 }
5161 cpu_set_log(mask);
5162 }
5163 break;
5164 case QEMU_OPTION_s:
5165 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5166 break;
5167 case QEMU_OPTION_gdb:
5168 gdbstub_dev = optarg;
5169 break;
5170 case QEMU_OPTION_L:
5171 data_dir = optarg;
5172 break;
5173 case QEMU_OPTION_bios:
5174 bios_name = optarg;
5175 break;
5176 case QEMU_OPTION_singlestep:
5177 singlestep = 1;
5178 break;
5179 case QEMU_OPTION_S:
5180 autostart = 0;
5181 break;
5182 case QEMU_OPTION_k:
5183 keyboard_layout = optarg;
5184 break;
5185 case QEMU_OPTION_localtime:
5186 rtc_utc = 0;
5187 break;
5188 case QEMU_OPTION_vga:
5189 select_vgahw (optarg);
5190 break;
5191 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5192 case QEMU_OPTION_g:
5193 {
5194 const char *p;
5195 int w, h, depth;
5196 p = optarg;
5197 w = strtol(p, (char **)&p, 10);
5198 if (w <= 0) {
5199 graphic_error:
5200 fprintf(stderr, "qemu: invalid resolution or depth\n");
5201 exit(1);
5202 }
5203 if (*p != 'x')
5204 goto graphic_error;
5205 p++;
5206 h = strtol(p, (char **)&p, 10);
5207 if (h <= 0)
5208 goto graphic_error;
5209 if (*p == 'x') {
5210 p++;
5211 depth = strtol(p, (char **)&p, 10);
5212 if (depth != 8 && depth != 15 && depth != 16 &&
5213 depth != 24 && depth != 32)
5214 goto graphic_error;
5215 } else if (*p == '\0') {
5216 depth = graphic_depth;
5217 } else {
5218 goto graphic_error;
5219 }
5220
5221 graphic_width = w;
5222 graphic_height = h;
5223 graphic_depth = depth;
5224 }
5225 break;
5226 #endif
5227 case QEMU_OPTION_echr:
5228 {
5229 char *r;
5230 term_escape_char = strtol(optarg, &r, 0);
5231 if (r == optarg)
5232 printf("Bad argument to echr\n");
5233 break;
5234 }
5235 case QEMU_OPTION_monitor:
5236 monitor_parse(optarg, "readline");
5237 default_monitor = 0;
5238 break;
5239 case QEMU_OPTION_qmp:
5240 monitor_parse(optarg, "control");
5241 default_monitor = 0;
5242 break;
5243 case QEMU_OPTION_mon:
5244 opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5245 if (!opts) {
5246 fprintf(stderr, "parse error: %s\n", optarg);
5247 exit(1);
5248 }
5249 default_monitor = 0;
5250 break;
5251 case QEMU_OPTION_chardev:
5252 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5253 if (!opts) {
5254 fprintf(stderr, "parse error: %s\n", optarg);
5255 exit(1);
5256 }
5257 break;
5258 case QEMU_OPTION_serial:
5259 add_device_config(DEV_SERIAL, optarg);
5260 default_serial = 0;
5261 break;
5262 case QEMU_OPTION_watchdog:
5263 if (watchdog) {
5264 fprintf(stderr,
5265 "qemu: only one watchdog option may be given\n");
5266 return 1;
5267 }
5268 watchdog = optarg;
5269 break;
5270 case QEMU_OPTION_watchdog_action:
5271 if (select_watchdog_action(optarg) == -1) {
5272 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5273 exit(1);
5274 }
5275 break;
5276 case QEMU_OPTION_virtiocon:
5277 add_device_config(DEV_VIRTCON, optarg);
5278 default_virtcon = 0;
5279 break;
5280 case QEMU_OPTION_parallel:
5281 add_device_config(DEV_PARALLEL, optarg);
5282 default_parallel = 0;
5283 break;
5284 case QEMU_OPTION_debugcon:
5285 add_device_config(DEV_DEBUGCON, optarg);
5286 break;
5287 case QEMU_OPTION_loadvm:
5288 loadvm = optarg;
5289 break;
5290 case QEMU_OPTION_full_screen:
5291 full_screen = 1;
5292 break;
5293 #ifdef CONFIG_SDL
5294 case QEMU_OPTION_no_frame:
5295 no_frame = 1;
5296 break;
5297 case QEMU_OPTION_alt_grab:
5298 alt_grab = 1;
5299 break;
5300 case QEMU_OPTION_ctrl_grab:
5301 ctrl_grab = 1;
5302 break;
5303 case QEMU_OPTION_no_quit:
5304 no_quit = 1;
5305 break;
5306 case QEMU_OPTION_sdl:
5307 display_type = DT_SDL;
5308 break;
5309 #endif
5310 case QEMU_OPTION_pidfile:
5311 pid_file = optarg;
5312 break;
5313 #ifdef TARGET_I386
5314 case QEMU_OPTION_win2k_hack:
5315 win2k_install_hack = 1;
5316 break;
5317 case QEMU_OPTION_rtc_td_hack:
5318 rtc_td_hack = 1;
5319 break;
5320 case QEMU_OPTION_acpitable:
5321 if(acpi_table_add(optarg) < 0) {
5322 fprintf(stderr, "Wrong acpi table provided\n");
5323 exit(1);
5324 }
5325 break;
5326 case QEMU_OPTION_smbios:
5327 if(smbios_entry_add(optarg) < 0) {
5328 fprintf(stderr, "Wrong smbios provided\n");
5329 exit(1);
5330 }
5331 break;
5332 #endif
5333 #ifdef CONFIG_KVM
5334 case QEMU_OPTION_enable_kvm:
5335 kvm_allowed = 1;
5336 break;
5337 #endif
5338 case QEMU_OPTION_usb:
5339 usb_enabled = 1;
5340 break;
5341 case QEMU_OPTION_usbdevice:
5342 usb_enabled = 1;
5343 add_device_config(DEV_USB, optarg);
5344 break;
5345 case QEMU_OPTION_device:
5346 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5347 exit(1);
5348 }
5349 break;
5350 case QEMU_OPTION_smp:
5351 smp_parse(optarg);
5352 if (smp_cpus < 1) {
5353 fprintf(stderr, "Invalid number of CPUs\n");
5354 exit(1);
5355 }
5356 if (max_cpus < smp_cpus) {
5357 fprintf(stderr, "maxcpus must be equal to or greater than "
5358 "smp\n");
5359 exit(1);
5360 }
5361 if (max_cpus > 255) {
5362 fprintf(stderr, "Unsupported number of maxcpus\n");
5363 exit(1);
5364 }
5365 break;
5366 case QEMU_OPTION_vnc:
5367 display_type = DT_VNC;
5368 vnc_display = optarg;
5369 break;
5370 #ifdef TARGET_I386
5371 case QEMU_OPTION_no_acpi:
5372 acpi_enabled = 0;
5373 break;
5374 case QEMU_OPTION_no_hpet:
5375 no_hpet = 1;
5376 break;
5377 case QEMU_OPTION_balloon:
5378 if (balloon_parse(optarg) < 0) {
5379 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5380 exit(1);
5381 }
5382 break;
5383 #endif
5384 case QEMU_OPTION_no_reboot:
5385 no_reboot = 1;
5386 break;
5387 case QEMU_OPTION_no_shutdown:
5388 no_shutdown = 1;
5389 break;
5390 case QEMU_OPTION_show_cursor:
5391 cursor_hide = 0;
5392 break;
5393 case QEMU_OPTION_uuid:
5394 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5395 fprintf(stderr, "Fail to parse UUID string."
5396 " Wrong format.\n");
5397 exit(1);
5398 }
5399 break;
5400 #ifndef _WIN32
5401 case QEMU_OPTION_daemonize:
5402 daemonize = 1;
5403 break;
5404 #endif
5405 case QEMU_OPTION_option_rom:
5406 if (nb_option_roms >= MAX_OPTION_ROMS) {
5407 fprintf(stderr, "Too many option ROMs\n");
5408 exit(1);
5409 }
5410 option_rom[nb_option_roms] = optarg;
5411 nb_option_roms++;
5412 break;
5413 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5414 case QEMU_OPTION_semihosting:
5415 semihosting_enabled = 1;
5416 break;
5417 #endif
5418 case QEMU_OPTION_name:
5419 qemu_name = qemu_strdup(optarg);
5420 {
5421 char *p = strchr(qemu_name, ',');
5422 if (p != NULL) {
5423 *p++ = 0;
5424 if (strncmp(p, "process=", 8)) {
5425 fprintf(stderr, "Unknown subargument %s to -name", p);
5426 exit(1);
5427 }
5428 p += 8;
5429 set_proc_name(p);
5430 }
5431 }
5432 break;
5433 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5434 case QEMU_OPTION_prom_env:
5435 if (nb_prom_envs >= MAX_PROM_ENVS) {
5436 fprintf(stderr, "Too many prom variables\n");
5437 exit(1);
5438 }
5439 prom_envs[nb_prom_envs] = optarg;
5440 nb_prom_envs++;
5441 break;
5442 #endif
5443 #ifdef TARGET_ARM
5444 case QEMU_OPTION_old_param:
5445 old_param = 1;
5446 break;
5447 #endif
5448 case QEMU_OPTION_clock:
5449 configure_alarms(optarg);
5450 break;
5451 case QEMU_OPTION_startdate:
5452 configure_rtc_date_offset(optarg, 1);
5453 break;
5454 case QEMU_OPTION_rtc:
5455 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5456 if (!opts) {
5457 fprintf(stderr, "parse error: %s\n", optarg);
5458 exit(1);
5459 }
5460 configure_rtc(opts);
5461 break;
5462 case QEMU_OPTION_tb_size:
5463 tb_size = strtol(optarg, NULL, 0);
5464 if (tb_size < 0)
5465 tb_size = 0;
5466 break;
5467 case QEMU_OPTION_icount:
5468 use_icount = 1;
5469 if (strcmp(optarg, "auto") == 0) {
5470 icount_time_shift = -1;
5471 } else {
5472 icount_time_shift = strtol(optarg, NULL, 0);
5473 }
5474 break;
5475 case QEMU_OPTION_incoming:
5476 incoming = optarg;
5477 break;
5478 case QEMU_OPTION_nodefaults:
5479 default_serial = 0;
5480 default_parallel = 0;
5481 default_virtcon = 0;
5482 default_monitor = 0;
5483 default_vga = 0;
5484 default_net = 0;
5485 default_floppy = 0;
5486 default_cdrom = 0;
5487 default_sdcard = 0;
5488 break;
5489 #ifndef _WIN32
5490 case QEMU_OPTION_chroot:
5491 chroot_dir = optarg;
5492 break;
5493 case QEMU_OPTION_runas:
5494 run_as = optarg;
5495 break;
5496 #endif
5497 #ifdef CONFIG_XEN
5498 case QEMU_OPTION_xen_domid:
5499 xen_domid = atoi(optarg);
5500 break;
5501 case QEMU_OPTION_xen_create:
5502 xen_mode = XEN_CREATE;
5503 break;
5504 case QEMU_OPTION_xen_attach:
5505 xen_mode = XEN_ATTACH;
5506 break;
5507 #endif
5508 case QEMU_OPTION_readconfig:
5509 {
5510 FILE *fp;
5511 fp = fopen(optarg, "r");
5512 if (fp == NULL) {
5513 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5514 exit(1);
5515 }
5516 if (qemu_config_parse(fp) != 0) {
5517 exit(1);
5518 }
5519 fclose(fp);
5520 break;
5521 }
5522 case QEMU_OPTION_writeconfig:
5523 {
5524 FILE *fp;
5525 if (strcmp(optarg, "-") == 0) {
5526 fp = stdout;
5527 } else {
5528 fp = fopen(optarg, "w");
5529 if (fp == NULL) {
5530 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5531 exit(1);
5532 }
5533 }
5534 qemu_config_write(fp);
5535 fclose(fp);
5536 break;
5537 }
5538 }
5539 }
5540 }
5541
5542 /* If no data_dir is specified then try to find it relative to the
5543 executable path. */
5544 if (!data_dir) {
5545 data_dir = find_datadir(argv[0]);
5546 }
5547 /* If all else fails use the install patch specified when building. */
5548 if (!data_dir) {
5549 data_dir = CONFIG_QEMU_SHAREDIR;
5550 }
5551
5552 /*
5553 * Default to max_cpus = smp_cpus, in case the user doesn't
5554 * specify a max_cpus value.
5555 */
5556 if (!max_cpus)
5557 max_cpus = smp_cpus;
5558
5559 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5560 if (smp_cpus > machine->max_cpus) {
5561 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5562 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5563 machine->max_cpus);
5564 exit(1);
5565 }
5566
5567 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5568 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5569
5570 if (machine->no_serial) {
5571 default_serial = 0;
5572 }
5573 if (machine->no_parallel) {
5574 default_parallel = 0;
5575 }
5576 if (!machine->use_virtcon) {
5577 default_virtcon = 0;
5578 }
5579 if (machine->no_vga) {
5580 default_vga = 0;
5581 }
5582 if (machine->no_floppy) {
5583 default_floppy = 0;
5584 }
5585 if (machine->no_cdrom) {
5586 default_cdrom = 0;
5587 }
5588 if (machine->no_sdcard) {
5589 default_sdcard = 0;
5590 }
5591
5592 if (display_type == DT_NOGRAPHIC) {
5593 if (default_parallel)
5594 add_device_config(DEV_PARALLEL, "null");
5595 if (default_serial && default_monitor) {
5596 add_device_config(DEV_SERIAL, "mon:stdio");
5597 } else if (default_virtcon && default_monitor) {
5598 add_device_config(DEV_VIRTCON, "mon:stdio");
5599 } else {
5600 if (default_serial)
5601 add_device_config(DEV_SERIAL, "stdio");
5602 if (default_virtcon)
5603 add_device_config(DEV_VIRTCON, "stdio");
5604 if (default_monitor)
5605 monitor_parse("stdio", "readline");
5606 }
5607 } else {
5608 if (default_serial)
5609 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5610 if (default_parallel)
5611 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5612 if (default_monitor)
5613 monitor_parse("vc:80Cx24C", "readline");
5614 if (default_virtcon)
5615 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5616 }
5617 if (default_vga)
5618 vga_interface_type = VGA_CIRRUS;
5619
5620 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5621 exit(1);
5622
5623 #ifndef _WIN32
5624 if (daemonize) {
5625 pid_t pid;
5626
5627 if (pipe(fds) == -1)
5628 exit(1);
5629
5630 pid = fork();
5631 if (pid > 0) {
5632 uint8_t status;
5633 ssize_t len;
5634
5635 close(fds[1]);
5636
5637 again:
5638 len = read(fds[0], &status, 1);
5639 if (len == -1 && (errno == EINTR))
5640 goto again;
5641
5642 if (len != 1)
5643 exit(1);
5644 else if (status == 1) {
5645 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5646 exit(1);
5647 } else
5648 exit(0);
5649 } else if (pid < 0)
5650 exit(1);
5651
5652 close(fds[0]);
5653 qemu_set_cloexec(fds[1]);
5654
5655 setsid();
5656
5657 pid = fork();
5658 if (pid > 0)
5659 exit(0);
5660 else if (pid < 0)
5661 exit(1);
5662
5663 umask(027);
5664
5665 signal(SIGTSTP, SIG_IGN);
5666 signal(SIGTTOU, SIG_IGN);
5667 signal(SIGTTIN, SIG_IGN);
5668 }
5669 #endif
5670
5671 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5672 #ifndef _WIN32
5673 if (daemonize) {
5674 uint8_t status = 1;
5675 if (write(fds[1], &status, 1) != 1) {
5676 perror("daemonize. Writing to pipe\n");
5677 }
5678 } else
5679 #endif
5680 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5681 exit(1);
5682 }
5683
5684 if (kvm_enabled()) {
5685 int ret;
5686
5687 ret = kvm_init(smp_cpus);
5688 if (ret < 0) {
5689 fprintf(stderr, "failed to initialize KVM\n");
5690 exit(1);
5691 }
5692 }
5693
5694 if (qemu_init_main_loop()) {
5695 fprintf(stderr, "qemu_init_main_loop failed\n");
5696 exit(1);
5697 }
5698 linux_boot = (kernel_filename != NULL);
5699
5700 if (!linux_boot && *kernel_cmdline != '\0') {
5701 fprintf(stderr, "-append only allowed with -kernel option\n");
5702 exit(1);
5703 }
5704
5705 if (!linux_boot && initrd_filename != NULL) {
5706 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5707 exit(1);
5708 }
5709
5710 #ifndef _WIN32
5711 /* Win32 doesn't support line-buffering and requires size >= 2 */
5712 setvbuf(stdout, NULL, _IOLBF, 0);
5713 #endif
5714
5715 if (init_timer_alarm() < 0) {
5716 fprintf(stderr, "could not initialize alarm timer\n");
5717 exit(1);
5718 }
5719 if (use_icount && icount_time_shift < 0) {
5720 use_icount = 2;
5721 /* 125MIPS seems a reasonable initial guess at the guest speed.
5722 It will be corrected fairly quickly anyway. */
5723 icount_time_shift = 3;
5724 init_icount_adjust();
5725 }
5726
5727 #ifdef _WIN32
5728 socket_init();
5729 #endif
5730
5731 if (net_init_clients() < 0) {
5732 exit(1);
5733 }
5734
5735 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5736 net_set_boot_mask(net_boot);
5737
5738 /* init the bluetooth world */
5739 if (foreach_device_config(DEV_BT, bt_parse))
5740 exit(1);
5741
5742 /* init the memory */
5743 if (ram_size == 0)
5744 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5745
5746 /* init the dynamic translator */
5747 cpu_exec_init_all(tb_size * 1024 * 1024);
5748
5749 bdrv_init_with_whitelist();
5750
5751 blk_mig_init();
5752
5753 if (default_cdrom) {
5754 /* we always create the cdrom drive, even if no disk is there */
5755 drive_add(NULL, CDROM_ALIAS);
5756 }
5757
5758 if (default_floppy) {
5759 /* we always create at least one floppy */
5760 drive_add(NULL, FD_ALIAS, 0);
5761 }
5762
5763 if (default_sdcard) {
5764 /* we always create one sd slot, even if no card is in it */
5765 drive_add(NULL, SD_ALIAS);
5766 }
5767
5768 /* open the virtual block devices */
5769 if (snapshot)
5770 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5771 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5772 exit(1);
5773
5774 vmstate_register(0, &vmstate_timers ,&timers_state);
5775 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5776 ram_load, NULL);
5777
5778 if (nb_numa_nodes > 0) {
5779 int i;
5780
5781 if (nb_numa_nodes > smp_cpus) {
5782 nb_numa_nodes = smp_cpus;
5783 }
5784
5785 /* If no memory size if given for any node, assume the default case
5786 * and distribute the available memory equally across all nodes
5787 */
5788 for (i = 0; i < nb_numa_nodes; i++) {
5789 if (node_mem[i] != 0)
5790 break;
5791 }
5792 if (i == nb_numa_nodes) {
5793 uint64_t usedmem = 0;
5794
5795 /* On Linux, the each node's border has to be 8MB aligned,
5796 * the final node gets the rest.
5797 */
5798 for (i = 0; i < nb_numa_nodes - 1; i++) {
5799 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5800 usedmem += node_mem[i];
5801 }
5802 node_mem[i] = ram_size - usedmem;
5803 }
5804
5805 for (i = 0; i < nb_numa_nodes; i++) {
5806 if (node_cpumask[i] != 0)
5807 break;
5808 }
5809 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5810 * must cope with this anyway, because there are BIOSes out there in
5811 * real machines which also use this scheme.
5812 */
5813 if (i == nb_numa_nodes) {
5814 for (i = 0; i < smp_cpus; i++) {
5815 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5816 }
5817 }
5818 }
5819
5820 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5821 exit(1);
5822 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5823 exit(1);
5824 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5825 exit(1);
5826 if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
5827 exit(1);
5828
5829 module_call_init(MODULE_INIT_DEVICE);
5830
5831 if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0)
5832 exit(0);
5833
5834 if (watchdog) {
5835 i = select_watchdog(watchdog);
5836 if (i > 0)
5837 exit (i == 1 ? 1 : 0);
5838 }
5839
5840 if (machine->compat_props) {
5841 qdev_prop_register_global_list(machine->compat_props);
5842 }
5843 qemu_add_globals();
5844
5845 machine->init(ram_size, boot_devices,
5846 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5847
5848
5849 #ifndef _WIN32
5850 /* must be after terminal init, SDL library changes signal handlers */
5851 sighandler_setup();
5852 #endif
5853
5854 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5855 for (i = 0; i < nb_numa_nodes; i++) {
5856 if (node_cpumask[i] & (1 << env->cpu_index)) {
5857 env->numa_node = i;
5858 }
5859 }
5860 }
5861
5862 current_machine = machine;
5863
5864 /* init USB devices */
5865 if (usb_enabled) {
5866 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5867 exit(1);
5868 }
5869
5870 /* init generic devices */
5871 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5872 exit(1);
5873
5874 if (!display_state)
5875 dumb_display_init();
5876 /* just use the first displaystate for the moment */
5877 ds = display_state;
5878
5879 if (display_type == DT_DEFAULT) {
5880 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5881 display_type = DT_SDL;
5882 #else
5883 display_type = DT_VNC;
5884 vnc_display = "localhost:0,to=99";
5885 show_vnc_port = 1;
5886 #endif
5887 }
5888
5889
5890 switch (display_type) {
5891 case DT_NOGRAPHIC:
5892 break;
5893 #if defined(CONFIG_CURSES)
5894 case DT_CURSES:
5895 curses_display_init(ds, full_screen);
5896 break;
5897 #endif
5898 #if defined(CONFIG_SDL)
5899 case DT_SDL:
5900 sdl_display_init(ds, full_screen, no_frame);
5901 break;
5902 #elif defined(CONFIG_COCOA)
5903 case DT_SDL:
5904 cocoa_display_init(ds, full_screen);
5905 break;
5906 #endif
5907 case DT_VNC:
5908 vnc_display_init(ds);
5909 if (vnc_display_open(ds, vnc_display) < 0)
5910 exit(1);
5911
5912 if (show_vnc_port) {
5913 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5914 }
5915 break;
5916 default:
5917 break;
5918 }
5919 dpy_resize(ds);
5920
5921 dcl = ds->listeners;
5922 while (dcl != NULL) {
5923 if (dcl->dpy_refresh != NULL) {
5924 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5925 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5926 }
5927 dcl = dcl->next;
5928 }
5929
5930 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5931 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5932 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5933 }
5934
5935 text_consoles_set_display(display_state);
5936
5937 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
5938 exit(1);
5939
5940 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5941 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5942 gdbstub_dev);
5943 exit(1);
5944 }
5945
5946 qdev_machine_creation_done();
5947
5948 if (rom_load_all() != 0) {
5949 fprintf(stderr, "rom loading failed\n");
5950 exit(1);
5951 }
5952
5953 qemu_system_reset();
5954 if (loadvm) {
5955 if (load_vmstate(cur_mon, loadvm) < 0) {
5956 autostart = 0;
5957 }
5958 }
5959
5960 if (incoming) {
5961 qemu_start_incoming_migration(incoming);
5962 } else if (autostart) {
5963 vm_start();
5964 }
5965
5966 #ifndef _WIN32
5967 if (daemonize) {
5968 uint8_t status = 0;
5969 ssize_t len;
5970
5971 again1:
5972 len = write(fds[1], &status, 1);
5973 if (len == -1 && (errno == EINTR))
5974 goto again1;
5975
5976 if (len != 1)
5977 exit(1);
5978
5979 if (chdir("/")) {
5980 perror("not able to chdir to /");
5981 exit(1);
5982 }
5983 TFR(fd = qemu_open("/dev/null", O_RDWR));
5984 if (fd == -1)
5985 exit(1);
5986 }
5987
5988 if (run_as) {
5989 pwd = getpwnam(run_as);
5990 if (!pwd) {
5991 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5992 exit(1);
5993 }
5994 }
5995
5996 if (chroot_dir) {
5997 if (chroot(chroot_dir) < 0) {
5998 fprintf(stderr, "chroot failed\n");
5999 exit(1);
6000 }
6001 if (chdir("/")) {
6002 perror("not able to chdir to /");
6003 exit(1);
6004 }
6005 }
6006
6007 if (run_as) {
6008 if (setgid(pwd->pw_gid) < 0) {
6009 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6010 exit(1);
6011 }
6012 if (setuid(pwd->pw_uid) < 0) {
6013 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6014 exit(1);
6015 }
6016 if (setuid(0) != -1) {
6017 fprintf(stderr, "Dropping privileges failed\n");
6018 exit(1);
6019 }
6020 }
6021
6022 if (daemonize) {
6023 dup2(fd, 0);
6024 dup2(fd, 1);
6025 dup2(fd, 2);
6026
6027 close(fd);
6028 }
6029 #endif
6030
6031 main_loop();
6032 quit_timers();
6033 net_cleanup();
6034
6035 return 0;
6036 }