]> git.proxmox.com Git - qemu.git/blob - vl.c
removed unused code
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
48
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
76
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
81
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
104
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
108
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <mmsystem.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
116
117 #include "qemu_socket.h"
118
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
124
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
129
130 #include "disas.h"
131
132 #include "exec-all.h"
133
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
141
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
144
145 #ifdef TARGET_PPC
146 #define DEFAULT_RAM_SIZE 144
147 #else
148 #define DEFAULT_RAM_SIZE 128
149 #endif
150 /* in ms */
151 #define GUI_REFRESH_INTERVAL 30
152
153 /* Max number of USB devices that can be specified on the commandline. */
154 #define MAX_USB_CMDLINE 8
155
156 /* XXX: use a two level table to limit memory usage */
157 #define MAX_IOPORTS 65536
158
159 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
160 const char *bios_name = NULL;
161 void *ioport_opaque[MAX_IOPORTS];
162 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
163 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
164 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
165 to store the VM snapshots */
166 DriveInfo drives_table[MAX_DRIVES+1];
167 int nb_drives;
168 /* point to the block driver where the snapshots are managed */
169 BlockDriverState *bs_snapshots;
170 int vga_ram_size;
171 static DisplayState display_state;
172 int nographic;
173 int curses;
174 const char* keyboard_layout = NULL;
175 int64_t ticks_per_sec;
176 ram_addr_t ram_size;
177 int pit_min_timer_count = 0;
178 int nb_nics;
179 NICInfo nd_table[MAX_NICS];
180 int vm_running;
181 static int rtc_utc = 1;
182 static int rtc_date_offset = -1; /* -1 means no change */
183 int cirrus_vga_enabled = 1;
184 int vmsvga_enabled = 0;
185 #ifdef TARGET_SPARC
186 int graphic_width = 1024;
187 int graphic_height = 768;
188 int graphic_depth = 8;
189 #else
190 int graphic_width = 800;
191 int graphic_height = 600;
192 int graphic_depth = 15;
193 #endif
194 int full_screen = 0;
195 int no_frame = 0;
196 int no_quit = 0;
197 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
198 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
199 #ifdef TARGET_I386
200 int win2k_install_hack = 0;
201 #endif
202 int usb_enabled = 0;
203 static VLANState *first_vlan;
204 int smp_cpus = 1;
205 const char *vnc_display;
206 #if defined(TARGET_SPARC)
207 #define MAX_CPUS 16
208 #elif defined(TARGET_I386)
209 #define MAX_CPUS 255
210 #else
211 #define MAX_CPUS 1
212 #endif
213 int acpi_enabled = 1;
214 int fd_bootchk = 1;
215 int no_reboot = 0;
216 int no_shutdown = 0;
217 int cursor_hide = 1;
218 int graphic_rotate = 0;
219 int daemonize = 0;
220 const char *option_rom[MAX_OPTION_ROMS];
221 int nb_option_roms;
222 int semihosting_enabled = 0;
223 int autostart = 1;
224 #ifdef TARGET_ARM
225 int old_param = 0;
226 #endif
227 const char *qemu_name;
228 int alt_grab = 0;
229 #ifdef TARGET_SPARC
230 unsigned int nb_prom_envs = 0;
231 const char *prom_envs[MAX_PROM_ENVS];
232 #endif
233 int nb_drives_opt;
234 struct drive_opt {
235 const char *file;
236 char opt[1024];
237 } drives_opt[MAX_DRIVES];
238
239 static CPUState *cur_cpu;
240 static CPUState *next_cpu;
241 static int event_pending = 1;
242
243 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
244
245 /***********************************************************/
246 /* x86 ISA bus support */
247
248 target_phys_addr_t isa_mem_base = 0;
249 PicState2 *isa_pic;
250
251 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
252 {
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused inb: port=0x%04x\n", address);
255 #endif
256 return 0xff;
257 }
258
259 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
260 {
261 #ifdef DEBUG_UNUSED_IOPORT
262 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
263 #endif
264 }
265
266 /* default is to make two byte accesses */
267 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
268 {
269 uint32_t data;
270 data = ioport_read_table[0][address](ioport_opaque[address], address);
271 address = (address + 1) & (MAX_IOPORTS - 1);
272 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
273 return data;
274 }
275
276 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
277 {
278 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
279 address = (address + 1) & (MAX_IOPORTS - 1);
280 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
281 }
282
283 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
284 {
285 #ifdef DEBUG_UNUSED_IOPORT
286 fprintf(stderr, "unused inl: port=0x%04x\n", address);
287 #endif
288 return 0xffffffff;
289 }
290
291 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
292 {
293 #ifdef DEBUG_UNUSED_IOPORT
294 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
295 #endif
296 }
297
298 static void init_ioports(void)
299 {
300 int i;
301
302 for(i = 0; i < MAX_IOPORTS; i++) {
303 ioport_read_table[0][i] = default_ioport_readb;
304 ioport_write_table[0][i] = default_ioport_writeb;
305 ioport_read_table[1][i] = default_ioport_readw;
306 ioport_write_table[1][i] = default_ioport_writew;
307 ioport_read_table[2][i] = default_ioport_readl;
308 ioport_write_table[2][i] = default_ioport_writel;
309 }
310 }
311
312 /* size is the word size in byte */
313 int register_ioport_read(int start, int length, int size,
314 IOPortReadFunc *func, void *opaque)
315 {
316 int i, bsize;
317
318 if (size == 1) {
319 bsize = 0;
320 } else if (size == 2) {
321 bsize = 1;
322 } else if (size == 4) {
323 bsize = 2;
324 } else {
325 hw_error("register_ioport_read: invalid size");
326 return -1;
327 }
328 for(i = start; i < start + length; i += size) {
329 ioport_read_table[bsize][i] = func;
330 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
331 hw_error("register_ioport_read: invalid opaque");
332 ioport_opaque[i] = opaque;
333 }
334 return 0;
335 }
336
337 /* size is the word size in byte */
338 int register_ioport_write(int start, int length, int size,
339 IOPortWriteFunc *func, void *opaque)
340 {
341 int i, bsize;
342
343 if (size == 1) {
344 bsize = 0;
345 } else if (size == 2) {
346 bsize = 1;
347 } else if (size == 4) {
348 bsize = 2;
349 } else {
350 hw_error("register_ioport_write: invalid size");
351 return -1;
352 }
353 for(i = start; i < start + length; i += size) {
354 ioport_write_table[bsize][i] = func;
355 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
356 hw_error("register_ioport_write: invalid opaque");
357 ioport_opaque[i] = opaque;
358 }
359 return 0;
360 }
361
362 void isa_unassign_ioport(int start, int length)
363 {
364 int i;
365
366 for(i = start; i < start + length; i++) {
367 ioport_read_table[0][i] = default_ioport_readb;
368 ioport_read_table[1][i] = default_ioport_readw;
369 ioport_read_table[2][i] = default_ioport_readl;
370
371 ioport_write_table[0][i] = default_ioport_writeb;
372 ioport_write_table[1][i] = default_ioport_writew;
373 ioport_write_table[2][i] = default_ioport_writel;
374 }
375 }
376
377 /***********************************************************/
378
379 void cpu_outb(CPUState *env, int addr, int val)
380 {
381 #ifdef DEBUG_IOPORT
382 if (loglevel & CPU_LOG_IOPORT)
383 fprintf(logfile, "outb: %04x %02x\n", addr, val);
384 #endif
385 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
390 }
391
392 void cpu_outw(CPUState *env, int addr, int val)
393 {
394 #ifdef DEBUG_IOPORT
395 if (loglevel & CPU_LOG_IOPORT)
396 fprintf(logfile, "outw: %04x %04x\n", addr, val);
397 #endif
398 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
399 #ifdef USE_KQEMU
400 if (env)
401 env->last_io_time = cpu_get_time_fast();
402 #endif
403 }
404
405 void cpu_outl(CPUState *env, int addr, int val)
406 {
407 #ifdef DEBUG_IOPORT
408 if (loglevel & CPU_LOG_IOPORT)
409 fprintf(logfile, "outl: %04x %08x\n", addr, val);
410 #endif
411 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
412 #ifdef USE_KQEMU
413 if (env)
414 env->last_io_time = cpu_get_time_fast();
415 #endif
416 }
417
418 int cpu_inb(CPUState *env, int addr)
419 {
420 int val;
421 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
422 #ifdef DEBUG_IOPORT
423 if (loglevel & CPU_LOG_IOPORT)
424 fprintf(logfile, "inb : %04x %02x\n", addr, val);
425 #endif
426 #ifdef USE_KQEMU
427 if (env)
428 env->last_io_time = cpu_get_time_fast();
429 #endif
430 return val;
431 }
432
433 int cpu_inw(CPUState *env, int addr)
434 {
435 int val;
436 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
437 #ifdef DEBUG_IOPORT
438 if (loglevel & CPU_LOG_IOPORT)
439 fprintf(logfile, "inw : %04x %04x\n", addr, val);
440 #endif
441 #ifdef USE_KQEMU
442 if (env)
443 env->last_io_time = cpu_get_time_fast();
444 #endif
445 return val;
446 }
447
448 int cpu_inl(CPUState *env, int addr)
449 {
450 int val;
451 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
452 #ifdef DEBUG_IOPORT
453 if (loglevel & CPU_LOG_IOPORT)
454 fprintf(logfile, "inl : %04x %08x\n", addr, val);
455 #endif
456 #ifdef USE_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 return val;
461 }
462
463 /***********************************************************/
464 void hw_error(const char *fmt, ...)
465 {
466 va_list ap;
467 CPUState *env;
468
469 va_start(ap, fmt);
470 fprintf(stderr, "qemu: hardware error: ");
471 vfprintf(stderr, fmt, ap);
472 fprintf(stderr, "\n");
473 for(env = first_cpu; env != NULL; env = env->next_cpu) {
474 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
475 #ifdef TARGET_I386
476 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
477 #else
478 cpu_dump_state(env, stderr, fprintf, 0);
479 #endif
480 }
481 va_end(ap);
482 abort();
483 }
484
485 /***********************************************************/
486 /* keyboard/mouse */
487
488 static QEMUPutKBDEvent *qemu_put_kbd_event;
489 static void *qemu_put_kbd_event_opaque;
490 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
491 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
492
493 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
494 {
495 qemu_put_kbd_event_opaque = opaque;
496 qemu_put_kbd_event = func;
497 }
498
499 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
500 void *opaque, int absolute,
501 const char *name)
502 {
503 QEMUPutMouseEntry *s, *cursor;
504
505 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
506 if (!s)
507 return NULL;
508
509 s->qemu_put_mouse_event = func;
510 s->qemu_put_mouse_event_opaque = opaque;
511 s->qemu_put_mouse_event_absolute = absolute;
512 s->qemu_put_mouse_event_name = qemu_strdup(name);
513 s->next = NULL;
514
515 if (!qemu_put_mouse_event_head) {
516 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
517 return s;
518 }
519
520 cursor = qemu_put_mouse_event_head;
521 while (cursor->next != NULL)
522 cursor = cursor->next;
523
524 cursor->next = s;
525 qemu_put_mouse_event_current = s;
526
527 return s;
528 }
529
530 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
531 {
532 QEMUPutMouseEntry *prev = NULL, *cursor;
533
534 if (!qemu_put_mouse_event_head || entry == NULL)
535 return;
536
537 cursor = qemu_put_mouse_event_head;
538 while (cursor != NULL && cursor != entry) {
539 prev = cursor;
540 cursor = cursor->next;
541 }
542
543 if (cursor == NULL) // does not exist or list empty
544 return;
545 else if (prev == NULL) { // entry is head
546 qemu_put_mouse_event_head = cursor->next;
547 if (qemu_put_mouse_event_current == entry)
548 qemu_put_mouse_event_current = cursor->next;
549 qemu_free(entry->qemu_put_mouse_event_name);
550 qemu_free(entry);
551 return;
552 }
553
554 prev->next = entry->next;
555
556 if (qemu_put_mouse_event_current == entry)
557 qemu_put_mouse_event_current = prev;
558
559 qemu_free(entry->qemu_put_mouse_event_name);
560 qemu_free(entry);
561 }
562
563 void kbd_put_keycode(int keycode)
564 {
565 if (qemu_put_kbd_event) {
566 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
567 }
568 }
569
570 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
571 {
572 QEMUPutMouseEvent *mouse_event;
573 void *mouse_event_opaque;
574 int width;
575
576 if (!qemu_put_mouse_event_current) {
577 return;
578 }
579
580 mouse_event =
581 qemu_put_mouse_event_current->qemu_put_mouse_event;
582 mouse_event_opaque =
583 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
584
585 if (mouse_event) {
586 if (graphic_rotate) {
587 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
588 width = 0x7fff;
589 else
590 width = graphic_width - 1;
591 mouse_event(mouse_event_opaque,
592 width - dy, dx, dz, buttons_state);
593 } else
594 mouse_event(mouse_event_opaque,
595 dx, dy, dz, buttons_state);
596 }
597 }
598
599 int kbd_mouse_is_absolute(void)
600 {
601 if (!qemu_put_mouse_event_current)
602 return 0;
603
604 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
605 }
606
607 void do_info_mice(void)
608 {
609 QEMUPutMouseEntry *cursor;
610 int index = 0;
611
612 if (!qemu_put_mouse_event_head) {
613 term_printf("No mouse devices connected\n");
614 return;
615 }
616
617 term_printf("Mouse devices available:\n");
618 cursor = qemu_put_mouse_event_head;
619 while (cursor != NULL) {
620 term_printf("%c Mouse #%d: %s\n",
621 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
622 index, cursor->qemu_put_mouse_event_name);
623 index++;
624 cursor = cursor->next;
625 }
626 }
627
628 void do_mouse_set(int index)
629 {
630 QEMUPutMouseEntry *cursor;
631 int i = 0;
632
633 if (!qemu_put_mouse_event_head) {
634 term_printf("No mouse devices connected\n");
635 return;
636 }
637
638 cursor = qemu_put_mouse_event_head;
639 while (cursor != NULL && index != i) {
640 i++;
641 cursor = cursor->next;
642 }
643
644 if (cursor != NULL)
645 qemu_put_mouse_event_current = cursor;
646 else
647 term_printf("Mouse at given index not found\n");
648 }
649
650 /* compute with 96 bit intermediate result: (a*b)/c */
651 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
652 {
653 union {
654 uint64_t ll;
655 struct {
656 #ifdef WORDS_BIGENDIAN
657 uint32_t high, low;
658 #else
659 uint32_t low, high;
660 #endif
661 } l;
662 } u, res;
663 uint64_t rl, rh;
664
665 u.ll = a;
666 rl = (uint64_t)u.l.low * (uint64_t)b;
667 rh = (uint64_t)u.l.high * (uint64_t)b;
668 rh += (rl >> 32);
669 res.l.high = rh / c;
670 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
671 return res.ll;
672 }
673
674 /***********************************************************/
675 /* real time host monotonic timer */
676
677 #define QEMU_TIMER_BASE 1000000000LL
678
679 #ifdef WIN32
680
681 static int64_t clock_freq;
682
683 static void init_get_clock(void)
684 {
685 LARGE_INTEGER freq;
686 int ret;
687 ret = QueryPerformanceFrequency(&freq);
688 if (ret == 0) {
689 fprintf(stderr, "Could not calibrate ticks\n");
690 exit(1);
691 }
692 clock_freq = freq.QuadPart;
693 }
694
695 static int64_t get_clock(void)
696 {
697 LARGE_INTEGER ti;
698 QueryPerformanceCounter(&ti);
699 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
700 }
701
702 #else
703
704 static int use_rt_clock;
705
706 static void init_get_clock(void)
707 {
708 use_rt_clock = 0;
709 #if defined(__linux__)
710 {
711 struct timespec ts;
712 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
713 use_rt_clock = 1;
714 }
715 }
716 #endif
717 }
718
719 static int64_t get_clock(void)
720 {
721 #if defined(__linux__)
722 if (use_rt_clock) {
723 struct timespec ts;
724 clock_gettime(CLOCK_MONOTONIC, &ts);
725 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
726 } else
727 #endif
728 {
729 /* XXX: using gettimeofday leads to problems if the date
730 changes, so it should be avoided. */
731 struct timeval tv;
732 gettimeofday(&tv, NULL);
733 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
734 }
735 }
736
737 #endif
738
739 /***********************************************************/
740 /* guest cycle counter */
741
742 static int64_t cpu_ticks_prev;
743 static int64_t cpu_ticks_offset;
744 static int64_t cpu_clock_offset;
745 static int cpu_ticks_enabled;
746
747 /* return the host CPU cycle counter and handle stop/restart */
748 int64_t cpu_get_ticks(void)
749 {
750 if (!cpu_ticks_enabled) {
751 return cpu_ticks_offset;
752 } else {
753 int64_t ticks;
754 ticks = cpu_get_real_ticks();
755 if (cpu_ticks_prev > ticks) {
756 /* Note: non increasing ticks may happen if the host uses
757 software suspend */
758 cpu_ticks_offset += cpu_ticks_prev - ticks;
759 }
760 cpu_ticks_prev = ticks;
761 return ticks + cpu_ticks_offset;
762 }
763 }
764
765 /* return the host CPU monotonic timer and handle stop/restart */
766 static int64_t cpu_get_clock(void)
767 {
768 int64_t ti;
769 if (!cpu_ticks_enabled) {
770 return cpu_clock_offset;
771 } else {
772 ti = get_clock();
773 return ti + cpu_clock_offset;
774 }
775 }
776
777 /* enable cpu_get_ticks() */
778 void cpu_enable_ticks(void)
779 {
780 if (!cpu_ticks_enabled) {
781 cpu_ticks_offset -= cpu_get_real_ticks();
782 cpu_clock_offset -= get_clock();
783 cpu_ticks_enabled = 1;
784 }
785 }
786
787 /* disable cpu_get_ticks() : the clock is stopped. You must not call
788 cpu_get_ticks() after that. */
789 void cpu_disable_ticks(void)
790 {
791 if (cpu_ticks_enabled) {
792 cpu_ticks_offset = cpu_get_ticks();
793 cpu_clock_offset = cpu_get_clock();
794 cpu_ticks_enabled = 0;
795 }
796 }
797
798 /***********************************************************/
799 /* timers */
800
801 #define QEMU_TIMER_REALTIME 0
802 #define QEMU_TIMER_VIRTUAL 1
803
804 struct QEMUClock {
805 int type;
806 /* XXX: add frequency */
807 };
808
809 struct QEMUTimer {
810 QEMUClock *clock;
811 int64_t expire_time;
812 QEMUTimerCB *cb;
813 void *opaque;
814 struct QEMUTimer *next;
815 };
816
817 struct qemu_alarm_timer {
818 char const *name;
819 unsigned int flags;
820
821 int (*start)(struct qemu_alarm_timer *t);
822 void (*stop)(struct qemu_alarm_timer *t);
823 void (*rearm)(struct qemu_alarm_timer *t);
824 void *priv;
825 };
826
827 #define ALARM_FLAG_DYNTICKS 0x1
828 #define ALARM_FLAG_EXPIRED 0x2
829
830 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
831 {
832 return t->flags & ALARM_FLAG_DYNTICKS;
833 }
834
835 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
836 {
837 if (!alarm_has_dynticks(t))
838 return;
839
840 t->rearm(t);
841 }
842
843 /* TODO: MIN_TIMER_REARM_US should be optimized */
844 #define MIN_TIMER_REARM_US 250
845
846 static struct qemu_alarm_timer *alarm_timer;
847
848 #ifdef _WIN32
849
850 struct qemu_alarm_win32 {
851 MMRESULT timerId;
852 HANDLE host_alarm;
853 unsigned int period;
854 } alarm_win32_data = {0, NULL, -1};
855
856 static int win32_start_timer(struct qemu_alarm_timer *t);
857 static void win32_stop_timer(struct qemu_alarm_timer *t);
858 static void win32_rearm_timer(struct qemu_alarm_timer *t);
859
860 #else
861
862 static int unix_start_timer(struct qemu_alarm_timer *t);
863 static void unix_stop_timer(struct qemu_alarm_timer *t);
864
865 #ifdef __linux__
866
867 static int dynticks_start_timer(struct qemu_alarm_timer *t);
868 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
869 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
870
871 static int hpet_start_timer(struct qemu_alarm_timer *t);
872 static void hpet_stop_timer(struct qemu_alarm_timer *t);
873
874 static int rtc_start_timer(struct qemu_alarm_timer *t);
875 static void rtc_stop_timer(struct qemu_alarm_timer *t);
876
877 #endif /* __linux__ */
878
879 #endif /* _WIN32 */
880
881 static struct qemu_alarm_timer alarm_timers[] = {
882 #ifndef _WIN32
883 #ifdef __linux__
884 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
885 dynticks_stop_timer, dynticks_rearm_timer, NULL},
886 /* HPET - if available - is preferred */
887 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
888 /* ...otherwise try RTC */
889 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
890 #endif
891 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
892 #else
893 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
894 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
895 {"win32", 0, win32_start_timer,
896 win32_stop_timer, NULL, &alarm_win32_data},
897 #endif
898 {NULL, }
899 };
900
901 static void show_available_alarms(void)
902 {
903 int i;
904
905 printf("Available alarm timers, in order of precedence:\n");
906 for (i = 0; alarm_timers[i].name; i++)
907 printf("%s\n", alarm_timers[i].name);
908 }
909
910 static void configure_alarms(char const *opt)
911 {
912 int i;
913 int cur = 0;
914 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
915 char *arg;
916 char *name;
917
918 if (!strcmp(opt, "?")) {
919 show_available_alarms();
920 exit(0);
921 }
922
923 arg = strdup(opt);
924
925 /* Reorder the array */
926 name = strtok(arg, ",");
927 while (name) {
928 struct qemu_alarm_timer tmp;
929
930 for (i = 0; i < count && alarm_timers[i].name; i++) {
931 if (!strcmp(alarm_timers[i].name, name))
932 break;
933 }
934
935 if (i == count) {
936 fprintf(stderr, "Unknown clock %s\n", name);
937 goto next;
938 }
939
940 if (i < cur)
941 /* Ignore */
942 goto next;
943
944 /* Swap */
945 tmp = alarm_timers[i];
946 alarm_timers[i] = alarm_timers[cur];
947 alarm_timers[cur] = tmp;
948
949 cur++;
950 next:
951 name = strtok(NULL, ",");
952 }
953
954 free(arg);
955
956 if (cur) {
957 /* Disable remaining timers */
958 for (i = cur; i < count; i++)
959 alarm_timers[i].name = NULL;
960 } else {
961 show_available_alarms();
962 exit(1);
963 }
964 }
965
966 QEMUClock *rt_clock;
967 QEMUClock *vm_clock;
968
969 static QEMUTimer *active_timers[2];
970
971 static QEMUClock *qemu_new_clock(int type)
972 {
973 QEMUClock *clock;
974 clock = qemu_mallocz(sizeof(QEMUClock));
975 if (!clock)
976 return NULL;
977 clock->type = type;
978 return clock;
979 }
980
981 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
982 {
983 QEMUTimer *ts;
984
985 ts = qemu_mallocz(sizeof(QEMUTimer));
986 ts->clock = clock;
987 ts->cb = cb;
988 ts->opaque = opaque;
989 return ts;
990 }
991
992 void qemu_free_timer(QEMUTimer *ts)
993 {
994 qemu_free(ts);
995 }
996
997 /* stop a timer, but do not dealloc it */
998 void qemu_del_timer(QEMUTimer *ts)
999 {
1000 QEMUTimer **pt, *t;
1001
1002 /* NOTE: this code must be signal safe because
1003 qemu_timer_expired() can be called from a signal. */
1004 pt = &active_timers[ts->clock->type];
1005 for(;;) {
1006 t = *pt;
1007 if (!t)
1008 break;
1009 if (t == ts) {
1010 *pt = t->next;
1011 break;
1012 }
1013 pt = &t->next;
1014 }
1015 }
1016
1017 /* modify the current timer so that it will be fired when current_time
1018 >= expire_time. The corresponding callback will be called. */
1019 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1020 {
1021 QEMUTimer **pt, *t;
1022
1023 qemu_del_timer(ts);
1024
1025 /* add the timer in the sorted list */
1026 /* NOTE: this code must be signal safe because
1027 qemu_timer_expired() can be called from a signal. */
1028 pt = &active_timers[ts->clock->type];
1029 for(;;) {
1030 t = *pt;
1031 if (!t)
1032 break;
1033 if (t->expire_time > expire_time)
1034 break;
1035 pt = &t->next;
1036 }
1037 ts->expire_time = expire_time;
1038 ts->next = *pt;
1039 *pt = ts;
1040
1041 /* Rearm if necessary */
1042 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1043 pt == &active_timers[ts->clock->type])
1044 qemu_rearm_alarm_timer(alarm_timer);
1045 }
1046
1047 int qemu_timer_pending(QEMUTimer *ts)
1048 {
1049 QEMUTimer *t;
1050 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1051 if (t == ts)
1052 return 1;
1053 }
1054 return 0;
1055 }
1056
1057 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1058 {
1059 if (!timer_head)
1060 return 0;
1061 return (timer_head->expire_time <= current_time);
1062 }
1063
1064 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1065 {
1066 QEMUTimer *ts;
1067
1068 for(;;) {
1069 ts = *ptimer_head;
1070 if (!ts || ts->expire_time > current_time)
1071 break;
1072 /* remove timer from the list before calling the callback */
1073 *ptimer_head = ts->next;
1074 ts->next = NULL;
1075
1076 /* run the callback (the timer list can be modified) */
1077 ts->cb(ts->opaque);
1078 }
1079 }
1080
1081 int64_t qemu_get_clock(QEMUClock *clock)
1082 {
1083 switch(clock->type) {
1084 case QEMU_TIMER_REALTIME:
1085 return get_clock() / 1000000;
1086 default:
1087 case QEMU_TIMER_VIRTUAL:
1088 return cpu_get_clock();
1089 }
1090 }
1091
1092 static void init_timers(void)
1093 {
1094 init_get_clock();
1095 ticks_per_sec = QEMU_TIMER_BASE;
1096 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1097 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1098 }
1099
1100 /* save a timer */
1101 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1102 {
1103 uint64_t expire_time;
1104
1105 if (qemu_timer_pending(ts)) {
1106 expire_time = ts->expire_time;
1107 } else {
1108 expire_time = -1;
1109 }
1110 qemu_put_be64(f, expire_time);
1111 }
1112
1113 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1114 {
1115 uint64_t expire_time;
1116
1117 expire_time = qemu_get_be64(f);
1118 if (expire_time != -1) {
1119 qemu_mod_timer(ts, expire_time);
1120 } else {
1121 qemu_del_timer(ts);
1122 }
1123 }
1124
1125 static void timer_save(QEMUFile *f, void *opaque)
1126 {
1127 if (cpu_ticks_enabled) {
1128 hw_error("cannot save state if virtual timers are running");
1129 }
1130 qemu_put_be64(f, cpu_ticks_offset);
1131 qemu_put_be64(f, ticks_per_sec);
1132 qemu_put_be64(f, cpu_clock_offset);
1133 }
1134
1135 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1136 {
1137 if (version_id != 1 && version_id != 2)
1138 return -EINVAL;
1139 if (cpu_ticks_enabled) {
1140 return -EINVAL;
1141 }
1142 cpu_ticks_offset=qemu_get_be64(f);
1143 ticks_per_sec=qemu_get_be64(f);
1144 if (version_id == 2) {
1145 cpu_clock_offset=qemu_get_be64(f);
1146 }
1147 return 0;
1148 }
1149
1150 #ifdef _WIN32
1151 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1152 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1153 #else
1154 static void host_alarm_handler(int host_signum)
1155 #endif
1156 {
1157 #if 0
1158 #define DISP_FREQ 1000
1159 {
1160 static int64_t delta_min = INT64_MAX;
1161 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1162 static int count;
1163 ti = qemu_get_clock(vm_clock);
1164 if (last_clock != 0) {
1165 delta = ti - last_clock;
1166 if (delta < delta_min)
1167 delta_min = delta;
1168 if (delta > delta_max)
1169 delta_max = delta;
1170 delta_cum += delta;
1171 if (++count == DISP_FREQ) {
1172 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1173 muldiv64(delta_min, 1000000, ticks_per_sec),
1174 muldiv64(delta_max, 1000000, ticks_per_sec),
1175 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1176 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1177 count = 0;
1178 delta_min = INT64_MAX;
1179 delta_max = 0;
1180 delta_cum = 0;
1181 }
1182 }
1183 last_clock = ti;
1184 }
1185 #endif
1186 if (alarm_has_dynticks(alarm_timer) ||
1187 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1188 qemu_get_clock(vm_clock)) ||
1189 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1190 qemu_get_clock(rt_clock))) {
1191 #ifdef _WIN32
1192 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1193 SetEvent(data->host_alarm);
1194 #endif
1195 CPUState *env = next_cpu;
1196
1197 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1198
1199 if (env) {
1200 /* stop the currently executing cpu because a timer occured */
1201 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1202 #ifdef USE_KQEMU
1203 if (env->kqemu_enabled) {
1204 kqemu_cpu_interrupt(env);
1205 }
1206 #endif
1207 }
1208 event_pending = 1;
1209 }
1210 }
1211
1212 static uint64_t qemu_next_deadline(void)
1213 {
1214 int64_t nearest_delta_us = INT64_MAX;
1215 int64_t vmdelta_us;
1216
1217 if (active_timers[QEMU_TIMER_REALTIME])
1218 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1219 qemu_get_clock(rt_clock))*1000;
1220
1221 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1222 /* round up */
1223 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1224 qemu_get_clock(vm_clock)+999)/1000;
1225 if (vmdelta_us < nearest_delta_us)
1226 nearest_delta_us = vmdelta_us;
1227 }
1228
1229 /* Avoid arming the timer to negative, zero, or too low values */
1230 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1231 nearest_delta_us = MIN_TIMER_REARM_US;
1232
1233 return nearest_delta_us;
1234 }
1235
1236 #ifndef _WIN32
1237
1238 #if defined(__linux__)
1239
1240 #define RTC_FREQ 1024
1241
1242 static void enable_sigio_timer(int fd)
1243 {
1244 struct sigaction act;
1245
1246 /* timer signal */
1247 sigfillset(&act.sa_mask);
1248 act.sa_flags = 0;
1249 act.sa_handler = host_alarm_handler;
1250
1251 sigaction(SIGIO, &act, NULL);
1252 fcntl(fd, F_SETFL, O_ASYNC);
1253 fcntl(fd, F_SETOWN, getpid());
1254 }
1255
1256 static int hpet_start_timer(struct qemu_alarm_timer *t)
1257 {
1258 struct hpet_info info;
1259 int r, fd;
1260
1261 fd = open("/dev/hpet", O_RDONLY);
1262 if (fd < 0)
1263 return -1;
1264
1265 /* Set frequency */
1266 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1267 if (r < 0) {
1268 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1269 "error, but for better emulation accuracy type:\n"
1270 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1271 goto fail;
1272 }
1273
1274 /* Check capabilities */
1275 r = ioctl(fd, HPET_INFO, &info);
1276 if (r < 0)
1277 goto fail;
1278
1279 /* Enable periodic mode */
1280 r = ioctl(fd, HPET_EPI, 0);
1281 if (info.hi_flags && (r < 0))
1282 goto fail;
1283
1284 /* Enable interrupt */
1285 r = ioctl(fd, HPET_IE_ON, 0);
1286 if (r < 0)
1287 goto fail;
1288
1289 enable_sigio_timer(fd);
1290 t->priv = (void *)(long)fd;
1291
1292 return 0;
1293 fail:
1294 close(fd);
1295 return -1;
1296 }
1297
1298 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1299 {
1300 int fd = (long)t->priv;
1301
1302 close(fd);
1303 }
1304
1305 static int rtc_start_timer(struct qemu_alarm_timer *t)
1306 {
1307 int rtc_fd;
1308 unsigned long current_rtc_freq = 0;
1309
1310 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1311 if (rtc_fd < 0)
1312 return -1;
1313 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1314 if (current_rtc_freq != RTC_FREQ &&
1315 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1316 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1317 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1318 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1319 goto fail;
1320 }
1321 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1322 fail:
1323 close(rtc_fd);
1324 return -1;
1325 }
1326
1327 enable_sigio_timer(rtc_fd);
1328
1329 t->priv = (void *)(long)rtc_fd;
1330
1331 return 0;
1332 }
1333
1334 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1335 {
1336 int rtc_fd = (long)t->priv;
1337
1338 close(rtc_fd);
1339 }
1340
1341 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1342 {
1343 struct sigevent ev;
1344 timer_t host_timer;
1345 struct sigaction act;
1346
1347 sigfillset(&act.sa_mask);
1348 act.sa_flags = 0;
1349 act.sa_handler = host_alarm_handler;
1350
1351 sigaction(SIGALRM, &act, NULL);
1352
1353 ev.sigev_value.sival_int = 0;
1354 ev.sigev_notify = SIGEV_SIGNAL;
1355 ev.sigev_signo = SIGALRM;
1356
1357 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1358 perror("timer_create");
1359
1360 /* disable dynticks */
1361 fprintf(stderr, "Dynamic Ticks disabled\n");
1362
1363 return -1;
1364 }
1365
1366 t->priv = (void *)host_timer;
1367
1368 return 0;
1369 }
1370
1371 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1372 {
1373 timer_t host_timer = (timer_t)t->priv;
1374
1375 timer_delete(host_timer);
1376 }
1377
1378 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1379 {
1380 timer_t host_timer = (timer_t)t->priv;
1381 struct itimerspec timeout;
1382 int64_t nearest_delta_us = INT64_MAX;
1383 int64_t current_us;
1384
1385 if (!active_timers[QEMU_TIMER_REALTIME] &&
1386 !active_timers[QEMU_TIMER_VIRTUAL])
1387 return;
1388
1389 nearest_delta_us = qemu_next_deadline();
1390
1391 /* check whether a timer is already running */
1392 if (timer_gettime(host_timer, &timeout)) {
1393 perror("gettime");
1394 fprintf(stderr, "Internal timer error: aborting\n");
1395 exit(1);
1396 }
1397 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1398 if (current_us && current_us <= nearest_delta_us)
1399 return;
1400
1401 timeout.it_interval.tv_sec = 0;
1402 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1403 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1404 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1405 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1406 perror("settime");
1407 fprintf(stderr, "Internal timer error: aborting\n");
1408 exit(1);
1409 }
1410 }
1411
1412 #endif /* defined(__linux__) */
1413
1414 static int unix_start_timer(struct qemu_alarm_timer *t)
1415 {
1416 struct sigaction act;
1417 struct itimerval itv;
1418 int err;
1419
1420 /* timer signal */
1421 sigfillset(&act.sa_mask);
1422 act.sa_flags = 0;
1423 act.sa_handler = host_alarm_handler;
1424
1425 sigaction(SIGALRM, &act, NULL);
1426
1427 itv.it_interval.tv_sec = 0;
1428 /* for i386 kernel 2.6 to get 1 ms */
1429 itv.it_interval.tv_usec = 999;
1430 itv.it_value.tv_sec = 0;
1431 itv.it_value.tv_usec = 10 * 1000;
1432
1433 err = setitimer(ITIMER_REAL, &itv, NULL);
1434 if (err)
1435 return -1;
1436
1437 return 0;
1438 }
1439
1440 static void unix_stop_timer(struct qemu_alarm_timer *t)
1441 {
1442 struct itimerval itv;
1443
1444 memset(&itv, 0, sizeof(itv));
1445 setitimer(ITIMER_REAL, &itv, NULL);
1446 }
1447
1448 #endif /* !defined(_WIN32) */
1449
1450 #ifdef _WIN32
1451
1452 static int win32_start_timer(struct qemu_alarm_timer *t)
1453 {
1454 TIMECAPS tc;
1455 struct qemu_alarm_win32 *data = t->priv;
1456 UINT flags;
1457
1458 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1459 if (!data->host_alarm) {
1460 perror("Failed CreateEvent");
1461 return -1;
1462 }
1463
1464 memset(&tc, 0, sizeof(tc));
1465 timeGetDevCaps(&tc, sizeof(tc));
1466
1467 if (data->period < tc.wPeriodMin)
1468 data->period = tc.wPeriodMin;
1469
1470 timeBeginPeriod(data->period);
1471
1472 flags = TIME_CALLBACK_FUNCTION;
1473 if (alarm_has_dynticks(t))
1474 flags |= TIME_ONESHOT;
1475 else
1476 flags |= TIME_PERIODIC;
1477
1478 data->timerId = timeSetEvent(1, // interval (ms)
1479 data->period, // resolution
1480 host_alarm_handler, // function
1481 (DWORD)t, // parameter
1482 flags);
1483
1484 if (!data->timerId) {
1485 perror("Failed to initialize win32 alarm timer");
1486
1487 timeEndPeriod(data->period);
1488 CloseHandle(data->host_alarm);
1489 return -1;
1490 }
1491
1492 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1493
1494 return 0;
1495 }
1496
1497 static void win32_stop_timer(struct qemu_alarm_timer *t)
1498 {
1499 struct qemu_alarm_win32 *data = t->priv;
1500
1501 timeKillEvent(data->timerId);
1502 timeEndPeriod(data->period);
1503
1504 CloseHandle(data->host_alarm);
1505 }
1506
1507 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1508 {
1509 struct qemu_alarm_win32 *data = t->priv;
1510 uint64_t nearest_delta_us;
1511
1512 if (!active_timers[QEMU_TIMER_REALTIME] &&
1513 !active_timers[QEMU_TIMER_VIRTUAL])
1514 return;
1515
1516 nearest_delta_us = qemu_next_deadline();
1517 nearest_delta_us /= 1000;
1518
1519 timeKillEvent(data->timerId);
1520
1521 data->timerId = timeSetEvent(1,
1522 data->period,
1523 host_alarm_handler,
1524 (DWORD)t,
1525 TIME_ONESHOT | TIME_PERIODIC);
1526
1527 if (!data->timerId) {
1528 perror("Failed to re-arm win32 alarm timer");
1529
1530 timeEndPeriod(data->period);
1531 CloseHandle(data->host_alarm);
1532 exit(1);
1533 }
1534 }
1535
1536 #endif /* _WIN32 */
1537
1538 static void init_timer_alarm(void)
1539 {
1540 struct qemu_alarm_timer *t;
1541 int i, err = -1;
1542
1543 for (i = 0; alarm_timers[i].name; i++) {
1544 t = &alarm_timers[i];
1545
1546 err = t->start(t);
1547 if (!err)
1548 break;
1549 }
1550
1551 if (err) {
1552 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1553 fprintf(stderr, "Terminating\n");
1554 exit(1);
1555 }
1556
1557 alarm_timer = t;
1558 }
1559
1560 static void quit_timers(void)
1561 {
1562 alarm_timer->stop(alarm_timer);
1563 alarm_timer = NULL;
1564 }
1565
1566 /***********************************************************/
1567 /* host time/date access */
1568 void qemu_get_timedate(struct tm *tm, int offset)
1569 {
1570 time_t ti;
1571 struct tm *ret;
1572
1573 time(&ti);
1574 ti += offset;
1575 if (rtc_date_offset == -1) {
1576 if (rtc_utc)
1577 ret = gmtime(&ti);
1578 else
1579 ret = localtime(&ti);
1580 } else {
1581 ti -= rtc_date_offset;
1582 ret = gmtime(&ti);
1583 }
1584
1585 memcpy(tm, ret, sizeof(struct tm));
1586 }
1587
1588 int qemu_timedate_diff(struct tm *tm)
1589 {
1590 time_t seconds;
1591
1592 if (rtc_date_offset == -1)
1593 if (rtc_utc)
1594 seconds = mktimegm(tm);
1595 else
1596 seconds = mktime(tm);
1597 else
1598 seconds = mktimegm(tm) + rtc_date_offset;
1599
1600 return seconds - time(NULL);
1601 }
1602
1603 /***********************************************************/
1604 /* character device */
1605
1606 static void qemu_chr_event(CharDriverState *s, int event)
1607 {
1608 if (!s->chr_event)
1609 return;
1610 s->chr_event(s->handler_opaque, event);
1611 }
1612
1613 static void qemu_chr_reset_bh(void *opaque)
1614 {
1615 CharDriverState *s = opaque;
1616 qemu_chr_event(s, CHR_EVENT_RESET);
1617 qemu_bh_delete(s->bh);
1618 s->bh = NULL;
1619 }
1620
1621 void qemu_chr_reset(CharDriverState *s)
1622 {
1623 if (s->bh == NULL) {
1624 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1625 qemu_bh_schedule(s->bh);
1626 }
1627 }
1628
1629 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1630 {
1631 return s->chr_write(s, buf, len);
1632 }
1633
1634 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1635 {
1636 if (!s->chr_ioctl)
1637 return -ENOTSUP;
1638 return s->chr_ioctl(s, cmd, arg);
1639 }
1640
1641 int qemu_chr_can_read(CharDriverState *s)
1642 {
1643 if (!s->chr_can_read)
1644 return 0;
1645 return s->chr_can_read(s->handler_opaque);
1646 }
1647
1648 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1649 {
1650 s->chr_read(s->handler_opaque, buf, len);
1651 }
1652
1653 void qemu_chr_accept_input(CharDriverState *s)
1654 {
1655 if (s->chr_accept_input)
1656 s->chr_accept_input(s);
1657 }
1658
1659 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1660 {
1661 char buf[4096];
1662 va_list ap;
1663 va_start(ap, fmt);
1664 vsnprintf(buf, sizeof(buf), fmt, ap);
1665 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1666 va_end(ap);
1667 }
1668
1669 void qemu_chr_send_event(CharDriverState *s, int event)
1670 {
1671 if (s->chr_send_event)
1672 s->chr_send_event(s, event);
1673 }
1674
1675 void qemu_chr_add_handlers(CharDriverState *s,
1676 IOCanRWHandler *fd_can_read,
1677 IOReadHandler *fd_read,
1678 IOEventHandler *fd_event,
1679 void *opaque)
1680 {
1681 s->chr_can_read = fd_can_read;
1682 s->chr_read = fd_read;
1683 s->chr_event = fd_event;
1684 s->handler_opaque = opaque;
1685 if (s->chr_update_read_handler)
1686 s->chr_update_read_handler(s);
1687 }
1688
1689 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1690 {
1691 return len;
1692 }
1693
1694 static CharDriverState *qemu_chr_open_null(void)
1695 {
1696 CharDriverState *chr;
1697
1698 chr = qemu_mallocz(sizeof(CharDriverState));
1699 if (!chr)
1700 return NULL;
1701 chr->chr_write = null_chr_write;
1702 return chr;
1703 }
1704
1705 /* MUX driver for serial I/O splitting */
1706 static int term_timestamps;
1707 static int64_t term_timestamps_start;
1708 #define MAX_MUX 4
1709 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1710 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1711 typedef struct {
1712 IOCanRWHandler *chr_can_read[MAX_MUX];
1713 IOReadHandler *chr_read[MAX_MUX];
1714 IOEventHandler *chr_event[MAX_MUX];
1715 void *ext_opaque[MAX_MUX];
1716 CharDriverState *drv;
1717 unsigned char buffer[MUX_BUFFER_SIZE];
1718 int prod;
1719 int cons;
1720 int mux_cnt;
1721 int term_got_escape;
1722 int max_size;
1723 } MuxDriver;
1724
1725
1726 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1727 {
1728 MuxDriver *d = chr->opaque;
1729 int ret;
1730 if (!term_timestamps) {
1731 ret = d->drv->chr_write(d->drv, buf, len);
1732 } else {
1733 int i;
1734
1735 ret = 0;
1736 for(i = 0; i < len; i++) {
1737 ret += d->drv->chr_write(d->drv, buf+i, 1);
1738 if (buf[i] == '\n') {
1739 char buf1[64];
1740 int64_t ti;
1741 int secs;
1742
1743 ti = get_clock();
1744 if (term_timestamps_start == -1)
1745 term_timestamps_start = ti;
1746 ti -= term_timestamps_start;
1747 secs = ti / 1000000000;
1748 snprintf(buf1, sizeof(buf1),
1749 "[%02d:%02d:%02d.%03d] ",
1750 secs / 3600,
1751 (secs / 60) % 60,
1752 secs % 60,
1753 (int)((ti / 1000000) % 1000));
1754 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1755 }
1756 }
1757 }
1758 return ret;
1759 }
1760
1761 static char *mux_help[] = {
1762 "% h print this help\n\r",
1763 "% x exit emulator\n\r",
1764 "% s save disk data back to file (if -snapshot)\n\r",
1765 "% t toggle console timestamps\n\r"
1766 "% b send break (magic sysrq)\n\r",
1767 "% c switch between console and monitor\n\r",
1768 "% % sends %\n\r",
1769 NULL
1770 };
1771
1772 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1773 static void mux_print_help(CharDriverState *chr)
1774 {
1775 int i, j;
1776 char ebuf[15] = "Escape-Char";
1777 char cbuf[50] = "\n\r";
1778
1779 if (term_escape_char > 0 && term_escape_char < 26) {
1780 sprintf(cbuf,"\n\r");
1781 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1782 } else {
1783 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1784 term_escape_char);
1785 }
1786 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1787 for (i = 0; mux_help[i] != NULL; i++) {
1788 for (j=0; mux_help[i][j] != '\0'; j++) {
1789 if (mux_help[i][j] == '%')
1790 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1791 else
1792 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1793 }
1794 }
1795 }
1796
1797 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1798 {
1799 if (d->term_got_escape) {
1800 d->term_got_escape = 0;
1801 if (ch == term_escape_char)
1802 goto send_char;
1803 switch(ch) {
1804 case '?':
1805 case 'h':
1806 mux_print_help(chr);
1807 break;
1808 case 'x':
1809 {
1810 char *term = "QEMU: Terminated\n\r";
1811 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1812 exit(0);
1813 break;
1814 }
1815 case 's':
1816 {
1817 int i;
1818 for (i = 0; i < nb_drives; i++) {
1819 bdrv_commit(drives_table[i].bdrv);
1820 }
1821 }
1822 break;
1823 case 'b':
1824 qemu_chr_event(chr, CHR_EVENT_BREAK);
1825 break;
1826 case 'c':
1827 /* Switch to the next registered device */
1828 chr->focus++;
1829 if (chr->focus >= d->mux_cnt)
1830 chr->focus = 0;
1831 break;
1832 case 't':
1833 term_timestamps = !term_timestamps;
1834 term_timestamps_start = -1;
1835 break;
1836 }
1837 } else if (ch == term_escape_char) {
1838 d->term_got_escape = 1;
1839 } else {
1840 send_char:
1841 return 1;
1842 }
1843 return 0;
1844 }
1845
1846 static void mux_chr_accept_input(CharDriverState *chr)
1847 {
1848 int m = chr->focus;
1849 MuxDriver *d = chr->opaque;
1850
1851 while (d->prod != d->cons &&
1852 d->chr_can_read[m] &&
1853 d->chr_can_read[m](d->ext_opaque[m])) {
1854 d->chr_read[m](d->ext_opaque[m],
1855 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1856 }
1857 }
1858
1859 static int mux_chr_can_read(void *opaque)
1860 {
1861 CharDriverState *chr = opaque;
1862 MuxDriver *d = chr->opaque;
1863
1864 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1865 return 1;
1866 if (d->chr_can_read[chr->focus])
1867 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1868 return 0;
1869 }
1870
1871 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1872 {
1873 CharDriverState *chr = opaque;
1874 MuxDriver *d = chr->opaque;
1875 int m = chr->focus;
1876 int i;
1877
1878 mux_chr_accept_input (opaque);
1879
1880 for(i = 0; i < size; i++)
1881 if (mux_proc_byte(chr, d, buf[i])) {
1882 if (d->prod == d->cons &&
1883 d->chr_can_read[m] &&
1884 d->chr_can_read[m](d->ext_opaque[m]))
1885 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1886 else
1887 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1888 }
1889 }
1890
1891 static void mux_chr_event(void *opaque, int event)
1892 {
1893 CharDriverState *chr = opaque;
1894 MuxDriver *d = chr->opaque;
1895 int i;
1896
1897 /* Send the event to all registered listeners */
1898 for (i = 0; i < d->mux_cnt; i++)
1899 if (d->chr_event[i])
1900 d->chr_event[i](d->ext_opaque[i], event);
1901 }
1902
1903 static void mux_chr_update_read_handler(CharDriverState *chr)
1904 {
1905 MuxDriver *d = chr->opaque;
1906
1907 if (d->mux_cnt >= MAX_MUX) {
1908 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1909 return;
1910 }
1911 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1912 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1913 d->chr_read[d->mux_cnt] = chr->chr_read;
1914 d->chr_event[d->mux_cnt] = chr->chr_event;
1915 /* Fix up the real driver with mux routines */
1916 if (d->mux_cnt == 0) {
1917 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1918 mux_chr_event, chr);
1919 }
1920 chr->focus = d->mux_cnt;
1921 d->mux_cnt++;
1922 }
1923
1924 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1925 {
1926 CharDriverState *chr;
1927 MuxDriver *d;
1928
1929 chr = qemu_mallocz(sizeof(CharDriverState));
1930 if (!chr)
1931 return NULL;
1932 d = qemu_mallocz(sizeof(MuxDriver));
1933 if (!d) {
1934 free(chr);
1935 return NULL;
1936 }
1937
1938 chr->opaque = d;
1939 d->drv = drv;
1940 chr->focus = -1;
1941 chr->chr_write = mux_chr_write;
1942 chr->chr_update_read_handler = mux_chr_update_read_handler;
1943 chr->chr_accept_input = mux_chr_accept_input;
1944 return chr;
1945 }
1946
1947
1948 #ifdef _WIN32
1949
1950 static void socket_cleanup(void)
1951 {
1952 WSACleanup();
1953 }
1954
1955 static int socket_init(void)
1956 {
1957 WSADATA Data;
1958 int ret, err;
1959
1960 ret = WSAStartup(MAKEWORD(2,2), &Data);
1961 if (ret != 0) {
1962 err = WSAGetLastError();
1963 fprintf(stderr, "WSAStartup: %d\n", err);
1964 return -1;
1965 }
1966 atexit(socket_cleanup);
1967 return 0;
1968 }
1969
1970 static int send_all(int fd, const uint8_t *buf, int len1)
1971 {
1972 int ret, len;
1973
1974 len = len1;
1975 while (len > 0) {
1976 ret = send(fd, buf, len, 0);
1977 if (ret < 0) {
1978 int errno;
1979 errno = WSAGetLastError();
1980 if (errno != WSAEWOULDBLOCK) {
1981 return -1;
1982 }
1983 } else if (ret == 0) {
1984 break;
1985 } else {
1986 buf += ret;
1987 len -= ret;
1988 }
1989 }
1990 return len1 - len;
1991 }
1992
1993 void socket_set_nonblock(int fd)
1994 {
1995 unsigned long opt = 1;
1996 ioctlsocket(fd, FIONBIO, &opt);
1997 }
1998
1999 #else
2000
2001 static int unix_write(int fd, const uint8_t *buf, int len1)
2002 {
2003 int ret, len;
2004
2005 len = len1;
2006 while (len > 0) {
2007 ret = write(fd, buf, len);
2008 if (ret < 0) {
2009 if (errno != EINTR && errno != EAGAIN)
2010 return -1;
2011 } else if (ret == 0) {
2012 break;
2013 } else {
2014 buf += ret;
2015 len -= ret;
2016 }
2017 }
2018 return len1 - len;
2019 }
2020
2021 static inline int send_all(int fd, const uint8_t *buf, int len1)
2022 {
2023 return unix_write(fd, buf, len1);
2024 }
2025
2026 void socket_set_nonblock(int fd)
2027 {
2028 fcntl(fd, F_SETFL, O_NONBLOCK);
2029 }
2030 #endif /* !_WIN32 */
2031
2032 #ifndef _WIN32
2033
2034 typedef struct {
2035 int fd_in, fd_out;
2036 int max_size;
2037 } FDCharDriver;
2038
2039 #define STDIO_MAX_CLIENTS 1
2040 static int stdio_nb_clients = 0;
2041
2042 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2043 {
2044 FDCharDriver *s = chr->opaque;
2045 return unix_write(s->fd_out, buf, len);
2046 }
2047
2048 static int fd_chr_read_poll(void *opaque)
2049 {
2050 CharDriverState *chr = opaque;
2051 FDCharDriver *s = chr->opaque;
2052
2053 s->max_size = qemu_chr_can_read(chr);
2054 return s->max_size;
2055 }
2056
2057 static void fd_chr_read(void *opaque)
2058 {
2059 CharDriverState *chr = opaque;
2060 FDCharDriver *s = chr->opaque;
2061 int size, len;
2062 uint8_t buf[1024];
2063
2064 len = sizeof(buf);
2065 if (len > s->max_size)
2066 len = s->max_size;
2067 if (len == 0)
2068 return;
2069 size = read(s->fd_in, buf, len);
2070 if (size == 0) {
2071 /* FD has been closed. Remove it from the active list. */
2072 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2073 return;
2074 }
2075 if (size > 0) {
2076 qemu_chr_read(chr, buf, size);
2077 }
2078 }
2079
2080 static void fd_chr_update_read_handler(CharDriverState *chr)
2081 {
2082 FDCharDriver *s = chr->opaque;
2083
2084 if (s->fd_in >= 0) {
2085 if (nographic && s->fd_in == 0) {
2086 } else {
2087 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2088 fd_chr_read, NULL, chr);
2089 }
2090 }
2091 }
2092
2093 static void fd_chr_close(struct CharDriverState *chr)
2094 {
2095 FDCharDriver *s = chr->opaque;
2096
2097 if (s->fd_in >= 0) {
2098 if (nographic && s->fd_in == 0) {
2099 } else {
2100 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2101 }
2102 }
2103
2104 qemu_free(s);
2105 }
2106
2107 /* open a character device to a unix fd */
2108 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2109 {
2110 CharDriverState *chr;
2111 FDCharDriver *s;
2112
2113 chr = qemu_mallocz(sizeof(CharDriverState));
2114 if (!chr)
2115 return NULL;
2116 s = qemu_mallocz(sizeof(FDCharDriver));
2117 if (!s) {
2118 free(chr);
2119 return NULL;
2120 }
2121 s->fd_in = fd_in;
2122 s->fd_out = fd_out;
2123 chr->opaque = s;
2124 chr->chr_write = fd_chr_write;
2125 chr->chr_update_read_handler = fd_chr_update_read_handler;
2126 chr->chr_close = fd_chr_close;
2127
2128 qemu_chr_reset(chr);
2129
2130 return chr;
2131 }
2132
2133 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2134 {
2135 int fd_out;
2136
2137 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2138 if (fd_out < 0)
2139 return NULL;
2140 return qemu_chr_open_fd(-1, fd_out);
2141 }
2142
2143 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2144 {
2145 int fd_in, fd_out;
2146 char filename_in[256], filename_out[256];
2147
2148 snprintf(filename_in, 256, "%s.in", filename);
2149 snprintf(filename_out, 256, "%s.out", filename);
2150 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2151 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2152 if (fd_in < 0 || fd_out < 0) {
2153 if (fd_in >= 0)
2154 close(fd_in);
2155 if (fd_out >= 0)
2156 close(fd_out);
2157 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2158 if (fd_in < 0)
2159 return NULL;
2160 }
2161 return qemu_chr_open_fd(fd_in, fd_out);
2162 }
2163
2164
2165 /* for STDIO, we handle the case where several clients use it
2166 (nographic mode) */
2167
2168 #define TERM_FIFO_MAX_SIZE 1
2169
2170 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2171 static int term_fifo_size;
2172
2173 static int stdio_read_poll(void *opaque)
2174 {
2175 CharDriverState *chr = opaque;
2176
2177 /* try to flush the queue if needed */
2178 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2179 qemu_chr_read(chr, term_fifo, 1);
2180 term_fifo_size = 0;
2181 }
2182 /* see if we can absorb more chars */
2183 if (term_fifo_size == 0)
2184 return 1;
2185 else
2186 return 0;
2187 }
2188
2189 static void stdio_read(void *opaque)
2190 {
2191 int size;
2192 uint8_t buf[1];
2193 CharDriverState *chr = opaque;
2194
2195 size = read(0, buf, 1);
2196 if (size == 0) {
2197 /* stdin has been closed. Remove it from the active list. */
2198 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2199 return;
2200 }
2201 if (size > 0) {
2202 if (qemu_chr_can_read(chr) > 0) {
2203 qemu_chr_read(chr, buf, 1);
2204 } else if (term_fifo_size == 0) {
2205 term_fifo[term_fifo_size++] = buf[0];
2206 }
2207 }
2208 }
2209
2210 /* init terminal so that we can grab keys */
2211 static struct termios oldtty;
2212 static int old_fd0_flags;
2213 static int term_atexit_done;
2214
2215 static void term_exit(void)
2216 {
2217 tcsetattr (0, TCSANOW, &oldtty);
2218 fcntl(0, F_SETFL, old_fd0_flags);
2219 }
2220
2221 static void term_init(void)
2222 {
2223 struct termios tty;
2224
2225 tcgetattr (0, &tty);
2226 oldtty = tty;
2227 old_fd0_flags = fcntl(0, F_GETFL);
2228
2229 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2230 |INLCR|IGNCR|ICRNL|IXON);
2231 tty.c_oflag |= OPOST;
2232 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2233 /* if graphical mode, we allow Ctrl-C handling */
2234 if (nographic)
2235 tty.c_lflag &= ~ISIG;
2236 tty.c_cflag &= ~(CSIZE|PARENB);
2237 tty.c_cflag |= CS8;
2238 tty.c_cc[VMIN] = 1;
2239 tty.c_cc[VTIME] = 0;
2240
2241 tcsetattr (0, TCSANOW, &tty);
2242
2243 if (!term_atexit_done++)
2244 atexit(term_exit);
2245
2246 fcntl(0, F_SETFL, O_NONBLOCK);
2247 }
2248
2249 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2250 {
2251 term_exit();
2252 stdio_nb_clients--;
2253 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2254 fd_chr_close(chr);
2255 }
2256
2257 static CharDriverState *qemu_chr_open_stdio(void)
2258 {
2259 CharDriverState *chr;
2260
2261 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2262 return NULL;
2263 chr = qemu_chr_open_fd(0, 1);
2264 chr->chr_close = qemu_chr_close_stdio;
2265 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2266 stdio_nb_clients++;
2267 term_init();
2268
2269 return chr;
2270 }
2271
2272 #ifdef __sun__
2273 /* Once Solaris has openpty(), this is going to be removed. */
2274 int openpty(int *amaster, int *aslave, char *name,
2275 struct termios *termp, struct winsize *winp)
2276 {
2277 const char *slave;
2278 int mfd = -1, sfd = -1;
2279
2280 *amaster = *aslave = -1;
2281
2282 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2283 if (mfd < 0)
2284 goto err;
2285
2286 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2287 goto err;
2288
2289 if ((slave = ptsname(mfd)) == NULL)
2290 goto err;
2291
2292 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2293 goto err;
2294
2295 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2296 (termp != NULL && tcgetattr(sfd, termp) < 0))
2297 goto err;
2298
2299 if (amaster)
2300 *amaster = mfd;
2301 if (aslave)
2302 *aslave = sfd;
2303 if (winp)
2304 ioctl(sfd, TIOCSWINSZ, winp);
2305
2306 return 0;
2307
2308 err:
2309 if (sfd != -1)
2310 close(sfd);
2311 close(mfd);
2312 return -1;
2313 }
2314
2315 void cfmakeraw (struct termios *termios_p)
2316 {
2317 termios_p->c_iflag &=
2318 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2319 termios_p->c_oflag &= ~OPOST;
2320 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2321 termios_p->c_cflag &= ~(CSIZE|PARENB);
2322 termios_p->c_cflag |= CS8;
2323
2324 termios_p->c_cc[VMIN] = 0;
2325 termios_p->c_cc[VTIME] = 0;
2326 }
2327 #endif
2328
2329 #if defined(__linux__) || defined(__sun__)
2330 static CharDriverState *qemu_chr_open_pty(void)
2331 {
2332 struct termios tty;
2333 int master_fd, slave_fd;
2334
2335 if (openpty(&master_fd, &slave_fd, NULL, NULL, NULL) < 0) {
2336 return NULL;
2337 }
2338
2339 /* Set raw attributes on the pty. */
2340 cfmakeraw(&tty);
2341 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2342
2343 fprintf(stderr, "char device redirected to %s\n", ptsname(master_fd));
2344 return qemu_chr_open_fd(master_fd, master_fd);
2345 }
2346
2347 static void tty_serial_init(int fd, int speed,
2348 int parity, int data_bits, int stop_bits)
2349 {
2350 struct termios tty;
2351 speed_t spd;
2352
2353 #if 0
2354 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2355 speed, parity, data_bits, stop_bits);
2356 #endif
2357 tcgetattr (fd, &tty);
2358
2359 #define MARGIN 1.1
2360 if (speed <= 50 * MARGIN)
2361 spd = B50;
2362 else if (speed <= 75 * MARGIN)
2363 spd = B75;
2364 else if (speed <= 300 * MARGIN)
2365 spd = B300;
2366 else if (speed <= 600 * MARGIN)
2367 spd = B600;
2368 else if (speed <= 1200 * MARGIN)
2369 spd = B1200;
2370 else if (speed <= 2400 * MARGIN)
2371 spd = B2400;
2372 else if (speed <= 4800 * MARGIN)
2373 spd = B4800;
2374 else if (speed <= 9600 * MARGIN)
2375 spd = B9600;
2376 else if (speed <= 19200 * MARGIN)
2377 spd = B19200;
2378 else if (speed <= 38400 * MARGIN)
2379 spd = B38400;
2380 else if (speed <= 57600 * MARGIN)
2381 spd = B57600;
2382 else if (speed <= 115200 * MARGIN)
2383 spd = B115200;
2384 else
2385 spd = B115200;
2386
2387 cfsetispeed(&tty, spd);
2388 cfsetospeed(&tty, spd);
2389
2390 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2391 |INLCR|IGNCR|ICRNL|IXON);
2392 tty.c_oflag |= OPOST;
2393 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2394 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2395 switch(data_bits) {
2396 default:
2397 case 8:
2398 tty.c_cflag |= CS8;
2399 break;
2400 case 7:
2401 tty.c_cflag |= CS7;
2402 break;
2403 case 6:
2404 tty.c_cflag |= CS6;
2405 break;
2406 case 5:
2407 tty.c_cflag |= CS5;
2408 break;
2409 }
2410 switch(parity) {
2411 default:
2412 case 'N':
2413 break;
2414 case 'E':
2415 tty.c_cflag |= PARENB;
2416 break;
2417 case 'O':
2418 tty.c_cflag |= PARENB | PARODD;
2419 break;
2420 }
2421 if (stop_bits == 2)
2422 tty.c_cflag |= CSTOPB;
2423
2424 tcsetattr (fd, TCSANOW, &tty);
2425 }
2426
2427 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2428 {
2429 FDCharDriver *s = chr->opaque;
2430
2431 switch(cmd) {
2432 case CHR_IOCTL_SERIAL_SET_PARAMS:
2433 {
2434 QEMUSerialSetParams *ssp = arg;
2435 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2436 ssp->data_bits, ssp->stop_bits);
2437 }
2438 break;
2439 case CHR_IOCTL_SERIAL_SET_BREAK:
2440 {
2441 int enable = *(int *)arg;
2442 if (enable)
2443 tcsendbreak(s->fd_in, 1);
2444 }
2445 break;
2446 default:
2447 return -ENOTSUP;
2448 }
2449 return 0;
2450 }
2451
2452 static CharDriverState *qemu_chr_open_tty(const char *filename)
2453 {
2454 CharDriverState *chr;
2455 int fd;
2456
2457 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2458 fcntl(fd, F_SETFL, O_NONBLOCK);
2459 tty_serial_init(fd, 115200, 'N', 8, 1);
2460 chr = qemu_chr_open_fd(fd, fd);
2461 if (!chr) {
2462 close(fd);
2463 return NULL;
2464 }
2465 chr->chr_ioctl = tty_serial_ioctl;
2466 qemu_chr_reset(chr);
2467 return chr;
2468 }
2469 #else /* ! __linux__ && ! __sun__ */
2470 static CharDriverState *qemu_chr_open_pty(void)
2471 {
2472 return NULL;
2473 }
2474 #endif /* __linux__ || __sun__ */
2475
2476 #if defined(__linux__)
2477 typedef struct {
2478 int fd;
2479 int mode;
2480 } ParallelCharDriver;
2481
2482 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2483 {
2484 if (s->mode != mode) {
2485 int m = mode;
2486 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2487 return 0;
2488 s->mode = mode;
2489 }
2490 return 1;
2491 }
2492
2493 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2494 {
2495 ParallelCharDriver *drv = chr->opaque;
2496 int fd = drv->fd;
2497 uint8_t b;
2498
2499 switch(cmd) {
2500 case CHR_IOCTL_PP_READ_DATA:
2501 if (ioctl(fd, PPRDATA, &b) < 0)
2502 return -ENOTSUP;
2503 *(uint8_t *)arg = b;
2504 break;
2505 case CHR_IOCTL_PP_WRITE_DATA:
2506 b = *(uint8_t *)arg;
2507 if (ioctl(fd, PPWDATA, &b) < 0)
2508 return -ENOTSUP;
2509 break;
2510 case CHR_IOCTL_PP_READ_CONTROL:
2511 if (ioctl(fd, PPRCONTROL, &b) < 0)
2512 return -ENOTSUP;
2513 /* Linux gives only the lowest bits, and no way to know data
2514 direction! For better compatibility set the fixed upper
2515 bits. */
2516 *(uint8_t *)arg = b | 0xc0;
2517 break;
2518 case CHR_IOCTL_PP_WRITE_CONTROL:
2519 b = *(uint8_t *)arg;
2520 if (ioctl(fd, PPWCONTROL, &b) < 0)
2521 return -ENOTSUP;
2522 break;
2523 case CHR_IOCTL_PP_READ_STATUS:
2524 if (ioctl(fd, PPRSTATUS, &b) < 0)
2525 return -ENOTSUP;
2526 *(uint8_t *)arg = b;
2527 break;
2528 case CHR_IOCTL_PP_EPP_READ_ADDR:
2529 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2530 struct ParallelIOArg *parg = arg;
2531 int n = read(fd, parg->buffer, parg->count);
2532 if (n != parg->count) {
2533 return -EIO;
2534 }
2535 }
2536 break;
2537 case CHR_IOCTL_PP_EPP_READ:
2538 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2539 struct ParallelIOArg *parg = arg;
2540 int n = read(fd, parg->buffer, parg->count);
2541 if (n != parg->count) {
2542 return -EIO;
2543 }
2544 }
2545 break;
2546 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2547 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2548 struct ParallelIOArg *parg = arg;
2549 int n = write(fd, parg->buffer, parg->count);
2550 if (n != parg->count) {
2551 return -EIO;
2552 }
2553 }
2554 break;
2555 case CHR_IOCTL_PP_EPP_WRITE:
2556 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2557 struct ParallelIOArg *parg = arg;
2558 int n = write(fd, parg->buffer, parg->count);
2559 if (n != parg->count) {
2560 return -EIO;
2561 }
2562 }
2563 break;
2564 default:
2565 return -ENOTSUP;
2566 }
2567 return 0;
2568 }
2569
2570 static void pp_close(CharDriverState *chr)
2571 {
2572 ParallelCharDriver *drv = chr->opaque;
2573 int fd = drv->fd;
2574
2575 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2576 ioctl(fd, PPRELEASE);
2577 close(fd);
2578 qemu_free(drv);
2579 }
2580
2581 static CharDriverState *qemu_chr_open_pp(const char *filename)
2582 {
2583 CharDriverState *chr;
2584 ParallelCharDriver *drv;
2585 int fd;
2586
2587 TFR(fd = open(filename, O_RDWR));
2588 if (fd < 0)
2589 return NULL;
2590
2591 if (ioctl(fd, PPCLAIM) < 0) {
2592 close(fd);
2593 return NULL;
2594 }
2595
2596 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2597 if (!drv) {
2598 close(fd);
2599 return NULL;
2600 }
2601 drv->fd = fd;
2602 drv->mode = IEEE1284_MODE_COMPAT;
2603
2604 chr = qemu_mallocz(sizeof(CharDriverState));
2605 if (!chr) {
2606 qemu_free(drv);
2607 close(fd);
2608 return NULL;
2609 }
2610 chr->chr_write = null_chr_write;
2611 chr->chr_ioctl = pp_ioctl;
2612 chr->chr_close = pp_close;
2613 chr->opaque = drv;
2614
2615 qemu_chr_reset(chr);
2616
2617 return chr;
2618 }
2619 #endif /* __linux__ */
2620
2621 #else /* _WIN32 */
2622
2623 typedef struct {
2624 int max_size;
2625 HANDLE hcom, hrecv, hsend;
2626 OVERLAPPED orecv, osend;
2627 BOOL fpipe;
2628 DWORD len;
2629 } WinCharState;
2630
2631 #define NSENDBUF 2048
2632 #define NRECVBUF 2048
2633 #define MAXCONNECT 1
2634 #define NTIMEOUT 5000
2635
2636 static int win_chr_poll(void *opaque);
2637 static int win_chr_pipe_poll(void *opaque);
2638
2639 static void win_chr_close(CharDriverState *chr)
2640 {
2641 WinCharState *s = chr->opaque;
2642
2643 if (s->hsend) {
2644 CloseHandle(s->hsend);
2645 s->hsend = NULL;
2646 }
2647 if (s->hrecv) {
2648 CloseHandle(s->hrecv);
2649 s->hrecv = NULL;
2650 }
2651 if (s->hcom) {
2652 CloseHandle(s->hcom);
2653 s->hcom = NULL;
2654 }
2655 if (s->fpipe)
2656 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2657 else
2658 qemu_del_polling_cb(win_chr_poll, chr);
2659 }
2660
2661 static int win_chr_init(CharDriverState *chr, const char *filename)
2662 {
2663 WinCharState *s = chr->opaque;
2664 COMMCONFIG comcfg;
2665 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2666 COMSTAT comstat;
2667 DWORD size;
2668 DWORD err;
2669
2670 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2671 if (!s->hsend) {
2672 fprintf(stderr, "Failed CreateEvent\n");
2673 goto fail;
2674 }
2675 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2676 if (!s->hrecv) {
2677 fprintf(stderr, "Failed CreateEvent\n");
2678 goto fail;
2679 }
2680
2681 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2682 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2683 if (s->hcom == INVALID_HANDLE_VALUE) {
2684 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2685 s->hcom = NULL;
2686 goto fail;
2687 }
2688
2689 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2690 fprintf(stderr, "Failed SetupComm\n");
2691 goto fail;
2692 }
2693
2694 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2695 size = sizeof(COMMCONFIG);
2696 GetDefaultCommConfig(filename, &comcfg, &size);
2697 comcfg.dcb.DCBlength = sizeof(DCB);
2698 CommConfigDialog(filename, NULL, &comcfg);
2699
2700 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2701 fprintf(stderr, "Failed SetCommState\n");
2702 goto fail;
2703 }
2704
2705 if (!SetCommMask(s->hcom, EV_ERR)) {
2706 fprintf(stderr, "Failed SetCommMask\n");
2707 goto fail;
2708 }
2709
2710 cto.ReadIntervalTimeout = MAXDWORD;
2711 if (!SetCommTimeouts(s->hcom, &cto)) {
2712 fprintf(stderr, "Failed SetCommTimeouts\n");
2713 goto fail;
2714 }
2715
2716 if (!ClearCommError(s->hcom, &err, &comstat)) {
2717 fprintf(stderr, "Failed ClearCommError\n");
2718 goto fail;
2719 }
2720 qemu_add_polling_cb(win_chr_poll, chr);
2721 return 0;
2722
2723 fail:
2724 win_chr_close(chr);
2725 return -1;
2726 }
2727
2728 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2729 {
2730 WinCharState *s = chr->opaque;
2731 DWORD len, ret, size, err;
2732
2733 len = len1;
2734 ZeroMemory(&s->osend, sizeof(s->osend));
2735 s->osend.hEvent = s->hsend;
2736 while (len > 0) {
2737 if (s->hsend)
2738 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2739 else
2740 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2741 if (!ret) {
2742 err = GetLastError();
2743 if (err == ERROR_IO_PENDING) {
2744 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2745 if (ret) {
2746 buf += size;
2747 len -= size;
2748 } else {
2749 break;
2750 }
2751 } else {
2752 break;
2753 }
2754 } else {
2755 buf += size;
2756 len -= size;
2757 }
2758 }
2759 return len1 - len;
2760 }
2761
2762 static int win_chr_read_poll(CharDriverState *chr)
2763 {
2764 WinCharState *s = chr->opaque;
2765
2766 s->max_size = qemu_chr_can_read(chr);
2767 return s->max_size;
2768 }
2769
2770 static void win_chr_readfile(CharDriverState *chr)
2771 {
2772 WinCharState *s = chr->opaque;
2773 int ret, err;
2774 uint8_t buf[1024];
2775 DWORD size;
2776
2777 ZeroMemory(&s->orecv, sizeof(s->orecv));
2778 s->orecv.hEvent = s->hrecv;
2779 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2780 if (!ret) {
2781 err = GetLastError();
2782 if (err == ERROR_IO_PENDING) {
2783 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2784 }
2785 }
2786
2787 if (size > 0) {
2788 qemu_chr_read(chr, buf, size);
2789 }
2790 }
2791
2792 static void win_chr_read(CharDriverState *chr)
2793 {
2794 WinCharState *s = chr->opaque;
2795
2796 if (s->len > s->max_size)
2797 s->len = s->max_size;
2798 if (s->len == 0)
2799 return;
2800
2801 win_chr_readfile(chr);
2802 }
2803
2804 static int win_chr_poll(void *opaque)
2805 {
2806 CharDriverState *chr = opaque;
2807 WinCharState *s = chr->opaque;
2808 COMSTAT status;
2809 DWORD comerr;
2810
2811 ClearCommError(s->hcom, &comerr, &status);
2812 if (status.cbInQue > 0) {
2813 s->len = status.cbInQue;
2814 win_chr_read_poll(chr);
2815 win_chr_read(chr);
2816 return 1;
2817 }
2818 return 0;
2819 }
2820
2821 static CharDriverState *qemu_chr_open_win(const char *filename)
2822 {
2823 CharDriverState *chr;
2824 WinCharState *s;
2825
2826 chr = qemu_mallocz(sizeof(CharDriverState));
2827 if (!chr)
2828 return NULL;
2829 s = qemu_mallocz(sizeof(WinCharState));
2830 if (!s) {
2831 free(chr);
2832 return NULL;
2833 }
2834 chr->opaque = s;
2835 chr->chr_write = win_chr_write;
2836 chr->chr_close = win_chr_close;
2837
2838 if (win_chr_init(chr, filename) < 0) {
2839 free(s);
2840 free(chr);
2841 return NULL;
2842 }
2843 qemu_chr_reset(chr);
2844 return chr;
2845 }
2846
2847 static int win_chr_pipe_poll(void *opaque)
2848 {
2849 CharDriverState *chr = opaque;
2850 WinCharState *s = chr->opaque;
2851 DWORD size;
2852
2853 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2854 if (size > 0) {
2855 s->len = size;
2856 win_chr_read_poll(chr);
2857 win_chr_read(chr);
2858 return 1;
2859 }
2860 return 0;
2861 }
2862
2863 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2864 {
2865 WinCharState *s = chr->opaque;
2866 OVERLAPPED ov;
2867 int ret;
2868 DWORD size;
2869 char openname[256];
2870
2871 s->fpipe = TRUE;
2872
2873 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2874 if (!s->hsend) {
2875 fprintf(stderr, "Failed CreateEvent\n");
2876 goto fail;
2877 }
2878 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2879 if (!s->hrecv) {
2880 fprintf(stderr, "Failed CreateEvent\n");
2881 goto fail;
2882 }
2883
2884 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2885 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2886 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2887 PIPE_WAIT,
2888 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2889 if (s->hcom == INVALID_HANDLE_VALUE) {
2890 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2891 s->hcom = NULL;
2892 goto fail;
2893 }
2894
2895 ZeroMemory(&ov, sizeof(ov));
2896 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2897 ret = ConnectNamedPipe(s->hcom, &ov);
2898 if (ret) {
2899 fprintf(stderr, "Failed ConnectNamedPipe\n");
2900 goto fail;
2901 }
2902
2903 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2904 if (!ret) {
2905 fprintf(stderr, "Failed GetOverlappedResult\n");
2906 if (ov.hEvent) {
2907 CloseHandle(ov.hEvent);
2908 ov.hEvent = NULL;
2909 }
2910 goto fail;
2911 }
2912
2913 if (ov.hEvent) {
2914 CloseHandle(ov.hEvent);
2915 ov.hEvent = NULL;
2916 }
2917 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2918 return 0;
2919
2920 fail:
2921 win_chr_close(chr);
2922 return -1;
2923 }
2924
2925
2926 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2927 {
2928 CharDriverState *chr;
2929 WinCharState *s;
2930
2931 chr = qemu_mallocz(sizeof(CharDriverState));
2932 if (!chr)
2933 return NULL;
2934 s = qemu_mallocz(sizeof(WinCharState));
2935 if (!s) {
2936 free(chr);
2937 return NULL;
2938 }
2939 chr->opaque = s;
2940 chr->chr_write = win_chr_write;
2941 chr->chr_close = win_chr_close;
2942
2943 if (win_chr_pipe_init(chr, filename) < 0) {
2944 free(s);
2945 free(chr);
2946 return NULL;
2947 }
2948 qemu_chr_reset(chr);
2949 return chr;
2950 }
2951
2952 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2953 {
2954 CharDriverState *chr;
2955 WinCharState *s;
2956
2957 chr = qemu_mallocz(sizeof(CharDriverState));
2958 if (!chr)
2959 return NULL;
2960 s = qemu_mallocz(sizeof(WinCharState));
2961 if (!s) {
2962 free(chr);
2963 return NULL;
2964 }
2965 s->hcom = fd_out;
2966 chr->opaque = s;
2967 chr->chr_write = win_chr_write;
2968 qemu_chr_reset(chr);
2969 return chr;
2970 }
2971
2972 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2973 {
2974 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2975 }
2976
2977 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2978 {
2979 HANDLE fd_out;
2980
2981 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2982 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2983 if (fd_out == INVALID_HANDLE_VALUE)
2984 return NULL;
2985
2986 return qemu_chr_open_win_file(fd_out);
2987 }
2988 #endif /* !_WIN32 */
2989
2990 /***********************************************************/
2991 /* UDP Net console */
2992
2993 typedef struct {
2994 int fd;
2995 struct sockaddr_in daddr;
2996 uint8_t buf[1024];
2997 int bufcnt;
2998 int bufptr;
2999 int max_size;
3000 } NetCharDriver;
3001
3002 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3003 {
3004 NetCharDriver *s = chr->opaque;
3005
3006 return sendto(s->fd, buf, len, 0,
3007 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3008 }
3009
3010 static int udp_chr_read_poll(void *opaque)
3011 {
3012 CharDriverState *chr = opaque;
3013 NetCharDriver *s = chr->opaque;
3014
3015 s->max_size = qemu_chr_can_read(chr);
3016
3017 /* If there were any stray characters in the queue process them
3018 * first
3019 */
3020 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3021 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3022 s->bufptr++;
3023 s->max_size = qemu_chr_can_read(chr);
3024 }
3025 return s->max_size;
3026 }
3027
3028 static void udp_chr_read(void *opaque)
3029 {
3030 CharDriverState *chr = opaque;
3031 NetCharDriver *s = chr->opaque;
3032
3033 if (s->max_size == 0)
3034 return;
3035 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3036 s->bufptr = s->bufcnt;
3037 if (s->bufcnt <= 0)
3038 return;
3039
3040 s->bufptr = 0;
3041 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3042 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3043 s->bufptr++;
3044 s->max_size = qemu_chr_can_read(chr);
3045 }
3046 }
3047
3048 static void udp_chr_update_read_handler(CharDriverState *chr)
3049 {
3050 NetCharDriver *s = chr->opaque;
3051
3052 if (s->fd >= 0) {
3053 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3054 udp_chr_read, NULL, chr);
3055 }
3056 }
3057
3058 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3059 #ifndef _WIN32
3060 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3061 #endif
3062 int parse_host_src_port(struct sockaddr_in *haddr,
3063 struct sockaddr_in *saddr,
3064 const char *str);
3065
3066 static CharDriverState *qemu_chr_open_udp(const char *def)
3067 {
3068 CharDriverState *chr = NULL;
3069 NetCharDriver *s = NULL;
3070 int fd = -1;
3071 struct sockaddr_in saddr;
3072
3073 chr = qemu_mallocz(sizeof(CharDriverState));
3074 if (!chr)
3075 goto return_err;
3076 s = qemu_mallocz(sizeof(NetCharDriver));
3077 if (!s)
3078 goto return_err;
3079
3080 fd = socket(PF_INET, SOCK_DGRAM, 0);
3081 if (fd < 0) {
3082 perror("socket(PF_INET, SOCK_DGRAM)");
3083 goto return_err;
3084 }
3085
3086 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3087 printf("Could not parse: %s\n", def);
3088 goto return_err;
3089 }
3090
3091 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3092 {
3093 perror("bind");
3094 goto return_err;
3095 }
3096
3097 s->fd = fd;
3098 s->bufcnt = 0;
3099 s->bufptr = 0;
3100 chr->opaque = s;
3101 chr->chr_write = udp_chr_write;
3102 chr->chr_update_read_handler = udp_chr_update_read_handler;
3103 return chr;
3104
3105 return_err:
3106 if (chr)
3107 free(chr);
3108 if (s)
3109 free(s);
3110 if (fd >= 0)
3111 closesocket(fd);
3112 return NULL;
3113 }
3114
3115 /***********************************************************/
3116 /* TCP Net console */
3117
3118 typedef struct {
3119 int fd, listen_fd;
3120 int connected;
3121 int max_size;
3122 int do_telnetopt;
3123 int do_nodelay;
3124 int is_unix;
3125 } TCPCharDriver;
3126
3127 static void tcp_chr_accept(void *opaque);
3128
3129 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3130 {
3131 TCPCharDriver *s = chr->opaque;
3132 if (s->connected) {
3133 return send_all(s->fd, buf, len);
3134 } else {
3135 /* XXX: indicate an error ? */
3136 return len;
3137 }
3138 }
3139
3140 static int tcp_chr_read_poll(void *opaque)
3141 {
3142 CharDriverState *chr = opaque;
3143 TCPCharDriver *s = chr->opaque;
3144 if (!s->connected)
3145 return 0;
3146 s->max_size = qemu_chr_can_read(chr);
3147 return s->max_size;
3148 }
3149
3150 #define IAC 255
3151 #define IAC_BREAK 243
3152 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3153 TCPCharDriver *s,
3154 uint8_t *buf, int *size)
3155 {
3156 /* Handle any telnet client's basic IAC options to satisfy char by
3157 * char mode with no echo. All IAC options will be removed from
3158 * the buf and the do_telnetopt variable will be used to track the
3159 * state of the width of the IAC information.
3160 *
3161 * IAC commands come in sets of 3 bytes with the exception of the
3162 * "IAC BREAK" command and the double IAC.
3163 */
3164
3165 int i;
3166 int j = 0;
3167
3168 for (i = 0; i < *size; i++) {
3169 if (s->do_telnetopt > 1) {
3170 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3171 /* Double IAC means send an IAC */
3172 if (j != i)
3173 buf[j] = buf[i];
3174 j++;
3175 s->do_telnetopt = 1;
3176 } else {
3177 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3178 /* Handle IAC break commands by sending a serial break */
3179 qemu_chr_event(chr, CHR_EVENT_BREAK);
3180 s->do_telnetopt++;
3181 }
3182 s->do_telnetopt++;
3183 }
3184 if (s->do_telnetopt >= 4) {
3185 s->do_telnetopt = 1;
3186 }
3187 } else {
3188 if ((unsigned char)buf[i] == IAC) {
3189 s->do_telnetopt = 2;
3190 } else {
3191 if (j != i)
3192 buf[j] = buf[i];
3193 j++;
3194 }
3195 }
3196 }
3197 *size = j;
3198 }
3199
3200 static void tcp_chr_read(void *opaque)
3201 {
3202 CharDriverState *chr = opaque;
3203 TCPCharDriver *s = chr->opaque;
3204 uint8_t buf[1024];
3205 int len, size;
3206
3207 if (!s->connected || s->max_size <= 0)
3208 return;
3209 len = sizeof(buf);
3210 if (len > s->max_size)
3211 len = s->max_size;
3212 size = recv(s->fd, buf, len, 0);
3213 if (size == 0) {
3214 /* connection closed */
3215 s->connected = 0;
3216 if (s->listen_fd >= 0) {
3217 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3218 }
3219 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3220 closesocket(s->fd);
3221 s->fd = -1;
3222 } else if (size > 0) {
3223 if (s->do_telnetopt)
3224 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3225 if (size > 0)
3226 qemu_chr_read(chr, buf, size);
3227 }
3228 }
3229
3230 static void tcp_chr_connect(void *opaque)
3231 {
3232 CharDriverState *chr = opaque;
3233 TCPCharDriver *s = chr->opaque;
3234
3235 s->connected = 1;
3236 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3237 tcp_chr_read, NULL, chr);
3238 qemu_chr_reset(chr);
3239 }
3240
3241 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3242 static void tcp_chr_telnet_init(int fd)
3243 {
3244 char buf[3];
3245 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3246 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3247 send(fd, (char *)buf, 3, 0);
3248 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3249 send(fd, (char *)buf, 3, 0);
3250 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3251 send(fd, (char *)buf, 3, 0);
3252 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3253 send(fd, (char *)buf, 3, 0);
3254 }
3255
3256 static void socket_set_nodelay(int fd)
3257 {
3258 int val = 1;
3259 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3260 }
3261
3262 static void tcp_chr_accept(void *opaque)
3263 {
3264 CharDriverState *chr = opaque;
3265 TCPCharDriver *s = chr->opaque;
3266 struct sockaddr_in saddr;
3267 #ifndef _WIN32
3268 struct sockaddr_un uaddr;
3269 #endif
3270 struct sockaddr *addr;
3271 socklen_t len;
3272 int fd;
3273
3274 for(;;) {
3275 #ifndef _WIN32
3276 if (s->is_unix) {
3277 len = sizeof(uaddr);
3278 addr = (struct sockaddr *)&uaddr;
3279 } else
3280 #endif
3281 {
3282 len = sizeof(saddr);
3283 addr = (struct sockaddr *)&saddr;
3284 }
3285 fd = accept(s->listen_fd, addr, &len);
3286 if (fd < 0 && errno != EINTR) {
3287 return;
3288 } else if (fd >= 0) {
3289 if (s->do_telnetopt)
3290 tcp_chr_telnet_init(fd);
3291 break;
3292 }
3293 }
3294 socket_set_nonblock(fd);
3295 if (s->do_nodelay)
3296 socket_set_nodelay(fd);
3297 s->fd = fd;
3298 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3299 tcp_chr_connect(chr);
3300 }
3301
3302 static void tcp_chr_close(CharDriverState *chr)
3303 {
3304 TCPCharDriver *s = chr->opaque;
3305 if (s->fd >= 0)
3306 closesocket(s->fd);
3307 if (s->listen_fd >= 0)
3308 closesocket(s->listen_fd);
3309 qemu_free(s);
3310 }
3311
3312 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3313 int is_telnet,
3314 int is_unix)
3315 {
3316 CharDriverState *chr = NULL;
3317 TCPCharDriver *s = NULL;
3318 int fd = -1, ret, err, val;
3319 int is_listen = 0;
3320 int is_waitconnect = 1;
3321 int do_nodelay = 0;
3322 const char *ptr;
3323 struct sockaddr_in saddr;
3324 #ifndef _WIN32
3325 struct sockaddr_un uaddr;
3326 #endif
3327 struct sockaddr *addr;
3328 socklen_t addrlen;
3329
3330 #ifndef _WIN32
3331 if (is_unix) {
3332 addr = (struct sockaddr *)&uaddr;
3333 addrlen = sizeof(uaddr);
3334 if (parse_unix_path(&uaddr, host_str) < 0)
3335 goto fail;
3336 } else
3337 #endif
3338 {
3339 addr = (struct sockaddr *)&saddr;
3340 addrlen = sizeof(saddr);
3341 if (parse_host_port(&saddr, host_str) < 0)
3342 goto fail;
3343 }
3344
3345 ptr = host_str;
3346 while((ptr = strchr(ptr,','))) {
3347 ptr++;
3348 if (!strncmp(ptr,"server",6)) {
3349 is_listen = 1;
3350 } else if (!strncmp(ptr,"nowait",6)) {
3351 is_waitconnect = 0;
3352 } else if (!strncmp(ptr,"nodelay",6)) {
3353 do_nodelay = 1;
3354 } else {
3355 printf("Unknown option: %s\n", ptr);
3356 goto fail;
3357 }
3358 }
3359 if (!is_listen)
3360 is_waitconnect = 0;
3361
3362 chr = qemu_mallocz(sizeof(CharDriverState));
3363 if (!chr)
3364 goto fail;
3365 s = qemu_mallocz(sizeof(TCPCharDriver));
3366 if (!s)
3367 goto fail;
3368
3369 #ifndef _WIN32
3370 if (is_unix)
3371 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3372 else
3373 #endif
3374 fd = socket(PF_INET, SOCK_STREAM, 0);
3375
3376 if (fd < 0)
3377 goto fail;
3378
3379 if (!is_waitconnect)
3380 socket_set_nonblock(fd);
3381
3382 s->connected = 0;
3383 s->fd = -1;
3384 s->listen_fd = -1;
3385 s->is_unix = is_unix;
3386 s->do_nodelay = do_nodelay && !is_unix;
3387
3388 chr->opaque = s;
3389 chr->chr_write = tcp_chr_write;
3390 chr->chr_close = tcp_chr_close;
3391
3392 if (is_listen) {
3393 /* allow fast reuse */
3394 #ifndef _WIN32
3395 if (is_unix) {
3396 char path[109];
3397 strncpy(path, uaddr.sun_path, 108);
3398 path[108] = 0;
3399 unlink(path);
3400 } else
3401 #endif
3402 {
3403 val = 1;
3404 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3405 }
3406
3407 ret = bind(fd, addr, addrlen);
3408 if (ret < 0)
3409 goto fail;
3410
3411 ret = listen(fd, 0);
3412 if (ret < 0)
3413 goto fail;
3414
3415 s->listen_fd = fd;
3416 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3417 if (is_telnet)
3418 s->do_telnetopt = 1;
3419 } else {
3420 for(;;) {
3421 ret = connect(fd, addr, addrlen);
3422 if (ret < 0) {
3423 err = socket_error();
3424 if (err == EINTR || err == EWOULDBLOCK) {
3425 } else if (err == EINPROGRESS) {
3426 break;
3427 #ifdef _WIN32
3428 } else if (err == WSAEALREADY) {
3429 break;
3430 #endif
3431 } else {
3432 goto fail;
3433 }
3434 } else {
3435 s->connected = 1;
3436 break;
3437 }
3438 }
3439 s->fd = fd;
3440 socket_set_nodelay(fd);
3441 if (s->connected)
3442 tcp_chr_connect(chr);
3443 else
3444 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3445 }
3446
3447 if (is_listen && is_waitconnect) {
3448 printf("QEMU waiting for connection on: %s\n", host_str);
3449 tcp_chr_accept(chr);
3450 socket_set_nonblock(s->listen_fd);
3451 }
3452
3453 return chr;
3454 fail:
3455 if (fd >= 0)
3456 closesocket(fd);
3457 qemu_free(s);
3458 qemu_free(chr);
3459 return NULL;
3460 }
3461
3462 CharDriverState *qemu_chr_open(const char *filename)
3463 {
3464 const char *p;
3465
3466 if (!strcmp(filename, "vc")) {
3467 return text_console_init(&display_state, 0);
3468 } else if (strstart(filename, "vc:", &p)) {
3469 return text_console_init(&display_state, p);
3470 } else if (!strcmp(filename, "null")) {
3471 return qemu_chr_open_null();
3472 } else
3473 if (strstart(filename, "tcp:", &p)) {
3474 return qemu_chr_open_tcp(p, 0, 0);
3475 } else
3476 if (strstart(filename, "telnet:", &p)) {
3477 return qemu_chr_open_tcp(p, 1, 0);
3478 } else
3479 if (strstart(filename, "udp:", &p)) {
3480 return qemu_chr_open_udp(p);
3481 } else
3482 if (strstart(filename, "mon:", &p)) {
3483 CharDriverState *drv = qemu_chr_open(p);
3484 if (drv) {
3485 drv = qemu_chr_open_mux(drv);
3486 monitor_init(drv, !nographic);
3487 return drv;
3488 }
3489 printf("Unable to open driver: %s\n", p);
3490 return 0;
3491 } else
3492 #ifndef _WIN32
3493 if (strstart(filename, "unix:", &p)) {
3494 return qemu_chr_open_tcp(p, 0, 1);
3495 } else if (strstart(filename, "file:", &p)) {
3496 return qemu_chr_open_file_out(p);
3497 } else if (strstart(filename, "pipe:", &p)) {
3498 return qemu_chr_open_pipe(p);
3499 } else if (!strcmp(filename, "pty")) {
3500 return qemu_chr_open_pty();
3501 } else if (!strcmp(filename, "stdio")) {
3502 return qemu_chr_open_stdio();
3503 } else
3504 #if defined(__linux__)
3505 if (strstart(filename, "/dev/parport", NULL)) {
3506 return qemu_chr_open_pp(filename);
3507 } else
3508 #endif
3509 #if defined(__linux__) || defined(__sun__)
3510 if (strstart(filename, "/dev/", NULL)) {
3511 return qemu_chr_open_tty(filename);
3512 } else
3513 #endif
3514 #else /* !_WIN32 */
3515 if (strstart(filename, "COM", NULL)) {
3516 return qemu_chr_open_win(filename);
3517 } else
3518 if (strstart(filename, "pipe:", &p)) {
3519 return qemu_chr_open_win_pipe(p);
3520 } else
3521 if (strstart(filename, "con:", NULL)) {
3522 return qemu_chr_open_win_con(filename);
3523 } else
3524 if (strstart(filename, "file:", &p)) {
3525 return qemu_chr_open_win_file_out(p);
3526 } else
3527 #endif
3528 #ifdef CONFIG_BRLAPI
3529 if (!strcmp(filename, "braille")) {
3530 return chr_baum_init();
3531 } else
3532 #endif
3533 {
3534 return NULL;
3535 }
3536 }
3537
3538 void qemu_chr_close(CharDriverState *chr)
3539 {
3540 if (chr->chr_close)
3541 chr->chr_close(chr);
3542 qemu_free(chr);
3543 }
3544
3545 /***********************************************************/
3546 /* network device redirectors */
3547
3548 __attribute__ (( unused ))
3549 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3550 {
3551 int len, i, j, c;
3552
3553 for(i=0;i<size;i+=16) {
3554 len = size - i;
3555 if (len > 16)
3556 len = 16;
3557 fprintf(f, "%08x ", i);
3558 for(j=0;j<16;j++) {
3559 if (j < len)
3560 fprintf(f, " %02x", buf[i+j]);
3561 else
3562 fprintf(f, " ");
3563 }
3564 fprintf(f, " ");
3565 for(j=0;j<len;j++) {
3566 c = buf[i+j];
3567 if (c < ' ' || c > '~')
3568 c = '.';
3569 fprintf(f, "%c", c);
3570 }
3571 fprintf(f, "\n");
3572 }
3573 }
3574
3575 static int parse_macaddr(uint8_t *macaddr, const char *p)
3576 {
3577 int i;
3578 char *last_char;
3579 long int offset;
3580
3581 errno = 0;
3582 offset = strtol(p, &last_char, 0);
3583 if (0 == errno && '\0' == *last_char &&
3584 offset >= 0 && offset <= 0xFFFFFF) {
3585 macaddr[3] = (offset & 0xFF0000) >> 16;
3586 macaddr[4] = (offset & 0xFF00) >> 8;
3587 macaddr[5] = offset & 0xFF;
3588 return 0;
3589 } else {
3590 for(i = 0; i < 6; i++) {
3591 macaddr[i] = strtol(p, (char **)&p, 16);
3592 if (i == 5) {
3593 if (*p != '\0')
3594 return -1;
3595 } else {
3596 if (*p != ':' && *p != '-')
3597 return -1;
3598 p++;
3599 }
3600 }
3601 return 0;
3602 }
3603
3604 return -1;
3605 }
3606
3607 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3608 {
3609 const char *p, *p1;
3610 int len;
3611 p = *pp;
3612 p1 = strchr(p, sep);
3613 if (!p1)
3614 return -1;
3615 len = p1 - p;
3616 p1++;
3617 if (buf_size > 0) {
3618 if (len > buf_size - 1)
3619 len = buf_size - 1;
3620 memcpy(buf, p, len);
3621 buf[len] = '\0';
3622 }
3623 *pp = p1;
3624 return 0;
3625 }
3626
3627 int parse_host_src_port(struct sockaddr_in *haddr,
3628 struct sockaddr_in *saddr,
3629 const char *input_str)
3630 {
3631 char *str = strdup(input_str);
3632 char *host_str = str;
3633 char *src_str;
3634 char *ptr;
3635
3636 /*
3637 * Chop off any extra arguments at the end of the string which
3638 * would start with a comma, then fill in the src port information
3639 * if it was provided else use the "any address" and "any port".
3640 */
3641 if ((ptr = strchr(str,',')))
3642 *ptr = '\0';
3643
3644 if ((src_str = strchr(input_str,'@'))) {
3645 *src_str = '\0';
3646 src_str++;
3647 }
3648
3649 if (parse_host_port(haddr, host_str) < 0)
3650 goto fail;
3651
3652 if (!src_str || *src_str == '\0')
3653 src_str = ":0";
3654
3655 if (parse_host_port(saddr, src_str) < 0)
3656 goto fail;
3657
3658 free(str);
3659 return(0);
3660
3661 fail:
3662 free(str);
3663 return -1;
3664 }
3665
3666 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3667 {
3668 char buf[512];
3669 struct hostent *he;
3670 const char *p, *r;
3671 int port;
3672
3673 p = str;
3674 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3675 return -1;
3676 saddr->sin_family = AF_INET;
3677 if (buf[0] == '\0') {
3678 saddr->sin_addr.s_addr = 0;
3679 } else {
3680 if (isdigit(buf[0])) {
3681 if (!inet_aton(buf, &saddr->sin_addr))
3682 return -1;
3683 } else {
3684 if ((he = gethostbyname(buf)) == NULL)
3685 return - 1;
3686 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3687 }
3688 }
3689 port = strtol(p, (char **)&r, 0);
3690 if (r == p)
3691 return -1;
3692 saddr->sin_port = htons(port);
3693 return 0;
3694 }
3695
3696 #ifndef _WIN32
3697 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3698 {
3699 const char *p;
3700 int len;
3701
3702 len = MIN(108, strlen(str));
3703 p = strchr(str, ',');
3704 if (p)
3705 len = MIN(len, p - str);
3706
3707 memset(uaddr, 0, sizeof(*uaddr));
3708
3709 uaddr->sun_family = AF_UNIX;
3710 memcpy(uaddr->sun_path, str, len);
3711
3712 return 0;
3713 }
3714 #endif
3715
3716 /* find or alloc a new VLAN */
3717 VLANState *qemu_find_vlan(int id)
3718 {
3719 VLANState **pvlan, *vlan;
3720 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3721 if (vlan->id == id)
3722 return vlan;
3723 }
3724 vlan = qemu_mallocz(sizeof(VLANState));
3725 if (!vlan)
3726 return NULL;
3727 vlan->id = id;
3728 vlan->next = NULL;
3729 pvlan = &first_vlan;
3730 while (*pvlan != NULL)
3731 pvlan = &(*pvlan)->next;
3732 *pvlan = vlan;
3733 return vlan;
3734 }
3735
3736 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3737 IOReadHandler *fd_read,
3738 IOCanRWHandler *fd_can_read,
3739 void *opaque)
3740 {
3741 VLANClientState *vc, **pvc;
3742 vc = qemu_mallocz(sizeof(VLANClientState));
3743 if (!vc)
3744 return NULL;
3745 vc->fd_read = fd_read;
3746 vc->fd_can_read = fd_can_read;
3747 vc->opaque = opaque;
3748 vc->vlan = vlan;
3749
3750 vc->next = NULL;
3751 pvc = &vlan->first_client;
3752 while (*pvc != NULL)
3753 pvc = &(*pvc)->next;
3754 *pvc = vc;
3755 return vc;
3756 }
3757
3758 int qemu_can_send_packet(VLANClientState *vc1)
3759 {
3760 VLANState *vlan = vc1->vlan;
3761 VLANClientState *vc;
3762
3763 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3764 if (vc != vc1) {
3765 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3766 return 1;
3767 }
3768 }
3769 return 0;
3770 }
3771
3772 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3773 {
3774 VLANState *vlan = vc1->vlan;
3775 VLANClientState *vc;
3776
3777 #if 0
3778 printf("vlan %d send:\n", vlan->id);
3779 hex_dump(stdout, buf, size);
3780 #endif
3781 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3782 if (vc != vc1) {
3783 vc->fd_read(vc->opaque, buf, size);
3784 }
3785 }
3786 }
3787
3788 #if defined(CONFIG_SLIRP)
3789
3790 /* slirp network adapter */
3791
3792 static int slirp_inited;
3793 static VLANClientState *slirp_vc;
3794
3795 int slirp_can_output(void)
3796 {
3797 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3798 }
3799
3800 void slirp_output(const uint8_t *pkt, int pkt_len)
3801 {
3802 #if 0
3803 printf("slirp output:\n");
3804 hex_dump(stdout, pkt, pkt_len);
3805 #endif
3806 if (!slirp_vc)
3807 return;
3808 qemu_send_packet(slirp_vc, pkt, pkt_len);
3809 }
3810
3811 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3812 {
3813 #if 0
3814 printf("slirp input:\n");
3815 hex_dump(stdout, buf, size);
3816 #endif
3817 slirp_input(buf, size);
3818 }
3819
3820 static int net_slirp_init(VLANState *vlan)
3821 {
3822 if (!slirp_inited) {
3823 slirp_inited = 1;
3824 slirp_init();
3825 }
3826 slirp_vc = qemu_new_vlan_client(vlan,
3827 slirp_receive, NULL, NULL);
3828 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3829 return 0;
3830 }
3831
3832 static void net_slirp_redir(const char *redir_str)
3833 {
3834 int is_udp;
3835 char buf[256], *r;
3836 const char *p;
3837 struct in_addr guest_addr;
3838 int host_port, guest_port;
3839
3840 if (!slirp_inited) {
3841 slirp_inited = 1;
3842 slirp_init();
3843 }
3844
3845 p = redir_str;
3846 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3847 goto fail;
3848 if (!strcmp(buf, "tcp")) {
3849 is_udp = 0;
3850 } else if (!strcmp(buf, "udp")) {
3851 is_udp = 1;
3852 } else {
3853 goto fail;
3854 }
3855
3856 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3857 goto fail;
3858 host_port = strtol(buf, &r, 0);
3859 if (r == buf)
3860 goto fail;
3861
3862 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3863 goto fail;
3864 if (buf[0] == '\0') {
3865 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3866 }
3867 if (!inet_aton(buf, &guest_addr))
3868 goto fail;
3869
3870 guest_port = strtol(p, &r, 0);
3871 if (r == p)
3872 goto fail;
3873
3874 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3875 fprintf(stderr, "qemu: could not set up redirection\n");
3876 exit(1);
3877 }
3878 return;
3879 fail:
3880 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3881 exit(1);
3882 }
3883
3884 #ifndef _WIN32
3885
3886 char smb_dir[1024];
3887
3888 static void erase_dir(char *dir_name)
3889 {
3890 DIR *d;
3891 struct dirent *de;
3892 char filename[1024];
3893
3894 /* erase all the files in the directory */
3895 if ((d = opendir(dir_name)) != 0) {
3896 for(;;) {
3897 de = readdir(d);
3898 if (!de)
3899 break;
3900 if (strcmp(de->d_name, ".") != 0 &&
3901 strcmp(de->d_name, "..") != 0) {
3902 snprintf(filename, sizeof(filename), "%s/%s",
3903 smb_dir, de->d_name);
3904 if (unlink(filename) != 0) /* is it a directory? */
3905 erase_dir(filename);
3906 }
3907 }
3908 closedir(d);
3909 rmdir(dir_name);
3910 }
3911 }
3912
3913 /* automatic user mode samba server configuration */
3914 static void smb_exit(void)
3915 {
3916 erase_dir(smb_dir);
3917 }
3918
3919 /* automatic user mode samba server configuration */
3920 static void net_slirp_smb(const char *exported_dir)
3921 {
3922 char smb_conf[1024];
3923 char smb_cmdline[1024];
3924 FILE *f;
3925
3926 if (!slirp_inited) {
3927 slirp_inited = 1;
3928 slirp_init();
3929 }
3930
3931 /* XXX: better tmp dir construction */
3932 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3933 if (mkdir(smb_dir, 0700) < 0) {
3934 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3935 exit(1);
3936 }
3937 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3938
3939 f = fopen(smb_conf, "w");
3940 if (!f) {
3941 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3942 exit(1);
3943 }
3944 fprintf(f,
3945 "[global]\n"
3946 "private dir=%s\n"
3947 "smb ports=0\n"
3948 "socket address=127.0.0.1\n"
3949 "pid directory=%s\n"
3950 "lock directory=%s\n"
3951 "log file=%s/log.smbd\n"
3952 "smb passwd file=%s/smbpasswd\n"
3953 "security = share\n"
3954 "[qemu]\n"
3955 "path=%s\n"
3956 "read only=no\n"
3957 "guest ok=yes\n",
3958 smb_dir,
3959 smb_dir,
3960 smb_dir,
3961 smb_dir,
3962 smb_dir,
3963 exported_dir
3964 );
3965 fclose(f);
3966 atexit(smb_exit);
3967
3968 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3969 SMBD_COMMAND, smb_conf);
3970
3971 slirp_add_exec(0, smb_cmdline, 4, 139);
3972 }
3973
3974 #endif /* !defined(_WIN32) */
3975 void do_info_slirp(void)
3976 {
3977 slirp_stats();
3978 }
3979
3980 #endif /* CONFIG_SLIRP */
3981
3982 #if !defined(_WIN32)
3983
3984 typedef struct TAPState {
3985 VLANClientState *vc;
3986 int fd;
3987 char down_script[1024];
3988 } TAPState;
3989
3990 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3991 {
3992 TAPState *s = opaque;
3993 int ret;
3994 for(;;) {
3995 ret = write(s->fd, buf, size);
3996 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3997 } else {
3998 break;
3999 }
4000 }
4001 }
4002
4003 static void tap_send(void *opaque)
4004 {
4005 TAPState *s = opaque;
4006 uint8_t buf[4096];
4007 int size;
4008
4009 #ifdef __sun__
4010 struct strbuf sbuf;
4011 int f = 0;
4012 sbuf.maxlen = sizeof(buf);
4013 sbuf.buf = buf;
4014 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4015 #else
4016 size = read(s->fd, buf, sizeof(buf));
4017 #endif
4018 if (size > 0) {
4019 qemu_send_packet(s->vc, buf, size);
4020 }
4021 }
4022
4023 /* fd support */
4024
4025 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4026 {
4027 TAPState *s;
4028
4029 s = qemu_mallocz(sizeof(TAPState));
4030 if (!s)
4031 return NULL;
4032 s->fd = fd;
4033 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4034 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4035 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4036 return s;
4037 }
4038
4039 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4040 static int tap_open(char *ifname, int ifname_size)
4041 {
4042 int fd;
4043 char *dev;
4044 struct stat s;
4045
4046 TFR(fd = open("/dev/tap", O_RDWR));
4047 if (fd < 0) {
4048 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4049 return -1;
4050 }
4051
4052 fstat(fd, &s);
4053 dev = devname(s.st_rdev, S_IFCHR);
4054 pstrcpy(ifname, ifname_size, dev);
4055
4056 fcntl(fd, F_SETFL, O_NONBLOCK);
4057 return fd;
4058 }
4059 #elif defined(__sun__)
4060 #define TUNNEWPPA (('T'<<16) | 0x0001)
4061 /*
4062 * Allocate TAP device, returns opened fd.
4063 * Stores dev name in the first arg(must be large enough).
4064 */
4065 int tap_alloc(char *dev)
4066 {
4067 int tap_fd, if_fd, ppa = -1;
4068 static int ip_fd = 0;
4069 char *ptr;
4070
4071 static int arp_fd = 0;
4072 int ip_muxid, arp_muxid;
4073 struct strioctl strioc_if, strioc_ppa;
4074 int link_type = I_PLINK;;
4075 struct lifreq ifr;
4076 char actual_name[32] = "";
4077
4078 memset(&ifr, 0x0, sizeof(ifr));
4079
4080 if( *dev ){
4081 ptr = dev;
4082 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4083 ppa = atoi(ptr);
4084 }
4085
4086 /* Check if IP device was opened */
4087 if( ip_fd )
4088 close(ip_fd);
4089
4090 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4091 if (ip_fd < 0) {
4092 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4093 return -1;
4094 }
4095
4096 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4097 if (tap_fd < 0) {
4098 syslog(LOG_ERR, "Can't open /dev/tap");
4099 return -1;
4100 }
4101
4102 /* Assign a new PPA and get its unit number. */
4103 strioc_ppa.ic_cmd = TUNNEWPPA;
4104 strioc_ppa.ic_timout = 0;
4105 strioc_ppa.ic_len = sizeof(ppa);
4106 strioc_ppa.ic_dp = (char *)&ppa;
4107 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4108 syslog (LOG_ERR, "Can't assign new interface");
4109
4110 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4111 if (if_fd < 0) {
4112 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4113 return -1;
4114 }
4115 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4116 syslog(LOG_ERR, "Can't push IP module");
4117 return -1;
4118 }
4119
4120 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4121 syslog(LOG_ERR, "Can't get flags\n");
4122
4123 snprintf (actual_name, 32, "tap%d", ppa);
4124 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4125
4126 ifr.lifr_ppa = ppa;
4127 /* Assign ppa according to the unit number returned by tun device */
4128
4129 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4130 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4131 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4132 syslog (LOG_ERR, "Can't get flags\n");
4133 /* Push arp module to if_fd */
4134 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4135 syslog (LOG_ERR, "Can't push ARP module (2)");
4136
4137 /* Push arp module to ip_fd */
4138 if (ioctl (ip_fd, I_POP, NULL) < 0)
4139 syslog (LOG_ERR, "I_POP failed\n");
4140 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4141 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4142 /* Open arp_fd */
4143 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4144 if (arp_fd < 0)
4145 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4146
4147 /* Set ifname to arp */
4148 strioc_if.ic_cmd = SIOCSLIFNAME;
4149 strioc_if.ic_timout = 0;
4150 strioc_if.ic_len = sizeof(ifr);
4151 strioc_if.ic_dp = (char *)&ifr;
4152 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4153 syslog (LOG_ERR, "Can't set ifname to arp\n");
4154 }
4155
4156 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4157 syslog(LOG_ERR, "Can't link TAP device to IP");
4158 return -1;
4159 }
4160
4161 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4162 syslog (LOG_ERR, "Can't link TAP device to ARP");
4163
4164 close (if_fd);
4165
4166 memset(&ifr, 0x0, sizeof(ifr));
4167 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4168 ifr.lifr_ip_muxid = ip_muxid;
4169 ifr.lifr_arp_muxid = arp_muxid;
4170
4171 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4172 {
4173 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4174 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4175 syslog (LOG_ERR, "Can't set multiplexor id");
4176 }
4177
4178 sprintf(dev, "tap%d", ppa);
4179 return tap_fd;
4180 }
4181
4182 static int tap_open(char *ifname, int ifname_size)
4183 {
4184 char dev[10]="";
4185 int fd;
4186 if( (fd = tap_alloc(dev)) < 0 ){
4187 fprintf(stderr, "Cannot allocate TAP device\n");
4188 return -1;
4189 }
4190 pstrcpy(ifname, ifname_size, dev);
4191 fcntl(fd, F_SETFL, O_NONBLOCK);
4192 return fd;
4193 }
4194 #else
4195 static int tap_open(char *ifname, int ifname_size)
4196 {
4197 struct ifreq ifr;
4198 int fd, ret;
4199
4200 TFR(fd = open("/dev/net/tun", O_RDWR));
4201 if (fd < 0) {
4202 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4203 return -1;
4204 }
4205 memset(&ifr, 0, sizeof(ifr));
4206 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4207 if (ifname[0] != '\0')
4208 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4209 else
4210 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4211 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4212 if (ret != 0) {
4213 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4214 close(fd);
4215 return -1;
4216 }
4217 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4218 fcntl(fd, F_SETFL, O_NONBLOCK);
4219 return fd;
4220 }
4221 #endif
4222
4223 static int launch_script(const char *setup_script, const char *ifname, int fd)
4224 {
4225 int pid, status;
4226 char *args[3];
4227 char **parg;
4228
4229 /* try to launch network script */
4230 pid = fork();
4231 if (pid >= 0) {
4232 if (pid == 0) {
4233 int open_max = sysconf (_SC_OPEN_MAX), i;
4234 for (i = 0; i < open_max; i++)
4235 if (i != STDIN_FILENO &&
4236 i != STDOUT_FILENO &&
4237 i != STDERR_FILENO &&
4238 i != fd)
4239 close(i);
4240
4241 parg = args;
4242 *parg++ = (char *)setup_script;
4243 *parg++ = (char *)ifname;
4244 *parg++ = NULL;
4245 execv(setup_script, args);
4246 _exit(1);
4247 }
4248 while (waitpid(pid, &status, 0) != pid);
4249 if (!WIFEXITED(status) ||
4250 WEXITSTATUS(status) != 0) {
4251 fprintf(stderr, "%s: could not launch network script\n",
4252 setup_script);
4253 return -1;
4254 }
4255 }
4256 return 0;
4257 }
4258
4259 static int net_tap_init(VLANState *vlan, const char *ifname1,
4260 const char *setup_script, const char *down_script)
4261 {
4262 TAPState *s;
4263 int fd;
4264 char ifname[128];
4265
4266 if (ifname1 != NULL)
4267 pstrcpy(ifname, sizeof(ifname), ifname1);
4268 else
4269 ifname[0] = '\0';
4270 TFR(fd = tap_open(ifname, sizeof(ifname)));
4271 if (fd < 0)
4272 return -1;
4273
4274 if (!setup_script || !strcmp(setup_script, "no"))
4275 setup_script = "";
4276 if (setup_script[0] != '\0') {
4277 if (launch_script(setup_script, ifname, fd))
4278 return -1;
4279 }
4280 s = net_tap_fd_init(vlan, fd);
4281 if (!s)
4282 return -1;
4283 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4284 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4285 if (down_script && strcmp(down_script, "no"))
4286 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4287 return 0;
4288 }
4289
4290 #endif /* !_WIN32 */
4291
4292 /* network connection */
4293 typedef struct NetSocketState {
4294 VLANClientState *vc;
4295 int fd;
4296 int state; /* 0 = getting length, 1 = getting data */
4297 int index;
4298 int packet_len;
4299 uint8_t buf[4096];
4300 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4301 } NetSocketState;
4302
4303 typedef struct NetSocketListenState {
4304 VLANState *vlan;
4305 int fd;
4306 } NetSocketListenState;
4307
4308 /* XXX: we consider we can send the whole packet without blocking */
4309 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4310 {
4311 NetSocketState *s = opaque;
4312 uint32_t len;
4313 len = htonl(size);
4314
4315 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4316 send_all(s->fd, buf, size);
4317 }
4318
4319 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4320 {
4321 NetSocketState *s = opaque;
4322 sendto(s->fd, buf, size, 0,
4323 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4324 }
4325
4326 static void net_socket_send(void *opaque)
4327 {
4328 NetSocketState *s = opaque;
4329 int l, size, err;
4330 uint8_t buf1[4096];
4331 const uint8_t *buf;
4332
4333 size = recv(s->fd, buf1, sizeof(buf1), 0);
4334 if (size < 0) {
4335 err = socket_error();
4336 if (err != EWOULDBLOCK)
4337 goto eoc;
4338 } else if (size == 0) {
4339 /* end of connection */
4340 eoc:
4341 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4342 closesocket(s->fd);
4343 return;
4344 }
4345 buf = buf1;
4346 while (size > 0) {
4347 /* reassemble a packet from the network */
4348 switch(s->state) {
4349 case 0:
4350 l = 4 - s->index;
4351 if (l > size)
4352 l = size;
4353 memcpy(s->buf + s->index, buf, l);
4354 buf += l;
4355 size -= l;
4356 s->index += l;
4357 if (s->index == 4) {
4358 /* got length */
4359 s->packet_len = ntohl(*(uint32_t *)s->buf);
4360 s->index = 0;
4361 s->state = 1;
4362 }
4363 break;
4364 case 1:
4365 l = s->packet_len - s->index;
4366 if (l > size)
4367 l = size;
4368 memcpy(s->buf + s->index, buf, l);
4369 s->index += l;
4370 buf += l;
4371 size -= l;
4372 if (s->index >= s->packet_len) {
4373 qemu_send_packet(s->vc, s->buf, s->packet_len);
4374 s->index = 0;
4375 s->state = 0;
4376 }
4377 break;
4378 }
4379 }
4380 }
4381
4382 static void net_socket_send_dgram(void *opaque)
4383 {
4384 NetSocketState *s = opaque;
4385 int size;
4386
4387 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4388 if (size < 0)
4389 return;
4390 if (size == 0) {
4391 /* end of connection */
4392 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4393 return;
4394 }
4395 qemu_send_packet(s->vc, s->buf, size);
4396 }
4397
4398 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4399 {
4400 struct ip_mreq imr;
4401 int fd;
4402 int val, ret;
4403 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4404 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4405 inet_ntoa(mcastaddr->sin_addr),
4406 (int)ntohl(mcastaddr->sin_addr.s_addr));
4407 return -1;
4408
4409 }
4410 fd = socket(PF_INET, SOCK_DGRAM, 0);
4411 if (fd < 0) {
4412 perror("socket(PF_INET, SOCK_DGRAM)");
4413 return -1;
4414 }
4415
4416 val = 1;
4417 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4418 (const char *)&val, sizeof(val));
4419 if (ret < 0) {
4420 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4421 goto fail;
4422 }
4423
4424 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4425 if (ret < 0) {
4426 perror("bind");
4427 goto fail;
4428 }
4429
4430 /* Add host to multicast group */
4431 imr.imr_multiaddr = mcastaddr->sin_addr;
4432 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4433
4434 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4435 (const char *)&imr, sizeof(struct ip_mreq));
4436 if (ret < 0) {
4437 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4438 goto fail;
4439 }
4440
4441 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4442 val = 1;
4443 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4444 (const char *)&val, sizeof(val));
4445 if (ret < 0) {
4446 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4447 goto fail;
4448 }
4449
4450 socket_set_nonblock(fd);
4451 return fd;
4452 fail:
4453 if (fd >= 0)
4454 closesocket(fd);
4455 return -1;
4456 }
4457
4458 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4459 int is_connected)
4460 {
4461 struct sockaddr_in saddr;
4462 int newfd;
4463 socklen_t saddr_len;
4464 NetSocketState *s;
4465
4466 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4467 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4468 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4469 */
4470
4471 if (is_connected) {
4472 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4473 /* must be bound */
4474 if (saddr.sin_addr.s_addr==0) {
4475 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4476 fd);
4477 return NULL;
4478 }
4479 /* clone dgram socket */
4480 newfd = net_socket_mcast_create(&saddr);
4481 if (newfd < 0) {
4482 /* error already reported by net_socket_mcast_create() */
4483 close(fd);
4484 return NULL;
4485 }
4486 /* clone newfd to fd, close newfd */
4487 dup2(newfd, fd);
4488 close(newfd);
4489
4490 } else {
4491 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4492 fd, strerror(errno));
4493 return NULL;
4494 }
4495 }
4496
4497 s = qemu_mallocz(sizeof(NetSocketState));
4498 if (!s)
4499 return NULL;
4500 s->fd = fd;
4501
4502 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4503 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4504
4505 /* mcast: save bound address as dst */
4506 if (is_connected) s->dgram_dst=saddr;
4507
4508 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4509 "socket: fd=%d (%s mcast=%s:%d)",
4510 fd, is_connected? "cloned" : "",
4511 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4512 return s;
4513 }
4514
4515 static void net_socket_connect(void *opaque)
4516 {
4517 NetSocketState *s = opaque;
4518 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4519 }
4520
4521 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4522 int is_connected)
4523 {
4524 NetSocketState *s;
4525 s = qemu_mallocz(sizeof(NetSocketState));
4526 if (!s)
4527 return NULL;
4528 s->fd = fd;
4529 s->vc = qemu_new_vlan_client(vlan,
4530 net_socket_receive, NULL, s);
4531 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4532 "socket: fd=%d", fd);
4533 if (is_connected) {
4534 net_socket_connect(s);
4535 } else {
4536 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4537 }
4538 return s;
4539 }
4540
4541 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4542 int is_connected)
4543 {
4544 int so_type=-1, optlen=sizeof(so_type);
4545
4546 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4547 (socklen_t *)&optlen)< 0) {
4548 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4549 return NULL;
4550 }
4551 switch(so_type) {
4552 case SOCK_DGRAM:
4553 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4554 case SOCK_STREAM:
4555 return net_socket_fd_init_stream(vlan, fd, is_connected);
4556 default:
4557 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4558 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4559 return net_socket_fd_init_stream(vlan, fd, is_connected);
4560 }
4561 return NULL;
4562 }
4563
4564 static void net_socket_accept(void *opaque)
4565 {
4566 NetSocketListenState *s = opaque;
4567 NetSocketState *s1;
4568 struct sockaddr_in saddr;
4569 socklen_t len;
4570 int fd;
4571
4572 for(;;) {
4573 len = sizeof(saddr);
4574 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4575 if (fd < 0 && errno != EINTR) {
4576 return;
4577 } else if (fd >= 0) {
4578 break;
4579 }
4580 }
4581 s1 = net_socket_fd_init(s->vlan, fd, 1);
4582 if (!s1) {
4583 closesocket(fd);
4584 } else {
4585 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4586 "socket: connection from %s:%d",
4587 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4588 }
4589 }
4590
4591 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4592 {
4593 NetSocketListenState *s;
4594 int fd, val, ret;
4595 struct sockaddr_in saddr;
4596
4597 if (parse_host_port(&saddr, host_str) < 0)
4598 return -1;
4599
4600 s = qemu_mallocz(sizeof(NetSocketListenState));
4601 if (!s)
4602 return -1;
4603
4604 fd = socket(PF_INET, SOCK_STREAM, 0);
4605 if (fd < 0) {
4606 perror("socket");
4607 return -1;
4608 }
4609 socket_set_nonblock(fd);
4610
4611 /* allow fast reuse */
4612 val = 1;
4613 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4614
4615 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4616 if (ret < 0) {
4617 perror("bind");
4618 return -1;
4619 }
4620 ret = listen(fd, 0);
4621 if (ret < 0) {
4622 perror("listen");
4623 return -1;
4624 }
4625 s->vlan = vlan;
4626 s->fd = fd;
4627 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4628 return 0;
4629 }
4630
4631 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4632 {
4633 NetSocketState *s;
4634 int fd, connected, ret, err;
4635 struct sockaddr_in saddr;
4636
4637 if (parse_host_port(&saddr, host_str) < 0)
4638 return -1;
4639
4640 fd = socket(PF_INET, SOCK_STREAM, 0);
4641 if (fd < 0) {
4642 perror("socket");
4643 return -1;
4644 }
4645 socket_set_nonblock(fd);
4646
4647 connected = 0;
4648 for(;;) {
4649 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4650 if (ret < 0) {
4651 err = socket_error();
4652 if (err == EINTR || err == EWOULDBLOCK) {
4653 } else if (err == EINPROGRESS) {
4654 break;
4655 #ifdef _WIN32
4656 } else if (err == WSAEALREADY) {
4657 break;
4658 #endif
4659 } else {
4660 perror("connect");
4661 closesocket(fd);
4662 return -1;
4663 }
4664 } else {
4665 connected = 1;
4666 break;
4667 }
4668 }
4669 s = net_socket_fd_init(vlan, fd, connected);
4670 if (!s)
4671 return -1;
4672 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4673 "socket: connect to %s:%d",
4674 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4675 return 0;
4676 }
4677
4678 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4679 {
4680 NetSocketState *s;
4681 int fd;
4682 struct sockaddr_in saddr;
4683
4684 if (parse_host_port(&saddr, host_str) < 0)
4685 return -1;
4686
4687
4688 fd = net_socket_mcast_create(&saddr);
4689 if (fd < 0)
4690 return -1;
4691
4692 s = net_socket_fd_init(vlan, fd, 0);
4693 if (!s)
4694 return -1;
4695
4696 s->dgram_dst = saddr;
4697
4698 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4699 "socket: mcast=%s:%d",
4700 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4701 return 0;
4702
4703 }
4704
4705 static const char *get_opt_name(char *buf, int buf_size, const char *p)
4706 {
4707 char *q;
4708
4709 q = buf;
4710 while (*p != '\0' && *p != '=') {
4711 if (q && (q - buf) < buf_size - 1)
4712 *q++ = *p;
4713 p++;
4714 }
4715 if (q)
4716 *q = '\0';
4717
4718 return p;
4719 }
4720
4721 static const char *get_opt_value(char *buf, int buf_size, const char *p)
4722 {
4723 char *q;
4724
4725 q = buf;
4726 while (*p != '\0') {
4727 if (*p == ',') {
4728 if (*(p + 1) != ',')
4729 break;
4730 p++;
4731 }
4732 if (q && (q - buf) < buf_size - 1)
4733 *q++ = *p;
4734 p++;
4735 }
4736 if (q)
4737 *q = '\0';
4738
4739 return p;
4740 }
4741
4742 static int get_param_value(char *buf, int buf_size,
4743 const char *tag, const char *str)
4744 {
4745 const char *p;
4746 char option[128];
4747
4748 p = str;
4749 for(;;) {
4750 p = get_opt_name(option, sizeof(option), p);
4751 if (*p != '=')
4752 break;
4753 p++;
4754 if (!strcmp(tag, option)) {
4755 (void)get_opt_value(buf, buf_size, p);
4756 return strlen(buf);
4757 } else {
4758 p = get_opt_value(NULL, 0, p);
4759 }
4760 if (*p != ',')
4761 break;
4762 p++;
4763 }
4764 return 0;
4765 }
4766
4767 static int check_params(char *buf, int buf_size,
4768 char **params, const char *str)
4769 {
4770 const char *p;
4771 int i;
4772
4773 p = str;
4774 for(;;) {
4775 p = get_opt_name(buf, buf_size, p);
4776 if (*p != '=')
4777 return -1;
4778 p++;
4779 for(i = 0; params[i] != NULL; i++)
4780 if (!strcmp(params[i], buf))
4781 break;
4782 if (params[i] == NULL)
4783 return -1;
4784 p = get_opt_value(NULL, 0, p);
4785 if (*p != ',')
4786 break;
4787 p++;
4788 }
4789 return 0;
4790 }
4791
4792
4793 static int net_client_init(const char *str)
4794 {
4795 const char *p;
4796 char *q;
4797 char device[64];
4798 char buf[1024];
4799 int vlan_id, ret;
4800 VLANState *vlan;
4801
4802 p = str;
4803 q = device;
4804 while (*p != '\0' && *p != ',') {
4805 if ((q - device) < sizeof(device) - 1)
4806 *q++ = *p;
4807 p++;
4808 }
4809 *q = '\0';
4810 if (*p == ',')
4811 p++;
4812 vlan_id = 0;
4813 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4814 vlan_id = strtol(buf, NULL, 0);
4815 }
4816 vlan = qemu_find_vlan(vlan_id);
4817 if (!vlan) {
4818 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4819 return -1;
4820 }
4821 if (!strcmp(device, "nic")) {
4822 NICInfo *nd;
4823 uint8_t *macaddr;
4824
4825 if (nb_nics >= MAX_NICS) {
4826 fprintf(stderr, "Too Many NICs\n");
4827 return -1;
4828 }
4829 nd = &nd_table[nb_nics];
4830 macaddr = nd->macaddr;
4831 macaddr[0] = 0x52;
4832 macaddr[1] = 0x54;
4833 macaddr[2] = 0x00;
4834 macaddr[3] = 0x12;
4835 macaddr[4] = 0x34;
4836 macaddr[5] = 0x56 + nb_nics;
4837
4838 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4839 if (parse_macaddr(macaddr, buf) < 0) {
4840 fprintf(stderr, "invalid syntax for ethernet address\n");
4841 return -1;
4842 }
4843 }
4844 if (get_param_value(buf, sizeof(buf), "model", p)) {
4845 nd->model = strdup(buf);
4846 }
4847 nd->vlan = vlan;
4848 nb_nics++;
4849 vlan->nb_guest_devs++;
4850 ret = 0;
4851 } else
4852 if (!strcmp(device, "none")) {
4853 /* does nothing. It is needed to signal that no network cards
4854 are wanted */
4855 ret = 0;
4856 } else
4857 #ifdef CONFIG_SLIRP
4858 if (!strcmp(device, "user")) {
4859 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4860 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4861 }
4862 vlan->nb_host_devs++;
4863 ret = net_slirp_init(vlan);
4864 } else
4865 #endif
4866 #ifdef _WIN32
4867 if (!strcmp(device, "tap")) {
4868 char ifname[64];
4869 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4870 fprintf(stderr, "tap: no interface name\n");
4871 return -1;
4872 }
4873 vlan->nb_host_devs++;
4874 ret = tap_win32_init(vlan, ifname);
4875 } else
4876 #else
4877 if (!strcmp(device, "tap")) {
4878 char ifname[64];
4879 char setup_script[1024], down_script[1024];
4880 int fd;
4881 vlan->nb_host_devs++;
4882 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4883 fd = strtol(buf, NULL, 0);
4884 fcntl(fd, F_SETFL, O_NONBLOCK);
4885 ret = -1;
4886 if (net_tap_fd_init(vlan, fd))
4887 ret = 0;
4888 } else {
4889 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4890 ifname[0] = '\0';
4891 }
4892 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4893 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4894 }
4895 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4896 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4897 }
4898 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4899 }
4900 } else
4901 #endif
4902 if (!strcmp(device, "socket")) {
4903 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4904 int fd;
4905 fd = strtol(buf, NULL, 0);
4906 ret = -1;
4907 if (net_socket_fd_init(vlan, fd, 1))
4908 ret = 0;
4909 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4910 ret = net_socket_listen_init(vlan, buf);
4911 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4912 ret = net_socket_connect_init(vlan, buf);
4913 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4914 ret = net_socket_mcast_init(vlan, buf);
4915 } else {
4916 fprintf(stderr, "Unknown socket options: %s\n", p);
4917 return -1;
4918 }
4919 vlan->nb_host_devs++;
4920 } else
4921 {
4922 fprintf(stderr, "Unknown network device: %s\n", device);
4923 return -1;
4924 }
4925 if (ret < 0) {
4926 fprintf(stderr, "Could not initialize device '%s'\n", device);
4927 }
4928
4929 return ret;
4930 }
4931
4932 void do_info_network(void)
4933 {
4934 VLANState *vlan;
4935 VLANClientState *vc;
4936
4937 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4938 term_printf("VLAN %d devices:\n", vlan->id);
4939 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4940 term_printf(" %s\n", vc->info_str);
4941 }
4942 }
4943
4944 #define HD_ALIAS "index=%d,media=disk"
4945 #ifdef TARGET_PPC
4946 #define CDROM_ALIAS "index=1,media=cdrom"
4947 #else
4948 #define CDROM_ALIAS "index=2,media=cdrom"
4949 #endif
4950 #define FD_ALIAS "index=%d,if=floppy"
4951 #define PFLASH_ALIAS "if=pflash"
4952 #define MTD_ALIAS "if=mtd"
4953 #define SD_ALIAS "index=0,if=sd"
4954
4955 static int drive_add(const char *file, const char *fmt, ...)
4956 {
4957 va_list ap;
4958
4959 if (nb_drives_opt >= MAX_DRIVES) {
4960 fprintf(stderr, "qemu: too many drives\n");
4961 exit(1);
4962 }
4963
4964 drives_opt[nb_drives_opt].file = file;
4965 va_start(ap, fmt);
4966 vsnprintf(drives_opt[nb_drives_opt].opt,
4967 sizeof(drives_opt[0].opt), fmt, ap);
4968 va_end(ap);
4969
4970 return nb_drives_opt++;
4971 }
4972
4973 int drive_get_index(BlockInterfaceType type, int bus, int unit)
4974 {
4975 int index;
4976
4977 /* seek interface, bus and unit */
4978
4979 for (index = 0; index < nb_drives; index++)
4980 if (drives_table[index].type == type &&
4981 drives_table[index].bus == bus &&
4982 drives_table[index].unit == unit)
4983 return index;
4984
4985 return -1;
4986 }
4987
4988 int drive_get_max_bus(BlockInterfaceType type)
4989 {
4990 int max_bus;
4991 int index;
4992
4993 max_bus = -1;
4994 for (index = 0; index < nb_drives; index++) {
4995 if(drives_table[index].type == type &&
4996 drives_table[index].bus > max_bus)
4997 max_bus = drives_table[index].bus;
4998 }
4999 return max_bus;
5000 }
5001
5002 static void bdrv_format_print(void *opaque, const char *name)
5003 {
5004 fprintf(stderr, " %s", name);
5005 }
5006
5007 static int drive_init(struct drive_opt *arg, int snapshot,
5008 QEMUMachine *machine)
5009 {
5010 char buf[128];
5011 char file[1024];
5012 char devname[128];
5013 const char *mediastr = "";
5014 BlockInterfaceType type;
5015 enum { MEDIA_DISK, MEDIA_CDROM } media;
5016 int bus_id, unit_id;
5017 int cyls, heads, secs, translation;
5018 BlockDriverState *bdrv;
5019 BlockDriver *drv = NULL;
5020 int max_devs;
5021 int index;
5022 int cache;
5023 int bdrv_flags;
5024 char *str = arg->opt;
5025 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
5026 "secs", "trans", "media", "snapshot", "file",
5027 "cache", "format", NULL };
5028
5029 if (check_params(buf, sizeof(buf), params, str) < 0) {
5030 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5031 buf, str);
5032 return -1;
5033 }
5034
5035 file[0] = 0;
5036 cyls = heads = secs = 0;
5037 bus_id = 0;
5038 unit_id = -1;
5039 translation = BIOS_ATA_TRANSLATION_AUTO;
5040 index = -1;
5041 cache = 1;
5042
5043 if (!strcmp(machine->name, "realview") ||
5044 !strcmp(machine->name, "SS-5") ||
5045 !strcmp(machine->name, "SS-10") ||
5046 !strcmp(machine->name, "SS-600MP") ||
5047 !strcmp(machine->name, "versatilepb") ||
5048 !strcmp(machine->name, "versatileab")) {
5049 type = IF_SCSI;
5050 max_devs = MAX_SCSI_DEVS;
5051 strcpy(devname, "scsi");
5052 } else {
5053 type = IF_IDE;
5054 max_devs = MAX_IDE_DEVS;
5055 strcpy(devname, "ide");
5056 }
5057 media = MEDIA_DISK;
5058
5059 /* extract parameters */
5060
5061 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5062 bus_id = strtol(buf, NULL, 0);
5063 if (bus_id < 0) {
5064 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5065 return -1;
5066 }
5067 }
5068
5069 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5070 unit_id = strtol(buf, NULL, 0);
5071 if (unit_id < 0) {
5072 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5073 return -1;
5074 }
5075 }
5076
5077 if (get_param_value(buf, sizeof(buf), "if", str)) {
5078 strncpy(devname, buf, sizeof(devname));
5079 if (!strcmp(buf, "ide")) {
5080 type = IF_IDE;
5081 max_devs = MAX_IDE_DEVS;
5082 } else if (!strcmp(buf, "scsi")) {
5083 type = IF_SCSI;
5084 max_devs = MAX_SCSI_DEVS;
5085 } else if (!strcmp(buf, "floppy")) {
5086 type = IF_FLOPPY;
5087 max_devs = 0;
5088 } else if (!strcmp(buf, "pflash")) {
5089 type = IF_PFLASH;
5090 max_devs = 0;
5091 } else if (!strcmp(buf, "mtd")) {
5092 type = IF_MTD;
5093 max_devs = 0;
5094 } else if (!strcmp(buf, "sd")) {
5095 type = IF_SD;
5096 max_devs = 0;
5097 } else {
5098 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5099 return -1;
5100 }
5101 }
5102
5103 if (get_param_value(buf, sizeof(buf), "index", str)) {
5104 index = strtol(buf, NULL, 0);
5105 if (index < 0) {
5106 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5107 return -1;
5108 }
5109 }
5110
5111 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5112 cyls = strtol(buf, NULL, 0);
5113 }
5114
5115 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5116 heads = strtol(buf, NULL, 0);
5117 }
5118
5119 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5120 secs = strtol(buf, NULL, 0);
5121 }
5122
5123 if (cyls || heads || secs) {
5124 if (cyls < 1 || cyls > 16383) {
5125 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5126 return -1;
5127 }
5128 if (heads < 1 || heads > 16) {
5129 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5130 return -1;
5131 }
5132 if (secs < 1 || secs > 63) {
5133 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5134 return -1;
5135 }
5136 }
5137
5138 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5139 if (!cyls) {
5140 fprintf(stderr,
5141 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5142 str);
5143 return -1;
5144 }
5145 if (!strcmp(buf, "none"))
5146 translation = BIOS_ATA_TRANSLATION_NONE;
5147 else if (!strcmp(buf, "lba"))
5148 translation = BIOS_ATA_TRANSLATION_LBA;
5149 else if (!strcmp(buf, "auto"))
5150 translation = BIOS_ATA_TRANSLATION_AUTO;
5151 else {
5152 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5153 return -1;
5154 }
5155 }
5156
5157 if (get_param_value(buf, sizeof(buf), "media", str)) {
5158 if (!strcmp(buf, "disk")) {
5159 media = MEDIA_DISK;
5160 } else if (!strcmp(buf, "cdrom")) {
5161 if (cyls || secs || heads) {
5162 fprintf(stderr,
5163 "qemu: '%s' invalid physical CHS format\n", str);
5164 return -1;
5165 }
5166 media = MEDIA_CDROM;
5167 } else {
5168 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5169 return -1;
5170 }
5171 }
5172
5173 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5174 if (!strcmp(buf, "on"))
5175 snapshot = 1;
5176 else if (!strcmp(buf, "off"))
5177 snapshot = 0;
5178 else {
5179 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5180 return -1;
5181 }
5182 }
5183
5184 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5185 if (!strcmp(buf, "off"))
5186 cache = 0;
5187 else if (!strcmp(buf, "on"))
5188 cache = 1;
5189 else {
5190 fprintf(stderr, "qemu: invalid cache option\n");
5191 return -1;
5192 }
5193 }
5194
5195 if (get_param_value(buf, sizeof(buf), "format", str)) {
5196 if (strcmp(buf, "?") == 0) {
5197 fprintf(stderr, "qemu: Supported formats:");
5198 bdrv_iterate_format(bdrv_format_print, NULL);
5199 fprintf(stderr, "\n");
5200 return -1;
5201 }
5202 drv = bdrv_find_format(buf);
5203 if (!drv) {
5204 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5205 return -1;
5206 }
5207 }
5208
5209 if (arg->file == NULL)
5210 get_param_value(file, sizeof(file), "file", str);
5211 else
5212 pstrcpy(file, sizeof(file), arg->file);
5213
5214 /* compute bus and unit according index */
5215
5216 if (index != -1) {
5217 if (bus_id != 0 || unit_id != -1) {
5218 fprintf(stderr,
5219 "qemu: '%s' index cannot be used with bus and unit\n", str);
5220 return -1;
5221 }
5222 if (max_devs == 0)
5223 {
5224 unit_id = index;
5225 bus_id = 0;
5226 } else {
5227 unit_id = index % max_devs;
5228 bus_id = index / max_devs;
5229 }
5230 }
5231
5232 /* if user doesn't specify a unit_id,
5233 * try to find the first free
5234 */
5235
5236 if (unit_id == -1) {
5237 unit_id = 0;
5238 while (drive_get_index(type, bus_id, unit_id) != -1) {
5239 unit_id++;
5240 if (max_devs && unit_id >= max_devs) {
5241 unit_id -= max_devs;
5242 bus_id++;
5243 }
5244 }
5245 }
5246
5247 /* check unit id */
5248
5249 if (max_devs && unit_id >= max_devs) {
5250 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5251 str, unit_id, max_devs - 1);
5252 return -1;
5253 }
5254
5255 /*
5256 * ignore multiple definitions
5257 */
5258
5259 if (drive_get_index(type, bus_id, unit_id) != -1)
5260 return 0;
5261
5262 /* init */
5263
5264 if (type == IF_IDE || type == IF_SCSI)
5265 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5266 if (max_devs)
5267 snprintf(buf, sizeof(buf), "%s%i%s%i",
5268 devname, bus_id, mediastr, unit_id);
5269 else
5270 snprintf(buf, sizeof(buf), "%s%s%i",
5271 devname, mediastr, unit_id);
5272 bdrv = bdrv_new(buf);
5273 drives_table[nb_drives].bdrv = bdrv;
5274 drives_table[nb_drives].type = type;
5275 drives_table[nb_drives].bus = bus_id;
5276 drives_table[nb_drives].unit = unit_id;
5277 nb_drives++;
5278
5279 switch(type) {
5280 case IF_IDE:
5281 case IF_SCSI:
5282 switch(media) {
5283 case MEDIA_DISK:
5284 if (cyls != 0) {
5285 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5286 bdrv_set_translation_hint(bdrv, translation);
5287 }
5288 break;
5289 case MEDIA_CDROM:
5290 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5291 break;
5292 }
5293 break;
5294 case IF_SD:
5295 /* FIXME: This isn't really a floppy, but it's a reasonable
5296 approximation. */
5297 case IF_FLOPPY:
5298 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5299 break;
5300 case IF_PFLASH:
5301 case IF_MTD:
5302 break;
5303 }
5304 if (!file[0])
5305 return 0;
5306 bdrv_flags = 0;
5307 if (snapshot)
5308 bdrv_flags |= BDRV_O_SNAPSHOT;
5309 if (!cache)
5310 bdrv_flags |= BDRV_O_DIRECT;
5311 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5312 fprintf(stderr, "qemu: could not open disk image %s\n",
5313 file);
5314 return -1;
5315 }
5316 return 0;
5317 }
5318
5319 /***********************************************************/
5320 /* USB devices */
5321
5322 static USBPort *used_usb_ports;
5323 static USBPort *free_usb_ports;
5324
5325 /* ??? Maybe change this to register a hub to keep track of the topology. */
5326 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5327 usb_attachfn attach)
5328 {
5329 port->opaque = opaque;
5330 port->index = index;
5331 port->attach = attach;
5332 port->next = free_usb_ports;
5333 free_usb_ports = port;
5334 }
5335
5336 static int usb_device_add(const char *devname)
5337 {
5338 const char *p;
5339 USBDevice *dev;
5340 USBPort *port;
5341
5342 if (!free_usb_ports)
5343 return -1;
5344
5345 if (strstart(devname, "host:", &p)) {
5346 dev = usb_host_device_open(p);
5347 } else if (!strcmp(devname, "mouse")) {
5348 dev = usb_mouse_init();
5349 } else if (!strcmp(devname, "tablet")) {
5350 dev = usb_tablet_init();
5351 } else if (!strcmp(devname, "keyboard")) {
5352 dev = usb_keyboard_init();
5353 } else if (strstart(devname, "disk:", &p)) {
5354 dev = usb_msd_init(p);
5355 } else if (!strcmp(devname, "wacom-tablet")) {
5356 dev = usb_wacom_init();
5357 } else if (strstart(devname, "serial:", &p)) {
5358 dev = usb_serial_init(p);
5359 #ifdef CONFIG_BRLAPI
5360 } else if (!strcmp(devname, "braille")) {
5361 dev = usb_baum_init();
5362 #endif
5363 } else {
5364 return -1;
5365 }
5366 if (!dev)
5367 return -1;
5368
5369 /* Find a USB port to add the device to. */
5370 port = free_usb_ports;
5371 if (!port->next) {
5372 USBDevice *hub;
5373
5374 /* Create a new hub and chain it on. */
5375 free_usb_ports = NULL;
5376 port->next = used_usb_ports;
5377 used_usb_ports = port;
5378
5379 hub = usb_hub_init(VM_USB_HUB_SIZE);
5380 usb_attach(port, hub);
5381 port = free_usb_ports;
5382 }
5383
5384 free_usb_ports = port->next;
5385 port->next = used_usb_ports;
5386 used_usb_ports = port;
5387 usb_attach(port, dev);
5388 return 0;
5389 }
5390
5391 static int usb_device_del(const char *devname)
5392 {
5393 USBPort *port;
5394 USBPort **lastp;
5395 USBDevice *dev;
5396 int bus_num, addr;
5397 const char *p;
5398
5399 if (!used_usb_ports)
5400 return -1;
5401
5402 p = strchr(devname, '.');
5403 if (!p)
5404 return -1;
5405 bus_num = strtoul(devname, NULL, 0);
5406 addr = strtoul(p + 1, NULL, 0);
5407 if (bus_num != 0)
5408 return -1;
5409
5410 lastp = &used_usb_ports;
5411 port = used_usb_ports;
5412 while (port && port->dev->addr != addr) {
5413 lastp = &port->next;
5414 port = port->next;
5415 }
5416
5417 if (!port)
5418 return -1;
5419
5420 dev = port->dev;
5421 *lastp = port->next;
5422 usb_attach(port, NULL);
5423 dev->handle_destroy(dev);
5424 port->next = free_usb_ports;
5425 free_usb_ports = port;
5426 return 0;
5427 }
5428
5429 void do_usb_add(const char *devname)
5430 {
5431 int ret;
5432 ret = usb_device_add(devname);
5433 if (ret < 0)
5434 term_printf("Could not add USB device '%s'\n", devname);
5435 }
5436
5437 void do_usb_del(const char *devname)
5438 {
5439 int ret;
5440 ret = usb_device_del(devname);
5441 if (ret < 0)
5442 term_printf("Could not remove USB device '%s'\n", devname);
5443 }
5444
5445 void usb_info(void)
5446 {
5447 USBDevice *dev;
5448 USBPort *port;
5449 const char *speed_str;
5450
5451 if (!usb_enabled) {
5452 term_printf("USB support not enabled\n");
5453 return;
5454 }
5455
5456 for (port = used_usb_ports; port; port = port->next) {
5457 dev = port->dev;
5458 if (!dev)
5459 continue;
5460 switch(dev->speed) {
5461 case USB_SPEED_LOW:
5462 speed_str = "1.5";
5463 break;
5464 case USB_SPEED_FULL:
5465 speed_str = "12";
5466 break;
5467 case USB_SPEED_HIGH:
5468 speed_str = "480";
5469 break;
5470 default:
5471 speed_str = "?";
5472 break;
5473 }
5474 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5475 0, dev->addr, speed_str, dev->devname);
5476 }
5477 }
5478
5479 /***********************************************************/
5480 /* PCMCIA/Cardbus */
5481
5482 static struct pcmcia_socket_entry_s {
5483 struct pcmcia_socket_s *socket;
5484 struct pcmcia_socket_entry_s *next;
5485 } *pcmcia_sockets = 0;
5486
5487 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5488 {
5489 struct pcmcia_socket_entry_s *entry;
5490
5491 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5492 entry->socket = socket;
5493 entry->next = pcmcia_sockets;
5494 pcmcia_sockets = entry;
5495 }
5496
5497 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5498 {
5499 struct pcmcia_socket_entry_s *entry, **ptr;
5500
5501 ptr = &pcmcia_sockets;
5502 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5503 if (entry->socket == socket) {
5504 *ptr = entry->next;
5505 qemu_free(entry);
5506 }
5507 }
5508
5509 void pcmcia_info(void)
5510 {
5511 struct pcmcia_socket_entry_s *iter;
5512 if (!pcmcia_sockets)
5513 term_printf("No PCMCIA sockets\n");
5514
5515 for (iter = pcmcia_sockets; iter; iter = iter->next)
5516 term_printf("%s: %s\n", iter->socket->slot_string,
5517 iter->socket->attached ? iter->socket->card_string :
5518 "Empty");
5519 }
5520
5521 /***********************************************************/
5522 /* dumb display */
5523
5524 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5525 {
5526 }
5527
5528 static void dumb_resize(DisplayState *ds, int w, int h)
5529 {
5530 }
5531
5532 static void dumb_refresh(DisplayState *ds)
5533 {
5534 #if defined(CONFIG_SDL)
5535 vga_hw_update();
5536 #endif
5537 }
5538
5539 static void dumb_display_init(DisplayState *ds)
5540 {
5541 ds->data = NULL;
5542 ds->linesize = 0;
5543 ds->depth = 0;
5544 ds->dpy_update = dumb_update;
5545 ds->dpy_resize = dumb_resize;
5546 ds->dpy_refresh = dumb_refresh;
5547 }
5548
5549 /***********************************************************/
5550 /* I/O handling */
5551
5552 #define MAX_IO_HANDLERS 64
5553
5554 typedef struct IOHandlerRecord {
5555 int fd;
5556 IOCanRWHandler *fd_read_poll;
5557 IOHandler *fd_read;
5558 IOHandler *fd_write;
5559 int deleted;
5560 void *opaque;
5561 /* temporary data */
5562 struct pollfd *ufd;
5563 struct IOHandlerRecord *next;
5564 } IOHandlerRecord;
5565
5566 static IOHandlerRecord *first_io_handler;
5567
5568 /* XXX: fd_read_poll should be suppressed, but an API change is
5569 necessary in the character devices to suppress fd_can_read(). */
5570 int qemu_set_fd_handler2(int fd,
5571 IOCanRWHandler *fd_read_poll,
5572 IOHandler *fd_read,
5573 IOHandler *fd_write,
5574 void *opaque)
5575 {
5576 IOHandlerRecord **pioh, *ioh;
5577
5578 if (!fd_read && !fd_write) {
5579 pioh = &first_io_handler;
5580 for(;;) {
5581 ioh = *pioh;
5582 if (ioh == NULL)
5583 break;
5584 if (ioh->fd == fd) {
5585 ioh->deleted = 1;
5586 break;
5587 }
5588 pioh = &ioh->next;
5589 }
5590 } else {
5591 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5592 if (ioh->fd == fd)
5593 goto found;
5594 }
5595 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5596 if (!ioh)
5597 return -1;
5598 ioh->next = first_io_handler;
5599 first_io_handler = ioh;
5600 found:
5601 ioh->fd = fd;
5602 ioh->fd_read_poll = fd_read_poll;
5603 ioh->fd_read = fd_read;
5604 ioh->fd_write = fd_write;
5605 ioh->opaque = opaque;
5606 ioh->deleted = 0;
5607 }
5608 return 0;
5609 }
5610
5611 int qemu_set_fd_handler(int fd,
5612 IOHandler *fd_read,
5613 IOHandler *fd_write,
5614 void *opaque)
5615 {
5616 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5617 }
5618
5619 /***********************************************************/
5620 /* Polling handling */
5621
5622 typedef struct PollingEntry {
5623 PollingFunc *func;
5624 void *opaque;
5625 struct PollingEntry *next;
5626 } PollingEntry;
5627
5628 static PollingEntry *first_polling_entry;
5629
5630 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5631 {
5632 PollingEntry **ppe, *pe;
5633 pe = qemu_mallocz(sizeof(PollingEntry));
5634 if (!pe)
5635 return -1;
5636 pe->func = func;
5637 pe->opaque = opaque;
5638 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5639 *ppe = pe;
5640 return 0;
5641 }
5642
5643 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5644 {
5645 PollingEntry **ppe, *pe;
5646 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5647 pe = *ppe;
5648 if (pe->func == func && pe->opaque == opaque) {
5649 *ppe = pe->next;
5650 qemu_free(pe);
5651 break;
5652 }
5653 }
5654 }
5655
5656 #ifdef _WIN32
5657 /***********************************************************/
5658 /* Wait objects support */
5659 typedef struct WaitObjects {
5660 int num;
5661 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5662 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5663 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5664 } WaitObjects;
5665
5666 static WaitObjects wait_objects = {0};
5667
5668 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5669 {
5670 WaitObjects *w = &wait_objects;
5671
5672 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5673 return -1;
5674 w->events[w->num] = handle;
5675 w->func[w->num] = func;
5676 w->opaque[w->num] = opaque;
5677 w->num++;
5678 return 0;
5679 }
5680
5681 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5682 {
5683 int i, found;
5684 WaitObjects *w = &wait_objects;
5685
5686 found = 0;
5687 for (i = 0; i < w->num; i++) {
5688 if (w->events[i] == handle)
5689 found = 1;
5690 if (found) {
5691 w->events[i] = w->events[i + 1];
5692 w->func[i] = w->func[i + 1];
5693 w->opaque[i] = w->opaque[i + 1];
5694 }
5695 }
5696 if (found)
5697 w->num--;
5698 }
5699 #endif
5700
5701 /***********************************************************/
5702 /* savevm/loadvm support */
5703
5704 #define IO_BUF_SIZE 32768
5705
5706 struct QEMUFile {
5707 FILE *outfile;
5708 BlockDriverState *bs;
5709 int is_file;
5710 int is_writable;
5711 int64_t base_offset;
5712 int64_t buf_offset; /* start of buffer when writing, end of buffer
5713 when reading */
5714 int buf_index;
5715 int buf_size; /* 0 when writing */
5716 uint8_t buf[IO_BUF_SIZE];
5717 };
5718
5719 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5720 {
5721 QEMUFile *f;
5722
5723 f = qemu_mallocz(sizeof(QEMUFile));
5724 if (!f)
5725 return NULL;
5726 if (!strcmp(mode, "wb")) {
5727 f->is_writable = 1;
5728 } else if (!strcmp(mode, "rb")) {
5729 f->is_writable = 0;
5730 } else {
5731 goto fail;
5732 }
5733 f->outfile = fopen(filename, mode);
5734 if (!f->outfile)
5735 goto fail;
5736 f->is_file = 1;
5737 return f;
5738 fail:
5739 if (f->outfile)
5740 fclose(f->outfile);
5741 qemu_free(f);
5742 return NULL;
5743 }
5744
5745 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5746 {
5747 QEMUFile *f;
5748
5749 f = qemu_mallocz(sizeof(QEMUFile));
5750 if (!f)
5751 return NULL;
5752 f->is_file = 0;
5753 f->bs = bs;
5754 f->is_writable = is_writable;
5755 f->base_offset = offset;
5756 return f;
5757 }
5758
5759 void qemu_fflush(QEMUFile *f)
5760 {
5761 if (!f->is_writable)
5762 return;
5763 if (f->buf_index > 0) {
5764 if (f->is_file) {
5765 fseek(f->outfile, f->buf_offset, SEEK_SET);
5766 fwrite(f->buf, 1, f->buf_index, f->outfile);
5767 } else {
5768 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5769 f->buf, f->buf_index);
5770 }
5771 f->buf_offset += f->buf_index;
5772 f->buf_index = 0;
5773 }
5774 }
5775
5776 static void qemu_fill_buffer(QEMUFile *f)
5777 {
5778 int len;
5779
5780 if (f->is_writable)
5781 return;
5782 if (f->is_file) {
5783 fseek(f->outfile, f->buf_offset, SEEK_SET);
5784 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5785 if (len < 0)
5786 len = 0;
5787 } else {
5788 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5789 f->buf, IO_BUF_SIZE);
5790 if (len < 0)
5791 len = 0;
5792 }
5793 f->buf_index = 0;
5794 f->buf_size = len;
5795 f->buf_offset += len;
5796 }
5797
5798 void qemu_fclose(QEMUFile *f)
5799 {
5800 if (f->is_writable)
5801 qemu_fflush(f);
5802 if (f->is_file) {
5803 fclose(f->outfile);
5804 }
5805 qemu_free(f);
5806 }
5807
5808 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5809 {
5810 int l;
5811 while (size > 0) {
5812 l = IO_BUF_SIZE - f->buf_index;
5813 if (l > size)
5814 l = size;
5815 memcpy(f->buf + f->buf_index, buf, l);
5816 f->buf_index += l;
5817 buf += l;
5818 size -= l;
5819 if (f->buf_index >= IO_BUF_SIZE)
5820 qemu_fflush(f);
5821 }
5822 }
5823
5824 void qemu_put_byte(QEMUFile *f, int v)
5825 {
5826 f->buf[f->buf_index++] = v;
5827 if (f->buf_index >= IO_BUF_SIZE)
5828 qemu_fflush(f);
5829 }
5830
5831 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5832 {
5833 int size, l;
5834
5835 size = size1;
5836 while (size > 0) {
5837 l = f->buf_size - f->buf_index;
5838 if (l == 0) {
5839 qemu_fill_buffer(f);
5840 l = f->buf_size - f->buf_index;
5841 if (l == 0)
5842 break;
5843 }
5844 if (l > size)
5845 l = size;
5846 memcpy(buf, f->buf + f->buf_index, l);
5847 f->buf_index += l;
5848 buf += l;
5849 size -= l;
5850 }
5851 return size1 - size;
5852 }
5853
5854 int qemu_get_byte(QEMUFile *f)
5855 {
5856 if (f->buf_index >= f->buf_size) {
5857 qemu_fill_buffer(f);
5858 if (f->buf_index >= f->buf_size)
5859 return 0;
5860 }
5861 return f->buf[f->buf_index++];
5862 }
5863
5864 int64_t qemu_ftell(QEMUFile *f)
5865 {
5866 return f->buf_offset - f->buf_size + f->buf_index;
5867 }
5868
5869 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5870 {
5871 if (whence == SEEK_SET) {
5872 /* nothing to do */
5873 } else if (whence == SEEK_CUR) {
5874 pos += qemu_ftell(f);
5875 } else {
5876 /* SEEK_END not supported */
5877 return -1;
5878 }
5879 if (f->is_writable) {
5880 qemu_fflush(f);
5881 f->buf_offset = pos;
5882 } else {
5883 f->buf_offset = pos;
5884 f->buf_index = 0;
5885 f->buf_size = 0;
5886 }
5887 return pos;
5888 }
5889
5890 void qemu_put_be16(QEMUFile *f, unsigned int v)
5891 {
5892 qemu_put_byte(f, v >> 8);
5893 qemu_put_byte(f, v);
5894 }
5895
5896 void qemu_put_be32(QEMUFile *f, unsigned int v)
5897 {
5898 qemu_put_byte(f, v >> 24);
5899 qemu_put_byte(f, v >> 16);
5900 qemu_put_byte(f, v >> 8);
5901 qemu_put_byte(f, v);
5902 }
5903
5904 void qemu_put_be64(QEMUFile *f, uint64_t v)
5905 {
5906 qemu_put_be32(f, v >> 32);
5907 qemu_put_be32(f, v);
5908 }
5909
5910 unsigned int qemu_get_be16(QEMUFile *f)
5911 {
5912 unsigned int v;
5913 v = qemu_get_byte(f) << 8;
5914 v |= qemu_get_byte(f);
5915 return v;
5916 }
5917
5918 unsigned int qemu_get_be32(QEMUFile *f)
5919 {
5920 unsigned int v;
5921 v = qemu_get_byte(f) << 24;
5922 v |= qemu_get_byte(f) << 16;
5923 v |= qemu_get_byte(f) << 8;
5924 v |= qemu_get_byte(f);
5925 return v;
5926 }
5927
5928 uint64_t qemu_get_be64(QEMUFile *f)
5929 {
5930 uint64_t v;
5931 v = (uint64_t)qemu_get_be32(f) << 32;
5932 v |= qemu_get_be32(f);
5933 return v;
5934 }
5935
5936 typedef struct SaveStateEntry {
5937 char idstr[256];
5938 int instance_id;
5939 int version_id;
5940 SaveStateHandler *save_state;
5941 LoadStateHandler *load_state;
5942 void *opaque;
5943 struct SaveStateEntry *next;
5944 } SaveStateEntry;
5945
5946 static SaveStateEntry *first_se;
5947
5948 int register_savevm(const char *idstr,
5949 int instance_id,
5950 int version_id,
5951 SaveStateHandler *save_state,
5952 LoadStateHandler *load_state,
5953 void *opaque)
5954 {
5955 SaveStateEntry *se, **pse;
5956
5957 se = qemu_malloc(sizeof(SaveStateEntry));
5958 if (!se)
5959 return -1;
5960 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5961 se->instance_id = instance_id;
5962 se->version_id = version_id;
5963 se->save_state = save_state;
5964 se->load_state = load_state;
5965 se->opaque = opaque;
5966 se->next = NULL;
5967
5968 /* add at the end of list */
5969 pse = &first_se;
5970 while (*pse != NULL)
5971 pse = &(*pse)->next;
5972 *pse = se;
5973 return 0;
5974 }
5975
5976 #define QEMU_VM_FILE_MAGIC 0x5145564d
5977 #define QEMU_VM_FILE_VERSION 0x00000002
5978
5979 static int qemu_savevm_state(QEMUFile *f)
5980 {
5981 SaveStateEntry *se;
5982 int len, ret;
5983 int64_t cur_pos, len_pos, total_len_pos;
5984
5985 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5986 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5987 total_len_pos = qemu_ftell(f);
5988 qemu_put_be64(f, 0); /* total size */
5989
5990 for(se = first_se; se != NULL; se = se->next) {
5991 /* ID string */
5992 len = strlen(se->idstr);
5993 qemu_put_byte(f, len);
5994 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5995
5996 qemu_put_be32(f, se->instance_id);
5997 qemu_put_be32(f, se->version_id);
5998
5999 /* record size: filled later */
6000 len_pos = qemu_ftell(f);
6001 qemu_put_be32(f, 0);
6002 se->save_state(f, se->opaque);
6003
6004 /* fill record size */
6005 cur_pos = qemu_ftell(f);
6006 len = cur_pos - len_pos - 4;
6007 qemu_fseek(f, len_pos, SEEK_SET);
6008 qemu_put_be32(f, len);
6009 qemu_fseek(f, cur_pos, SEEK_SET);
6010 }
6011 cur_pos = qemu_ftell(f);
6012 qemu_fseek(f, total_len_pos, SEEK_SET);
6013 qemu_put_be64(f, cur_pos - total_len_pos - 8);
6014 qemu_fseek(f, cur_pos, SEEK_SET);
6015
6016 ret = 0;
6017 return ret;
6018 }
6019
6020 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6021 {
6022 SaveStateEntry *se;
6023
6024 for(se = first_se; se != NULL; se = se->next) {
6025 if (!strcmp(se->idstr, idstr) &&
6026 instance_id == se->instance_id)
6027 return se;
6028 }
6029 return NULL;
6030 }
6031
6032 static int qemu_loadvm_state(QEMUFile *f)
6033 {
6034 SaveStateEntry *se;
6035 int len, ret, instance_id, record_len, version_id;
6036 int64_t total_len, end_pos, cur_pos;
6037 unsigned int v;
6038 char idstr[256];
6039
6040 v = qemu_get_be32(f);
6041 if (v != QEMU_VM_FILE_MAGIC)
6042 goto fail;
6043 v = qemu_get_be32(f);
6044 if (v != QEMU_VM_FILE_VERSION) {
6045 fail:
6046 ret = -1;
6047 goto the_end;
6048 }
6049 total_len = qemu_get_be64(f);
6050 end_pos = total_len + qemu_ftell(f);
6051 for(;;) {
6052 if (qemu_ftell(f) >= end_pos)
6053 break;
6054 len = qemu_get_byte(f);
6055 qemu_get_buffer(f, (uint8_t *)idstr, len);
6056 idstr[len] = '\0';
6057 instance_id = qemu_get_be32(f);
6058 version_id = qemu_get_be32(f);
6059 record_len = qemu_get_be32(f);
6060 #if 0
6061 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6062 idstr, instance_id, version_id, record_len);
6063 #endif
6064 cur_pos = qemu_ftell(f);
6065 se = find_se(idstr, instance_id);
6066 if (!se) {
6067 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6068 instance_id, idstr);
6069 } else {
6070 ret = se->load_state(f, se->opaque, version_id);
6071 if (ret < 0) {
6072 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6073 instance_id, idstr);
6074 }
6075 }
6076 /* always seek to exact end of record */
6077 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6078 }
6079 ret = 0;
6080 the_end:
6081 return ret;
6082 }
6083
6084 /* device can contain snapshots */
6085 static int bdrv_can_snapshot(BlockDriverState *bs)
6086 {
6087 return (bs &&
6088 !bdrv_is_removable(bs) &&
6089 !bdrv_is_read_only(bs));
6090 }
6091
6092 /* device must be snapshots in order to have a reliable snapshot */
6093 static int bdrv_has_snapshot(BlockDriverState *bs)
6094 {
6095 return (bs &&
6096 !bdrv_is_removable(bs) &&
6097 !bdrv_is_read_only(bs));
6098 }
6099
6100 static BlockDriverState *get_bs_snapshots(void)
6101 {
6102 BlockDriverState *bs;
6103 int i;
6104
6105 if (bs_snapshots)
6106 return bs_snapshots;
6107 for(i = 0; i <= nb_drives; i++) {
6108 bs = drives_table[i].bdrv;
6109 if (bdrv_can_snapshot(bs))
6110 goto ok;
6111 }
6112 return NULL;
6113 ok:
6114 bs_snapshots = bs;
6115 return bs;
6116 }
6117
6118 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6119 const char *name)
6120 {
6121 QEMUSnapshotInfo *sn_tab, *sn;
6122 int nb_sns, i, ret;
6123
6124 ret = -ENOENT;
6125 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6126 if (nb_sns < 0)
6127 return ret;
6128 for(i = 0; i < nb_sns; i++) {
6129 sn = &sn_tab[i];
6130 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6131 *sn_info = *sn;
6132 ret = 0;
6133 break;
6134 }
6135 }
6136 qemu_free(sn_tab);
6137 return ret;
6138 }
6139
6140 void do_savevm(const char *name)
6141 {
6142 BlockDriverState *bs, *bs1;
6143 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6144 int must_delete, ret, i;
6145 BlockDriverInfo bdi1, *bdi = &bdi1;
6146 QEMUFile *f;
6147 int saved_vm_running;
6148 #ifdef _WIN32
6149 struct _timeb tb;
6150 #else
6151 struct timeval tv;
6152 #endif
6153
6154 bs = get_bs_snapshots();
6155 if (!bs) {
6156 term_printf("No block device can accept snapshots\n");
6157 return;
6158 }
6159
6160 /* ??? Should this occur after vm_stop? */
6161 qemu_aio_flush();
6162
6163 saved_vm_running = vm_running;
6164 vm_stop(0);
6165
6166 must_delete = 0;
6167 if (name) {
6168 ret = bdrv_snapshot_find(bs, old_sn, name);
6169 if (ret >= 0) {
6170 must_delete = 1;
6171 }
6172 }
6173 memset(sn, 0, sizeof(*sn));
6174 if (must_delete) {
6175 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6176 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6177 } else {
6178 if (name)
6179 pstrcpy(sn->name, sizeof(sn->name), name);
6180 }
6181
6182 /* fill auxiliary fields */
6183 #ifdef _WIN32
6184 _ftime(&tb);
6185 sn->date_sec = tb.time;
6186 sn->date_nsec = tb.millitm * 1000000;
6187 #else
6188 gettimeofday(&tv, NULL);
6189 sn->date_sec = tv.tv_sec;
6190 sn->date_nsec = tv.tv_usec * 1000;
6191 #endif
6192 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6193
6194 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6195 term_printf("Device %s does not support VM state snapshots\n",
6196 bdrv_get_device_name(bs));
6197 goto the_end;
6198 }
6199
6200 /* save the VM state */
6201 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6202 if (!f) {
6203 term_printf("Could not open VM state file\n");
6204 goto the_end;
6205 }
6206 ret = qemu_savevm_state(f);
6207 sn->vm_state_size = qemu_ftell(f);
6208 qemu_fclose(f);
6209 if (ret < 0) {
6210 term_printf("Error %d while writing VM\n", ret);
6211 goto the_end;
6212 }
6213
6214 /* create the snapshots */
6215
6216 for(i = 0; i < nb_drives; i++) {
6217 bs1 = drives_table[i].bdrv;
6218 if (bdrv_has_snapshot(bs1)) {
6219 if (must_delete) {
6220 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6221 if (ret < 0) {
6222 term_printf("Error while deleting snapshot on '%s'\n",
6223 bdrv_get_device_name(bs1));
6224 }
6225 }
6226 ret = bdrv_snapshot_create(bs1, sn);
6227 if (ret < 0) {
6228 term_printf("Error while creating snapshot on '%s'\n",
6229 bdrv_get_device_name(bs1));
6230 }
6231 }
6232 }
6233
6234 the_end:
6235 if (saved_vm_running)
6236 vm_start();
6237 }
6238
6239 void do_loadvm(const char *name)
6240 {
6241 BlockDriverState *bs, *bs1;
6242 BlockDriverInfo bdi1, *bdi = &bdi1;
6243 QEMUFile *f;
6244 int i, ret;
6245 int saved_vm_running;
6246
6247 bs = get_bs_snapshots();
6248 if (!bs) {
6249 term_printf("No block device supports snapshots\n");
6250 return;
6251 }
6252
6253 /* Flush all IO requests so they don't interfere with the new state. */
6254 qemu_aio_flush();
6255
6256 saved_vm_running = vm_running;
6257 vm_stop(0);
6258
6259 for(i = 0; i <= nb_drives; i++) {
6260 bs1 = drives_table[i].bdrv;
6261 if (bdrv_has_snapshot(bs1)) {
6262 ret = bdrv_snapshot_goto(bs1, name);
6263 if (ret < 0) {
6264 if (bs != bs1)
6265 term_printf("Warning: ");
6266 switch(ret) {
6267 case -ENOTSUP:
6268 term_printf("Snapshots not supported on device '%s'\n",
6269 bdrv_get_device_name(bs1));
6270 break;
6271 case -ENOENT:
6272 term_printf("Could not find snapshot '%s' on device '%s'\n",
6273 name, bdrv_get_device_name(bs1));
6274 break;
6275 default:
6276 term_printf("Error %d while activating snapshot on '%s'\n",
6277 ret, bdrv_get_device_name(bs1));
6278 break;
6279 }
6280 /* fatal on snapshot block device */
6281 if (bs == bs1)
6282 goto the_end;
6283 }
6284 }
6285 }
6286
6287 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6288 term_printf("Device %s does not support VM state snapshots\n",
6289 bdrv_get_device_name(bs));
6290 return;
6291 }
6292
6293 /* restore the VM state */
6294 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6295 if (!f) {
6296 term_printf("Could not open VM state file\n");
6297 goto the_end;
6298 }
6299 ret = qemu_loadvm_state(f);
6300 qemu_fclose(f);
6301 if (ret < 0) {
6302 term_printf("Error %d while loading VM state\n", ret);
6303 }
6304 the_end:
6305 if (saved_vm_running)
6306 vm_start();
6307 }
6308
6309 void do_delvm(const char *name)
6310 {
6311 BlockDriverState *bs, *bs1;
6312 int i, ret;
6313
6314 bs = get_bs_snapshots();
6315 if (!bs) {
6316 term_printf("No block device supports snapshots\n");
6317 return;
6318 }
6319
6320 for(i = 0; i <= nb_drives; i++) {
6321 bs1 = drives_table[i].bdrv;
6322 if (bdrv_has_snapshot(bs1)) {
6323 ret = bdrv_snapshot_delete(bs1, name);
6324 if (ret < 0) {
6325 if (ret == -ENOTSUP)
6326 term_printf("Snapshots not supported on device '%s'\n",
6327 bdrv_get_device_name(bs1));
6328 else
6329 term_printf("Error %d while deleting snapshot on '%s'\n",
6330 ret, bdrv_get_device_name(bs1));
6331 }
6332 }
6333 }
6334 }
6335
6336 void do_info_snapshots(void)
6337 {
6338 BlockDriverState *bs, *bs1;
6339 QEMUSnapshotInfo *sn_tab, *sn;
6340 int nb_sns, i;
6341 char buf[256];
6342
6343 bs = get_bs_snapshots();
6344 if (!bs) {
6345 term_printf("No available block device supports snapshots\n");
6346 return;
6347 }
6348 term_printf("Snapshot devices:");
6349 for(i = 0; i <= nb_drives; i++) {
6350 bs1 = drives_table[i].bdrv;
6351 if (bdrv_has_snapshot(bs1)) {
6352 if (bs == bs1)
6353 term_printf(" %s", bdrv_get_device_name(bs1));
6354 }
6355 }
6356 term_printf("\n");
6357
6358 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6359 if (nb_sns < 0) {
6360 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6361 return;
6362 }
6363 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6364 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6365 for(i = 0; i < nb_sns; i++) {
6366 sn = &sn_tab[i];
6367 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6368 }
6369 qemu_free(sn_tab);
6370 }
6371
6372 /***********************************************************/
6373 /* ram save/restore */
6374
6375 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6376 {
6377 int v;
6378
6379 v = qemu_get_byte(f);
6380 switch(v) {
6381 case 0:
6382 if (qemu_get_buffer(f, buf, len) != len)
6383 return -EIO;
6384 break;
6385 case 1:
6386 v = qemu_get_byte(f);
6387 memset(buf, v, len);
6388 break;
6389 default:
6390 return -EINVAL;
6391 }
6392 return 0;
6393 }
6394
6395 static int ram_load_v1(QEMUFile *f, void *opaque)
6396 {
6397 int ret;
6398 ram_addr_t i;
6399
6400 if (qemu_get_be32(f) != phys_ram_size)
6401 return -EINVAL;
6402 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6403 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6404 if (ret)
6405 return ret;
6406 }
6407 return 0;
6408 }
6409
6410 #define BDRV_HASH_BLOCK_SIZE 1024
6411 #define IOBUF_SIZE 4096
6412 #define RAM_CBLOCK_MAGIC 0xfabe
6413
6414 typedef struct RamCompressState {
6415 z_stream zstream;
6416 QEMUFile *f;
6417 uint8_t buf[IOBUF_SIZE];
6418 } RamCompressState;
6419
6420 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6421 {
6422 int ret;
6423 memset(s, 0, sizeof(*s));
6424 s->f = f;
6425 ret = deflateInit2(&s->zstream, 1,
6426 Z_DEFLATED, 15,
6427 9, Z_DEFAULT_STRATEGY);
6428 if (ret != Z_OK)
6429 return -1;
6430 s->zstream.avail_out = IOBUF_SIZE;
6431 s->zstream.next_out = s->buf;
6432 return 0;
6433 }
6434
6435 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6436 {
6437 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6438 qemu_put_be16(s->f, len);
6439 qemu_put_buffer(s->f, buf, len);
6440 }
6441
6442 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6443 {
6444 int ret;
6445
6446 s->zstream.avail_in = len;
6447 s->zstream.next_in = (uint8_t *)buf;
6448 while (s->zstream.avail_in > 0) {
6449 ret = deflate(&s->zstream, Z_NO_FLUSH);
6450 if (ret != Z_OK)
6451 return -1;
6452 if (s->zstream.avail_out == 0) {
6453 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6454 s->zstream.avail_out = IOBUF_SIZE;
6455 s->zstream.next_out = s->buf;
6456 }
6457 }
6458 return 0;
6459 }
6460
6461 static void ram_compress_close(RamCompressState *s)
6462 {
6463 int len, ret;
6464
6465 /* compress last bytes */
6466 for(;;) {
6467 ret = deflate(&s->zstream, Z_FINISH);
6468 if (ret == Z_OK || ret == Z_STREAM_END) {
6469 len = IOBUF_SIZE - s->zstream.avail_out;
6470 if (len > 0) {
6471 ram_put_cblock(s, s->buf, len);
6472 }
6473 s->zstream.avail_out = IOBUF_SIZE;
6474 s->zstream.next_out = s->buf;
6475 if (ret == Z_STREAM_END)
6476 break;
6477 } else {
6478 goto fail;
6479 }
6480 }
6481 fail:
6482 deflateEnd(&s->zstream);
6483 }
6484
6485 typedef struct RamDecompressState {
6486 z_stream zstream;
6487 QEMUFile *f;
6488 uint8_t buf[IOBUF_SIZE];
6489 } RamDecompressState;
6490
6491 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6492 {
6493 int ret;
6494 memset(s, 0, sizeof(*s));
6495 s->f = f;
6496 ret = inflateInit(&s->zstream);
6497 if (ret != Z_OK)
6498 return -1;
6499 return 0;
6500 }
6501
6502 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6503 {
6504 int ret, clen;
6505
6506 s->zstream.avail_out = len;
6507 s->zstream.next_out = buf;
6508 while (s->zstream.avail_out > 0) {
6509 if (s->zstream.avail_in == 0) {
6510 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6511 return -1;
6512 clen = qemu_get_be16(s->f);
6513 if (clen > IOBUF_SIZE)
6514 return -1;
6515 qemu_get_buffer(s->f, s->buf, clen);
6516 s->zstream.avail_in = clen;
6517 s->zstream.next_in = s->buf;
6518 }
6519 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6520 if (ret != Z_OK && ret != Z_STREAM_END) {
6521 return -1;
6522 }
6523 }
6524 return 0;
6525 }
6526
6527 static void ram_decompress_close(RamDecompressState *s)
6528 {
6529 inflateEnd(&s->zstream);
6530 }
6531
6532 static void ram_save(QEMUFile *f, void *opaque)
6533 {
6534 ram_addr_t i;
6535 RamCompressState s1, *s = &s1;
6536 uint8_t buf[10];
6537
6538 qemu_put_be32(f, phys_ram_size);
6539 if (ram_compress_open(s, f) < 0)
6540 return;
6541 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6542 #if 0
6543 if (tight_savevm_enabled) {
6544 int64_t sector_num;
6545 int j;
6546
6547 /* find if the memory block is available on a virtual
6548 block device */
6549 sector_num = -1;
6550 for(j = 0; j < nb_drives; j++) {
6551 sector_num = bdrv_hash_find(drives_table[j].bdrv,
6552 phys_ram_base + i,
6553 BDRV_HASH_BLOCK_SIZE);
6554 if (sector_num >= 0)
6555 break;
6556 }
6557 if (j == nb_drives)
6558 goto normal_compress;
6559 buf[0] = 1;
6560 buf[1] = j;
6561 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6562 ram_compress_buf(s, buf, 10);
6563 } else
6564 #endif
6565 {
6566 // normal_compress:
6567 buf[0] = 0;
6568 ram_compress_buf(s, buf, 1);
6569 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6570 }
6571 }
6572 ram_compress_close(s);
6573 }
6574
6575 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6576 {
6577 RamDecompressState s1, *s = &s1;
6578 uint8_t buf[10];
6579 ram_addr_t i;
6580
6581 if (version_id == 1)
6582 return ram_load_v1(f, opaque);
6583 if (version_id != 2)
6584 return -EINVAL;
6585 if (qemu_get_be32(f) != phys_ram_size)
6586 return -EINVAL;
6587 if (ram_decompress_open(s, f) < 0)
6588 return -EINVAL;
6589 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6590 if (ram_decompress_buf(s, buf, 1) < 0) {
6591 fprintf(stderr, "Error while reading ram block header\n");
6592 goto error;
6593 }
6594 if (buf[0] == 0) {
6595 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6596 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
6597 goto error;
6598 }
6599 } else
6600 #if 0
6601 if (buf[0] == 1) {
6602 int bs_index;
6603 int64_t sector_num;
6604
6605 ram_decompress_buf(s, buf + 1, 9);
6606 bs_index = buf[1];
6607 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6608 if (bs_index >= nb_drives) {
6609 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6610 goto error;
6611 }
6612 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
6613 phys_ram_base + i,
6614 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6615 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6616 bs_index, sector_num);
6617 goto error;
6618 }
6619 } else
6620 #endif
6621 {
6622 error:
6623 printf("Error block header\n");
6624 return -EINVAL;
6625 }
6626 }
6627 ram_decompress_close(s);
6628 return 0;
6629 }
6630
6631 /***********************************************************/
6632 /* bottom halves (can be seen as timers which expire ASAP) */
6633
6634 struct QEMUBH {
6635 QEMUBHFunc *cb;
6636 void *opaque;
6637 int scheduled;
6638 QEMUBH *next;
6639 };
6640
6641 static QEMUBH *first_bh = NULL;
6642
6643 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6644 {
6645 QEMUBH *bh;
6646 bh = qemu_mallocz(sizeof(QEMUBH));
6647 if (!bh)
6648 return NULL;
6649 bh->cb = cb;
6650 bh->opaque = opaque;
6651 return bh;
6652 }
6653
6654 int qemu_bh_poll(void)
6655 {
6656 QEMUBH *bh, **pbh;
6657 int ret;
6658
6659 ret = 0;
6660 for(;;) {
6661 pbh = &first_bh;
6662 bh = *pbh;
6663 if (!bh)
6664 break;
6665 ret = 1;
6666 *pbh = bh->next;
6667 bh->scheduled = 0;
6668 bh->cb(bh->opaque);
6669 }
6670 return ret;
6671 }
6672
6673 void qemu_bh_schedule(QEMUBH *bh)
6674 {
6675 CPUState *env = cpu_single_env;
6676 if (bh->scheduled)
6677 return;
6678 bh->scheduled = 1;
6679 bh->next = first_bh;
6680 first_bh = bh;
6681
6682 /* stop the currently executing CPU to execute the BH ASAP */
6683 if (env) {
6684 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6685 }
6686 }
6687
6688 void qemu_bh_cancel(QEMUBH *bh)
6689 {
6690 QEMUBH **pbh;
6691 if (bh->scheduled) {
6692 pbh = &first_bh;
6693 while (*pbh != bh)
6694 pbh = &(*pbh)->next;
6695 *pbh = bh->next;
6696 bh->scheduled = 0;
6697 }
6698 }
6699
6700 void qemu_bh_delete(QEMUBH *bh)
6701 {
6702 qemu_bh_cancel(bh);
6703 qemu_free(bh);
6704 }
6705
6706 /***********************************************************/
6707 /* machine registration */
6708
6709 QEMUMachine *first_machine = NULL;
6710
6711 int qemu_register_machine(QEMUMachine *m)
6712 {
6713 QEMUMachine **pm;
6714 pm = &first_machine;
6715 while (*pm != NULL)
6716 pm = &(*pm)->next;
6717 m->next = NULL;
6718 *pm = m;
6719 return 0;
6720 }
6721
6722 static QEMUMachine *find_machine(const char *name)
6723 {
6724 QEMUMachine *m;
6725
6726 for(m = first_machine; m != NULL; m = m->next) {
6727 if (!strcmp(m->name, name))
6728 return m;
6729 }
6730 return NULL;
6731 }
6732
6733 /***********************************************************/
6734 /* main execution loop */
6735
6736 static void gui_update(void *opaque)
6737 {
6738 DisplayState *ds = opaque;
6739 ds->dpy_refresh(ds);
6740 qemu_mod_timer(ds->gui_timer,
6741 (ds->gui_timer_interval ?
6742 ds->gui_timer_interval :
6743 GUI_REFRESH_INTERVAL)
6744 + qemu_get_clock(rt_clock));
6745 }
6746
6747 struct vm_change_state_entry {
6748 VMChangeStateHandler *cb;
6749 void *opaque;
6750 LIST_ENTRY (vm_change_state_entry) entries;
6751 };
6752
6753 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6754
6755 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6756 void *opaque)
6757 {
6758 VMChangeStateEntry *e;
6759
6760 e = qemu_mallocz(sizeof (*e));
6761 if (!e)
6762 return NULL;
6763
6764 e->cb = cb;
6765 e->opaque = opaque;
6766 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6767 return e;
6768 }
6769
6770 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6771 {
6772 LIST_REMOVE (e, entries);
6773 qemu_free (e);
6774 }
6775
6776 static void vm_state_notify(int running)
6777 {
6778 VMChangeStateEntry *e;
6779
6780 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6781 e->cb(e->opaque, running);
6782 }
6783 }
6784
6785 /* XXX: support several handlers */
6786 static VMStopHandler *vm_stop_cb;
6787 static void *vm_stop_opaque;
6788
6789 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6790 {
6791 vm_stop_cb = cb;
6792 vm_stop_opaque = opaque;
6793 return 0;
6794 }
6795
6796 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6797 {
6798 vm_stop_cb = NULL;
6799 }
6800
6801 void vm_start(void)
6802 {
6803 if (!vm_running) {
6804 cpu_enable_ticks();
6805 vm_running = 1;
6806 vm_state_notify(1);
6807 qemu_rearm_alarm_timer(alarm_timer);
6808 }
6809 }
6810
6811 void vm_stop(int reason)
6812 {
6813 if (vm_running) {
6814 cpu_disable_ticks();
6815 vm_running = 0;
6816 if (reason != 0) {
6817 if (vm_stop_cb) {
6818 vm_stop_cb(vm_stop_opaque, reason);
6819 }
6820 }
6821 vm_state_notify(0);
6822 }
6823 }
6824
6825 /* reset/shutdown handler */
6826
6827 typedef struct QEMUResetEntry {
6828 QEMUResetHandler *func;
6829 void *opaque;
6830 struct QEMUResetEntry *next;
6831 } QEMUResetEntry;
6832
6833 static QEMUResetEntry *first_reset_entry;
6834 static int reset_requested;
6835 static int shutdown_requested;
6836 static int powerdown_requested;
6837
6838 int qemu_shutdown_requested(void)
6839 {
6840 int r = shutdown_requested;
6841 shutdown_requested = 0;
6842 return r;
6843 }
6844
6845 int qemu_reset_requested(void)
6846 {
6847 int r = reset_requested;
6848 reset_requested = 0;
6849 return r;
6850 }
6851
6852 int qemu_powerdown_requested(void)
6853 {
6854 int r = powerdown_requested;
6855 powerdown_requested = 0;
6856 return r;
6857 }
6858
6859 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6860 {
6861 QEMUResetEntry **pre, *re;
6862
6863 pre = &first_reset_entry;
6864 while (*pre != NULL)
6865 pre = &(*pre)->next;
6866 re = qemu_mallocz(sizeof(QEMUResetEntry));
6867 re->func = func;
6868 re->opaque = opaque;
6869 re->next = NULL;
6870 *pre = re;
6871 }
6872
6873 void qemu_system_reset(void)
6874 {
6875 QEMUResetEntry *re;
6876
6877 /* reset all devices */
6878 for(re = first_reset_entry; re != NULL; re = re->next) {
6879 re->func(re->opaque);
6880 }
6881 }
6882
6883 void qemu_system_reset_request(void)
6884 {
6885 if (no_reboot) {
6886 shutdown_requested = 1;
6887 } else {
6888 reset_requested = 1;
6889 }
6890 if (cpu_single_env)
6891 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6892 }
6893
6894 void qemu_system_shutdown_request(void)
6895 {
6896 shutdown_requested = 1;
6897 if (cpu_single_env)
6898 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6899 }
6900
6901 void qemu_system_powerdown_request(void)
6902 {
6903 powerdown_requested = 1;
6904 if (cpu_single_env)
6905 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6906 }
6907
6908 /* boot_set handler */
6909 QEMUBootSetHandler *qemu_boot_set_handler = NULL;
6910
6911 void qemu_register_boot_set(QEMUBootSetHandler *func)
6912 {
6913 qemu_boot_set_handler = func;
6914 }
6915
6916 void main_loop_wait(int timeout)
6917 {
6918 IOHandlerRecord *ioh;
6919 fd_set rfds, wfds, xfds;
6920 int ret, nfds;
6921 #ifdef _WIN32
6922 int ret2, i;
6923 #endif
6924 struct timeval tv;
6925 PollingEntry *pe;
6926
6927
6928 /* XXX: need to suppress polling by better using win32 events */
6929 ret = 0;
6930 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6931 ret |= pe->func(pe->opaque);
6932 }
6933 #ifdef _WIN32
6934 if (ret == 0) {
6935 int err;
6936 WaitObjects *w = &wait_objects;
6937
6938 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6939 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6940 if (w->func[ret - WAIT_OBJECT_0])
6941 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6942
6943 /* Check for additional signaled events */
6944 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6945
6946 /* Check if event is signaled */
6947 ret2 = WaitForSingleObject(w->events[i], 0);
6948 if(ret2 == WAIT_OBJECT_0) {
6949 if (w->func[i])
6950 w->func[i](w->opaque[i]);
6951 } else if (ret2 == WAIT_TIMEOUT) {
6952 } else {
6953 err = GetLastError();
6954 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6955 }
6956 }
6957 } else if (ret == WAIT_TIMEOUT) {
6958 } else {
6959 err = GetLastError();
6960 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6961 }
6962 }
6963 #endif
6964 /* poll any events */
6965 /* XXX: separate device handlers from system ones */
6966 nfds = -1;
6967 FD_ZERO(&rfds);
6968 FD_ZERO(&wfds);
6969 FD_ZERO(&xfds);
6970 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6971 if (ioh->deleted)
6972 continue;
6973 if (ioh->fd_read &&
6974 (!ioh->fd_read_poll ||
6975 ioh->fd_read_poll(ioh->opaque) != 0)) {
6976 FD_SET(ioh->fd, &rfds);
6977 if (ioh->fd > nfds)
6978 nfds = ioh->fd;
6979 }
6980 if (ioh->fd_write) {
6981 FD_SET(ioh->fd, &wfds);
6982 if (ioh->fd > nfds)
6983 nfds = ioh->fd;
6984 }
6985 }
6986
6987 tv.tv_sec = 0;
6988 #ifdef _WIN32
6989 tv.tv_usec = 0;
6990 #else
6991 tv.tv_usec = timeout * 1000;
6992 #endif
6993 #if defined(CONFIG_SLIRP)
6994 if (slirp_inited) {
6995 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6996 }
6997 #endif
6998 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6999 if (ret > 0) {
7000 IOHandlerRecord **pioh;
7001
7002 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7003 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7004 ioh->fd_read(ioh->opaque);
7005 }
7006 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7007 ioh->fd_write(ioh->opaque);
7008 }
7009 }
7010
7011 /* remove deleted IO handlers */
7012 pioh = &first_io_handler;
7013 while (*pioh) {
7014 ioh = *pioh;
7015 if (ioh->deleted) {
7016 *pioh = ioh->next;
7017 qemu_free(ioh);
7018 } else
7019 pioh = &ioh->next;
7020 }
7021 }
7022 #if defined(CONFIG_SLIRP)
7023 if (slirp_inited) {
7024 if (ret < 0) {
7025 FD_ZERO(&rfds);
7026 FD_ZERO(&wfds);
7027 FD_ZERO(&xfds);
7028 }
7029 slirp_select_poll(&rfds, &wfds, &xfds);
7030 }
7031 #endif
7032 qemu_aio_poll();
7033
7034 if (vm_running) {
7035 if (!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER))
7036 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7037 qemu_get_clock(vm_clock));
7038 /* run dma transfers, if any */
7039 DMA_run();
7040 }
7041
7042 /* real time timers */
7043 if (!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER))
7044 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7045 qemu_get_clock(rt_clock));
7046
7047 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7048 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7049 qemu_rearm_alarm_timer(alarm_timer);
7050 }
7051
7052 /* Check bottom-halves last in case any of the earlier events triggered
7053 them. */
7054 qemu_bh_poll();
7055
7056 }
7057
7058 static int main_loop(void)
7059 {
7060 int ret, timeout;
7061 #ifdef CONFIG_PROFILER
7062 int64_t ti;
7063 #endif
7064 CPUState *env;
7065
7066 cur_cpu = first_cpu;
7067 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7068 for(;;) {
7069 if (vm_running) {
7070
7071 for(;;) {
7072 /* get next cpu */
7073 env = next_cpu;
7074 #ifdef CONFIG_PROFILER
7075 ti = profile_getclock();
7076 #endif
7077 ret = cpu_exec(env);
7078 #ifdef CONFIG_PROFILER
7079 qemu_time += profile_getclock() - ti;
7080 #endif
7081 next_cpu = env->next_cpu ?: first_cpu;
7082 if (event_pending && likely(ret != EXCP_DEBUG)) {
7083 ret = EXCP_INTERRUPT;
7084 event_pending = 0;
7085 break;
7086 }
7087 if (ret == EXCP_HLT) {
7088 /* Give the next CPU a chance to run. */
7089 cur_cpu = env;
7090 continue;
7091 }
7092 if (ret != EXCP_HALTED)
7093 break;
7094 /* all CPUs are halted ? */
7095 if (env == cur_cpu)
7096 break;
7097 }
7098 cur_cpu = env;
7099
7100 if (shutdown_requested) {
7101 ret = EXCP_INTERRUPT;
7102 if (no_shutdown) {
7103 vm_stop(0);
7104 no_shutdown = 0;
7105 }
7106 else
7107 break;
7108 }
7109 if (reset_requested) {
7110 reset_requested = 0;
7111 qemu_system_reset();
7112 ret = EXCP_INTERRUPT;
7113 }
7114 if (powerdown_requested) {
7115 powerdown_requested = 0;
7116 qemu_system_powerdown();
7117 ret = EXCP_INTERRUPT;
7118 }
7119 if (unlikely(ret == EXCP_DEBUG)) {
7120 vm_stop(EXCP_DEBUG);
7121 }
7122 /* If all cpus are halted then wait until the next IRQ */
7123 /* XXX: use timeout computed from timers */
7124 if (ret == EXCP_HALTED)
7125 timeout = 10;
7126 else
7127 timeout = 0;
7128 } else {
7129 timeout = 10;
7130 }
7131 #ifdef CONFIG_PROFILER
7132 ti = profile_getclock();
7133 #endif
7134 main_loop_wait(timeout);
7135 #ifdef CONFIG_PROFILER
7136 dev_time += profile_getclock() - ti;
7137 #endif
7138 }
7139 cpu_disable_ticks();
7140 return ret;
7141 }
7142
7143 static void help(int exitcode)
7144 {
7145 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7146 "usage: %s [options] [disk_image]\n"
7147 "\n"
7148 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7149 "\n"
7150 "Standard options:\n"
7151 "-M machine select emulated machine (-M ? for list)\n"
7152 "-cpu cpu select CPU (-cpu ? for list)\n"
7153 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7154 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7155 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7156 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7157 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7158 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7159 " [,cache=on|off][,format=f]\n"
7160 " use 'file' as a drive image\n"
7161 "-mtdblock file use 'file' as on-board Flash memory image\n"
7162 "-sd file use 'file' as SecureDigital card image\n"
7163 "-pflash file use 'file' as a parallel flash image\n"
7164 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7165 "-snapshot write to temporary files instead of disk image files\n"
7166 #ifdef CONFIG_SDL
7167 "-no-frame open SDL window without a frame and window decorations\n"
7168 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7169 "-no-quit disable SDL window close capability\n"
7170 #endif
7171 #ifdef TARGET_I386
7172 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7173 #endif
7174 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7175 "-smp n set the number of CPUs to 'n' [default=1]\n"
7176 "-nographic disable graphical output and redirect serial I/Os to console\n"
7177 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7178 #ifndef _WIN32
7179 "-k language use keyboard layout (for example \"fr\" for French)\n"
7180 #endif
7181 #ifdef HAS_AUDIO
7182 "-audio-help print list of audio drivers and their options\n"
7183 "-soundhw c1,... enable audio support\n"
7184 " and only specified sound cards (comma separated list)\n"
7185 " use -soundhw ? to get the list of supported cards\n"
7186 " use -soundhw all to enable all of them\n"
7187 #endif
7188 "-localtime set the real time clock to local time [default=utc]\n"
7189 "-full-screen start in full screen\n"
7190 #ifdef TARGET_I386
7191 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7192 #endif
7193 "-usb enable the USB driver (will be the default soon)\n"
7194 "-usbdevice name add the host or guest USB device 'name'\n"
7195 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7196 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7197 #endif
7198 "-name string set the name of the guest\n"
7199 "\n"
7200 "Network options:\n"
7201 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7202 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7203 #ifdef CONFIG_SLIRP
7204 "-net user[,vlan=n][,hostname=host]\n"
7205 " connect the user mode network stack to VLAN 'n' and send\n"
7206 " hostname 'host' to DHCP clients\n"
7207 #endif
7208 #ifdef _WIN32
7209 "-net tap[,vlan=n],ifname=name\n"
7210 " connect the host TAP network interface to VLAN 'n'\n"
7211 #else
7212 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7213 " connect the host TAP network interface to VLAN 'n' and use the\n"
7214 " network scripts 'file' (default=%s)\n"
7215 " and 'dfile' (default=%s);\n"
7216 " use '[down]script=no' to disable script execution;\n"
7217 " use 'fd=h' to connect to an already opened TAP interface\n"
7218 #endif
7219 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7220 " connect the vlan 'n' to another VLAN using a socket connection\n"
7221 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7222 " connect the vlan 'n' to multicast maddr and port\n"
7223 "-net none use it alone to have zero network devices; if no -net option\n"
7224 " is provided, the default is '-net nic -net user'\n"
7225 "\n"
7226 #ifdef CONFIG_SLIRP
7227 "-tftp dir allow tftp access to files in dir [-net user]\n"
7228 "-bootp file advertise file in BOOTP replies\n"
7229 #ifndef _WIN32
7230 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7231 #endif
7232 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7233 " redirect TCP or UDP connections from host to guest [-net user]\n"
7234 #endif
7235 "\n"
7236 "Linux boot specific:\n"
7237 "-kernel bzImage use 'bzImage' as kernel image\n"
7238 "-append cmdline use 'cmdline' as kernel command line\n"
7239 "-initrd file use 'file' as initial ram disk\n"
7240 "\n"
7241 "Debug/Expert options:\n"
7242 "-monitor dev redirect the monitor to char device 'dev'\n"
7243 "-serial dev redirect the serial port to char device 'dev'\n"
7244 "-parallel dev redirect the parallel port to char device 'dev'\n"
7245 "-pidfile file Write PID to 'file'\n"
7246 "-S freeze CPU at startup (use 'c' to start execution)\n"
7247 "-s wait gdb connection to port\n"
7248 "-p port set gdb connection port [default=%s]\n"
7249 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7250 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7251 " translation (t=none or lba) (usually qemu can guess them)\n"
7252 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7253 #ifdef USE_KQEMU
7254 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7255 "-no-kqemu disable KQEMU kernel module usage\n"
7256 #endif
7257 #ifdef TARGET_I386
7258 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7259 " (default is CL-GD5446 PCI VGA)\n"
7260 "-no-acpi disable ACPI\n"
7261 #endif
7262 #ifdef CONFIG_CURSES
7263 "-curses use a curses/ncurses interface instead of SDL\n"
7264 #endif
7265 "-no-reboot exit instead of rebooting\n"
7266 "-no-shutdown stop before shutdown\n"
7267 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
7268 "-vnc display start a VNC server on display\n"
7269 #ifndef _WIN32
7270 "-daemonize daemonize QEMU after initializing\n"
7271 #endif
7272 "-option-rom rom load a file, rom, into the option ROM space\n"
7273 #ifdef TARGET_SPARC
7274 "-prom-env variable=value set OpenBIOS nvram variables\n"
7275 #endif
7276 "-clock force the use of the given methods for timer alarm.\n"
7277 " To see what timers are available use -clock ?\n"
7278 "-startdate select initial date of the clock\n"
7279 "\n"
7280 "During emulation, the following keys are useful:\n"
7281 "ctrl-alt-f toggle full screen\n"
7282 "ctrl-alt-n switch to virtual console 'n'\n"
7283 "ctrl-alt toggle mouse and keyboard grab\n"
7284 "\n"
7285 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7286 ,
7287 "qemu",
7288 DEFAULT_RAM_SIZE,
7289 #ifndef _WIN32
7290 DEFAULT_NETWORK_SCRIPT,
7291 DEFAULT_NETWORK_DOWN_SCRIPT,
7292 #endif
7293 DEFAULT_GDBSTUB_PORT,
7294 "/tmp/qemu.log");
7295 exit(exitcode);
7296 }
7297
7298 #define HAS_ARG 0x0001
7299
7300 enum {
7301 QEMU_OPTION_h,
7302
7303 QEMU_OPTION_M,
7304 QEMU_OPTION_cpu,
7305 QEMU_OPTION_fda,
7306 QEMU_OPTION_fdb,
7307 QEMU_OPTION_hda,
7308 QEMU_OPTION_hdb,
7309 QEMU_OPTION_hdc,
7310 QEMU_OPTION_hdd,
7311 QEMU_OPTION_drive,
7312 QEMU_OPTION_cdrom,
7313 QEMU_OPTION_mtdblock,
7314 QEMU_OPTION_sd,
7315 QEMU_OPTION_pflash,
7316 QEMU_OPTION_boot,
7317 QEMU_OPTION_snapshot,
7318 #ifdef TARGET_I386
7319 QEMU_OPTION_no_fd_bootchk,
7320 #endif
7321 QEMU_OPTION_m,
7322 QEMU_OPTION_nographic,
7323 QEMU_OPTION_portrait,
7324 #ifdef HAS_AUDIO
7325 QEMU_OPTION_audio_help,
7326 QEMU_OPTION_soundhw,
7327 #endif
7328
7329 QEMU_OPTION_net,
7330 QEMU_OPTION_tftp,
7331 QEMU_OPTION_bootp,
7332 QEMU_OPTION_smb,
7333 QEMU_OPTION_redir,
7334
7335 QEMU_OPTION_kernel,
7336 QEMU_OPTION_append,
7337 QEMU_OPTION_initrd,
7338
7339 QEMU_OPTION_S,
7340 QEMU_OPTION_s,
7341 QEMU_OPTION_p,
7342 QEMU_OPTION_d,
7343 QEMU_OPTION_hdachs,
7344 QEMU_OPTION_L,
7345 QEMU_OPTION_bios,
7346 QEMU_OPTION_k,
7347 QEMU_OPTION_localtime,
7348 QEMU_OPTION_cirrusvga,
7349 QEMU_OPTION_vmsvga,
7350 QEMU_OPTION_g,
7351 QEMU_OPTION_std_vga,
7352 QEMU_OPTION_echr,
7353 QEMU_OPTION_monitor,
7354 QEMU_OPTION_serial,
7355 QEMU_OPTION_parallel,
7356 QEMU_OPTION_loadvm,
7357 QEMU_OPTION_full_screen,
7358 QEMU_OPTION_no_frame,
7359 QEMU_OPTION_alt_grab,
7360 QEMU_OPTION_no_quit,
7361 QEMU_OPTION_pidfile,
7362 QEMU_OPTION_no_kqemu,
7363 QEMU_OPTION_kernel_kqemu,
7364 QEMU_OPTION_win2k_hack,
7365 QEMU_OPTION_usb,
7366 QEMU_OPTION_usbdevice,
7367 QEMU_OPTION_smp,
7368 QEMU_OPTION_vnc,
7369 QEMU_OPTION_no_acpi,
7370 QEMU_OPTION_curses,
7371 QEMU_OPTION_no_reboot,
7372 QEMU_OPTION_no_shutdown,
7373 QEMU_OPTION_show_cursor,
7374 QEMU_OPTION_daemonize,
7375 QEMU_OPTION_option_rom,
7376 QEMU_OPTION_semihosting,
7377 QEMU_OPTION_name,
7378 QEMU_OPTION_prom_env,
7379 QEMU_OPTION_old_param,
7380 QEMU_OPTION_clock,
7381 QEMU_OPTION_startdate,
7382 };
7383
7384 typedef struct QEMUOption {
7385 const char *name;
7386 int flags;
7387 int index;
7388 } QEMUOption;
7389
7390 const QEMUOption qemu_options[] = {
7391 { "h", 0, QEMU_OPTION_h },
7392 { "help", 0, QEMU_OPTION_h },
7393
7394 { "M", HAS_ARG, QEMU_OPTION_M },
7395 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7396 { "fda", HAS_ARG, QEMU_OPTION_fda },
7397 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7398 { "hda", HAS_ARG, QEMU_OPTION_hda },
7399 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7400 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7401 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7402 { "drive", HAS_ARG, QEMU_OPTION_drive },
7403 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7404 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7405 { "sd", HAS_ARG, QEMU_OPTION_sd },
7406 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7407 { "boot", HAS_ARG, QEMU_OPTION_boot },
7408 { "snapshot", 0, QEMU_OPTION_snapshot },
7409 #ifdef TARGET_I386
7410 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7411 #endif
7412 { "m", HAS_ARG, QEMU_OPTION_m },
7413 { "nographic", 0, QEMU_OPTION_nographic },
7414 { "portrait", 0, QEMU_OPTION_portrait },
7415 { "k", HAS_ARG, QEMU_OPTION_k },
7416 #ifdef HAS_AUDIO
7417 { "audio-help", 0, QEMU_OPTION_audio_help },
7418 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7419 #endif
7420
7421 { "net", HAS_ARG, QEMU_OPTION_net},
7422 #ifdef CONFIG_SLIRP
7423 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7424 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7425 #ifndef _WIN32
7426 { "smb", HAS_ARG, QEMU_OPTION_smb },
7427 #endif
7428 { "redir", HAS_ARG, QEMU_OPTION_redir },
7429 #endif
7430
7431 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7432 { "append", HAS_ARG, QEMU_OPTION_append },
7433 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7434
7435 { "S", 0, QEMU_OPTION_S },
7436 { "s", 0, QEMU_OPTION_s },
7437 { "p", HAS_ARG, QEMU_OPTION_p },
7438 { "d", HAS_ARG, QEMU_OPTION_d },
7439 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7440 { "L", HAS_ARG, QEMU_OPTION_L },
7441 { "bios", HAS_ARG, QEMU_OPTION_bios },
7442 #ifdef USE_KQEMU
7443 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7444 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7445 #endif
7446 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7447 { "g", 1, QEMU_OPTION_g },
7448 #endif
7449 { "localtime", 0, QEMU_OPTION_localtime },
7450 { "std-vga", 0, QEMU_OPTION_std_vga },
7451 { "echr", HAS_ARG, QEMU_OPTION_echr },
7452 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7453 { "serial", HAS_ARG, QEMU_OPTION_serial },
7454 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7455 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7456 { "full-screen", 0, QEMU_OPTION_full_screen },
7457 #ifdef CONFIG_SDL
7458 { "no-frame", 0, QEMU_OPTION_no_frame },
7459 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7460 { "no-quit", 0, QEMU_OPTION_no_quit },
7461 #endif
7462 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7463 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7464 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7465 { "smp", HAS_ARG, QEMU_OPTION_smp },
7466 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7467 #ifdef CONFIG_CURSES
7468 { "curses", 0, QEMU_OPTION_curses },
7469 #endif
7470
7471 /* temporary options */
7472 { "usb", 0, QEMU_OPTION_usb },
7473 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7474 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7475 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7476 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7477 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7478 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7479 { "daemonize", 0, QEMU_OPTION_daemonize },
7480 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7481 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7482 { "semihosting", 0, QEMU_OPTION_semihosting },
7483 #endif
7484 { "name", HAS_ARG, QEMU_OPTION_name },
7485 #if defined(TARGET_SPARC)
7486 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7487 #endif
7488 #if defined(TARGET_ARM)
7489 { "old-param", 0, QEMU_OPTION_old_param },
7490 #endif
7491 { "clock", HAS_ARG, QEMU_OPTION_clock },
7492 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7493 { NULL },
7494 };
7495
7496 /* password input */
7497
7498 int qemu_key_check(BlockDriverState *bs, const char *name)
7499 {
7500 char password[256];
7501 int i;
7502
7503 if (!bdrv_is_encrypted(bs))
7504 return 0;
7505
7506 term_printf("%s is encrypted.\n", name);
7507 for(i = 0; i < 3; i++) {
7508 monitor_readline("Password: ", 1, password, sizeof(password));
7509 if (bdrv_set_key(bs, password) == 0)
7510 return 0;
7511 term_printf("invalid password\n");
7512 }
7513 return -EPERM;
7514 }
7515
7516 static BlockDriverState *get_bdrv(int index)
7517 {
7518 if (index > nb_drives)
7519 return NULL;
7520 return drives_table[index].bdrv;
7521 }
7522
7523 static void read_passwords(void)
7524 {
7525 BlockDriverState *bs;
7526 int i;
7527
7528 for(i = 0; i < 6; i++) {
7529 bs = get_bdrv(i);
7530 if (bs)
7531 qemu_key_check(bs, bdrv_get_device_name(bs));
7532 }
7533 }
7534
7535 #ifdef HAS_AUDIO
7536 struct soundhw soundhw[] = {
7537 #ifdef HAS_AUDIO_CHOICE
7538 #if defined(TARGET_I386) || defined(TARGET_MIPS)
7539 {
7540 "pcspk",
7541 "PC speaker",
7542 0,
7543 1,
7544 { .init_isa = pcspk_audio_init }
7545 },
7546 #endif
7547 {
7548 "sb16",
7549 "Creative Sound Blaster 16",
7550 0,
7551 1,
7552 { .init_isa = SB16_init }
7553 },
7554
7555 #ifdef CONFIG_ADLIB
7556 {
7557 "adlib",
7558 #ifdef HAS_YMF262
7559 "Yamaha YMF262 (OPL3)",
7560 #else
7561 "Yamaha YM3812 (OPL2)",
7562 #endif
7563 0,
7564 1,
7565 { .init_isa = Adlib_init }
7566 },
7567 #endif
7568
7569 #ifdef CONFIG_GUS
7570 {
7571 "gus",
7572 "Gravis Ultrasound GF1",
7573 0,
7574 1,
7575 { .init_isa = GUS_init }
7576 },
7577 #endif
7578
7579 #ifdef CONFIG_AC97
7580 {
7581 "ac97",
7582 "Intel 82801AA AC97 Audio",
7583 0,
7584 0,
7585 { .init_pci = ac97_init }
7586 },
7587 #endif
7588
7589 {
7590 "es1370",
7591 "ENSONIQ AudioPCI ES1370",
7592 0,
7593 0,
7594 { .init_pci = es1370_init }
7595 },
7596 #endif
7597
7598 { NULL, NULL, 0, 0, { NULL } }
7599 };
7600
7601 static void select_soundhw (const char *optarg)
7602 {
7603 struct soundhw *c;
7604
7605 if (*optarg == '?') {
7606 show_valid_cards:
7607
7608 printf ("Valid sound card names (comma separated):\n");
7609 for (c = soundhw; c->name; ++c) {
7610 printf ("%-11s %s\n", c->name, c->descr);
7611 }
7612 printf ("\n-soundhw all will enable all of the above\n");
7613 exit (*optarg != '?');
7614 }
7615 else {
7616 size_t l;
7617 const char *p;
7618 char *e;
7619 int bad_card = 0;
7620
7621 if (!strcmp (optarg, "all")) {
7622 for (c = soundhw; c->name; ++c) {
7623 c->enabled = 1;
7624 }
7625 return;
7626 }
7627
7628 p = optarg;
7629 while (*p) {
7630 e = strchr (p, ',');
7631 l = !e ? strlen (p) : (size_t) (e - p);
7632
7633 for (c = soundhw; c->name; ++c) {
7634 if (!strncmp (c->name, p, l)) {
7635 c->enabled = 1;
7636 break;
7637 }
7638 }
7639
7640 if (!c->name) {
7641 if (l > 80) {
7642 fprintf (stderr,
7643 "Unknown sound card name (too big to show)\n");
7644 }
7645 else {
7646 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7647 (int) l, p);
7648 }
7649 bad_card = 1;
7650 }
7651 p += l + (e != NULL);
7652 }
7653
7654 if (bad_card)
7655 goto show_valid_cards;
7656 }
7657 }
7658 #endif
7659
7660 #ifdef _WIN32
7661 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7662 {
7663 exit(STATUS_CONTROL_C_EXIT);
7664 return TRUE;
7665 }
7666 #endif
7667
7668 #define MAX_NET_CLIENTS 32
7669
7670 int main(int argc, char **argv)
7671 {
7672 #ifdef CONFIG_GDBSTUB
7673 int use_gdbstub;
7674 const char *gdbstub_port;
7675 #endif
7676 uint32_t boot_devices_bitmap = 0;
7677 int i;
7678 int snapshot, linux_boot, net_boot;
7679 const char *initrd_filename;
7680 const char *kernel_filename, *kernel_cmdline;
7681 const char *boot_devices = "";
7682 DisplayState *ds = &display_state;
7683 int cyls, heads, secs, translation;
7684 const char *net_clients[MAX_NET_CLIENTS];
7685 int nb_net_clients;
7686 int hda_index;
7687 int optind;
7688 const char *r, *optarg;
7689 CharDriverState *monitor_hd;
7690 const char *monitor_device;
7691 const char *serial_devices[MAX_SERIAL_PORTS];
7692 int serial_device_index;
7693 const char *parallel_devices[MAX_PARALLEL_PORTS];
7694 int parallel_device_index;
7695 const char *loadvm = NULL;
7696 QEMUMachine *machine;
7697 const char *cpu_model;
7698 const char *usb_devices[MAX_USB_CMDLINE];
7699 int usb_devices_index;
7700 int fds[2];
7701 const char *pid_file = NULL;
7702 VLANState *vlan;
7703
7704 LIST_INIT (&vm_change_state_head);
7705 #ifndef _WIN32
7706 {
7707 struct sigaction act;
7708 sigfillset(&act.sa_mask);
7709 act.sa_flags = 0;
7710 act.sa_handler = SIG_IGN;
7711 sigaction(SIGPIPE, &act, NULL);
7712 }
7713 #else
7714 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7715 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7716 QEMU to run on a single CPU */
7717 {
7718 HANDLE h;
7719 DWORD mask, smask;
7720 int i;
7721 h = GetCurrentProcess();
7722 if (GetProcessAffinityMask(h, &mask, &smask)) {
7723 for(i = 0; i < 32; i++) {
7724 if (mask & (1 << i))
7725 break;
7726 }
7727 if (i != 32) {
7728 mask = 1 << i;
7729 SetProcessAffinityMask(h, mask);
7730 }
7731 }
7732 }
7733 #endif
7734
7735 register_machines();
7736 machine = first_machine;
7737 cpu_model = NULL;
7738 initrd_filename = NULL;
7739 ram_size = 0;
7740 vga_ram_size = VGA_RAM_SIZE;
7741 #ifdef CONFIG_GDBSTUB
7742 use_gdbstub = 0;
7743 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7744 #endif
7745 snapshot = 0;
7746 nographic = 0;
7747 curses = 0;
7748 kernel_filename = NULL;
7749 kernel_cmdline = "";
7750 cyls = heads = secs = 0;
7751 translation = BIOS_ATA_TRANSLATION_AUTO;
7752 monitor_device = "vc:800x600";
7753
7754 serial_devices[0] = "vc:80Cx24C";
7755 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7756 serial_devices[i] = NULL;
7757 serial_device_index = 0;
7758
7759 parallel_devices[0] = "vc:640x480";
7760 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7761 parallel_devices[i] = NULL;
7762 parallel_device_index = 0;
7763
7764 usb_devices_index = 0;
7765
7766 nb_net_clients = 0;
7767 nb_drives = 0;
7768 nb_drives_opt = 0;
7769 hda_index = -1;
7770
7771 nb_nics = 0;
7772 /* default mac address of the first network interface */
7773
7774 optind = 1;
7775 for(;;) {
7776 if (optind >= argc)
7777 break;
7778 r = argv[optind];
7779 if (r[0] != '-') {
7780 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
7781 } else {
7782 const QEMUOption *popt;
7783
7784 optind++;
7785 /* Treat --foo the same as -foo. */
7786 if (r[1] == '-')
7787 r++;
7788 popt = qemu_options;
7789 for(;;) {
7790 if (!popt->name) {
7791 fprintf(stderr, "%s: invalid option -- '%s'\n",
7792 argv[0], r);
7793 exit(1);
7794 }
7795 if (!strcmp(popt->name, r + 1))
7796 break;
7797 popt++;
7798 }
7799 if (popt->flags & HAS_ARG) {
7800 if (optind >= argc) {
7801 fprintf(stderr, "%s: option '%s' requires an argument\n",
7802 argv[0], r);
7803 exit(1);
7804 }
7805 optarg = argv[optind++];
7806 } else {
7807 optarg = NULL;
7808 }
7809
7810 switch(popt->index) {
7811 case QEMU_OPTION_M:
7812 machine = find_machine(optarg);
7813 if (!machine) {
7814 QEMUMachine *m;
7815 printf("Supported machines are:\n");
7816 for(m = first_machine; m != NULL; m = m->next) {
7817 printf("%-10s %s%s\n",
7818 m->name, m->desc,
7819 m == first_machine ? " (default)" : "");
7820 }
7821 exit(*optarg != '?');
7822 }
7823 break;
7824 case QEMU_OPTION_cpu:
7825 /* hw initialization will check this */
7826 if (*optarg == '?') {
7827 /* XXX: implement xxx_cpu_list for targets that still miss it */
7828 #if defined(cpu_list)
7829 cpu_list(stdout, &fprintf);
7830 #endif
7831 exit(0);
7832 } else {
7833 cpu_model = optarg;
7834 }
7835 break;
7836 case QEMU_OPTION_initrd:
7837 initrd_filename = optarg;
7838 break;
7839 case QEMU_OPTION_hda:
7840 if (cyls == 0)
7841 hda_index = drive_add(optarg, HD_ALIAS, 0);
7842 else
7843 hda_index = drive_add(optarg, HD_ALIAS
7844 ",cyls=%d,heads=%d,secs=%d%s",
7845 0, cyls, heads, secs,
7846 translation == BIOS_ATA_TRANSLATION_LBA ?
7847 ",trans=lba" :
7848 translation == BIOS_ATA_TRANSLATION_NONE ?
7849 ",trans=none" : "");
7850 break;
7851 case QEMU_OPTION_hdb:
7852 case QEMU_OPTION_hdc:
7853 case QEMU_OPTION_hdd:
7854 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
7855 break;
7856 case QEMU_OPTION_drive:
7857 drive_add(NULL, "%s", optarg);
7858 break;
7859 case QEMU_OPTION_mtdblock:
7860 drive_add(optarg, MTD_ALIAS);
7861 break;
7862 case QEMU_OPTION_sd:
7863 drive_add(optarg, SD_ALIAS);
7864 break;
7865 case QEMU_OPTION_pflash:
7866 drive_add(optarg, PFLASH_ALIAS);
7867 break;
7868 case QEMU_OPTION_snapshot:
7869 snapshot = 1;
7870 break;
7871 case QEMU_OPTION_hdachs:
7872 {
7873 const char *p;
7874 p = optarg;
7875 cyls = strtol(p, (char **)&p, 0);
7876 if (cyls < 1 || cyls > 16383)
7877 goto chs_fail;
7878 if (*p != ',')
7879 goto chs_fail;
7880 p++;
7881 heads = strtol(p, (char **)&p, 0);
7882 if (heads < 1 || heads > 16)
7883 goto chs_fail;
7884 if (*p != ',')
7885 goto chs_fail;
7886 p++;
7887 secs = strtol(p, (char **)&p, 0);
7888 if (secs < 1 || secs > 63)
7889 goto chs_fail;
7890 if (*p == ',') {
7891 p++;
7892 if (!strcmp(p, "none"))
7893 translation = BIOS_ATA_TRANSLATION_NONE;
7894 else if (!strcmp(p, "lba"))
7895 translation = BIOS_ATA_TRANSLATION_LBA;
7896 else if (!strcmp(p, "auto"))
7897 translation = BIOS_ATA_TRANSLATION_AUTO;
7898 else
7899 goto chs_fail;
7900 } else if (*p != '\0') {
7901 chs_fail:
7902 fprintf(stderr, "qemu: invalid physical CHS format\n");
7903 exit(1);
7904 }
7905 if (hda_index != -1)
7906 snprintf(drives_opt[hda_index].opt,
7907 sizeof(drives_opt[hda_index].opt),
7908 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
7909 0, cyls, heads, secs,
7910 translation == BIOS_ATA_TRANSLATION_LBA ?
7911 ",trans=lba" :
7912 translation == BIOS_ATA_TRANSLATION_NONE ?
7913 ",trans=none" : "");
7914 }
7915 break;
7916 case QEMU_OPTION_nographic:
7917 serial_devices[0] = "stdio";
7918 parallel_devices[0] = "null";
7919 monitor_device = "stdio";
7920 nographic = 1;
7921 break;
7922 #ifdef CONFIG_CURSES
7923 case QEMU_OPTION_curses:
7924 curses = 1;
7925 break;
7926 #endif
7927 case QEMU_OPTION_portrait:
7928 graphic_rotate = 1;
7929 break;
7930 case QEMU_OPTION_kernel:
7931 kernel_filename = optarg;
7932 break;
7933 case QEMU_OPTION_append:
7934 kernel_cmdline = optarg;
7935 break;
7936 case QEMU_OPTION_cdrom:
7937 drive_add(optarg, CDROM_ALIAS);
7938 break;
7939 case QEMU_OPTION_boot:
7940 boot_devices = optarg;
7941 /* We just do some generic consistency checks */
7942 {
7943 /* Could easily be extended to 64 devices if needed */
7944 const char *p;
7945
7946 boot_devices_bitmap = 0;
7947 for (p = boot_devices; *p != '\0'; p++) {
7948 /* Allowed boot devices are:
7949 * a b : floppy disk drives
7950 * c ... f : IDE disk drives
7951 * g ... m : machine implementation dependant drives
7952 * n ... p : network devices
7953 * It's up to each machine implementation to check
7954 * if the given boot devices match the actual hardware
7955 * implementation and firmware features.
7956 */
7957 if (*p < 'a' || *p > 'q') {
7958 fprintf(stderr, "Invalid boot device '%c'\n", *p);
7959 exit(1);
7960 }
7961 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7962 fprintf(stderr,
7963 "Boot device '%c' was given twice\n",*p);
7964 exit(1);
7965 }
7966 boot_devices_bitmap |= 1 << (*p - 'a');
7967 }
7968 }
7969 break;
7970 case QEMU_OPTION_fda:
7971 case QEMU_OPTION_fdb:
7972 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
7973 break;
7974 #ifdef TARGET_I386
7975 case QEMU_OPTION_no_fd_bootchk:
7976 fd_bootchk = 0;
7977 break;
7978 #endif
7979 case QEMU_OPTION_net:
7980 if (nb_net_clients >= MAX_NET_CLIENTS) {
7981 fprintf(stderr, "qemu: too many network clients\n");
7982 exit(1);
7983 }
7984 net_clients[nb_net_clients] = optarg;
7985 nb_net_clients++;
7986 break;
7987 #ifdef CONFIG_SLIRP
7988 case QEMU_OPTION_tftp:
7989 tftp_prefix = optarg;
7990 break;
7991 case QEMU_OPTION_bootp:
7992 bootp_filename = optarg;
7993 break;
7994 #ifndef _WIN32
7995 case QEMU_OPTION_smb:
7996 net_slirp_smb(optarg);
7997 break;
7998 #endif
7999 case QEMU_OPTION_redir:
8000 net_slirp_redir(optarg);
8001 break;
8002 #endif
8003 #ifdef HAS_AUDIO
8004 case QEMU_OPTION_audio_help:
8005 AUD_help ();
8006 exit (0);
8007 break;
8008 case QEMU_OPTION_soundhw:
8009 select_soundhw (optarg);
8010 break;
8011 #endif
8012 case QEMU_OPTION_h:
8013 help(0);
8014 break;
8015 case QEMU_OPTION_m: {
8016 uint64_t value;
8017 char *ptr;
8018
8019 value = strtoul(optarg, &ptr, 10);
8020 switch (*ptr) {
8021 case 0: case 'M': case 'm':
8022 value <<= 20;
8023 break;
8024 case 'G': case 'g':
8025 value <<= 30;
8026 break;
8027 default:
8028 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8029 exit(1);
8030 }
8031
8032 /* On 32-bit hosts, QEMU is limited by virtual address space */
8033 if (value > (2047 << 20)
8034 #ifndef USE_KQEMU
8035 && HOST_LONG_BITS == 32
8036 #endif
8037 ) {
8038 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8039 exit(1);
8040 }
8041 if (value != (uint64_t)(ram_addr_t)value) {
8042 fprintf(stderr, "qemu: ram size too large\n");
8043 exit(1);
8044 }
8045 ram_size = value;
8046 break;
8047 }
8048 case QEMU_OPTION_d:
8049 {
8050 int mask;
8051 CPULogItem *item;
8052
8053 mask = cpu_str_to_log_mask(optarg);
8054 if (!mask) {
8055 printf("Log items (comma separated):\n");
8056 for(item = cpu_log_items; item->mask != 0; item++) {
8057 printf("%-10s %s\n", item->name, item->help);
8058 }
8059 exit(1);
8060 }
8061 cpu_set_log(mask);
8062 }
8063 break;
8064 #ifdef CONFIG_GDBSTUB
8065 case QEMU_OPTION_s:
8066 use_gdbstub = 1;
8067 break;
8068 case QEMU_OPTION_p:
8069 gdbstub_port = optarg;
8070 break;
8071 #endif
8072 case QEMU_OPTION_L:
8073 bios_dir = optarg;
8074 break;
8075 case QEMU_OPTION_bios:
8076 bios_name = optarg;
8077 break;
8078 case QEMU_OPTION_S:
8079 autostart = 0;
8080 break;
8081 case QEMU_OPTION_k:
8082 keyboard_layout = optarg;
8083 break;
8084 case QEMU_OPTION_localtime:
8085 rtc_utc = 0;
8086 break;
8087 case QEMU_OPTION_cirrusvga:
8088 cirrus_vga_enabled = 1;
8089 vmsvga_enabled = 0;
8090 break;
8091 case QEMU_OPTION_vmsvga:
8092 cirrus_vga_enabled = 0;
8093 vmsvga_enabled = 1;
8094 break;
8095 case QEMU_OPTION_std_vga:
8096 cirrus_vga_enabled = 0;
8097 vmsvga_enabled = 0;
8098 break;
8099 case QEMU_OPTION_g:
8100 {
8101 const char *p;
8102 int w, h, depth;
8103 p = optarg;
8104 w = strtol(p, (char **)&p, 10);
8105 if (w <= 0) {
8106 graphic_error:
8107 fprintf(stderr, "qemu: invalid resolution or depth\n");
8108 exit(1);
8109 }
8110 if (*p != 'x')
8111 goto graphic_error;
8112 p++;
8113 h = strtol(p, (char **)&p, 10);
8114 if (h <= 0)
8115 goto graphic_error;
8116 if (*p == 'x') {
8117 p++;
8118 depth = strtol(p, (char **)&p, 10);
8119 if (depth != 8 && depth != 15 && depth != 16 &&
8120 depth != 24 && depth != 32)
8121 goto graphic_error;
8122 } else if (*p == '\0') {
8123 depth = graphic_depth;
8124 } else {
8125 goto graphic_error;
8126 }
8127
8128 graphic_width = w;
8129 graphic_height = h;
8130 graphic_depth = depth;
8131 }
8132 break;
8133 case QEMU_OPTION_echr:
8134 {
8135 char *r;
8136 term_escape_char = strtol(optarg, &r, 0);
8137 if (r == optarg)
8138 printf("Bad argument to echr\n");
8139 break;
8140 }
8141 case QEMU_OPTION_monitor:
8142 monitor_device = optarg;
8143 break;
8144 case QEMU_OPTION_serial:
8145 if (serial_device_index >= MAX_SERIAL_PORTS) {
8146 fprintf(stderr, "qemu: too many serial ports\n");
8147 exit(1);
8148 }
8149 serial_devices[serial_device_index] = optarg;
8150 serial_device_index++;
8151 break;
8152 case QEMU_OPTION_parallel:
8153 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8154 fprintf(stderr, "qemu: too many parallel ports\n");
8155 exit(1);
8156 }
8157 parallel_devices[parallel_device_index] = optarg;
8158 parallel_device_index++;
8159 break;
8160 case QEMU_OPTION_loadvm:
8161 loadvm = optarg;
8162 break;
8163 case QEMU_OPTION_full_screen:
8164 full_screen = 1;
8165 break;
8166 #ifdef CONFIG_SDL
8167 case QEMU_OPTION_no_frame:
8168 no_frame = 1;
8169 break;
8170 case QEMU_OPTION_alt_grab:
8171 alt_grab = 1;
8172 break;
8173 case QEMU_OPTION_no_quit:
8174 no_quit = 1;
8175 break;
8176 #endif
8177 case QEMU_OPTION_pidfile:
8178 pid_file = optarg;
8179 break;
8180 #ifdef TARGET_I386
8181 case QEMU_OPTION_win2k_hack:
8182 win2k_install_hack = 1;
8183 break;
8184 #endif
8185 #ifdef USE_KQEMU
8186 case QEMU_OPTION_no_kqemu:
8187 kqemu_allowed = 0;
8188 break;
8189 case QEMU_OPTION_kernel_kqemu:
8190 kqemu_allowed = 2;
8191 break;
8192 #endif
8193 case QEMU_OPTION_usb:
8194 usb_enabled = 1;
8195 break;
8196 case QEMU_OPTION_usbdevice:
8197 usb_enabled = 1;
8198 if (usb_devices_index >= MAX_USB_CMDLINE) {
8199 fprintf(stderr, "Too many USB devices\n");
8200 exit(1);
8201 }
8202 usb_devices[usb_devices_index] = optarg;
8203 usb_devices_index++;
8204 break;
8205 case QEMU_OPTION_smp:
8206 smp_cpus = atoi(optarg);
8207 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8208 fprintf(stderr, "Invalid number of CPUs\n");
8209 exit(1);
8210 }
8211 break;
8212 case QEMU_OPTION_vnc:
8213 vnc_display = optarg;
8214 break;
8215 case QEMU_OPTION_no_acpi:
8216 acpi_enabled = 0;
8217 break;
8218 case QEMU_OPTION_no_reboot:
8219 no_reboot = 1;
8220 break;
8221 case QEMU_OPTION_no_shutdown:
8222 no_shutdown = 1;
8223 break;
8224 case QEMU_OPTION_show_cursor:
8225 cursor_hide = 0;
8226 break;
8227 case QEMU_OPTION_daemonize:
8228 daemonize = 1;
8229 break;
8230 case QEMU_OPTION_option_rom:
8231 if (nb_option_roms >= MAX_OPTION_ROMS) {
8232 fprintf(stderr, "Too many option ROMs\n");
8233 exit(1);
8234 }
8235 option_rom[nb_option_roms] = optarg;
8236 nb_option_roms++;
8237 break;
8238 case QEMU_OPTION_semihosting:
8239 semihosting_enabled = 1;
8240 break;
8241 case QEMU_OPTION_name:
8242 qemu_name = optarg;
8243 break;
8244 #ifdef TARGET_SPARC
8245 case QEMU_OPTION_prom_env:
8246 if (nb_prom_envs >= MAX_PROM_ENVS) {
8247 fprintf(stderr, "Too many prom variables\n");
8248 exit(1);
8249 }
8250 prom_envs[nb_prom_envs] = optarg;
8251 nb_prom_envs++;
8252 break;
8253 #endif
8254 #ifdef TARGET_ARM
8255 case QEMU_OPTION_old_param:
8256 old_param = 1;
8257 break;
8258 #endif
8259 case QEMU_OPTION_clock:
8260 configure_alarms(optarg);
8261 break;
8262 case QEMU_OPTION_startdate:
8263 {
8264 struct tm tm;
8265 time_t rtc_start_date;
8266 if (!strcmp(optarg, "now")) {
8267 rtc_date_offset = -1;
8268 } else {
8269 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8270 &tm.tm_year,
8271 &tm.tm_mon,
8272 &tm.tm_mday,
8273 &tm.tm_hour,
8274 &tm.tm_min,
8275 &tm.tm_sec) == 6) {
8276 /* OK */
8277 } else if (sscanf(optarg, "%d-%d-%d",
8278 &tm.tm_year,
8279 &tm.tm_mon,
8280 &tm.tm_mday) == 3) {
8281 tm.tm_hour = 0;
8282 tm.tm_min = 0;
8283 tm.tm_sec = 0;
8284 } else {
8285 goto date_fail;
8286 }
8287 tm.tm_year -= 1900;
8288 tm.tm_mon--;
8289 rtc_start_date = mktimegm(&tm);
8290 if (rtc_start_date == -1) {
8291 date_fail:
8292 fprintf(stderr, "Invalid date format. Valid format are:\n"
8293 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8294 exit(1);
8295 }
8296 rtc_date_offset = time(NULL) - rtc_start_date;
8297 }
8298 }
8299 break;
8300 }
8301 }
8302 }
8303
8304 #ifndef _WIN32
8305 if (daemonize && !nographic && vnc_display == NULL) {
8306 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8307 daemonize = 0;
8308 }
8309
8310 if (daemonize) {
8311 pid_t pid;
8312
8313 if (pipe(fds) == -1)
8314 exit(1);
8315
8316 pid = fork();
8317 if (pid > 0) {
8318 uint8_t status;
8319 ssize_t len;
8320
8321 close(fds[1]);
8322
8323 again:
8324 len = read(fds[0], &status, 1);
8325 if (len == -1 && (errno == EINTR))
8326 goto again;
8327
8328 if (len != 1)
8329 exit(1);
8330 else if (status == 1) {
8331 fprintf(stderr, "Could not acquire pidfile\n");
8332 exit(1);
8333 } else
8334 exit(0);
8335 } else if (pid < 0)
8336 exit(1);
8337
8338 setsid();
8339
8340 pid = fork();
8341 if (pid > 0)
8342 exit(0);
8343 else if (pid < 0)
8344 exit(1);
8345
8346 umask(027);
8347 chdir("/");
8348
8349 signal(SIGTSTP, SIG_IGN);
8350 signal(SIGTTOU, SIG_IGN);
8351 signal(SIGTTIN, SIG_IGN);
8352 }
8353 #endif
8354
8355 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8356 if (daemonize) {
8357 uint8_t status = 1;
8358 write(fds[1], &status, 1);
8359 } else
8360 fprintf(stderr, "Could not acquire pid file\n");
8361 exit(1);
8362 }
8363
8364 #ifdef USE_KQEMU
8365 if (smp_cpus > 1)
8366 kqemu_allowed = 0;
8367 #endif
8368 linux_boot = (kernel_filename != NULL);
8369 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8370
8371 /* XXX: this should not be: some embedded targets just have flash */
8372 if (!linux_boot && net_boot == 0 &&
8373 nb_drives_opt == 0)
8374 help(1);
8375
8376 /* boot to floppy or the default cd if no hard disk defined yet */
8377 if (!boot_devices[0]) {
8378 boot_devices = "cad";
8379 }
8380 setvbuf(stdout, NULL, _IOLBF, 0);
8381
8382 init_timers();
8383 init_timer_alarm();
8384 qemu_aio_init();
8385
8386 #ifdef _WIN32
8387 socket_init();
8388 #endif
8389
8390 /* init network clients */
8391 if (nb_net_clients == 0) {
8392 /* if no clients, we use a default config */
8393 net_clients[0] = "nic";
8394 net_clients[1] = "user";
8395 nb_net_clients = 2;
8396 }
8397
8398 for(i = 0;i < nb_net_clients; i++) {
8399 if (net_client_init(net_clients[i]) < 0)
8400 exit(1);
8401 }
8402 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8403 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8404 continue;
8405 if (vlan->nb_guest_devs == 0) {
8406 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8407 exit(1);
8408 }
8409 if (vlan->nb_host_devs == 0)
8410 fprintf(stderr,
8411 "Warning: vlan %d is not connected to host network\n",
8412 vlan->id);
8413 }
8414
8415 #ifdef TARGET_I386
8416 /* XXX: this should be moved in the PC machine instantiation code */
8417 if (net_boot != 0) {
8418 int netroms = 0;
8419 for (i = 0; i < nb_nics && i < 4; i++) {
8420 const char *model = nd_table[i].model;
8421 char buf[1024];
8422 if (net_boot & (1 << i)) {
8423 if (model == NULL)
8424 model = "ne2k_pci";
8425 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8426 if (get_image_size(buf) > 0) {
8427 if (nb_option_roms >= MAX_OPTION_ROMS) {
8428 fprintf(stderr, "Too many option ROMs\n");
8429 exit(1);
8430 }
8431 option_rom[nb_option_roms] = strdup(buf);
8432 nb_option_roms++;
8433 netroms++;
8434 }
8435 }
8436 }
8437 if (netroms == 0) {
8438 fprintf(stderr, "No valid PXE rom found for network device\n");
8439 exit(1);
8440 }
8441 }
8442 #endif
8443
8444 /* init the memory */
8445 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
8446
8447 if (machine->ram_require & RAMSIZE_FIXED) {
8448 if (ram_size > 0) {
8449 if (ram_size < phys_ram_size) {
8450 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
8451 machine->name, (unsigned long long) phys_ram_size);
8452 exit(-1);
8453 }
8454
8455 phys_ram_size = ram_size;
8456 } else
8457 ram_size = phys_ram_size;
8458 } else {
8459 if (ram_size == 0)
8460 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8461
8462 phys_ram_size += ram_size;
8463 }
8464
8465 phys_ram_base = qemu_vmalloc(phys_ram_size);
8466 if (!phys_ram_base) {
8467 fprintf(stderr, "Could not allocate physical memory\n");
8468 exit(1);
8469 }
8470
8471 bdrv_init();
8472
8473 /* we always create the cdrom drive, even if no disk is there */
8474
8475 if (nb_drives_opt < MAX_DRIVES)
8476 drive_add(NULL, CDROM_ALIAS);
8477
8478 /* we always create at least one floppy */
8479
8480 if (nb_drives_opt < MAX_DRIVES)
8481 drive_add(NULL, FD_ALIAS, 0);
8482
8483 /* we always create one sd slot, even if no card is in it */
8484
8485 if (nb_drives_opt < MAX_DRIVES)
8486 drive_add(NULL, SD_ALIAS);
8487
8488 /* open the virtual block devices */
8489
8490 for(i = 0; i < nb_drives_opt; i++)
8491 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
8492 exit(1);
8493
8494 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8495 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8496
8497 init_ioports();
8498
8499 /* terminal init */
8500 memset(&display_state, 0, sizeof(display_state));
8501 if (nographic) {
8502 if (curses) {
8503 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
8504 exit(1);
8505 }
8506 /* nearly nothing to do */
8507 dumb_display_init(ds);
8508 } else if (vnc_display != NULL) {
8509 vnc_display_init(ds);
8510 if (vnc_display_open(ds, vnc_display) < 0)
8511 exit(1);
8512 } else
8513 #if defined(CONFIG_CURSES)
8514 if (curses) {
8515 curses_display_init(ds, full_screen);
8516 } else
8517 #endif
8518 {
8519 #if defined(CONFIG_SDL)
8520 sdl_display_init(ds, full_screen, no_frame);
8521 #elif defined(CONFIG_COCOA)
8522 cocoa_display_init(ds, full_screen);
8523 #else
8524 dumb_display_init(ds);
8525 #endif
8526 }
8527
8528 /* Maintain compatibility with multiple stdio monitors */
8529 if (!strcmp(monitor_device,"stdio")) {
8530 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8531 const char *devname = serial_devices[i];
8532 if (devname && !strcmp(devname,"mon:stdio")) {
8533 monitor_device = NULL;
8534 break;
8535 } else if (devname && !strcmp(devname,"stdio")) {
8536 monitor_device = NULL;
8537 serial_devices[i] = "mon:stdio";
8538 break;
8539 }
8540 }
8541 }
8542 if (monitor_device) {
8543 monitor_hd = qemu_chr_open(monitor_device);
8544 if (!monitor_hd) {
8545 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8546 exit(1);
8547 }
8548 monitor_init(monitor_hd, !nographic);
8549 }
8550
8551 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8552 const char *devname = serial_devices[i];
8553 if (devname && strcmp(devname, "none")) {
8554 serial_hds[i] = qemu_chr_open(devname);
8555 if (!serial_hds[i]) {
8556 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8557 devname);
8558 exit(1);
8559 }
8560 if (strstart(devname, "vc", 0))
8561 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8562 }
8563 }
8564
8565 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8566 const char *devname = parallel_devices[i];
8567 if (devname && strcmp(devname, "none")) {
8568 parallel_hds[i] = qemu_chr_open(devname);
8569 if (!parallel_hds[i]) {
8570 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8571 devname);
8572 exit(1);
8573 }
8574 if (strstart(devname, "vc", 0))
8575 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8576 }
8577 }
8578
8579 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8580 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8581
8582 /* init USB devices */
8583 if (usb_enabled) {
8584 for(i = 0; i < usb_devices_index; i++) {
8585 if (usb_device_add(usb_devices[i]) < 0) {
8586 fprintf(stderr, "Warning: could not add USB device %s\n",
8587 usb_devices[i]);
8588 }
8589 }
8590 }
8591
8592 if (display_state.dpy_refresh) {
8593 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8594 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8595 }
8596
8597 #ifdef CONFIG_GDBSTUB
8598 if (use_gdbstub) {
8599 /* XXX: use standard host:port notation and modify options
8600 accordingly. */
8601 if (gdbserver_start(gdbstub_port) < 0) {
8602 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8603 gdbstub_port);
8604 exit(1);
8605 }
8606 }
8607 #endif
8608
8609 if (loadvm)
8610 do_loadvm(loadvm);
8611
8612 {
8613 /* XXX: simplify init */
8614 read_passwords();
8615 if (autostart) {
8616 vm_start();
8617 }
8618 }
8619
8620 if (daemonize) {
8621 uint8_t status = 0;
8622 ssize_t len;
8623 int fd;
8624
8625 again1:
8626 len = write(fds[1], &status, 1);
8627 if (len == -1 && (errno == EINTR))
8628 goto again1;
8629
8630 if (len != 1)
8631 exit(1);
8632
8633 TFR(fd = open("/dev/null", O_RDWR));
8634 if (fd == -1)
8635 exit(1);
8636
8637 dup2(fd, 0);
8638 dup2(fd, 1);
8639 dup2(fd, 2);
8640
8641 close(fd);
8642 }
8643
8644 main_loop();
8645 quit_timers();
8646
8647 #if !defined(_WIN32)
8648 /* close network clients */
8649 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8650 VLANClientState *vc;
8651
8652 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8653 if (vc->fd_read == tap_receive) {
8654 char ifname[64];
8655 TAPState *s = vc->opaque;
8656
8657 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8658 s->down_script[0])
8659 launch_script(s->down_script, ifname, s->fd);
8660 }
8661 }
8662 }
8663 #endif
8664 return 0;
8665 }