]> git.proxmox.com Git - qemu.git/blob - vl.c
multiple snapshot support
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32
33 #ifndef _WIN32
34 #include <sys/times.h>
35 #include <sys/wait.h>
36 #include <termios.h>
37 #include <sys/poll.h>
38 #include <sys/mman.h>
39 #include <sys/ioctl.h>
40 #include <sys/socket.h>
41 #include <netinet/in.h>
42 #include <dirent.h>
43 #include <netdb.h>
44 #ifdef _BSD
45 #include <sys/stat.h>
46 #ifndef __APPLE__
47 #include <libutil.h>
48 #endif
49 #else
50 #ifndef __sun__
51 #include <linux/if.h>
52 #include <linux/if_tun.h>
53 #include <pty.h>
54 #include <malloc.h>
55 #include <linux/rtc.h>
56 #include <linux/ppdev.h>
57 #endif
58 #endif
59 #endif
60
61 #if defined(CONFIG_SLIRP)
62 #include "libslirp.h"
63 #endif
64
65 #ifdef _WIN32
66 #include <malloc.h>
67 #include <sys/timeb.h>
68 #include <windows.h>
69 #define getopt_long_only getopt_long
70 #define memalign(align, size) malloc(size)
71 #endif
72
73 #include "qemu_socket.h"
74
75 #ifdef CONFIG_SDL
76 #ifdef __APPLE__
77 #include <SDL/SDL.h>
78 #endif
79 #endif /* CONFIG_SDL */
80
81 #ifdef CONFIG_COCOA
82 #undef main
83 #define main qemu_main
84 #endif /* CONFIG_COCOA */
85
86 #include "disas.h"
87
88 #include "exec-all.h"
89
90 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
91
92 //#define DEBUG_UNUSED_IOPORT
93 //#define DEBUG_IOPORT
94
95 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
96
97 #ifdef TARGET_PPC
98 #define DEFAULT_RAM_SIZE 144
99 #else
100 #define DEFAULT_RAM_SIZE 128
101 #endif
102 /* in ms */
103 #define GUI_REFRESH_INTERVAL 30
104
105 /* Max number of USB devices that can be specified on the commandline. */
106 #define MAX_USB_CMDLINE 8
107
108 /* XXX: use a two level table to limit memory usage */
109 #define MAX_IOPORTS 65536
110
111 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
112 char phys_ram_file[1024];
113 void *ioport_opaque[MAX_IOPORTS];
114 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
115 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
116 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
117 to store the VM snapshots */
118 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
119 /* point to the block driver where the snapshots are managed */
120 BlockDriverState *bs_snapshots;
121 int vga_ram_size;
122 int bios_size;
123 static DisplayState display_state;
124 int nographic;
125 const char* keyboard_layout = NULL;
126 int64_t ticks_per_sec;
127 int boot_device = 'c';
128 int ram_size;
129 int pit_min_timer_count = 0;
130 int nb_nics;
131 NICInfo nd_table[MAX_NICS];
132 QEMUTimer *gui_timer;
133 int vm_running;
134 int rtc_utc = 1;
135 int cirrus_vga_enabled = 1;
136 #ifdef TARGET_SPARC
137 int graphic_width = 1024;
138 int graphic_height = 768;
139 #else
140 int graphic_width = 800;
141 int graphic_height = 600;
142 #endif
143 int graphic_depth = 15;
144 int full_screen = 0;
145 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
146 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
147 #ifdef TARGET_I386
148 int win2k_install_hack = 0;
149 #endif
150 int usb_enabled = 0;
151 static VLANState *first_vlan;
152 int smp_cpus = 1;
153 int vnc_display = -1;
154 #if defined(TARGET_SPARC)
155 #define MAX_CPUS 16
156 #elif defined(TARGET_I386)
157 #define MAX_CPUS 255
158 #else
159 #define MAX_CPUS 1
160 #endif
161 int acpi_enabled = 1;
162 int fd_bootchk = 1;
163
164 /***********************************************************/
165 /* x86 ISA bus support */
166
167 target_phys_addr_t isa_mem_base = 0;
168 PicState2 *isa_pic;
169
170 uint32_t default_ioport_readb(void *opaque, uint32_t address)
171 {
172 #ifdef DEBUG_UNUSED_IOPORT
173 fprintf(stderr, "inb: port=0x%04x\n", address);
174 #endif
175 return 0xff;
176 }
177
178 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
179 {
180 #ifdef DEBUG_UNUSED_IOPORT
181 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
182 #endif
183 }
184
185 /* default is to make two byte accesses */
186 uint32_t default_ioport_readw(void *opaque, uint32_t address)
187 {
188 uint32_t data;
189 data = ioport_read_table[0][address](ioport_opaque[address], address);
190 address = (address + 1) & (MAX_IOPORTS - 1);
191 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
192 return data;
193 }
194
195 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
196 {
197 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
198 address = (address + 1) & (MAX_IOPORTS - 1);
199 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
200 }
201
202 uint32_t default_ioport_readl(void *opaque, uint32_t address)
203 {
204 #ifdef DEBUG_UNUSED_IOPORT
205 fprintf(stderr, "inl: port=0x%04x\n", address);
206 #endif
207 return 0xffffffff;
208 }
209
210 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
211 {
212 #ifdef DEBUG_UNUSED_IOPORT
213 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
214 #endif
215 }
216
217 void init_ioports(void)
218 {
219 int i;
220
221 for(i = 0; i < MAX_IOPORTS; i++) {
222 ioport_read_table[0][i] = default_ioport_readb;
223 ioport_write_table[0][i] = default_ioport_writeb;
224 ioport_read_table[1][i] = default_ioport_readw;
225 ioport_write_table[1][i] = default_ioport_writew;
226 ioport_read_table[2][i] = default_ioport_readl;
227 ioport_write_table[2][i] = default_ioport_writel;
228 }
229 }
230
231 /* size is the word size in byte */
232 int register_ioport_read(int start, int length, int size,
233 IOPortReadFunc *func, void *opaque)
234 {
235 int i, bsize;
236
237 if (size == 1) {
238 bsize = 0;
239 } else if (size == 2) {
240 bsize = 1;
241 } else if (size == 4) {
242 bsize = 2;
243 } else {
244 hw_error("register_ioport_read: invalid size");
245 return -1;
246 }
247 for(i = start; i < start + length; i += size) {
248 ioport_read_table[bsize][i] = func;
249 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
250 hw_error("register_ioport_read: invalid opaque");
251 ioport_opaque[i] = opaque;
252 }
253 return 0;
254 }
255
256 /* size is the word size in byte */
257 int register_ioport_write(int start, int length, int size,
258 IOPortWriteFunc *func, void *opaque)
259 {
260 int i, bsize;
261
262 if (size == 1) {
263 bsize = 0;
264 } else if (size == 2) {
265 bsize = 1;
266 } else if (size == 4) {
267 bsize = 2;
268 } else {
269 hw_error("register_ioport_write: invalid size");
270 return -1;
271 }
272 for(i = start; i < start + length; i += size) {
273 ioport_write_table[bsize][i] = func;
274 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
275 hw_error("register_ioport_read: invalid opaque");
276 ioport_opaque[i] = opaque;
277 }
278 return 0;
279 }
280
281 void isa_unassign_ioport(int start, int length)
282 {
283 int i;
284
285 for(i = start; i < start + length; i++) {
286 ioport_read_table[0][i] = default_ioport_readb;
287 ioport_read_table[1][i] = default_ioport_readw;
288 ioport_read_table[2][i] = default_ioport_readl;
289
290 ioport_write_table[0][i] = default_ioport_writeb;
291 ioport_write_table[1][i] = default_ioport_writew;
292 ioport_write_table[2][i] = default_ioport_writel;
293 }
294 }
295
296 /***********************************************************/
297
298 void pstrcpy(char *buf, int buf_size, const char *str)
299 {
300 int c;
301 char *q = buf;
302
303 if (buf_size <= 0)
304 return;
305
306 for(;;) {
307 c = *str++;
308 if (c == 0 || q >= buf + buf_size - 1)
309 break;
310 *q++ = c;
311 }
312 *q = '\0';
313 }
314
315 /* strcat and truncate. */
316 char *pstrcat(char *buf, int buf_size, const char *s)
317 {
318 int len;
319 len = strlen(buf);
320 if (len < buf_size)
321 pstrcpy(buf + len, buf_size - len, s);
322 return buf;
323 }
324
325 int strstart(const char *str, const char *val, const char **ptr)
326 {
327 const char *p, *q;
328 p = str;
329 q = val;
330 while (*q != '\0') {
331 if (*p != *q)
332 return 0;
333 p++;
334 q++;
335 }
336 if (ptr)
337 *ptr = p;
338 return 1;
339 }
340
341 void cpu_outb(CPUState *env, int addr, int val)
342 {
343 #ifdef DEBUG_IOPORT
344 if (loglevel & CPU_LOG_IOPORT)
345 fprintf(logfile, "outb: %04x %02x\n", addr, val);
346 #endif
347 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
348 #ifdef USE_KQEMU
349 if (env)
350 env->last_io_time = cpu_get_time_fast();
351 #endif
352 }
353
354 void cpu_outw(CPUState *env, int addr, int val)
355 {
356 #ifdef DEBUG_IOPORT
357 if (loglevel & CPU_LOG_IOPORT)
358 fprintf(logfile, "outw: %04x %04x\n", addr, val);
359 #endif
360 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
361 #ifdef USE_KQEMU
362 if (env)
363 env->last_io_time = cpu_get_time_fast();
364 #endif
365 }
366
367 void cpu_outl(CPUState *env, int addr, int val)
368 {
369 #ifdef DEBUG_IOPORT
370 if (loglevel & CPU_LOG_IOPORT)
371 fprintf(logfile, "outl: %04x %08x\n", addr, val);
372 #endif
373 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
374 #ifdef USE_KQEMU
375 if (env)
376 env->last_io_time = cpu_get_time_fast();
377 #endif
378 }
379
380 int cpu_inb(CPUState *env, int addr)
381 {
382 int val;
383 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
384 #ifdef DEBUG_IOPORT
385 if (loglevel & CPU_LOG_IOPORT)
386 fprintf(logfile, "inb : %04x %02x\n", addr, val);
387 #endif
388 #ifdef USE_KQEMU
389 if (env)
390 env->last_io_time = cpu_get_time_fast();
391 #endif
392 return val;
393 }
394
395 int cpu_inw(CPUState *env, int addr)
396 {
397 int val;
398 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
399 #ifdef DEBUG_IOPORT
400 if (loglevel & CPU_LOG_IOPORT)
401 fprintf(logfile, "inw : %04x %04x\n", addr, val);
402 #endif
403 #ifdef USE_KQEMU
404 if (env)
405 env->last_io_time = cpu_get_time_fast();
406 #endif
407 return val;
408 }
409
410 int cpu_inl(CPUState *env, int addr)
411 {
412 int val;
413 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
414 #ifdef DEBUG_IOPORT
415 if (loglevel & CPU_LOG_IOPORT)
416 fprintf(logfile, "inl : %04x %08x\n", addr, val);
417 #endif
418 #ifdef USE_KQEMU
419 if (env)
420 env->last_io_time = cpu_get_time_fast();
421 #endif
422 return val;
423 }
424
425 /***********************************************************/
426 void hw_error(const char *fmt, ...)
427 {
428 va_list ap;
429 CPUState *env;
430
431 va_start(ap, fmt);
432 fprintf(stderr, "qemu: hardware error: ");
433 vfprintf(stderr, fmt, ap);
434 fprintf(stderr, "\n");
435 for(env = first_cpu; env != NULL; env = env->next_cpu) {
436 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
437 #ifdef TARGET_I386
438 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
439 #else
440 cpu_dump_state(env, stderr, fprintf, 0);
441 #endif
442 }
443 va_end(ap);
444 abort();
445 }
446
447 /***********************************************************/
448 /* keyboard/mouse */
449
450 static QEMUPutKBDEvent *qemu_put_kbd_event;
451 static void *qemu_put_kbd_event_opaque;
452 static QEMUPutMouseEvent *qemu_put_mouse_event;
453 static void *qemu_put_mouse_event_opaque;
454 static int qemu_put_mouse_event_absolute;
455
456 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
457 {
458 qemu_put_kbd_event_opaque = opaque;
459 qemu_put_kbd_event = func;
460 }
461
462 void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque, int absolute)
463 {
464 qemu_put_mouse_event_opaque = opaque;
465 qemu_put_mouse_event = func;
466 qemu_put_mouse_event_absolute = absolute;
467 }
468
469 void kbd_put_keycode(int keycode)
470 {
471 if (qemu_put_kbd_event) {
472 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
473 }
474 }
475
476 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
477 {
478 if (qemu_put_mouse_event) {
479 qemu_put_mouse_event(qemu_put_mouse_event_opaque,
480 dx, dy, dz, buttons_state);
481 }
482 }
483
484 int kbd_mouse_is_absolute(void)
485 {
486 return qemu_put_mouse_event_absolute;
487 }
488
489 /* compute with 96 bit intermediate result: (a*b)/c */
490 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
491 {
492 union {
493 uint64_t ll;
494 struct {
495 #ifdef WORDS_BIGENDIAN
496 uint32_t high, low;
497 #else
498 uint32_t low, high;
499 #endif
500 } l;
501 } u, res;
502 uint64_t rl, rh;
503
504 u.ll = a;
505 rl = (uint64_t)u.l.low * (uint64_t)b;
506 rh = (uint64_t)u.l.high * (uint64_t)b;
507 rh += (rl >> 32);
508 res.l.high = rh / c;
509 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
510 return res.ll;
511 }
512
513 /***********************************************************/
514 /* real time host monotonic timer */
515
516 #define QEMU_TIMER_BASE 1000000000LL
517
518 #ifdef WIN32
519
520 static int64_t clock_freq;
521
522 static void init_get_clock(void)
523 {
524 LARGE_INTEGER freq;
525 int ret;
526 ret = QueryPerformanceFrequency(&freq);
527 if (ret == 0) {
528 fprintf(stderr, "Could not calibrate ticks\n");
529 exit(1);
530 }
531 clock_freq = freq.QuadPart;
532 }
533
534 static int64_t get_clock(void)
535 {
536 LARGE_INTEGER ti;
537 QueryPerformanceCounter(&ti);
538 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
539 }
540
541 #else
542
543 static int use_rt_clock;
544
545 static void init_get_clock(void)
546 {
547 use_rt_clock = 0;
548 #if defined(__linux__)
549 {
550 struct timespec ts;
551 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
552 use_rt_clock = 1;
553 }
554 }
555 #endif
556 }
557
558 static int64_t get_clock(void)
559 {
560 #if defined(__linux__)
561 if (use_rt_clock) {
562 struct timespec ts;
563 clock_gettime(CLOCK_MONOTONIC, &ts);
564 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
565 } else
566 #endif
567 {
568 /* XXX: using gettimeofday leads to problems if the date
569 changes, so it should be avoided. */
570 struct timeval tv;
571 gettimeofday(&tv, NULL);
572 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
573 }
574 }
575
576 #endif
577
578 /***********************************************************/
579 /* guest cycle counter */
580
581 static int64_t cpu_ticks_prev;
582 static int64_t cpu_ticks_offset;
583 static int64_t cpu_clock_offset;
584 static int cpu_ticks_enabled;
585
586 /* return the host CPU cycle counter and handle stop/restart */
587 int64_t cpu_get_ticks(void)
588 {
589 if (!cpu_ticks_enabled) {
590 return cpu_ticks_offset;
591 } else {
592 int64_t ticks;
593 ticks = cpu_get_real_ticks();
594 if (cpu_ticks_prev > ticks) {
595 /* Note: non increasing ticks may happen if the host uses
596 software suspend */
597 cpu_ticks_offset += cpu_ticks_prev - ticks;
598 }
599 cpu_ticks_prev = ticks;
600 return ticks + cpu_ticks_offset;
601 }
602 }
603
604 /* return the host CPU monotonic timer and handle stop/restart */
605 static int64_t cpu_get_clock(void)
606 {
607 int64_t ti;
608 if (!cpu_ticks_enabled) {
609 return cpu_clock_offset;
610 } else {
611 ti = get_clock();
612 return ti + cpu_clock_offset;
613 }
614 }
615
616 /* enable cpu_get_ticks() */
617 void cpu_enable_ticks(void)
618 {
619 if (!cpu_ticks_enabled) {
620 cpu_ticks_offset -= cpu_get_real_ticks();
621 cpu_clock_offset -= get_clock();
622 cpu_ticks_enabled = 1;
623 }
624 }
625
626 /* disable cpu_get_ticks() : the clock is stopped. You must not call
627 cpu_get_ticks() after that. */
628 void cpu_disable_ticks(void)
629 {
630 if (cpu_ticks_enabled) {
631 cpu_ticks_offset = cpu_get_ticks();
632 cpu_clock_offset = cpu_get_clock();
633 cpu_ticks_enabled = 0;
634 }
635 }
636
637 /***********************************************************/
638 /* timers */
639
640 #define QEMU_TIMER_REALTIME 0
641 #define QEMU_TIMER_VIRTUAL 1
642
643 struct QEMUClock {
644 int type;
645 /* XXX: add frequency */
646 };
647
648 struct QEMUTimer {
649 QEMUClock *clock;
650 int64_t expire_time;
651 QEMUTimerCB *cb;
652 void *opaque;
653 struct QEMUTimer *next;
654 };
655
656 QEMUClock *rt_clock;
657 QEMUClock *vm_clock;
658
659 static QEMUTimer *active_timers[2];
660 #ifdef _WIN32
661 static MMRESULT timerID;
662 static HANDLE host_alarm = NULL;
663 static unsigned int period = 1;
664 #else
665 /* frequency of the times() clock tick */
666 static int timer_freq;
667 #endif
668
669 QEMUClock *qemu_new_clock(int type)
670 {
671 QEMUClock *clock;
672 clock = qemu_mallocz(sizeof(QEMUClock));
673 if (!clock)
674 return NULL;
675 clock->type = type;
676 return clock;
677 }
678
679 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
680 {
681 QEMUTimer *ts;
682
683 ts = qemu_mallocz(sizeof(QEMUTimer));
684 ts->clock = clock;
685 ts->cb = cb;
686 ts->opaque = opaque;
687 return ts;
688 }
689
690 void qemu_free_timer(QEMUTimer *ts)
691 {
692 qemu_free(ts);
693 }
694
695 /* stop a timer, but do not dealloc it */
696 void qemu_del_timer(QEMUTimer *ts)
697 {
698 QEMUTimer **pt, *t;
699
700 /* NOTE: this code must be signal safe because
701 qemu_timer_expired() can be called from a signal. */
702 pt = &active_timers[ts->clock->type];
703 for(;;) {
704 t = *pt;
705 if (!t)
706 break;
707 if (t == ts) {
708 *pt = t->next;
709 break;
710 }
711 pt = &t->next;
712 }
713 }
714
715 /* modify the current timer so that it will be fired when current_time
716 >= expire_time. The corresponding callback will be called. */
717 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
718 {
719 QEMUTimer **pt, *t;
720
721 qemu_del_timer(ts);
722
723 /* add the timer in the sorted list */
724 /* NOTE: this code must be signal safe because
725 qemu_timer_expired() can be called from a signal. */
726 pt = &active_timers[ts->clock->type];
727 for(;;) {
728 t = *pt;
729 if (!t)
730 break;
731 if (t->expire_time > expire_time)
732 break;
733 pt = &t->next;
734 }
735 ts->expire_time = expire_time;
736 ts->next = *pt;
737 *pt = ts;
738 }
739
740 int qemu_timer_pending(QEMUTimer *ts)
741 {
742 QEMUTimer *t;
743 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
744 if (t == ts)
745 return 1;
746 }
747 return 0;
748 }
749
750 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
751 {
752 if (!timer_head)
753 return 0;
754 return (timer_head->expire_time <= current_time);
755 }
756
757 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
758 {
759 QEMUTimer *ts;
760
761 for(;;) {
762 ts = *ptimer_head;
763 if (!ts || ts->expire_time > current_time)
764 break;
765 /* remove timer from the list before calling the callback */
766 *ptimer_head = ts->next;
767 ts->next = NULL;
768
769 /* run the callback (the timer list can be modified) */
770 ts->cb(ts->opaque);
771 }
772 }
773
774 int64_t qemu_get_clock(QEMUClock *clock)
775 {
776 switch(clock->type) {
777 case QEMU_TIMER_REALTIME:
778 return get_clock() / 1000000;
779 default:
780 case QEMU_TIMER_VIRTUAL:
781 return cpu_get_clock();
782 }
783 }
784
785 static void init_timers(void)
786 {
787 init_get_clock();
788 ticks_per_sec = QEMU_TIMER_BASE;
789 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
790 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
791 }
792
793 /* save a timer */
794 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
795 {
796 uint64_t expire_time;
797
798 if (qemu_timer_pending(ts)) {
799 expire_time = ts->expire_time;
800 } else {
801 expire_time = -1;
802 }
803 qemu_put_be64(f, expire_time);
804 }
805
806 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
807 {
808 uint64_t expire_time;
809
810 expire_time = qemu_get_be64(f);
811 if (expire_time != -1) {
812 qemu_mod_timer(ts, expire_time);
813 } else {
814 qemu_del_timer(ts);
815 }
816 }
817
818 static void timer_save(QEMUFile *f, void *opaque)
819 {
820 if (cpu_ticks_enabled) {
821 hw_error("cannot save state if virtual timers are running");
822 }
823 qemu_put_be64s(f, &cpu_ticks_offset);
824 qemu_put_be64s(f, &ticks_per_sec);
825 }
826
827 static int timer_load(QEMUFile *f, void *opaque, int version_id)
828 {
829 if (version_id != 1)
830 return -EINVAL;
831 if (cpu_ticks_enabled) {
832 return -EINVAL;
833 }
834 qemu_get_be64s(f, &cpu_ticks_offset);
835 qemu_get_be64s(f, &ticks_per_sec);
836 return 0;
837 }
838
839 #ifdef _WIN32
840 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
841 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
842 #else
843 static void host_alarm_handler(int host_signum)
844 #endif
845 {
846 #if 0
847 #define DISP_FREQ 1000
848 {
849 static int64_t delta_min = INT64_MAX;
850 static int64_t delta_max, delta_cum, last_clock, delta, ti;
851 static int count;
852 ti = qemu_get_clock(vm_clock);
853 if (last_clock != 0) {
854 delta = ti - last_clock;
855 if (delta < delta_min)
856 delta_min = delta;
857 if (delta > delta_max)
858 delta_max = delta;
859 delta_cum += delta;
860 if (++count == DISP_FREQ) {
861 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
862 muldiv64(delta_min, 1000000, ticks_per_sec),
863 muldiv64(delta_max, 1000000, ticks_per_sec),
864 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
865 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
866 count = 0;
867 delta_min = INT64_MAX;
868 delta_max = 0;
869 delta_cum = 0;
870 }
871 }
872 last_clock = ti;
873 }
874 #endif
875 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
876 qemu_get_clock(vm_clock)) ||
877 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
878 qemu_get_clock(rt_clock))) {
879 #ifdef _WIN32
880 SetEvent(host_alarm);
881 #endif
882 CPUState *env = cpu_single_env;
883 if (env) {
884 /* stop the currently executing cpu because a timer occured */
885 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
886 #ifdef USE_KQEMU
887 if (env->kqemu_enabled) {
888 kqemu_cpu_interrupt(env);
889 }
890 #endif
891 }
892 }
893 }
894
895 #ifndef _WIN32
896
897 #if defined(__linux__)
898
899 #define RTC_FREQ 1024
900
901 static int rtc_fd;
902
903 static int start_rtc_timer(void)
904 {
905 rtc_fd = open("/dev/rtc", O_RDONLY);
906 if (rtc_fd < 0)
907 return -1;
908 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
909 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
910 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
911 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
912 goto fail;
913 }
914 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
915 fail:
916 close(rtc_fd);
917 return -1;
918 }
919 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
920 return 0;
921 }
922
923 #else
924
925 static int start_rtc_timer(void)
926 {
927 return -1;
928 }
929
930 #endif /* !defined(__linux__) */
931
932 #endif /* !defined(_WIN32) */
933
934 static void init_timer_alarm(void)
935 {
936 #ifdef _WIN32
937 {
938 int count=0;
939 TIMECAPS tc;
940
941 ZeroMemory(&tc, sizeof(TIMECAPS));
942 timeGetDevCaps(&tc, sizeof(TIMECAPS));
943 if (period < tc.wPeriodMin)
944 period = tc.wPeriodMin;
945 timeBeginPeriod(period);
946 timerID = timeSetEvent(1, // interval (ms)
947 period, // resolution
948 host_alarm_handler, // function
949 (DWORD)&count, // user parameter
950 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
951 if( !timerID ) {
952 perror("failed timer alarm");
953 exit(1);
954 }
955 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
956 if (!host_alarm) {
957 perror("failed CreateEvent");
958 exit(1);
959 }
960 qemu_add_wait_object(host_alarm, NULL, NULL);
961 }
962 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
963 #else
964 {
965 struct sigaction act;
966 struct itimerval itv;
967
968 /* get times() syscall frequency */
969 timer_freq = sysconf(_SC_CLK_TCK);
970
971 /* timer signal */
972 sigfillset(&act.sa_mask);
973 act.sa_flags = 0;
974 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
975 act.sa_flags |= SA_ONSTACK;
976 #endif
977 act.sa_handler = host_alarm_handler;
978 sigaction(SIGALRM, &act, NULL);
979
980 itv.it_interval.tv_sec = 0;
981 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
982 itv.it_value.tv_sec = 0;
983 itv.it_value.tv_usec = 10 * 1000;
984 setitimer(ITIMER_REAL, &itv, NULL);
985 /* we probe the tick duration of the kernel to inform the user if
986 the emulated kernel requested a too high timer frequency */
987 getitimer(ITIMER_REAL, &itv);
988
989 #if defined(__linux__)
990 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
991 have timers with 1 ms resolution. The correct solution will
992 be to use the POSIX real time timers available in recent
993 2.6 kernels */
994 if (itv.it_interval.tv_usec > 1000 || 1) {
995 /* try to use /dev/rtc to have a faster timer */
996 if (start_rtc_timer() < 0)
997 goto use_itimer;
998 /* disable itimer */
999 itv.it_interval.tv_sec = 0;
1000 itv.it_interval.tv_usec = 0;
1001 itv.it_value.tv_sec = 0;
1002 itv.it_value.tv_usec = 0;
1003 setitimer(ITIMER_REAL, &itv, NULL);
1004
1005 /* use the RTC */
1006 sigaction(SIGIO, &act, NULL);
1007 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1008 fcntl(rtc_fd, F_SETOWN, getpid());
1009 } else
1010 #endif /* defined(__linux__) */
1011 {
1012 use_itimer:
1013 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1014 PIT_FREQ) / 1000000;
1015 }
1016 }
1017 #endif
1018 }
1019
1020 void quit_timers(void)
1021 {
1022 #ifdef _WIN32
1023 timeKillEvent(timerID);
1024 timeEndPeriod(period);
1025 if (host_alarm) {
1026 CloseHandle(host_alarm);
1027 host_alarm = NULL;
1028 }
1029 #endif
1030 }
1031
1032 /***********************************************************/
1033 /* character device */
1034
1035 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1036 {
1037 return s->chr_write(s, buf, len);
1038 }
1039
1040 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1041 {
1042 if (!s->chr_ioctl)
1043 return -ENOTSUP;
1044 return s->chr_ioctl(s, cmd, arg);
1045 }
1046
1047 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1048 {
1049 char buf[4096];
1050 va_list ap;
1051 va_start(ap, fmt);
1052 vsnprintf(buf, sizeof(buf), fmt, ap);
1053 qemu_chr_write(s, buf, strlen(buf));
1054 va_end(ap);
1055 }
1056
1057 void qemu_chr_send_event(CharDriverState *s, int event)
1058 {
1059 if (s->chr_send_event)
1060 s->chr_send_event(s, event);
1061 }
1062
1063 void qemu_chr_add_read_handler(CharDriverState *s,
1064 IOCanRWHandler *fd_can_read,
1065 IOReadHandler *fd_read, void *opaque)
1066 {
1067 s->chr_add_read_handler(s, fd_can_read, fd_read, opaque);
1068 }
1069
1070 void qemu_chr_add_event_handler(CharDriverState *s, IOEventHandler *chr_event)
1071 {
1072 s->chr_event = chr_event;
1073 }
1074
1075 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1076 {
1077 return len;
1078 }
1079
1080 static void null_chr_add_read_handler(CharDriverState *chr,
1081 IOCanRWHandler *fd_can_read,
1082 IOReadHandler *fd_read, void *opaque)
1083 {
1084 }
1085
1086 CharDriverState *qemu_chr_open_null(void)
1087 {
1088 CharDriverState *chr;
1089
1090 chr = qemu_mallocz(sizeof(CharDriverState));
1091 if (!chr)
1092 return NULL;
1093 chr->chr_write = null_chr_write;
1094 chr->chr_add_read_handler = null_chr_add_read_handler;
1095 return chr;
1096 }
1097
1098 #ifdef _WIN32
1099
1100 static void socket_cleanup(void)
1101 {
1102 WSACleanup();
1103 }
1104
1105 static int socket_init(void)
1106 {
1107 WSADATA Data;
1108 int ret, err;
1109
1110 ret = WSAStartup(MAKEWORD(2,2), &Data);
1111 if (ret != 0) {
1112 err = WSAGetLastError();
1113 fprintf(stderr, "WSAStartup: %d\n", err);
1114 return -1;
1115 }
1116 atexit(socket_cleanup);
1117 return 0;
1118 }
1119
1120 static int send_all(int fd, const uint8_t *buf, int len1)
1121 {
1122 int ret, len;
1123
1124 len = len1;
1125 while (len > 0) {
1126 ret = send(fd, buf, len, 0);
1127 if (ret < 0) {
1128 int errno;
1129 errno = WSAGetLastError();
1130 if (errno != WSAEWOULDBLOCK) {
1131 return -1;
1132 }
1133 } else if (ret == 0) {
1134 break;
1135 } else {
1136 buf += ret;
1137 len -= ret;
1138 }
1139 }
1140 return len1 - len;
1141 }
1142
1143 void socket_set_nonblock(int fd)
1144 {
1145 unsigned long opt = 1;
1146 ioctlsocket(fd, FIONBIO, &opt);
1147 }
1148
1149 #else
1150
1151 static int unix_write(int fd, const uint8_t *buf, int len1)
1152 {
1153 int ret, len;
1154
1155 len = len1;
1156 while (len > 0) {
1157 ret = write(fd, buf, len);
1158 if (ret < 0) {
1159 if (errno != EINTR && errno != EAGAIN)
1160 return -1;
1161 } else if (ret == 0) {
1162 break;
1163 } else {
1164 buf += ret;
1165 len -= ret;
1166 }
1167 }
1168 return len1 - len;
1169 }
1170
1171 static inline int send_all(int fd, const uint8_t *buf, int len1)
1172 {
1173 return unix_write(fd, buf, len1);
1174 }
1175
1176 void socket_set_nonblock(int fd)
1177 {
1178 fcntl(fd, F_SETFL, O_NONBLOCK);
1179 }
1180 #endif /* !_WIN32 */
1181
1182 #ifndef _WIN32
1183
1184 typedef struct {
1185 int fd_in, fd_out;
1186 IOCanRWHandler *fd_can_read;
1187 IOReadHandler *fd_read;
1188 void *fd_opaque;
1189 int max_size;
1190 } FDCharDriver;
1191
1192 #define STDIO_MAX_CLIENTS 2
1193
1194 static int stdio_nb_clients;
1195 static CharDriverState *stdio_clients[STDIO_MAX_CLIENTS];
1196
1197 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1198 {
1199 FDCharDriver *s = chr->opaque;
1200 return unix_write(s->fd_out, buf, len);
1201 }
1202
1203 static int fd_chr_read_poll(void *opaque)
1204 {
1205 CharDriverState *chr = opaque;
1206 FDCharDriver *s = chr->opaque;
1207
1208 s->max_size = s->fd_can_read(s->fd_opaque);
1209 return s->max_size;
1210 }
1211
1212 static void fd_chr_read(void *opaque)
1213 {
1214 CharDriverState *chr = opaque;
1215 FDCharDriver *s = chr->opaque;
1216 int size, len;
1217 uint8_t buf[1024];
1218
1219 len = sizeof(buf);
1220 if (len > s->max_size)
1221 len = s->max_size;
1222 if (len == 0)
1223 return;
1224 size = read(s->fd_in, buf, len);
1225 if (size > 0) {
1226 s->fd_read(s->fd_opaque, buf, size);
1227 }
1228 }
1229
1230 static void fd_chr_add_read_handler(CharDriverState *chr,
1231 IOCanRWHandler *fd_can_read,
1232 IOReadHandler *fd_read, void *opaque)
1233 {
1234 FDCharDriver *s = chr->opaque;
1235
1236 if (s->fd_in >= 0) {
1237 s->fd_can_read = fd_can_read;
1238 s->fd_read = fd_read;
1239 s->fd_opaque = opaque;
1240 if (nographic && s->fd_in == 0) {
1241 } else {
1242 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1243 fd_chr_read, NULL, chr);
1244 }
1245 }
1246 }
1247
1248 /* open a character device to a unix fd */
1249 CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1250 {
1251 CharDriverState *chr;
1252 FDCharDriver *s;
1253
1254 chr = qemu_mallocz(sizeof(CharDriverState));
1255 if (!chr)
1256 return NULL;
1257 s = qemu_mallocz(sizeof(FDCharDriver));
1258 if (!s) {
1259 free(chr);
1260 return NULL;
1261 }
1262 s->fd_in = fd_in;
1263 s->fd_out = fd_out;
1264 chr->opaque = s;
1265 chr->chr_write = fd_chr_write;
1266 chr->chr_add_read_handler = fd_chr_add_read_handler;
1267 return chr;
1268 }
1269
1270 CharDriverState *qemu_chr_open_file_out(const char *file_out)
1271 {
1272 int fd_out;
1273
1274 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1275 if (fd_out < 0)
1276 return NULL;
1277 return qemu_chr_open_fd(-1, fd_out);
1278 }
1279
1280 CharDriverState *qemu_chr_open_pipe(const char *filename)
1281 {
1282 int fd;
1283
1284 fd = open(filename, O_RDWR | O_BINARY);
1285 if (fd < 0)
1286 return NULL;
1287 return qemu_chr_open_fd(fd, fd);
1288 }
1289
1290
1291 /* for STDIO, we handle the case where several clients use it
1292 (nographic mode) */
1293
1294 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1295
1296 #define TERM_FIFO_MAX_SIZE 1
1297
1298 static int term_got_escape, client_index;
1299 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1300 static int term_fifo_size;
1301 static int term_timestamps;
1302 static int64_t term_timestamps_start;
1303
1304 void term_print_help(void)
1305 {
1306 printf("\n"
1307 "C-a h print this help\n"
1308 "C-a x exit emulator\n"
1309 "C-a s save disk data back to file (if -snapshot)\n"
1310 "C-a b send break (magic sysrq)\n"
1311 "C-a t toggle console timestamps\n"
1312 "C-a c switch between console and monitor\n"
1313 "C-a C-a send C-a\n"
1314 );
1315 }
1316
1317 /* called when a char is received */
1318 static void stdio_received_byte(int ch)
1319 {
1320 if (term_got_escape) {
1321 term_got_escape = 0;
1322 switch(ch) {
1323 case 'h':
1324 term_print_help();
1325 break;
1326 case 'x':
1327 exit(0);
1328 break;
1329 case 's':
1330 {
1331 int i;
1332 for (i = 0; i < MAX_DISKS; i++) {
1333 if (bs_table[i])
1334 bdrv_commit(bs_table[i]);
1335 }
1336 }
1337 break;
1338 case 'b':
1339 if (client_index < stdio_nb_clients) {
1340 CharDriverState *chr;
1341 FDCharDriver *s;
1342
1343 chr = stdio_clients[client_index];
1344 s = chr->opaque;
1345 chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
1346 }
1347 break;
1348 case 'c':
1349 client_index++;
1350 if (client_index >= stdio_nb_clients)
1351 client_index = 0;
1352 if (client_index == 0) {
1353 /* send a new line in the monitor to get the prompt */
1354 ch = '\r';
1355 goto send_char;
1356 }
1357 break;
1358 case 't':
1359 term_timestamps = !term_timestamps;
1360 term_timestamps_start = -1;
1361 break;
1362 case TERM_ESCAPE:
1363 goto send_char;
1364 }
1365 } else if (ch == TERM_ESCAPE) {
1366 term_got_escape = 1;
1367 } else {
1368 send_char:
1369 if (client_index < stdio_nb_clients) {
1370 uint8_t buf[1];
1371 CharDriverState *chr;
1372 FDCharDriver *s;
1373
1374 chr = stdio_clients[client_index];
1375 s = chr->opaque;
1376 if (s->fd_can_read(s->fd_opaque) > 0) {
1377 buf[0] = ch;
1378 s->fd_read(s->fd_opaque, buf, 1);
1379 } else if (term_fifo_size == 0) {
1380 term_fifo[term_fifo_size++] = ch;
1381 }
1382 }
1383 }
1384 }
1385
1386 static int stdio_read_poll(void *opaque)
1387 {
1388 CharDriverState *chr;
1389 FDCharDriver *s;
1390
1391 if (client_index < stdio_nb_clients) {
1392 chr = stdio_clients[client_index];
1393 s = chr->opaque;
1394 /* try to flush the queue if needed */
1395 if (term_fifo_size != 0 && s->fd_can_read(s->fd_opaque) > 0) {
1396 s->fd_read(s->fd_opaque, term_fifo, 1);
1397 term_fifo_size = 0;
1398 }
1399 /* see if we can absorb more chars */
1400 if (term_fifo_size == 0)
1401 return 1;
1402 else
1403 return 0;
1404 } else {
1405 return 1;
1406 }
1407 }
1408
1409 static void stdio_read(void *opaque)
1410 {
1411 int size;
1412 uint8_t buf[1];
1413
1414 size = read(0, buf, 1);
1415 if (size > 0)
1416 stdio_received_byte(buf[0]);
1417 }
1418
1419 static int stdio_write(CharDriverState *chr, const uint8_t *buf, int len)
1420 {
1421 FDCharDriver *s = chr->opaque;
1422 if (!term_timestamps) {
1423 return unix_write(s->fd_out, buf, len);
1424 } else {
1425 int i;
1426 char buf1[64];
1427
1428 for(i = 0; i < len; i++) {
1429 unix_write(s->fd_out, buf + i, 1);
1430 if (buf[i] == '\n') {
1431 int64_t ti;
1432 int secs;
1433
1434 ti = get_clock();
1435 if (term_timestamps_start == -1)
1436 term_timestamps_start = ti;
1437 ti -= term_timestamps_start;
1438 secs = ti / 1000000000;
1439 snprintf(buf1, sizeof(buf1),
1440 "[%02d:%02d:%02d.%03d] ",
1441 secs / 3600,
1442 (secs / 60) % 60,
1443 secs % 60,
1444 (int)((ti / 1000000) % 1000));
1445 unix_write(s->fd_out, buf1, strlen(buf1));
1446 }
1447 }
1448 return len;
1449 }
1450 }
1451
1452 /* init terminal so that we can grab keys */
1453 static struct termios oldtty;
1454 static int old_fd0_flags;
1455
1456 static void term_exit(void)
1457 {
1458 tcsetattr (0, TCSANOW, &oldtty);
1459 fcntl(0, F_SETFL, old_fd0_flags);
1460 }
1461
1462 static void term_init(void)
1463 {
1464 struct termios tty;
1465
1466 tcgetattr (0, &tty);
1467 oldtty = tty;
1468 old_fd0_flags = fcntl(0, F_GETFL);
1469
1470 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1471 |INLCR|IGNCR|ICRNL|IXON);
1472 tty.c_oflag |= OPOST;
1473 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1474 /* if graphical mode, we allow Ctrl-C handling */
1475 if (nographic)
1476 tty.c_lflag &= ~ISIG;
1477 tty.c_cflag &= ~(CSIZE|PARENB);
1478 tty.c_cflag |= CS8;
1479 tty.c_cc[VMIN] = 1;
1480 tty.c_cc[VTIME] = 0;
1481
1482 tcsetattr (0, TCSANOW, &tty);
1483
1484 atexit(term_exit);
1485
1486 fcntl(0, F_SETFL, O_NONBLOCK);
1487 }
1488
1489 CharDriverState *qemu_chr_open_stdio(void)
1490 {
1491 CharDriverState *chr;
1492
1493 if (nographic) {
1494 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1495 return NULL;
1496 chr = qemu_chr_open_fd(0, 1);
1497 chr->chr_write = stdio_write;
1498 if (stdio_nb_clients == 0)
1499 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, NULL);
1500 client_index = stdio_nb_clients;
1501 } else {
1502 if (stdio_nb_clients != 0)
1503 return NULL;
1504 chr = qemu_chr_open_fd(0, 1);
1505 }
1506 stdio_clients[stdio_nb_clients++] = chr;
1507 if (stdio_nb_clients == 1) {
1508 /* set the terminal in raw mode */
1509 term_init();
1510 }
1511 return chr;
1512 }
1513
1514 #if defined(__linux__)
1515 CharDriverState *qemu_chr_open_pty(void)
1516 {
1517 struct termios tty;
1518 char slave_name[1024];
1519 int master_fd, slave_fd;
1520
1521 /* Not satisfying */
1522 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1523 return NULL;
1524 }
1525
1526 /* Disabling local echo and line-buffered output */
1527 tcgetattr (master_fd, &tty);
1528 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1529 tty.c_cc[VMIN] = 1;
1530 tty.c_cc[VTIME] = 0;
1531 tcsetattr (master_fd, TCSAFLUSH, &tty);
1532
1533 fprintf(stderr, "char device redirected to %s\n", slave_name);
1534 return qemu_chr_open_fd(master_fd, master_fd);
1535 }
1536
1537 static void tty_serial_init(int fd, int speed,
1538 int parity, int data_bits, int stop_bits)
1539 {
1540 struct termios tty;
1541 speed_t spd;
1542
1543 #if 0
1544 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1545 speed, parity, data_bits, stop_bits);
1546 #endif
1547 tcgetattr (fd, &tty);
1548
1549 switch(speed) {
1550 case 50:
1551 spd = B50;
1552 break;
1553 case 75:
1554 spd = B75;
1555 break;
1556 case 300:
1557 spd = B300;
1558 break;
1559 case 600:
1560 spd = B600;
1561 break;
1562 case 1200:
1563 spd = B1200;
1564 break;
1565 case 2400:
1566 spd = B2400;
1567 break;
1568 case 4800:
1569 spd = B4800;
1570 break;
1571 case 9600:
1572 spd = B9600;
1573 break;
1574 case 19200:
1575 spd = B19200;
1576 break;
1577 case 38400:
1578 spd = B38400;
1579 break;
1580 case 57600:
1581 spd = B57600;
1582 break;
1583 default:
1584 case 115200:
1585 spd = B115200;
1586 break;
1587 }
1588
1589 cfsetispeed(&tty, spd);
1590 cfsetospeed(&tty, spd);
1591
1592 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1593 |INLCR|IGNCR|ICRNL|IXON);
1594 tty.c_oflag |= OPOST;
1595 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1596 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS);
1597 switch(data_bits) {
1598 default:
1599 case 8:
1600 tty.c_cflag |= CS8;
1601 break;
1602 case 7:
1603 tty.c_cflag |= CS7;
1604 break;
1605 case 6:
1606 tty.c_cflag |= CS6;
1607 break;
1608 case 5:
1609 tty.c_cflag |= CS5;
1610 break;
1611 }
1612 switch(parity) {
1613 default:
1614 case 'N':
1615 break;
1616 case 'E':
1617 tty.c_cflag |= PARENB;
1618 break;
1619 case 'O':
1620 tty.c_cflag |= PARENB | PARODD;
1621 break;
1622 }
1623
1624 tcsetattr (fd, TCSANOW, &tty);
1625 }
1626
1627 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1628 {
1629 FDCharDriver *s = chr->opaque;
1630
1631 switch(cmd) {
1632 case CHR_IOCTL_SERIAL_SET_PARAMS:
1633 {
1634 QEMUSerialSetParams *ssp = arg;
1635 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1636 ssp->data_bits, ssp->stop_bits);
1637 }
1638 break;
1639 case CHR_IOCTL_SERIAL_SET_BREAK:
1640 {
1641 int enable = *(int *)arg;
1642 if (enable)
1643 tcsendbreak(s->fd_in, 1);
1644 }
1645 break;
1646 default:
1647 return -ENOTSUP;
1648 }
1649 return 0;
1650 }
1651
1652 CharDriverState *qemu_chr_open_tty(const char *filename)
1653 {
1654 CharDriverState *chr;
1655 int fd;
1656
1657 fd = open(filename, O_RDWR | O_NONBLOCK);
1658 if (fd < 0)
1659 return NULL;
1660 fcntl(fd, F_SETFL, O_NONBLOCK);
1661 tty_serial_init(fd, 115200, 'N', 8, 1);
1662 chr = qemu_chr_open_fd(fd, fd);
1663 if (!chr)
1664 return NULL;
1665 chr->chr_ioctl = tty_serial_ioctl;
1666 return chr;
1667 }
1668
1669 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1670 {
1671 int fd = (int)chr->opaque;
1672 uint8_t b;
1673
1674 switch(cmd) {
1675 case CHR_IOCTL_PP_READ_DATA:
1676 if (ioctl(fd, PPRDATA, &b) < 0)
1677 return -ENOTSUP;
1678 *(uint8_t *)arg = b;
1679 break;
1680 case CHR_IOCTL_PP_WRITE_DATA:
1681 b = *(uint8_t *)arg;
1682 if (ioctl(fd, PPWDATA, &b) < 0)
1683 return -ENOTSUP;
1684 break;
1685 case CHR_IOCTL_PP_READ_CONTROL:
1686 if (ioctl(fd, PPRCONTROL, &b) < 0)
1687 return -ENOTSUP;
1688 *(uint8_t *)arg = b;
1689 break;
1690 case CHR_IOCTL_PP_WRITE_CONTROL:
1691 b = *(uint8_t *)arg;
1692 if (ioctl(fd, PPWCONTROL, &b) < 0)
1693 return -ENOTSUP;
1694 break;
1695 case CHR_IOCTL_PP_READ_STATUS:
1696 if (ioctl(fd, PPRSTATUS, &b) < 0)
1697 return -ENOTSUP;
1698 *(uint8_t *)arg = b;
1699 break;
1700 default:
1701 return -ENOTSUP;
1702 }
1703 return 0;
1704 }
1705
1706 CharDriverState *qemu_chr_open_pp(const char *filename)
1707 {
1708 CharDriverState *chr;
1709 int fd;
1710
1711 fd = open(filename, O_RDWR);
1712 if (fd < 0)
1713 return NULL;
1714
1715 if (ioctl(fd, PPCLAIM) < 0) {
1716 close(fd);
1717 return NULL;
1718 }
1719
1720 chr = qemu_mallocz(sizeof(CharDriverState));
1721 if (!chr) {
1722 close(fd);
1723 return NULL;
1724 }
1725 chr->opaque = (void *)fd;
1726 chr->chr_write = null_chr_write;
1727 chr->chr_add_read_handler = null_chr_add_read_handler;
1728 chr->chr_ioctl = pp_ioctl;
1729 return chr;
1730 }
1731
1732 #else
1733 CharDriverState *qemu_chr_open_pty(void)
1734 {
1735 return NULL;
1736 }
1737 #endif
1738
1739 #endif /* !defined(_WIN32) */
1740
1741 #ifdef _WIN32
1742 typedef struct {
1743 IOCanRWHandler *fd_can_read;
1744 IOReadHandler *fd_read;
1745 void *win_opaque;
1746 int max_size;
1747 HANDLE hcom, hrecv, hsend;
1748 OVERLAPPED orecv, osend;
1749 BOOL fpipe;
1750 DWORD len;
1751 } WinCharState;
1752
1753 #define NSENDBUF 2048
1754 #define NRECVBUF 2048
1755 #define MAXCONNECT 1
1756 #define NTIMEOUT 5000
1757
1758 static int win_chr_poll(void *opaque);
1759 static int win_chr_pipe_poll(void *opaque);
1760
1761 static void win_chr_close2(WinCharState *s)
1762 {
1763 if (s->hsend) {
1764 CloseHandle(s->hsend);
1765 s->hsend = NULL;
1766 }
1767 if (s->hrecv) {
1768 CloseHandle(s->hrecv);
1769 s->hrecv = NULL;
1770 }
1771 if (s->hcom) {
1772 CloseHandle(s->hcom);
1773 s->hcom = NULL;
1774 }
1775 if (s->fpipe)
1776 qemu_del_polling_cb(win_chr_pipe_poll, s);
1777 else
1778 qemu_del_polling_cb(win_chr_poll, s);
1779 }
1780
1781 static void win_chr_close(CharDriverState *chr)
1782 {
1783 WinCharState *s = chr->opaque;
1784 win_chr_close2(s);
1785 }
1786
1787 static int win_chr_init(WinCharState *s, const char *filename)
1788 {
1789 COMMCONFIG comcfg;
1790 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
1791 COMSTAT comstat;
1792 DWORD size;
1793 DWORD err;
1794
1795 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
1796 if (!s->hsend) {
1797 fprintf(stderr, "Failed CreateEvent\n");
1798 goto fail;
1799 }
1800 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
1801 if (!s->hrecv) {
1802 fprintf(stderr, "Failed CreateEvent\n");
1803 goto fail;
1804 }
1805
1806 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
1807 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
1808 if (s->hcom == INVALID_HANDLE_VALUE) {
1809 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
1810 s->hcom = NULL;
1811 goto fail;
1812 }
1813
1814 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
1815 fprintf(stderr, "Failed SetupComm\n");
1816 goto fail;
1817 }
1818
1819 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
1820 size = sizeof(COMMCONFIG);
1821 GetDefaultCommConfig(filename, &comcfg, &size);
1822 comcfg.dcb.DCBlength = sizeof(DCB);
1823 CommConfigDialog(filename, NULL, &comcfg);
1824
1825 if (!SetCommState(s->hcom, &comcfg.dcb)) {
1826 fprintf(stderr, "Failed SetCommState\n");
1827 goto fail;
1828 }
1829
1830 if (!SetCommMask(s->hcom, EV_ERR)) {
1831 fprintf(stderr, "Failed SetCommMask\n");
1832 goto fail;
1833 }
1834
1835 cto.ReadIntervalTimeout = MAXDWORD;
1836 if (!SetCommTimeouts(s->hcom, &cto)) {
1837 fprintf(stderr, "Failed SetCommTimeouts\n");
1838 goto fail;
1839 }
1840
1841 if (!ClearCommError(s->hcom, &err, &comstat)) {
1842 fprintf(stderr, "Failed ClearCommError\n");
1843 goto fail;
1844 }
1845 qemu_add_polling_cb(win_chr_poll, s);
1846 return 0;
1847
1848 fail:
1849 win_chr_close2(s);
1850 return -1;
1851 }
1852
1853 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
1854 {
1855 WinCharState *s = chr->opaque;
1856 DWORD len, ret, size, err;
1857
1858 len = len1;
1859 ZeroMemory(&s->osend, sizeof(s->osend));
1860 s->osend.hEvent = s->hsend;
1861 while (len > 0) {
1862 if (s->hsend)
1863 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
1864 else
1865 ret = WriteFile(s->hcom, buf, len, &size, NULL);
1866 if (!ret) {
1867 err = GetLastError();
1868 if (err == ERROR_IO_PENDING) {
1869 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
1870 if (ret) {
1871 buf += size;
1872 len -= size;
1873 } else {
1874 break;
1875 }
1876 } else {
1877 break;
1878 }
1879 } else {
1880 buf += size;
1881 len -= size;
1882 }
1883 }
1884 return len1 - len;
1885 }
1886
1887 static int win_chr_read_poll(WinCharState *s)
1888 {
1889 s->max_size = s->fd_can_read(s->win_opaque);
1890 return s->max_size;
1891 }
1892
1893 static void win_chr_readfile(WinCharState *s)
1894 {
1895 int ret, err;
1896 uint8_t buf[1024];
1897 DWORD size;
1898
1899 ZeroMemory(&s->orecv, sizeof(s->orecv));
1900 s->orecv.hEvent = s->hrecv;
1901 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
1902 if (!ret) {
1903 err = GetLastError();
1904 if (err == ERROR_IO_PENDING) {
1905 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
1906 }
1907 }
1908
1909 if (size > 0) {
1910 s->fd_read(s->win_opaque, buf, size);
1911 }
1912 }
1913
1914 static void win_chr_read(WinCharState *s)
1915 {
1916 if (s->len > s->max_size)
1917 s->len = s->max_size;
1918 if (s->len == 0)
1919 return;
1920
1921 win_chr_readfile(s);
1922 }
1923
1924 static int win_chr_poll(void *opaque)
1925 {
1926 WinCharState *s = opaque;
1927 COMSTAT status;
1928 DWORD comerr;
1929
1930 ClearCommError(s->hcom, &comerr, &status);
1931 if (status.cbInQue > 0) {
1932 s->len = status.cbInQue;
1933 win_chr_read_poll(s);
1934 win_chr_read(s);
1935 return 1;
1936 }
1937 return 0;
1938 }
1939
1940 static void win_chr_add_read_handler(CharDriverState *chr,
1941 IOCanRWHandler *fd_can_read,
1942 IOReadHandler *fd_read, void *opaque)
1943 {
1944 WinCharState *s = chr->opaque;
1945
1946 s->fd_can_read = fd_can_read;
1947 s->fd_read = fd_read;
1948 s->win_opaque = opaque;
1949 }
1950
1951 CharDriverState *qemu_chr_open_win(const char *filename)
1952 {
1953 CharDriverState *chr;
1954 WinCharState *s;
1955
1956 chr = qemu_mallocz(sizeof(CharDriverState));
1957 if (!chr)
1958 return NULL;
1959 s = qemu_mallocz(sizeof(WinCharState));
1960 if (!s) {
1961 free(chr);
1962 return NULL;
1963 }
1964 chr->opaque = s;
1965 chr->chr_write = win_chr_write;
1966 chr->chr_add_read_handler = win_chr_add_read_handler;
1967 chr->chr_close = win_chr_close;
1968
1969 if (win_chr_init(s, filename) < 0) {
1970 free(s);
1971 free(chr);
1972 return NULL;
1973 }
1974 return chr;
1975 }
1976
1977 static int win_chr_pipe_poll(void *opaque)
1978 {
1979 WinCharState *s = opaque;
1980 DWORD size;
1981
1982 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
1983 if (size > 0) {
1984 s->len = size;
1985 win_chr_read_poll(s);
1986 win_chr_read(s);
1987 return 1;
1988 }
1989 return 0;
1990 }
1991
1992 static int win_chr_pipe_init(WinCharState *s, const char *filename)
1993 {
1994 OVERLAPPED ov;
1995 int ret;
1996 DWORD size;
1997 char openname[256];
1998
1999 s->fpipe = TRUE;
2000
2001 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2002 if (!s->hsend) {
2003 fprintf(stderr, "Failed CreateEvent\n");
2004 goto fail;
2005 }
2006 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2007 if (!s->hrecv) {
2008 fprintf(stderr, "Failed CreateEvent\n");
2009 goto fail;
2010 }
2011
2012 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2013 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2014 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2015 PIPE_WAIT,
2016 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2017 if (s->hcom == INVALID_HANDLE_VALUE) {
2018 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2019 s->hcom = NULL;
2020 goto fail;
2021 }
2022
2023 ZeroMemory(&ov, sizeof(ov));
2024 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2025 ret = ConnectNamedPipe(s->hcom, &ov);
2026 if (ret) {
2027 fprintf(stderr, "Failed ConnectNamedPipe\n");
2028 goto fail;
2029 }
2030
2031 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2032 if (!ret) {
2033 fprintf(stderr, "Failed GetOverlappedResult\n");
2034 if (ov.hEvent) {
2035 CloseHandle(ov.hEvent);
2036 ov.hEvent = NULL;
2037 }
2038 goto fail;
2039 }
2040
2041 if (ov.hEvent) {
2042 CloseHandle(ov.hEvent);
2043 ov.hEvent = NULL;
2044 }
2045 qemu_add_polling_cb(win_chr_pipe_poll, s);
2046 return 0;
2047
2048 fail:
2049 win_chr_close2(s);
2050 return -1;
2051 }
2052
2053
2054 CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2055 {
2056 CharDriverState *chr;
2057 WinCharState *s;
2058
2059 chr = qemu_mallocz(sizeof(CharDriverState));
2060 if (!chr)
2061 return NULL;
2062 s = qemu_mallocz(sizeof(WinCharState));
2063 if (!s) {
2064 free(chr);
2065 return NULL;
2066 }
2067 chr->opaque = s;
2068 chr->chr_write = win_chr_write;
2069 chr->chr_add_read_handler = win_chr_add_read_handler;
2070 chr->chr_close = win_chr_close;
2071
2072 if (win_chr_pipe_init(s, filename) < 0) {
2073 free(s);
2074 free(chr);
2075 return NULL;
2076 }
2077 return chr;
2078 }
2079
2080 CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2081 {
2082 CharDriverState *chr;
2083 WinCharState *s;
2084
2085 chr = qemu_mallocz(sizeof(CharDriverState));
2086 if (!chr)
2087 return NULL;
2088 s = qemu_mallocz(sizeof(WinCharState));
2089 if (!s) {
2090 free(chr);
2091 return NULL;
2092 }
2093 s->hcom = fd_out;
2094 chr->opaque = s;
2095 chr->chr_write = win_chr_write;
2096 chr->chr_add_read_handler = win_chr_add_read_handler;
2097 return chr;
2098 }
2099
2100 CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2101 {
2102 HANDLE fd_out;
2103
2104 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2105 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2106 if (fd_out == INVALID_HANDLE_VALUE)
2107 return NULL;
2108
2109 return qemu_chr_open_win_file(fd_out);
2110 }
2111 #endif
2112
2113 /***********************************************************/
2114 /* UDP Net console */
2115
2116 typedef struct {
2117 IOCanRWHandler *fd_can_read;
2118 IOReadHandler *fd_read;
2119 void *fd_opaque;
2120 int fd;
2121 struct sockaddr_in daddr;
2122 char buf[1024];
2123 int bufcnt;
2124 int bufptr;
2125 int max_size;
2126 } NetCharDriver;
2127
2128 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2129 {
2130 NetCharDriver *s = chr->opaque;
2131
2132 return sendto(s->fd, buf, len, 0,
2133 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2134 }
2135
2136 static int udp_chr_read_poll(void *opaque)
2137 {
2138 CharDriverState *chr = opaque;
2139 NetCharDriver *s = chr->opaque;
2140
2141 s->max_size = s->fd_can_read(s->fd_opaque);
2142
2143 /* If there were any stray characters in the queue process them
2144 * first
2145 */
2146 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2147 s->fd_read(s->fd_opaque, &s->buf[s->bufptr], 1);
2148 s->bufptr++;
2149 s->max_size = s->fd_can_read(s->fd_opaque);
2150 }
2151 return s->max_size;
2152 }
2153
2154 static void udp_chr_read(void *opaque)
2155 {
2156 CharDriverState *chr = opaque;
2157 NetCharDriver *s = chr->opaque;
2158
2159 if (s->max_size == 0)
2160 return;
2161 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2162 s->bufptr = s->bufcnt;
2163 if (s->bufcnt <= 0)
2164 return;
2165
2166 s->bufptr = 0;
2167 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2168 s->fd_read(s->fd_opaque, &s->buf[s->bufptr], 1);
2169 s->bufptr++;
2170 s->max_size = s->fd_can_read(s->fd_opaque);
2171 }
2172 }
2173
2174 static void udp_chr_add_read_handler(CharDriverState *chr,
2175 IOCanRWHandler *fd_can_read,
2176 IOReadHandler *fd_read, void *opaque)
2177 {
2178 NetCharDriver *s = chr->opaque;
2179
2180 if (s->fd >= 0) {
2181 s->fd_can_read = fd_can_read;
2182 s->fd_read = fd_read;
2183 s->fd_opaque = opaque;
2184 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2185 udp_chr_read, NULL, chr);
2186 }
2187 }
2188
2189 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2190 int parse_host_src_port(struct sockaddr_in *haddr,
2191 struct sockaddr_in *saddr,
2192 const char *str);
2193
2194 CharDriverState *qemu_chr_open_udp(const char *def)
2195 {
2196 CharDriverState *chr = NULL;
2197 NetCharDriver *s = NULL;
2198 int fd = -1;
2199 struct sockaddr_in saddr;
2200
2201 chr = qemu_mallocz(sizeof(CharDriverState));
2202 if (!chr)
2203 goto return_err;
2204 s = qemu_mallocz(sizeof(NetCharDriver));
2205 if (!s)
2206 goto return_err;
2207
2208 fd = socket(PF_INET, SOCK_DGRAM, 0);
2209 if (fd < 0) {
2210 perror("socket(PF_INET, SOCK_DGRAM)");
2211 goto return_err;
2212 }
2213
2214 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2215 printf("Could not parse: %s\n", def);
2216 goto return_err;
2217 }
2218
2219 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2220 {
2221 perror("bind");
2222 goto return_err;
2223 }
2224
2225 s->fd = fd;
2226 s->bufcnt = 0;
2227 s->bufptr = 0;
2228 chr->opaque = s;
2229 chr->chr_write = udp_chr_write;
2230 chr->chr_add_read_handler = udp_chr_add_read_handler;
2231 return chr;
2232
2233 return_err:
2234 if (chr)
2235 free(chr);
2236 if (s)
2237 free(s);
2238 if (fd >= 0)
2239 closesocket(fd);
2240 return NULL;
2241 }
2242
2243 /***********************************************************/
2244 /* TCP Net console */
2245
2246 typedef struct {
2247 IOCanRWHandler *fd_can_read;
2248 IOReadHandler *fd_read;
2249 void *fd_opaque;
2250 int fd, listen_fd;
2251 int connected;
2252 int max_size;
2253 int do_telnetopt;
2254 } TCPCharDriver;
2255
2256 static void tcp_chr_accept(void *opaque);
2257
2258 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2259 {
2260 TCPCharDriver *s = chr->opaque;
2261 if (s->connected) {
2262 return send_all(s->fd, buf, len);
2263 } else {
2264 /* XXX: indicate an error ? */
2265 return len;
2266 }
2267 }
2268
2269 static int tcp_chr_read_poll(void *opaque)
2270 {
2271 CharDriverState *chr = opaque;
2272 TCPCharDriver *s = chr->opaque;
2273 if (!s->connected)
2274 return 0;
2275 s->max_size = s->fd_can_read(s->fd_opaque);
2276 return s->max_size;
2277 }
2278
2279 #define IAC 255
2280 #define IAC_BREAK 243
2281 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2282 TCPCharDriver *s,
2283 char *buf, int *size)
2284 {
2285 /* Handle any telnet client's basic IAC options to satisfy char by
2286 * char mode with no echo. All IAC options will be removed from
2287 * the buf and the do_telnetopt variable will be used to track the
2288 * state of the width of the IAC information.
2289 *
2290 * IAC commands come in sets of 3 bytes with the exception of the
2291 * "IAC BREAK" command and the double IAC.
2292 */
2293
2294 int i;
2295 int j = 0;
2296
2297 for (i = 0; i < *size; i++) {
2298 if (s->do_telnetopt > 1) {
2299 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2300 /* Double IAC means send an IAC */
2301 if (j != i)
2302 buf[j] = buf[i];
2303 j++;
2304 s->do_telnetopt = 1;
2305 } else {
2306 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2307 /* Handle IAC break commands by sending a serial break */
2308 chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
2309 s->do_telnetopt++;
2310 }
2311 s->do_telnetopt++;
2312 }
2313 if (s->do_telnetopt >= 4) {
2314 s->do_telnetopt = 1;
2315 }
2316 } else {
2317 if ((unsigned char)buf[i] == IAC) {
2318 s->do_telnetopt = 2;
2319 } else {
2320 if (j != i)
2321 buf[j] = buf[i];
2322 j++;
2323 }
2324 }
2325 }
2326 *size = j;
2327 }
2328
2329 static void tcp_chr_read(void *opaque)
2330 {
2331 CharDriverState *chr = opaque;
2332 TCPCharDriver *s = chr->opaque;
2333 uint8_t buf[1024];
2334 int len, size;
2335
2336 if (!s->connected || s->max_size <= 0)
2337 return;
2338 len = sizeof(buf);
2339 if (len > s->max_size)
2340 len = s->max_size;
2341 size = recv(s->fd, buf, len, 0);
2342 if (size == 0) {
2343 /* connection closed */
2344 s->connected = 0;
2345 if (s->listen_fd >= 0) {
2346 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2347 }
2348 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2349 closesocket(s->fd);
2350 s->fd = -1;
2351 } else if (size > 0) {
2352 if (s->do_telnetopt)
2353 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2354 if (size > 0)
2355 s->fd_read(s->fd_opaque, buf, size);
2356 }
2357 }
2358
2359 static void tcp_chr_add_read_handler(CharDriverState *chr,
2360 IOCanRWHandler *fd_can_read,
2361 IOReadHandler *fd_read, void *opaque)
2362 {
2363 TCPCharDriver *s = chr->opaque;
2364
2365 s->fd_can_read = fd_can_read;
2366 s->fd_read = fd_read;
2367 s->fd_opaque = opaque;
2368 }
2369
2370 static void tcp_chr_connect(void *opaque)
2371 {
2372 CharDriverState *chr = opaque;
2373 TCPCharDriver *s = chr->opaque;
2374
2375 s->connected = 1;
2376 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2377 tcp_chr_read, NULL, chr);
2378 }
2379
2380 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2381 static void tcp_chr_telnet_init(int fd)
2382 {
2383 char buf[3];
2384 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2385 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2386 send(fd, (char *)buf, 3, 0);
2387 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2388 send(fd, (char *)buf, 3, 0);
2389 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2390 send(fd, (char *)buf, 3, 0);
2391 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2392 send(fd, (char *)buf, 3, 0);
2393 }
2394
2395 static void tcp_chr_accept(void *opaque)
2396 {
2397 CharDriverState *chr = opaque;
2398 TCPCharDriver *s = chr->opaque;
2399 struct sockaddr_in saddr;
2400 socklen_t len;
2401 int fd;
2402
2403 for(;;) {
2404 len = sizeof(saddr);
2405 fd = accept(s->listen_fd, (struct sockaddr *)&saddr, &len);
2406 if (fd < 0 && errno != EINTR) {
2407 return;
2408 } else if (fd >= 0) {
2409 if (s->do_telnetopt)
2410 tcp_chr_telnet_init(fd);
2411 break;
2412 }
2413 }
2414 socket_set_nonblock(fd);
2415 s->fd = fd;
2416 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2417 tcp_chr_connect(chr);
2418 }
2419
2420 static void tcp_chr_close(CharDriverState *chr)
2421 {
2422 TCPCharDriver *s = chr->opaque;
2423 if (s->fd >= 0)
2424 closesocket(s->fd);
2425 if (s->listen_fd >= 0)
2426 closesocket(s->listen_fd);
2427 qemu_free(s);
2428 }
2429
2430 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2431 int is_telnet)
2432 {
2433 CharDriverState *chr = NULL;
2434 TCPCharDriver *s = NULL;
2435 int fd = -1, ret, err, val;
2436 int is_listen = 0;
2437 int is_waitconnect = 1;
2438 const char *ptr;
2439 struct sockaddr_in saddr;
2440
2441 if (parse_host_port(&saddr, host_str) < 0)
2442 goto fail;
2443
2444 ptr = host_str;
2445 while((ptr = strchr(ptr,','))) {
2446 ptr++;
2447 if (!strncmp(ptr,"server",6)) {
2448 is_listen = 1;
2449 } else if (!strncmp(ptr,"nowait",6)) {
2450 is_waitconnect = 0;
2451 } else {
2452 printf("Unknown option: %s\n", ptr);
2453 goto fail;
2454 }
2455 }
2456 if (!is_listen)
2457 is_waitconnect = 0;
2458
2459 chr = qemu_mallocz(sizeof(CharDriverState));
2460 if (!chr)
2461 goto fail;
2462 s = qemu_mallocz(sizeof(TCPCharDriver));
2463 if (!s)
2464 goto fail;
2465
2466 fd = socket(PF_INET, SOCK_STREAM, 0);
2467 if (fd < 0)
2468 goto fail;
2469
2470 if (!is_waitconnect)
2471 socket_set_nonblock(fd);
2472
2473 s->connected = 0;
2474 s->fd = -1;
2475 s->listen_fd = -1;
2476 if (is_listen) {
2477 /* allow fast reuse */
2478 val = 1;
2479 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2480
2481 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2482 if (ret < 0)
2483 goto fail;
2484 ret = listen(fd, 0);
2485 if (ret < 0)
2486 goto fail;
2487 s->listen_fd = fd;
2488 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2489 if (is_telnet)
2490 s->do_telnetopt = 1;
2491 } else {
2492 for(;;) {
2493 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2494 if (ret < 0) {
2495 err = socket_error();
2496 if (err == EINTR || err == EWOULDBLOCK) {
2497 } else if (err == EINPROGRESS) {
2498 break;
2499 } else {
2500 goto fail;
2501 }
2502 } else {
2503 s->connected = 1;
2504 break;
2505 }
2506 }
2507 s->fd = fd;
2508 if (s->connected)
2509 tcp_chr_connect(chr);
2510 else
2511 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2512 }
2513
2514 chr->opaque = s;
2515 chr->chr_write = tcp_chr_write;
2516 chr->chr_add_read_handler = tcp_chr_add_read_handler;
2517 chr->chr_close = tcp_chr_close;
2518 if (is_listen && is_waitconnect) {
2519 printf("QEMU waiting for connection on: %s\n", host_str);
2520 tcp_chr_accept(chr);
2521 socket_set_nonblock(s->listen_fd);
2522 }
2523
2524 return chr;
2525 fail:
2526 if (fd >= 0)
2527 closesocket(fd);
2528 qemu_free(s);
2529 qemu_free(chr);
2530 return NULL;
2531 }
2532
2533 CharDriverState *qemu_chr_open(const char *filename)
2534 {
2535 const char *p;
2536
2537 if (!strcmp(filename, "vc")) {
2538 return text_console_init(&display_state);
2539 } else if (!strcmp(filename, "null")) {
2540 return qemu_chr_open_null();
2541 } else
2542 if (strstart(filename, "tcp:", &p)) {
2543 return qemu_chr_open_tcp(p, 0);
2544 } else
2545 if (strstart(filename, "telnet:", &p)) {
2546 return qemu_chr_open_tcp(p, 1);
2547 } else
2548 if (strstart(filename, "udp:", &p)) {
2549 return qemu_chr_open_udp(p);
2550 } else
2551 #ifndef _WIN32
2552 if (strstart(filename, "file:", &p)) {
2553 return qemu_chr_open_file_out(p);
2554 } else if (strstart(filename, "pipe:", &p)) {
2555 return qemu_chr_open_pipe(p);
2556 } else if (!strcmp(filename, "pty")) {
2557 return qemu_chr_open_pty();
2558 } else if (!strcmp(filename, "stdio")) {
2559 return qemu_chr_open_stdio();
2560 } else
2561 #endif
2562 #if defined(__linux__)
2563 if (strstart(filename, "/dev/parport", NULL)) {
2564 return qemu_chr_open_pp(filename);
2565 } else
2566 if (strstart(filename, "/dev/", NULL)) {
2567 return qemu_chr_open_tty(filename);
2568 } else
2569 #endif
2570 #ifdef _WIN32
2571 if (strstart(filename, "COM", NULL)) {
2572 return qemu_chr_open_win(filename);
2573 } else
2574 if (strstart(filename, "pipe:", &p)) {
2575 return qemu_chr_open_win_pipe(p);
2576 } else
2577 if (strstart(filename, "file:", &p)) {
2578 return qemu_chr_open_win_file_out(p);
2579 }
2580 #endif
2581 {
2582 return NULL;
2583 }
2584 }
2585
2586 void qemu_chr_close(CharDriverState *chr)
2587 {
2588 if (chr->chr_close)
2589 chr->chr_close(chr);
2590 }
2591
2592 /***********************************************************/
2593 /* network device redirectors */
2594
2595 void hex_dump(FILE *f, const uint8_t *buf, int size)
2596 {
2597 int len, i, j, c;
2598
2599 for(i=0;i<size;i+=16) {
2600 len = size - i;
2601 if (len > 16)
2602 len = 16;
2603 fprintf(f, "%08x ", i);
2604 for(j=0;j<16;j++) {
2605 if (j < len)
2606 fprintf(f, " %02x", buf[i+j]);
2607 else
2608 fprintf(f, " ");
2609 }
2610 fprintf(f, " ");
2611 for(j=0;j<len;j++) {
2612 c = buf[i+j];
2613 if (c < ' ' || c > '~')
2614 c = '.';
2615 fprintf(f, "%c", c);
2616 }
2617 fprintf(f, "\n");
2618 }
2619 }
2620
2621 static int parse_macaddr(uint8_t *macaddr, const char *p)
2622 {
2623 int i;
2624 for(i = 0; i < 6; i++) {
2625 macaddr[i] = strtol(p, (char **)&p, 16);
2626 if (i == 5) {
2627 if (*p != '\0')
2628 return -1;
2629 } else {
2630 if (*p != ':')
2631 return -1;
2632 p++;
2633 }
2634 }
2635 return 0;
2636 }
2637
2638 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
2639 {
2640 const char *p, *p1;
2641 int len;
2642 p = *pp;
2643 p1 = strchr(p, sep);
2644 if (!p1)
2645 return -1;
2646 len = p1 - p;
2647 p1++;
2648 if (buf_size > 0) {
2649 if (len > buf_size - 1)
2650 len = buf_size - 1;
2651 memcpy(buf, p, len);
2652 buf[len] = '\0';
2653 }
2654 *pp = p1;
2655 return 0;
2656 }
2657
2658 int parse_host_src_port(struct sockaddr_in *haddr,
2659 struct sockaddr_in *saddr,
2660 const char *input_str)
2661 {
2662 char *str = strdup(input_str);
2663 char *host_str = str;
2664 char *src_str;
2665 char *ptr;
2666
2667 /*
2668 * Chop off any extra arguments at the end of the string which
2669 * would start with a comma, then fill in the src port information
2670 * if it was provided else use the "any address" and "any port".
2671 */
2672 if ((ptr = strchr(str,',')))
2673 *ptr = '\0';
2674
2675 if ((src_str = strchr(input_str,'@'))) {
2676 *src_str = '\0';
2677 src_str++;
2678 }
2679
2680 if (parse_host_port(haddr, host_str) < 0)
2681 goto fail;
2682
2683 if (!src_str || *src_str == '\0')
2684 src_str = ":0";
2685
2686 if (parse_host_port(saddr, src_str) < 0)
2687 goto fail;
2688
2689 free(str);
2690 return(0);
2691
2692 fail:
2693 free(str);
2694 return -1;
2695 }
2696
2697 int parse_host_port(struct sockaddr_in *saddr, const char *str)
2698 {
2699 char buf[512];
2700 struct hostent *he;
2701 const char *p, *r;
2702 int port;
2703
2704 p = str;
2705 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2706 return -1;
2707 saddr->sin_family = AF_INET;
2708 if (buf[0] == '\0') {
2709 saddr->sin_addr.s_addr = 0;
2710 } else {
2711 if (isdigit(buf[0])) {
2712 if (!inet_aton(buf, &saddr->sin_addr))
2713 return -1;
2714 } else {
2715 if ((he = gethostbyname(buf)) == NULL)
2716 return - 1;
2717 saddr->sin_addr = *(struct in_addr *)he->h_addr;
2718 }
2719 }
2720 port = strtol(p, (char **)&r, 0);
2721 if (r == p)
2722 return -1;
2723 saddr->sin_port = htons(port);
2724 return 0;
2725 }
2726
2727 /* find or alloc a new VLAN */
2728 VLANState *qemu_find_vlan(int id)
2729 {
2730 VLANState **pvlan, *vlan;
2731 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2732 if (vlan->id == id)
2733 return vlan;
2734 }
2735 vlan = qemu_mallocz(sizeof(VLANState));
2736 if (!vlan)
2737 return NULL;
2738 vlan->id = id;
2739 vlan->next = NULL;
2740 pvlan = &first_vlan;
2741 while (*pvlan != NULL)
2742 pvlan = &(*pvlan)->next;
2743 *pvlan = vlan;
2744 return vlan;
2745 }
2746
2747 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
2748 IOReadHandler *fd_read,
2749 IOCanRWHandler *fd_can_read,
2750 void *opaque)
2751 {
2752 VLANClientState *vc, **pvc;
2753 vc = qemu_mallocz(sizeof(VLANClientState));
2754 if (!vc)
2755 return NULL;
2756 vc->fd_read = fd_read;
2757 vc->fd_can_read = fd_can_read;
2758 vc->opaque = opaque;
2759 vc->vlan = vlan;
2760
2761 vc->next = NULL;
2762 pvc = &vlan->first_client;
2763 while (*pvc != NULL)
2764 pvc = &(*pvc)->next;
2765 *pvc = vc;
2766 return vc;
2767 }
2768
2769 int qemu_can_send_packet(VLANClientState *vc1)
2770 {
2771 VLANState *vlan = vc1->vlan;
2772 VLANClientState *vc;
2773
2774 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2775 if (vc != vc1) {
2776 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
2777 return 0;
2778 }
2779 }
2780 return 1;
2781 }
2782
2783 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
2784 {
2785 VLANState *vlan = vc1->vlan;
2786 VLANClientState *vc;
2787
2788 #if 0
2789 printf("vlan %d send:\n", vlan->id);
2790 hex_dump(stdout, buf, size);
2791 #endif
2792 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2793 if (vc != vc1) {
2794 vc->fd_read(vc->opaque, buf, size);
2795 }
2796 }
2797 }
2798
2799 #if defined(CONFIG_SLIRP)
2800
2801 /* slirp network adapter */
2802
2803 static int slirp_inited;
2804 static VLANClientState *slirp_vc;
2805
2806 int slirp_can_output(void)
2807 {
2808 return !slirp_vc || qemu_can_send_packet(slirp_vc);
2809 }
2810
2811 void slirp_output(const uint8_t *pkt, int pkt_len)
2812 {
2813 #if 0
2814 printf("slirp output:\n");
2815 hex_dump(stdout, pkt, pkt_len);
2816 #endif
2817 if (!slirp_vc)
2818 return;
2819 qemu_send_packet(slirp_vc, pkt, pkt_len);
2820 }
2821
2822 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
2823 {
2824 #if 0
2825 printf("slirp input:\n");
2826 hex_dump(stdout, buf, size);
2827 #endif
2828 slirp_input(buf, size);
2829 }
2830
2831 static int net_slirp_init(VLANState *vlan)
2832 {
2833 if (!slirp_inited) {
2834 slirp_inited = 1;
2835 slirp_init();
2836 }
2837 slirp_vc = qemu_new_vlan_client(vlan,
2838 slirp_receive, NULL, NULL);
2839 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
2840 return 0;
2841 }
2842
2843 static void net_slirp_redir(const char *redir_str)
2844 {
2845 int is_udp;
2846 char buf[256], *r;
2847 const char *p;
2848 struct in_addr guest_addr;
2849 int host_port, guest_port;
2850
2851 if (!slirp_inited) {
2852 slirp_inited = 1;
2853 slirp_init();
2854 }
2855
2856 p = redir_str;
2857 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2858 goto fail;
2859 if (!strcmp(buf, "tcp")) {
2860 is_udp = 0;
2861 } else if (!strcmp(buf, "udp")) {
2862 is_udp = 1;
2863 } else {
2864 goto fail;
2865 }
2866
2867 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2868 goto fail;
2869 host_port = strtol(buf, &r, 0);
2870 if (r == buf)
2871 goto fail;
2872
2873 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2874 goto fail;
2875 if (buf[0] == '\0') {
2876 pstrcpy(buf, sizeof(buf), "10.0.2.15");
2877 }
2878 if (!inet_aton(buf, &guest_addr))
2879 goto fail;
2880
2881 guest_port = strtol(p, &r, 0);
2882 if (r == p)
2883 goto fail;
2884
2885 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
2886 fprintf(stderr, "qemu: could not set up redirection\n");
2887 exit(1);
2888 }
2889 return;
2890 fail:
2891 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
2892 exit(1);
2893 }
2894
2895 #ifndef _WIN32
2896
2897 char smb_dir[1024];
2898
2899 static void smb_exit(void)
2900 {
2901 DIR *d;
2902 struct dirent *de;
2903 char filename[1024];
2904
2905 /* erase all the files in the directory */
2906 d = opendir(smb_dir);
2907 for(;;) {
2908 de = readdir(d);
2909 if (!de)
2910 break;
2911 if (strcmp(de->d_name, ".") != 0 &&
2912 strcmp(de->d_name, "..") != 0) {
2913 snprintf(filename, sizeof(filename), "%s/%s",
2914 smb_dir, de->d_name);
2915 unlink(filename);
2916 }
2917 }
2918 closedir(d);
2919 rmdir(smb_dir);
2920 }
2921
2922 /* automatic user mode samba server configuration */
2923 void net_slirp_smb(const char *exported_dir)
2924 {
2925 char smb_conf[1024];
2926 char smb_cmdline[1024];
2927 FILE *f;
2928
2929 if (!slirp_inited) {
2930 slirp_inited = 1;
2931 slirp_init();
2932 }
2933
2934 /* XXX: better tmp dir construction */
2935 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
2936 if (mkdir(smb_dir, 0700) < 0) {
2937 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
2938 exit(1);
2939 }
2940 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
2941
2942 f = fopen(smb_conf, "w");
2943 if (!f) {
2944 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
2945 exit(1);
2946 }
2947 fprintf(f,
2948 "[global]\n"
2949 "private dir=%s\n"
2950 "smb ports=0\n"
2951 "socket address=127.0.0.1\n"
2952 "pid directory=%s\n"
2953 "lock directory=%s\n"
2954 "log file=%s/log.smbd\n"
2955 "smb passwd file=%s/smbpasswd\n"
2956 "security = share\n"
2957 "[qemu]\n"
2958 "path=%s\n"
2959 "read only=no\n"
2960 "guest ok=yes\n",
2961 smb_dir,
2962 smb_dir,
2963 smb_dir,
2964 smb_dir,
2965 smb_dir,
2966 exported_dir
2967 );
2968 fclose(f);
2969 atexit(smb_exit);
2970
2971 snprintf(smb_cmdline, sizeof(smb_cmdline), "/usr/sbin/smbd -s %s",
2972 smb_conf);
2973
2974 slirp_add_exec(0, smb_cmdline, 4, 139);
2975 }
2976
2977 #endif /* !defined(_WIN32) */
2978
2979 #endif /* CONFIG_SLIRP */
2980
2981 #if !defined(_WIN32)
2982
2983 typedef struct TAPState {
2984 VLANClientState *vc;
2985 int fd;
2986 } TAPState;
2987
2988 static void tap_receive(void *opaque, const uint8_t *buf, int size)
2989 {
2990 TAPState *s = opaque;
2991 int ret;
2992 for(;;) {
2993 ret = write(s->fd, buf, size);
2994 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
2995 } else {
2996 break;
2997 }
2998 }
2999 }
3000
3001 static void tap_send(void *opaque)
3002 {
3003 TAPState *s = opaque;
3004 uint8_t buf[4096];
3005 int size;
3006
3007 size = read(s->fd, buf, sizeof(buf));
3008 if (size > 0) {
3009 qemu_send_packet(s->vc, buf, size);
3010 }
3011 }
3012
3013 /* fd support */
3014
3015 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3016 {
3017 TAPState *s;
3018
3019 s = qemu_mallocz(sizeof(TAPState));
3020 if (!s)
3021 return NULL;
3022 s->fd = fd;
3023 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3024 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3025 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3026 return s;
3027 }
3028
3029 #ifdef _BSD
3030 static int tap_open(char *ifname, int ifname_size)
3031 {
3032 int fd;
3033 char *dev;
3034 struct stat s;
3035
3036 fd = open("/dev/tap", O_RDWR);
3037 if (fd < 0) {
3038 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3039 return -1;
3040 }
3041
3042 fstat(fd, &s);
3043 dev = devname(s.st_rdev, S_IFCHR);
3044 pstrcpy(ifname, ifname_size, dev);
3045
3046 fcntl(fd, F_SETFL, O_NONBLOCK);
3047 return fd;
3048 }
3049 #elif defined(__sun__)
3050 static int tap_open(char *ifname, int ifname_size)
3051 {
3052 fprintf(stderr, "warning: tap_open not yet implemented\n");
3053 return -1;
3054 }
3055 #else
3056 static int tap_open(char *ifname, int ifname_size)
3057 {
3058 struct ifreq ifr;
3059 int fd, ret;
3060
3061 fd = open("/dev/net/tun", O_RDWR);
3062 if (fd < 0) {
3063 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3064 return -1;
3065 }
3066 memset(&ifr, 0, sizeof(ifr));
3067 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3068 if (ifname[0] != '\0')
3069 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3070 else
3071 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3072 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3073 if (ret != 0) {
3074 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3075 close(fd);
3076 return -1;
3077 }
3078 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3079 fcntl(fd, F_SETFL, O_NONBLOCK);
3080 return fd;
3081 }
3082 #endif
3083
3084 static int net_tap_init(VLANState *vlan, const char *ifname1,
3085 const char *setup_script)
3086 {
3087 TAPState *s;
3088 int pid, status, fd;
3089 char *args[3];
3090 char **parg;
3091 char ifname[128];
3092
3093 if (ifname1 != NULL)
3094 pstrcpy(ifname, sizeof(ifname), ifname1);
3095 else
3096 ifname[0] = '\0';
3097 fd = tap_open(ifname, sizeof(ifname));
3098 if (fd < 0)
3099 return -1;
3100
3101 if (!setup_script)
3102 setup_script = "";
3103 if (setup_script[0] != '\0') {
3104 /* try to launch network init script */
3105 pid = fork();
3106 if (pid >= 0) {
3107 if (pid == 0) {
3108 parg = args;
3109 *parg++ = (char *)setup_script;
3110 *parg++ = ifname;
3111 *parg++ = NULL;
3112 execv(setup_script, args);
3113 _exit(1);
3114 }
3115 while (waitpid(pid, &status, 0) != pid);
3116 if (!WIFEXITED(status) ||
3117 WEXITSTATUS(status) != 0) {
3118 fprintf(stderr, "%s: could not launch network script\n",
3119 setup_script);
3120 return -1;
3121 }
3122 }
3123 }
3124 s = net_tap_fd_init(vlan, fd);
3125 if (!s)
3126 return -1;
3127 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3128 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3129 return 0;
3130 }
3131
3132 #endif /* !_WIN32 */
3133
3134 /* network connection */
3135 typedef struct NetSocketState {
3136 VLANClientState *vc;
3137 int fd;
3138 int state; /* 0 = getting length, 1 = getting data */
3139 int index;
3140 int packet_len;
3141 uint8_t buf[4096];
3142 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3143 } NetSocketState;
3144
3145 typedef struct NetSocketListenState {
3146 VLANState *vlan;
3147 int fd;
3148 } NetSocketListenState;
3149
3150 /* XXX: we consider we can send the whole packet without blocking */
3151 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3152 {
3153 NetSocketState *s = opaque;
3154 uint32_t len;
3155 len = htonl(size);
3156
3157 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3158 send_all(s->fd, buf, size);
3159 }
3160
3161 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3162 {
3163 NetSocketState *s = opaque;
3164 sendto(s->fd, buf, size, 0,
3165 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3166 }
3167
3168 static void net_socket_send(void *opaque)
3169 {
3170 NetSocketState *s = opaque;
3171 int l, size, err;
3172 uint8_t buf1[4096];
3173 const uint8_t *buf;
3174
3175 size = recv(s->fd, buf1, sizeof(buf1), 0);
3176 if (size < 0) {
3177 err = socket_error();
3178 if (err != EWOULDBLOCK)
3179 goto eoc;
3180 } else if (size == 0) {
3181 /* end of connection */
3182 eoc:
3183 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3184 closesocket(s->fd);
3185 return;
3186 }
3187 buf = buf1;
3188 while (size > 0) {
3189 /* reassemble a packet from the network */
3190 switch(s->state) {
3191 case 0:
3192 l = 4 - s->index;
3193 if (l > size)
3194 l = size;
3195 memcpy(s->buf + s->index, buf, l);
3196 buf += l;
3197 size -= l;
3198 s->index += l;
3199 if (s->index == 4) {
3200 /* got length */
3201 s->packet_len = ntohl(*(uint32_t *)s->buf);
3202 s->index = 0;
3203 s->state = 1;
3204 }
3205 break;
3206 case 1:
3207 l = s->packet_len - s->index;
3208 if (l > size)
3209 l = size;
3210 memcpy(s->buf + s->index, buf, l);
3211 s->index += l;
3212 buf += l;
3213 size -= l;
3214 if (s->index >= s->packet_len) {
3215 qemu_send_packet(s->vc, s->buf, s->packet_len);
3216 s->index = 0;
3217 s->state = 0;
3218 }
3219 break;
3220 }
3221 }
3222 }
3223
3224 static void net_socket_send_dgram(void *opaque)
3225 {
3226 NetSocketState *s = opaque;
3227 int size;
3228
3229 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3230 if (size < 0)
3231 return;
3232 if (size == 0) {
3233 /* end of connection */
3234 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3235 return;
3236 }
3237 qemu_send_packet(s->vc, s->buf, size);
3238 }
3239
3240 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3241 {
3242 struct ip_mreq imr;
3243 int fd;
3244 int val, ret;
3245 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3246 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3247 inet_ntoa(mcastaddr->sin_addr),
3248 (int)ntohl(mcastaddr->sin_addr.s_addr));
3249 return -1;
3250
3251 }
3252 fd = socket(PF_INET, SOCK_DGRAM, 0);
3253 if (fd < 0) {
3254 perror("socket(PF_INET, SOCK_DGRAM)");
3255 return -1;
3256 }
3257
3258 val = 1;
3259 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3260 (const char *)&val, sizeof(val));
3261 if (ret < 0) {
3262 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3263 goto fail;
3264 }
3265
3266 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3267 if (ret < 0) {
3268 perror("bind");
3269 goto fail;
3270 }
3271
3272 /* Add host to multicast group */
3273 imr.imr_multiaddr = mcastaddr->sin_addr;
3274 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3275
3276 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3277 (const char *)&imr, sizeof(struct ip_mreq));
3278 if (ret < 0) {
3279 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3280 goto fail;
3281 }
3282
3283 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3284 val = 1;
3285 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3286 (const char *)&val, sizeof(val));
3287 if (ret < 0) {
3288 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3289 goto fail;
3290 }
3291
3292 socket_set_nonblock(fd);
3293 return fd;
3294 fail:
3295 if (fd >= 0)
3296 closesocket(fd);
3297 return -1;
3298 }
3299
3300 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3301 int is_connected)
3302 {
3303 struct sockaddr_in saddr;
3304 int newfd;
3305 socklen_t saddr_len;
3306 NetSocketState *s;
3307
3308 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3309 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3310 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3311 */
3312
3313 if (is_connected) {
3314 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3315 /* must be bound */
3316 if (saddr.sin_addr.s_addr==0) {
3317 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3318 fd);
3319 return NULL;
3320 }
3321 /* clone dgram socket */
3322 newfd = net_socket_mcast_create(&saddr);
3323 if (newfd < 0) {
3324 /* error already reported by net_socket_mcast_create() */
3325 close(fd);
3326 return NULL;
3327 }
3328 /* clone newfd to fd, close newfd */
3329 dup2(newfd, fd);
3330 close(newfd);
3331
3332 } else {
3333 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3334 fd, strerror(errno));
3335 return NULL;
3336 }
3337 }
3338
3339 s = qemu_mallocz(sizeof(NetSocketState));
3340 if (!s)
3341 return NULL;
3342 s->fd = fd;
3343
3344 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3345 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3346
3347 /* mcast: save bound address as dst */
3348 if (is_connected) s->dgram_dst=saddr;
3349
3350 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3351 "socket: fd=%d (%s mcast=%s:%d)",
3352 fd, is_connected? "cloned" : "",
3353 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3354 return s;
3355 }
3356
3357 static void net_socket_connect(void *opaque)
3358 {
3359 NetSocketState *s = opaque;
3360 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3361 }
3362
3363 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3364 int is_connected)
3365 {
3366 NetSocketState *s;
3367 s = qemu_mallocz(sizeof(NetSocketState));
3368 if (!s)
3369 return NULL;
3370 s->fd = fd;
3371 s->vc = qemu_new_vlan_client(vlan,
3372 net_socket_receive, NULL, s);
3373 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3374 "socket: fd=%d", fd);
3375 if (is_connected) {
3376 net_socket_connect(s);
3377 } else {
3378 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3379 }
3380 return s;
3381 }
3382
3383 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3384 int is_connected)
3385 {
3386 int so_type=-1, optlen=sizeof(so_type);
3387
3388 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3389 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3390 return NULL;
3391 }
3392 switch(so_type) {
3393 case SOCK_DGRAM:
3394 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3395 case SOCK_STREAM:
3396 return net_socket_fd_init_stream(vlan, fd, is_connected);
3397 default:
3398 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3399 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3400 return net_socket_fd_init_stream(vlan, fd, is_connected);
3401 }
3402 return NULL;
3403 }
3404
3405 static void net_socket_accept(void *opaque)
3406 {
3407 NetSocketListenState *s = opaque;
3408 NetSocketState *s1;
3409 struct sockaddr_in saddr;
3410 socklen_t len;
3411 int fd;
3412
3413 for(;;) {
3414 len = sizeof(saddr);
3415 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3416 if (fd < 0 && errno != EINTR) {
3417 return;
3418 } else if (fd >= 0) {
3419 break;
3420 }
3421 }
3422 s1 = net_socket_fd_init(s->vlan, fd, 1);
3423 if (!s1) {
3424 closesocket(fd);
3425 } else {
3426 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3427 "socket: connection from %s:%d",
3428 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3429 }
3430 }
3431
3432 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3433 {
3434 NetSocketListenState *s;
3435 int fd, val, ret;
3436 struct sockaddr_in saddr;
3437
3438 if (parse_host_port(&saddr, host_str) < 0)
3439 return -1;
3440
3441 s = qemu_mallocz(sizeof(NetSocketListenState));
3442 if (!s)
3443 return -1;
3444
3445 fd = socket(PF_INET, SOCK_STREAM, 0);
3446 if (fd < 0) {
3447 perror("socket");
3448 return -1;
3449 }
3450 socket_set_nonblock(fd);
3451
3452 /* allow fast reuse */
3453 val = 1;
3454 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3455
3456 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3457 if (ret < 0) {
3458 perror("bind");
3459 return -1;
3460 }
3461 ret = listen(fd, 0);
3462 if (ret < 0) {
3463 perror("listen");
3464 return -1;
3465 }
3466 s->vlan = vlan;
3467 s->fd = fd;
3468 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
3469 return 0;
3470 }
3471
3472 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
3473 {
3474 NetSocketState *s;
3475 int fd, connected, ret, err;
3476 struct sockaddr_in saddr;
3477
3478 if (parse_host_port(&saddr, host_str) < 0)
3479 return -1;
3480
3481 fd = socket(PF_INET, SOCK_STREAM, 0);
3482 if (fd < 0) {
3483 perror("socket");
3484 return -1;
3485 }
3486 socket_set_nonblock(fd);
3487
3488 connected = 0;
3489 for(;;) {
3490 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3491 if (ret < 0) {
3492 err = socket_error();
3493 if (err == EINTR || err == EWOULDBLOCK) {
3494 } else if (err == EINPROGRESS) {
3495 break;
3496 } else {
3497 perror("connect");
3498 closesocket(fd);
3499 return -1;
3500 }
3501 } else {
3502 connected = 1;
3503 break;
3504 }
3505 }
3506 s = net_socket_fd_init(vlan, fd, connected);
3507 if (!s)
3508 return -1;
3509 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3510 "socket: connect to %s:%d",
3511 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3512 return 0;
3513 }
3514
3515 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
3516 {
3517 NetSocketState *s;
3518 int fd;
3519 struct sockaddr_in saddr;
3520
3521 if (parse_host_port(&saddr, host_str) < 0)
3522 return -1;
3523
3524
3525 fd = net_socket_mcast_create(&saddr);
3526 if (fd < 0)
3527 return -1;
3528
3529 s = net_socket_fd_init(vlan, fd, 0);
3530 if (!s)
3531 return -1;
3532
3533 s->dgram_dst = saddr;
3534
3535 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3536 "socket: mcast=%s:%d",
3537 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3538 return 0;
3539
3540 }
3541
3542 static int get_param_value(char *buf, int buf_size,
3543 const char *tag, const char *str)
3544 {
3545 const char *p;
3546 char *q;
3547 char option[128];
3548
3549 p = str;
3550 for(;;) {
3551 q = option;
3552 while (*p != '\0' && *p != '=') {
3553 if ((q - option) < sizeof(option) - 1)
3554 *q++ = *p;
3555 p++;
3556 }
3557 *q = '\0';
3558 if (*p != '=')
3559 break;
3560 p++;
3561 if (!strcmp(tag, option)) {
3562 q = buf;
3563 while (*p != '\0' && *p != ',') {
3564 if ((q - buf) < buf_size - 1)
3565 *q++ = *p;
3566 p++;
3567 }
3568 *q = '\0';
3569 return q - buf;
3570 } else {
3571 while (*p != '\0' && *p != ',') {
3572 p++;
3573 }
3574 }
3575 if (*p != ',')
3576 break;
3577 p++;
3578 }
3579 return 0;
3580 }
3581
3582 int net_client_init(const char *str)
3583 {
3584 const char *p;
3585 char *q;
3586 char device[64];
3587 char buf[1024];
3588 int vlan_id, ret;
3589 VLANState *vlan;
3590
3591 p = str;
3592 q = device;
3593 while (*p != '\0' && *p != ',') {
3594 if ((q - device) < sizeof(device) - 1)
3595 *q++ = *p;
3596 p++;
3597 }
3598 *q = '\0';
3599 if (*p == ',')
3600 p++;
3601 vlan_id = 0;
3602 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
3603 vlan_id = strtol(buf, NULL, 0);
3604 }
3605 vlan = qemu_find_vlan(vlan_id);
3606 if (!vlan) {
3607 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
3608 return -1;
3609 }
3610 if (!strcmp(device, "nic")) {
3611 NICInfo *nd;
3612 uint8_t *macaddr;
3613
3614 if (nb_nics >= MAX_NICS) {
3615 fprintf(stderr, "Too Many NICs\n");
3616 return -1;
3617 }
3618 nd = &nd_table[nb_nics];
3619 macaddr = nd->macaddr;
3620 macaddr[0] = 0x52;
3621 macaddr[1] = 0x54;
3622 macaddr[2] = 0x00;
3623 macaddr[3] = 0x12;
3624 macaddr[4] = 0x34;
3625 macaddr[5] = 0x56 + nb_nics;
3626
3627 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
3628 if (parse_macaddr(macaddr, buf) < 0) {
3629 fprintf(stderr, "invalid syntax for ethernet address\n");
3630 return -1;
3631 }
3632 }
3633 if (get_param_value(buf, sizeof(buf), "model", p)) {
3634 nd->model = strdup(buf);
3635 }
3636 nd->vlan = vlan;
3637 nb_nics++;
3638 ret = 0;
3639 } else
3640 if (!strcmp(device, "none")) {
3641 /* does nothing. It is needed to signal that no network cards
3642 are wanted */
3643 ret = 0;
3644 } else
3645 #ifdef CONFIG_SLIRP
3646 if (!strcmp(device, "user")) {
3647 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
3648 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
3649 }
3650 ret = net_slirp_init(vlan);
3651 } else
3652 #endif
3653 #ifdef _WIN32
3654 if (!strcmp(device, "tap")) {
3655 char ifname[64];
3656 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
3657 fprintf(stderr, "tap: no interface name\n");
3658 return -1;
3659 }
3660 ret = tap_win32_init(vlan, ifname);
3661 } else
3662 #else
3663 if (!strcmp(device, "tap")) {
3664 char ifname[64];
3665 char setup_script[1024];
3666 int fd;
3667 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3668 fd = strtol(buf, NULL, 0);
3669 ret = -1;
3670 if (net_tap_fd_init(vlan, fd))
3671 ret = 0;
3672 } else {
3673 get_param_value(ifname, sizeof(ifname), "ifname", p);
3674 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
3675 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
3676 }
3677 ret = net_tap_init(vlan, ifname, setup_script);
3678 }
3679 } else
3680 #endif
3681 if (!strcmp(device, "socket")) {
3682 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3683 int fd;
3684 fd = strtol(buf, NULL, 0);
3685 ret = -1;
3686 if (net_socket_fd_init(vlan, fd, 1))
3687 ret = 0;
3688 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
3689 ret = net_socket_listen_init(vlan, buf);
3690 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
3691 ret = net_socket_connect_init(vlan, buf);
3692 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
3693 ret = net_socket_mcast_init(vlan, buf);
3694 } else {
3695 fprintf(stderr, "Unknown socket options: %s\n", p);
3696 return -1;
3697 }
3698 } else
3699 {
3700 fprintf(stderr, "Unknown network device: %s\n", device);
3701 return -1;
3702 }
3703 if (ret < 0) {
3704 fprintf(stderr, "Could not initialize device '%s'\n", device);
3705 }
3706
3707 return ret;
3708 }
3709
3710 void do_info_network(void)
3711 {
3712 VLANState *vlan;
3713 VLANClientState *vc;
3714
3715 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3716 term_printf("VLAN %d devices:\n", vlan->id);
3717 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
3718 term_printf(" %s\n", vc->info_str);
3719 }
3720 }
3721
3722 /***********************************************************/
3723 /* USB devices */
3724
3725 static USBPort *used_usb_ports;
3726 static USBPort *free_usb_ports;
3727
3728 /* ??? Maybe change this to register a hub to keep track of the topology. */
3729 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
3730 usb_attachfn attach)
3731 {
3732 port->opaque = opaque;
3733 port->index = index;
3734 port->attach = attach;
3735 port->next = free_usb_ports;
3736 free_usb_ports = port;
3737 }
3738
3739 static int usb_device_add(const char *devname)
3740 {
3741 const char *p;
3742 USBDevice *dev;
3743 USBPort *port;
3744
3745 if (!free_usb_ports)
3746 return -1;
3747
3748 if (strstart(devname, "host:", &p)) {
3749 dev = usb_host_device_open(p);
3750 } else if (!strcmp(devname, "mouse")) {
3751 dev = usb_mouse_init();
3752 } else if (!strcmp(devname, "tablet")) {
3753 dev = usb_tablet_init();
3754 } else if (strstart(devname, "disk:", &p)) {
3755 dev = usb_msd_init(p);
3756 } else {
3757 return -1;
3758 }
3759 if (!dev)
3760 return -1;
3761
3762 /* Find a USB port to add the device to. */
3763 port = free_usb_ports;
3764 if (!port->next) {
3765 USBDevice *hub;
3766
3767 /* Create a new hub and chain it on. */
3768 free_usb_ports = NULL;
3769 port->next = used_usb_ports;
3770 used_usb_ports = port;
3771
3772 hub = usb_hub_init(VM_USB_HUB_SIZE);
3773 usb_attach(port, hub);
3774 port = free_usb_ports;
3775 }
3776
3777 free_usb_ports = port->next;
3778 port->next = used_usb_ports;
3779 used_usb_ports = port;
3780 usb_attach(port, dev);
3781 return 0;
3782 }
3783
3784 static int usb_device_del(const char *devname)
3785 {
3786 USBPort *port;
3787 USBPort **lastp;
3788 USBDevice *dev;
3789 int bus_num, addr;
3790 const char *p;
3791
3792 if (!used_usb_ports)
3793 return -1;
3794
3795 p = strchr(devname, '.');
3796 if (!p)
3797 return -1;
3798 bus_num = strtoul(devname, NULL, 0);
3799 addr = strtoul(p + 1, NULL, 0);
3800 if (bus_num != 0)
3801 return -1;
3802
3803 lastp = &used_usb_ports;
3804 port = used_usb_ports;
3805 while (port && port->dev->addr != addr) {
3806 lastp = &port->next;
3807 port = port->next;
3808 }
3809
3810 if (!port)
3811 return -1;
3812
3813 dev = port->dev;
3814 *lastp = port->next;
3815 usb_attach(port, NULL);
3816 dev->handle_destroy(dev);
3817 port->next = free_usb_ports;
3818 free_usb_ports = port;
3819 return 0;
3820 }
3821
3822 void do_usb_add(const char *devname)
3823 {
3824 int ret;
3825 ret = usb_device_add(devname);
3826 if (ret < 0)
3827 term_printf("Could not add USB device '%s'\n", devname);
3828 }
3829
3830 void do_usb_del(const char *devname)
3831 {
3832 int ret;
3833 ret = usb_device_del(devname);
3834 if (ret < 0)
3835 term_printf("Could not remove USB device '%s'\n", devname);
3836 }
3837
3838 void usb_info(void)
3839 {
3840 USBDevice *dev;
3841 USBPort *port;
3842 const char *speed_str;
3843
3844 if (!usb_enabled) {
3845 term_printf("USB support not enabled\n");
3846 return;
3847 }
3848
3849 for (port = used_usb_ports; port; port = port->next) {
3850 dev = port->dev;
3851 if (!dev)
3852 continue;
3853 switch(dev->speed) {
3854 case USB_SPEED_LOW:
3855 speed_str = "1.5";
3856 break;
3857 case USB_SPEED_FULL:
3858 speed_str = "12";
3859 break;
3860 case USB_SPEED_HIGH:
3861 speed_str = "480";
3862 break;
3863 default:
3864 speed_str = "?";
3865 break;
3866 }
3867 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
3868 0, dev->addr, speed_str, dev->devname);
3869 }
3870 }
3871
3872 /***********************************************************/
3873 /* pid file */
3874
3875 static char *pid_filename;
3876
3877 /* Remove PID file. Called on normal exit */
3878
3879 static void remove_pidfile(void)
3880 {
3881 unlink (pid_filename);
3882 }
3883
3884 static void create_pidfile(const char *filename)
3885 {
3886 struct stat pidstat;
3887 FILE *f;
3888
3889 /* Try to write our PID to the named file */
3890 if (stat(filename, &pidstat) < 0) {
3891 if (errno == ENOENT) {
3892 if ((f = fopen (filename, "w")) == NULL) {
3893 perror("Opening pidfile");
3894 exit(1);
3895 }
3896 fprintf(f, "%d\n", getpid());
3897 fclose(f);
3898 pid_filename = qemu_strdup(filename);
3899 if (!pid_filename) {
3900 fprintf(stderr, "Could not save PID filename");
3901 exit(1);
3902 }
3903 atexit(remove_pidfile);
3904 }
3905 } else {
3906 fprintf(stderr, "%s already exists. Remove it and try again.\n",
3907 filename);
3908 exit(1);
3909 }
3910 }
3911
3912 /***********************************************************/
3913 /* dumb display */
3914
3915 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3916 {
3917 }
3918
3919 static void dumb_resize(DisplayState *ds, int w, int h)
3920 {
3921 }
3922
3923 static void dumb_refresh(DisplayState *ds)
3924 {
3925 vga_hw_update();
3926 }
3927
3928 void dumb_display_init(DisplayState *ds)
3929 {
3930 ds->data = NULL;
3931 ds->linesize = 0;
3932 ds->depth = 0;
3933 ds->dpy_update = dumb_update;
3934 ds->dpy_resize = dumb_resize;
3935 ds->dpy_refresh = dumb_refresh;
3936 }
3937
3938 /***********************************************************/
3939 /* I/O handling */
3940
3941 #define MAX_IO_HANDLERS 64
3942
3943 typedef struct IOHandlerRecord {
3944 int fd;
3945 IOCanRWHandler *fd_read_poll;
3946 IOHandler *fd_read;
3947 IOHandler *fd_write;
3948 void *opaque;
3949 /* temporary data */
3950 struct pollfd *ufd;
3951 struct IOHandlerRecord *next;
3952 } IOHandlerRecord;
3953
3954 static IOHandlerRecord *first_io_handler;
3955
3956 /* XXX: fd_read_poll should be suppressed, but an API change is
3957 necessary in the character devices to suppress fd_can_read(). */
3958 int qemu_set_fd_handler2(int fd,
3959 IOCanRWHandler *fd_read_poll,
3960 IOHandler *fd_read,
3961 IOHandler *fd_write,
3962 void *opaque)
3963 {
3964 IOHandlerRecord **pioh, *ioh;
3965
3966 if (!fd_read && !fd_write) {
3967 pioh = &first_io_handler;
3968 for(;;) {
3969 ioh = *pioh;
3970 if (ioh == NULL)
3971 break;
3972 if (ioh->fd == fd) {
3973 *pioh = ioh->next;
3974 qemu_free(ioh);
3975 break;
3976 }
3977 pioh = &ioh->next;
3978 }
3979 } else {
3980 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3981 if (ioh->fd == fd)
3982 goto found;
3983 }
3984 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
3985 if (!ioh)
3986 return -1;
3987 ioh->next = first_io_handler;
3988 first_io_handler = ioh;
3989 found:
3990 ioh->fd = fd;
3991 ioh->fd_read_poll = fd_read_poll;
3992 ioh->fd_read = fd_read;
3993 ioh->fd_write = fd_write;
3994 ioh->opaque = opaque;
3995 }
3996 return 0;
3997 }
3998
3999 int qemu_set_fd_handler(int fd,
4000 IOHandler *fd_read,
4001 IOHandler *fd_write,
4002 void *opaque)
4003 {
4004 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4005 }
4006
4007 /***********************************************************/
4008 /* Polling handling */
4009
4010 typedef struct PollingEntry {
4011 PollingFunc *func;
4012 void *opaque;
4013 struct PollingEntry *next;
4014 } PollingEntry;
4015
4016 static PollingEntry *first_polling_entry;
4017
4018 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4019 {
4020 PollingEntry **ppe, *pe;
4021 pe = qemu_mallocz(sizeof(PollingEntry));
4022 if (!pe)
4023 return -1;
4024 pe->func = func;
4025 pe->opaque = opaque;
4026 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4027 *ppe = pe;
4028 return 0;
4029 }
4030
4031 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4032 {
4033 PollingEntry **ppe, *pe;
4034 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4035 pe = *ppe;
4036 if (pe->func == func && pe->opaque == opaque) {
4037 *ppe = pe->next;
4038 qemu_free(pe);
4039 break;
4040 }
4041 }
4042 }
4043
4044 #ifdef _WIN32
4045 /***********************************************************/
4046 /* Wait objects support */
4047 typedef struct WaitObjects {
4048 int num;
4049 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4050 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4051 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4052 } WaitObjects;
4053
4054 static WaitObjects wait_objects = {0};
4055
4056 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4057 {
4058 WaitObjects *w = &wait_objects;
4059
4060 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4061 return -1;
4062 w->events[w->num] = handle;
4063 w->func[w->num] = func;
4064 w->opaque[w->num] = opaque;
4065 w->num++;
4066 return 0;
4067 }
4068
4069 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4070 {
4071 int i, found;
4072 WaitObjects *w = &wait_objects;
4073
4074 found = 0;
4075 for (i = 0; i < w->num; i++) {
4076 if (w->events[i] == handle)
4077 found = 1;
4078 if (found) {
4079 w->events[i] = w->events[i + 1];
4080 w->func[i] = w->func[i + 1];
4081 w->opaque[i] = w->opaque[i + 1];
4082 }
4083 }
4084 if (found)
4085 w->num--;
4086 }
4087 #endif
4088
4089 /***********************************************************/
4090 /* savevm/loadvm support */
4091
4092 #define IO_BUF_SIZE 32768
4093
4094 struct QEMUFile {
4095 FILE *outfile;
4096 BlockDriverState *bs;
4097 int is_file;
4098 int is_writable;
4099 int64_t base_offset;
4100 int64_t buf_offset; /* start of buffer when writing, end of buffer
4101 when reading */
4102 int buf_index;
4103 int buf_size; /* 0 when writing */
4104 uint8_t buf[IO_BUF_SIZE];
4105 };
4106
4107 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4108 {
4109 QEMUFile *f;
4110
4111 f = qemu_mallocz(sizeof(QEMUFile));
4112 if (!f)
4113 return NULL;
4114 if (!strcmp(mode, "wb")) {
4115 f->is_writable = 1;
4116 } else if (!strcmp(mode, "rb")) {
4117 f->is_writable = 0;
4118 } else {
4119 goto fail;
4120 }
4121 f->outfile = fopen(filename, mode);
4122 if (!f->outfile)
4123 goto fail;
4124 f->is_file = 1;
4125 return f;
4126 fail:
4127 if (f->outfile)
4128 fclose(f->outfile);
4129 qemu_free(f);
4130 return NULL;
4131 }
4132
4133 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4134 {
4135 QEMUFile *f;
4136
4137 f = qemu_mallocz(sizeof(QEMUFile));
4138 if (!f)
4139 return NULL;
4140 f->is_file = 0;
4141 f->bs = bs;
4142 f->is_writable = is_writable;
4143 f->base_offset = offset;
4144 return f;
4145 }
4146
4147 void qemu_fflush(QEMUFile *f)
4148 {
4149 if (!f->is_writable)
4150 return;
4151 if (f->buf_index > 0) {
4152 if (f->is_file) {
4153 fseek(f->outfile, f->buf_offset, SEEK_SET);
4154 fwrite(f->buf, 1, f->buf_index, f->outfile);
4155 } else {
4156 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4157 f->buf, f->buf_index);
4158 }
4159 f->buf_offset += f->buf_index;
4160 f->buf_index = 0;
4161 }
4162 }
4163
4164 static void qemu_fill_buffer(QEMUFile *f)
4165 {
4166 int len;
4167
4168 if (f->is_writable)
4169 return;
4170 if (f->is_file) {
4171 fseek(f->outfile, f->buf_offset, SEEK_SET);
4172 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4173 if (len < 0)
4174 len = 0;
4175 } else {
4176 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4177 f->buf, IO_BUF_SIZE);
4178 if (len < 0)
4179 len = 0;
4180 }
4181 f->buf_index = 0;
4182 f->buf_size = len;
4183 f->buf_offset += len;
4184 }
4185
4186 void qemu_fclose(QEMUFile *f)
4187 {
4188 if (f->is_writable)
4189 qemu_fflush(f);
4190 if (f->is_file) {
4191 fclose(f->outfile);
4192 }
4193 qemu_free(f);
4194 }
4195
4196 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4197 {
4198 int l;
4199 while (size > 0) {
4200 l = IO_BUF_SIZE - f->buf_index;
4201 if (l > size)
4202 l = size;
4203 memcpy(f->buf + f->buf_index, buf, l);
4204 f->buf_index += l;
4205 buf += l;
4206 size -= l;
4207 if (f->buf_index >= IO_BUF_SIZE)
4208 qemu_fflush(f);
4209 }
4210 }
4211
4212 void qemu_put_byte(QEMUFile *f, int v)
4213 {
4214 f->buf[f->buf_index++] = v;
4215 if (f->buf_index >= IO_BUF_SIZE)
4216 qemu_fflush(f);
4217 }
4218
4219 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4220 {
4221 int size, l;
4222
4223 size = size1;
4224 while (size > 0) {
4225 l = f->buf_size - f->buf_index;
4226 if (l == 0) {
4227 qemu_fill_buffer(f);
4228 l = f->buf_size - f->buf_index;
4229 if (l == 0)
4230 break;
4231 }
4232 if (l > size)
4233 l = size;
4234 memcpy(buf, f->buf + f->buf_index, l);
4235 f->buf_index += l;
4236 buf += l;
4237 size -= l;
4238 }
4239 return size1 - size;
4240 }
4241
4242 int qemu_get_byte(QEMUFile *f)
4243 {
4244 if (f->buf_index >= f->buf_size) {
4245 qemu_fill_buffer(f);
4246 if (f->buf_index >= f->buf_size)
4247 return 0;
4248 }
4249 return f->buf[f->buf_index++];
4250 }
4251
4252 int64_t qemu_ftell(QEMUFile *f)
4253 {
4254 return f->buf_offset - f->buf_size + f->buf_index;
4255 }
4256
4257 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4258 {
4259 if (whence == SEEK_SET) {
4260 /* nothing to do */
4261 } else if (whence == SEEK_CUR) {
4262 pos += qemu_ftell(f);
4263 } else {
4264 /* SEEK_END not supported */
4265 return -1;
4266 }
4267 if (f->is_writable) {
4268 qemu_fflush(f);
4269 f->buf_offset = pos;
4270 } else {
4271 f->buf_offset = pos;
4272 f->buf_index = 0;
4273 f->buf_size = 0;
4274 }
4275 return pos;
4276 }
4277
4278 void qemu_put_be16(QEMUFile *f, unsigned int v)
4279 {
4280 qemu_put_byte(f, v >> 8);
4281 qemu_put_byte(f, v);
4282 }
4283
4284 void qemu_put_be32(QEMUFile *f, unsigned int v)
4285 {
4286 qemu_put_byte(f, v >> 24);
4287 qemu_put_byte(f, v >> 16);
4288 qemu_put_byte(f, v >> 8);
4289 qemu_put_byte(f, v);
4290 }
4291
4292 void qemu_put_be64(QEMUFile *f, uint64_t v)
4293 {
4294 qemu_put_be32(f, v >> 32);
4295 qemu_put_be32(f, v);
4296 }
4297
4298 unsigned int qemu_get_be16(QEMUFile *f)
4299 {
4300 unsigned int v;
4301 v = qemu_get_byte(f) << 8;
4302 v |= qemu_get_byte(f);
4303 return v;
4304 }
4305
4306 unsigned int qemu_get_be32(QEMUFile *f)
4307 {
4308 unsigned int v;
4309 v = qemu_get_byte(f) << 24;
4310 v |= qemu_get_byte(f) << 16;
4311 v |= qemu_get_byte(f) << 8;
4312 v |= qemu_get_byte(f);
4313 return v;
4314 }
4315
4316 uint64_t qemu_get_be64(QEMUFile *f)
4317 {
4318 uint64_t v;
4319 v = (uint64_t)qemu_get_be32(f) << 32;
4320 v |= qemu_get_be32(f);
4321 return v;
4322 }
4323
4324 typedef struct SaveStateEntry {
4325 char idstr[256];
4326 int instance_id;
4327 int version_id;
4328 SaveStateHandler *save_state;
4329 LoadStateHandler *load_state;
4330 void *opaque;
4331 struct SaveStateEntry *next;
4332 } SaveStateEntry;
4333
4334 static SaveStateEntry *first_se;
4335
4336 int register_savevm(const char *idstr,
4337 int instance_id,
4338 int version_id,
4339 SaveStateHandler *save_state,
4340 LoadStateHandler *load_state,
4341 void *opaque)
4342 {
4343 SaveStateEntry *se, **pse;
4344
4345 se = qemu_malloc(sizeof(SaveStateEntry));
4346 if (!se)
4347 return -1;
4348 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4349 se->instance_id = instance_id;
4350 se->version_id = version_id;
4351 se->save_state = save_state;
4352 se->load_state = load_state;
4353 se->opaque = opaque;
4354 se->next = NULL;
4355
4356 /* add at the end of list */
4357 pse = &first_se;
4358 while (*pse != NULL)
4359 pse = &(*pse)->next;
4360 *pse = se;
4361 return 0;
4362 }
4363
4364 #define QEMU_VM_FILE_MAGIC 0x5145564d
4365 #define QEMU_VM_FILE_VERSION 0x00000002
4366
4367 int qemu_savevm_state(QEMUFile *f)
4368 {
4369 SaveStateEntry *se;
4370 int len, ret;
4371 int64_t cur_pos, len_pos, total_len_pos;
4372
4373 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4374 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4375 total_len_pos = qemu_ftell(f);
4376 qemu_put_be64(f, 0); /* total size */
4377
4378 for(se = first_se; se != NULL; se = se->next) {
4379 /* ID string */
4380 len = strlen(se->idstr);
4381 qemu_put_byte(f, len);
4382 qemu_put_buffer(f, se->idstr, len);
4383
4384 qemu_put_be32(f, se->instance_id);
4385 qemu_put_be32(f, se->version_id);
4386
4387 /* record size: filled later */
4388 len_pos = qemu_ftell(f);
4389 qemu_put_be32(f, 0);
4390
4391 se->save_state(f, se->opaque);
4392
4393 /* fill record size */
4394 cur_pos = qemu_ftell(f);
4395 len = cur_pos - len_pos - 4;
4396 qemu_fseek(f, len_pos, SEEK_SET);
4397 qemu_put_be32(f, len);
4398 qemu_fseek(f, cur_pos, SEEK_SET);
4399 }
4400 cur_pos = qemu_ftell(f);
4401 qemu_fseek(f, total_len_pos, SEEK_SET);
4402 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4403 qemu_fseek(f, cur_pos, SEEK_SET);
4404
4405 ret = 0;
4406 return ret;
4407 }
4408
4409 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4410 {
4411 SaveStateEntry *se;
4412
4413 for(se = first_se; se != NULL; se = se->next) {
4414 if (!strcmp(se->idstr, idstr) &&
4415 instance_id == se->instance_id)
4416 return se;
4417 }
4418 return NULL;
4419 }
4420
4421 int qemu_loadvm_state(QEMUFile *f)
4422 {
4423 SaveStateEntry *se;
4424 int len, ret, instance_id, record_len, version_id;
4425 int64_t total_len, end_pos, cur_pos;
4426 unsigned int v;
4427 char idstr[256];
4428
4429 v = qemu_get_be32(f);
4430 if (v != QEMU_VM_FILE_MAGIC)
4431 goto fail;
4432 v = qemu_get_be32(f);
4433 if (v != QEMU_VM_FILE_VERSION) {
4434 fail:
4435 ret = -1;
4436 goto the_end;
4437 }
4438 total_len = qemu_get_be64(f);
4439 end_pos = total_len + qemu_ftell(f);
4440 for(;;) {
4441 if (qemu_ftell(f) >= end_pos)
4442 break;
4443 len = qemu_get_byte(f);
4444 qemu_get_buffer(f, idstr, len);
4445 idstr[len] = '\0';
4446 instance_id = qemu_get_be32(f);
4447 version_id = qemu_get_be32(f);
4448 record_len = qemu_get_be32(f);
4449 #if 0
4450 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4451 idstr, instance_id, version_id, record_len);
4452 #endif
4453 cur_pos = qemu_ftell(f);
4454 se = find_se(idstr, instance_id);
4455 if (!se) {
4456 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4457 instance_id, idstr);
4458 } else {
4459 ret = se->load_state(f, se->opaque, version_id);
4460 if (ret < 0) {
4461 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4462 instance_id, idstr);
4463 }
4464 }
4465 /* always seek to exact end of record */
4466 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4467 }
4468 ret = 0;
4469 the_end:
4470 return ret;
4471 }
4472
4473 /* device can contain snapshots */
4474 static int bdrv_can_snapshot(BlockDriverState *bs)
4475 {
4476 return (bs &&
4477 !bdrv_is_removable(bs) &&
4478 !bdrv_is_read_only(bs));
4479 }
4480
4481 /* device must be snapshots in order to have a reliable snapshot */
4482 static int bdrv_has_snapshot(BlockDriverState *bs)
4483 {
4484 return (bs &&
4485 !bdrv_is_removable(bs) &&
4486 !bdrv_is_read_only(bs));
4487 }
4488
4489 static BlockDriverState *get_bs_snapshots(void)
4490 {
4491 BlockDriverState *bs;
4492 int i;
4493
4494 if (bs_snapshots)
4495 return bs_snapshots;
4496 for(i = 0; i <= MAX_DISKS; i++) {
4497 bs = bs_table[i];
4498 if (bdrv_can_snapshot(bs))
4499 goto ok;
4500 }
4501 return NULL;
4502 ok:
4503 bs_snapshots = bs;
4504 return bs;
4505 }
4506
4507 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
4508 const char *name)
4509 {
4510 QEMUSnapshotInfo *sn_tab, *sn;
4511 int nb_sns, i, ret;
4512
4513 ret = -ENOENT;
4514 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
4515 if (nb_sns < 0)
4516 return ret;
4517 for(i = 0; i < nb_sns; i++) {
4518 sn = &sn_tab[i];
4519 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
4520 *sn_info = *sn;
4521 ret = 0;
4522 break;
4523 }
4524 }
4525 qemu_free(sn_tab);
4526 return ret;
4527 }
4528
4529 void do_savevm(const char *name)
4530 {
4531 BlockDriverState *bs, *bs1;
4532 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
4533 int must_delete, ret, i;
4534 BlockDriverInfo bdi1, *bdi = &bdi1;
4535 QEMUFile *f;
4536 int saved_vm_running;
4537 struct timeval tv;
4538
4539 bs = get_bs_snapshots();
4540 if (!bs) {
4541 term_printf("No block device can accept snapshots\n");
4542 return;
4543 }
4544
4545 saved_vm_running = vm_running;
4546 vm_stop(0);
4547
4548 must_delete = 0;
4549 if (name) {
4550 ret = bdrv_snapshot_find(bs, old_sn, name);
4551 if (ret >= 0) {
4552 must_delete = 1;
4553 }
4554 }
4555 memset(sn, 0, sizeof(*sn));
4556 if (must_delete) {
4557 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
4558 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
4559 } else {
4560 if (name)
4561 pstrcpy(sn->name, sizeof(sn->name), name);
4562 }
4563
4564 /* fill auxiliary fields */
4565 gettimeofday(&tv, NULL);
4566 sn->date_sec = tv.tv_sec;
4567 sn->date_nsec = tv.tv_usec * 1000;
4568 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
4569
4570 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
4571 term_printf("Device %s does not support VM state snapshots\n",
4572 bdrv_get_device_name(bs));
4573 goto the_end;
4574 }
4575
4576 /* save the VM state */
4577 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
4578 if (!f) {
4579 term_printf("Could not open VM state file\n");
4580 goto the_end;
4581 }
4582 ret = qemu_savevm_state(f);
4583 sn->vm_state_size = qemu_ftell(f);
4584 qemu_fclose(f);
4585 if (ret < 0) {
4586 term_printf("Error %d while writing VM\n", ret);
4587 goto the_end;
4588 }
4589
4590 /* create the snapshots */
4591
4592 for(i = 0; i < MAX_DISKS; i++) {
4593 bs1 = bs_table[i];
4594 if (bdrv_has_snapshot(bs1)) {
4595 if (must_delete) {
4596 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
4597 if (ret < 0) {
4598 term_printf("Error while deleting snapshot on '%s'\n",
4599 bdrv_get_device_name(bs1));
4600 }
4601 }
4602 ret = bdrv_snapshot_create(bs1, sn);
4603 if (ret < 0) {
4604 term_printf("Error while creating snapshot on '%s'\n",
4605 bdrv_get_device_name(bs1));
4606 }
4607 }
4608 }
4609
4610 the_end:
4611 if (saved_vm_running)
4612 vm_start();
4613 }
4614
4615 void do_loadvm(const char *name)
4616 {
4617 BlockDriverState *bs, *bs1;
4618 BlockDriverInfo bdi1, *bdi = &bdi1;
4619 QEMUFile *f;
4620 int i, ret;
4621 int saved_vm_running;
4622
4623 bs = get_bs_snapshots();
4624 if (!bs) {
4625 term_printf("No block device supports snapshots\n");
4626 return;
4627 }
4628
4629 saved_vm_running = vm_running;
4630 vm_stop(0);
4631
4632 for(i = 0; i <= MAX_DISKS; i++) {
4633 bs1 = bs_table[i];
4634 if (bdrv_has_snapshot(bs1)) {
4635 ret = bdrv_snapshot_goto(bs1, name);
4636 if (ret < 0) {
4637 if (bs != bs1)
4638 term_printf("Warning: ");
4639 switch(ret) {
4640 case -ENOTSUP:
4641 term_printf("Snapshots not supported on device '%s'\n",
4642 bdrv_get_device_name(bs1));
4643 break;
4644 case -ENOENT:
4645 term_printf("Could not find snapshot '%s' on device '%s'\n",
4646 name, bdrv_get_device_name(bs1));
4647 break;
4648 default:
4649 term_printf("Error %d while activating snapshot on '%s'\n",
4650 ret, bdrv_get_device_name(bs1));
4651 break;
4652 }
4653 /* fatal on snapshot block device */
4654 if (bs == bs1)
4655 goto the_end;
4656 }
4657 }
4658 }
4659
4660 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
4661 term_printf("Device %s does not support VM state snapshots\n",
4662 bdrv_get_device_name(bs));
4663 return;
4664 }
4665
4666 /* restore the VM state */
4667 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
4668 if (!f) {
4669 term_printf("Could not open VM state file\n");
4670 goto the_end;
4671 }
4672 ret = qemu_loadvm_state(f);
4673 qemu_fclose(f);
4674 if (ret < 0) {
4675 term_printf("Error %d while loading VM state\n", ret);
4676 }
4677 the_end:
4678 if (saved_vm_running)
4679 vm_start();
4680 }
4681
4682 void do_delvm(const char *name)
4683 {
4684 BlockDriverState *bs, *bs1;
4685 int i, ret;
4686
4687 bs = get_bs_snapshots();
4688 if (!bs) {
4689 term_printf("No block device supports snapshots\n");
4690 return;
4691 }
4692
4693 for(i = 0; i <= MAX_DISKS; i++) {
4694 bs1 = bs_table[i];
4695 if (bdrv_has_snapshot(bs1)) {
4696 ret = bdrv_snapshot_delete(bs1, name);
4697 if (ret < 0) {
4698 if (ret == -ENOTSUP)
4699 term_printf("Snapshots not supported on device '%s'\n",
4700 bdrv_get_device_name(bs1));
4701 else
4702 term_printf("Error %d while deleting snapshot on '%s'\n",
4703 ret, bdrv_get_device_name(bs1));
4704 }
4705 }
4706 }
4707 }
4708
4709 void do_info_snapshots(void)
4710 {
4711 BlockDriverState *bs, *bs1;
4712 QEMUSnapshotInfo *sn_tab, *sn;
4713 int nb_sns, i;
4714 char buf[256];
4715
4716 bs = get_bs_snapshots();
4717 if (!bs) {
4718 term_printf("No available block device supports snapshots\n");
4719 return;
4720 }
4721 term_printf("Snapshot devices:");
4722 for(i = 0; i <= MAX_DISKS; i++) {
4723 bs1 = bs_table[i];
4724 if (bdrv_has_snapshot(bs1)) {
4725 if (bs == bs1)
4726 term_printf(" %s", bdrv_get_device_name(bs1));
4727 }
4728 }
4729 term_printf("\n");
4730
4731 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
4732 if (nb_sns < 0) {
4733 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
4734 return;
4735 }
4736 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
4737 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
4738 for(i = 0; i < nb_sns; i++) {
4739 sn = &sn_tab[i];
4740 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
4741 }
4742 qemu_free(sn_tab);
4743 }
4744
4745 /***********************************************************/
4746 /* cpu save/restore */
4747
4748 #if defined(TARGET_I386)
4749
4750 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
4751 {
4752 qemu_put_be32(f, dt->selector);
4753 qemu_put_betl(f, dt->base);
4754 qemu_put_be32(f, dt->limit);
4755 qemu_put_be32(f, dt->flags);
4756 }
4757
4758 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
4759 {
4760 dt->selector = qemu_get_be32(f);
4761 dt->base = qemu_get_betl(f);
4762 dt->limit = qemu_get_be32(f);
4763 dt->flags = qemu_get_be32(f);
4764 }
4765
4766 void cpu_save(QEMUFile *f, void *opaque)
4767 {
4768 CPUState *env = opaque;
4769 uint16_t fptag, fpus, fpuc, fpregs_format;
4770 uint32_t hflags;
4771 int i;
4772
4773 for(i = 0; i < CPU_NB_REGS; i++)
4774 qemu_put_betls(f, &env->regs[i]);
4775 qemu_put_betls(f, &env->eip);
4776 qemu_put_betls(f, &env->eflags);
4777 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
4778 qemu_put_be32s(f, &hflags);
4779
4780 /* FPU */
4781 fpuc = env->fpuc;
4782 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4783 fptag = 0;
4784 for(i = 0; i < 8; i++) {
4785 fptag |= ((!env->fptags[i]) << i);
4786 }
4787
4788 qemu_put_be16s(f, &fpuc);
4789 qemu_put_be16s(f, &fpus);
4790 qemu_put_be16s(f, &fptag);
4791
4792 #ifdef USE_X86LDOUBLE
4793 fpregs_format = 0;
4794 #else
4795 fpregs_format = 1;
4796 #endif
4797 qemu_put_be16s(f, &fpregs_format);
4798
4799 for(i = 0; i < 8; i++) {
4800 #ifdef USE_X86LDOUBLE
4801 {
4802 uint64_t mant;
4803 uint16_t exp;
4804 /* we save the real CPU data (in case of MMX usage only 'mant'
4805 contains the MMX register */
4806 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
4807 qemu_put_be64(f, mant);
4808 qemu_put_be16(f, exp);
4809 }
4810 #else
4811 /* if we use doubles for float emulation, we save the doubles to
4812 avoid losing information in case of MMX usage. It can give
4813 problems if the image is restored on a CPU where long
4814 doubles are used instead. */
4815 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
4816 #endif
4817 }
4818
4819 for(i = 0; i < 6; i++)
4820 cpu_put_seg(f, &env->segs[i]);
4821 cpu_put_seg(f, &env->ldt);
4822 cpu_put_seg(f, &env->tr);
4823 cpu_put_seg(f, &env->gdt);
4824 cpu_put_seg(f, &env->idt);
4825
4826 qemu_put_be32s(f, &env->sysenter_cs);
4827 qemu_put_be32s(f, &env->sysenter_esp);
4828 qemu_put_be32s(f, &env->sysenter_eip);
4829
4830 qemu_put_betls(f, &env->cr[0]);
4831 qemu_put_betls(f, &env->cr[2]);
4832 qemu_put_betls(f, &env->cr[3]);
4833 qemu_put_betls(f, &env->cr[4]);
4834
4835 for(i = 0; i < 8; i++)
4836 qemu_put_betls(f, &env->dr[i]);
4837
4838 /* MMU */
4839 qemu_put_be32s(f, &env->a20_mask);
4840
4841 /* XMM */
4842 qemu_put_be32s(f, &env->mxcsr);
4843 for(i = 0; i < CPU_NB_REGS; i++) {
4844 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
4845 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
4846 }
4847
4848 #ifdef TARGET_X86_64
4849 qemu_put_be64s(f, &env->efer);
4850 qemu_put_be64s(f, &env->star);
4851 qemu_put_be64s(f, &env->lstar);
4852 qemu_put_be64s(f, &env->cstar);
4853 qemu_put_be64s(f, &env->fmask);
4854 qemu_put_be64s(f, &env->kernelgsbase);
4855 #endif
4856 }
4857
4858 #ifdef USE_X86LDOUBLE
4859 /* XXX: add that in a FPU generic layer */
4860 union x86_longdouble {
4861 uint64_t mant;
4862 uint16_t exp;
4863 };
4864
4865 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
4866 #define EXPBIAS1 1023
4867 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
4868 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
4869
4870 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
4871 {
4872 int e;
4873 /* mantissa */
4874 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
4875 /* exponent + sign */
4876 e = EXPD1(temp) - EXPBIAS1 + 16383;
4877 e |= SIGND1(temp) >> 16;
4878 p->exp = e;
4879 }
4880 #endif
4881
4882 int cpu_load(QEMUFile *f, void *opaque, int version_id)
4883 {
4884 CPUState *env = opaque;
4885 int i, guess_mmx;
4886 uint32_t hflags;
4887 uint16_t fpus, fpuc, fptag, fpregs_format;
4888
4889 if (version_id != 3)
4890 return -EINVAL;
4891 for(i = 0; i < CPU_NB_REGS; i++)
4892 qemu_get_betls(f, &env->regs[i]);
4893 qemu_get_betls(f, &env->eip);
4894 qemu_get_betls(f, &env->eflags);
4895 qemu_get_be32s(f, &hflags);
4896
4897 qemu_get_be16s(f, &fpuc);
4898 qemu_get_be16s(f, &fpus);
4899 qemu_get_be16s(f, &fptag);
4900 qemu_get_be16s(f, &fpregs_format);
4901
4902 /* NOTE: we cannot always restore the FPU state if the image come
4903 from a host with a different 'USE_X86LDOUBLE' define. We guess
4904 if we are in an MMX state to restore correctly in that case. */
4905 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
4906 for(i = 0; i < 8; i++) {
4907 uint64_t mant;
4908 uint16_t exp;
4909
4910 switch(fpregs_format) {
4911 case 0:
4912 mant = qemu_get_be64(f);
4913 exp = qemu_get_be16(f);
4914 #ifdef USE_X86LDOUBLE
4915 env->fpregs[i].d = cpu_set_fp80(mant, exp);
4916 #else
4917 /* difficult case */
4918 if (guess_mmx)
4919 env->fpregs[i].mmx.MMX_Q(0) = mant;
4920 else
4921 env->fpregs[i].d = cpu_set_fp80(mant, exp);
4922 #endif
4923 break;
4924 case 1:
4925 mant = qemu_get_be64(f);
4926 #ifdef USE_X86LDOUBLE
4927 {
4928 union x86_longdouble *p;
4929 /* difficult case */
4930 p = (void *)&env->fpregs[i];
4931 if (guess_mmx) {
4932 p->mant = mant;
4933 p->exp = 0xffff;
4934 } else {
4935 fp64_to_fp80(p, mant);
4936 }
4937 }
4938 #else
4939 env->fpregs[i].mmx.MMX_Q(0) = mant;
4940 #endif
4941 break;
4942 default:
4943 return -EINVAL;
4944 }
4945 }
4946
4947 env->fpuc = fpuc;
4948 /* XXX: restore FPU round state */
4949 env->fpstt = (fpus >> 11) & 7;
4950 env->fpus = fpus & ~0x3800;
4951 fptag ^= 0xff;
4952 for(i = 0; i < 8; i++) {
4953 env->fptags[i] = (fptag >> i) & 1;
4954 }
4955
4956 for(i = 0; i < 6; i++)
4957 cpu_get_seg(f, &env->segs[i]);
4958 cpu_get_seg(f, &env->ldt);
4959 cpu_get_seg(f, &env->tr);
4960 cpu_get_seg(f, &env->gdt);
4961 cpu_get_seg(f, &env->idt);
4962
4963 qemu_get_be32s(f, &env->sysenter_cs);
4964 qemu_get_be32s(f, &env->sysenter_esp);
4965 qemu_get_be32s(f, &env->sysenter_eip);
4966
4967 qemu_get_betls(f, &env->cr[0]);
4968 qemu_get_betls(f, &env->cr[2]);
4969 qemu_get_betls(f, &env->cr[3]);
4970 qemu_get_betls(f, &env->cr[4]);
4971
4972 for(i = 0; i < 8; i++)
4973 qemu_get_betls(f, &env->dr[i]);
4974
4975 /* MMU */
4976 qemu_get_be32s(f, &env->a20_mask);
4977
4978 qemu_get_be32s(f, &env->mxcsr);
4979 for(i = 0; i < CPU_NB_REGS; i++) {
4980 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
4981 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
4982 }
4983
4984 #ifdef TARGET_X86_64
4985 qemu_get_be64s(f, &env->efer);
4986 qemu_get_be64s(f, &env->star);
4987 qemu_get_be64s(f, &env->lstar);
4988 qemu_get_be64s(f, &env->cstar);
4989 qemu_get_be64s(f, &env->fmask);
4990 qemu_get_be64s(f, &env->kernelgsbase);
4991 #endif
4992
4993 /* XXX: compute hflags from scratch, except for CPL and IIF */
4994 env->hflags = hflags;
4995 tlb_flush(env, 1);
4996 return 0;
4997 }
4998
4999 #elif defined(TARGET_PPC)
5000 void cpu_save(QEMUFile *f, void *opaque)
5001 {
5002 }
5003
5004 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5005 {
5006 return 0;
5007 }
5008
5009 #elif defined(TARGET_MIPS)
5010 void cpu_save(QEMUFile *f, void *opaque)
5011 {
5012 }
5013
5014 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5015 {
5016 return 0;
5017 }
5018
5019 #elif defined(TARGET_SPARC)
5020 void cpu_save(QEMUFile *f, void *opaque)
5021 {
5022 CPUState *env = opaque;
5023 int i;
5024 uint32_t tmp;
5025
5026 for(i = 0; i < 8; i++)
5027 qemu_put_betls(f, &env->gregs[i]);
5028 for(i = 0; i < NWINDOWS * 16; i++)
5029 qemu_put_betls(f, &env->regbase[i]);
5030
5031 /* FPU */
5032 for(i = 0; i < TARGET_FPREGS; i++) {
5033 union {
5034 float32 f;
5035 uint32_t i;
5036 } u;
5037 u.f = env->fpr[i];
5038 qemu_put_be32(f, u.i);
5039 }
5040
5041 qemu_put_betls(f, &env->pc);
5042 qemu_put_betls(f, &env->npc);
5043 qemu_put_betls(f, &env->y);
5044 tmp = GET_PSR(env);
5045 qemu_put_be32(f, tmp);
5046 qemu_put_betls(f, &env->fsr);
5047 qemu_put_betls(f, &env->tbr);
5048 #ifndef TARGET_SPARC64
5049 qemu_put_be32s(f, &env->wim);
5050 /* MMU */
5051 for(i = 0; i < 16; i++)
5052 qemu_put_be32s(f, &env->mmuregs[i]);
5053 #endif
5054 }
5055
5056 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5057 {
5058 CPUState *env = opaque;
5059 int i;
5060 uint32_t tmp;
5061
5062 for(i = 0; i < 8; i++)
5063 qemu_get_betls(f, &env->gregs[i]);
5064 for(i = 0; i < NWINDOWS * 16; i++)
5065 qemu_get_betls(f, &env->regbase[i]);
5066
5067 /* FPU */
5068 for(i = 0; i < TARGET_FPREGS; i++) {
5069 union {
5070 float32 f;
5071 uint32_t i;
5072 } u;
5073 u.i = qemu_get_be32(f);
5074 env->fpr[i] = u.f;
5075 }
5076
5077 qemu_get_betls(f, &env->pc);
5078 qemu_get_betls(f, &env->npc);
5079 qemu_get_betls(f, &env->y);
5080 tmp = qemu_get_be32(f);
5081 env->cwp = 0; /* needed to ensure that the wrapping registers are
5082 correctly updated */
5083 PUT_PSR(env, tmp);
5084 qemu_get_betls(f, &env->fsr);
5085 qemu_get_betls(f, &env->tbr);
5086 #ifndef TARGET_SPARC64
5087 qemu_get_be32s(f, &env->wim);
5088 /* MMU */
5089 for(i = 0; i < 16; i++)
5090 qemu_get_be32s(f, &env->mmuregs[i]);
5091 #endif
5092 tlb_flush(env, 1);
5093 return 0;
5094 }
5095
5096 #elif defined(TARGET_ARM)
5097
5098 /* ??? Need to implement these. */
5099 void cpu_save(QEMUFile *f, void *opaque)
5100 {
5101 }
5102
5103 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5104 {
5105 return 0;
5106 }
5107
5108 #else
5109
5110 #warning No CPU save/restore functions
5111
5112 #endif
5113
5114 /***********************************************************/
5115 /* ram save/restore */
5116
5117 /* we just avoid storing empty pages */
5118 static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
5119 {
5120 int i, v;
5121
5122 v = buf[0];
5123 for(i = 1; i < len; i++) {
5124 if (buf[i] != v)
5125 goto normal_save;
5126 }
5127 qemu_put_byte(f, 1);
5128 qemu_put_byte(f, v);
5129 return;
5130 normal_save:
5131 qemu_put_byte(f, 0);
5132 qemu_put_buffer(f, buf, len);
5133 }
5134
5135 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5136 {
5137 int v;
5138
5139 v = qemu_get_byte(f);
5140 switch(v) {
5141 case 0:
5142 if (qemu_get_buffer(f, buf, len) != len)
5143 return -EIO;
5144 break;
5145 case 1:
5146 v = qemu_get_byte(f);
5147 memset(buf, v, len);
5148 break;
5149 default:
5150 return -EINVAL;
5151 }
5152 return 0;
5153 }
5154
5155 static void ram_save(QEMUFile *f, void *opaque)
5156 {
5157 int i;
5158 qemu_put_be32(f, phys_ram_size);
5159 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5160 ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5161 }
5162 }
5163
5164 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5165 {
5166 int i, ret;
5167
5168 if (version_id != 1)
5169 return -EINVAL;
5170 if (qemu_get_be32(f) != phys_ram_size)
5171 return -EINVAL;
5172 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5173 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5174 if (ret)
5175 return ret;
5176 }
5177 return 0;
5178 }
5179
5180 /***********************************************************/
5181 /* bottom halves (can be seen as timers which expire ASAP) */
5182
5183 struct QEMUBH {
5184 QEMUBHFunc *cb;
5185 void *opaque;
5186 int scheduled;
5187 QEMUBH *next;
5188 };
5189
5190 static QEMUBH *first_bh = NULL;
5191
5192 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5193 {
5194 QEMUBH *bh;
5195 bh = qemu_mallocz(sizeof(QEMUBH));
5196 if (!bh)
5197 return NULL;
5198 bh->cb = cb;
5199 bh->opaque = opaque;
5200 return bh;
5201 }
5202
5203 void qemu_bh_poll(void)
5204 {
5205 QEMUBH *bh, **pbh;
5206
5207 for(;;) {
5208 pbh = &first_bh;
5209 bh = *pbh;
5210 if (!bh)
5211 break;
5212 *pbh = bh->next;
5213 bh->scheduled = 0;
5214 bh->cb(bh->opaque);
5215 }
5216 }
5217
5218 void qemu_bh_schedule(QEMUBH *bh)
5219 {
5220 CPUState *env = cpu_single_env;
5221 if (bh->scheduled)
5222 return;
5223 bh->scheduled = 1;
5224 bh->next = first_bh;
5225 first_bh = bh;
5226
5227 /* stop the currently executing CPU to execute the BH ASAP */
5228 if (env) {
5229 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5230 }
5231 }
5232
5233 void qemu_bh_cancel(QEMUBH *bh)
5234 {
5235 QEMUBH **pbh;
5236 if (bh->scheduled) {
5237 pbh = &first_bh;
5238 while (*pbh != bh)
5239 pbh = &(*pbh)->next;
5240 *pbh = bh->next;
5241 bh->scheduled = 0;
5242 }
5243 }
5244
5245 void qemu_bh_delete(QEMUBH *bh)
5246 {
5247 qemu_bh_cancel(bh);
5248 qemu_free(bh);
5249 }
5250
5251 /***********************************************************/
5252 /* machine registration */
5253
5254 QEMUMachine *first_machine = NULL;
5255
5256 int qemu_register_machine(QEMUMachine *m)
5257 {
5258 QEMUMachine **pm;
5259 pm = &first_machine;
5260 while (*pm != NULL)
5261 pm = &(*pm)->next;
5262 m->next = NULL;
5263 *pm = m;
5264 return 0;
5265 }
5266
5267 QEMUMachine *find_machine(const char *name)
5268 {
5269 QEMUMachine *m;
5270
5271 for(m = first_machine; m != NULL; m = m->next) {
5272 if (!strcmp(m->name, name))
5273 return m;
5274 }
5275 return NULL;
5276 }
5277
5278 /***********************************************************/
5279 /* main execution loop */
5280
5281 void gui_update(void *opaque)
5282 {
5283 display_state.dpy_refresh(&display_state);
5284 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
5285 }
5286
5287 struct vm_change_state_entry {
5288 VMChangeStateHandler *cb;
5289 void *opaque;
5290 LIST_ENTRY (vm_change_state_entry) entries;
5291 };
5292
5293 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
5294
5295 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
5296 void *opaque)
5297 {
5298 VMChangeStateEntry *e;
5299
5300 e = qemu_mallocz(sizeof (*e));
5301 if (!e)
5302 return NULL;
5303
5304 e->cb = cb;
5305 e->opaque = opaque;
5306 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
5307 return e;
5308 }
5309
5310 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
5311 {
5312 LIST_REMOVE (e, entries);
5313 qemu_free (e);
5314 }
5315
5316 static void vm_state_notify(int running)
5317 {
5318 VMChangeStateEntry *e;
5319
5320 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
5321 e->cb(e->opaque, running);
5322 }
5323 }
5324
5325 /* XXX: support several handlers */
5326 static VMStopHandler *vm_stop_cb;
5327 static void *vm_stop_opaque;
5328
5329 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
5330 {
5331 vm_stop_cb = cb;
5332 vm_stop_opaque = opaque;
5333 return 0;
5334 }
5335
5336 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
5337 {
5338 vm_stop_cb = NULL;
5339 }
5340
5341 void vm_start(void)
5342 {
5343 if (!vm_running) {
5344 cpu_enable_ticks();
5345 vm_running = 1;
5346 vm_state_notify(1);
5347 }
5348 }
5349
5350 void vm_stop(int reason)
5351 {
5352 if (vm_running) {
5353 cpu_disable_ticks();
5354 vm_running = 0;
5355 if (reason != 0) {
5356 if (vm_stop_cb) {
5357 vm_stop_cb(vm_stop_opaque, reason);
5358 }
5359 }
5360 vm_state_notify(0);
5361 }
5362 }
5363
5364 /* reset/shutdown handler */
5365
5366 typedef struct QEMUResetEntry {
5367 QEMUResetHandler *func;
5368 void *opaque;
5369 struct QEMUResetEntry *next;
5370 } QEMUResetEntry;
5371
5372 static QEMUResetEntry *first_reset_entry;
5373 static int reset_requested;
5374 static int shutdown_requested;
5375 static int powerdown_requested;
5376
5377 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
5378 {
5379 QEMUResetEntry **pre, *re;
5380
5381 pre = &first_reset_entry;
5382 while (*pre != NULL)
5383 pre = &(*pre)->next;
5384 re = qemu_mallocz(sizeof(QEMUResetEntry));
5385 re->func = func;
5386 re->opaque = opaque;
5387 re->next = NULL;
5388 *pre = re;
5389 }
5390
5391 void qemu_system_reset(void)
5392 {
5393 QEMUResetEntry *re;
5394
5395 /* reset all devices */
5396 for(re = first_reset_entry; re != NULL; re = re->next) {
5397 re->func(re->opaque);
5398 }
5399 }
5400
5401 void qemu_system_reset_request(void)
5402 {
5403 reset_requested = 1;
5404 if (cpu_single_env)
5405 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5406 }
5407
5408 void qemu_system_shutdown_request(void)
5409 {
5410 shutdown_requested = 1;
5411 if (cpu_single_env)
5412 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5413 }
5414
5415 void qemu_system_powerdown_request(void)
5416 {
5417 powerdown_requested = 1;
5418 if (cpu_single_env)
5419 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5420 }
5421
5422 void main_loop_wait(int timeout)
5423 {
5424 IOHandlerRecord *ioh, *ioh_next;
5425 fd_set rfds, wfds, xfds;
5426 int ret, nfds;
5427 struct timeval tv;
5428 PollingEntry *pe;
5429
5430
5431 /* XXX: need to suppress polling by better using win32 events */
5432 ret = 0;
5433 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
5434 ret |= pe->func(pe->opaque);
5435 }
5436 #ifdef _WIN32
5437 if (ret == 0 && timeout > 0) {
5438 int err;
5439 WaitObjects *w = &wait_objects;
5440
5441 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
5442 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
5443 if (w->func[ret - WAIT_OBJECT_0])
5444 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
5445 } else if (ret == WAIT_TIMEOUT) {
5446 } else {
5447 err = GetLastError();
5448 fprintf(stderr, "Wait error %d %d\n", ret, err);
5449 }
5450 }
5451 #endif
5452 /* poll any events */
5453 /* XXX: separate device handlers from system ones */
5454 nfds = -1;
5455 FD_ZERO(&rfds);
5456 FD_ZERO(&wfds);
5457 FD_ZERO(&xfds);
5458 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5459 if (ioh->fd_read &&
5460 (!ioh->fd_read_poll ||
5461 ioh->fd_read_poll(ioh->opaque) != 0)) {
5462 FD_SET(ioh->fd, &rfds);
5463 if (ioh->fd > nfds)
5464 nfds = ioh->fd;
5465 }
5466 if (ioh->fd_write) {
5467 FD_SET(ioh->fd, &wfds);
5468 if (ioh->fd > nfds)
5469 nfds = ioh->fd;
5470 }
5471 }
5472
5473 tv.tv_sec = 0;
5474 #ifdef _WIN32
5475 tv.tv_usec = 0;
5476 #else
5477 tv.tv_usec = timeout * 1000;
5478 #endif
5479 #if defined(CONFIG_SLIRP)
5480 if (slirp_inited) {
5481 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
5482 }
5483 #endif
5484 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
5485 if (ret > 0) {
5486 /* XXX: better handling of removal */
5487 for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
5488 ioh_next = ioh->next;
5489 if (FD_ISSET(ioh->fd, &rfds)) {
5490 ioh->fd_read(ioh->opaque);
5491 }
5492 if (FD_ISSET(ioh->fd, &wfds)) {
5493 ioh->fd_write(ioh->opaque);
5494 }
5495 }
5496 }
5497 #if defined(CONFIG_SLIRP)
5498 if (slirp_inited) {
5499 if (ret < 0) {
5500 FD_ZERO(&rfds);
5501 FD_ZERO(&wfds);
5502 FD_ZERO(&xfds);
5503 }
5504 slirp_select_poll(&rfds, &wfds, &xfds);
5505 }
5506 #endif
5507 #ifdef _WIN32
5508 tap_win32_poll();
5509 #endif
5510 qemu_aio_poll();
5511 qemu_bh_poll();
5512
5513 if (vm_running) {
5514 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
5515 qemu_get_clock(vm_clock));
5516 /* run dma transfers, if any */
5517 DMA_run();
5518 }
5519
5520 /* real time timers */
5521 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
5522 qemu_get_clock(rt_clock));
5523 }
5524
5525 static CPUState *cur_cpu;
5526
5527 int main_loop(void)
5528 {
5529 int ret, timeout;
5530 #ifdef CONFIG_PROFILER
5531 int64_t ti;
5532 #endif
5533 CPUState *env;
5534
5535 cur_cpu = first_cpu;
5536 for(;;) {
5537 if (vm_running) {
5538
5539 env = cur_cpu;
5540 for(;;) {
5541 /* get next cpu */
5542 env = env->next_cpu;
5543 if (!env)
5544 env = first_cpu;
5545 #ifdef CONFIG_PROFILER
5546 ti = profile_getclock();
5547 #endif
5548 ret = cpu_exec(env);
5549 #ifdef CONFIG_PROFILER
5550 qemu_time += profile_getclock() - ti;
5551 #endif
5552 if (ret != EXCP_HALTED)
5553 break;
5554 /* all CPUs are halted ? */
5555 if (env == cur_cpu) {
5556 ret = EXCP_HLT;
5557 break;
5558 }
5559 }
5560 cur_cpu = env;
5561
5562 if (shutdown_requested) {
5563 ret = EXCP_INTERRUPT;
5564 break;
5565 }
5566 if (reset_requested) {
5567 reset_requested = 0;
5568 qemu_system_reset();
5569 ret = EXCP_INTERRUPT;
5570 }
5571 if (powerdown_requested) {
5572 powerdown_requested = 0;
5573 qemu_system_powerdown();
5574 ret = EXCP_INTERRUPT;
5575 }
5576 if (ret == EXCP_DEBUG) {
5577 vm_stop(EXCP_DEBUG);
5578 }
5579 /* if hlt instruction, we wait until the next IRQ */
5580 /* XXX: use timeout computed from timers */
5581 if (ret == EXCP_HLT)
5582 timeout = 10;
5583 else
5584 timeout = 0;
5585 } else {
5586 timeout = 10;
5587 }
5588 #ifdef CONFIG_PROFILER
5589 ti = profile_getclock();
5590 #endif
5591 main_loop_wait(timeout);
5592 #ifdef CONFIG_PROFILER
5593 dev_time += profile_getclock() - ti;
5594 #endif
5595 }
5596 cpu_disable_ticks();
5597 return ret;
5598 }
5599
5600 void help(void)
5601 {
5602 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2005 Fabrice Bellard\n"
5603 "usage: %s [options] [disk_image]\n"
5604 "\n"
5605 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
5606 "\n"
5607 "Standard options:\n"
5608 "-M machine select emulated machine (-M ? for list)\n"
5609 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
5610 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
5611 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
5612 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
5613 "-boot [a|c|d] boot on floppy (a), hard disk (c) or CD-ROM (d)\n"
5614 "-snapshot write to temporary files instead of disk image files\n"
5615 #ifdef TARGET_I386
5616 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
5617 #endif
5618 "-m megs set virtual RAM size to megs MB [default=%d]\n"
5619 "-smp n set the number of CPUs to 'n' [default=1]\n"
5620 "-nographic disable graphical output and redirect serial I/Os to console\n"
5621 #ifndef _WIN32
5622 "-k language use keyboard layout (for example \"fr\" for French)\n"
5623 #endif
5624 #ifdef HAS_AUDIO
5625 "-audio-help print list of audio drivers and their options\n"
5626 "-soundhw c1,... enable audio support\n"
5627 " and only specified sound cards (comma separated list)\n"
5628 " use -soundhw ? to get the list of supported cards\n"
5629 " use -soundhw all to enable all of them\n"
5630 #endif
5631 "-localtime set the real time clock to local time [default=utc]\n"
5632 "-full-screen start in full screen\n"
5633 #ifdef TARGET_I386
5634 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
5635 #endif
5636 "-usb enable the USB driver (will be the default soon)\n"
5637 "-usbdevice name add the host or guest USB device 'name'\n"
5638 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5639 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
5640 #endif
5641 "\n"
5642 "Network options:\n"
5643 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
5644 " create a new Network Interface Card and connect it to VLAN 'n'\n"
5645 #ifdef CONFIG_SLIRP
5646 "-net user[,vlan=n][,hostname=host]\n"
5647 " connect the user mode network stack to VLAN 'n' and send\n"
5648 " hostname 'host' to DHCP clients\n"
5649 #endif
5650 #ifdef _WIN32
5651 "-net tap[,vlan=n],ifname=name\n"
5652 " connect the host TAP network interface to VLAN 'n'\n"
5653 #else
5654 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
5655 " connect the host TAP network interface to VLAN 'n' and use\n"
5656 " the network script 'file' (default=%s);\n"
5657 " use 'fd=h' to connect to an already opened TAP interface\n"
5658 #endif
5659 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
5660 " connect the vlan 'n' to another VLAN using a socket connection\n"
5661 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
5662 " connect the vlan 'n' to multicast maddr and port\n"
5663 "-net none use it alone to have zero network devices; if no -net option\n"
5664 " is provided, the default is '-net nic -net user'\n"
5665 "\n"
5666 #ifdef CONFIG_SLIRP
5667 "-tftp prefix allow tftp access to files starting with prefix [-net user]\n"
5668 #ifndef _WIN32
5669 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
5670 #endif
5671 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
5672 " redirect TCP or UDP connections from host to guest [-net user]\n"
5673 #endif
5674 "\n"
5675 "Linux boot specific:\n"
5676 "-kernel bzImage use 'bzImage' as kernel image\n"
5677 "-append cmdline use 'cmdline' as kernel command line\n"
5678 "-initrd file use 'file' as initial ram disk\n"
5679 "\n"
5680 "Debug/Expert options:\n"
5681 "-monitor dev redirect the monitor to char device 'dev'\n"
5682 "-serial dev redirect the serial port to char device 'dev'\n"
5683 "-parallel dev redirect the parallel port to char device 'dev'\n"
5684 "-pidfile file Write PID to 'file'\n"
5685 "-S freeze CPU at startup (use 'c' to start execution)\n"
5686 "-s wait gdb connection to port %d\n"
5687 "-p port change gdb connection port\n"
5688 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
5689 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
5690 " translation (t=none or lba) (usually qemu can guess them)\n"
5691 "-L path set the directory for the BIOS and VGA BIOS\n"
5692 #ifdef USE_KQEMU
5693 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
5694 "-no-kqemu disable KQEMU kernel module usage\n"
5695 #endif
5696 #ifdef USE_CODE_COPY
5697 "-no-code-copy disable code copy acceleration\n"
5698 #endif
5699 #ifdef TARGET_I386
5700 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
5701 " (default is CL-GD5446 PCI VGA)\n"
5702 "-no-acpi disable ACPI\n"
5703 #endif
5704 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
5705 "-vnc display start a VNC server on display\n"
5706 "\n"
5707 "During emulation, the following keys are useful:\n"
5708 "ctrl-alt-f toggle full screen\n"
5709 "ctrl-alt-n switch to virtual console 'n'\n"
5710 "ctrl-alt toggle mouse and keyboard grab\n"
5711 "\n"
5712 "When using -nographic, press 'ctrl-a h' to get some help.\n"
5713 ,
5714 "qemu",
5715 DEFAULT_RAM_SIZE,
5716 #ifndef _WIN32
5717 DEFAULT_NETWORK_SCRIPT,
5718 #endif
5719 DEFAULT_GDBSTUB_PORT,
5720 "/tmp/qemu.log");
5721 exit(1);
5722 }
5723
5724 #define HAS_ARG 0x0001
5725
5726 enum {
5727 QEMU_OPTION_h,
5728
5729 QEMU_OPTION_M,
5730 QEMU_OPTION_fda,
5731 QEMU_OPTION_fdb,
5732 QEMU_OPTION_hda,
5733 QEMU_OPTION_hdb,
5734 QEMU_OPTION_hdc,
5735 QEMU_OPTION_hdd,
5736 QEMU_OPTION_cdrom,
5737 QEMU_OPTION_boot,
5738 QEMU_OPTION_snapshot,
5739 #ifdef TARGET_I386
5740 QEMU_OPTION_no_fd_bootchk,
5741 #endif
5742 QEMU_OPTION_m,
5743 QEMU_OPTION_nographic,
5744 #ifdef HAS_AUDIO
5745 QEMU_OPTION_audio_help,
5746 QEMU_OPTION_soundhw,
5747 #endif
5748
5749 QEMU_OPTION_net,
5750 QEMU_OPTION_tftp,
5751 QEMU_OPTION_smb,
5752 QEMU_OPTION_redir,
5753
5754 QEMU_OPTION_kernel,
5755 QEMU_OPTION_append,
5756 QEMU_OPTION_initrd,
5757
5758 QEMU_OPTION_S,
5759 QEMU_OPTION_s,
5760 QEMU_OPTION_p,
5761 QEMU_OPTION_d,
5762 QEMU_OPTION_hdachs,
5763 QEMU_OPTION_L,
5764 QEMU_OPTION_no_code_copy,
5765 QEMU_OPTION_k,
5766 QEMU_OPTION_localtime,
5767 QEMU_OPTION_cirrusvga,
5768 QEMU_OPTION_g,
5769 QEMU_OPTION_std_vga,
5770 QEMU_OPTION_monitor,
5771 QEMU_OPTION_serial,
5772 QEMU_OPTION_parallel,
5773 QEMU_OPTION_loadvm,
5774 QEMU_OPTION_full_screen,
5775 QEMU_OPTION_pidfile,
5776 QEMU_OPTION_no_kqemu,
5777 QEMU_OPTION_kernel_kqemu,
5778 QEMU_OPTION_win2k_hack,
5779 QEMU_OPTION_usb,
5780 QEMU_OPTION_usbdevice,
5781 QEMU_OPTION_smp,
5782 QEMU_OPTION_vnc,
5783 QEMU_OPTION_no_acpi,
5784 };
5785
5786 typedef struct QEMUOption {
5787 const char *name;
5788 int flags;
5789 int index;
5790 } QEMUOption;
5791
5792 const QEMUOption qemu_options[] = {
5793 { "h", 0, QEMU_OPTION_h },
5794
5795 { "M", HAS_ARG, QEMU_OPTION_M },
5796 { "fda", HAS_ARG, QEMU_OPTION_fda },
5797 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
5798 { "hda", HAS_ARG, QEMU_OPTION_hda },
5799 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
5800 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
5801 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
5802 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
5803 { "boot", HAS_ARG, QEMU_OPTION_boot },
5804 { "snapshot", 0, QEMU_OPTION_snapshot },
5805 #ifdef TARGET_I386
5806 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
5807 #endif
5808 { "m", HAS_ARG, QEMU_OPTION_m },
5809 { "nographic", 0, QEMU_OPTION_nographic },
5810 { "k", HAS_ARG, QEMU_OPTION_k },
5811 #ifdef HAS_AUDIO
5812 { "audio-help", 0, QEMU_OPTION_audio_help },
5813 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
5814 #endif
5815
5816 { "net", HAS_ARG, QEMU_OPTION_net},
5817 #ifdef CONFIG_SLIRP
5818 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
5819 #ifndef _WIN32
5820 { "smb", HAS_ARG, QEMU_OPTION_smb },
5821 #endif
5822 { "redir", HAS_ARG, QEMU_OPTION_redir },
5823 #endif
5824
5825 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
5826 { "append", HAS_ARG, QEMU_OPTION_append },
5827 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
5828
5829 { "S", 0, QEMU_OPTION_S },
5830 { "s", 0, QEMU_OPTION_s },
5831 { "p", HAS_ARG, QEMU_OPTION_p },
5832 { "d", HAS_ARG, QEMU_OPTION_d },
5833 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
5834 { "L", HAS_ARG, QEMU_OPTION_L },
5835 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
5836 #ifdef USE_KQEMU
5837 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
5838 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
5839 #endif
5840 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5841 { "g", 1, QEMU_OPTION_g },
5842 #endif
5843 { "localtime", 0, QEMU_OPTION_localtime },
5844 { "std-vga", 0, QEMU_OPTION_std_vga },
5845 { "monitor", 1, QEMU_OPTION_monitor },
5846 { "serial", 1, QEMU_OPTION_serial },
5847 { "parallel", 1, QEMU_OPTION_parallel },
5848 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
5849 { "full-screen", 0, QEMU_OPTION_full_screen },
5850 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
5851 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
5852 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
5853 { "smp", HAS_ARG, QEMU_OPTION_smp },
5854 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
5855
5856 /* temporary options */
5857 { "usb", 0, QEMU_OPTION_usb },
5858 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
5859 { "no-acpi", 0, QEMU_OPTION_no_acpi },
5860 { NULL },
5861 };
5862
5863 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
5864
5865 /* this stack is only used during signal handling */
5866 #define SIGNAL_STACK_SIZE 32768
5867
5868 static uint8_t *signal_stack;
5869
5870 #endif
5871
5872 /* password input */
5873
5874 static BlockDriverState *get_bdrv(int index)
5875 {
5876 BlockDriverState *bs;
5877
5878 if (index < 4) {
5879 bs = bs_table[index];
5880 } else if (index < 6) {
5881 bs = fd_table[index - 4];
5882 } else {
5883 bs = NULL;
5884 }
5885 return bs;
5886 }
5887
5888 static void read_passwords(void)
5889 {
5890 BlockDriverState *bs;
5891 int i, j;
5892 char password[256];
5893
5894 for(i = 0; i < 6; i++) {
5895 bs = get_bdrv(i);
5896 if (bs && bdrv_is_encrypted(bs)) {
5897 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
5898 for(j = 0; j < 3; j++) {
5899 monitor_readline("Password: ",
5900 1, password, sizeof(password));
5901 if (bdrv_set_key(bs, password) == 0)
5902 break;
5903 term_printf("invalid password\n");
5904 }
5905 }
5906 }
5907 }
5908
5909 /* XXX: currently we cannot use simultaneously different CPUs */
5910 void register_machines(void)
5911 {
5912 #if defined(TARGET_I386)
5913 qemu_register_machine(&pc_machine);
5914 qemu_register_machine(&isapc_machine);
5915 #elif defined(TARGET_PPC)
5916 qemu_register_machine(&heathrow_machine);
5917 qemu_register_machine(&core99_machine);
5918 qemu_register_machine(&prep_machine);
5919 #elif defined(TARGET_MIPS)
5920 qemu_register_machine(&mips_machine);
5921 #elif defined(TARGET_SPARC)
5922 #ifdef TARGET_SPARC64
5923 qemu_register_machine(&sun4u_machine);
5924 #else
5925 qemu_register_machine(&sun4m_machine);
5926 #endif
5927 #elif defined(TARGET_ARM)
5928 qemu_register_machine(&integratorcp926_machine);
5929 qemu_register_machine(&integratorcp1026_machine);
5930 qemu_register_machine(&versatilepb_machine);
5931 qemu_register_machine(&versatileab_machine);
5932 #elif defined(TARGET_SH4)
5933 qemu_register_machine(&shix_machine);
5934 #else
5935 #error unsupported CPU
5936 #endif
5937 }
5938
5939 #ifdef HAS_AUDIO
5940 struct soundhw soundhw[] = {
5941 #ifdef TARGET_I386
5942 {
5943 "pcspk",
5944 "PC speaker",
5945 0,
5946 1,
5947 { .init_isa = pcspk_audio_init }
5948 },
5949 #endif
5950 {
5951 "sb16",
5952 "Creative Sound Blaster 16",
5953 0,
5954 1,
5955 { .init_isa = SB16_init }
5956 },
5957
5958 #ifdef CONFIG_ADLIB
5959 {
5960 "adlib",
5961 #ifdef HAS_YMF262
5962 "Yamaha YMF262 (OPL3)",
5963 #else
5964 "Yamaha YM3812 (OPL2)",
5965 #endif
5966 0,
5967 1,
5968 { .init_isa = Adlib_init }
5969 },
5970 #endif
5971
5972 #ifdef CONFIG_GUS
5973 {
5974 "gus",
5975 "Gravis Ultrasound GF1",
5976 0,
5977 1,
5978 { .init_isa = GUS_init }
5979 },
5980 #endif
5981
5982 {
5983 "es1370",
5984 "ENSONIQ AudioPCI ES1370",
5985 0,
5986 0,
5987 { .init_pci = es1370_init }
5988 },
5989
5990 { NULL, NULL, 0, 0, { NULL } }
5991 };
5992
5993 static void select_soundhw (const char *optarg)
5994 {
5995 struct soundhw *c;
5996
5997 if (*optarg == '?') {
5998 show_valid_cards:
5999
6000 printf ("Valid sound card names (comma separated):\n");
6001 for (c = soundhw; c->name; ++c) {
6002 printf ("%-11s %s\n", c->name, c->descr);
6003 }
6004 printf ("\n-soundhw all will enable all of the above\n");
6005 exit (*optarg != '?');
6006 }
6007 else {
6008 size_t l;
6009 const char *p;
6010 char *e;
6011 int bad_card = 0;
6012
6013 if (!strcmp (optarg, "all")) {
6014 for (c = soundhw; c->name; ++c) {
6015 c->enabled = 1;
6016 }
6017 return;
6018 }
6019
6020 p = optarg;
6021 while (*p) {
6022 e = strchr (p, ',');
6023 l = !e ? strlen (p) : (size_t) (e - p);
6024
6025 for (c = soundhw; c->name; ++c) {
6026 if (!strncmp (c->name, p, l)) {
6027 c->enabled = 1;
6028 break;
6029 }
6030 }
6031
6032 if (!c->name) {
6033 if (l > 80) {
6034 fprintf (stderr,
6035 "Unknown sound card name (too big to show)\n");
6036 }
6037 else {
6038 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6039 (int) l, p);
6040 }
6041 bad_card = 1;
6042 }
6043 p += l + (e != NULL);
6044 }
6045
6046 if (bad_card)
6047 goto show_valid_cards;
6048 }
6049 }
6050 #endif
6051
6052 #ifdef _WIN32
6053 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6054 {
6055 exit(STATUS_CONTROL_C_EXIT);
6056 return TRUE;
6057 }
6058 #endif
6059
6060 #define MAX_NET_CLIENTS 32
6061
6062 int main(int argc, char **argv)
6063 {
6064 #ifdef CONFIG_GDBSTUB
6065 int use_gdbstub, gdbstub_port;
6066 #endif
6067 int i, cdrom_index;
6068 int snapshot, linux_boot;
6069 const char *initrd_filename;
6070 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6071 const char *kernel_filename, *kernel_cmdline;
6072 DisplayState *ds = &display_state;
6073 int cyls, heads, secs, translation;
6074 int start_emulation = 1;
6075 char net_clients[MAX_NET_CLIENTS][256];
6076 int nb_net_clients;
6077 int optind;
6078 const char *r, *optarg;
6079 CharDriverState *monitor_hd;
6080 char monitor_device[128];
6081 char serial_devices[MAX_SERIAL_PORTS][128];
6082 int serial_device_index;
6083 char parallel_devices[MAX_PARALLEL_PORTS][128];
6084 int parallel_device_index;
6085 const char *loadvm = NULL;
6086 QEMUMachine *machine;
6087 char usb_devices[MAX_USB_CMDLINE][128];
6088 int usb_devices_index;
6089
6090 LIST_INIT (&vm_change_state_head);
6091 #ifndef _WIN32
6092 {
6093 struct sigaction act;
6094 sigfillset(&act.sa_mask);
6095 act.sa_flags = 0;
6096 act.sa_handler = SIG_IGN;
6097 sigaction(SIGPIPE, &act, NULL);
6098 }
6099 #else
6100 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6101 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6102 QEMU to run on a single CPU */
6103 {
6104 HANDLE h;
6105 DWORD mask, smask;
6106 int i;
6107 h = GetCurrentProcess();
6108 if (GetProcessAffinityMask(h, &mask, &smask)) {
6109 for(i = 0; i < 32; i++) {
6110 if (mask & (1 << i))
6111 break;
6112 }
6113 if (i != 32) {
6114 mask = 1 << i;
6115 SetProcessAffinityMask(h, mask);
6116 }
6117 }
6118 }
6119 #endif
6120
6121 register_machines();
6122 machine = first_machine;
6123 initrd_filename = NULL;
6124 for(i = 0; i < MAX_FD; i++)
6125 fd_filename[i] = NULL;
6126 for(i = 0; i < MAX_DISKS; i++)
6127 hd_filename[i] = NULL;
6128 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6129 vga_ram_size = VGA_RAM_SIZE;
6130 bios_size = BIOS_SIZE;
6131 #ifdef CONFIG_GDBSTUB
6132 use_gdbstub = 0;
6133 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6134 #endif
6135 snapshot = 0;
6136 nographic = 0;
6137 kernel_filename = NULL;
6138 kernel_cmdline = "";
6139 #ifdef TARGET_PPC
6140 cdrom_index = 1;
6141 #else
6142 cdrom_index = 2;
6143 #endif
6144 cyls = heads = secs = 0;
6145 translation = BIOS_ATA_TRANSLATION_AUTO;
6146 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6147
6148 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6149 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6150 serial_devices[i][0] = '\0';
6151 serial_device_index = 0;
6152
6153 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6154 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6155 parallel_devices[i][0] = '\0';
6156 parallel_device_index = 0;
6157
6158 usb_devices_index = 0;
6159
6160 nb_net_clients = 0;
6161
6162 nb_nics = 0;
6163 /* default mac address of the first network interface */
6164
6165 optind = 1;
6166 for(;;) {
6167 if (optind >= argc)
6168 break;
6169 r = argv[optind];
6170 if (r[0] != '-') {
6171 hd_filename[0] = argv[optind++];
6172 } else {
6173 const QEMUOption *popt;
6174
6175 optind++;
6176 popt = qemu_options;
6177 for(;;) {
6178 if (!popt->name) {
6179 fprintf(stderr, "%s: invalid option -- '%s'\n",
6180 argv[0], r);
6181 exit(1);
6182 }
6183 if (!strcmp(popt->name, r + 1))
6184 break;
6185 popt++;
6186 }
6187 if (popt->flags & HAS_ARG) {
6188 if (optind >= argc) {
6189 fprintf(stderr, "%s: option '%s' requires an argument\n",
6190 argv[0], r);
6191 exit(1);
6192 }
6193 optarg = argv[optind++];
6194 } else {
6195 optarg = NULL;
6196 }
6197
6198 switch(popt->index) {
6199 case QEMU_OPTION_M:
6200 machine = find_machine(optarg);
6201 if (!machine) {
6202 QEMUMachine *m;
6203 printf("Supported machines are:\n");
6204 for(m = first_machine; m != NULL; m = m->next) {
6205 printf("%-10s %s%s\n",
6206 m->name, m->desc,
6207 m == first_machine ? " (default)" : "");
6208 }
6209 exit(1);
6210 }
6211 break;
6212 case QEMU_OPTION_initrd:
6213 initrd_filename = optarg;
6214 break;
6215 case QEMU_OPTION_hda:
6216 case QEMU_OPTION_hdb:
6217 case QEMU_OPTION_hdc:
6218 case QEMU_OPTION_hdd:
6219 {
6220 int hd_index;
6221 hd_index = popt->index - QEMU_OPTION_hda;
6222 hd_filename[hd_index] = optarg;
6223 if (hd_index == cdrom_index)
6224 cdrom_index = -1;
6225 }
6226 break;
6227 case QEMU_OPTION_snapshot:
6228 snapshot = 1;
6229 break;
6230 case QEMU_OPTION_hdachs:
6231 {
6232 const char *p;
6233 p = optarg;
6234 cyls = strtol(p, (char **)&p, 0);
6235 if (cyls < 1 || cyls > 16383)
6236 goto chs_fail;
6237 if (*p != ',')
6238 goto chs_fail;
6239 p++;
6240 heads = strtol(p, (char **)&p, 0);
6241 if (heads < 1 || heads > 16)
6242 goto chs_fail;
6243 if (*p != ',')
6244 goto chs_fail;
6245 p++;
6246 secs = strtol(p, (char **)&p, 0);
6247 if (secs < 1 || secs > 63)
6248 goto chs_fail;
6249 if (*p == ',') {
6250 p++;
6251 if (!strcmp(p, "none"))
6252 translation = BIOS_ATA_TRANSLATION_NONE;
6253 else if (!strcmp(p, "lba"))
6254 translation = BIOS_ATA_TRANSLATION_LBA;
6255 else if (!strcmp(p, "auto"))
6256 translation = BIOS_ATA_TRANSLATION_AUTO;
6257 else
6258 goto chs_fail;
6259 } else if (*p != '\0') {
6260 chs_fail:
6261 fprintf(stderr, "qemu: invalid physical CHS format\n");
6262 exit(1);
6263 }
6264 }
6265 break;
6266 case QEMU_OPTION_nographic:
6267 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
6268 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
6269 nographic = 1;
6270 break;
6271 case QEMU_OPTION_kernel:
6272 kernel_filename = optarg;
6273 break;
6274 case QEMU_OPTION_append:
6275 kernel_cmdline = optarg;
6276 break;
6277 case QEMU_OPTION_cdrom:
6278 if (cdrom_index >= 0) {
6279 hd_filename[cdrom_index] = optarg;
6280 }
6281 break;
6282 case QEMU_OPTION_boot:
6283 boot_device = optarg[0];
6284 if (boot_device != 'a' &&
6285 #ifdef TARGET_SPARC
6286 // Network boot
6287 boot_device != 'n' &&
6288 #endif
6289 boot_device != 'c' && boot_device != 'd') {
6290 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
6291 exit(1);
6292 }
6293 break;
6294 case QEMU_OPTION_fda:
6295 fd_filename[0] = optarg;
6296 break;
6297 case QEMU_OPTION_fdb:
6298 fd_filename[1] = optarg;
6299 break;
6300 #ifdef TARGET_I386
6301 case QEMU_OPTION_no_fd_bootchk:
6302 fd_bootchk = 0;
6303 break;
6304 #endif
6305 case QEMU_OPTION_no_code_copy:
6306 code_copy_enabled = 0;
6307 break;
6308 case QEMU_OPTION_net:
6309 if (nb_net_clients >= MAX_NET_CLIENTS) {
6310 fprintf(stderr, "qemu: too many network clients\n");
6311 exit(1);
6312 }
6313 pstrcpy(net_clients[nb_net_clients],
6314 sizeof(net_clients[0]),
6315 optarg);
6316 nb_net_clients++;
6317 break;
6318 #ifdef CONFIG_SLIRP
6319 case QEMU_OPTION_tftp:
6320 tftp_prefix = optarg;
6321 break;
6322 #ifndef _WIN32
6323 case QEMU_OPTION_smb:
6324 net_slirp_smb(optarg);
6325 break;
6326 #endif
6327 case QEMU_OPTION_redir:
6328 net_slirp_redir(optarg);
6329 break;
6330 #endif
6331 #ifdef HAS_AUDIO
6332 case QEMU_OPTION_audio_help:
6333 AUD_help ();
6334 exit (0);
6335 break;
6336 case QEMU_OPTION_soundhw:
6337 select_soundhw (optarg);
6338 break;
6339 #endif
6340 case QEMU_OPTION_h:
6341 help();
6342 break;
6343 case QEMU_OPTION_m:
6344 ram_size = atoi(optarg) * 1024 * 1024;
6345 if (ram_size <= 0)
6346 help();
6347 if (ram_size > PHYS_RAM_MAX_SIZE) {
6348 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
6349 PHYS_RAM_MAX_SIZE / (1024 * 1024));
6350 exit(1);
6351 }
6352 break;
6353 case QEMU_OPTION_d:
6354 {
6355 int mask;
6356 CPULogItem *item;
6357
6358 mask = cpu_str_to_log_mask(optarg);
6359 if (!mask) {
6360 printf("Log items (comma separated):\n");
6361 for(item = cpu_log_items; item->mask != 0; item++) {
6362 printf("%-10s %s\n", item->name, item->help);
6363 }
6364 exit(1);
6365 }
6366 cpu_set_log(mask);
6367 }
6368 break;
6369 #ifdef CONFIG_GDBSTUB
6370 case QEMU_OPTION_s:
6371 use_gdbstub = 1;
6372 break;
6373 case QEMU_OPTION_p:
6374 gdbstub_port = atoi(optarg);
6375 break;
6376 #endif
6377 case QEMU_OPTION_L:
6378 bios_dir = optarg;
6379 break;
6380 case QEMU_OPTION_S:
6381 start_emulation = 0;
6382 break;
6383 case QEMU_OPTION_k:
6384 keyboard_layout = optarg;
6385 break;
6386 case QEMU_OPTION_localtime:
6387 rtc_utc = 0;
6388 break;
6389 case QEMU_OPTION_cirrusvga:
6390 cirrus_vga_enabled = 1;
6391 break;
6392 case QEMU_OPTION_std_vga:
6393 cirrus_vga_enabled = 0;
6394 break;
6395 case QEMU_OPTION_g:
6396 {
6397 const char *p;
6398 int w, h, depth;
6399 p = optarg;
6400 w = strtol(p, (char **)&p, 10);
6401 if (w <= 0) {
6402 graphic_error:
6403 fprintf(stderr, "qemu: invalid resolution or depth\n");
6404 exit(1);
6405 }
6406 if (*p != 'x')
6407 goto graphic_error;
6408 p++;
6409 h = strtol(p, (char **)&p, 10);
6410 if (h <= 0)
6411 goto graphic_error;
6412 if (*p == 'x') {
6413 p++;
6414 depth = strtol(p, (char **)&p, 10);
6415 if (depth != 8 && depth != 15 && depth != 16 &&
6416 depth != 24 && depth != 32)
6417 goto graphic_error;
6418 } else if (*p == '\0') {
6419 depth = graphic_depth;
6420 } else {
6421 goto graphic_error;
6422 }
6423
6424 graphic_width = w;
6425 graphic_height = h;
6426 graphic_depth = depth;
6427 }
6428 break;
6429 case QEMU_OPTION_monitor:
6430 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
6431 break;
6432 case QEMU_OPTION_serial:
6433 if (serial_device_index >= MAX_SERIAL_PORTS) {
6434 fprintf(stderr, "qemu: too many serial ports\n");
6435 exit(1);
6436 }
6437 pstrcpy(serial_devices[serial_device_index],
6438 sizeof(serial_devices[0]), optarg);
6439 serial_device_index++;
6440 break;
6441 case QEMU_OPTION_parallel:
6442 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
6443 fprintf(stderr, "qemu: too many parallel ports\n");
6444 exit(1);
6445 }
6446 pstrcpy(parallel_devices[parallel_device_index],
6447 sizeof(parallel_devices[0]), optarg);
6448 parallel_device_index++;
6449 break;
6450 case QEMU_OPTION_loadvm:
6451 loadvm = optarg;
6452 break;
6453 case QEMU_OPTION_full_screen:
6454 full_screen = 1;
6455 break;
6456 case QEMU_OPTION_pidfile:
6457 create_pidfile(optarg);
6458 break;
6459 #ifdef TARGET_I386
6460 case QEMU_OPTION_win2k_hack:
6461 win2k_install_hack = 1;
6462 break;
6463 #endif
6464 #ifdef USE_KQEMU
6465 case QEMU_OPTION_no_kqemu:
6466 kqemu_allowed = 0;
6467 break;
6468 case QEMU_OPTION_kernel_kqemu:
6469 kqemu_allowed = 2;
6470 break;
6471 #endif
6472 case QEMU_OPTION_usb:
6473 usb_enabled = 1;
6474 break;
6475 case QEMU_OPTION_usbdevice:
6476 usb_enabled = 1;
6477 if (usb_devices_index >= MAX_USB_CMDLINE) {
6478 fprintf(stderr, "Too many USB devices\n");
6479 exit(1);
6480 }
6481 pstrcpy(usb_devices[usb_devices_index],
6482 sizeof(usb_devices[usb_devices_index]),
6483 optarg);
6484 usb_devices_index++;
6485 break;
6486 case QEMU_OPTION_smp:
6487 smp_cpus = atoi(optarg);
6488 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
6489 fprintf(stderr, "Invalid number of CPUs\n");
6490 exit(1);
6491 }
6492 break;
6493 case QEMU_OPTION_vnc:
6494 vnc_display = atoi(optarg);
6495 if (vnc_display < 0) {
6496 fprintf(stderr, "Invalid VNC display\n");
6497 exit(1);
6498 }
6499 break;
6500 case QEMU_OPTION_no_acpi:
6501 acpi_enabled = 0;
6502 break;
6503 }
6504 }
6505 }
6506
6507 #ifdef USE_KQEMU
6508 if (smp_cpus > 1)
6509 kqemu_allowed = 0;
6510 #endif
6511 linux_boot = (kernel_filename != NULL);
6512
6513 if (!linux_boot &&
6514 hd_filename[0] == '\0' &&
6515 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
6516 fd_filename[0] == '\0')
6517 help();
6518
6519 /* boot to cd by default if no hard disk */
6520 if (hd_filename[0] == '\0' && boot_device == 'c') {
6521 if (fd_filename[0] != '\0')
6522 boot_device = 'a';
6523 else
6524 boot_device = 'd';
6525 }
6526
6527 setvbuf(stdout, NULL, _IOLBF, 0);
6528
6529 init_timers();
6530 init_timer_alarm();
6531 qemu_aio_init();
6532
6533 #ifdef _WIN32
6534 socket_init();
6535 #endif
6536
6537 /* init network clients */
6538 if (nb_net_clients == 0) {
6539 /* if no clients, we use a default config */
6540 pstrcpy(net_clients[0], sizeof(net_clients[0]),
6541 "nic");
6542 pstrcpy(net_clients[1], sizeof(net_clients[0]),
6543 "user");
6544 nb_net_clients = 2;
6545 }
6546
6547 for(i = 0;i < nb_net_clients; i++) {
6548 if (net_client_init(net_clients[i]) < 0)
6549 exit(1);
6550 }
6551
6552 /* init the memory */
6553 phys_ram_size = ram_size + vga_ram_size + bios_size;
6554
6555 phys_ram_base = qemu_vmalloc(phys_ram_size);
6556 if (!phys_ram_base) {
6557 fprintf(stderr, "Could not allocate physical memory\n");
6558 exit(1);
6559 }
6560
6561 /* we always create the cdrom drive, even if no disk is there */
6562 bdrv_init();
6563 if (cdrom_index >= 0) {
6564 bs_table[cdrom_index] = bdrv_new("cdrom");
6565 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
6566 }
6567
6568 /* open the virtual block devices */
6569 for(i = 0; i < MAX_DISKS; i++) {
6570 if (hd_filename[i]) {
6571 if (!bs_table[i]) {
6572 char buf[64];
6573 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
6574 bs_table[i] = bdrv_new(buf);
6575 }
6576 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
6577 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
6578 hd_filename[i]);
6579 exit(1);
6580 }
6581 if (i == 0 && cyls != 0) {
6582 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
6583 bdrv_set_translation_hint(bs_table[i], translation);
6584 }
6585 }
6586 }
6587
6588 /* we always create at least one floppy disk */
6589 fd_table[0] = bdrv_new("fda");
6590 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
6591
6592 for(i = 0; i < MAX_FD; i++) {
6593 if (fd_filename[i]) {
6594 if (!fd_table[i]) {
6595 char buf[64];
6596 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
6597 fd_table[i] = bdrv_new(buf);
6598 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
6599 }
6600 if (fd_filename[i] != '\0') {
6601 if (bdrv_open(fd_table[i], fd_filename[i],
6602 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
6603 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
6604 fd_filename[i]);
6605 exit(1);
6606 }
6607 }
6608 }
6609 }
6610
6611 register_savevm("timer", 0, 1, timer_save, timer_load, NULL);
6612 register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
6613
6614 init_ioports();
6615
6616 /* terminal init */
6617 if (nographic) {
6618 dumb_display_init(ds);
6619 } else if (vnc_display != -1) {
6620 vnc_display_init(ds, vnc_display);
6621 } else {
6622 #if defined(CONFIG_SDL)
6623 sdl_display_init(ds, full_screen);
6624 #elif defined(CONFIG_COCOA)
6625 cocoa_display_init(ds, full_screen);
6626 #else
6627 dumb_display_init(ds);
6628 #endif
6629 }
6630
6631 monitor_hd = qemu_chr_open(monitor_device);
6632 if (!monitor_hd) {
6633 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6634 exit(1);
6635 }
6636 monitor_init(monitor_hd, !nographic);
6637
6638 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6639 if (serial_devices[i][0] != '\0') {
6640 serial_hds[i] = qemu_chr_open(serial_devices[i]);
6641 if (!serial_hds[i]) {
6642 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6643 serial_devices[i]);
6644 exit(1);
6645 }
6646 if (!strcmp(serial_devices[i], "vc"))
6647 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6648 }
6649 }
6650
6651 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6652 if (parallel_devices[i][0] != '\0') {
6653 parallel_hds[i] = qemu_chr_open(parallel_devices[i]);
6654 if (!parallel_hds[i]) {
6655 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6656 parallel_devices[i]);
6657 exit(1);
6658 }
6659 if (!strcmp(parallel_devices[i], "vc"))
6660 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6661 }
6662 }
6663
6664 machine->init(ram_size, vga_ram_size, boot_device,
6665 ds, fd_filename, snapshot,
6666 kernel_filename, kernel_cmdline, initrd_filename);
6667
6668 /* init USB devices */
6669 if (usb_enabled) {
6670 for(i = 0; i < usb_devices_index; i++) {
6671 if (usb_device_add(usb_devices[i]) < 0) {
6672 fprintf(stderr, "Warning: could not add USB device %s\n",
6673 usb_devices[i]);
6674 }
6675 }
6676 }
6677
6678 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
6679 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
6680
6681 #ifdef CONFIG_GDBSTUB
6682 if (use_gdbstub) {
6683 if (gdbserver_start(gdbstub_port) < 0) {
6684 fprintf(stderr, "Could not open gdbserver socket on port %d\n",
6685 gdbstub_port);
6686 exit(1);
6687 } else {
6688 printf("Waiting gdb connection on port %d\n", gdbstub_port);
6689 }
6690 } else
6691 #endif
6692 if (loadvm)
6693 do_loadvm(loadvm);
6694
6695 {
6696 /* XXX: simplify init */
6697 read_passwords();
6698 if (start_emulation) {
6699 vm_start();
6700 }
6701 }
6702 main_loop();
6703 quit_timers();
6704 return 0;
6705 }