]> git.proxmox.com Git - qemu.git/blob - vl.c
qcow2: Bring synchronous read/write back to life
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef HOST_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <malloc.h>
112 #include <sys/timeb.h>
113 #include <mmsystem.h>
114 #define getopt_long_only getopt_long
115 #define memalign(align, size) malloc(size)
116 #endif
117
118 #ifdef CONFIG_SDL
119 #if defined(__APPLE__) || defined(main)
120 #include <SDL.h>
121 int qemu_main(int argc, char **argv, char **envp);
122 int main(int argc, char **argv)
123 {
124 return qemu_main(argc, argv, NULL);
125 }
126 #undef main
127 #define main qemu_main
128 #endif
129 #endif /* CONFIG_SDL */
130
131 #ifdef CONFIG_COCOA
132 #undef main
133 #define main qemu_main
134 #endif /* CONFIG_COCOA */
135
136 #include "hw/hw.h"
137 #include "hw/boards.h"
138 #include "hw/usb.h"
139 #include "hw/pcmcia.h"
140 #include "hw/pc.h"
141 #include "hw/audiodev.h"
142 #include "hw/isa.h"
143 #include "hw/baum.h"
144 #include "hw/bt.h"
145 #include "hw/watchdog.h"
146 #include "hw/smbios.h"
147 #include "hw/xen.h"
148 #include "bt-host.h"
149 #include "net.h"
150 #include "monitor.h"
151 #include "console.h"
152 #include "sysemu.h"
153 #include "gdbstub.h"
154 #include "qemu-timer.h"
155 #include "qemu-char.h"
156 #include "cache-utils.h"
157 #include "block.h"
158 #include "dma.h"
159 #include "audio/audio.h"
160 #include "migration.h"
161 #include "kvm.h"
162 #include "balloon.h"
163 #include "qemu-option.h"
164
165 #include "disas.h"
166
167 #include "exec-all.h"
168
169 #include "qemu_socket.h"
170
171 #include "slirp/libslirp.h"
172
173 //#define DEBUG_NET
174 //#define DEBUG_SLIRP
175
176 #define DEFAULT_RAM_SIZE 128
177
178 /* Max number of USB devices that can be specified on the commandline. */
179 #define MAX_USB_CMDLINE 8
180
181 /* Max number of bluetooth switches on the commandline. */
182 #define MAX_BT_CMDLINE 10
183
184 static const char *data_dir;
185 const char *bios_name = NULL;
186 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
187 to store the VM snapshots */
188 DriveInfo drives_table[MAX_DRIVES+1];
189 int nb_drives;
190 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
191 static DisplayState *display_state;
192 DisplayType display_type = DT_DEFAULT;
193 const char* keyboard_layout = NULL;
194 int64_t ticks_per_sec;
195 ram_addr_t ram_size;
196 int nb_nics;
197 NICInfo nd_table[MAX_NICS];
198 int vm_running;
199 int autostart;
200 static int rtc_utc = 1;
201 static int rtc_date_offset = -1; /* -1 means no change */
202 int vga_interface_type = VGA_CIRRUS;
203 #ifdef TARGET_SPARC
204 int graphic_width = 1024;
205 int graphic_height = 768;
206 int graphic_depth = 8;
207 #else
208 int graphic_width = 800;
209 int graphic_height = 600;
210 int graphic_depth = 15;
211 #endif
212 static int full_screen = 0;
213 #ifdef CONFIG_SDL
214 static int no_frame = 0;
215 #endif
216 int no_quit = 0;
217 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
218 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
219 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
220 #ifdef TARGET_I386
221 int win2k_install_hack = 0;
222 int rtc_td_hack = 0;
223 #endif
224 int usb_enabled = 0;
225 int singlestep = 0;
226 int smp_cpus = 1;
227 const char *vnc_display;
228 int acpi_enabled = 1;
229 int no_hpet = 0;
230 int virtio_balloon = 1;
231 const char *virtio_balloon_devaddr;
232 int fd_bootchk = 1;
233 int no_reboot = 0;
234 int no_shutdown = 0;
235 int cursor_hide = 1;
236 int graphic_rotate = 0;
237 #ifndef _WIN32
238 int daemonize = 0;
239 #endif
240 WatchdogTimerModel *watchdog = NULL;
241 int watchdog_action = WDT_RESET;
242 const char *option_rom[MAX_OPTION_ROMS];
243 int nb_option_roms;
244 int semihosting_enabled = 0;
245 #ifdef TARGET_ARM
246 int old_param = 0;
247 #endif
248 const char *qemu_name;
249 int alt_grab = 0;
250 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
251 unsigned int nb_prom_envs = 0;
252 const char *prom_envs[MAX_PROM_ENVS];
253 #endif
254 int nb_drives_opt;
255 struct drive_opt drives_opt[MAX_DRIVES];
256 int boot_menu;
257
258 int nb_numa_nodes;
259 uint64_t node_mem[MAX_NODES];
260 uint64_t node_cpumask[MAX_NODES];
261
262 static CPUState *cur_cpu;
263 static CPUState *next_cpu;
264 static int timer_alarm_pending = 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias;
271 static QEMUTimer *icount_rt_timer;
272 static QEMUTimer *icount_vm_timer;
273 static QEMUTimer *nographic_timer;
274
275 uint8_t qemu_uuid[16];
276
277 static QEMUBootSetHandler *boot_set_handler;
278 static void *boot_set_opaque;
279
280 /***********************************************************/
281 /* x86 ISA bus support */
282
283 target_phys_addr_t isa_mem_base = 0;
284 PicState2 *isa_pic;
285
286 /***********************************************************/
287 void hw_error(const char *fmt, ...)
288 {
289 va_list ap;
290 CPUState *env;
291
292 va_start(ap, fmt);
293 fprintf(stderr, "qemu: hardware error: ");
294 vfprintf(stderr, fmt, ap);
295 fprintf(stderr, "\n");
296 for(env = first_cpu; env != NULL; env = env->next_cpu) {
297 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
298 #ifdef TARGET_I386
299 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
300 #else
301 cpu_dump_state(env, stderr, fprintf, 0);
302 #endif
303 }
304 va_end(ap);
305 abort();
306 }
307
308 static void set_proc_name(const char *s)
309 {
310 #if defined(__linux__) && defined(PR_SET_NAME)
311 char name[16];
312 if (!s)
313 return;
314 name[sizeof(name) - 1] = 0;
315 strncpy(name, s, sizeof(name));
316 /* Could rewrite argv[0] too, but that's a bit more complicated.
317 This simple way is enough for `top'. */
318 prctl(PR_SET_NAME, name);
319 #endif
320 }
321
322 /***************/
323 /* ballooning */
324
325 static QEMUBalloonEvent *qemu_balloon_event;
326 void *qemu_balloon_event_opaque;
327
328 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
329 {
330 qemu_balloon_event = func;
331 qemu_balloon_event_opaque = opaque;
332 }
333
334 void qemu_balloon(ram_addr_t target)
335 {
336 if (qemu_balloon_event)
337 qemu_balloon_event(qemu_balloon_event_opaque, target);
338 }
339
340 ram_addr_t qemu_balloon_status(void)
341 {
342 if (qemu_balloon_event)
343 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
344 return 0;
345 }
346
347 /***********************************************************/
348 /* keyboard/mouse */
349
350 static QEMUPutKBDEvent *qemu_put_kbd_event;
351 static void *qemu_put_kbd_event_opaque;
352 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
353 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
354
355 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
356 {
357 qemu_put_kbd_event_opaque = opaque;
358 qemu_put_kbd_event = func;
359 }
360
361 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
362 void *opaque, int absolute,
363 const char *name)
364 {
365 QEMUPutMouseEntry *s, *cursor;
366
367 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
368
369 s->qemu_put_mouse_event = func;
370 s->qemu_put_mouse_event_opaque = opaque;
371 s->qemu_put_mouse_event_absolute = absolute;
372 s->qemu_put_mouse_event_name = qemu_strdup(name);
373 s->next = NULL;
374
375 if (!qemu_put_mouse_event_head) {
376 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
377 return s;
378 }
379
380 cursor = qemu_put_mouse_event_head;
381 while (cursor->next != NULL)
382 cursor = cursor->next;
383
384 cursor->next = s;
385 qemu_put_mouse_event_current = s;
386
387 return s;
388 }
389
390 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
391 {
392 QEMUPutMouseEntry *prev = NULL, *cursor;
393
394 if (!qemu_put_mouse_event_head || entry == NULL)
395 return;
396
397 cursor = qemu_put_mouse_event_head;
398 while (cursor != NULL && cursor != entry) {
399 prev = cursor;
400 cursor = cursor->next;
401 }
402
403 if (cursor == NULL) // does not exist or list empty
404 return;
405 else if (prev == NULL) { // entry is head
406 qemu_put_mouse_event_head = cursor->next;
407 if (qemu_put_mouse_event_current == entry)
408 qemu_put_mouse_event_current = cursor->next;
409 qemu_free(entry->qemu_put_mouse_event_name);
410 qemu_free(entry);
411 return;
412 }
413
414 prev->next = entry->next;
415
416 if (qemu_put_mouse_event_current == entry)
417 qemu_put_mouse_event_current = prev;
418
419 qemu_free(entry->qemu_put_mouse_event_name);
420 qemu_free(entry);
421 }
422
423 void kbd_put_keycode(int keycode)
424 {
425 if (qemu_put_kbd_event) {
426 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
427 }
428 }
429
430 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
431 {
432 QEMUPutMouseEvent *mouse_event;
433 void *mouse_event_opaque;
434 int width;
435
436 if (!qemu_put_mouse_event_current) {
437 return;
438 }
439
440 mouse_event =
441 qemu_put_mouse_event_current->qemu_put_mouse_event;
442 mouse_event_opaque =
443 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
444
445 if (mouse_event) {
446 if (graphic_rotate) {
447 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
448 width = 0x7fff;
449 else
450 width = graphic_width - 1;
451 mouse_event(mouse_event_opaque,
452 width - dy, dx, dz, buttons_state);
453 } else
454 mouse_event(mouse_event_opaque,
455 dx, dy, dz, buttons_state);
456 }
457 }
458
459 int kbd_mouse_is_absolute(void)
460 {
461 if (!qemu_put_mouse_event_current)
462 return 0;
463
464 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
465 }
466
467 void do_info_mice(Monitor *mon)
468 {
469 QEMUPutMouseEntry *cursor;
470 int index = 0;
471
472 if (!qemu_put_mouse_event_head) {
473 monitor_printf(mon, "No mouse devices connected\n");
474 return;
475 }
476
477 monitor_printf(mon, "Mouse devices available:\n");
478 cursor = qemu_put_mouse_event_head;
479 while (cursor != NULL) {
480 monitor_printf(mon, "%c Mouse #%d: %s\n",
481 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
482 index, cursor->qemu_put_mouse_event_name);
483 index++;
484 cursor = cursor->next;
485 }
486 }
487
488 void do_mouse_set(Monitor *mon, int index)
489 {
490 QEMUPutMouseEntry *cursor;
491 int i = 0;
492
493 if (!qemu_put_mouse_event_head) {
494 monitor_printf(mon, "No mouse devices connected\n");
495 return;
496 }
497
498 cursor = qemu_put_mouse_event_head;
499 while (cursor != NULL && index != i) {
500 i++;
501 cursor = cursor->next;
502 }
503
504 if (cursor != NULL)
505 qemu_put_mouse_event_current = cursor;
506 else
507 monitor_printf(mon, "Mouse at given index not found\n");
508 }
509
510 /* compute with 96 bit intermediate result: (a*b)/c */
511 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
512 {
513 union {
514 uint64_t ll;
515 struct {
516 #ifdef WORDS_BIGENDIAN
517 uint32_t high, low;
518 #else
519 uint32_t low, high;
520 #endif
521 } l;
522 } u, res;
523 uint64_t rl, rh;
524
525 u.ll = a;
526 rl = (uint64_t)u.l.low * (uint64_t)b;
527 rh = (uint64_t)u.l.high * (uint64_t)b;
528 rh += (rl >> 32);
529 res.l.high = rh / c;
530 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
531 return res.ll;
532 }
533
534 /***********************************************************/
535 /* real time host monotonic timer */
536
537 #define QEMU_TIMER_BASE 1000000000LL
538
539 #ifdef WIN32
540
541 static int64_t clock_freq;
542
543 static void init_get_clock(void)
544 {
545 LARGE_INTEGER freq;
546 int ret;
547 ret = QueryPerformanceFrequency(&freq);
548 if (ret == 0) {
549 fprintf(stderr, "Could not calibrate ticks\n");
550 exit(1);
551 }
552 clock_freq = freq.QuadPart;
553 }
554
555 static int64_t get_clock(void)
556 {
557 LARGE_INTEGER ti;
558 QueryPerformanceCounter(&ti);
559 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
560 }
561
562 #else
563
564 static int use_rt_clock;
565
566 static void init_get_clock(void)
567 {
568 use_rt_clock = 0;
569 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570 || defined(__DragonFly__)
571 {
572 struct timespec ts;
573 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574 use_rt_clock = 1;
575 }
576 }
577 #endif
578 }
579
580 static int64_t get_clock(void)
581 {
582 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583 || defined(__DragonFly__)
584 if (use_rt_clock) {
585 struct timespec ts;
586 clock_gettime(CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588 } else
589 #endif
590 {
591 /* XXX: using gettimeofday leads to problems if the date
592 changes, so it should be avoided. */
593 struct timeval tv;
594 gettimeofday(&tv, NULL);
595 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
596 }
597 }
598 #endif
599
600 /* Return the virtual CPU time, based on the instruction counter. */
601 static int64_t cpu_get_icount(void)
602 {
603 int64_t icount;
604 CPUState *env = cpu_single_env;;
605 icount = qemu_icount;
606 if (env) {
607 if (!can_do_io(env))
608 fprintf(stderr, "Bad clock read\n");
609 icount -= (env->icount_decr.u16.low + env->icount_extra);
610 }
611 return qemu_icount_bias + (icount << icount_time_shift);
612 }
613
614 /***********************************************************/
615 /* guest cycle counter */
616
617 static int64_t cpu_ticks_prev;
618 static int64_t cpu_ticks_offset;
619 static int64_t cpu_clock_offset;
620 static int cpu_ticks_enabled;
621
622 /* return the host CPU cycle counter and handle stop/restart */
623 int64_t cpu_get_ticks(void)
624 {
625 if (use_icount) {
626 return cpu_get_icount();
627 }
628 if (!cpu_ticks_enabled) {
629 return cpu_ticks_offset;
630 } else {
631 int64_t ticks;
632 ticks = cpu_get_real_ticks();
633 if (cpu_ticks_prev > ticks) {
634 /* Note: non increasing ticks may happen if the host uses
635 software suspend */
636 cpu_ticks_offset += cpu_ticks_prev - ticks;
637 }
638 cpu_ticks_prev = ticks;
639 return ticks + cpu_ticks_offset;
640 }
641 }
642
643 /* return the host CPU monotonic timer and handle stop/restart */
644 static int64_t cpu_get_clock(void)
645 {
646 int64_t ti;
647 if (!cpu_ticks_enabled) {
648 return cpu_clock_offset;
649 } else {
650 ti = get_clock();
651 return ti + cpu_clock_offset;
652 }
653 }
654
655 /* enable cpu_get_ticks() */
656 void cpu_enable_ticks(void)
657 {
658 if (!cpu_ticks_enabled) {
659 cpu_ticks_offset -= cpu_get_real_ticks();
660 cpu_clock_offset -= get_clock();
661 cpu_ticks_enabled = 1;
662 }
663 }
664
665 /* disable cpu_get_ticks() : the clock is stopped. You must not call
666 cpu_get_ticks() after that. */
667 void cpu_disable_ticks(void)
668 {
669 if (cpu_ticks_enabled) {
670 cpu_ticks_offset = cpu_get_ticks();
671 cpu_clock_offset = cpu_get_clock();
672 cpu_ticks_enabled = 0;
673 }
674 }
675
676 /***********************************************************/
677 /* timers */
678
679 #define QEMU_TIMER_REALTIME 0
680 #define QEMU_TIMER_VIRTUAL 1
681
682 struct QEMUClock {
683 int type;
684 /* XXX: add frequency */
685 };
686
687 struct QEMUTimer {
688 QEMUClock *clock;
689 int64_t expire_time;
690 QEMUTimerCB *cb;
691 void *opaque;
692 struct QEMUTimer *next;
693 };
694
695 struct qemu_alarm_timer {
696 char const *name;
697 unsigned int flags;
698
699 int (*start)(struct qemu_alarm_timer *t);
700 void (*stop)(struct qemu_alarm_timer *t);
701 void (*rearm)(struct qemu_alarm_timer *t);
702 void *priv;
703 };
704
705 #define ALARM_FLAG_DYNTICKS 0x1
706 #define ALARM_FLAG_EXPIRED 0x2
707
708 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
709 {
710 return t && (t->flags & ALARM_FLAG_DYNTICKS);
711 }
712
713 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
714 {
715 if (!alarm_has_dynticks(t))
716 return;
717
718 t->rearm(t);
719 }
720
721 /* TODO: MIN_TIMER_REARM_US should be optimized */
722 #define MIN_TIMER_REARM_US 250
723
724 static struct qemu_alarm_timer *alarm_timer;
725
726 #ifdef _WIN32
727
728 struct qemu_alarm_win32 {
729 MMRESULT timerId;
730 unsigned int period;
731 } alarm_win32_data = {0, -1};
732
733 static int win32_start_timer(struct qemu_alarm_timer *t);
734 static void win32_stop_timer(struct qemu_alarm_timer *t);
735 static void win32_rearm_timer(struct qemu_alarm_timer *t);
736
737 #else
738
739 static int unix_start_timer(struct qemu_alarm_timer *t);
740 static void unix_stop_timer(struct qemu_alarm_timer *t);
741
742 #ifdef __linux__
743
744 static int dynticks_start_timer(struct qemu_alarm_timer *t);
745 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
746 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
747
748 static int hpet_start_timer(struct qemu_alarm_timer *t);
749 static void hpet_stop_timer(struct qemu_alarm_timer *t);
750
751 static int rtc_start_timer(struct qemu_alarm_timer *t);
752 static void rtc_stop_timer(struct qemu_alarm_timer *t);
753
754 #endif /* __linux__ */
755
756 #endif /* _WIN32 */
757
758 /* Correlation between real and virtual time is always going to be
759 fairly approximate, so ignore small variation.
760 When the guest is idle real and virtual time will be aligned in
761 the IO wait loop. */
762 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
763
764 static void icount_adjust(void)
765 {
766 int64_t cur_time;
767 int64_t cur_icount;
768 int64_t delta;
769 static int64_t last_delta;
770 /* If the VM is not running, then do nothing. */
771 if (!vm_running)
772 return;
773
774 cur_time = cpu_get_clock();
775 cur_icount = qemu_get_clock(vm_clock);
776 delta = cur_icount - cur_time;
777 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
778 if (delta > 0
779 && last_delta + ICOUNT_WOBBLE < delta * 2
780 && icount_time_shift > 0) {
781 /* The guest is getting too far ahead. Slow time down. */
782 icount_time_shift--;
783 }
784 if (delta < 0
785 && last_delta - ICOUNT_WOBBLE > delta * 2
786 && icount_time_shift < MAX_ICOUNT_SHIFT) {
787 /* The guest is getting too far behind. Speed time up. */
788 icount_time_shift++;
789 }
790 last_delta = delta;
791 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
792 }
793
794 static void icount_adjust_rt(void * opaque)
795 {
796 qemu_mod_timer(icount_rt_timer,
797 qemu_get_clock(rt_clock) + 1000);
798 icount_adjust();
799 }
800
801 static void icount_adjust_vm(void * opaque)
802 {
803 qemu_mod_timer(icount_vm_timer,
804 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
805 icount_adjust();
806 }
807
808 static void init_icount_adjust(void)
809 {
810 /* Have both realtime and virtual time triggers for speed adjustment.
811 The realtime trigger catches emulated time passing too slowly,
812 the virtual time trigger catches emulated time passing too fast.
813 Realtime triggers occur even when idle, so use them less frequently
814 than VM triggers. */
815 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
816 qemu_mod_timer(icount_rt_timer,
817 qemu_get_clock(rt_clock) + 1000);
818 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
819 qemu_mod_timer(icount_vm_timer,
820 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
821 }
822
823 static struct qemu_alarm_timer alarm_timers[] = {
824 #ifndef _WIN32
825 #ifdef __linux__
826 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
827 dynticks_stop_timer, dynticks_rearm_timer, NULL},
828 /* HPET - if available - is preferred */
829 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
830 /* ...otherwise try RTC */
831 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
832 #endif
833 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
834 #else
835 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
836 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
837 {"win32", 0, win32_start_timer,
838 win32_stop_timer, NULL, &alarm_win32_data},
839 #endif
840 {NULL, }
841 };
842
843 static void show_available_alarms(void)
844 {
845 int i;
846
847 printf("Available alarm timers, in order of precedence:\n");
848 for (i = 0; alarm_timers[i].name; i++)
849 printf("%s\n", alarm_timers[i].name);
850 }
851
852 static void configure_alarms(char const *opt)
853 {
854 int i;
855 int cur = 0;
856 int count = ARRAY_SIZE(alarm_timers) - 1;
857 char *arg;
858 char *name;
859 struct qemu_alarm_timer tmp;
860
861 if (!strcmp(opt, "?")) {
862 show_available_alarms();
863 exit(0);
864 }
865
866 arg = strdup(opt);
867
868 /* Reorder the array */
869 name = strtok(arg, ",");
870 while (name) {
871 for (i = 0; i < count && alarm_timers[i].name; i++) {
872 if (!strcmp(alarm_timers[i].name, name))
873 break;
874 }
875
876 if (i == count) {
877 fprintf(stderr, "Unknown clock %s\n", name);
878 goto next;
879 }
880
881 if (i < cur)
882 /* Ignore */
883 goto next;
884
885 /* Swap */
886 tmp = alarm_timers[i];
887 alarm_timers[i] = alarm_timers[cur];
888 alarm_timers[cur] = tmp;
889
890 cur++;
891 next:
892 name = strtok(NULL, ",");
893 }
894
895 free(arg);
896
897 if (cur) {
898 /* Disable remaining timers */
899 for (i = cur; i < count; i++)
900 alarm_timers[i].name = NULL;
901 } else {
902 show_available_alarms();
903 exit(1);
904 }
905 }
906
907 QEMUClock *rt_clock;
908 QEMUClock *vm_clock;
909
910 static QEMUTimer *active_timers[2];
911
912 static QEMUClock *qemu_new_clock(int type)
913 {
914 QEMUClock *clock;
915 clock = qemu_mallocz(sizeof(QEMUClock));
916 clock->type = type;
917 return clock;
918 }
919
920 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
921 {
922 QEMUTimer *ts;
923
924 ts = qemu_mallocz(sizeof(QEMUTimer));
925 ts->clock = clock;
926 ts->cb = cb;
927 ts->opaque = opaque;
928 return ts;
929 }
930
931 void qemu_free_timer(QEMUTimer *ts)
932 {
933 qemu_free(ts);
934 }
935
936 /* stop a timer, but do not dealloc it */
937 void qemu_del_timer(QEMUTimer *ts)
938 {
939 QEMUTimer **pt, *t;
940
941 /* NOTE: this code must be signal safe because
942 qemu_timer_expired() can be called from a signal. */
943 pt = &active_timers[ts->clock->type];
944 for(;;) {
945 t = *pt;
946 if (!t)
947 break;
948 if (t == ts) {
949 *pt = t->next;
950 break;
951 }
952 pt = &t->next;
953 }
954 }
955
956 /* modify the current timer so that it will be fired when current_time
957 >= expire_time. The corresponding callback will be called. */
958 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
959 {
960 QEMUTimer **pt, *t;
961
962 qemu_del_timer(ts);
963
964 /* add the timer in the sorted list */
965 /* NOTE: this code must be signal safe because
966 qemu_timer_expired() can be called from a signal. */
967 pt = &active_timers[ts->clock->type];
968 for(;;) {
969 t = *pt;
970 if (!t)
971 break;
972 if (t->expire_time > expire_time)
973 break;
974 pt = &t->next;
975 }
976 ts->expire_time = expire_time;
977 ts->next = *pt;
978 *pt = ts;
979
980 /* Rearm if necessary */
981 if (pt == &active_timers[ts->clock->type]) {
982 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
983 qemu_rearm_alarm_timer(alarm_timer);
984 }
985 /* Interrupt execution to force deadline recalculation. */
986 if (use_icount)
987 qemu_notify_event();
988 }
989 }
990
991 int qemu_timer_pending(QEMUTimer *ts)
992 {
993 QEMUTimer *t;
994 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
995 if (t == ts)
996 return 1;
997 }
998 return 0;
999 }
1000
1001 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1002 {
1003 if (!timer_head)
1004 return 0;
1005 return (timer_head->expire_time <= current_time);
1006 }
1007
1008 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1009 {
1010 QEMUTimer *ts;
1011
1012 for(;;) {
1013 ts = *ptimer_head;
1014 if (!ts || ts->expire_time > current_time)
1015 break;
1016 /* remove timer from the list before calling the callback */
1017 *ptimer_head = ts->next;
1018 ts->next = NULL;
1019
1020 /* run the callback (the timer list can be modified) */
1021 ts->cb(ts->opaque);
1022 }
1023 }
1024
1025 int64_t qemu_get_clock(QEMUClock *clock)
1026 {
1027 switch(clock->type) {
1028 case QEMU_TIMER_REALTIME:
1029 return get_clock() / 1000000;
1030 default:
1031 case QEMU_TIMER_VIRTUAL:
1032 if (use_icount) {
1033 return cpu_get_icount();
1034 } else {
1035 return cpu_get_clock();
1036 }
1037 }
1038 }
1039
1040 static void init_timers(void)
1041 {
1042 init_get_clock();
1043 ticks_per_sec = QEMU_TIMER_BASE;
1044 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1045 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1046 }
1047
1048 /* save a timer */
1049 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1050 {
1051 uint64_t expire_time;
1052
1053 if (qemu_timer_pending(ts)) {
1054 expire_time = ts->expire_time;
1055 } else {
1056 expire_time = -1;
1057 }
1058 qemu_put_be64(f, expire_time);
1059 }
1060
1061 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 expire_time = qemu_get_be64(f);
1066 if (expire_time != -1) {
1067 qemu_mod_timer(ts, expire_time);
1068 } else {
1069 qemu_del_timer(ts);
1070 }
1071 }
1072
1073 static void timer_save(QEMUFile *f, void *opaque)
1074 {
1075 if (cpu_ticks_enabled) {
1076 hw_error("cannot save state if virtual timers are running");
1077 }
1078 qemu_put_be64(f, cpu_ticks_offset);
1079 qemu_put_be64(f, ticks_per_sec);
1080 qemu_put_be64(f, cpu_clock_offset);
1081 }
1082
1083 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1084 {
1085 if (version_id != 1 && version_id != 2)
1086 return -EINVAL;
1087 if (cpu_ticks_enabled) {
1088 return -EINVAL;
1089 }
1090 cpu_ticks_offset=qemu_get_be64(f);
1091 ticks_per_sec=qemu_get_be64(f);
1092 if (version_id == 2) {
1093 cpu_clock_offset=qemu_get_be64(f);
1094 }
1095 return 0;
1096 }
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, ticks_per_sec),
1125 muldiv64(delta_max, 1000000, ticks_per_sec),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1127 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1142 qemu_get_clock(rt_clock))) {
1143 qemu_event_increment();
1144 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1145
1146 #ifndef CONFIG_IOTHREAD
1147 if (next_cpu) {
1148 /* stop the currently executing cpu because a timer occured */
1149 cpu_exit(next_cpu);
1150 #ifdef CONFIG_KQEMU
1151 if (next_cpu->kqemu_enabled) {
1152 kqemu_cpu_interrupt(next_cpu);
1153 }
1154 #endif
1155 }
1156 #endif
1157 timer_alarm_pending = 1;
1158 qemu_notify_event();
1159 }
1160 }
1161
1162 static int64_t qemu_next_deadline(void)
1163 {
1164 int64_t delta;
1165
1166 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1167 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1168 qemu_get_clock(vm_clock);
1169 } else {
1170 /* To avoid problems with overflow limit this to 2^32. */
1171 delta = INT32_MAX;
1172 }
1173
1174 if (delta < 0)
1175 delta = 0;
1176
1177 return delta;
1178 }
1179
1180 #if defined(__linux__) || defined(_WIN32)
1181 static uint64_t qemu_next_deadline_dyntick(void)
1182 {
1183 int64_t delta;
1184 int64_t rtdelta;
1185
1186 if (use_icount)
1187 delta = INT32_MAX;
1188 else
1189 delta = (qemu_next_deadline() + 999) / 1000;
1190
1191 if (active_timers[QEMU_TIMER_REALTIME]) {
1192 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1193 qemu_get_clock(rt_clock))*1000;
1194 if (rtdelta < delta)
1195 delta = rtdelta;
1196 }
1197
1198 if (delta < MIN_TIMER_REARM_US)
1199 delta = MIN_TIMER_REARM_US;
1200
1201 return delta;
1202 }
1203 #endif
1204
1205 #ifndef _WIN32
1206
1207 /* Sets a specific flag */
1208 static int fcntl_setfl(int fd, int flag)
1209 {
1210 int flags;
1211
1212 flags = fcntl(fd, F_GETFL);
1213 if (flags == -1)
1214 return -errno;
1215
1216 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217 return -errno;
1218
1219 return 0;
1220 }
1221
1222 #if defined(__linux__)
1223
1224 #define RTC_FREQ 1024
1225
1226 static void enable_sigio_timer(int fd)
1227 {
1228 struct sigaction act;
1229
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1234
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl_setfl(fd, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1238 }
1239
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1241 {
1242 struct hpet_info info;
1243 int r, fd;
1244
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1248
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1256 }
1257
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1262
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1267
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1272
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1275
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1280 }
1281
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1283 {
1284 int fd = (long)t->priv;
1285
1286 close(fd);
1287 }
1288
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1290 {
1291 int rtc_fd;
1292 unsigned long current_rtc_freq = 0;
1293
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298 if (current_rtc_freq != RTC_FREQ &&
1299 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303 goto fail;
1304 }
1305 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306 fail:
1307 close(rtc_fd);
1308 return -1;
1309 }
1310
1311 enable_sigio_timer(rtc_fd);
1312
1313 t->priv = (void *)(long)rtc_fd;
1314
1315 return 0;
1316 }
1317
1318 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1319 {
1320 int rtc_fd = (long)t->priv;
1321
1322 close(rtc_fd);
1323 }
1324
1325 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1326 {
1327 struct sigevent ev;
1328 timer_t host_timer;
1329 struct sigaction act;
1330
1331 sigfillset(&act.sa_mask);
1332 act.sa_flags = 0;
1333 act.sa_handler = host_alarm_handler;
1334
1335 sigaction(SIGALRM, &act, NULL);
1336
1337 /*
1338 * Initialize ev struct to 0 to avoid valgrind complaining
1339 * about uninitialized data in timer_create call
1340 */
1341 memset(&ev, 0, sizeof(ev));
1342 ev.sigev_value.sival_int = 0;
1343 ev.sigev_notify = SIGEV_SIGNAL;
1344 ev.sigev_signo = SIGALRM;
1345
1346 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347 perror("timer_create");
1348
1349 /* disable dynticks */
1350 fprintf(stderr, "Dynamic Ticks disabled\n");
1351
1352 return -1;
1353 }
1354
1355 t->priv = (void *)(long)host_timer;
1356
1357 return 0;
1358 }
1359
1360 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1361 {
1362 timer_t host_timer = (timer_t)(long)t->priv;
1363
1364 timer_delete(host_timer);
1365 }
1366
1367 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1368 {
1369 timer_t host_timer = (timer_t)(long)t->priv;
1370 struct itimerspec timeout;
1371 int64_t nearest_delta_us = INT64_MAX;
1372 int64_t current_us;
1373
1374 if (!active_timers[QEMU_TIMER_REALTIME] &&
1375 !active_timers[QEMU_TIMER_VIRTUAL])
1376 return;
1377
1378 nearest_delta_us = qemu_next_deadline_dyntick();
1379
1380 /* check whether a timer is already running */
1381 if (timer_gettime(host_timer, &timeout)) {
1382 perror("gettime");
1383 fprintf(stderr, "Internal timer error: aborting\n");
1384 exit(1);
1385 }
1386 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1387 if (current_us && current_us <= nearest_delta_us)
1388 return;
1389
1390 timeout.it_interval.tv_sec = 0;
1391 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1392 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1393 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1394 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1395 perror("settime");
1396 fprintf(stderr, "Internal timer error: aborting\n");
1397 exit(1);
1398 }
1399 }
1400
1401 #endif /* defined(__linux__) */
1402
1403 static int unix_start_timer(struct qemu_alarm_timer *t)
1404 {
1405 struct sigaction act;
1406 struct itimerval itv;
1407 int err;
1408
1409 /* timer signal */
1410 sigfillset(&act.sa_mask);
1411 act.sa_flags = 0;
1412 act.sa_handler = host_alarm_handler;
1413
1414 sigaction(SIGALRM, &act, NULL);
1415
1416 itv.it_interval.tv_sec = 0;
1417 /* for i386 kernel 2.6 to get 1 ms */
1418 itv.it_interval.tv_usec = 999;
1419 itv.it_value.tv_sec = 0;
1420 itv.it_value.tv_usec = 10 * 1000;
1421
1422 err = setitimer(ITIMER_REAL, &itv, NULL);
1423 if (err)
1424 return -1;
1425
1426 return 0;
1427 }
1428
1429 static void unix_stop_timer(struct qemu_alarm_timer *t)
1430 {
1431 struct itimerval itv;
1432
1433 memset(&itv, 0, sizeof(itv));
1434 setitimer(ITIMER_REAL, &itv, NULL);
1435 }
1436
1437 #endif /* !defined(_WIN32) */
1438
1439
1440 #ifdef _WIN32
1441
1442 static int win32_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 TIMECAPS tc;
1445 struct qemu_alarm_win32 *data = t->priv;
1446 UINT flags;
1447
1448 memset(&tc, 0, sizeof(tc));
1449 timeGetDevCaps(&tc, sizeof(tc));
1450
1451 if (data->period < tc.wPeriodMin)
1452 data->period = tc.wPeriodMin;
1453
1454 timeBeginPeriod(data->period);
1455
1456 flags = TIME_CALLBACK_FUNCTION;
1457 if (alarm_has_dynticks(t))
1458 flags |= TIME_ONESHOT;
1459 else
1460 flags |= TIME_PERIODIC;
1461
1462 data->timerId = timeSetEvent(1, // interval (ms)
1463 data->period, // resolution
1464 host_alarm_handler, // function
1465 (DWORD)t, // parameter
1466 flags);
1467
1468 if (!data->timerId) {
1469 perror("Failed to initialize win32 alarm timer");
1470 timeEndPeriod(data->period);
1471 return -1;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void win32_stop_timer(struct qemu_alarm_timer *t)
1478 {
1479 struct qemu_alarm_win32 *data = t->priv;
1480
1481 timeKillEvent(data->timerId);
1482 timeEndPeriod(data->period);
1483 }
1484
1485 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1486 {
1487 struct qemu_alarm_win32 *data = t->priv;
1488 uint64_t nearest_delta_us;
1489
1490 if (!active_timers[QEMU_TIMER_REALTIME] &&
1491 !active_timers[QEMU_TIMER_VIRTUAL])
1492 return;
1493
1494 nearest_delta_us = qemu_next_deadline_dyntick();
1495 nearest_delta_us /= 1000;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 perror("Failed to re-arm win32 alarm timer");
1507
1508 timeEndPeriod(data->period);
1509 exit(1);
1510 }
1511 }
1512
1513 #endif /* _WIN32 */
1514
1515 static int init_timer_alarm(void)
1516 {
1517 struct qemu_alarm_timer *t = NULL;
1518 int i, err = -1;
1519
1520 for (i = 0; alarm_timers[i].name; i++) {
1521 t = &alarm_timers[i];
1522
1523 err = t->start(t);
1524 if (!err)
1525 break;
1526 }
1527
1528 if (err) {
1529 err = -ENOENT;
1530 goto fail;
1531 }
1532
1533 alarm_timer = t;
1534
1535 return 0;
1536
1537 fail:
1538 return err;
1539 }
1540
1541 static void quit_timers(void)
1542 {
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1545 }
1546
1547 /***********************************************************/
1548 /* host time/date access */
1549 void qemu_get_timedate(struct tm *tm, int offset)
1550 {
1551 time_t ti;
1552 struct tm *ret;
1553
1554 time(&ti);
1555 ti += offset;
1556 if (rtc_date_offset == -1) {
1557 if (rtc_utc)
1558 ret = gmtime(&ti);
1559 else
1560 ret = localtime(&ti);
1561 } else {
1562 ti -= rtc_date_offset;
1563 ret = gmtime(&ti);
1564 }
1565
1566 memcpy(tm, ret, sizeof(struct tm));
1567 }
1568
1569 int qemu_timedate_diff(struct tm *tm)
1570 {
1571 time_t seconds;
1572
1573 if (rtc_date_offset == -1)
1574 if (rtc_utc)
1575 seconds = mktimegm(tm);
1576 else
1577 seconds = mktime(tm);
1578 else
1579 seconds = mktimegm(tm) + rtc_date_offset;
1580
1581 return seconds - time(NULL);
1582 }
1583
1584 #ifdef _WIN32
1585 static void socket_cleanup(void)
1586 {
1587 WSACleanup();
1588 }
1589
1590 static int socket_init(void)
1591 {
1592 WSADATA Data;
1593 int ret, err;
1594
1595 ret = WSAStartup(MAKEWORD(2,2), &Data);
1596 if (ret != 0) {
1597 err = WSAGetLastError();
1598 fprintf(stderr, "WSAStartup: %d\n", err);
1599 return -1;
1600 }
1601 atexit(socket_cleanup);
1602 return 0;
1603 }
1604 #endif
1605
1606 int get_next_param_value(char *buf, int buf_size,
1607 const char *tag, const char **pstr)
1608 {
1609 const char *p;
1610 char option[128];
1611
1612 p = *pstr;
1613 for(;;) {
1614 p = get_opt_name(option, sizeof(option), p, '=');
1615 if (*p != '=')
1616 break;
1617 p++;
1618 if (!strcmp(tag, option)) {
1619 *pstr = get_opt_value(buf, buf_size, p);
1620 if (**pstr == ',') {
1621 (*pstr)++;
1622 }
1623 return strlen(buf);
1624 } else {
1625 p = get_opt_value(NULL, 0, p);
1626 }
1627 if (*p != ',')
1628 break;
1629 p++;
1630 }
1631 return 0;
1632 }
1633
1634 int get_param_value(char *buf, int buf_size,
1635 const char *tag, const char *str)
1636 {
1637 return get_next_param_value(buf, buf_size, tag, &str);
1638 }
1639
1640 int check_params(char *buf, int buf_size,
1641 const char * const *params, const char *str)
1642 {
1643 const char *p;
1644 int i;
1645
1646 p = str;
1647 while (*p != '\0') {
1648 p = get_opt_name(buf, buf_size, p, '=');
1649 if (*p != '=') {
1650 return -1;
1651 }
1652 p++;
1653 for (i = 0; params[i] != NULL; i++) {
1654 if (!strcmp(params[i], buf)) {
1655 break;
1656 }
1657 }
1658 if (params[i] == NULL) {
1659 return -1;
1660 }
1661 p = get_opt_value(NULL, 0, p);
1662 if (*p != ',') {
1663 break;
1664 }
1665 p++;
1666 }
1667 return 0;
1668 }
1669
1670 /***********************************************************/
1671 /* Bluetooth support */
1672 static int nb_hcis;
1673 static int cur_hci;
1674 static struct HCIInfo *hci_table[MAX_NICS];
1675
1676 static struct bt_vlan_s {
1677 struct bt_scatternet_s net;
1678 int id;
1679 struct bt_vlan_s *next;
1680 } *first_bt_vlan;
1681
1682 /* find or alloc a new bluetooth "VLAN" */
1683 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1684 {
1685 struct bt_vlan_s **pvlan, *vlan;
1686 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1687 if (vlan->id == id)
1688 return &vlan->net;
1689 }
1690 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1691 vlan->id = id;
1692 pvlan = &first_bt_vlan;
1693 while (*pvlan != NULL)
1694 pvlan = &(*pvlan)->next;
1695 *pvlan = vlan;
1696 return &vlan->net;
1697 }
1698
1699 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1700 {
1701 }
1702
1703 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1704 {
1705 return -ENOTSUP;
1706 }
1707
1708 static struct HCIInfo null_hci = {
1709 .cmd_send = null_hci_send,
1710 .sco_send = null_hci_send,
1711 .acl_send = null_hci_send,
1712 .bdaddr_set = null_hci_addr_set,
1713 };
1714
1715 struct HCIInfo *qemu_next_hci(void)
1716 {
1717 if (cur_hci == nb_hcis)
1718 return &null_hci;
1719
1720 return hci_table[cur_hci++];
1721 }
1722
1723 static struct HCIInfo *hci_init(const char *str)
1724 {
1725 char *endp;
1726 struct bt_scatternet_s *vlan = 0;
1727
1728 if (!strcmp(str, "null"))
1729 /* null */
1730 return &null_hci;
1731 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1732 /* host[:hciN] */
1733 return bt_host_hci(str[4] ? str + 5 : "hci0");
1734 else if (!strncmp(str, "hci", 3)) {
1735 /* hci[,vlan=n] */
1736 if (str[3]) {
1737 if (!strncmp(str + 3, ",vlan=", 6)) {
1738 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1739 if (*endp)
1740 vlan = 0;
1741 }
1742 } else
1743 vlan = qemu_find_bt_vlan(0);
1744 if (vlan)
1745 return bt_new_hci(vlan);
1746 }
1747
1748 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1749
1750 return 0;
1751 }
1752
1753 static int bt_hci_parse(const char *str)
1754 {
1755 struct HCIInfo *hci;
1756 bdaddr_t bdaddr;
1757
1758 if (nb_hcis >= MAX_NICS) {
1759 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1760 return -1;
1761 }
1762
1763 hci = hci_init(str);
1764 if (!hci)
1765 return -1;
1766
1767 bdaddr.b[0] = 0x52;
1768 bdaddr.b[1] = 0x54;
1769 bdaddr.b[2] = 0x00;
1770 bdaddr.b[3] = 0x12;
1771 bdaddr.b[4] = 0x34;
1772 bdaddr.b[5] = 0x56 + nb_hcis;
1773 hci->bdaddr_set(hci, bdaddr.b);
1774
1775 hci_table[nb_hcis++] = hci;
1776
1777 return 0;
1778 }
1779
1780 static void bt_vhci_add(int vlan_id)
1781 {
1782 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1783
1784 if (!vlan->slave)
1785 fprintf(stderr, "qemu: warning: adding a VHCI to "
1786 "an empty scatternet %i\n", vlan_id);
1787
1788 bt_vhci_init(bt_new_hci(vlan));
1789 }
1790
1791 static struct bt_device_s *bt_device_add(const char *opt)
1792 {
1793 struct bt_scatternet_s *vlan;
1794 int vlan_id = 0;
1795 char *endp = strstr(opt, ",vlan=");
1796 int len = (endp ? endp - opt : strlen(opt)) + 1;
1797 char devname[10];
1798
1799 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1800
1801 if (endp) {
1802 vlan_id = strtol(endp + 6, &endp, 0);
1803 if (*endp) {
1804 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1805 return 0;
1806 }
1807 }
1808
1809 vlan = qemu_find_bt_vlan(vlan_id);
1810
1811 if (!vlan->slave)
1812 fprintf(stderr, "qemu: warning: adding a slave device to "
1813 "an empty scatternet %i\n", vlan_id);
1814
1815 if (!strcmp(devname, "keyboard"))
1816 return bt_keyboard_init(vlan);
1817
1818 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1819 return 0;
1820 }
1821
1822 static int bt_parse(const char *opt)
1823 {
1824 const char *endp, *p;
1825 int vlan;
1826
1827 if (strstart(opt, "hci", &endp)) {
1828 if (!*endp || *endp == ',') {
1829 if (*endp)
1830 if (!strstart(endp, ",vlan=", 0))
1831 opt = endp + 1;
1832
1833 return bt_hci_parse(opt);
1834 }
1835 } else if (strstart(opt, "vhci", &endp)) {
1836 if (!*endp || *endp == ',') {
1837 if (*endp) {
1838 if (strstart(endp, ",vlan=", &p)) {
1839 vlan = strtol(p, (char **) &endp, 0);
1840 if (*endp) {
1841 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1842 return 1;
1843 }
1844 } else {
1845 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1846 return 1;
1847 }
1848 } else
1849 vlan = 0;
1850
1851 bt_vhci_add(vlan);
1852 return 0;
1853 }
1854 } else if (strstart(opt, "device:", &endp))
1855 return !bt_device_add(endp);
1856
1857 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1858 return 1;
1859 }
1860
1861 /***********************************************************/
1862 /* QEMU Block devices */
1863
1864 #define HD_ALIAS "index=%d,media=disk"
1865 #define CDROM_ALIAS "index=2,media=cdrom"
1866 #define FD_ALIAS "index=%d,if=floppy"
1867 #define PFLASH_ALIAS "if=pflash"
1868 #define MTD_ALIAS "if=mtd"
1869 #define SD_ALIAS "index=0,if=sd"
1870
1871 static int drive_opt_get_free_idx(void)
1872 {
1873 int index;
1874
1875 for (index = 0; index < MAX_DRIVES; index++)
1876 if (!drives_opt[index].used) {
1877 drives_opt[index].used = 1;
1878 return index;
1879 }
1880
1881 return -1;
1882 }
1883
1884 static int drive_get_free_idx(void)
1885 {
1886 int index;
1887
1888 for (index = 0; index < MAX_DRIVES; index++)
1889 if (!drives_table[index].used) {
1890 drives_table[index].used = 1;
1891 return index;
1892 }
1893
1894 return -1;
1895 }
1896
1897 int drive_add(const char *file, const char *fmt, ...)
1898 {
1899 va_list ap;
1900 int index = drive_opt_get_free_idx();
1901
1902 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1903 fprintf(stderr, "qemu: too many drives\n");
1904 return -1;
1905 }
1906
1907 drives_opt[index].file = file;
1908 va_start(ap, fmt);
1909 vsnprintf(drives_opt[index].opt,
1910 sizeof(drives_opt[0].opt), fmt, ap);
1911 va_end(ap);
1912
1913 nb_drives_opt++;
1914 return index;
1915 }
1916
1917 void drive_remove(int index)
1918 {
1919 drives_opt[index].used = 0;
1920 nb_drives_opt--;
1921 }
1922
1923 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1924 {
1925 int index;
1926
1927 /* seek interface, bus and unit */
1928
1929 for (index = 0; index < MAX_DRIVES; index++)
1930 if (drives_table[index].type == type &&
1931 drives_table[index].bus == bus &&
1932 drives_table[index].unit == unit &&
1933 drives_table[index].used)
1934 return index;
1935
1936 return -1;
1937 }
1938
1939 int drive_get_max_bus(BlockInterfaceType type)
1940 {
1941 int max_bus;
1942 int index;
1943
1944 max_bus = -1;
1945 for (index = 0; index < nb_drives; index++) {
1946 if(drives_table[index].type == type &&
1947 drives_table[index].bus > max_bus)
1948 max_bus = drives_table[index].bus;
1949 }
1950 return max_bus;
1951 }
1952
1953 const char *drive_get_serial(BlockDriverState *bdrv)
1954 {
1955 int index;
1956
1957 for (index = 0; index < nb_drives; index++)
1958 if (drives_table[index].bdrv == bdrv)
1959 return drives_table[index].serial;
1960
1961 return "\0";
1962 }
1963
1964 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1965 {
1966 int index;
1967
1968 for (index = 0; index < nb_drives; index++)
1969 if (drives_table[index].bdrv == bdrv)
1970 return drives_table[index].onerror;
1971
1972 return BLOCK_ERR_STOP_ENOSPC;
1973 }
1974
1975 static void bdrv_format_print(void *opaque, const char *name)
1976 {
1977 fprintf(stderr, " %s", name);
1978 }
1979
1980 void drive_uninit(BlockDriverState *bdrv)
1981 {
1982 int i;
1983
1984 for (i = 0; i < MAX_DRIVES; i++)
1985 if (drives_table[i].bdrv == bdrv) {
1986 drives_table[i].bdrv = NULL;
1987 drives_table[i].used = 0;
1988 drive_remove(drives_table[i].drive_opt_idx);
1989 nb_drives--;
1990 break;
1991 }
1992 }
1993
1994 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1995 {
1996 char buf[128];
1997 char file[1024];
1998 char devname[128];
1999 char serial[21];
2000 const char *mediastr = "";
2001 BlockInterfaceType type;
2002 enum { MEDIA_DISK, MEDIA_CDROM } media;
2003 int bus_id, unit_id;
2004 int cyls, heads, secs, translation;
2005 BlockDriverState *bdrv;
2006 BlockDriver *drv = NULL;
2007 QEMUMachine *machine = opaque;
2008 int max_devs;
2009 int index;
2010 int cache;
2011 int bdrv_flags, onerror;
2012 const char *devaddr;
2013 int drives_table_idx;
2014 char *str = arg->opt;
2015 static const char * const params[] = { "bus", "unit", "if", "index",
2016 "cyls", "heads", "secs", "trans",
2017 "media", "snapshot", "file",
2018 "cache", "format", "serial",
2019 "werror", "addr",
2020 NULL };
2021
2022 if (check_params(buf, sizeof(buf), params, str) < 0) {
2023 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2024 buf, str);
2025 return -1;
2026 }
2027
2028 file[0] = 0;
2029 cyls = heads = secs = 0;
2030 bus_id = 0;
2031 unit_id = -1;
2032 translation = BIOS_ATA_TRANSLATION_AUTO;
2033 index = -1;
2034 cache = 1;
2035
2036 if (machine->use_scsi) {
2037 type = IF_SCSI;
2038 max_devs = MAX_SCSI_DEVS;
2039 pstrcpy(devname, sizeof(devname), "scsi");
2040 } else {
2041 type = IF_IDE;
2042 max_devs = MAX_IDE_DEVS;
2043 pstrcpy(devname, sizeof(devname), "ide");
2044 }
2045 media = MEDIA_DISK;
2046
2047 /* extract parameters */
2048
2049 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2050 bus_id = strtol(buf, NULL, 0);
2051 if (bus_id < 0) {
2052 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2053 return -1;
2054 }
2055 }
2056
2057 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2058 unit_id = strtol(buf, NULL, 0);
2059 if (unit_id < 0) {
2060 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2061 return -1;
2062 }
2063 }
2064
2065 if (get_param_value(buf, sizeof(buf), "if", str)) {
2066 pstrcpy(devname, sizeof(devname), buf);
2067 if (!strcmp(buf, "ide")) {
2068 type = IF_IDE;
2069 max_devs = MAX_IDE_DEVS;
2070 } else if (!strcmp(buf, "scsi")) {
2071 type = IF_SCSI;
2072 max_devs = MAX_SCSI_DEVS;
2073 } else if (!strcmp(buf, "floppy")) {
2074 type = IF_FLOPPY;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "pflash")) {
2077 type = IF_PFLASH;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "mtd")) {
2080 type = IF_MTD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "sd")) {
2083 type = IF_SD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "virtio")) {
2086 type = IF_VIRTIO;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "xen")) {
2089 type = IF_XEN;
2090 max_devs = 0;
2091 } else {
2092 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2093 return -1;
2094 }
2095 }
2096
2097 if (get_param_value(buf, sizeof(buf), "index", str)) {
2098 index = strtol(buf, NULL, 0);
2099 if (index < 0) {
2100 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2101 return -1;
2102 }
2103 }
2104
2105 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2106 cyls = strtol(buf, NULL, 0);
2107 }
2108
2109 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2110 heads = strtol(buf, NULL, 0);
2111 }
2112
2113 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2114 secs = strtol(buf, NULL, 0);
2115 }
2116
2117 if (cyls || heads || secs) {
2118 if (cyls < 1 || cyls > 16383) {
2119 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2120 return -1;
2121 }
2122 if (heads < 1 || heads > 16) {
2123 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2124 return -1;
2125 }
2126 if (secs < 1 || secs > 63) {
2127 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2128 return -1;
2129 }
2130 }
2131
2132 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2133 if (!cyls) {
2134 fprintf(stderr,
2135 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2136 str);
2137 return -1;
2138 }
2139 if (!strcmp(buf, "none"))
2140 translation = BIOS_ATA_TRANSLATION_NONE;
2141 else if (!strcmp(buf, "lba"))
2142 translation = BIOS_ATA_TRANSLATION_LBA;
2143 else if (!strcmp(buf, "auto"))
2144 translation = BIOS_ATA_TRANSLATION_AUTO;
2145 else {
2146 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2147 return -1;
2148 }
2149 }
2150
2151 if (get_param_value(buf, sizeof(buf), "media", str)) {
2152 if (!strcmp(buf, "disk")) {
2153 media = MEDIA_DISK;
2154 } else if (!strcmp(buf, "cdrom")) {
2155 if (cyls || secs || heads) {
2156 fprintf(stderr,
2157 "qemu: '%s' invalid physical CHS format\n", str);
2158 return -1;
2159 }
2160 media = MEDIA_CDROM;
2161 } else {
2162 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2163 return -1;
2164 }
2165 }
2166
2167 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2168 if (!strcmp(buf, "on"))
2169 snapshot = 1;
2170 else if (!strcmp(buf, "off"))
2171 snapshot = 0;
2172 else {
2173 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2174 return -1;
2175 }
2176 }
2177
2178 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2179 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2180 cache = 0;
2181 else if (!strcmp(buf, "writethrough"))
2182 cache = 1;
2183 else if (!strcmp(buf, "writeback"))
2184 cache = 2;
2185 else {
2186 fprintf(stderr, "qemu: invalid cache option\n");
2187 return -1;
2188 }
2189 }
2190
2191 if (get_param_value(buf, sizeof(buf), "format", str)) {
2192 if (strcmp(buf, "?") == 0) {
2193 fprintf(stderr, "qemu: Supported formats:");
2194 bdrv_iterate_format(bdrv_format_print, NULL);
2195 fprintf(stderr, "\n");
2196 return -1;
2197 }
2198 drv = bdrv_find_format(buf);
2199 if (!drv) {
2200 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2201 return -1;
2202 }
2203 }
2204
2205 if (arg->file == NULL)
2206 get_param_value(file, sizeof(file), "file", str);
2207 else
2208 pstrcpy(file, sizeof(file), arg->file);
2209
2210 if (!get_param_value(serial, sizeof(serial), "serial", str))
2211 memset(serial, 0, sizeof(serial));
2212
2213 onerror = BLOCK_ERR_STOP_ENOSPC;
2214 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2215 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2216 fprintf(stderr, "werror is no supported by this format\n");
2217 return -1;
2218 }
2219 if (!strcmp(buf, "ignore"))
2220 onerror = BLOCK_ERR_IGNORE;
2221 else if (!strcmp(buf, "enospc"))
2222 onerror = BLOCK_ERR_STOP_ENOSPC;
2223 else if (!strcmp(buf, "stop"))
2224 onerror = BLOCK_ERR_STOP_ANY;
2225 else if (!strcmp(buf, "report"))
2226 onerror = BLOCK_ERR_REPORT;
2227 else {
2228 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2229 return -1;
2230 }
2231 }
2232
2233 devaddr = NULL;
2234 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2235 if (type != IF_VIRTIO) {
2236 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2237 return -1;
2238 }
2239 devaddr = strdup(buf);
2240 }
2241
2242 /* compute bus and unit according index */
2243
2244 if (index != -1) {
2245 if (bus_id != 0 || unit_id != -1) {
2246 fprintf(stderr,
2247 "qemu: '%s' index cannot be used with bus and unit\n", str);
2248 return -1;
2249 }
2250 if (max_devs == 0)
2251 {
2252 unit_id = index;
2253 bus_id = 0;
2254 } else {
2255 unit_id = index % max_devs;
2256 bus_id = index / max_devs;
2257 }
2258 }
2259
2260 /* if user doesn't specify a unit_id,
2261 * try to find the first free
2262 */
2263
2264 if (unit_id == -1) {
2265 unit_id = 0;
2266 while (drive_get_index(type, bus_id, unit_id) != -1) {
2267 unit_id++;
2268 if (max_devs && unit_id >= max_devs) {
2269 unit_id -= max_devs;
2270 bus_id++;
2271 }
2272 }
2273 }
2274
2275 /* check unit id */
2276
2277 if (max_devs && unit_id >= max_devs) {
2278 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2279 str, unit_id, max_devs - 1);
2280 return -1;
2281 }
2282
2283 /*
2284 * ignore multiple definitions
2285 */
2286
2287 if (drive_get_index(type, bus_id, unit_id) != -1)
2288 return -2;
2289
2290 /* init */
2291
2292 if (type == IF_IDE || type == IF_SCSI)
2293 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2294 if (max_devs)
2295 snprintf(buf, sizeof(buf), "%s%i%s%i",
2296 devname, bus_id, mediastr, unit_id);
2297 else
2298 snprintf(buf, sizeof(buf), "%s%s%i",
2299 devname, mediastr, unit_id);
2300 bdrv = bdrv_new(buf);
2301 drives_table_idx = drive_get_free_idx();
2302 drives_table[drives_table_idx].bdrv = bdrv;
2303 drives_table[drives_table_idx].devaddr = devaddr;
2304 drives_table[drives_table_idx].type = type;
2305 drives_table[drives_table_idx].bus = bus_id;
2306 drives_table[drives_table_idx].unit = unit_id;
2307 drives_table[drives_table_idx].onerror = onerror;
2308 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2309 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2310 nb_drives++;
2311
2312 switch(type) {
2313 case IF_IDE:
2314 case IF_SCSI:
2315 case IF_XEN:
2316 switch(media) {
2317 case MEDIA_DISK:
2318 if (cyls != 0) {
2319 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2320 bdrv_set_translation_hint(bdrv, translation);
2321 }
2322 break;
2323 case MEDIA_CDROM:
2324 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2325 break;
2326 }
2327 break;
2328 case IF_SD:
2329 /* FIXME: This isn't really a floppy, but it's a reasonable
2330 approximation. */
2331 case IF_FLOPPY:
2332 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2333 break;
2334 case IF_PFLASH:
2335 case IF_MTD:
2336 case IF_VIRTIO:
2337 break;
2338 case IF_COUNT:
2339 abort();
2340 }
2341 if (!file[0])
2342 return -2;
2343 bdrv_flags = 0;
2344 if (snapshot) {
2345 bdrv_flags |= BDRV_O_SNAPSHOT;
2346 cache = 2; /* always use write-back with snapshot */
2347 }
2348 if (cache == 0) /* no caching */
2349 bdrv_flags |= BDRV_O_NOCACHE;
2350 else if (cache == 2) /* write-back */
2351 bdrv_flags |= BDRV_O_CACHE_WB;
2352 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2353 fprintf(stderr, "qemu: could not open disk image %s\n",
2354 file);
2355 return -1;
2356 }
2357 if (bdrv_key_required(bdrv))
2358 autostart = 0;
2359 return drives_table_idx;
2360 }
2361
2362 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2363 {
2364 boot_set_handler = func;
2365 boot_set_opaque = opaque;
2366 }
2367
2368 int qemu_boot_set(const char *boot_devices)
2369 {
2370 if (!boot_set_handler) {
2371 return -EINVAL;
2372 }
2373 return boot_set_handler(boot_set_opaque, boot_devices);
2374 }
2375
2376 static int parse_bootdevices(char *devices)
2377 {
2378 /* We just do some generic consistency checks */
2379 const char *p;
2380 int bitmap = 0;
2381
2382 for (p = devices; *p != '\0'; p++) {
2383 /* Allowed boot devices are:
2384 * a-b: floppy disk drives
2385 * c-f: IDE disk drives
2386 * g-m: machine implementation dependant drives
2387 * n-p: network devices
2388 * It's up to each machine implementation to check if the given boot
2389 * devices match the actual hardware implementation and firmware
2390 * features.
2391 */
2392 if (*p < 'a' || *p > 'p') {
2393 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2394 exit(1);
2395 }
2396 if (bitmap & (1 << (*p - 'a'))) {
2397 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2398 exit(1);
2399 }
2400 bitmap |= 1 << (*p - 'a');
2401 }
2402 return bitmap;
2403 }
2404
2405 static void restore_boot_devices(void *opaque)
2406 {
2407 char *standard_boot_devices = opaque;
2408
2409 qemu_boot_set(standard_boot_devices);
2410
2411 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2412 qemu_free(standard_boot_devices);
2413 }
2414
2415 static void numa_add(const char *optarg)
2416 {
2417 char option[128];
2418 char *endptr;
2419 unsigned long long value, endvalue;
2420 int nodenr;
2421
2422 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2423 if (!strcmp(option, "node")) {
2424 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2425 nodenr = nb_numa_nodes;
2426 } else {
2427 nodenr = strtoull(option, NULL, 10);
2428 }
2429
2430 if (get_param_value(option, 128, "mem", optarg) == 0) {
2431 node_mem[nodenr] = 0;
2432 } else {
2433 value = strtoull(option, &endptr, 0);
2434 switch (*endptr) {
2435 case 0: case 'M': case 'm':
2436 value <<= 20;
2437 break;
2438 case 'G': case 'g':
2439 value <<= 30;
2440 break;
2441 }
2442 node_mem[nodenr] = value;
2443 }
2444 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2445 node_cpumask[nodenr] = 0;
2446 } else {
2447 value = strtoull(option, &endptr, 10);
2448 if (value >= 64) {
2449 value = 63;
2450 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2451 } else {
2452 if (*endptr == '-') {
2453 endvalue = strtoull(endptr+1, &endptr, 10);
2454 if (endvalue >= 63) {
2455 endvalue = 62;
2456 fprintf(stderr,
2457 "only 63 CPUs in NUMA mode supported.\n");
2458 }
2459 value = (1 << (endvalue + 1)) - (1 << value);
2460 } else {
2461 value = 1 << value;
2462 }
2463 }
2464 node_cpumask[nodenr] = value;
2465 }
2466 nb_numa_nodes++;
2467 }
2468 return;
2469 }
2470
2471 /***********************************************************/
2472 /* USB devices */
2473
2474 static USBPort *used_usb_ports;
2475 static USBPort *free_usb_ports;
2476
2477 /* ??? Maybe change this to register a hub to keep track of the topology. */
2478 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2479 usb_attachfn attach)
2480 {
2481 port->opaque = opaque;
2482 port->index = index;
2483 port->attach = attach;
2484 port->next = free_usb_ports;
2485 free_usb_ports = port;
2486 }
2487
2488 int usb_device_add_dev(USBDevice *dev)
2489 {
2490 USBPort *port;
2491
2492 /* Find a USB port to add the device to. */
2493 port = free_usb_ports;
2494 if (!port->next) {
2495 USBDevice *hub;
2496
2497 /* Create a new hub and chain it on. */
2498 free_usb_ports = NULL;
2499 port->next = used_usb_ports;
2500 used_usb_ports = port;
2501
2502 hub = usb_hub_init(VM_USB_HUB_SIZE);
2503 usb_attach(port, hub);
2504 port = free_usb_ports;
2505 }
2506
2507 free_usb_ports = port->next;
2508 port->next = used_usb_ports;
2509 used_usb_ports = port;
2510 usb_attach(port, dev);
2511 return 0;
2512 }
2513
2514 static void usb_msd_password_cb(void *opaque, int err)
2515 {
2516 USBDevice *dev = opaque;
2517
2518 if (!err)
2519 usb_device_add_dev(dev);
2520 else
2521 dev->handle_destroy(dev);
2522 }
2523
2524 static int usb_device_add(const char *devname, int is_hotplug)
2525 {
2526 const char *p;
2527 USBDevice *dev;
2528
2529 if (!free_usb_ports)
2530 return -1;
2531
2532 if (strstart(devname, "host:", &p)) {
2533 dev = usb_host_device_open(p);
2534 } else if (!strcmp(devname, "mouse")) {
2535 dev = usb_mouse_init();
2536 } else if (!strcmp(devname, "tablet")) {
2537 dev = usb_tablet_init();
2538 } else if (!strcmp(devname, "keyboard")) {
2539 dev = usb_keyboard_init();
2540 } else if (strstart(devname, "disk:", &p)) {
2541 BlockDriverState *bs;
2542
2543 dev = usb_msd_init(p);
2544 if (!dev)
2545 return -1;
2546 bs = usb_msd_get_bdrv(dev);
2547 if (bdrv_key_required(bs)) {
2548 autostart = 0;
2549 if (is_hotplug) {
2550 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2551 dev);
2552 return 0;
2553 }
2554 }
2555 } else if (!strcmp(devname, "wacom-tablet")) {
2556 dev = usb_wacom_init();
2557 } else if (strstart(devname, "serial:", &p)) {
2558 dev = usb_serial_init(p);
2559 #ifdef CONFIG_BRLAPI
2560 } else if (!strcmp(devname, "braille")) {
2561 dev = usb_baum_init();
2562 #endif
2563 } else if (strstart(devname, "net:", &p)) {
2564 int nic = nb_nics;
2565
2566 if (net_client_init(NULL, "nic", p) < 0)
2567 return -1;
2568 nd_table[nic].model = "usb";
2569 dev = usb_net_init(&nd_table[nic]);
2570 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2571 dev = usb_bt_init(devname[2] ? hci_init(p) :
2572 bt_new_hci(qemu_find_bt_vlan(0)));
2573 } else {
2574 return -1;
2575 }
2576 if (!dev)
2577 return -1;
2578
2579 return usb_device_add_dev(dev);
2580 }
2581
2582 int usb_device_del_addr(int bus_num, int addr)
2583 {
2584 USBPort *port;
2585 USBPort **lastp;
2586 USBDevice *dev;
2587
2588 if (!used_usb_ports)
2589 return -1;
2590
2591 if (bus_num != 0)
2592 return -1;
2593
2594 lastp = &used_usb_ports;
2595 port = used_usb_ports;
2596 while (port && port->dev->addr != addr) {
2597 lastp = &port->next;
2598 port = port->next;
2599 }
2600
2601 if (!port)
2602 return -1;
2603
2604 dev = port->dev;
2605 *lastp = port->next;
2606 usb_attach(port, NULL);
2607 dev->handle_destroy(dev);
2608 port->next = free_usb_ports;
2609 free_usb_ports = port;
2610 return 0;
2611 }
2612
2613 static int usb_device_del(const char *devname)
2614 {
2615 int bus_num, addr;
2616 const char *p;
2617
2618 if (strstart(devname, "host:", &p))
2619 return usb_host_device_close(p);
2620
2621 if (!used_usb_ports)
2622 return -1;
2623
2624 p = strchr(devname, '.');
2625 if (!p)
2626 return -1;
2627 bus_num = strtoul(devname, NULL, 0);
2628 addr = strtoul(p + 1, NULL, 0);
2629
2630 return usb_device_del_addr(bus_num, addr);
2631 }
2632
2633 void do_usb_add(Monitor *mon, const char *devname)
2634 {
2635 usb_device_add(devname, 1);
2636 }
2637
2638 void do_usb_del(Monitor *mon, const char *devname)
2639 {
2640 usb_device_del(devname);
2641 }
2642
2643 void usb_info(Monitor *mon)
2644 {
2645 USBDevice *dev;
2646 USBPort *port;
2647 const char *speed_str;
2648
2649 if (!usb_enabled) {
2650 monitor_printf(mon, "USB support not enabled\n");
2651 return;
2652 }
2653
2654 for (port = used_usb_ports; port; port = port->next) {
2655 dev = port->dev;
2656 if (!dev)
2657 continue;
2658 switch(dev->speed) {
2659 case USB_SPEED_LOW:
2660 speed_str = "1.5";
2661 break;
2662 case USB_SPEED_FULL:
2663 speed_str = "12";
2664 break;
2665 case USB_SPEED_HIGH:
2666 speed_str = "480";
2667 break;
2668 default:
2669 speed_str = "?";
2670 break;
2671 }
2672 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2673 0, dev->addr, speed_str, dev->devname);
2674 }
2675 }
2676
2677 /***********************************************************/
2678 /* PCMCIA/Cardbus */
2679
2680 static struct pcmcia_socket_entry_s {
2681 PCMCIASocket *socket;
2682 struct pcmcia_socket_entry_s *next;
2683 } *pcmcia_sockets = 0;
2684
2685 void pcmcia_socket_register(PCMCIASocket *socket)
2686 {
2687 struct pcmcia_socket_entry_s *entry;
2688
2689 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2690 entry->socket = socket;
2691 entry->next = pcmcia_sockets;
2692 pcmcia_sockets = entry;
2693 }
2694
2695 void pcmcia_socket_unregister(PCMCIASocket *socket)
2696 {
2697 struct pcmcia_socket_entry_s *entry, **ptr;
2698
2699 ptr = &pcmcia_sockets;
2700 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2701 if (entry->socket == socket) {
2702 *ptr = entry->next;
2703 qemu_free(entry);
2704 }
2705 }
2706
2707 void pcmcia_info(Monitor *mon)
2708 {
2709 struct pcmcia_socket_entry_s *iter;
2710
2711 if (!pcmcia_sockets)
2712 monitor_printf(mon, "No PCMCIA sockets\n");
2713
2714 for (iter = pcmcia_sockets; iter; iter = iter->next)
2715 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2716 iter->socket->attached ? iter->socket->card_string :
2717 "Empty");
2718 }
2719
2720 /***********************************************************/
2721 /* register display */
2722
2723 struct DisplayAllocator default_allocator = {
2724 defaultallocator_create_displaysurface,
2725 defaultallocator_resize_displaysurface,
2726 defaultallocator_free_displaysurface
2727 };
2728
2729 void register_displaystate(DisplayState *ds)
2730 {
2731 DisplayState **s;
2732 s = &display_state;
2733 while (*s != NULL)
2734 s = &(*s)->next;
2735 ds->next = NULL;
2736 *s = ds;
2737 }
2738
2739 DisplayState *get_displaystate(void)
2740 {
2741 return display_state;
2742 }
2743
2744 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2745 {
2746 if(ds->allocator == &default_allocator) ds->allocator = da;
2747 return ds->allocator;
2748 }
2749
2750 /* dumb display */
2751
2752 static void dumb_display_init(void)
2753 {
2754 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2755 ds->allocator = &default_allocator;
2756 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2757 register_displaystate(ds);
2758 }
2759
2760 /***********************************************************/
2761 /* I/O handling */
2762
2763 typedef struct IOHandlerRecord {
2764 int fd;
2765 IOCanRWHandler *fd_read_poll;
2766 IOHandler *fd_read;
2767 IOHandler *fd_write;
2768 int deleted;
2769 void *opaque;
2770 /* temporary data */
2771 struct pollfd *ufd;
2772 struct IOHandlerRecord *next;
2773 } IOHandlerRecord;
2774
2775 static IOHandlerRecord *first_io_handler;
2776
2777 /* XXX: fd_read_poll should be suppressed, but an API change is
2778 necessary in the character devices to suppress fd_can_read(). */
2779 int qemu_set_fd_handler2(int fd,
2780 IOCanRWHandler *fd_read_poll,
2781 IOHandler *fd_read,
2782 IOHandler *fd_write,
2783 void *opaque)
2784 {
2785 IOHandlerRecord **pioh, *ioh;
2786
2787 if (!fd_read && !fd_write) {
2788 pioh = &first_io_handler;
2789 for(;;) {
2790 ioh = *pioh;
2791 if (ioh == NULL)
2792 break;
2793 if (ioh->fd == fd) {
2794 ioh->deleted = 1;
2795 break;
2796 }
2797 pioh = &ioh->next;
2798 }
2799 } else {
2800 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2801 if (ioh->fd == fd)
2802 goto found;
2803 }
2804 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2805 ioh->next = first_io_handler;
2806 first_io_handler = ioh;
2807 found:
2808 ioh->fd = fd;
2809 ioh->fd_read_poll = fd_read_poll;
2810 ioh->fd_read = fd_read;
2811 ioh->fd_write = fd_write;
2812 ioh->opaque = opaque;
2813 ioh->deleted = 0;
2814 }
2815 return 0;
2816 }
2817
2818 int qemu_set_fd_handler(int fd,
2819 IOHandler *fd_read,
2820 IOHandler *fd_write,
2821 void *opaque)
2822 {
2823 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2824 }
2825
2826 #ifdef _WIN32
2827 /***********************************************************/
2828 /* Polling handling */
2829
2830 typedef struct PollingEntry {
2831 PollingFunc *func;
2832 void *opaque;
2833 struct PollingEntry *next;
2834 } PollingEntry;
2835
2836 static PollingEntry *first_polling_entry;
2837
2838 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2839 {
2840 PollingEntry **ppe, *pe;
2841 pe = qemu_mallocz(sizeof(PollingEntry));
2842 pe->func = func;
2843 pe->opaque = opaque;
2844 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2845 *ppe = pe;
2846 return 0;
2847 }
2848
2849 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2850 {
2851 PollingEntry **ppe, *pe;
2852 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2853 pe = *ppe;
2854 if (pe->func == func && pe->opaque == opaque) {
2855 *ppe = pe->next;
2856 qemu_free(pe);
2857 break;
2858 }
2859 }
2860 }
2861
2862 /***********************************************************/
2863 /* Wait objects support */
2864 typedef struct WaitObjects {
2865 int num;
2866 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2867 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2868 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2869 } WaitObjects;
2870
2871 static WaitObjects wait_objects = {0};
2872
2873 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2874 {
2875 WaitObjects *w = &wait_objects;
2876
2877 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2878 return -1;
2879 w->events[w->num] = handle;
2880 w->func[w->num] = func;
2881 w->opaque[w->num] = opaque;
2882 w->num++;
2883 return 0;
2884 }
2885
2886 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2887 {
2888 int i, found;
2889 WaitObjects *w = &wait_objects;
2890
2891 found = 0;
2892 for (i = 0; i < w->num; i++) {
2893 if (w->events[i] == handle)
2894 found = 1;
2895 if (found) {
2896 w->events[i] = w->events[i + 1];
2897 w->func[i] = w->func[i + 1];
2898 w->opaque[i] = w->opaque[i + 1];
2899 }
2900 }
2901 if (found)
2902 w->num--;
2903 }
2904 #endif
2905
2906 /***********************************************************/
2907 /* ram save/restore */
2908
2909 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2910 {
2911 int v;
2912
2913 v = qemu_get_byte(f);
2914 switch(v) {
2915 case 0:
2916 if (qemu_get_buffer(f, buf, len) != len)
2917 return -EIO;
2918 break;
2919 case 1:
2920 v = qemu_get_byte(f);
2921 memset(buf, v, len);
2922 break;
2923 default:
2924 return -EINVAL;
2925 }
2926
2927 if (qemu_file_has_error(f))
2928 return -EIO;
2929
2930 return 0;
2931 }
2932
2933 static int ram_load_v1(QEMUFile *f, void *opaque)
2934 {
2935 int ret;
2936 ram_addr_t i;
2937
2938 if (qemu_get_be32(f) != last_ram_offset)
2939 return -EINVAL;
2940 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2941 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2942 if (ret)
2943 return ret;
2944 }
2945 return 0;
2946 }
2947
2948 #define BDRV_HASH_BLOCK_SIZE 1024
2949 #define IOBUF_SIZE 4096
2950 #define RAM_CBLOCK_MAGIC 0xfabe
2951
2952 typedef struct RamDecompressState {
2953 z_stream zstream;
2954 QEMUFile *f;
2955 uint8_t buf[IOBUF_SIZE];
2956 } RamDecompressState;
2957
2958 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2959 {
2960 int ret;
2961 memset(s, 0, sizeof(*s));
2962 s->f = f;
2963 ret = inflateInit(&s->zstream);
2964 if (ret != Z_OK)
2965 return -1;
2966 return 0;
2967 }
2968
2969 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2970 {
2971 int ret, clen;
2972
2973 s->zstream.avail_out = len;
2974 s->zstream.next_out = buf;
2975 while (s->zstream.avail_out > 0) {
2976 if (s->zstream.avail_in == 0) {
2977 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2978 return -1;
2979 clen = qemu_get_be16(s->f);
2980 if (clen > IOBUF_SIZE)
2981 return -1;
2982 qemu_get_buffer(s->f, s->buf, clen);
2983 s->zstream.avail_in = clen;
2984 s->zstream.next_in = s->buf;
2985 }
2986 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2987 if (ret != Z_OK && ret != Z_STREAM_END) {
2988 return -1;
2989 }
2990 }
2991 return 0;
2992 }
2993
2994 static void ram_decompress_close(RamDecompressState *s)
2995 {
2996 inflateEnd(&s->zstream);
2997 }
2998
2999 #define RAM_SAVE_FLAG_FULL 0x01
3000 #define RAM_SAVE_FLAG_COMPRESS 0x02
3001 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3002 #define RAM_SAVE_FLAG_PAGE 0x08
3003 #define RAM_SAVE_FLAG_EOS 0x10
3004
3005 static int is_dup_page(uint8_t *page, uint8_t ch)
3006 {
3007 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3008 uint32_t *array = (uint32_t *)page;
3009 int i;
3010
3011 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3012 if (array[i] != val)
3013 return 0;
3014 }
3015
3016 return 1;
3017 }
3018
3019 static int ram_save_block(QEMUFile *f)
3020 {
3021 static ram_addr_t current_addr = 0;
3022 ram_addr_t saved_addr = current_addr;
3023 ram_addr_t addr = 0;
3024 int found = 0;
3025
3026 while (addr < last_ram_offset) {
3027 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3028 uint8_t *p;
3029
3030 cpu_physical_memory_reset_dirty(current_addr,
3031 current_addr + TARGET_PAGE_SIZE,
3032 MIGRATION_DIRTY_FLAG);
3033
3034 p = qemu_get_ram_ptr(current_addr);
3035
3036 if (is_dup_page(p, *p)) {
3037 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3038 qemu_put_byte(f, *p);
3039 } else {
3040 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3041 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3042 }
3043
3044 found = 1;
3045 break;
3046 }
3047 addr += TARGET_PAGE_SIZE;
3048 current_addr = (saved_addr + addr) % last_ram_offset;
3049 }
3050
3051 return found;
3052 }
3053
3054 static uint64_t bytes_transferred = 0;
3055
3056 static ram_addr_t ram_save_remaining(void)
3057 {
3058 ram_addr_t addr;
3059 ram_addr_t count = 0;
3060
3061 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3062 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3063 count++;
3064 }
3065
3066 return count;
3067 }
3068
3069 uint64_t ram_bytes_remaining(void)
3070 {
3071 return ram_save_remaining() * TARGET_PAGE_SIZE;
3072 }
3073
3074 uint64_t ram_bytes_transferred(void)
3075 {
3076 return bytes_transferred;
3077 }
3078
3079 uint64_t ram_bytes_total(void)
3080 {
3081 return last_ram_offset;
3082 }
3083
3084 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3085 {
3086 ram_addr_t addr;
3087 uint64_t bytes_transferred_last;
3088 double bwidth = 0;
3089 uint64_t expected_time = 0;
3090
3091 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3092 qemu_file_set_error(f);
3093 return 0;
3094 }
3095
3096 if (stage == 1) {
3097 /* Make sure all dirty bits are set */
3098 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3099 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3100 cpu_physical_memory_set_dirty(addr);
3101 }
3102
3103 /* Enable dirty memory tracking */
3104 cpu_physical_memory_set_dirty_tracking(1);
3105
3106 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3107 }
3108
3109 bytes_transferred_last = bytes_transferred;
3110 bwidth = get_clock();
3111
3112 while (!qemu_file_rate_limit(f)) {
3113 int ret;
3114
3115 ret = ram_save_block(f);
3116 bytes_transferred += ret * TARGET_PAGE_SIZE;
3117 if (ret == 0) /* no more blocks */
3118 break;
3119 }
3120
3121 bwidth = get_clock() - bwidth;
3122 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3123
3124 /* if we haven't transferred anything this round, force expected_time to a
3125 * a very high value, but without crashing */
3126 if (bwidth == 0)
3127 bwidth = 0.000001;
3128
3129 /* try transferring iterative blocks of memory */
3130
3131 if (stage == 3) {
3132
3133 /* flush all remaining blocks regardless of rate limiting */
3134 while (ram_save_block(f) != 0) {
3135 bytes_transferred += TARGET_PAGE_SIZE;
3136 }
3137 cpu_physical_memory_set_dirty_tracking(0);
3138 }
3139
3140 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3141
3142 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3143
3144 return (stage == 2) && (expected_time <= migrate_max_downtime());
3145 }
3146
3147 static int ram_load_dead(QEMUFile *f, void *opaque)
3148 {
3149 RamDecompressState s1, *s = &s1;
3150 uint8_t buf[10];
3151 ram_addr_t i;
3152
3153 if (ram_decompress_open(s, f) < 0)
3154 return -EINVAL;
3155 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3156 if (ram_decompress_buf(s, buf, 1) < 0) {
3157 fprintf(stderr, "Error while reading ram block header\n");
3158 goto error;
3159 }
3160 if (buf[0] == 0) {
3161 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3162 BDRV_HASH_BLOCK_SIZE) < 0) {
3163 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3164 goto error;
3165 }
3166 } else {
3167 error:
3168 printf("Error block header\n");
3169 return -EINVAL;
3170 }
3171 }
3172 ram_decompress_close(s);
3173
3174 return 0;
3175 }
3176
3177 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3178 {
3179 ram_addr_t addr;
3180 int flags;
3181
3182 if (version_id == 1)
3183 return ram_load_v1(f, opaque);
3184
3185 if (version_id == 2) {
3186 if (qemu_get_be32(f) != last_ram_offset)
3187 return -EINVAL;
3188 return ram_load_dead(f, opaque);
3189 }
3190
3191 if (version_id != 3)
3192 return -EINVAL;
3193
3194 do {
3195 addr = qemu_get_be64(f);
3196
3197 flags = addr & ~TARGET_PAGE_MASK;
3198 addr &= TARGET_PAGE_MASK;
3199
3200 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3201 if (addr != last_ram_offset)
3202 return -EINVAL;
3203 }
3204
3205 if (flags & RAM_SAVE_FLAG_FULL) {
3206 if (ram_load_dead(f, opaque) < 0)
3207 return -EINVAL;
3208 }
3209
3210 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3211 uint8_t ch = qemu_get_byte(f);
3212 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3213 #ifndef _WIN32
3214 if (ch == 0 &&
3215 (!kvm_enabled() || kvm_has_sync_mmu())) {
3216 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3217 }
3218 #endif
3219 } else if (flags & RAM_SAVE_FLAG_PAGE)
3220 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3221 } while (!(flags & RAM_SAVE_FLAG_EOS));
3222
3223 return 0;
3224 }
3225
3226 void qemu_service_io(void)
3227 {
3228 qemu_notify_event();
3229 }
3230
3231 /***********************************************************/
3232 /* bottom halves (can be seen as timers which expire ASAP) */
3233
3234 struct QEMUBH {
3235 QEMUBHFunc *cb;
3236 void *opaque;
3237 int scheduled;
3238 int idle;
3239 int deleted;
3240 QEMUBH *next;
3241 };
3242
3243 static QEMUBH *first_bh = NULL;
3244
3245 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3246 {
3247 QEMUBH *bh;
3248 bh = qemu_mallocz(sizeof(QEMUBH));
3249 bh->cb = cb;
3250 bh->opaque = opaque;
3251 bh->next = first_bh;
3252 first_bh = bh;
3253 return bh;
3254 }
3255
3256 int qemu_bh_poll(void)
3257 {
3258 QEMUBH *bh, **bhp;
3259 int ret;
3260
3261 ret = 0;
3262 for (bh = first_bh; bh; bh = bh->next) {
3263 if (!bh->deleted && bh->scheduled) {
3264 bh->scheduled = 0;
3265 if (!bh->idle)
3266 ret = 1;
3267 bh->idle = 0;
3268 bh->cb(bh->opaque);
3269 }
3270 }
3271
3272 /* remove deleted bhs */
3273 bhp = &first_bh;
3274 while (*bhp) {
3275 bh = *bhp;
3276 if (bh->deleted) {
3277 *bhp = bh->next;
3278 qemu_free(bh);
3279 } else
3280 bhp = &bh->next;
3281 }
3282
3283 return ret;
3284 }
3285
3286 void qemu_bh_schedule_idle(QEMUBH *bh)
3287 {
3288 if (bh->scheduled)
3289 return;
3290 bh->scheduled = 1;
3291 bh->idle = 1;
3292 }
3293
3294 void qemu_bh_schedule(QEMUBH *bh)
3295 {
3296 if (bh->scheduled)
3297 return;
3298 bh->scheduled = 1;
3299 bh->idle = 0;
3300 /* stop the currently executing CPU to execute the BH ASAP */
3301 qemu_notify_event();
3302 }
3303
3304 void qemu_bh_cancel(QEMUBH *bh)
3305 {
3306 bh->scheduled = 0;
3307 }
3308
3309 void qemu_bh_delete(QEMUBH *bh)
3310 {
3311 bh->scheduled = 0;
3312 bh->deleted = 1;
3313 }
3314
3315 static void qemu_bh_update_timeout(int *timeout)
3316 {
3317 QEMUBH *bh;
3318
3319 for (bh = first_bh; bh; bh = bh->next) {
3320 if (!bh->deleted && bh->scheduled) {
3321 if (bh->idle) {
3322 /* idle bottom halves will be polled at least
3323 * every 10ms */
3324 *timeout = MIN(10, *timeout);
3325 } else {
3326 /* non-idle bottom halves will be executed
3327 * immediately */
3328 *timeout = 0;
3329 break;
3330 }
3331 }
3332 }
3333 }
3334
3335 /***********************************************************/
3336 /* machine registration */
3337
3338 static QEMUMachine *first_machine = NULL;
3339 QEMUMachine *current_machine = NULL;
3340
3341 int qemu_register_machine(QEMUMachine *m)
3342 {
3343 QEMUMachine **pm;
3344 pm = &first_machine;
3345 while (*pm != NULL)
3346 pm = &(*pm)->next;
3347 m->next = NULL;
3348 *pm = m;
3349 return 0;
3350 }
3351
3352 static QEMUMachine *find_machine(const char *name)
3353 {
3354 QEMUMachine *m;
3355
3356 for(m = first_machine; m != NULL; m = m->next) {
3357 if (!strcmp(m->name, name))
3358 return m;
3359 if (m->alias && !strcmp(m->alias, name))
3360 return m;
3361 }
3362 return NULL;
3363 }
3364
3365 static QEMUMachine *find_default_machine(void)
3366 {
3367 QEMUMachine *m;
3368
3369 for(m = first_machine; m != NULL; m = m->next) {
3370 if (m->is_default) {
3371 return m;
3372 }
3373 }
3374 return NULL;
3375 }
3376
3377 /***********************************************************/
3378 /* main execution loop */
3379
3380 static void gui_update(void *opaque)
3381 {
3382 uint64_t interval = GUI_REFRESH_INTERVAL;
3383 DisplayState *ds = opaque;
3384 DisplayChangeListener *dcl = ds->listeners;
3385
3386 dpy_refresh(ds);
3387
3388 while (dcl != NULL) {
3389 if (dcl->gui_timer_interval &&
3390 dcl->gui_timer_interval < interval)
3391 interval = dcl->gui_timer_interval;
3392 dcl = dcl->next;
3393 }
3394 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3395 }
3396
3397 static void nographic_update(void *opaque)
3398 {
3399 uint64_t interval = GUI_REFRESH_INTERVAL;
3400
3401 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3402 }
3403
3404 struct vm_change_state_entry {
3405 VMChangeStateHandler *cb;
3406 void *opaque;
3407 LIST_ENTRY (vm_change_state_entry) entries;
3408 };
3409
3410 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3411
3412 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3413 void *opaque)
3414 {
3415 VMChangeStateEntry *e;
3416
3417 e = qemu_mallocz(sizeof (*e));
3418
3419 e->cb = cb;
3420 e->opaque = opaque;
3421 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3422 return e;
3423 }
3424
3425 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3426 {
3427 LIST_REMOVE (e, entries);
3428 qemu_free (e);
3429 }
3430
3431 static void vm_state_notify(int running, int reason)
3432 {
3433 VMChangeStateEntry *e;
3434
3435 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3436 e->cb(e->opaque, running, reason);
3437 }
3438 }
3439
3440 static void resume_all_vcpus(void);
3441 static void pause_all_vcpus(void);
3442
3443 void vm_start(void)
3444 {
3445 if (!vm_running) {
3446 cpu_enable_ticks();
3447 vm_running = 1;
3448 vm_state_notify(1, 0);
3449 qemu_rearm_alarm_timer(alarm_timer);
3450 resume_all_vcpus();
3451 }
3452 }
3453
3454 /* reset/shutdown handler */
3455
3456 typedef struct QEMUResetEntry {
3457 TAILQ_ENTRY(QEMUResetEntry) entry;
3458 QEMUResetHandler *func;
3459 void *opaque;
3460 } QEMUResetEntry;
3461
3462 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3463 TAILQ_HEAD_INITIALIZER(reset_handlers);
3464 static int reset_requested;
3465 static int shutdown_requested;
3466 static int powerdown_requested;
3467 static int debug_requested;
3468 static int vmstop_requested;
3469
3470 int qemu_shutdown_requested(void)
3471 {
3472 int r = shutdown_requested;
3473 shutdown_requested = 0;
3474 return r;
3475 }
3476
3477 int qemu_reset_requested(void)
3478 {
3479 int r = reset_requested;
3480 reset_requested = 0;
3481 return r;
3482 }
3483
3484 int qemu_powerdown_requested(void)
3485 {
3486 int r = powerdown_requested;
3487 powerdown_requested = 0;
3488 return r;
3489 }
3490
3491 static int qemu_debug_requested(void)
3492 {
3493 int r = debug_requested;
3494 debug_requested = 0;
3495 return r;
3496 }
3497
3498 static int qemu_vmstop_requested(void)
3499 {
3500 int r = vmstop_requested;
3501 vmstop_requested = 0;
3502 return r;
3503 }
3504
3505 static void do_vm_stop(int reason)
3506 {
3507 if (vm_running) {
3508 cpu_disable_ticks();
3509 vm_running = 0;
3510 pause_all_vcpus();
3511 vm_state_notify(0, reason);
3512 }
3513 }
3514
3515 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3516 {
3517 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3518
3519 re->func = func;
3520 re->opaque = opaque;
3521 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3522 }
3523
3524 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3525 {
3526 QEMUResetEntry *re;
3527
3528 TAILQ_FOREACH(re, &reset_handlers, entry) {
3529 if (re->func == func && re->opaque == opaque) {
3530 TAILQ_REMOVE(&reset_handlers, re, entry);
3531 qemu_free(re);
3532 return;
3533 }
3534 }
3535 }
3536
3537 void qemu_system_reset(void)
3538 {
3539 QEMUResetEntry *re, *nre;
3540
3541 /* reset all devices */
3542 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3543 re->func(re->opaque);
3544 }
3545 }
3546
3547 void qemu_system_reset_request(void)
3548 {
3549 if (no_reboot) {
3550 shutdown_requested = 1;
3551 } else {
3552 reset_requested = 1;
3553 }
3554 qemu_notify_event();
3555 }
3556
3557 void qemu_system_shutdown_request(void)
3558 {
3559 shutdown_requested = 1;
3560 qemu_notify_event();
3561 }
3562
3563 void qemu_system_powerdown_request(void)
3564 {
3565 powerdown_requested = 1;
3566 qemu_notify_event();
3567 }
3568
3569 #ifdef CONFIG_IOTHREAD
3570 static void qemu_system_vmstop_request(int reason)
3571 {
3572 vmstop_requested = reason;
3573 qemu_notify_event();
3574 }
3575 #endif
3576
3577 #ifndef _WIN32
3578 static int io_thread_fd = -1;
3579
3580 static void qemu_event_increment(void)
3581 {
3582 static const char byte = 0;
3583
3584 if (io_thread_fd == -1)
3585 return;
3586
3587 write(io_thread_fd, &byte, sizeof(byte));
3588 }
3589
3590 static void qemu_event_read(void *opaque)
3591 {
3592 int fd = (unsigned long)opaque;
3593 ssize_t len;
3594
3595 /* Drain the notify pipe */
3596 do {
3597 char buffer[512];
3598 len = read(fd, buffer, sizeof(buffer));
3599 } while ((len == -1 && errno == EINTR) || len > 0);
3600 }
3601
3602 static int qemu_event_init(void)
3603 {
3604 int err;
3605 int fds[2];
3606
3607 err = pipe(fds);
3608 if (err == -1)
3609 return -errno;
3610
3611 err = fcntl_setfl(fds[0], O_NONBLOCK);
3612 if (err < 0)
3613 goto fail;
3614
3615 err = fcntl_setfl(fds[1], O_NONBLOCK);
3616 if (err < 0)
3617 goto fail;
3618
3619 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3620 (void *)(unsigned long)fds[0]);
3621
3622 io_thread_fd = fds[1];
3623 return 0;
3624
3625 fail:
3626 close(fds[0]);
3627 close(fds[1]);
3628 return err;
3629 }
3630 #else
3631 HANDLE qemu_event_handle;
3632
3633 static void dummy_event_handler(void *opaque)
3634 {
3635 }
3636
3637 static int qemu_event_init(void)
3638 {
3639 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3640 if (!qemu_event_handle) {
3641 perror("Failed CreateEvent");
3642 return -1;
3643 }
3644 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3645 return 0;
3646 }
3647
3648 static void qemu_event_increment(void)
3649 {
3650 SetEvent(qemu_event_handle);
3651 }
3652 #endif
3653
3654 static int cpu_can_run(CPUState *env)
3655 {
3656 if (env->stop)
3657 return 0;
3658 if (env->stopped)
3659 return 0;
3660 return 1;
3661 }
3662
3663 #ifndef CONFIG_IOTHREAD
3664 static int qemu_init_main_loop(void)
3665 {
3666 return qemu_event_init();
3667 }
3668
3669 void qemu_init_vcpu(void *_env)
3670 {
3671 CPUState *env = _env;
3672
3673 if (kvm_enabled())
3674 kvm_init_vcpu(env);
3675 return;
3676 }
3677
3678 int qemu_cpu_self(void *env)
3679 {
3680 return 1;
3681 }
3682
3683 static void resume_all_vcpus(void)
3684 {
3685 }
3686
3687 static void pause_all_vcpus(void)
3688 {
3689 }
3690
3691 void qemu_cpu_kick(void *env)
3692 {
3693 return;
3694 }
3695
3696 void qemu_notify_event(void)
3697 {
3698 CPUState *env = cpu_single_env;
3699
3700 if (env) {
3701 cpu_exit(env);
3702 #ifdef USE_KQEMU
3703 if (env->kqemu_enabled)
3704 kqemu_cpu_interrupt(env);
3705 #endif
3706 }
3707 }
3708
3709 #define qemu_mutex_lock_iothread() do { } while (0)
3710 #define qemu_mutex_unlock_iothread() do { } while (0)
3711
3712 void vm_stop(int reason)
3713 {
3714 do_vm_stop(reason);
3715 }
3716
3717 #else /* CONFIG_IOTHREAD */
3718
3719 #include "qemu-thread.h"
3720
3721 QemuMutex qemu_global_mutex;
3722 static QemuMutex qemu_fair_mutex;
3723
3724 static QemuThread io_thread;
3725
3726 static QemuThread *tcg_cpu_thread;
3727 static QemuCond *tcg_halt_cond;
3728
3729 static int qemu_system_ready;
3730 /* cpu creation */
3731 static QemuCond qemu_cpu_cond;
3732 /* system init */
3733 static QemuCond qemu_system_cond;
3734 static QemuCond qemu_pause_cond;
3735
3736 static void block_io_signals(void);
3737 static void unblock_io_signals(void);
3738 static int tcg_has_work(void);
3739
3740 static int qemu_init_main_loop(void)
3741 {
3742 int ret;
3743
3744 ret = qemu_event_init();
3745 if (ret)
3746 return ret;
3747
3748 qemu_cond_init(&qemu_pause_cond);
3749 qemu_mutex_init(&qemu_fair_mutex);
3750 qemu_mutex_init(&qemu_global_mutex);
3751 qemu_mutex_lock(&qemu_global_mutex);
3752
3753 unblock_io_signals();
3754 qemu_thread_self(&io_thread);
3755
3756 return 0;
3757 }
3758
3759 static void qemu_wait_io_event(CPUState *env)
3760 {
3761 while (!tcg_has_work())
3762 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3763
3764 qemu_mutex_unlock(&qemu_global_mutex);
3765
3766 /*
3767 * Users of qemu_global_mutex can be starved, having no chance
3768 * to acquire it since this path will get to it first.
3769 * So use another lock to provide fairness.
3770 */
3771 qemu_mutex_lock(&qemu_fair_mutex);
3772 qemu_mutex_unlock(&qemu_fair_mutex);
3773
3774 qemu_mutex_lock(&qemu_global_mutex);
3775 if (env->stop) {
3776 env->stop = 0;
3777 env->stopped = 1;
3778 qemu_cond_signal(&qemu_pause_cond);
3779 }
3780 }
3781
3782 static int qemu_cpu_exec(CPUState *env);
3783
3784 static void *kvm_cpu_thread_fn(void *arg)
3785 {
3786 CPUState *env = arg;
3787
3788 block_io_signals();
3789 qemu_thread_self(env->thread);
3790
3791 /* signal CPU creation */
3792 qemu_mutex_lock(&qemu_global_mutex);
3793 env->created = 1;
3794 qemu_cond_signal(&qemu_cpu_cond);
3795
3796 /* and wait for machine initialization */
3797 while (!qemu_system_ready)
3798 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3799
3800 while (1) {
3801 if (cpu_can_run(env))
3802 qemu_cpu_exec(env);
3803 qemu_wait_io_event(env);
3804 }
3805
3806 return NULL;
3807 }
3808
3809 static void tcg_cpu_exec(void);
3810
3811 static void *tcg_cpu_thread_fn(void *arg)
3812 {
3813 CPUState *env = arg;
3814
3815 block_io_signals();
3816 qemu_thread_self(env->thread);
3817
3818 /* signal CPU creation */
3819 qemu_mutex_lock(&qemu_global_mutex);
3820 for (env = first_cpu; env != NULL; env = env->next_cpu)
3821 env->created = 1;
3822 qemu_cond_signal(&qemu_cpu_cond);
3823
3824 /* and wait for machine initialization */
3825 while (!qemu_system_ready)
3826 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3827
3828 while (1) {
3829 tcg_cpu_exec();
3830 qemu_wait_io_event(cur_cpu);
3831 }
3832
3833 return NULL;
3834 }
3835
3836 void qemu_cpu_kick(void *_env)
3837 {
3838 CPUState *env = _env;
3839 qemu_cond_broadcast(env->halt_cond);
3840 if (kvm_enabled())
3841 qemu_thread_signal(env->thread, SIGUSR1);
3842 }
3843
3844 int qemu_cpu_self(void *env)
3845 {
3846 return (cpu_single_env != NULL);
3847 }
3848
3849 static void cpu_signal(int sig)
3850 {
3851 if (cpu_single_env)
3852 cpu_exit(cpu_single_env);
3853 }
3854
3855 static void block_io_signals(void)
3856 {
3857 sigset_t set;
3858 struct sigaction sigact;
3859
3860 sigemptyset(&set);
3861 sigaddset(&set, SIGUSR2);
3862 sigaddset(&set, SIGIO);
3863 sigaddset(&set, SIGALRM);
3864 pthread_sigmask(SIG_BLOCK, &set, NULL);
3865
3866 sigemptyset(&set);
3867 sigaddset(&set, SIGUSR1);
3868 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3869
3870 memset(&sigact, 0, sizeof(sigact));
3871 sigact.sa_handler = cpu_signal;
3872 sigaction(SIGUSR1, &sigact, NULL);
3873 }
3874
3875 static void unblock_io_signals(void)
3876 {
3877 sigset_t set;
3878
3879 sigemptyset(&set);
3880 sigaddset(&set, SIGUSR2);
3881 sigaddset(&set, SIGIO);
3882 sigaddset(&set, SIGALRM);
3883 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3884
3885 sigemptyset(&set);
3886 sigaddset(&set, SIGUSR1);
3887 pthread_sigmask(SIG_BLOCK, &set, NULL);
3888 }
3889
3890 static void qemu_signal_lock(unsigned int msecs)
3891 {
3892 qemu_mutex_lock(&qemu_fair_mutex);
3893
3894 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3895 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3896 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3897 break;
3898 }
3899 qemu_mutex_unlock(&qemu_fair_mutex);
3900 }
3901
3902 static void qemu_mutex_lock_iothread(void)
3903 {
3904 if (kvm_enabled()) {
3905 qemu_mutex_lock(&qemu_fair_mutex);
3906 qemu_mutex_lock(&qemu_global_mutex);
3907 qemu_mutex_unlock(&qemu_fair_mutex);
3908 } else
3909 qemu_signal_lock(100);
3910 }
3911
3912 static void qemu_mutex_unlock_iothread(void)
3913 {
3914 qemu_mutex_unlock(&qemu_global_mutex);
3915 }
3916
3917 static int all_vcpus_paused(void)
3918 {
3919 CPUState *penv = first_cpu;
3920
3921 while (penv) {
3922 if (!penv->stopped)
3923 return 0;
3924 penv = (CPUState *)penv->next_cpu;
3925 }
3926
3927 return 1;
3928 }
3929
3930 static void pause_all_vcpus(void)
3931 {
3932 CPUState *penv = first_cpu;
3933
3934 while (penv) {
3935 penv->stop = 1;
3936 qemu_thread_signal(penv->thread, SIGUSR1);
3937 qemu_cpu_kick(penv);
3938 penv = (CPUState *)penv->next_cpu;
3939 }
3940
3941 while (!all_vcpus_paused()) {
3942 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3943 penv = first_cpu;
3944 while (penv) {
3945 qemu_thread_signal(penv->thread, SIGUSR1);
3946 penv = (CPUState *)penv->next_cpu;
3947 }
3948 }
3949 }
3950
3951 static void resume_all_vcpus(void)
3952 {
3953 CPUState *penv = first_cpu;
3954
3955 while (penv) {
3956 penv->stop = 0;
3957 penv->stopped = 0;
3958 qemu_thread_signal(penv->thread, SIGUSR1);
3959 qemu_cpu_kick(penv);
3960 penv = (CPUState *)penv->next_cpu;
3961 }
3962 }
3963
3964 static void tcg_init_vcpu(void *_env)
3965 {
3966 CPUState *env = _env;
3967 /* share a single thread for all cpus with TCG */
3968 if (!tcg_cpu_thread) {
3969 env->thread = qemu_mallocz(sizeof(QemuThread));
3970 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3971 qemu_cond_init(env->halt_cond);
3972 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3973 while (env->created == 0)
3974 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3975 tcg_cpu_thread = env->thread;
3976 tcg_halt_cond = env->halt_cond;
3977 } else {
3978 env->thread = tcg_cpu_thread;
3979 env->halt_cond = tcg_halt_cond;
3980 }
3981 }
3982
3983 static void kvm_start_vcpu(CPUState *env)
3984 {
3985 kvm_init_vcpu(env);
3986 env->thread = qemu_mallocz(sizeof(QemuThread));
3987 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3988 qemu_cond_init(env->halt_cond);
3989 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3990 while (env->created == 0)
3991 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3992 }
3993
3994 void qemu_init_vcpu(void *_env)
3995 {
3996 CPUState *env = _env;
3997
3998 if (kvm_enabled())
3999 kvm_start_vcpu(env);
4000 else
4001 tcg_init_vcpu(env);
4002 }
4003
4004 void qemu_notify_event(void)
4005 {
4006 qemu_event_increment();
4007 }
4008
4009 void vm_stop(int reason)
4010 {
4011 QemuThread me;
4012 qemu_thread_self(&me);
4013
4014 if (!qemu_thread_equal(&me, &io_thread)) {
4015 qemu_system_vmstop_request(reason);
4016 /*
4017 * FIXME: should not return to device code in case
4018 * vm_stop() has been requested.
4019 */
4020 if (cpu_single_env) {
4021 cpu_exit(cpu_single_env);
4022 cpu_single_env->stop = 1;
4023 }
4024 return;
4025 }
4026 do_vm_stop(reason);
4027 }
4028
4029 #endif
4030
4031
4032 #ifdef _WIN32
4033 static void host_main_loop_wait(int *timeout)
4034 {
4035 int ret, ret2, i;
4036 PollingEntry *pe;
4037
4038
4039 /* XXX: need to suppress polling by better using win32 events */
4040 ret = 0;
4041 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4042 ret |= pe->func(pe->opaque);
4043 }
4044 if (ret == 0) {
4045 int err;
4046 WaitObjects *w = &wait_objects;
4047
4048 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4049 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4050 if (w->func[ret - WAIT_OBJECT_0])
4051 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4052
4053 /* Check for additional signaled events */
4054 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4055
4056 /* Check if event is signaled */
4057 ret2 = WaitForSingleObject(w->events[i], 0);
4058 if(ret2 == WAIT_OBJECT_0) {
4059 if (w->func[i])
4060 w->func[i](w->opaque[i]);
4061 } else if (ret2 == WAIT_TIMEOUT) {
4062 } else {
4063 err = GetLastError();
4064 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4065 }
4066 }
4067 } else if (ret == WAIT_TIMEOUT) {
4068 } else {
4069 err = GetLastError();
4070 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4071 }
4072 }
4073
4074 *timeout = 0;
4075 }
4076 #else
4077 static void host_main_loop_wait(int *timeout)
4078 {
4079 }
4080 #endif
4081
4082 void main_loop_wait(int timeout)
4083 {
4084 IOHandlerRecord *ioh;
4085 fd_set rfds, wfds, xfds;
4086 int ret, nfds;
4087 struct timeval tv;
4088
4089 qemu_bh_update_timeout(&timeout);
4090
4091 host_main_loop_wait(&timeout);
4092
4093 /* poll any events */
4094 /* XXX: separate device handlers from system ones */
4095 nfds = -1;
4096 FD_ZERO(&rfds);
4097 FD_ZERO(&wfds);
4098 FD_ZERO(&xfds);
4099 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4100 if (ioh->deleted)
4101 continue;
4102 if (ioh->fd_read &&
4103 (!ioh->fd_read_poll ||
4104 ioh->fd_read_poll(ioh->opaque) != 0)) {
4105 FD_SET(ioh->fd, &rfds);
4106 if (ioh->fd > nfds)
4107 nfds = ioh->fd;
4108 }
4109 if (ioh->fd_write) {
4110 FD_SET(ioh->fd, &wfds);
4111 if (ioh->fd > nfds)
4112 nfds = ioh->fd;
4113 }
4114 }
4115
4116 tv.tv_sec = timeout / 1000;
4117 tv.tv_usec = (timeout % 1000) * 1000;
4118
4119 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4120
4121 qemu_mutex_unlock_iothread();
4122 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4123 qemu_mutex_lock_iothread();
4124 if (ret > 0) {
4125 IOHandlerRecord **pioh;
4126
4127 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4128 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4129 ioh->fd_read(ioh->opaque);
4130 }
4131 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4132 ioh->fd_write(ioh->opaque);
4133 }
4134 }
4135
4136 /* remove deleted IO handlers */
4137 pioh = &first_io_handler;
4138 while (*pioh) {
4139 ioh = *pioh;
4140 if (ioh->deleted) {
4141 *pioh = ioh->next;
4142 qemu_free(ioh);
4143 } else
4144 pioh = &ioh->next;
4145 }
4146 }
4147
4148 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4149
4150 /* rearm timer, if not periodic */
4151 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4152 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4153 qemu_rearm_alarm_timer(alarm_timer);
4154 }
4155
4156 /* vm time timers */
4157 if (vm_running) {
4158 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4159 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4160 qemu_get_clock(vm_clock));
4161 }
4162
4163 /* real time timers */
4164 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4165 qemu_get_clock(rt_clock));
4166
4167 /* Check bottom-halves last in case any of the earlier events triggered
4168 them. */
4169 qemu_bh_poll();
4170
4171 }
4172
4173 static int qemu_cpu_exec(CPUState *env)
4174 {
4175 int ret;
4176 #ifdef CONFIG_PROFILER
4177 int64_t ti;
4178 #endif
4179
4180 #ifdef CONFIG_PROFILER
4181 ti = profile_getclock();
4182 #endif
4183 if (use_icount) {
4184 int64_t count;
4185 int decr;
4186 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4187 env->icount_decr.u16.low = 0;
4188 env->icount_extra = 0;
4189 count = qemu_next_deadline();
4190 count = (count + (1 << icount_time_shift) - 1)
4191 >> icount_time_shift;
4192 qemu_icount += count;
4193 decr = (count > 0xffff) ? 0xffff : count;
4194 count -= decr;
4195 env->icount_decr.u16.low = decr;
4196 env->icount_extra = count;
4197 }
4198 ret = cpu_exec(env);
4199 #ifdef CONFIG_PROFILER
4200 qemu_time += profile_getclock() - ti;
4201 #endif
4202 if (use_icount) {
4203 /* Fold pending instructions back into the
4204 instruction counter, and clear the interrupt flag. */
4205 qemu_icount -= (env->icount_decr.u16.low
4206 + env->icount_extra);
4207 env->icount_decr.u32 = 0;
4208 env->icount_extra = 0;
4209 }
4210 return ret;
4211 }
4212
4213 static void tcg_cpu_exec(void)
4214 {
4215 int ret = 0;
4216
4217 if (next_cpu == NULL)
4218 next_cpu = first_cpu;
4219 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4220 CPUState *env = cur_cpu = next_cpu;
4221
4222 if (!vm_running)
4223 break;
4224 if (timer_alarm_pending) {
4225 timer_alarm_pending = 0;
4226 break;
4227 }
4228 if (cpu_can_run(env))
4229 ret = qemu_cpu_exec(env);
4230 if (ret == EXCP_DEBUG) {
4231 gdb_set_stop_cpu(env);
4232 debug_requested = 1;
4233 break;
4234 }
4235 }
4236 }
4237
4238 static int cpu_has_work(CPUState *env)
4239 {
4240 if (env->stop)
4241 return 1;
4242 if (env->stopped)
4243 return 0;
4244 if (!env->halted)
4245 return 1;
4246 if (qemu_cpu_has_work(env))
4247 return 1;
4248 return 0;
4249 }
4250
4251 static int tcg_has_work(void)
4252 {
4253 CPUState *env;
4254
4255 for (env = first_cpu; env != NULL; env = env->next_cpu)
4256 if (cpu_has_work(env))
4257 return 1;
4258 return 0;
4259 }
4260
4261 static int qemu_calculate_timeout(void)
4262 {
4263 #ifndef CONFIG_IOTHREAD
4264 int timeout;
4265
4266 if (!vm_running)
4267 timeout = 5000;
4268 else if (tcg_has_work())
4269 timeout = 0;
4270 else if (!use_icount)
4271 timeout = 5000;
4272 else {
4273 /* XXX: use timeout computed from timers */
4274 int64_t add;
4275 int64_t delta;
4276 /* Advance virtual time to the next event. */
4277 if (use_icount == 1) {
4278 /* When not using an adaptive execution frequency
4279 we tend to get badly out of sync with real time,
4280 so just delay for a reasonable amount of time. */
4281 delta = 0;
4282 } else {
4283 delta = cpu_get_icount() - cpu_get_clock();
4284 }
4285 if (delta > 0) {
4286 /* If virtual time is ahead of real time then just
4287 wait for IO. */
4288 timeout = (delta / 1000000) + 1;
4289 } else {
4290 /* Wait for either IO to occur or the next
4291 timer event. */
4292 add = qemu_next_deadline();
4293 /* We advance the timer before checking for IO.
4294 Limit the amount we advance so that early IO
4295 activity won't get the guest too far ahead. */
4296 if (add > 10000000)
4297 add = 10000000;
4298 delta += add;
4299 add = (add + (1 << icount_time_shift) - 1)
4300 >> icount_time_shift;
4301 qemu_icount += add;
4302 timeout = delta / 1000000;
4303 if (timeout < 0)
4304 timeout = 0;
4305 }
4306 }
4307
4308 return timeout;
4309 #else /* CONFIG_IOTHREAD */
4310 return 1000;
4311 #endif
4312 }
4313
4314 static int vm_can_run(void)
4315 {
4316 if (powerdown_requested)
4317 return 0;
4318 if (reset_requested)
4319 return 0;
4320 if (shutdown_requested)
4321 return 0;
4322 if (debug_requested)
4323 return 0;
4324 return 1;
4325 }
4326
4327 static void main_loop(void)
4328 {
4329 int r;
4330
4331 #ifdef CONFIG_IOTHREAD
4332 qemu_system_ready = 1;
4333 qemu_cond_broadcast(&qemu_system_cond);
4334 #endif
4335
4336 for (;;) {
4337 do {
4338 #ifdef CONFIG_PROFILER
4339 int64_t ti;
4340 #endif
4341 #ifndef CONFIG_IOTHREAD
4342 tcg_cpu_exec();
4343 #endif
4344 #ifdef CONFIG_PROFILER
4345 ti = profile_getclock();
4346 #endif
4347 main_loop_wait(qemu_calculate_timeout());
4348 #ifdef CONFIG_PROFILER
4349 dev_time += profile_getclock() - ti;
4350 #endif
4351 } while (vm_can_run());
4352
4353 if (qemu_debug_requested())
4354 vm_stop(EXCP_DEBUG);
4355 if (qemu_shutdown_requested()) {
4356 if (no_shutdown) {
4357 vm_stop(0);
4358 no_shutdown = 0;
4359 } else
4360 break;
4361 }
4362 if (qemu_reset_requested()) {
4363 pause_all_vcpus();
4364 qemu_system_reset();
4365 resume_all_vcpus();
4366 }
4367 if (qemu_powerdown_requested())
4368 qemu_system_powerdown();
4369 if ((r = qemu_vmstop_requested()))
4370 vm_stop(r);
4371 }
4372 pause_all_vcpus();
4373 }
4374
4375 static void version(void)
4376 {
4377 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4378 }
4379
4380 static void help(int exitcode)
4381 {
4382 version();
4383 printf("usage: %s [options] [disk_image]\n"
4384 "\n"
4385 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4386 "\n"
4387 #define DEF(option, opt_arg, opt_enum, opt_help) \
4388 opt_help
4389 #define DEFHEADING(text) stringify(text) "\n"
4390 #include "qemu-options.h"
4391 #undef DEF
4392 #undef DEFHEADING
4393 #undef GEN_DOCS
4394 "\n"
4395 "During emulation, the following keys are useful:\n"
4396 "ctrl-alt-f toggle full screen\n"
4397 "ctrl-alt-n switch to virtual console 'n'\n"
4398 "ctrl-alt toggle mouse and keyboard grab\n"
4399 "\n"
4400 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4401 ,
4402 "qemu",
4403 DEFAULT_RAM_SIZE,
4404 #ifndef _WIN32
4405 DEFAULT_NETWORK_SCRIPT,
4406 DEFAULT_NETWORK_DOWN_SCRIPT,
4407 #endif
4408 DEFAULT_GDBSTUB_PORT,
4409 "/tmp/qemu.log");
4410 exit(exitcode);
4411 }
4412
4413 #define HAS_ARG 0x0001
4414
4415 enum {
4416 #define DEF(option, opt_arg, opt_enum, opt_help) \
4417 opt_enum,
4418 #define DEFHEADING(text)
4419 #include "qemu-options.h"
4420 #undef DEF
4421 #undef DEFHEADING
4422 #undef GEN_DOCS
4423 };
4424
4425 typedef struct QEMUOption {
4426 const char *name;
4427 int flags;
4428 int index;
4429 } QEMUOption;
4430
4431 static const QEMUOption qemu_options[] = {
4432 { "h", 0, QEMU_OPTION_h },
4433 #define DEF(option, opt_arg, opt_enum, opt_help) \
4434 { option, opt_arg, opt_enum },
4435 #define DEFHEADING(text)
4436 #include "qemu-options.h"
4437 #undef DEF
4438 #undef DEFHEADING
4439 #undef GEN_DOCS
4440 { NULL },
4441 };
4442
4443 #ifdef HAS_AUDIO
4444 struct soundhw soundhw[] = {
4445 #ifdef HAS_AUDIO_CHOICE
4446 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4447 {
4448 "pcspk",
4449 "PC speaker",
4450 0,
4451 1,
4452 { .init_isa = pcspk_audio_init }
4453 },
4454 #endif
4455
4456 #ifdef CONFIG_SB16
4457 {
4458 "sb16",
4459 "Creative Sound Blaster 16",
4460 0,
4461 1,
4462 { .init_isa = SB16_init }
4463 },
4464 #endif
4465
4466 #ifdef CONFIG_CS4231A
4467 {
4468 "cs4231a",
4469 "CS4231A",
4470 0,
4471 1,
4472 { .init_isa = cs4231a_init }
4473 },
4474 #endif
4475
4476 #ifdef CONFIG_ADLIB
4477 {
4478 "adlib",
4479 #ifdef HAS_YMF262
4480 "Yamaha YMF262 (OPL3)",
4481 #else
4482 "Yamaha YM3812 (OPL2)",
4483 #endif
4484 0,
4485 1,
4486 { .init_isa = Adlib_init }
4487 },
4488 #endif
4489
4490 #ifdef CONFIG_GUS
4491 {
4492 "gus",
4493 "Gravis Ultrasound GF1",
4494 0,
4495 1,
4496 { .init_isa = GUS_init }
4497 },
4498 #endif
4499
4500 #ifdef CONFIG_AC97
4501 {
4502 "ac97",
4503 "Intel 82801AA AC97 Audio",
4504 0,
4505 0,
4506 { .init_pci = ac97_init }
4507 },
4508 #endif
4509
4510 #ifdef CONFIG_ES1370
4511 {
4512 "es1370",
4513 "ENSONIQ AudioPCI ES1370",
4514 0,
4515 0,
4516 { .init_pci = es1370_init }
4517 },
4518 #endif
4519
4520 #endif /* HAS_AUDIO_CHOICE */
4521
4522 { NULL, NULL, 0, 0, { NULL } }
4523 };
4524
4525 static void select_soundhw (const char *optarg)
4526 {
4527 struct soundhw *c;
4528
4529 if (*optarg == '?') {
4530 show_valid_cards:
4531
4532 printf ("Valid sound card names (comma separated):\n");
4533 for (c = soundhw; c->name; ++c) {
4534 printf ("%-11s %s\n", c->name, c->descr);
4535 }
4536 printf ("\n-soundhw all will enable all of the above\n");
4537 exit (*optarg != '?');
4538 }
4539 else {
4540 size_t l;
4541 const char *p;
4542 char *e;
4543 int bad_card = 0;
4544
4545 if (!strcmp (optarg, "all")) {
4546 for (c = soundhw; c->name; ++c) {
4547 c->enabled = 1;
4548 }
4549 return;
4550 }
4551
4552 p = optarg;
4553 while (*p) {
4554 e = strchr (p, ',');
4555 l = !e ? strlen (p) : (size_t) (e - p);
4556
4557 for (c = soundhw; c->name; ++c) {
4558 if (!strncmp (c->name, p, l)) {
4559 c->enabled = 1;
4560 break;
4561 }
4562 }
4563
4564 if (!c->name) {
4565 if (l > 80) {
4566 fprintf (stderr,
4567 "Unknown sound card name (too big to show)\n");
4568 }
4569 else {
4570 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4571 (int) l, p);
4572 }
4573 bad_card = 1;
4574 }
4575 p += l + (e != NULL);
4576 }
4577
4578 if (bad_card)
4579 goto show_valid_cards;
4580 }
4581 }
4582 #endif
4583
4584 static void select_vgahw (const char *p)
4585 {
4586 const char *opts;
4587
4588 vga_interface_type = VGA_NONE;
4589 if (strstart(p, "std", &opts)) {
4590 vga_interface_type = VGA_STD;
4591 } else if (strstart(p, "cirrus", &opts)) {
4592 vga_interface_type = VGA_CIRRUS;
4593 } else if (strstart(p, "vmware", &opts)) {
4594 vga_interface_type = VGA_VMWARE;
4595 } else if (strstart(p, "xenfb", &opts)) {
4596 vga_interface_type = VGA_XENFB;
4597 } else if (!strstart(p, "none", &opts)) {
4598 invalid_vga:
4599 fprintf(stderr, "Unknown vga type: %s\n", p);
4600 exit(1);
4601 }
4602 while (*opts) {
4603 const char *nextopt;
4604
4605 if (strstart(opts, ",retrace=", &nextopt)) {
4606 opts = nextopt;
4607 if (strstart(opts, "dumb", &nextopt))
4608 vga_retrace_method = VGA_RETRACE_DUMB;
4609 else if (strstart(opts, "precise", &nextopt))
4610 vga_retrace_method = VGA_RETRACE_PRECISE;
4611 else goto invalid_vga;
4612 } else goto invalid_vga;
4613 opts = nextopt;
4614 }
4615 }
4616
4617 #ifdef TARGET_I386
4618 static int balloon_parse(const char *arg)
4619 {
4620 char buf[128];
4621 const char *p;
4622
4623 if (!strcmp(arg, "none")) {
4624 virtio_balloon = 0;
4625 } else if (!strncmp(arg, "virtio", 6)) {
4626 virtio_balloon = 1;
4627 if (arg[6] == ',') {
4628 p = arg + 7;
4629 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4630 virtio_balloon_devaddr = strdup(buf);
4631 }
4632 }
4633 } else {
4634 return -1;
4635 }
4636 return 0;
4637 }
4638 #endif
4639
4640 #ifdef _WIN32
4641 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4642 {
4643 exit(STATUS_CONTROL_C_EXIT);
4644 return TRUE;
4645 }
4646 #endif
4647
4648 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4649 {
4650 int ret;
4651
4652 if(strlen(str) != 36)
4653 return -1;
4654
4655 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4656 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4657 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4658
4659 if(ret != 16)
4660 return -1;
4661
4662 #ifdef TARGET_I386
4663 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4664 #endif
4665
4666 return 0;
4667 }
4668
4669 #define MAX_NET_CLIENTS 32
4670
4671 #ifndef _WIN32
4672
4673 static void termsig_handler(int signal)
4674 {
4675 qemu_system_shutdown_request();
4676 }
4677
4678 static void sigchld_handler(int signal)
4679 {
4680 waitpid(-1, NULL, WNOHANG);
4681 }
4682
4683 static void sighandler_setup(void)
4684 {
4685 struct sigaction act;
4686
4687 memset(&act, 0, sizeof(act));
4688 act.sa_handler = termsig_handler;
4689 sigaction(SIGINT, &act, NULL);
4690 sigaction(SIGHUP, &act, NULL);
4691 sigaction(SIGTERM, &act, NULL);
4692
4693 act.sa_handler = sigchld_handler;
4694 act.sa_flags = SA_NOCLDSTOP;
4695 sigaction(SIGCHLD, &act, NULL);
4696 }
4697
4698 #endif
4699
4700 #ifdef _WIN32
4701 /* Look for support files in the same directory as the executable. */
4702 static char *find_datadir(const char *argv0)
4703 {
4704 char *p;
4705 char buf[MAX_PATH];
4706 DWORD len;
4707
4708 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4709 if (len == 0) {
4710 return NULL;
4711 }
4712
4713 buf[len] = 0;
4714 p = buf + len - 1;
4715 while (p != buf && *p != '\\')
4716 p--;
4717 *p = 0;
4718 if (access(buf, R_OK) == 0) {
4719 return qemu_strdup(buf);
4720 }
4721 return NULL;
4722 }
4723 #else /* !_WIN32 */
4724
4725 /* Find a likely location for support files using the location of the binary.
4726 For installed binaries this will be "$bindir/../share/qemu". When
4727 running from the build tree this will be "$bindir/../pc-bios". */
4728 #define SHARE_SUFFIX "/share/qemu"
4729 #define BUILD_SUFFIX "/pc-bios"
4730 static char *find_datadir(const char *argv0)
4731 {
4732 char *dir;
4733 char *p = NULL;
4734 char *res;
4735 #ifdef PATH_MAX
4736 char buf[PATH_MAX];
4737 #endif
4738 size_t max_len;
4739
4740 #if defined(__linux__)
4741 {
4742 int len;
4743 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4744 if (len > 0) {
4745 buf[len] = 0;
4746 p = buf;
4747 }
4748 }
4749 #elif defined(__FreeBSD__)
4750 {
4751 int len;
4752 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4753 if (len > 0) {
4754 buf[len] = 0;
4755 p = buf;
4756 }
4757 }
4758 #endif
4759 /* If we don't have any way of figuring out the actual executable
4760 location then try argv[0]. */
4761 if (!p) {
4762 #ifdef PATH_MAX
4763 p = buf;
4764 #endif
4765 p = realpath(argv0, p);
4766 if (!p) {
4767 return NULL;
4768 }
4769 }
4770 dir = dirname(p);
4771 dir = dirname(dir);
4772
4773 max_len = strlen(dir) +
4774 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4775 res = qemu_mallocz(max_len);
4776 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4777 if (access(res, R_OK)) {
4778 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4779 if (access(res, R_OK)) {
4780 qemu_free(res);
4781 res = NULL;
4782 }
4783 }
4784 #ifndef PATH_MAX
4785 free(p);
4786 #endif
4787 return res;
4788 }
4789 #undef SHARE_SUFFIX
4790 #undef BUILD_SUFFIX
4791 #endif
4792
4793 char *qemu_find_file(int type, const char *name)
4794 {
4795 int len;
4796 const char *subdir;
4797 char *buf;
4798
4799 /* If name contains path separators then try it as a straight path. */
4800 if ((strchr(name, '/') || strchr(name, '\\'))
4801 && access(name, R_OK) == 0) {
4802 return strdup(name);
4803 }
4804 switch (type) {
4805 case QEMU_FILE_TYPE_BIOS:
4806 subdir = "";
4807 break;
4808 case QEMU_FILE_TYPE_KEYMAP:
4809 subdir = "keymaps/";
4810 break;
4811 default:
4812 abort();
4813 }
4814 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4815 buf = qemu_mallocz(len);
4816 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4817 if (access(buf, R_OK)) {
4818 qemu_free(buf);
4819 return NULL;
4820 }
4821 return buf;
4822 }
4823
4824 int main(int argc, char **argv, char **envp)
4825 {
4826 const char *gdbstub_dev = NULL;
4827 uint32_t boot_devices_bitmap = 0;
4828 int i;
4829 int snapshot, linux_boot, net_boot;
4830 const char *initrd_filename;
4831 const char *kernel_filename, *kernel_cmdline;
4832 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4833 DisplayState *ds;
4834 DisplayChangeListener *dcl;
4835 int cyls, heads, secs, translation;
4836 const char *net_clients[MAX_NET_CLIENTS];
4837 int nb_net_clients;
4838 const char *bt_opts[MAX_BT_CMDLINE];
4839 int nb_bt_opts;
4840 int hda_index;
4841 int optind;
4842 const char *r, *optarg;
4843 CharDriverState *monitor_hd = NULL;
4844 const char *monitor_device;
4845 const char *serial_devices[MAX_SERIAL_PORTS];
4846 int serial_device_index;
4847 const char *parallel_devices[MAX_PARALLEL_PORTS];
4848 int parallel_device_index;
4849 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4850 int virtio_console_index;
4851 const char *loadvm = NULL;
4852 QEMUMachine *machine;
4853 const char *cpu_model;
4854 const char *usb_devices[MAX_USB_CMDLINE];
4855 int usb_devices_index;
4856 #ifndef _WIN32
4857 int fds[2];
4858 #endif
4859 int tb_size;
4860 const char *pid_file = NULL;
4861 const char *incoming = NULL;
4862 #ifndef _WIN32
4863 int fd = 0;
4864 struct passwd *pwd = NULL;
4865 const char *chroot_dir = NULL;
4866 const char *run_as = NULL;
4867 #endif
4868 CPUState *env;
4869 int show_vnc_port = 0;
4870
4871 qemu_cache_utils_init(envp);
4872
4873 LIST_INIT (&vm_change_state_head);
4874 #ifndef _WIN32
4875 {
4876 struct sigaction act;
4877 sigfillset(&act.sa_mask);
4878 act.sa_flags = 0;
4879 act.sa_handler = SIG_IGN;
4880 sigaction(SIGPIPE, &act, NULL);
4881 }
4882 #else
4883 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4884 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4885 QEMU to run on a single CPU */
4886 {
4887 HANDLE h;
4888 DWORD mask, smask;
4889 int i;
4890 h = GetCurrentProcess();
4891 if (GetProcessAffinityMask(h, &mask, &smask)) {
4892 for(i = 0; i < 32; i++) {
4893 if (mask & (1 << i))
4894 break;
4895 }
4896 if (i != 32) {
4897 mask = 1 << i;
4898 SetProcessAffinityMask(h, mask);
4899 }
4900 }
4901 }
4902 #endif
4903
4904 module_call_init(MODULE_INIT_MACHINE);
4905 machine = find_default_machine();
4906 cpu_model = NULL;
4907 initrd_filename = NULL;
4908 ram_size = 0;
4909 snapshot = 0;
4910 kernel_filename = NULL;
4911 kernel_cmdline = "";
4912 cyls = heads = secs = 0;
4913 translation = BIOS_ATA_TRANSLATION_AUTO;
4914 monitor_device = "vc:80Cx24C";
4915
4916 serial_devices[0] = "vc:80Cx24C";
4917 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4918 serial_devices[i] = NULL;
4919 serial_device_index = 0;
4920
4921 parallel_devices[0] = "vc:80Cx24C";
4922 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4923 parallel_devices[i] = NULL;
4924 parallel_device_index = 0;
4925
4926 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4927 virtio_consoles[i] = NULL;
4928 virtio_console_index = 0;
4929
4930 for (i = 0; i < MAX_NODES; i++) {
4931 node_mem[i] = 0;
4932 node_cpumask[i] = 0;
4933 }
4934
4935 usb_devices_index = 0;
4936
4937 nb_net_clients = 0;
4938 nb_bt_opts = 0;
4939 nb_drives = 0;
4940 nb_drives_opt = 0;
4941 nb_numa_nodes = 0;
4942 hda_index = -1;
4943
4944 nb_nics = 0;
4945
4946 tb_size = 0;
4947 autostart= 1;
4948
4949 register_watchdogs();
4950
4951 optind = 1;
4952 for(;;) {
4953 if (optind >= argc)
4954 break;
4955 r = argv[optind];
4956 if (r[0] != '-') {
4957 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4958 } else {
4959 const QEMUOption *popt;
4960
4961 optind++;
4962 /* Treat --foo the same as -foo. */
4963 if (r[1] == '-')
4964 r++;
4965 popt = qemu_options;
4966 for(;;) {
4967 if (!popt->name) {
4968 fprintf(stderr, "%s: invalid option -- '%s'\n",
4969 argv[0], r);
4970 exit(1);
4971 }
4972 if (!strcmp(popt->name, r + 1))
4973 break;
4974 popt++;
4975 }
4976 if (popt->flags & HAS_ARG) {
4977 if (optind >= argc) {
4978 fprintf(stderr, "%s: option '%s' requires an argument\n",
4979 argv[0], r);
4980 exit(1);
4981 }
4982 optarg = argv[optind++];
4983 } else {
4984 optarg = NULL;
4985 }
4986
4987 switch(popt->index) {
4988 case QEMU_OPTION_M:
4989 machine = find_machine(optarg);
4990 if (!machine) {
4991 QEMUMachine *m;
4992 printf("Supported machines are:\n");
4993 for(m = first_machine; m != NULL; m = m->next) {
4994 if (m->alias)
4995 printf("%-10s %s (alias of %s)\n",
4996 m->alias, m->desc, m->name);
4997 printf("%-10s %s%s\n",
4998 m->name, m->desc,
4999 m->is_default ? " (default)" : "");
5000 }
5001 exit(*optarg != '?');
5002 }
5003 break;
5004 case QEMU_OPTION_cpu:
5005 /* hw initialization will check this */
5006 if (*optarg == '?') {
5007 /* XXX: implement xxx_cpu_list for targets that still miss it */
5008 #if defined(cpu_list)
5009 cpu_list(stdout, &fprintf);
5010 #endif
5011 exit(0);
5012 } else {
5013 cpu_model = optarg;
5014 }
5015 break;
5016 case QEMU_OPTION_initrd:
5017 initrd_filename = optarg;
5018 break;
5019 case QEMU_OPTION_hda:
5020 if (cyls == 0)
5021 hda_index = drive_add(optarg, HD_ALIAS, 0);
5022 else
5023 hda_index = drive_add(optarg, HD_ALIAS
5024 ",cyls=%d,heads=%d,secs=%d%s",
5025 0, cyls, heads, secs,
5026 translation == BIOS_ATA_TRANSLATION_LBA ?
5027 ",trans=lba" :
5028 translation == BIOS_ATA_TRANSLATION_NONE ?
5029 ",trans=none" : "");
5030 break;
5031 case QEMU_OPTION_hdb:
5032 case QEMU_OPTION_hdc:
5033 case QEMU_OPTION_hdd:
5034 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5035 break;
5036 case QEMU_OPTION_drive:
5037 drive_add(NULL, "%s", optarg);
5038 break;
5039 case QEMU_OPTION_mtdblock:
5040 drive_add(optarg, MTD_ALIAS);
5041 break;
5042 case QEMU_OPTION_sd:
5043 drive_add(optarg, SD_ALIAS);
5044 break;
5045 case QEMU_OPTION_pflash:
5046 drive_add(optarg, PFLASH_ALIAS);
5047 break;
5048 case QEMU_OPTION_snapshot:
5049 snapshot = 1;
5050 break;
5051 case QEMU_OPTION_hdachs:
5052 {
5053 const char *p;
5054 p = optarg;
5055 cyls = strtol(p, (char **)&p, 0);
5056 if (cyls < 1 || cyls > 16383)
5057 goto chs_fail;
5058 if (*p != ',')
5059 goto chs_fail;
5060 p++;
5061 heads = strtol(p, (char **)&p, 0);
5062 if (heads < 1 || heads > 16)
5063 goto chs_fail;
5064 if (*p != ',')
5065 goto chs_fail;
5066 p++;
5067 secs = strtol(p, (char **)&p, 0);
5068 if (secs < 1 || secs > 63)
5069 goto chs_fail;
5070 if (*p == ',') {
5071 p++;
5072 if (!strcmp(p, "none"))
5073 translation = BIOS_ATA_TRANSLATION_NONE;
5074 else if (!strcmp(p, "lba"))
5075 translation = BIOS_ATA_TRANSLATION_LBA;
5076 else if (!strcmp(p, "auto"))
5077 translation = BIOS_ATA_TRANSLATION_AUTO;
5078 else
5079 goto chs_fail;
5080 } else if (*p != '\0') {
5081 chs_fail:
5082 fprintf(stderr, "qemu: invalid physical CHS format\n");
5083 exit(1);
5084 }
5085 if (hda_index != -1)
5086 snprintf(drives_opt[hda_index].opt,
5087 sizeof(drives_opt[hda_index].opt),
5088 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5089 0, cyls, heads, secs,
5090 translation == BIOS_ATA_TRANSLATION_LBA ?
5091 ",trans=lba" :
5092 translation == BIOS_ATA_TRANSLATION_NONE ?
5093 ",trans=none" : "");
5094 }
5095 break;
5096 case QEMU_OPTION_numa:
5097 if (nb_numa_nodes >= MAX_NODES) {
5098 fprintf(stderr, "qemu: too many NUMA nodes\n");
5099 exit(1);
5100 }
5101 numa_add(optarg);
5102 break;
5103 case QEMU_OPTION_nographic:
5104 display_type = DT_NOGRAPHIC;
5105 break;
5106 #ifdef CONFIG_CURSES
5107 case QEMU_OPTION_curses:
5108 display_type = DT_CURSES;
5109 break;
5110 #endif
5111 case QEMU_OPTION_portrait:
5112 graphic_rotate = 1;
5113 break;
5114 case QEMU_OPTION_kernel:
5115 kernel_filename = optarg;
5116 break;
5117 case QEMU_OPTION_append:
5118 kernel_cmdline = optarg;
5119 break;
5120 case QEMU_OPTION_cdrom:
5121 drive_add(optarg, CDROM_ALIAS);
5122 break;
5123 case QEMU_OPTION_boot:
5124 {
5125 static const char * const params[] = {
5126 "order", "once", "menu", NULL
5127 };
5128 char buf[sizeof(boot_devices)];
5129 char *standard_boot_devices;
5130 int legacy = 0;
5131
5132 if (!strchr(optarg, '=')) {
5133 legacy = 1;
5134 pstrcpy(buf, sizeof(buf), optarg);
5135 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5136 fprintf(stderr,
5137 "qemu: unknown boot parameter '%s' in '%s'\n",
5138 buf, optarg);
5139 exit(1);
5140 }
5141
5142 if (legacy ||
5143 get_param_value(buf, sizeof(buf), "order", optarg)) {
5144 boot_devices_bitmap = parse_bootdevices(buf);
5145 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5146 }
5147 if (!legacy) {
5148 if (get_param_value(buf, sizeof(buf),
5149 "once", optarg)) {
5150 boot_devices_bitmap |= parse_bootdevices(buf);
5151 standard_boot_devices = qemu_strdup(boot_devices);
5152 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5153 qemu_register_reset(restore_boot_devices,
5154 standard_boot_devices);
5155 }
5156 if (get_param_value(buf, sizeof(buf),
5157 "menu", optarg)) {
5158 if (!strcmp(buf, "on")) {
5159 boot_menu = 1;
5160 } else if (!strcmp(buf, "off")) {
5161 boot_menu = 0;
5162 } else {
5163 fprintf(stderr,
5164 "qemu: invalid option value '%s'\n",
5165 buf);
5166 exit(1);
5167 }
5168 }
5169 }
5170 }
5171 break;
5172 case QEMU_OPTION_fda:
5173 case QEMU_OPTION_fdb:
5174 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5175 break;
5176 #ifdef TARGET_I386
5177 case QEMU_OPTION_no_fd_bootchk:
5178 fd_bootchk = 0;
5179 break;
5180 #endif
5181 case QEMU_OPTION_net:
5182 if (nb_net_clients >= MAX_NET_CLIENTS) {
5183 fprintf(stderr, "qemu: too many network clients\n");
5184 exit(1);
5185 }
5186 net_clients[nb_net_clients] = optarg;
5187 nb_net_clients++;
5188 break;
5189 #ifdef CONFIG_SLIRP
5190 case QEMU_OPTION_tftp:
5191 legacy_tftp_prefix = optarg;
5192 break;
5193 case QEMU_OPTION_bootp:
5194 legacy_bootp_filename = optarg;
5195 break;
5196 #ifndef _WIN32
5197 case QEMU_OPTION_smb:
5198 net_slirp_smb(optarg);
5199 break;
5200 #endif
5201 case QEMU_OPTION_redir:
5202 net_slirp_redir(optarg);
5203 break;
5204 #endif
5205 case QEMU_OPTION_bt:
5206 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5207 fprintf(stderr, "qemu: too many bluetooth options\n");
5208 exit(1);
5209 }
5210 bt_opts[nb_bt_opts++] = optarg;
5211 break;
5212 #ifdef HAS_AUDIO
5213 case QEMU_OPTION_audio_help:
5214 AUD_help ();
5215 exit (0);
5216 break;
5217 case QEMU_OPTION_soundhw:
5218 select_soundhw (optarg);
5219 break;
5220 #endif
5221 case QEMU_OPTION_h:
5222 help(0);
5223 break;
5224 case QEMU_OPTION_version:
5225 version();
5226 exit(0);
5227 break;
5228 case QEMU_OPTION_m: {
5229 uint64_t value;
5230 char *ptr;
5231
5232 value = strtoul(optarg, &ptr, 10);
5233 switch (*ptr) {
5234 case 0: case 'M': case 'm':
5235 value <<= 20;
5236 break;
5237 case 'G': case 'g':
5238 value <<= 30;
5239 break;
5240 default:
5241 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5242 exit(1);
5243 }
5244
5245 /* On 32-bit hosts, QEMU is limited by virtual address space */
5246 if (value > (2047 << 20)
5247 #ifndef CONFIG_KQEMU
5248 && HOST_LONG_BITS == 32
5249 #endif
5250 ) {
5251 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5252 exit(1);
5253 }
5254 if (value != (uint64_t)(ram_addr_t)value) {
5255 fprintf(stderr, "qemu: ram size too large\n");
5256 exit(1);
5257 }
5258 ram_size = value;
5259 break;
5260 }
5261 case QEMU_OPTION_d:
5262 {
5263 int mask;
5264 const CPULogItem *item;
5265
5266 mask = cpu_str_to_log_mask(optarg);
5267 if (!mask) {
5268 printf("Log items (comma separated):\n");
5269 for(item = cpu_log_items; item->mask != 0; item++) {
5270 printf("%-10s %s\n", item->name, item->help);
5271 }
5272 exit(1);
5273 }
5274 cpu_set_log(mask);
5275 }
5276 break;
5277 case QEMU_OPTION_s:
5278 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5279 break;
5280 case QEMU_OPTION_gdb:
5281 gdbstub_dev = optarg;
5282 break;
5283 case QEMU_OPTION_L:
5284 data_dir = optarg;
5285 break;
5286 case QEMU_OPTION_bios:
5287 bios_name = optarg;
5288 break;
5289 case QEMU_OPTION_singlestep:
5290 singlestep = 1;
5291 break;
5292 case QEMU_OPTION_S:
5293 autostart = 0;
5294 break;
5295 #ifndef _WIN32
5296 case QEMU_OPTION_k:
5297 keyboard_layout = optarg;
5298 break;
5299 #endif
5300 case QEMU_OPTION_localtime:
5301 rtc_utc = 0;
5302 break;
5303 case QEMU_OPTION_vga:
5304 select_vgahw (optarg);
5305 break;
5306 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5307 case QEMU_OPTION_g:
5308 {
5309 const char *p;
5310 int w, h, depth;
5311 p = optarg;
5312 w = strtol(p, (char **)&p, 10);
5313 if (w <= 0) {
5314 graphic_error:
5315 fprintf(stderr, "qemu: invalid resolution or depth\n");
5316 exit(1);
5317 }
5318 if (*p != 'x')
5319 goto graphic_error;
5320 p++;
5321 h = strtol(p, (char **)&p, 10);
5322 if (h <= 0)
5323 goto graphic_error;
5324 if (*p == 'x') {
5325 p++;
5326 depth = strtol(p, (char **)&p, 10);
5327 if (depth != 8 && depth != 15 && depth != 16 &&
5328 depth != 24 && depth != 32)
5329 goto graphic_error;
5330 } else if (*p == '\0') {
5331 depth = graphic_depth;
5332 } else {
5333 goto graphic_error;
5334 }
5335
5336 graphic_width = w;
5337 graphic_height = h;
5338 graphic_depth = depth;
5339 }
5340 break;
5341 #endif
5342 case QEMU_OPTION_echr:
5343 {
5344 char *r;
5345 term_escape_char = strtol(optarg, &r, 0);
5346 if (r == optarg)
5347 printf("Bad argument to echr\n");
5348 break;
5349 }
5350 case QEMU_OPTION_monitor:
5351 monitor_device = optarg;
5352 break;
5353 case QEMU_OPTION_serial:
5354 if (serial_device_index >= MAX_SERIAL_PORTS) {
5355 fprintf(stderr, "qemu: too many serial ports\n");
5356 exit(1);
5357 }
5358 serial_devices[serial_device_index] = optarg;
5359 serial_device_index++;
5360 break;
5361 case QEMU_OPTION_watchdog:
5362 i = select_watchdog(optarg);
5363 if (i > 0)
5364 exit (i == 1 ? 1 : 0);
5365 break;
5366 case QEMU_OPTION_watchdog_action:
5367 if (select_watchdog_action(optarg) == -1) {
5368 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5369 exit(1);
5370 }
5371 break;
5372 case QEMU_OPTION_virtiocon:
5373 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5374 fprintf(stderr, "qemu: too many virtio consoles\n");
5375 exit(1);
5376 }
5377 virtio_consoles[virtio_console_index] = optarg;
5378 virtio_console_index++;
5379 break;
5380 case QEMU_OPTION_parallel:
5381 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5382 fprintf(stderr, "qemu: too many parallel ports\n");
5383 exit(1);
5384 }
5385 parallel_devices[parallel_device_index] = optarg;
5386 parallel_device_index++;
5387 break;
5388 case QEMU_OPTION_loadvm:
5389 loadvm = optarg;
5390 break;
5391 case QEMU_OPTION_full_screen:
5392 full_screen = 1;
5393 break;
5394 #ifdef CONFIG_SDL
5395 case QEMU_OPTION_no_frame:
5396 no_frame = 1;
5397 break;
5398 case QEMU_OPTION_alt_grab:
5399 alt_grab = 1;
5400 break;
5401 case QEMU_OPTION_no_quit:
5402 no_quit = 1;
5403 break;
5404 case QEMU_OPTION_sdl:
5405 display_type = DT_SDL;
5406 break;
5407 #endif
5408 case QEMU_OPTION_pidfile:
5409 pid_file = optarg;
5410 break;
5411 #ifdef TARGET_I386
5412 case QEMU_OPTION_win2k_hack:
5413 win2k_install_hack = 1;
5414 break;
5415 case QEMU_OPTION_rtc_td_hack:
5416 rtc_td_hack = 1;
5417 break;
5418 case QEMU_OPTION_acpitable:
5419 if(acpi_table_add(optarg) < 0) {
5420 fprintf(stderr, "Wrong acpi table provided\n");
5421 exit(1);
5422 }
5423 break;
5424 case QEMU_OPTION_smbios:
5425 if(smbios_entry_add(optarg) < 0) {
5426 fprintf(stderr, "Wrong smbios provided\n");
5427 exit(1);
5428 }
5429 break;
5430 #endif
5431 #ifdef CONFIG_KQEMU
5432 case QEMU_OPTION_enable_kqemu:
5433 kqemu_allowed = 1;
5434 break;
5435 case QEMU_OPTION_kernel_kqemu:
5436 kqemu_allowed = 2;
5437 break;
5438 #endif
5439 #ifdef CONFIG_KVM
5440 case QEMU_OPTION_enable_kvm:
5441 kvm_allowed = 1;
5442 #ifdef CONFIG_KQEMU
5443 kqemu_allowed = 0;
5444 #endif
5445 break;
5446 #endif
5447 case QEMU_OPTION_usb:
5448 usb_enabled = 1;
5449 break;
5450 case QEMU_OPTION_usbdevice:
5451 usb_enabled = 1;
5452 if (usb_devices_index >= MAX_USB_CMDLINE) {
5453 fprintf(stderr, "Too many USB devices\n");
5454 exit(1);
5455 }
5456 usb_devices[usb_devices_index] = optarg;
5457 usb_devices_index++;
5458 break;
5459 case QEMU_OPTION_smp:
5460 smp_cpus = atoi(optarg);
5461 if (smp_cpus < 1) {
5462 fprintf(stderr, "Invalid number of CPUs\n");
5463 exit(1);
5464 }
5465 break;
5466 case QEMU_OPTION_vnc:
5467 display_type = DT_VNC;
5468 vnc_display = optarg;
5469 break;
5470 #ifdef TARGET_I386
5471 case QEMU_OPTION_no_acpi:
5472 acpi_enabled = 0;
5473 break;
5474 case QEMU_OPTION_no_hpet:
5475 no_hpet = 1;
5476 break;
5477 case QEMU_OPTION_balloon:
5478 if (balloon_parse(optarg) < 0) {
5479 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5480 exit(1);
5481 }
5482 break;
5483 #endif
5484 case QEMU_OPTION_no_reboot:
5485 no_reboot = 1;
5486 break;
5487 case QEMU_OPTION_no_shutdown:
5488 no_shutdown = 1;
5489 break;
5490 case QEMU_OPTION_show_cursor:
5491 cursor_hide = 0;
5492 break;
5493 case QEMU_OPTION_uuid:
5494 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5495 fprintf(stderr, "Fail to parse UUID string."
5496 " Wrong format.\n");
5497 exit(1);
5498 }
5499 break;
5500 #ifndef _WIN32
5501 case QEMU_OPTION_daemonize:
5502 daemonize = 1;
5503 break;
5504 #endif
5505 case QEMU_OPTION_option_rom:
5506 if (nb_option_roms >= MAX_OPTION_ROMS) {
5507 fprintf(stderr, "Too many option ROMs\n");
5508 exit(1);
5509 }
5510 option_rom[nb_option_roms] = optarg;
5511 nb_option_roms++;
5512 break;
5513 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5514 case QEMU_OPTION_semihosting:
5515 semihosting_enabled = 1;
5516 break;
5517 #endif
5518 case QEMU_OPTION_name:
5519 qemu_name = qemu_strdup(optarg);
5520 {
5521 char *p = strchr(qemu_name, ',');
5522 if (p != NULL) {
5523 *p++ = 0;
5524 if (strncmp(p, "process=", 8)) {
5525 fprintf(stderr, "Unknown subargument %s to -name", p);
5526 exit(1);
5527 }
5528 p += 8;
5529 set_proc_name(p);
5530 }
5531 }
5532 break;
5533 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5534 case QEMU_OPTION_prom_env:
5535 if (nb_prom_envs >= MAX_PROM_ENVS) {
5536 fprintf(stderr, "Too many prom variables\n");
5537 exit(1);
5538 }
5539 prom_envs[nb_prom_envs] = optarg;
5540 nb_prom_envs++;
5541 break;
5542 #endif
5543 #ifdef TARGET_ARM
5544 case QEMU_OPTION_old_param:
5545 old_param = 1;
5546 break;
5547 #endif
5548 case QEMU_OPTION_clock:
5549 configure_alarms(optarg);
5550 break;
5551 case QEMU_OPTION_startdate:
5552 {
5553 struct tm tm;
5554 time_t rtc_start_date;
5555 if (!strcmp(optarg, "now")) {
5556 rtc_date_offset = -1;
5557 } else {
5558 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5559 &tm.tm_year,
5560 &tm.tm_mon,
5561 &tm.tm_mday,
5562 &tm.tm_hour,
5563 &tm.tm_min,
5564 &tm.tm_sec) == 6) {
5565 /* OK */
5566 } else if (sscanf(optarg, "%d-%d-%d",
5567 &tm.tm_year,
5568 &tm.tm_mon,
5569 &tm.tm_mday) == 3) {
5570 tm.tm_hour = 0;
5571 tm.tm_min = 0;
5572 tm.tm_sec = 0;
5573 } else {
5574 goto date_fail;
5575 }
5576 tm.tm_year -= 1900;
5577 tm.tm_mon--;
5578 rtc_start_date = mktimegm(&tm);
5579 if (rtc_start_date == -1) {
5580 date_fail:
5581 fprintf(stderr, "Invalid date format. Valid format are:\n"
5582 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5583 exit(1);
5584 }
5585 rtc_date_offset = time(NULL) - rtc_start_date;
5586 }
5587 }
5588 break;
5589 case QEMU_OPTION_tb_size:
5590 tb_size = strtol(optarg, NULL, 0);
5591 if (tb_size < 0)
5592 tb_size = 0;
5593 break;
5594 case QEMU_OPTION_icount:
5595 use_icount = 1;
5596 if (strcmp(optarg, "auto") == 0) {
5597 icount_time_shift = -1;
5598 } else {
5599 icount_time_shift = strtol(optarg, NULL, 0);
5600 }
5601 break;
5602 case QEMU_OPTION_incoming:
5603 incoming = optarg;
5604 break;
5605 #ifndef _WIN32
5606 case QEMU_OPTION_chroot:
5607 chroot_dir = optarg;
5608 break;
5609 case QEMU_OPTION_runas:
5610 run_as = optarg;
5611 break;
5612 #endif
5613 #ifdef CONFIG_XEN
5614 case QEMU_OPTION_xen_domid:
5615 xen_domid = atoi(optarg);
5616 break;
5617 case QEMU_OPTION_xen_create:
5618 xen_mode = XEN_CREATE;
5619 break;
5620 case QEMU_OPTION_xen_attach:
5621 xen_mode = XEN_ATTACH;
5622 break;
5623 #endif
5624 }
5625 }
5626 }
5627
5628 /* If no data_dir is specified then try to find it relative to the
5629 executable path. */
5630 if (!data_dir) {
5631 data_dir = find_datadir(argv[0]);
5632 }
5633 /* If all else fails use the install patch specified when building. */
5634 if (!data_dir) {
5635 data_dir = CONFIG_QEMU_SHAREDIR;
5636 }
5637
5638 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5639 if (kvm_allowed && kqemu_allowed) {
5640 fprintf(stderr,
5641 "You can not enable both KVM and kqemu at the same time\n");
5642 exit(1);
5643 }
5644 #endif
5645
5646 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5647 if (smp_cpus > machine->max_cpus) {
5648 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5649 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5650 machine->max_cpus);
5651 exit(1);
5652 }
5653
5654 if (display_type == DT_NOGRAPHIC) {
5655 if (serial_device_index == 0)
5656 serial_devices[0] = "stdio";
5657 if (parallel_device_index == 0)
5658 parallel_devices[0] = "null";
5659 if (strncmp(monitor_device, "vc", 2) == 0)
5660 monitor_device = "stdio";
5661 }
5662
5663 #ifndef _WIN32
5664 if (daemonize) {
5665 pid_t pid;
5666
5667 if (pipe(fds) == -1)
5668 exit(1);
5669
5670 pid = fork();
5671 if (pid > 0) {
5672 uint8_t status;
5673 ssize_t len;
5674
5675 close(fds[1]);
5676
5677 again:
5678 len = read(fds[0], &status, 1);
5679 if (len == -1 && (errno == EINTR))
5680 goto again;
5681
5682 if (len != 1)
5683 exit(1);
5684 else if (status == 1) {
5685 fprintf(stderr, "Could not acquire pidfile\n");
5686 exit(1);
5687 } else
5688 exit(0);
5689 } else if (pid < 0)
5690 exit(1);
5691
5692 setsid();
5693
5694 pid = fork();
5695 if (pid > 0)
5696 exit(0);
5697 else if (pid < 0)
5698 exit(1);
5699
5700 umask(027);
5701
5702 signal(SIGTSTP, SIG_IGN);
5703 signal(SIGTTOU, SIG_IGN);
5704 signal(SIGTTIN, SIG_IGN);
5705 }
5706
5707 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5708 if (daemonize) {
5709 uint8_t status = 1;
5710 write(fds[1], &status, 1);
5711 } else
5712 fprintf(stderr, "Could not acquire pid file\n");
5713 exit(1);
5714 }
5715 #endif
5716
5717 #ifdef CONFIG_KQEMU
5718 if (smp_cpus > 1)
5719 kqemu_allowed = 0;
5720 #endif
5721 if (qemu_init_main_loop()) {
5722 fprintf(stderr, "qemu_init_main_loop failed\n");
5723 exit(1);
5724 }
5725 linux_boot = (kernel_filename != NULL);
5726
5727 if (!linux_boot && *kernel_cmdline != '\0') {
5728 fprintf(stderr, "-append only allowed with -kernel option\n");
5729 exit(1);
5730 }
5731
5732 if (!linux_boot && initrd_filename != NULL) {
5733 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5734 exit(1);
5735 }
5736
5737 setvbuf(stdout, NULL, _IOLBF, 0);
5738
5739 init_timers();
5740 if (init_timer_alarm() < 0) {
5741 fprintf(stderr, "could not initialize alarm timer\n");
5742 exit(1);
5743 }
5744 if (use_icount && icount_time_shift < 0) {
5745 use_icount = 2;
5746 /* 125MIPS seems a reasonable initial guess at the guest speed.
5747 It will be corrected fairly quickly anyway. */
5748 icount_time_shift = 3;
5749 init_icount_adjust();
5750 }
5751
5752 #ifdef _WIN32
5753 socket_init();
5754 #endif
5755
5756 /* init network clients */
5757 if (nb_net_clients == 0) {
5758 /* if no clients, we use a default config */
5759 net_clients[nb_net_clients++] = "nic";
5760 #ifdef CONFIG_SLIRP
5761 net_clients[nb_net_clients++] = "user";
5762 #endif
5763 }
5764
5765 for(i = 0;i < nb_net_clients; i++) {
5766 if (net_client_parse(net_clients[i]) < 0)
5767 exit(1);
5768 }
5769
5770 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5771 net_set_boot_mask(net_boot);
5772
5773 net_client_check();
5774
5775 /* init the bluetooth world */
5776 for (i = 0; i < nb_bt_opts; i++)
5777 if (bt_parse(bt_opts[i]))
5778 exit(1);
5779
5780 /* init the memory */
5781 if (ram_size == 0)
5782 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5783
5784 #ifdef CONFIG_KQEMU
5785 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5786 guest ram allocation. It needs to go away. */
5787 if (kqemu_allowed) {
5788 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5789 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5790 if (!kqemu_phys_ram_base) {
5791 fprintf(stderr, "Could not allocate physical memory\n");
5792 exit(1);
5793 }
5794 }
5795 #endif
5796
5797 /* init the dynamic translator */
5798 cpu_exec_init_all(tb_size * 1024 * 1024);
5799
5800 bdrv_init();
5801
5802 /* we always create the cdrom drive, even if no disk is there */
5803
5804 if (nb_drives_opt < MAX_DRIVES)
5805 drive_add(NULL, CDROM_ALIAS);
5806
5807 /* we always create at least one floppy */
5808
5809 if (nb_drives_opt < MAX_DRIVES)
5810 drive_add(NULL, FD_ALIAS, 0);
5811
5812 /* we always create one sd slot, even if no card is in it */
5813
5814 if (nb_drives_opt < MAX_DRIVES)
5815 drive_add(NULL, SD_ALIAS);
5816
5817 /* open the virtual block devices */
5818
5819 for(i = 0; i < nb_drives_opt; i++)
5820 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5821 exit(1);
5822
5823 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5824 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5825
5826 #ifndef _WIN32
5827 /* must be after terminal init, SDL library changes signal handlers */
5828 sighandler_setup();
5829 #endif
5830
5831 /* Maintain compatibility with multiple stdio monitors */
5832 if (!strcmp(monitor_device,"stdio")) {
5833 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5834 const char *devname = serial_devices[i];
5835 if (devname && !strcmp(devname,"mon:stdio")) {
5836 monitor_device = NULL;
5837 break;
5838 } else if (devname && !strcmp(devname,"stdio")) {
5839 monitor_device = NULL;
5840 serial_devices[i] = "mon:stdio";
5841 break;
5842 }
5843 }
5844 }
5845
5846 if (nb_numa_nodes > 0) {
5847 int i;
5848
5849 if (nb_numa_nodes > smp_cpus) {
5850 nb_numa_nodes = smp_cpus;
5851 }
5852
5853 /* If no memory size if given for any node, assume the default case
5854 * and distribute the available memory equally across all nodes
5855 */
5856 for (i = 0; i < nb_numa_nodes; i++) {
5857 if (node_mem[i] != 0)
5858 break;
5859 }
5860 if (i == nb_numa_nodes) {
5861 uint64_t usedmem = 0;
5862
5863 /* On Linux, the each node's border has to be 8MB aligned,
5864 * the final node gets the rest.
5865 */
5866 for (i = 0; i < nb_numa_nodes - 1; i++) {
5867 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5868 usedmem += node_mem[i];
5869 }
5870 node_mem[i] = ram_size - usedmem;
5871 }
5872
5873 for (i = 0; i < nb_numa_nodes; i++) {
5874 if (node_cpumask[i] != 0)
5875 break;
5876 }
5877 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5878 * must cope with this anyway, because there are BIOSes out there in
5879 * real machines which also use this scheme.
5880 */
5881 if (i == nb_numa_nodes) {
5882 for (i = 0; i < smp_cpus; i++) {
5883 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5884 }
5885 }
5886 }
5887
5888 if (kvm_enabled()) {
5889 int ret;
5890
5891 ret = kvm_init(smp_cpus);
5892 if (ret < 0) {
5893 fprintf(stderr, "failed to initialize KVM\n");
5894 exit(1);
5895 }
5896 }
5897
5898 if (monitor_device) {
5899 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5900 if (!monitor_hd) {
5901 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5902 exit(1);
5903 }
5904 }
5905
5906 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5907 const char *devname = serial_devices[i];
5908 if (devname && strcmp(devname, "none")) {
5909 char label[32];
5910 snprintf(label, sizeof(label), "serial%d", i);
5911 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5912 if (!serial_hds[i]) {
5913 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5914 devname);
5915 exit(1);
5916 }
5917 }
5918 }
5919
5920 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5921 const char *devname = parallel_devices[i];
5922 if (devname && strcmp(devname, "none")) {
5923 char label[32];
5924 snprintf(label, sizeof(label), "parallel%d", i);
5925 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5926 if (!parallel_hds[i]) {
5927 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5928 devname);
5929 exit(1);
5930 }
5931 }
5932 }
5933
5934 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5935 const char *devname = virtio_consoles[i];
5936 if (devname && strcmp(devname, "none")) {
5937 char label[32];
5938 snprintf(label, sizeof(label), "virtcon%d", i);
5939 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5940 if (!virtcon_hds[i]) {
5941 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5942 devname);
5943 exit(1);
5944 }
5945 }
5946 }
5947
5948 module_call_init(MODULE_INIT_DEVICE);
5949
5950 if (machine->compat_props) {
5951 qdev_prop_register_compat(machine->compat_props);
5952 }
5953 machine->init(ram_size, boot_devices,
5954 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5955
5956
5957 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5958 for (i = 0; i < nb_numa_nodes; i++) {
5959 if (node_cpumask[i] & (1 << env->cpu_index)) {
5960 env->numa_node = i;
5961 }
5962 }
5963 }
5964
5965 current_machine = machine;
5966
5967 /* init USB devices */
5968 if (usb_enabled) {
5969 for(i = 0; i < usb_devices_index; i++) {
5970 if (usb_device_add(usb_devices[i], 0) < 0) {
5971 fprintf(stderr, "Warning: could not add USB device %s\n",
5972 usb_devices[i]);
5973 }
5974 }
5975 }
5976
5977 if (!display_state)
5978 dumb_display_init();
5979 /* just use the first displaystate for the moment */
5980 ds = display_state;
5981
5982 if (display_type == DT_DEFAULT) {
5983 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5984 display_type = DT_SDL;
5985 #else
5986 display_type = DT_VNC;
5987 vnc_display = "localhost:0,to=99";
5988 show_vnc_port = 1;
5989 #endif
5990 }
5991
5992
5993 switch (display_type) {
5994 case DT_NOGRAPHIC:
5995 break;
5996 #if defined(CONFIG_CURSES)
5997 case DT_CURSES:
5998 curses_display_init(ds, full_screen);
5999 break;
6000 #endif
6001 #if defined(CONFIG_SDL)
6002 case DT_SDL:
6003 sdl_display_init(ds, full_screen, no_frame);
6004 break;
6005 #elif defined(CONFIG_COCOA)
6006 case DT_SDL:
6007 cocoa_display_init(ds, full_screen);
6008 break;
6009 #endif
6010 case DT_VNC:
6011 vnc_display_init(ds);
6012 if (vnc_display_open(ds, vnc_display) < 0)
6013 exit(1);
6014
6015 if (show_vnc_port) {
6016 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6017 }
6018 break;
6019 default:
6020 break;
6021 }
6022 dpy_resize(ds);
6023
6024 dcl = ds->listeners;
6025 while (dcl != NULL) {
6026 if (dcl->dpy_refresh != NULL) {
6027 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6028 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6029 }
6030 dcl = dcl->next;
6031 }
6032
6033 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6034 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6035 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6036 }
6037
6038 text_consoles_set_display(display_state);
6039 qemu_chr_initial_reset();
6040
6041 if (monitor_device && monitor_hd)
6042 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6043
6044 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6045 const char *devname = serial_devices[i];
6046 if (devname && strcmp(devname, "none")) {
6047 if (strstart(devname, "vc", 0))
6048 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6049 }
6050 }
6051
6052 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6053 const char *devname = parallel_devices[i];
6054 if (devname && strcmp(devname, "none")) {
6055 if (strstart(devname, "vc", 0))
6056 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6057 }
6058 }
6059
6060 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6061 const char *devname = virtio_consoles[i];
6062 if (virtcon_hds[i] && devname) {
6063 if (strstart(devname, "vc", 0))
6064 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6065 }
6066 }
6067
6068 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6069 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6070 gdbstub_dev);
6071 exit(1);
6072 }
6073
6074 if (loadvm)
6075 do_loadvm(cur_mon, loadvm);
6076
6077 if (incoming) {
6078 qemu_start_incoming_migration(incoming);
6079 } else if (autostart) {
6080 vm_start();
6081 }
6082
6083 #ifndef _WIN32
6084 if (daemonize) {
6085 uint8_t status = 0;
6086 ssize_t len;
6087
6088 again1:
6089 len = write(fds[1], &status, 1);
6090 if (len == -1 && (errno == EINTR))
6091 goto again1;
6092
6093 if (len != 1)
6094 exit(1);
6095
6096 chdir("/");
6097 TFR(fd = open("/dev/null", O_RDWR));
6098 if (fd == -1)
6099 exit(1);
6100 }
6101
6102 if (run_as) {
6103 pwd = getpwnam(run_as);
6104 if (!pwd) {
6105 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6106 exit(1);
6107 }
6108 }
6109
6110 if (chroot_dir) {
6111 if (chroot(chroot_dir) < 0) {
6112 fprintf(stderr, "chroot failed\n");
6113 exit(1);
6114 }
6115 chdir("/");
6116 }
6117
6118 if (run_as) {
6119 if (setgid(pwd->pw_gid) < 0) {
6120 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6121 exit(1);
6122 }
6123 if (setuid(pwd->pw_uid) < 0) {
6124 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6125 exit(1);
6126 }
6127 if (setuid(0) != -1) {
6128 fprintf(stderr, "Dropping privileges failed\n");
6129 exit(1);
6130 }
6131 }
6132
6133 if (daemonize) {
6134 dup2(fd, 0);
6135 dup2(fd, 1);
6136 dup2(fd, 2);
6137
6138 close(fd);
6139 }
6140 #endif
6141
6142 main_loop();
6143 quit_timers();
6144 net_cleanup();
6145
6146 return 0;
6147 }