]> git.proxmox.com Git - qemu.git/blob - vl.c
Allow setting qemu process name v2
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
72
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
76 #include "hpet.h"
77
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
80 #endif
81 #ifdef __sun__
82 #include <sys/stat.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
92 #include <net/if.h>
93 #include <syslog.h>
94 #include <stropts.h>
95 #endif
96 #endif
97 #endif
98
99 #if defined(__OpenBSD__)
100 #include <util.h>
101 #endif
102
103 #if defined(CONFIG_VDE)
104 #include <libvdeplug.h>
105 #endif
106
107 #ifdef _WIN32
108 #include <windows.h>
109 #include <malloc.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
114 #endif
115
116 #ifdef CONFIG_SDL
117 #if defined(__APPLE__) || defined(main)
118 #include <SDL.h>
119 int qemu_main(int argc, char **argv, char **envp);
120 int main(int argc, char **argv)
121 {
122 return qemu_main(argc, argv, NULL);
123 }
124 #undef main
125 #define main qemu_main
126 #endif
127 #endif /* CONFIG_SDL */
128
129 #ifdef CONFIG_COCOA
130 #undef main
131 #define main qemu_main
132 #endif /* CONFIG_COCOA */
133
134 #include "hw/hw.h"
135 #include "hw/boards.h"
136 #include "hw/usb.h"
137 #include "hw/pcmcia.h"
138 #include "hw/pc.h"
139 #include "hw/audiodev.h"
140 #include "hw/isa.h"
141 #include "hw/baum.h"
142 #include "hw/bt.h"
143 #include "hw/watchdog.h"
144 #include "hw/smbios.h"
145 #include "hw/xen.h"
146 #include "bt-host.h"
147 #include "net.h"
148 #include "monitor.h"
149 #include "console.h"
150 #include "sysemu.h"
151 #include "gdbstub.h"
152 #include "qemu-timer.h"
153 #include "qemu-char.h"
154 #include "cache-utils.h"
155 #include "block.h"
156 #include "dma.h"
157 #include "audio/audio.h"
158 #include "migration.h"
159 #include "kvm.h"
160 #include "balloon.h"
161 #include "qemu-option.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 /* Max number of USB devices that can be specified on the commandline. */
177 #define MAX_USB_CMDLINE 8
178
179 /* Max number of bluetooth switches on the commandline. */
180 #define MAX_BT_CMDLINE 10
181
182 static const char *data_dir;
183 const char *bios_name = NULL;
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table[MAX_DRIVES+1];
187 int nb_drives;
188 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
189 static DisplayState *display_state;
190 DisplayType display_type = DT_DEFAULT;
191 const char* keyboard_layout = NULL;
192 int64_t ticks_per_sec;
193 ram_addr_t ram_size;
194 int nb_nics;
195 NICInfo nd_table[MAX_NICS];
196 int vm_running;
197 static int autostart;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 int cirrus_vga_enabled = 1;
201 int std_vga_enabled = 0;
202 int vmsvga_enabled = 0;
203 int xenfb_enabled = 0;
204 #ifdef TARGET_SPARC
205 int graphic_width = 1024;
206 int graphic_height = 768;
207 int graphic_depth = 8;
208 #else
209 int graphic_width = 800;
210 int graphic_height = 600;
211 int graphic_depth = 15;
212 #endif
213 static int full_screen = 0;
214 #ifdef CONFIG_SDL
215 static int no_frame = 0;
216 #endif
217 int no_quit = 0;
218 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
219 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
220 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
221 #ifdef TARGET_I386
222 int win2k_install_hack = 0;
223 int rtc_td_hack = 0;
224 #endif
225 int usb_enabled = 0;
226 int singlestep = 0;
227 int smp_cpus = 1;
228 const char *vnc_display;
229 int acpi_enabled = 1;
230 int no_hpet = 0;
231 int virtio_balloon = 1;
232 const char *virtio_balloon_devaddr;
233 int fd_bootchk = 1;
234 int no_reboot = 0;
235 int no_shutdown = 0;
236 int cursor_hide = 1;
237 int graphic_rotate = 0;
238 #ifndef _WIN32
239 int daemonize = 0;
240 #endif
241 WatchdogTimerModel *watchdog = NULL;
242 int watchdog_action = WDT_RESET;
243 const char *option_rom[MAX_OPTION_ROMS];
244 int nb_option_roms;
245 int semihosting_enabled = 0;
246 #ifdef TARGET_ARM
247 int old_param = 0;
248 #endif
249 const char *qemu_name;
250 int alt_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int nb_drives_opt;
256 struct drive_opt drives_opt[MAX_DRIVES];
257
258 int nb_numa_nodes;
259 uint64_t node_mem[MAX_NODES];
260 uint64_t node_cpumask[MAX_NODES];
261
262 static CPUState *cur_cpu;
263 static CPUState *next_cpu;
264 static int timer_alarm_pending = 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias;
271 static QEMUTimer *icount_rt_timer;
272 static QEMUTimer *icount_vm_timer;
273 static QEMUTimer *nographic_timer;
274
275 uint8_t qemu_uuid[16];
276
277 /***********************************************************/
278 /* x86 ISA bus support */
279
280 target_phys_addr_t isa_mem_base = 0;
281 PicState2 *isa_pic;
282
283 /***********************************************************/
284 void hw_error(const char *fmt, ...)
285 {
286 va_list ap;
287 CPUState *env;
288
289 va_start(ap, fmt);
290 fprintf(stderr, "qemu: hardware error: ");
291 vfprintf(stderr, fmt, ap);
292 fprintf(stderr, "\n");
293 for(env = first_cpu; env != NULL; env = env->next_cpu) {
294 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
295 #ifdef TARGET_I386
296 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
297 #else
298 cpu_dump_state(env, stderr, fprintf, 0);
299 #endif
300 }
301 va_end(ap);
302 abort();
303 }
304
305 static void set_proc_name(const char *s)
306 {
307 #ifdef __linux__
308 char name[16];
309 if (!s)
310 return;
311 name[sizeof(name) - 1] = 0;
312 strncpy(name, s, sizeof(name));
313 /* Could rewrite argv[0] too, but that's a bit more complicated.
314 This simple way is enough for `top'. */
315 prctl(PR_SET_NAME, name);
316 #endif
317 }
318
319 /***************/
320 /* ballooning */
321
322 static QEMUBalloonEvent *qemu_balloon_event;
323 void *qemu_balloon_event_opaque;
324
325 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
326 {
327 qemu_balloon_event = func;
328 qemu_balloon_event_opaque = opaque;
329 }
330
331 void qemu_balloon(ram_addr_t target)
332 {
333 if (qemu_balloon_event)
334 qemu_balloon_event(qemu_balloon_event_opaque, target);
335 }
336
337 ram_addr_t qemu_balloon_status(void)
338 {
339 if (qemu_balloon_event)
340 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
341 return 0;
342 }
343
344 /***********************************************************/
345 /* keyboard/mouse */
346
347 static QEMUPutKBDEvent *qemu_put_kbd_event;
348 static void *qemu_put_kbd_event_opaque;
349 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
350 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
351
352 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
353 {
354 qemu_put_kbd_event_opaque = opaque;
355 qemu_put_kbd_event = func;
356 }
357
358 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
359 void *opaque, int absolute,
360 const char *name)
361 {
362 QEMUPutMouseEntry *s, *cursor;
363
364 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
365
366 s->qemu_put_mouse_event = func;
367 s->qemu_put_mouse_event_opaque = opaque;
368 s->qemu_put_mouse_event_absolute = absolute;
369 s->qemu_put_mouse_event_name = qemu_strdup(name);
370 s->next = NULL;
371
372 if (!qemu_put_mouse_event_head) {
373 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
374 return s;
375 }
376
377 cursor = qemu_put_mouse_event_head;
378 while (cursor->next != NULL)
379 cursor = cursor->next;
380
381 cursor->next = s;
382 qemu_put_mouse_event_current = s;
383
384 return s;
385 }
386
387 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
388 {
389 QEMUPutMouseEntry *prev = NULL, *cursor;
390
391 if (!qemu_put_mouse_event_head || entry == NULL)
392 return;
393
394 cursor = qemu_put_mouse_event_head;
395 while (cursor != NULL && cursor != entry) {
396 prev = cursor;
397 cursor = cursor->next;
398 }
399
400 if (cursor == NULL) // does not exist or list empty
401 return;
402 else if (prev == NULL) { // entry is head
403 qemu_put_mouse_event_head = cursor->next;
404 if (qemu_put_mouse_event_current == entry)
405 qemu_put_mouse_event_current = cursor->next;
406 qemu_free(entry->qemu_put_mouse_event_name);
407 qemu_free(entry);
408 return;
409 }
410
411 prev->next = entry->next;
412
413 if (qemu_put_mouse_event_current == entry)
414 qemu_put_mouse_event_current = prev;
415
416 qemu_free(entry->qemu_put_mouse_event_name);
417 qemu_free(entry);
418 }
419
420 void kbd_put_keycode(int keycode)
421 {
422 if (qemu_put_kbd_event) {
423 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 }
425 }
426
427 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
428 {
429 QEMUPutMouseEvent *mouse_event;
430 void *mouse_event_opaque;
431 int width;
432
433 if (!qemu_put_mouse_event_current) {
434 return;
435 }
436
437 mouse_event =
438 qemu_put_mouse_event_current->qemu_put_mouse_event;
439 mouse_event_opaque =
440 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
441
442 if (mouse_event) {
443 if (graphic_rotate) {
444 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
445 width = 0x7fff;
446 else
447 width = graphic_width - 1;
448 mouse_event(mouse_event_opaque,
449 width - dy, dx, dz, buttons_state);
450 } else
451 mouse_event(mouse_event_opaque,
452 dx, dy, dz, buttons_state);
453 }
454 }
455
456 int kbd_mouse_is_absolute(void)
457 {
458 if (!qemu_put_mouse_event_current)
459 return 0;
460
461 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
462 }
463
464 void do_info_mice(Monitor *mon)
465 {
466 QEMUPutMouseEntry *cursor;
467 int index = 0;
468
469 if (!qemu_put_mouse_event_head) {
470 monitor_printf(mon, "No mouse devices connected\n");
471 return;
472 }
473
474 monitor_printf(mon, "Mouse devices available:\n");
475 cursor = qemu_put_mouse_event_head;
476 while (cursor != NULL) {
477 monitor_printf(mon, "%c Mouse #%d: %s\n",
478 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
479 index, cursor->qemu_put_mouse_event_name);
480 index++;
481 cursor = cursor->next;
482 }
483 }
484
485 void do_mouse_set(Monitor *mon, int index)
486 {
487 QEMUPutMouseEntry *cursor;
488 int i = 0;
489
490 if (!qemu_put_mouse_event_head) {
491 monitor_printf(mon, "No mouse devices connected\n");
492 return;
493 }
494
495 cursor = qemu_put_mouse_event_head;
496 while (cursor != NULL && index != i) {
497 i++;
498 cursor = cursor->next;
499 }
500
501 if (cursor != NULL)
502 qemu_put_mouse_event_current = cursor;
503 else
504 monitor_printf(mon, "Mouse at given index not found\n");
505 }
506
507 /* compute with 96 bit intermediate result: (a*b)/c */
508 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
509 {
510 union {
511 uint64_t ll;
512 struct {
513 #ifdef WORDS_BIGENDIAN
514 uint32_t high, low;
515 #else
516 uint32_t low, high;
517 #endif
518 } l;
519 } u, res;
520 uint64_t rl, rh;
521
522 u.ll = a;
523 rl = (uint64_t)u.l.low * (uint64_t)b;
524 rh = (uint64_t)u.l.high * (uint64_t)b;
525 rh += (rl >> 32);
526 res.l.high = rh / c;
527 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
528 return res.ll;
529 }
530
531 /***********************************************************/
532 /* real time host monotonic timer */
533
534 #define QEMU_TIMER_BASE 1000000000LL
535
536 #ifdef WIN32
537
538 static int64_t clock_freq;
539
540 static void init_get_clock(void)
541 {
542 LARGE_INTEGER freq;
543 int ret;
544 ret = QueryPerformanceFrequency(&freq);
545 if (ret == 0) {
546 fprintf(stderr, "Could not calibrate ticks\n");
547 exit(1);
548 }
549 clock_freq = freq.QuadPart;
550 }
551
552 static int64_t get_clock(void)
553 {
554 LARGE_INTEGER ti;
555 QueryPerformanceCounter(&ti);
556 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 }
558
559 #else
560
561 static int use_rt_clock;
562
563 static void init_get_clock(void)
564 {
565 use_rt_clock = 0;
566 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
567 || defined(__DragonFly__)
568 {
569 struct timespec ts;
570 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
571 use_rt_clock = 1;
572 }
573 }
574 #endif
575 }
576
577 static int64_t get_clock(void)
578 {
579 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
580 || defined(__DragonFly__)
581 if (use_rt_clock) {
582 struct timespec ts;
583 clock_gettime(CLOCK_MONOTONIC, &ts);
584 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
585 } else
586 #endif
587 {
588 /* XXX: using gettimeofday leads to problems if the date
589 changes, so it should be avoided. */
590 struct timeval tv;
591 gettimeofday(&tv, NULL);
592 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 }
594 }
595 #endif
596
597 /* Return the virtual CPU time, based on the instruction counter. */
598 static int64_t cpu_get_icount(void)
599 {
600 int64_t icount;
601 CPUState *env = cpu_single_env;;
602 icount = qemu_icount;
603 if (env) {
604 if (!can_do_io(env))
605 fprintf(stderr, "Bad clock read\n");
606 icount -= (env->icount_decr.u16.low + env->icount_extra);
607 }
608 return qemu_icount_bias + (icount << icount_time_shift);
609 }
610
611 /***********************************************************/
612 /* guest cycle counter */
613
614 static int64_t cpu_ticks_prev;
615 static int64_t cpu_ticks_offset;
616 static int64_t cpu_clock_offset;
617 static int cpu_ticks_enabled;
618
619 /* return the host CPU cycle counter and handle stop/restart */
620 int64_t cpu_get_ticks(void)
621 {
622 if (use_icount) {
623 return cpu_get_icount();
624 }
625 if (!cpu_ticks_enabled) {
626 return cpu_ticks_offset;
627 } else {
628 int64_t ticks;
629 ticks = cpu_get_real_ticks();
630 if (cpu_ticks_prev > ticks) {
631 /* Note: non increasing ticks may happen if the host uses
632 software suspend */
633 cpu_ticks_offset += cpu_ticks_prev - ticks;
634 }
635 cpu_ticks_prev = ticks;
636 return ticks + cpu_ticks_offset;
637 }
638 }
639
640 /* return the host CPU monotonic timer and handle stop/restart */
641 static int64_t cpu_get_clock(void)
642 {
643 int64_t ti;
644 if (!cpu_ticks_enabled) {
645 return cpu_clock_offset;
646 } else {
647 ti = get_clock();
648 return ti + cpu_clock_offset;
649 }
650 }
651
652 /* enable cpu_get_ticks() */
653 void cpu_enable_ticks(void)
654 {
655 if (!cpu_ticks_enabled) {
656 cpu_ticks_offset -= cpu_get_real_ticks();
657 cpu_clock_offset -= get_clock();
658 cpu_ticks_enabled = 1;
659 }
660 }
661
662 /* disable cpu_get_ticks() : the clock is stopped. You must not call
663 cpu_get_ticks() after that. */
664 void cpu_disable_ticks(void)
665 {
666 if (cpu_ticks_enabled) {
667 cpu_ticks_offset = cpu_get_ticks();
668 cpu_clock_offset = cpu_get_clock();
669 cpu_ticks_enabled = 0;
670 }
671 }
672
673 /***********************************************************/
674 /* timers */
675
676 #define QEMU_TIMER_REALTIME 0
677 #define QEMU_TIMER_VIRTUAL 1
678
679 struct QEMUClock {
680 int type;
681 /* XXX: add frequency */
682 };
683
684 struct QEMUTimer {
685 QEMUClock *clock;
686 int64_t expire_time;
687 QEMUTimerCB *cb;
688 void *opaque;
689 struct QEMUTimer *next;
690 };
691
692 struct qemu_alarm_timer {
693 char const *name;
694 unsigned int flags;
695
696 int (*start)(struct qemu_alarm_timer *t);
697 void (*stop)(struct qemu_alarm_timer *t);
698 void (*rearm)(struct qemu_alarm_timer *t);
699 void *priv;
700 };
701
702 #define ALARM_FLAG_DYNTICKS 0x1
703 #define ALARM_FLAG_EXPIRED 0x2
704
705 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
706 {
707 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 }
709
710 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
711 {
712 if (!alarm_has_dynticks(t))
713 return;
714
715 t->rearm(t);
716 }
717
718 /* TODO: MIN_TIMER_REARM_US should be optimized */
719 #define MIN_TIMER_REARM_US 250
720
721 static struct qemu_alarm_timer *alarm_timer;
722
723 #ifdef _WIN32
724
725 struct qemu_alarm_win32 {
726 MMRESULT timerId;
727 unsigned int period;
728 } alarm_win32_data = {0, -1};
729
730 static int win32_start_timer(struct qemu_alarm_timer *t);
731 static void win32_stop_timer(struct qemu_alarm_timer *t);
732 static void win32_rearm_timer(struct qemu_alarm_timer *t);
733
734 #else
735
736 static int unix_start_timer(struct qemu_alarm_timer *t);
737 static void unix_stop_timer(struct qemu_alarm_timer *t);
738
739 #ifdef __linux__
740
741 static int dynticks_start_timer(struct qemu_alarm_timer *t);
742 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
743 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
744
745 static int hpet_start_timer(struct qemu_alarm_timer *t);
746 static void hpet_stop_timer(struct qemu_alarm_timer *t);
747
748 static int rtc_start_timer(struct qemu_alarm_timer *t);
749 static void rtc_stop_timer(struct qemu_alarm_timer *t);
750
751 #endif /* __linux__ */
752
753 #endif /* _WIN32 */
754
755 /* Correlation between real and virtual time is always going to be
756 fairly approximate, so ignore small variation.
757 When the guest is idle real and virtual time will be aligned in
758 the IO wait loop. */
759 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
760
761 static void icount_adjust(void)
762 {
763 int64_t cur_time;
764 int64_t cur_icount;
765 int64_t delta;
766 static int64_t last_delta;
767 /* If the VM is not running, then do nothing. */
768 if (!vm_running)
769 return;
770
771 cur_time = cpu_get_clock();
772 cur_icount = qemu_get_clock(vm_clock);
773 delta = cur_icount - cur_time;
774 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
775 if (delta > 0
776 && last_delta + ICOUNT_WOBBLE < delta * 2
777 && icount_time_shift > 0) {
778 /* The guest is getting too far ahead. Slow time down. */
779 icount_time_shift--;
780 }
781 if (delta < 0
782 && last_delta - ICOUNT_WOBBLE > delta * 2
783 && icount_time_shift < MAX_ICOUNT_SHIFT) {
784 /* The guest is getting too far behind. Speed time up. */
785 icount_time_shift++;
786 }
787 last_delta = delta;
788 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 }
790
791 static void icount_adjust_rt(void * opaque)
792 {
793 qemu_mod_timer(icount_rt_timer,
794 qemu_get_clock(rt_clock) + 1000);
795 icount_adjust();
796 }
797
798 static void icount_adjust_vm(void * opaque)
799 {
800 qemu_mod_timer(icount_vm_timer,
801 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
802 icount_adjust();
803 }
804
805 static void init_icount_adjust(void)
806 {
807 /* Have both realtime and virtual time triggers for speed adjustment.
808 The realtime trigger catches emulated time passing too slowly,
809 the virtual time trigger catches emulated time passing too fast.
810 Realtime triggers occur even when idle, so use them less frequently
811 than VM triggers. */
812 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
813 qemu_mod_timer(icount_rt_timer,
814 qemu_get_clock(rt_clock) + 1000);
815 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
816 qemu_mod_timer(icount_vm_timer,
817 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 }
819
820 static struct qemu_alarm_timer alarm_timers[] = {
821 #ifndef _WIN32
822 #ifdef __linux__
823 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
824 dynticks_stop_timer, dynticks_rearm_timer, NULL},
825 /* HPET - if available - is preferred */
826 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
827 /* ...otherwise try RTC */
828 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
829 #endif
830 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
831 #else
832 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
833 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
834 {"win32", 0, win32_start_timer,
835 win32_stop_timer, NULL, &alarm_win32_data},
836 #endif
837 {NULL, }
838 };
839
840 static void show_available_alarms(void)
841 {
842 int i;
843
844 printf("Available alarm timers, in order of precedence:\n");
845 for (i = 0; alarm_timers[i].name; i++)
846 printf("%s\n", alarm_timers[i].name);
847 }
848
849 static void configure_alarms(char const *opt)
850 {
851 int i;
852 int cur = 0;
853 int count = ARRAY_SIZE(alarm_timers) - 1;
854 char *arg;
855 char *name;
856 struct qemu_alarm_timer tmp;
857
858 if (!strcmp(opt, "?")) {
859 show_available_alarms();
860 exit(0);
861 }
862
863 arg = strdup(opt);
864
865 /* Reorder the array */
866 name = strtok(arg, ",");
867 while (name) {
868 for (i = 0; i < count && alarm_timers[i].name; i++) {
869 if (!strcmp(alarm_timers[i].name, name))
870 break;
871 }
872
873 if (i == count) {
874 fprintf(stderr, "Unknown clock %s\n", name);
875 goto next;
876 }
877
878 if (i < cur)
879 /* Ignore */
880 goto next;
881
882 /* Swap */
883 tmp = alarm_timers[i];
884 alarm_timers[i] = alarm_timers[cur];
885 alarm_timers[cur] = tmp;
886
887 cur++;
888 next:
889 name = strtok(NULL, ",");
890 }
891
892 free(arg);
893
894 if (cur) {
895 /* Disable remaining timers */
896 for (i = cur; i < count; i++)
897 alarm_timers[i].name = NULL;
898 } else {
899 show_available_alarms();
900 exit(1);
901 }
902 }
903
904 QEMUClock *rt_clock;
905 QEMUClock *vm_clock;
906
907 static QEMUTimer *active_timers[2];
908
909 static QEMUClock *qemu_new_clock(int type)
910 {
911 QEMUClock *clock;
912 clock = qemu_mallocz(sizeof(QEMUClock));
913 clock->type = type;
914 return clock;
915 }
916
917 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
918 {
919 QEMUTimer *ts;
920
921 ts = qemu_mallocz(sizeof(QEMUTimer));
922 ts->clock = clock;
923 ts->cb = cb;
924 ts->opaque = opaque;
925 return ts;
926 }
927
928 void qemu_free_timer(QEMUTimer *ts)
929 {
930 qemu_free(ts);
931 }
932
933 /* stop a timer, but do not dealloc it */
934 void qemu_del_timer(QEMUTimer *ts)
935 {
936 QEMUTimer **pt, *t;
937
938 /* NOTE: this code must be signal safe because
939 qemu_timer_expired() can be called from a signal. */
940 pt = &active_timers[ts->clock->type];
941 for(;;) {
942 t = *pt;
943 if (!t)
944 break;
945 if (t == ts) {
946 *pt = t->next;
947 break;
948 }
949 pt = &t->next;
950 }
951 }
952
953 /* modify the current timer so that it will be fired when current_time
954 >= expire_time. The corresponding callback will be called. */
955 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
956 {
957 QEMUTimer **pt, *t;
958
959 qemu_del_timer(ts);
960
961 /* add the timer in the sorted list */
962 /* NOTE: this code must be signal safe because
963 qemu_timer_expired() can be called from a signal. */
964 pt = &active_timers[ts->clock->type];
965 for(;;) {
966 t = *pt;
967 if (!t)
968 break;
969 if (t->expire_time > expire_time)
970 break;
971 pt = &t->next;
972 }
973 ts->expire_time = expire_time;
974 ts->next = *pt;
975 *pt = ts;
976
977 /* Rearm if necessary */
978 if (pt == &active_timers[ts->clock->type]) {
979 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
980 qemu_rearm_alarm_timer(alarm_timer);
981 }
982 /* Interrupt execution to force deadline recalculation. */
983 if (use_icount)
984 qemu_notify_event();
985 }
986 }
987
988 int qemu_timer_pending(QEMUTimer *ts)
989 {
990 QEMUTimer *t;
991 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
992 if (t == ts)
993 return 1;
994 }
995 return 0;
996 }
997
998 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
999 {
1000 if (!timer_head)
1001 return 0;
1002 return (timer_head->expire_time <= current_time);
1003 }
1004
1005 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1006 {
1007 QEMUTimer *ts;
1008
1009 for(;;) {
1010 ts = *ptimer_head;
1011 if (!ts || ts->expire_time > current_time)
1012 break;
1013 /* remove timer from the list before calling the callback */
1014 *ptimer_head = ts->next;
1015 ts->next = NULL;
1016
1017 /* run the callback (the timer list can be modified) */
1018 ts->cb(ts->opaque);
1019 }
1020 }
1021
1022 int64_t qemu_get_clock(QEMUClock *clock)
1023 {
1024 switch(clock->type) {
1025 case QEMU_TIMER_REALTIME:
1026 return get_clock() / 1000000;
1027 default:
1028 case QEMU_TIMER_VIRTUAL:
1029 if (use_icount) {
1030 return cpu_get_icount();
1031 } else {
1032 return cpu_get_clock();
1033 }
1034 }
1035 }
1036
1037 static void init_timers(void)
1038 {
1039 init_get_clock();
1040 ticks_per_sec = QEMU_TIMER_BASE;
1041 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1042 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1043 }
1044
1045 /* save a timer */
1046 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1047 {
1048 uint64_t expire_time;
1049
1050 if (qemu_timer_pending(ts)) {
1051 expire_time = ts->expire_time;
1052 } else {
1053 expire_time = -1;
1054 }
1055 qemu_put_be64(f, expire_time);
1056 }
1057
1058 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1059 {
1060 uint64_t expire_time;
1061
1062 expire_time = qemu_get_be64(f);
1063 if (expire_time != -1) {
1064 qemu_mod_timer(ts, expire_time);
1065 } else {
1066 qemu_del_timer(ts);
1067 }
1068 }
1069
1070 static void timer_save(QEMUFile *f, void *opaque)
1071 {
1072 if (cpu_ticks_enabled) {
1073 hw_error("cannot save state if virtual timers are running");
1074 }
1075 qemu_put_be64(f, cpu_ticks_offset);
1076 qemu_put_be64(f, ticks_per_sec);
1077 qemu_put_be64(f, cpu_clock_offset);
1078 }
1079
1080 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1081 {
1082 if (version_id != 1 && version_id != 2)
1083 return -EINVAL;
1084 if (cpu_ticks_enabled) {
1085 return -EINVAL;
1086 }
1087 cpu_ticks_offset=qemu_get_be64(f);
1088 ticks_per_sec=qemu_get_be64(f);
1089 if (version_id == 2) {
1090 cpu_clock_offset=qemu_get_be64(f);
1091 }
1092 return 0;
1093 }
1094
1095 static void qemu_event_increment(void);
1096
1097 #ifdef _WIN32
1098 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1099 DWORD_PTR dwUser, DWORD_PTR dw1,
1100 DWORD_PTR dw2)
1101 #else
1102 static void host_alarm_handler(int host_signum)
1103 #endif
1104 {
1105 #if 0
1106 #define DISP_FREQ 1000
1107 {
1108 static int64_t delta_min = INT64_MAX;
1109 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1110 static int count;
1111 ti = qemu_get_clock(vm_clock);
1112 if (last_clock != 0) {
1113 delta = ti - last_clock;
1114 if (delta < delta_min)
1115 delta_min = delta;
1116 if (delta > delta_max)
1117 delta_max = delta;
1118 delta_cum += delta;
1119 if (++count == DISP_FREQ) {
1120 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1121 muldiv64(delta_min, 1000000, ticks_per_sec),
1122 muldiv64(delta_max, 1000000, ticks_per_sec),
1123 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1124 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1125 count = 0;
1126 delta_min = INT64_MAX;
1127 delta_max = 0;
1128 delta_cum = 0;
1129 }
1130 }
1131 last_clock = ti;
1132 }
1133 #endif
1134 if (alarm_has_dynticks(alarm_timer) ||
1135 (!use_icount &&
1136 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1137 qemu_get_clock(vm_clock))) ||
1138 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1139 qemu_get_clock(rt_clock))) {
1140 qemu_event_increment();
1141 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1142
1143 #ifndef CONFIG_IOTHREAD
1144 if (next_cpu) {
1145 /* stop the currently executing cpu because a timer occured */
1146 cpu_exit(next_cpu);
1147 #ifdef CONFIG_KQEMU
1148 if (next_cpu->kqemu_enabled) {
1149 kqemu_cpu_interrupt(next_cpu);
1150 }
1151 #endif
1152 }
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1156 }
1157 }
1158
1159 static int64_t qemu_next_deadline(void)
1160 {
1161 int64_t delta;
1162
1163 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1164 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1165 qemu_get_clock(vm_clock);
1166 } else {
1167 /* To avoid problems with overflow limit this to 2^32. */
1168 delta = INT32_MAX;
1169 }
1170
1171 if (delta < 0)
1172 delta = 0;
1173
1174 return delta;
1175 }
1176
1177 #if defined(__linux__) || defined(_WIN32)
1178 static uint64_t qemu_next_deadline_dyntick(void)
1179 {
1180 int64_t delta;
1181 int64_t rtdelta;
1182
1183 if (use_icount)
1184 delta = INT32_MAX;
1185 else
1186 delta = (qemu_next_deadline() + 999) / 1000;
1187
1188 if (active_timers[QEMU_TIMER_REALTIME]) {
1189 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1190 qemu_get_clock(rt_clock))*1000;
1191 if (rtdelta < delta)
1192 delta = rtdelta;
1193 }
1194
1195 if (delta < MIN_TIMER_REARM_US)
1196 delta = MIN_TIMER_REARM_US;
1197
1198 return delta;
1199 }
1200 #endif
1201
1202 #ifndef _WIN32
1203
1204 /* Sets a specific flag */
1205 static int fcntl_setfl(int fd, int flag)
1206 {
1207 int flags;
1208
1209 flags = fcntl(fd, F_GETFL);
1210 if (flags == -1)
1211 return -errno;
1212
1213 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1214 return -errno;
1215
1216 return 0;
1217 }
1218
1219 #if defined(__linux__)
1220
1221 #define RTC_FREQ 1024
1222
1223 static void enable_sigio_timer(int fd)
1224 {
1225 struct sigaction act;
1226
1227 /* timer signal */
1228 sigfillset(&act.sa_mask);
1229 act.sa_flags = 0;
1230 act.sa_handler = host_alarm_handler;
1231
1232 sigaction(SIGIO, &act, NULL);
1233 fcntl_setfl(fd, O_ASYNC);
1234 fcntl(fd, F_SETOWN, getpid());
1235 }
1236
1237 static int hpet_start_timer(struct qemu_alarm_timer *t)
1238 {
1239 struct hpet_info info;
1240 int r, fd;
1241
1242 fd = open("/dev/hpet", O_RDONLY);
1243 if (fd < 0)
1244 return -1;
1245
1246 /* Set frequency */
1247 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1248 if (r < 0) {
1249 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1250 "error, but for better emulation accuracy type:\n"
1251 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1252 goto fail;
1253 }
1254
1255 /* Check capabilities */
1256 r = ioctl(fd, HPET_INFO, &info);
1257 if (r < 0)
1258 goto fail;
1259
1260 /* Enable periodic mode */
1261 r = ioctl(fd, HPET_EPI, 0);
1262 if (info.hi_flags && (r < 0))
1263 goto fail;
1264
1265 /* Enable interrupt */
1266 r = ioctl(fd, HPET_IE_ON, 0);
1267 if (r < 0)
1268 goto fail;
1269
1270 enable_sigio_timer(fd);
1271 t->priv = (void *)(long)fd;
1272
1273 return 0;
1274 fail:
1275 close(fd);
1276 return -1;
1277 }
1278
1279 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1280 {
1281 int fd = (long)t->priv;
1282
1283 close(fd);
1284 }
1285
1286 static int rtc_start_timer(struct qemu_alarm_timer *t)
1287 {
1288 int rtc_fd;
1289 unsigned long current_rtc_freq = 0;
1290
1291 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1292 if (rtc_fd < 0)
1293 return -1;
1294 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1295 if (current_rtc_freq != RTC_FREQ &&
1296 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1297 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1298 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1299 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1300 goto fail;
1301 }
1302 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1303 fail:
1304 close(rtc_fd);
1305 return -1;
1306 }
1307
1308 enable_sigio_timer(rtc_fd);
1309
1310 t->priv = (void *)(long)rtc_fd;
1311
1312 return 0;
1313 }
1314
1315 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1316 {
1317 int rtc_fd = (long)t->priv;
1318
1319 close(rtc_fd);
1320 }
1321
1322 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1323 {
1324 struct sigevent ev;
1325 timer_t host_timer;
1326 struct sigaction act;
1327
1328 sigfillset(&act.sa_mask);
1329 act.sa_flags = 0;
1330 act.sa_handler = host_alarm_handler;
1331
1332 sigaction(SIGALRM, &act, NULL);
1333
1334 /*
1335 * Initialize ev struct to 0 to avoid valgrind complaining
1336 * about uninitialized data in timer_create call
1337 */
1338 memset(&ev, 0, sizeof(ev));
1339 ev.sigev_value.sival_int = 0;
1340 ev.sigev_notify = SIGEV_SIGNAL;
1341 ev.sigev_signo = SIGALRM;
1342
1343 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1344 perror("timer_create");
1345
1346 /* disable dynticks */
1347 fprintf(stderr, "Dynamic Ticks disabled\n");
1348
1349 return -1;
1350 }
1351
1352 t->priv = (void *)(long)host_timer;
1353
1354 return 0;
1355 }
1356
1357 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1358 {
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360
1361 timer_delete(host_timer);
1362 }
1363
1364 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1365 {
1366 timer_t host_timer = (timer_t)(long)t->priv;
1367 struct itimerspec timeout;
1368 int64_t nearest_delta_us = INT64_MAX;
1369 int64_t current_us;
1370
1371 if (!active_timers[QEMU_TIMER_REALTIME] &&
1372 !active_timers[QEMU_TIMER_VIRTUAL])
1373 return;
1374
1375 nearest_delta_us = qemu_next_deadline_dyntick();
1376
1377 /* check whether a timer is already running */
1378 if (timer_gettime(host_timer, &timeout)) {
1379 perror("gettime");
1380 fprintf(stderr, "Internal timer error: aborting\n");
1381 exit(1);
1382 }
1383 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1384 if (current_us && current_us <= nearest_delta_us)
1385 return;
1386
1387 timeout.it_interval.tv_sec = 0;
1388 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1389 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1390 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1391 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1392 perror("settime");
1393 fprintf(stderr, "Internal timer error: aborting\n");
1394 exit(1);
1395 }
1396 }
1397
1398 #endif /* defined(__linux__) */
1399
1400 static int unix_start_timer(struct qemu_alarm_timer *t)
1401 {
1402 struct sigaction act;
1403 struct itimerval itv;
1404 int err;
1405
1406 /* timer signal */
1407 sigfillset(&act.sa_mask);
1408 act.sa_flags = 0;
1409 act.sa_handler = host_alarm_handler;
1410
1411 sigaction(SIGALRM, &act, NULL);
1412
1413 itv.it_interval.tv_sec = 0;
1414 /* for i386 kernel 2.6 to get 1 ms */
1415 itv.it_interval.tv_usec = 999;
1416 itv.it_value.tv_sec = 0;
1417 itv.it_value.tv_usec = 10 * 1000;
1418
1419 err = setitimer(ITIMER_REAL, &itv, NULL);
1420 if (err)
1421 return -1;
1422
1423 return 0;
1424 }
1425
1426 static void unix_stop_timer(struct qemu_alarm_timer *t)
1427 {
1428 struct itimerval itv;
1429
1430 memset(&itv, 0, sizeof(itv));
1431 setitimer(ITIMER_REAL, &itv, NULL);
1432 }
1433
1434 #endif /* !defined(_WIN32) */
1435
1436
1437 #ifdef _WIN32
1438
1439 static int win32_start_timer(struct qemu_alarm_timer *t)
1440 {
1441 TIMECAPS tc;
1442 struct qemu_alarm_win32 *data = t->priv;
1443 UINT flags;
1444
1445 memset(&tc, 0, sizeof(tc));
1446 timeGetDevCaps(&tc, sizeof(tc));
1447
1448 if (data->period < tc.wPeriodMin)
1449 data->period = tc.wPeriodMin;
1450
1451 timeBeginPeriod(data->period);
1452
1453 flags = TIME_CALLBACK_FUNCTION;
1454 if (alarm_has_dynticks(t))
1455 flags |= TIME_ONESHOT;
1456 else
1457 flags |= TIME_PERIODIC;
1458
1459 data->timerId = timeSetEvent(1, // interval (ms)
1460 data->period, // resolution
1461 host_alarm_handler, // function
1462 (DWORD)t, // parameter
1463 flags);
1464
1465 if (!data->timerId) {
1466 perror("Failed to initialize win32 alarm timer");
1467 timeEndPeriod(data->period);
1468 return -1;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static void win32_stop_timer(struct qemu_alarm_timer *t)
1475 {
1476 struct qemu_alarm_win32 *data = t->priv;
1477
1478 timeKillEvent(data->timerId);
1479 timeEndPeriod(data->period);
1480 }
1481
1482 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1483 {
1484 struct qemu_alarm_win32 *data = t->priv;
1485 uint64_t nearest_delta_us;
1486
1487 if (!active_timers[QEMU_TIMER_REALTIME] &&
1488 !active_timers[QEMU_TIMER_VIRTUAL])
1489 return;
1490
1491 nearest_delta_us = qemu_next_deadline_dyntick();
1492 nearest_delta_us /= 1000;
1493
1494 timeKillEvent(data->timerId);
1495
1496 data->timerId = timeSetEvent(1,
1497 data->period,
1498 host_alarm_handler,
1499 (DWORD)t,
1500 TIME_ONESHOT | TIME_PERIODIC);
1501
1502 if (!data->timerId) {
1503 perror("Failed to re-arm win32 alarm timer");
1504
1505 timeEndPeriod(data->period);
1506 exit(1);
1507 }
1508 }
1509
1510 #endif /* _WIN32 */
1511
1512 static int init_timer_alarm(void)
1513 {
1514 struct qemu_alarm_timer *t = NULL;
1515 int i, err = -1;
1516
1517 for (i = 0; alarm_timers[i].name; i++) {
1518 t = &alarm_timers[i];
1519
1520 err = t->start(t);
1521 if (!err)
1522 break;
1523 }
1524
1525 if (err) {
1526 err = -ENOENT;
1527 goto fail;
1528 }
1529
1530 alarm_timer = t;
1531
1532 return 0;
1533
1534 fail:
1535 return err;
1536 }
1537
1538 static void quit_timers(void)
1539 {
1540 alarm_timer->stop(alarm_timer);
1541 alarm_timer = NULL;
1542 }
1543
1544 /***********************************************************/
1545 /* host time/date access */
1546 void qemu_get_timedate(struct tm *tm, int offset)
1547 {
1548 time_t ti;
1549 struct tm *ret;
1550
1551 time(&ti);
1552 ti += offset;
1553 if (rtc_date_offset == -1) {
1554 if (rtc_utc)
1555 ret = gmtime(&ti);
1556 else
1557 ret = localtime(&ti);
1558 } else {
1559 ti -= rtc_date_offset;
1560 ret = gmtime(&ti);
1561 }
1562
1563 memcpy(tm, ret, sizeof(struct tm));
1564 }
1565
1566 int qemu_timedate_diff(struct tm *tm)
1567 {
1568 time_t seconds;
1569
1570 if (rtc_date_offset == -1)
1571 if (rtc_utc)
1572 seconds = mktimegm(tm);
1573 else
1574 seconds = mktime(tm);
1575 else
1576 seconds = mktimegm(tm) + rtc_date_offset;
1577
1578 return seconds - time(NULL);
1579 }
1580
1581 #ifdef _WIN32
1582 static void socket_cleanup(void)
1583 {
1584 WSACleanup();
1585 }
1586
1587 static int socket_init(void)
1588 {
1589 WSADATA Data;
1590 int ret, err;
1591
1592 ret = WSAStartup(MAKEWORD(2,2), &Data);
1593 if (ret != 0) {
1594 err = WSAGetLastError();
1595 fprintf(stderr, "WSAStartup: %d\n", err);
1596 return -1;
1597 }
1598 atexit(socket_cleanup);
1599 return 0;
1600 }
1601 #endif
1602
1603 int get_next_param_value(char *buf, int buf_size,
1604 const char *tag, const char **pstr)
1605 {
1606 const char *p;
1607 char option[128];
1608
1609 p = *pstr;
1610 for(;;) {
1611 p = get_opt_name(option, sizeof(option), p, '=');
1612 if (*p != '=')
1613 break;
1614 p++;
1615 if (!strcmp(tag, option)) {
1616 *pstr = get_opt_value(buf, buf_size, p);
1617 if (**pstr == ',') {
1618 (*pstr)++;
1619 }
1620 return strlen(buf);
1621 } else {
1622 p = get_opt_value(NULL, 0, p);
1623 }
1624 if (*p != ',')
1625 break;
1626 p++;
1627 }
1628 return 0;
1629 }
1630
1631 int get_param_value(char *buf, int buf_size,
1632 const char *tag, const char *str)
1633 {
1634 return get_next_param_value(buf, buf_size, tag, &str);
1635 }
1636
1637 int check_params(char *buf, int buf_size,
1638 const char * const *params, const char *str)
1639 {
1640 const char *p;
1641 int i;
1642
1643 p = str;
1644 while (*p != '\0') {
1645 p = get_opt_name(buf, buf_size, p, '=');
1646 if (*p != '=') {
1647 return -1;
1648 }
1649 p++;
1650 for (i = 0; params[i] != NULL; i++) {
1651 if (!strcmp(params[i], buf)) {
1652 break;
1653 }
1654 }
1655 if (params[i] == NULL) {
1656 return -1;
1657 }
1658 p = get_opt_value(NULL, 0, p);
1659 if (*p != ',') {
1660 break;
1661 }
1662 p++;
1663 }
1664 return 0;
1665 }
1666
1667 /***********************************************************/
1668 /* Bluetooth support */
1669 static int nb_hcis;
1670 static int cur_hci;
1671 static struct HCIInfo *hci_table[MAX_NICS];
1672
1673 static struct bt_vlan_s {
1674 struct bt_scatternet_s net;
1675 int id;
1676 struct bt_vlan_s *next;
1677 } *first_bt_vlan;
1678
1679 /* find or alloc a new bluetooth "VLAN" */
1680 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1681 {
1682 struct bt_vlan_s **pvlan, *vlan;
1683 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1684 if (vlan->id == id)
1685 return &vlan->net;
1686 }
1687 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1688 vlan->id = id;
1689 pvlan = &first_bt_vlan;
1690 while (*pvlan != NULL)
1691 pvlan = &(*pvlan)->next;
1692 *pvlan = vlan;
1693 return &vlan->net;
1694 }
1695
1696 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1697 {
1698 }
1699
1700 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1701 {
1702 return -ENOTSUP;
1703 }
1704
1705 static struct HCIInfo null_hci = {
1706 .cmd_send = null_hci_send,
1707 .sco_send = null_hci_send,
1708 .acl_send = null_hci_send,
1709 .bdaddr_set = null_hci_addr_set,
1710 };
1711
1712 struct HCIInfo *qemu_next_hci(void)
1713 {
1714 if (cur_hci == nb_hcis)
1715 return &null_hci;
1716
1717 return hci_table[cur_hci++];
1718 }
1719
1720 static struct HCIInfo *hci_init(const char *str)
1721 {
1722 char *endp;
1723 struct bt_scatternet_s *vlan = 0;
1724
1725 if (!strcmp(str, "null"))
1726 /* null */
1727 return &null_hci;
1728 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1729 /* host[:hciN] */
1730 return bt_host_hci(str[4] ? str + 5 : "hci0");
1731 else if (!strncmp(str, "hci", 3)) {
1732 /* hci[,vlan=n] */
1733 if (str[3]) {
1734 if (!strncmp(str + 3, ",vlan=", 6)) {
1735 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1736 if (*endp)
1737 vlan = 0;
1738 }
1739 } else
1740 vlan = qemu_find_bt_vlan(0);
1741 if (vlan)
1742 return bt_new_hci(vlan);
1743 }
1744
1745 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1746
1747 return 0;
1748 }
1749
1750 static int bt_hci_parse(const char *str)
1751 {
1752 struct HCIInfo *hci;
1753 bdaddr_t bdaddr;
1754
1755 if (nb_hcis >= MAX_NICS) {
1756 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1757 return -1;
1758 }
1759
1760 hci = hci_init(str);
1761 if (!hci)
1762 return -1;
1763
1764 bdaddr.b[0] = 0x52;
1765 bdaddr.b[1] = 0x54;
1766 bdaddr.b[2] = 0x00;
1767 bdaddr.b[3] = 0x12;
1768 bdaddr.b[4] = 0x34;
1769 bdaddr.b[5] = 0x56 + nb_hcis;
1770 hci->bdaddr_set(hci, bdaddr.b);
1771
1772 hci_table[nb_hcis++] = hci;
1773
1774 return 0;
1775 }
1776
1777 static void bt_vhci_add(int vlan_id)
1778 {
1779 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1780
1781 if (!vlan->slave)
1782 fprintf(stderr, "qemu: warning: adding a VHCI to "
1783 "an empty scatternet %i\n", vlan_id);
1784
1785 bt_vhci_init(bt_new_hci(vlan));
1786 }
1787
1788 static struct bt_device_s *bt_device_add(const char *opt)
1789 {
1790 struct bt_scatternet_s *vlan;
1791 int vlan_id = 0;
1792 char *endp = strstr(opt, ",vlan=");
1793 int len = (endp ? endp - opt : strlen(opt)) + 1;
1794 char devname[10];
1795
1796 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1797
1798 if (endp) {
1799 vlan_id = strtol(endp + 6, &endp, 0);
1800 if (*endp) {
1801 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1802 return 0;
1803 }
1804 }
1805
1806 vlan = qemu_find_bt_vlan(vlan_id);
1807
1808 if (!vlan->slave)
1809 fprintf(stderr, "qemu: warning: adding a slave device to "
1810 "an empty scatternet %i\n", vlan_id);
1811
1812 if (!strcmp(devname, "keyboard"))
1813 return bt_keyboard_init(vlan);
1814
1815 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1816 return 0;
1817 }
1818
1819 static int bt_parse(const char *opt)
1820 {
1821 const char *endp, *p;
1822 int vlan;
1823
1824 if (strstart(opt, "hci", &endp)) {
1825 if (!*endp || *endp == ',') {
1826 if (*endp)
1827 if (!strstart(endp, ",vlan=", 0))
1828 opt = endp + 1;
1829
1830 return bt_hci_parse(opt);
1831 }
1832 } else if (strstart(opt, "vhci", &endp)) {
1833 if (!*endp || *endp == ',') {
1834 if (*endp) {
1835 if (strstart(endp, ",vlan=", &p)) {
1836 vlan = strtol(p, (char **) &endp, 0);
1837 if (*endp) {
1838 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1839 return 1;
1840 }
1841 } else {
1842 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1843 return 1;
1844 }
1845 } else
1846 vlan = 0;
1847
1848 bt_vhci_add(vlan);
1849 return 0;
1850 }
1851 } else if (strstart(opt, "device:", &endp))
1852 return !bt_device_add(endp);
1853
1854 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1855 return 1;
1856 }
1857
1858 /***********************************************************/
1859 /* QEMU Block devices */
1860
1861 #define HD_ALIAS "index=%d,media=disk"
1862 #define CDROM_ALIAS "index=2,media=cdrom"
1863 #define FD_ALIAS "index=%d,if=floppy"
1864 #define PFLASH_ALIAS "if=pflash"
1865 #define MTD_ALIAS "if=mtd"
1866 #define SD_ALIAS "index=0,if=sd"
1867
1868 static int drive_opt_get_free_idx(void)
1869 {
1870 int index;
1871
1872 for (index = 0; index < MAX_DRIVES; index++)
1873 if (!drives_opt[index].used) {
1874 drives_opt[index].used = 1;
1875 return index;
1876 }
1877
1878 return -1;
1879 }
1880
1881 static int drive_get_free_idx(void)
1882 {
1883 int index;
1884
1885 for (index = 0; index < MAX_DRIVES; index++)
1886 if (!drives_table[index].used) {
1887 drives_table[index].used = 1;
1888 return index;
1889 }
1890
1891 return -1;
1892 }
1893
1894 int drive_add(const char *file, const char *fmt, ...)
1895 {
1896 va_list ap;
1897 int index = drive_opt_get_free_idx();
1898
1899 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1900 fprintf(stderr, "qemu: too many drives\n");
1901 return -1;
1902 }
1903
1904 drives_opt[index].file = file;
1905 va_start(ap, fmt);
1906 vsnprintf(drives_opt[index].opt,
1907 sizeof(drives_opt[0].opt), fmt, ap);
1908 va_end(ap);
1909
1910 nb_drives_opt++;
1911 return index;
1912 }
1913
1914 void drive_remove(int index)
1915 {
1916 drives_opt[index].used = 0;
1917 nb_drives_opt--;
1918 }
1919
1920 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1921 {
1922 int index;
1923
1924 /* seek interface, bus and unit */
1925
1926 for (index = 0; index < MAX_DRIVES; index++)
1927 if (drives_table[index].type == type &&
1928 drives_table[index].bus == bus &&
1929 drives_table[index].unit == unit &&
1930 drives_table[index].used)
1931 return index;
1932
1933 return -1;
1934 }
1935
1936 int drive_get_max_bus(BlockInterfaceType type)
1937 {
1938 int max_bus;
1939 int index;
1940
1941 max_bus = -1;
1942 for (index = 0; index < nb_drives; index++) {
1943 if(drives_table[index].type == type &&
1944 drives_table[index].bus > max_bus)
1945 max_bus = drives_table[index].bus;
1946 }
1947 return max_bus;
1948 }
1949
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1951 {
1952 int index;
1953
1954 for (index = 0; index < nb_drives; index++)
1955 if (drives_table[index].bdrv == bdrv)
1956 return drives_table[index].serial;
1957
1958 return "\0";
1959 }
1960
1961 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1962 {
1963 int index;
1964
1965 for (index = 0; index < nb_drives; index++)
1966 if (drives_table[index].bdrv == bdrv)
1967 return drives_table[index].onerror;
1968
1969 return BLOCK_ERR_STOP_ENOSPC;
1970 }
1971
1972 static void bdrv_format_print(void *opaque, const char *name)
1973 {
1974 fprintf(stderr, " %s", name);
1975 }
1976
1977 void drive_uninit(BlockDriverState *bdrv)
1978 {
1979 int i;
1980
1981 for (i = 0; i < MAX_DRIVES; i++)
1982 if (drives_table[i].bdrv == bdrv) {
1983 drives_table[i].bdrv = NULL;
1984 drives_table[i].used = 0;
1985 drive_remove(drives_table[i].drive_opt_idx);
1986 nb_drives--;
1987 break;
1988 }
1989 }
1990
1991 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1992 {
1993 char buf[128];
1994 char file[1024];
1995 char devname[128];
1996 char serial[21];
1997 const char *mediastr = "";
1998 BlockInterfaceType type;
1999 enum { MEDIA_DISK, MEDIA_CDROM } media;
2000 int bus_id, unit_id;
2001 int cyls, heads, secs, translation;
2002 BlockDriverState *bdrv;
2003 BlockDriver *drv = NULL;
2004 QEMUMachine *machine = opaque;
2005 int max_devs;
2006 int index;
2007 int cache;
2008 int bdrv_flags, onerror;
2009 const char *devaddr;
2010 int drives_table_idx;
2011 char *str = arg->opt;
2012 static const char * const params[] = { "bus", "unit", "if", "index",
2013 "cyls", "heads", "secs", "trans",
2014 "media", "snapshot", "file",
2015 "cache", "format", "serial",
2016 "werror", "addr",
2017 NULL };
2018
2019 if (check_params(buf, sizeof(buf), params, str) < 0) {
2020 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2021 buf, str);
2022 return -1;
2023 }
2024
2025 file[0] = 0;
2026 cyls = heads = secs = 0;
2027 bus_id = 0;
2028 unit_id = -1;
2029 translation = BIOS_ATA_TRANSLATION_AUTO;
2030 index = -1;
2031 cache = 1;
2032
2033 if (machine->use_scsi) {
2034 type = IF_SCSI;
2035 max_devs = MAX_SCSI_DEVS;
2036 pstrcpy(devname, sizeof(devname), "scsi");
2037 } else {
2038 type = IF_IDE;
2039 max_devs = MAX_IDE_DEVS;
2040 pstrcpy(devname, sizeof(devname), "ide");
2041 }
2042 media = MEDIA_DISK;
2043
2044 /* extract parameters */
2045
2046 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2047 bus_id = strtol(buf, NULL, 0);
2048 if (bus_id < 0) {
2049 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2050 return -1;
2051 }
2052 }
2053
2054 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2055 unit_id = strtol(buf, NULL, 0);
2056 if (unit_id < 0) {
2057 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2058 return -1;
2059 }
2060 }
2061
2062 if (get_param_value(buf, sizeof(buf), "if", str)) {
2063 pstrcpy(devname, sizeof(devname), buf);
2064 if (!strcmp(buf, "ide")) {
2065 type = IF_IDE;
2066 max_devs = MAX_IDE_DEVS;
2067 } else if (!strcmp(buf, "scsi")) {
2068 type = IF_SCSI;
2069 max_devs = MAX_SCSI_DEVS;
2070 } else if (!strcmp(buf, "floppy")) {
2071 type = IF_FLOPPY;
2072 max_devs = 0;
2073 } else if (!strcmp(buf, "pflash")) {
2074 type = IF_PFLASH;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "mtd")) {
2077 type = IF_MTD;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "sd")) {
2080 type = IF_SD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "virtio")) {
2083 type = IF_VIRTIO;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "xen")) {
2086 type = IF_XEN;
2087 max_devs = 0;
2088 } else {
2089 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2090 return -1;
2091 }
2092 }
2093
2094 if (get_param_value(buf, sizeof(buf), "index", str)) {
2095 index = strtol(buf, NULL, 0);
2096 if (index < 0) {
2097 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2098 return -1;
2099 }
2100 }
2101
2102 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2103 cyls = strtol(buf, NULL, 0);
2104 }
2105
2106 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2107 heads = strtol(buf, NULL, 0);
2108 }
2109
2110 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2111 secs = strtol(buf, NULL, 0);
2112 }
2113
2114 if (cyls || heads || secs) {
2115 if (cyls < 1 || cyls > 16383) {
2116 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2117 return -1;
2118 }
2119 if (heads < 1 || heads > 16) {
2120 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2121 return -1;
2122 }
2123 if (secs < 1 || secs > 63) {
2124 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2125 return -1;
2126 }
2127 }
2128
2129 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2130 if (!cyls) {
2131 fprintf(stderr,
2132 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2133 str);
2134 return -1;
2135 }
2136 if (!strcmp(buf, "none"))
2137 translation = BIOS_ATA_TRANSLATION_NONE;
2138 else if (!strcmp(buf, "lba"))
2139 translation = BIOS_ATA_TRANSLATION_LBA;
2140 else if (!strcmp(buf, "auto"))
2141 translation = BIOS_ATA_TRANSLATION_AUTO;
2142 else {
2143 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2144 return -1;
2145 }
2146 }
2147
2148 if (get_param_value(buf, sizeof(buf), "media", str)) {
2149 if (!strcmp(buf, "disk")) {
2150 media = MEDIA_DISK;
2151 } else if (!strcmp(buf, "cdrom")) {
2152 if (cyls || secs || heads) {
2153 fprintf(stderr,
2154 "qemu: '%s' invalid physical CHS format\n", str);
2155 return -1;
2156 }
2157 media = MEDIA_CDROM;
2158 } else {
2159 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2160 return -1;
2161 }
2162 }
2163
2164 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2165 if (!strcmp(buf, "on"))
2166 snapshot = 1;
2167 else if (!strcmp(buf, "off"))
2168 snapshot = 0;
2169 else {
2170 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2171 return -1;
2172 }
2173 }
2174
2175 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2176 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2177 cache = 0;
2178 else if (!strcmp(buf, "writethrough"))
2179 cache = 1;
2180 else if (!strcmp(buf, "writeback"))
2181 cache = 2;
2182 else {
2183 fprintf(stderr, "qemu: invalid cache option\n");
2184 return -1;
2185 }
2186 }
2187
2188 if (get_param_value(buf, sizeof(buf), "format", str)) {
2189 if (strcmp(buf, "?") == 0) {
2190 fprintf(stderr, "qemu: Supported formats:");
2191 bdrv_iterate_format(bdrv_format_print, NULL);
2192 fprintf(stderr, "\n");
2193 return -1;
2194 }
2195 drv = bdrv_find_format(buf);
2196 if (!drv) {
2197 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2198 return -1;
2199 }
2200 }
2201
2202 if (arg->file == NULL)
2203 get_param_value(file, sizeof(file), "file", str);
2204 else
2205 pstrcpy(file, sizeof(file), arg->file);
2206
2207 if (!get_param_value(serial, sizeof(serial), "serial", str))
2208 memset(serial, 0, sizeof(serial));
2209
2210 onerror = BLOCK_ERR_STOP_ENOSPC;
2211 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2212 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2213 fprintf(stderr, "werror is no supported by this format\n");
2214 return -1;
2215 }
2216 if (!strcmp(buf, "ignore"))
2217 onerror = BLOCK_ERR_IGNORE;
2218 else if (!strcmp(buf, "enospc"))
2219 onerror = BLOCK_ERR_STOP_ENOSPC;
2220 else if (!strcmp(buf, "stop"))
2221 onerror = BLOCK_ERR_STOP_ANY;
2222 else if (!strcmp(buf, "report"))
2223 onerror = BLOCK_ERR_REPORT;
2224 else {
2225 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2226 return -1;
2227 }
2228 }
2229
2230 devaddr = NULL;
2231 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2232 if (type != IF_VIRTIO) {
2233 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2234 return -1;
2235 }
2236 devaddr = strdup(buf);
2237 }
2238
2239 /* compute bus and unit according index */
2240
2241 if (index != -1) {
2242 if (bus_id != 0 || unit_id != -1) {
2243 fprintf(stderr,
2244 "qemu: '%s' index cannot be used with bus and unit\n", str);
2245 return -1;
2246 }
2247 if (max_devs == 0)
2248 {
2249 unit_id = index;
2250 bus_id = 0;
2251 } else {
2252 unit_id = index % max_devs;
2253 bus_id = index / max_devs;
2254 }
2255 }
2256
2257 /* if user doesn't specify a unit_id,
2258 * try to find the first free
2259 */
2260
2261 if (unit_id == -1) {
2262 unit_id = 0;
2263 while (drive_get_index(type, bus_id, unit_id) != -1) {
2264 unit_id++;
2265 if (max_devs && unit_id >= max_devs) {
2266 unit_id -= max_devs;
2267 bus_id++;
2268 }
2269 }
2270 }
2271
2272 /* check unit id */
2273
2274 if (max_devs && unit_id >= max_devs) {
2275 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2276 str, unit_id, max_devs - 1);
2277 return -1;
2278 }
2279
2280 /*
2281 * ignore multiple definitions
2282 */
2283
2284 if (drive_get_index(type, bus_id, unit_id) != -1)
2285 return -2;
2286
2287 /* init */
2288
2289 if (type == IF_IDE || type == IF_SCSI)
2290 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2291 if (max_devs)
2292 snprintf(buf, sizeof(buf), "%s%i%s%i",
2293 devname, bus_id, mediastr, unit_id);
2294 else
2295 snprintf(buf, sizeof(buf), "%s%s%i",
2296 devname, mediastr, unit_id);
2297 bdrv = bdrv_new(buf);
2298 drives_table_idx = drive_get_free_idx();
2299 drives_table[drives_table_idx].bdrv = bdrv;
2300 drives_table[drives_table_idx].devaddr = devaddr;
2301 drives_table[drives_table_idx].type = type;
2302 drives_table[drives_table_idx].bus = bus_id;
2303 drives_table[drives_table_idx].unit = unit_id;
2304 drives_table[drives_table_idx].onerror = onerror;
2305 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2306 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2307 nb_drives++;
2308
2309 switch(type) {
2310 case IF_IDE:
2311 case IF_SCSI:
2312 case IF_XEN:
2313 switch(media) {
2314 case MEDIA_DISK:
2315 if (cyls != 0) {
2316 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2317 bdrv_set_translation_hint(bdrv, translation);
2318 }
2319 break;
2320 case MEDIA_CDROM:
2321 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2322 break;
2323 }
2324 break;
2325 case IF_SD:
2326 /* FIXME: This isn't really a floppy, but it's a reasonable
2327 approximation. */
2328 case IF_FLOPPY:
2329 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2330 break;
2331 case IF_PFLASH:
2332 case IF_MTD:
2333 case IF_VIRTIO:
2334 break;
2335 case IF_COUNT:
2336 abort();
2337 }
2338 if (!file[0])
2339 return -2;
2340 bdrv_flags = 0;
2341 if (snapshot) {
2342 bdrv_flags |= BDRV_O_SNAPSHOT;
2343 cache = 2; /* always use write-back with snapshot */
2344 }
2345 if (cache == 0) /* no caching */
2346 bdrv_flags |= BDRV_O_NOCACHE;
2347 else if (cache == 2) /* write-back */
2348 bdrv_flags |= BDRV_O_CACHE_WB;
2349 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2350 fprintf(stderr, "qemu: could not open disk image %s\n",
2351 file);
2352 return -1;
2353 }
2354 if (bdrv_key_required(bdrv))
2355 autostart = 0;
2356 return drives_table_idx;
2357 }
2358
2359 static void numa_add(const char *optarg)
2360 {
2361 char option[128];
2362 char *endptr;
2363 unsigned long long value, endvalue;
2364 int nodenr;
2365
2366 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2367 if (!strcmp(option, "node")) {
2368 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2369 nodenr = nb_numa_nodes;
2370 } else {
2371 nodenr = strtoull(option, NULL, 10);
2372 }
2373
2374 if (get_param_value(option, 128, "mem", optarg) == 0) {
2375 node_mem[nodenr] = 0;
2376 } else {
2377 value = strtoull(option, &endptr, 0);
2378 switch (*endptr) {
2379 case 0: case 'M': case 'm':
2380 value <<= 20;
2381 break;
2382 case 'G': case 'g':
2383 value <<= 30;
2384 break;
2385 }
2386 node_mem[nodenr] = value;
2387 }
2388 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2389 node_cpumask[nodenr] = 0;
2390 } else {
2391 value = strtoull(option, &endptr, 10);
2392 if (value >= 64) {
2393 value = 63;
2394 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2395 } else {
2396 if (*endptr == '-') {
2397 endvalue = strtoull(endptr+1, &endptr, 10);
2398 if (endvalue >= 63) {
2399 endvalue = 62;
2400 fprintf(stderr,
2401 "only 63 CPUs in NUMA mode supported.\n");
2402 }
2403 value = (1 << (endvalue + 1)) - (1 << value);
2404 } else {
2405 value = 1 << value;
2406 }
2407 }
2408 node_cpumask[nodenr] = value;
2409 }
2410 nb_numa_nodes++;
2411 }
2412 return;
2413 }
2414
2415 /***********************************************************/
2416 /* USB devices */
2417
2418 static USBPort *used_usb_ports;
2419 static USBPort *free_usb_ports;
2420
2421 /* ??? Maybe change this to register a hub to keep track of the topology. */
2422 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2423 usb_attachfn attach)
2424 {
2425 port->opaque = opaque;
2426 port->index = index;
2427 port->attach = attach;
2428 port->next = free_usb_ports;
2429 free_usb_ports = port;
2430 }
2431
2432 int usb_device_add_dev(USBDevice *dev)
2433 {
2434 USBPort *port;
2435
2436 /* Find a USB port to add the device to. */
2437 port = free_usb_ports;
2438 if (!port->next) {
2439 USBDevice *hub;
2440
2441 /* Create a new hub and chain it on. */
2442 free_usb_ports = NULL;
2443 port->next = used_usb_ports;
2444 used_usb_ports = port;
2445
2446 hub = usb_hub_init(VM_USB_HUB_SIZE);
2447 usb_attach(port, hub);
2448 port = free_usb_ports;
2449 }
2450
2451 free_usb_ports = port->next;
2452 port->next = used_usb_ports;
2453 used_usb_ports = port;
2454 usb_attach(port, dev);
2455 return 0;
2456 }
2457
2458 static void usb_msd_password_cb(void *opaque, int err)
2459 {
2460 USBDevice *dev = opaque;
2461
2462 if (!err)
2463 usb_device_add_dev(dev);
2464 else
2465 dev->handle_destroy(dev);
2466 }
2467
2468 static int usb_device_add(const char *devname, int is_hotplug)
2469 {
2470 const char *p;
2471 USBDevice *dev;
2472
2473 if (!free_usb_ports)
2474 return -1;
2475
2476 if (strstart(devname, "host:", &p)) {
2477 dev = usb_host_device_open(p);
2478 } else if (!strcmp(devname, "mouse")) {
2479 dev = usb_mouse_init();
2480 } else if (!strcmp(devname, "tablet")) {
2481 dev = usb_tablet_init();
2482 } else if (!strcmp(devname, "keyboard")) {
2483 dev = usb_keyboard_init();
2484 } else if (strstart(devname, "disk:", &p)) {
2485 BlockDriverState *bs;
2486
2487 dev = usb_msd_init(p);
2488 if (!dev)
2489 return -1;
2490 bs = usb_msd_get_bdrv(dev);
2491 if (bdrv_key_required(bs)) {
2492 autostart = 0;
2493 if (is_hotplug) {
2494 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2495 dev);
2496 return 0;
2497 }
2498 }
2499 } else if (!strcmp(devname, "wacom-tablet")) {
2500 dev = usb_wacom_init();
2501 } else if (strstart(devname, "serial:", &p)) {
2502 dev = usb_serial_init(p);
2503 #ifdef CONFIG_BRLAPI
2504 } else if (!strcmp(devname, "braille")) {
2505 dev = usb_baum_init();
2506 #endif
2507 } else if (strstart(devname, "net:", &p)) {
2508 int nic = nb_nics;
2509
2510 if (net_client_init(NULL, "nic", p) < 0)
2511 return -1;
2512 nd_table[nic].model = "usb";
2513 dev = usb_net_init(&nd_table[nic]);
2514 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2515 dev = usb_bt_init(devname[2] ? hci_init(p) :
2516 bt_new_hci(qemu_find_bt_vlan(0)));
2517 } else {
2518 return -1;
2519 }
2520 if (!dev)
2521 return -1;
2522
2523 return usb_device_add_dev(dev);
2524 }
2525
2526 int usb_device_del_addr(int bus_num, int addr)
2527 {
2528 USBPort *port;
2529 USBPort **lastp;
2530 USBDevice *dev;
2531
2532 if (!used_usb_ports)
2533 return -1;
2534
2535 if (bus_num != 0)
2536 return -1;
2537
2538 lastp = &used_usb_ports;
2539 port = used_usb_ports;
2540 while (port && port->dev->addr != addr) {
2541 lastp = &port->next;
2542 port = port->next;
2543 }
2544
2545 if (!port)
2546 return -1;
2547
2548 dev = port->dev;
2549 *lastp = port->next;
2550 usb_attach(port, NULL);
2551 dev->handle_destroy(dev);
2552 port->next = free_usb_ports;
2553 free_usb_ports = port;
2554 return 0;
2555 }
2556
2557 static int usb_device_del(const char *devname)
2558 {
2559 int bus_num, addr;
2560 const char *p;
2561
2562 if (strstart(devname, "host:", &p))
2563 return usb_host_device_close(p);
2564
2565 if (!used_usb_ports)
2566 return -1;
2567
2568 p = strchr(devname, '.');
2569 if (!p)
2570 return -1;
2571 bus_num = strtoul(devname, NULL, 0);
2572 addr = strtoul(p + 1, NULL, 0);
2573
2574 return usb_device_del_addr(bus_num, addr);
2575 }
2576
2577 void do_usb_add(Monitor *mon, const char *devname)
2578 {
2579 usb_device_add(devname, 1);
2580 }
2581
2582 void do_usb_del(Monitor *mon, const char *devname)
2583 {
2584 usb_device_del(devname);
2585 }
2586
2587 void usb_info(Monitor *mon)
2588 {
2589 USBDevice *dev;
2590 USBPort *port;
2591 const char *speed_str;
2592
2593 if (!usb_enabled) {
2594 monitor_printf(mon, "USB support not enabled\n");
2595 return;
2596 }
2597
2598 for (port = used_usb_ports; port; port = port->next) {
2599 dev = port->dev;
2600 if (!dev)
2601 continue;
2602 switch(dev->speed) {
2603 case USB_SPEED_LOW:
2604 speed_str = "1.5";
2605 break;
2606 case USB_SPEED_FULL:
2607 speed_str = "12";
2608 break;
2609 case USB_SPEED_HIGH:
2610 speed_str = "480";
2611 break;
2612 default:
2613 speed_str = "?";
2614 break;
2615 }
2616 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2617 0, dev->addr, speed_str, dev->devname);
2618 }
2619 }
2620
2621 /***********************************************************/
2622 /* PCMCIA/Cardbus */
2623
2624 static struct pcmcia_socket_entry_s {
2625 PCMCIASocket *socket;
2626 struct pcmcia_socket_entry_s *next;
2627 } *pcmcia_sockets = 0;
2628
2629 void pcmcia_socket_register(PCMCIASocket *socket)
2630 {
2631 struct pcmcia_socket_entry_s *entry;
2632
2633 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2634 entry->socket = socket;
2635 entry->next = pcmcia_sockets;
2636 pcmcia_sockets = entry;
2637 }
2638
2639 void pcmcia_socket_unregister(PCMCIASocket *socket)
2640 {
2641 struct pcmcia_socket_entry_s *entry, **ptr;
2642
2643 ptr = &pcmcia_sockets;
2644 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2645 if (entry->socket == socket) {
2646 *ptr = entry->next;
2647 qemu_free(entry);
2648 }
2649 }
2650
2651 void pcmcia_info(Monitor *mon)
2652 {
2653 struct pcmcia_socket_entry_s *iter;
2654
2655 if (!pcmcia_sockets)
2656 monitor_printf(mon, "No PCMCIA sockets\n");
2657
2658 for (iter = pcmcia_sockets; iter; iter = iter->next)
2659 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2660 iter->socket->attached ? iter->socket->card_string :
2661 "Empty");
2662 }
2663
2664 /***********************************************************/
2665 /* register display */
2666
2667 struct DisplayAllocator default_allocator = {
2668 defaultallocator_create_displaysurface,
2669 defaultallocator_resize_displaysurface,
2670 defaultallocator_free_displaysurface
2671 };
2672
2673 void register_displaystate(DisplayState *ds)
2674 {
2675 DisplayState **s;
2676 s = &display_state;
2677 while (*s != NULL)
2678 s = &(*s)->next;
2679 ds->next = NULL;
2680 *s = ds;
2681 }
2682
2683 DisplayState *get_displaystate(void)
2684 {
2685 return display_state;
2686 }
2687
2688 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2689 {
2690 if(ds->allocator == &default_allocator) ds->allocator = da;
2691 return ds->allocator;
2692 }
2693
2694 /* dumb display */
2695
2696 static void dumb_display_init(void)
2697 {
2698 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2699 ds->allocator = &default_allocator;
2700 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2701 register_displaystate(ds);
2702 }
2703
2704 /***********************************************************/
2705 /* I/O handling */
2706
2707 typedef struct IOHandlerRecord {
2708 int fd;
2709 IOCanRWHandler *fd_read_poll;
2710 IOHandler *fd_read;
2711 IOHandler *fd_write;
2712 int deleted;
2713 void *opaque;
2714 /* temporary data */
2715 struct pollfd *ufd;
2716 struct IOHandlerRecord *next;
2717 } IOHandlerRecord;
2718
2719 static IOHandlerRecord *first_io_handler;
2720
2721 /* XXX: fd_read_poll should be suppressed, but an API change is
2722 necessary in the character devices to suppress fd_can_read(). */
2723 int qemu_set_fd_handler2(int fd,
2724 IOCanRWHandler *fd_read_poll,
2725 IOHandler *fd_read,
2726 IOHandler *fd_write,
2727 void *opaque)
2728 {
2729 IOHandlerRecord **pioh, *ioh;
2730
2731 if (!fd_read && !fd_write) {
2732 pioh = &first_io_handler;
2733 for(;;) {
2734 ioh = *pioh;
2735 if (ioh == NULL)
2736 break;
2737 if (ioh->fd == fd) {
2738 ioh->deleted = 1;
2739 break;
2740 }
2741 pioh = &ioh->next;
2742 }
2743 } else {
2744 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2745 if (ioh->fd == fd)
2746 goto found;
2747 }
2748 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2749 ioh->next = first_io_handler;
2750 first_io_handler = ioh;
2751 found:
2752 ioh->fd = fd;
2753 ioh->fd_read_poll = fd_read_poll;
2754 ioh->fd_read = fd_read;
2755 ioh->fd_write = fd_write;
2756 ioh->opaque = opaque;
2757 ioh->deleted = 0;
2758 }
2759 return 0;
2760 }
2761
2762 int qemu_set_fd_handler(int fd,
2763 IOHandler *fd_read,
2764 IOHandler *fd_write,
2765 void *opaque)
2766 {
2767 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2768 }
2769
2770 #ifdef _WIN32
2771 /***********************************************************/
2772 /* Polling handling */
2773
2774 typedef struct PollingEntry {
2775 PollingFunc *func;
2776 void *opaque;
2777 struct PollingEntry *next;
2778 } PollingEntry;
2779
2780 static PollingEntry *first_polling_entry;
2781
2782 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2783 {
2784 PollingEntry **ppe, *pe;
2785 pe = qemu_mallocz(sizeof(PollingEntry));
2786 pe->func = func;
2787 pe->opaque = opaque;
2788 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2789 *ppe = pe;
2790 return 0;
2791 }
2792
2793 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2794 {
2795 PollingEntry **ppe, *pe;
2796 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2797 pe = *ppe;
2798 if (pe->func == func && pe->opaque == opaque) {
2799 *ppe = pe->next;
2800 qemu_free(pe);
2801 break;
2802 }
2803 }
2804 }
2805
2806 /***********************************************************/
2807 /* Wait objects support */
2808 typedef struct WaitObjects {
2809 int num;
2810 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2811 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2812 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2813 } WaitObjects;
2814
2815 static WaitObjects wait_objects = {0};
2816
2817 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2818 {
2819 WaitObjects *w = &wait_objects;
2820
2821 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2822 return -1;
2823 w->events[w->num] = handle;
2824 w->func[w->num] = func;
2825 w->opaque[w->num] = opaque;
2826 w->num++;
2827 return 0;
2828 }
2829
2830 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2831 {
2832 int i, found;
2833 WaitObjects *w = &wait_objects;
2834
2835 found = 0;
2836 for (i = 0; i < w->num; i++) {
2837 if (w->events[i] == handle)
2838 found = 1;
2839 if (found) {
2840 w->events[i] = w->events[i + 1];
2841 w->func[i] = w->func[i + 1];
2842 w->opaque[i] = w->opaque[i + 1];
2843 }
2844 }
2845 if (found)
2846 w->num--;
2847 }
2848 #endif
2849
2850 /***********************************************************/
2851 /* ram save/restore */
2852
2853 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2854 {
2855 int v;
2856
2857 v = qemu_get_byte(f);
2858 switch(v) {
2859 case 0:
2860 if (qemu_get_buffer(f, buf, len) != len)
2861 return -EIO;
2862 break;
2863 case 1:
2864 v = qemu_get_byte(f);
2865 memset(buf, v, len);
2866 break;
2867 default:
2868 return -EINVAL;
2869 }
2870
2871 if (qemu_file_has_error(f))
2872 return -EIO;
2873
2874 return 0;
2875 }
2876
2877 static int ram_load_v1(QEMUFile *f, void *opaque)
2878 {
2879 int ret;
2880 ram_addr_t i;
2881
2882 if (qemu_get_be32(f) != last_ram_offset)
2883 return -EINVAL;
2884 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2885 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2886 if (ret)
2887 return ret;
2888 }
2889 return 0;
2890 }
2891
2892 #define BDRV_HASH_BLOCK_SIZE 1024
2893 #define IOBUF_SIZE 4096
2894 #define RAM_CBLOCK_MAGIC 0xfabe
2895
2896 typedef struct RamDecompressState {
2897 z_stream zstream;
2898 QEMUFile *f;
2899 uint8_t buf[IOBUF_SIZE];
2900 } RamDecompressState;
2901
2902 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2903 {
2904 int ret;
2905 memset(s, 0, sizeof(*s));
2906 s->f = f;
2907 ret = inflateInit(&s->zstream);
2908 if (ret != Z_OK)
2909 return -1;
2910 return 0;
2911 }
2912
2913 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2914 {
2915 int ret, clen;
2916
2917 s->zstream.avail_out = len;
2918 s->zstream.next_out = buf;
2919 while (s->zstream.avail_out > 0) {
2920 if (s->zstream.avail_in == 0) {
2921 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2922 return -1;
2923 clen = qemu_get_be16(s->f);
2924 if (clen > IOBUF_SIZE)
2925 return -1;
2926 qemu_get_buffer(s->f, s->buf, clen);
2927 s->zstream.avail_in = clen;
2928 s->zstream.next_in = s->buf;
2929 }
2930 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2931 if (ret != Z_OK && ret != Z_STREAM_END) {
2932 return -1;
2933 }
2934 }
2935 return 0;
2936 }
2937
2938 static void ram_decompress_close(RamDecompressState *s)
2939 {
2940 inflateEnd(&s->zstream);
2941 }
2942
2943 #define RAM_SAVE_FLAG_FULL 0x01
2944 #define RAM_SAVE_FLAG_COMPRESS 0x02
2945 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2946 #define RAM_SAVE_FLAG_PAGE 0x08
2947 #define RAM_SAVE_FLAG_EOS 0x10
2948
2949 static int is_dup_page(uint8_t *page, uint8_t ch)
2950 {
2951 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2952 uint32_t *array = (uint32_t *)page;
2953 int i;
2954
2955 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2956 if (array[i] != val)
2957 return 0;
2958 }
2959
2960 return 1;
2961 }
2962
2963 static int ram_save_block(QEMUFile *f)
2964 {
2965 static ram_addr_t current_addr = 0;
2966 ram_addr_t saved_addr = current_addr;
2967 ram_addr_t addr = 0;
2968 int found = 0;
2969
2970 while (addr < last_ram_offset) {
2971 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2972 uint8_t *p;
2973
2974 cpu_physical_memory_reset_dirty(current_addr,
2975 current_addr + TARGET_PAGE_SIZE,
2976 MIGRATION_DIRTY_FLAG);
2977
2978 p = qemu_get_ram_ptr(current_addr);
2979
2980 if (is_dup_page(p, *p)) {
2981 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2982 qemu_put_byte(f, *p);
2983 } else {
2984 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2985 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2986 }
2987
2988 found = 1;
2989 break;
2990 }
2991 addr += TARGET_PAGE_SIZE;
2992 current_addr = (saved_addr + addr) % last_ram_offset;
2993 }
2994
2995 return found;
2996 }
2997
2998 static uint64_t bytes_transferred = 0;
2999
3000 static ram_addr_t ram_save_remaining(void)
3001 {
3002 ram_addr_t addr;
3003 ram_addr_t count = 0;
3004
3005 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3006 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3007 count++;
3008 }
3009
3010 return count;
3011 }
3012
3013 uint64_t ram_bytes_remaining(void)
3014 {
3015 return ram_save_remaining() * TARGET_PAGE_SIZE;
3016 }
3017
3018 uint64_t ram_bytes_transferred(void)
3019 {
3020 return bytes_transferred;
3021 }
3022
3023 uint64_t ram_bytes_total(void)
3024 {
3025 return last_ram_offset;
3026 }
3027
3028 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3029 {
3030 ram_addr_t addr;
3031 uint64_t bytes_transferred_last;
3032 double bwidth = 0;
3033 uint64_t expected_time = 0;
3034
3035 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3036 qemu_file_set_error(f);
3037 return 0;
3038 }
3039
3040 if (stage == 1) {
3041 /* Make sure all dirty bits are set */
3042 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3043 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3044 cpu_physical_memory_set_dirty(addr);
3045 }
3046
3047 /* Enable dirty memory tracking */
3048 cpu_physical_memory_set_dirty_tracking(1);
3049
3050 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3051 }
3052
3053 bytes_transferred_last = bytes_transferred;
3054 bwidth = get_clock();
3055
3056 while (!qemu_file_rate_limit(f)) {
3057 int ret;
3058
3059 ret = ram_save_block(f);
3060 bytes_transferred += ret * TARGET_PAGE_SIZE;
3061 if (ret == 0) /* no more blocks */
3062 break;
3063 }
3064
3065 bwidth = get_clock() - bwidth;
3066 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3067
3068 /* if we haven't transferred anything this round, force expected_time to a
3069 * a very high value, but without crashing */
3070 if (bwidth == 0)
3071 bwidth = 0.000001;
3072
3073 /* try transferring iterative blocks of memory */
3074
3075 if (stage == 3) {
3076
3077 /* flush all remaining blocks regardless of rate limiting */
3078 while (ram_save_block(f) != 0) {
3079 bytes_transferred += TARGET_PAGE_SIZE;
3080 }
3081 cpu_physical_memory_set_dirty_tracking(0);
3082 }
3083
3084 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3085
3086 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3087
3088 return (stage == 2) && (expected_time <= migrate_max_downtime());
3089 }
3090
3091 static int ram_load_dead(QEMUFile *f, void *opaque)
3092 {
3093 RamDecompressState s1, *s = &s1;
3094 uint8_t buf[10];
3095 ram_addr_t i;
3096
3097 if (ram_decompress_open(s, f) < 0)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3100 if (ram_decompress_buf(s, buf, 1) < 0) {
3101 fprintf(stderr, "Error while reading ram block header\n");
3102 goto error;
3103 }
3104 if (buf[0] == 0) {
3105 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3106 BDRV_HASH_BLOCK_SIZE) < 0) {
3107 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3108 goto error;
3109 }
3110 } else {
3111 error:
3112 printf("Error block header\n");
3113 return -EINVAL;
3114 }
3115 }
3116 ram_decompress_close(s);
3117
3118 return 0;
3119 }
3120
3121 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3122 {
3123 ram_addr_t addr;
3124 int flags;
3125
3126 if (version_id == 1)
3127 return ram_load_v1(f, opaque);
3128
3129 if (version_id == 2) {
3130 if (qemu_get_be32(f) != last_ram_offset)
3131 return -EINVAL;
3132 return ram_load_dead(f, opaque);
3133 }
3134
3135 if (version_id != 3)
3136 return -EINVAL;
3137
3138 do {
3139 addr = qemu_get_be64(f);
3140
3141 flags = addr & ~TARGET_PAGE_MASK;
3142 addr &= TARGET_PAGE_MASK;
3143
3144 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3145 if (addr != last_ram_offset)
3146 return -EINVAL;
3147 }
3148
3149 if (flags & RAM_SAVE_FLAG_FULL) {
3150 if (ram_load_dead(f, opaque) < 0)
3151 return -EINVAL;
3152 }
3153
3154 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3155 uint8_t ch = qemu_get_byte(f);
3156 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3157 #ifndef _WIN32
3158 if (ch == 0 &&
3159 (!kvm_enabled() || kvm_has_sync_mmu())) {
3160 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3161 }
3162 #endif
3163 } else if (flags & RAM_SAVE_FLAG_PAGE)
3164 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3165 } while (!(flags & RAM_SAVE_FLAG_EOS));
3166
3167 return 0;
3168 }
3169
3170 void qemu_service_io(void)
3171 {
3172 qemu_notify_event();
3173 }
3174
3175 /***********************************************************/
3176 /* bottom halves (can be seen as timers which expire ASAP) */
3177
3178 struct QEMUBH {
3179 QEMUBHFunc *cb;
3180 void *opaque;
3181 int scheduled;
3182 int idle;
3183 int deleted;
3184 QEMUBH *next;
3185 };
3186
3187 static QEMUBH *first_bh = NULL;
3188
3189 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3190 {
3191 QEMUBH *bh;
3192 bh = qemu_mallocz(sizeof(QEMUBH));
3193 bh->cb = cb;
3194 bh->opaque = opaque;
3195 bh->next = first_bh;
3196 first_bh = bh;
3197 return bh;
3198 }
3199
3200 int qemu_bh_poll(void)
3201 {
3202 QEMUBH *bh, **bhp;
3203 int ret;
3204
3205 ret = 0;
3206 for (bh = first_bh; bh; bh = bh->next) {
3207 if (!bh->deleted && bh->scheduled) {
3208 bh->scheduled = 0;
3209 if (!bh->idle)
3210 ret = 1;
3211 bh->idle = 0;
3212 bh->cb(bh->opaque);
3213 }
3214 }
3215
3216 /* remove deleted bhs */
3217 bhp = &first_bh;
3218 while (*bhp) {
3219 bh = *bhp;
3220 if (bh->deleted) {
3221 *bhp = bh->next;
3222 qemu_free(bh);
3223 } else
3224 bhp = &bh->next;
3225 }
3226
3227 return ret;
3228 }
3229
3230 void qemu_bh_schedule_idle(QEMUBH *bh)
3231 {
3232 if (bh->scheduled)
3233 return;
3234 bh->scheduled = 1;
3235 bh->idle = 1;
3236 }
3237
3238 void qemu_bh_schedule(QEMUBH *bh)
3239 {
3240 if (bh->scheduled)
3241 return;
3242 bh->scheduled = 1;
3243 bh->idle = 0;
3244 /* stop the currently executing CPU to execute the BH ASAP */
3245 qemu_notify_event();
3246 }
3247
3248 void qemu_bh_cancel(QEMUBH *bh)
3249 {
3250 bh->scheduled = 0;
3251 }
3252
3253 void qemu_bh_delete(QEMUBH *bh)
3254 {
3255 bh->scheduled = 0;
3256 bh->deleted = 1;
3257 }
3258
3259 static void qemu_bh_update_timeout(int *timeout)
3260 {
3261 QEMUBH *bh;
3262
3263 for (bh = first_bh; bh; bh = bh->next) {
3264 if (!bh->deleted && bh->scheduled) {
3265 if (bh->idle) {
3266 /* idle bottom halves will be polled at least
3267 * every 10ms */
3268 *timeout = MIN(10, *timeout);
3269 } else {
3270 /* non-idle bottom halves will be executed
3271 * immediately */
3272 *timeout = 0;
3273 break;
3274 }
3275 }
3276 }
3277 }
3278
3279 /***********************************************************/
3280 /* machine registration */
3281
3282 static QEMUMachine *first_machine = NULL;
3283 QEMUMachine *current_machine = NULL;
3284
3285 int qemu_register_machine(QEMUMachine *m)
3286 {
3287 QEMUMachine **pm;
3288 pm = &first_machine;
3289 while (*pm != NULL)
3290 pm = &(*pm)->next;
3291 m->next = NULL;
3292 *pm = m;
3293 return 0;
3294 }
3295
3296 static QEMUMachine *find_machine(const char *name)
3297 {
3298 QEMUMachine *m;
3299
3300 for(m = first_machine; m != NULL; m = m->next) {
3301 if (!strcmp(m->name, name))
3302 return m;
3303 }
3304 return NULL;
3305 }
3306
3307 static QEMUMachine *find_default_machine(void)
3308 {
3309 QEMUMachine *m;
3310
3311 for(m = first_machine; m != NULL; m = m->next) {
3312 if (m->is_default) {
3313 return m;
3314 }
3315 }
3316 return NULL;
3317 }
3318
3319 /***********************************************************/
3320 /* main execution loop */
3321
3322 static void gui_update(void *opaque)
3323 {
3324 uint64_t interval = GUI_REFRESH_INTERVAL;
3325 DisplayState *ds = opaque;
3326 DisplayChangeListener *dcl = ds->listeners;
3327
3328 dpy_refresh(ds);
3329
3330 while (dcl != NULL) {
3331 if (dcl->gui_timer_interval &&
3332 dcl->gui_timer_interval < interval)
3333 interval = dcl->gui_timer_interval;
3334 dcl = dcl->next;
3335 }
3336 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3337 }
3338
3339 static void nographic_update(void *opaque)
3340 {
3341 uint64_t interval = GUI_REFRESH_INTERVAL;
3342
3343 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3344 }
3345
3346 struct vm_change_state_entry {
3347 VMChangeStateHandler *cb;
3348 void *opaque;
3349 LIST_ENTRY (vm_change_state_entry) entries;
3350 };
3351
3352 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3353
3354 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3355 void *opaque)
3356 {
3357 VMChangeStateEntry *e;
3358
3359 e = qemu_mallocz(sizeof (*e));
3360
3361 e->cb = cb;
3362 e->opaque = opaque;
3363 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3364 return e;
3365 }
3366
3367 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3368 {
3369 LIST_REMOVE (e, entries);
3370 qemu_free (e);
3371 }
3372
3373 static void vm_state_notify(int running, int reason)
3374 {
3375 VMChangeStateEntry *e;
3376
3377 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3378 e->cb(e->opaque, running, reason);
3379 }
3380 }
3381
3382 static void resume_all_vcpus(void);
3383 static void pause_all_vcpus(void);
3384
3385 void vm_start(void)
3386 {
3387 if (!vm_running) {
3388 cpu_enable_ticks();
3389 vm_running = 1;
3390 vm_state_notify(1, 0);
3391 qemu_rearm_alarm_timer(alarm_timer);
3392 resume_all_vcpus();
3393 }
3394 }
3395
3396 /* reset/shutdown handler */
3397
3398 typedef struct QEMUResetEntry {
3399 QEMUResetHandler *func;
3400 void *opaque;
3401 struct QEMUResetEntry *next;
3402 } QEMUResetEntry;
3403
3404 static QEMUResetEntry *first_reset_entry;
3405 static int reset_requested;
3406 static int shutdown_requested;
3407 static int powerdown_requested;
3408 static int debug_requested;
3409 static int vmstop_requested;
3410
3411 int qemu_shutdown_requested(void)
3412 {
3413 int r = shutdown_requested;
3414 shutdown_requested = 0;
3415 return r;
3416 }
3417
3418 int qemu_reset_requested(void)
3419 {
3420 int r = reset_requested;
3421 reset_requested = 0;
3422 return r;
3423 }
3424
3425 int qemu_powerdown_requested(void)
3426 {
3427 int r = powerdown_requested;
3428 powerdown_requested = 0;
3429 return r;
3430 }
3431
3432 static int qemu_debug_requested(void)
3433 {
3434 int r = debug_requested;
3435 debug_requested = 0;
3436 return r;
3437 }
3438
3439 static int qemu_vmstop_requested(void)
3440 {
3441 int r = vmstop_requested;
3442 vmstop_requested = 0;
3443 return r;
3444 }
3445
3446 static void do_vm_stop(int reason)
3447 {
3448 if (vm_running) {
3449 cpu_disable_ticks();
3450 vm_running = 0;
3451 pause_all_vcpus();
3452 vm_state_notify(0, reason);
3453 }
3454 }
3455
3456 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3457 {
3458 QEMUResetEntry **pre, *re;
3459
3460 pre = &first_reset_entry;
3461 while (*pre != NULL)
3462 pre = &(*pre)->next;
3463 re = qemu_mallocz(sizeof(QEMUResetEntry));
3464 re->func = func;
3465 re->opaque = opaque;
3466 re->next = NULL;
3467 *pre = re;
3468 }
3469
3470 void qemu_system_reset(void)
3471 {
3472 QEMUResetEntry *re;
3473
3474 /* reset all devices */
3475 for(re = first_reset_entry; re != NULL; re = re->next) {
3476 re->func(re->opaque);
3477 }
3478 }
3479
3480 void qemu_system_reset_request(void)
3481 {
3482 if (no_reboot) {
3483 shutdown_requested = 1;
3484 } else {
3485 reset_requested = 1;
3486 }
3487 qemu_notify_event();
3488 }
3489
3490 void qemu_system_shutdown_request(void)
3491 {
3492 shutdown_requested = 1;
3493 qemu_notify_event();
3494 }
3495
3496 void qemu_system_powerdown_request(void)
3497 {
3498 powerdown_requested = 1;
3499 qemu_notify_event();
3500 }
3501
3502 #ifdef CONFIG_IOTHREAD
3503 static void qemu_system_vmstop_request(int reason)
3504 {
3505 vmstop_requested = reason;
3506 qemu_notify_event();
3507 }
3508 #endif
3509
3510 #ifndef _WIN32
3511 static int io_thread_fd = -1;
3512
3513 static void qemu_event_increment(void)
3514 {
3515 static const char byte = 0;
3516
3517 if (io_thread_fd == -1)
3518 return;
3519
3520 write(io_thread_fd, &byte, sizeof(byte));
3521 }
3522
3523 static void qemu_event_read(void *opaque)
3524 {
3525 int fd = (unsigned long)opaque;
3526 ssize_t len;
3527
3528 /* Drain the notify pipe */
3529 do {
3530 char buffer[512];
3531 len = read(fd, buffer, sizeof(buffer));
3532 } while ((len == -1 && errno == EINTR) || len > 0);
3533 }
3534
3535 static int qemu_event_init(void)
3536 {
3537 int err;
3538 int fds[2];
3539
3540 err = pipe(fds);
3541 if (err == -1)
3542 return -errno;
3543
3544 err = fcntl_setfl(fds[0], O_NONBLOCK);
3545 if (err < 0)
3546 goto fail;
3547
3548 err = fcntl_setfl(fds[1], O_NONBLOCK);
3549 if (err < 0)
3550 goto fail;
3551
3552 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3553 (void *)(unsigned long)fds[0]);
3554
3555 io_thread_fd = fds[1];
3556 return 0;
3557
3558 fail:
3559 close(fds[0]);
3560 close(fds[1]);
3561 return err;
3562 }
3563 #else
3564 HANDLE qemu_event_handle;
3565
3566 static void dummy_event_handler(void *opaque)
3567 {
3568 }
3569
3570 static int qemu_event_init(void)
3571 {
3572 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3573 if (!qemu_event_handle) {
3574 perror("Failed CreateEvent");
3575 return -1;
3576 }
3577 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3578 return 0;
3579 }
3580
3581 static void qemu_event_increment(void)
3582 {
3583 SetEvent(qemu_event_handle);
3584 }
3585 #endif
3586
3587 static int cpu_can_run(CPUState *env)
3588 {
3589 if (env->stop)
3590 return 0;
3591 if (env->stopped)
3592 return 0;
3593 return 1;
3594 }
3595
3596 #ifndef CONFIG_IOTHREAD
3597 static int qemu_init_main_loop(void)
3598 {
3599 return qemu_event_init();
3600 }
3601
3602 void qemu_init_vcpu(void *_env)
3603 {
3604 CPUState *env = _env;
3605
3606 if (kvm_enabled())
3607 kvm_init_vcpu(env);
3608 return;
3609 }
3610
3611 int qemu_cpu_self(void *env)
3612 {
3613 return 1;
3614 }
3615
3616 static void resume_all_vcpus(void)
3617 {
3618 }
3619
3620 static void pause_all_vcpus(void)
3621 {
3622 }
3623
3624 void qemu_cpu_kick(void *env)
3625 {
3626 return;
3627 }
3628
3629 void qemu_notify_event(void)
3630 {
3631 CPUState *env = cpu_single_env;
3632
3633 if (env) {
3634 cpu_exit(env);
3635 #ifdef USE_KQEMU
3636 if (env->kqemu_enabled)
3637 kqemu_cpu_interrupt(env);
3638 #endif
3639 }
3640 }
3641
3642 #define qemu_mutex_lock_iothread() do { } while (0)
3643 #define qemu_mutex_unlock_iothread() do { } while (0)
3644
3645 void vm_stop(int reason)
3646 {
3647 do_vm_stop(reason);
3648 }
3649
3650 #else /* CONFIG_IOTHREAD */
3651
3652 #include "qemu-thread.h"
3653
3654 QemuMutex qemu_global_mutex;
3655 static QemuMutex qemu_fair_mutex;
3656
3657 static QemuThread io_thread;
3658
3659 static QemuThread *tcg_cpu_thread;
3660 static QemuCond *tcg_halt_cond;
3661
3662 static int qemu_system_ready;
3663 /* cpu creation */
3664 static QemuCond qemu_cpu_cond;
3665 /* system init */
3666 static QemuCond qemu_system_cond;
3667 static QemuCond qemu_pause_cond;
3668
3669 static void block_io_signals(void);
3670 static void unblock_io_signals(void);
3671 static int tcg_has_work(void);
3672
3673 static int qemu_init_main_loop(void)
3674 {
3675 int ret;
3676
3677 ret = qemu_event_init();
3678 if (ret)
3679 return ret;
3680
3681 qemu_cond_init(&qemu_pause_cond);
3682 qemu_mutex_init(&qemu_fair_mutex);
3683 qemu_mutex_init(&qemu_global_mutex);
3684 qemu_mutex_lock(&qemu_global_mutex);
3685
3686 unblock_io_signals();
3687 qemu_thread_self(&io_thread);
3688
3689 return 0;
3690 }
3691
3692 static void qemu_wait_io_event(CPUState *env)
3693 {
3694 while (!tcg_has_work())
3695 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3696
3697 qemu_mutex_unlock(&qemu_global_mutex);
3698
3699 /*
3700 * Users of qemu_global_mutex can be starved, having no chance
3701 * to acquire it since this path will get to it first.
3702 * So use another lock to provide fairness.
3703 */
3704 qemu_mutex_lock(&qemu_fair_mutex);
3705 qemu_mutex_unlock(&qemu_fair_mutex);
3706
3707 qemu_mutex_lock(&qemu_global_mutex);
3708 if (env->stop) {
3709 env->stop = 0;
3710 env->stopped = 1;
3711 qemu_cond_signal(&qemu_pause_cond);
3712 }
3713 }
3714
3715 static int qemu_cpu_exec(CPUState *env);
3716
3717 static void *kvm_cpu_thread_fn(void *arg)
3718 {
3719 CPUState *env = arg;
3720
3721 block_io_signals();
3722 qemu_thread_self(env->thread);
3723
3724 /* signal CPU creation */
3725 qemu_mutex_lock(&qemu_global_mutex);
3726 env->created = 1;
3727 qemu_cond_signal(&qemu_cpu_cond);
3728
3729 /* and wait for machine initialization */
3730 while (!qemu_system_ready)
3731 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3732
3733 while (1) {
3734 if (cpu_can_run(env))
3735 qemu_cpu_exec(env);
3736 qemu_wait_io_event(env);
3737 }
3738
3739 return NULL;
3740 }
3741
3742 static void tcg_cpu_exec(void);
3743
3744 static void *tcg_cpu_thread_fn(void *arg)
3745 {
3746 CPUState *env = arg;
3747
3748 block_io_signals();
3749 qemu_thread_self(env->thread);
3750
3751 /* signal CPU creation */
3752 qemu_mutex_lock(&qemu_global_mutex);
3753 for (env = first_cpu; env != NULL; env = env->next_cpu)
3754 env->created = 1;
3755 qemu_cond_signal(&qemu_cpu_cond);
3756
3757 /* and wait for machine initialization */
3758 while (!qemu_system_ready)
3759 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3760
3761 while (1) {
3762 tcg_cpu_exec();
3763 qemu_wait_io_event(cur_cpu);
3764 }
3765
3766 return NULL;
3767 }
3768
3769 void qemu_cpu_kick(void *_env)
3770 {
3771 CPUState *env = _env;
3772 qemu_cond_broadcast(env->halt_cond);
3773 if (kvm_enabled())
3774 qemu_thread_signal(env->thread, SIGUSR1);
3775 }
3776
3777 int qemu_cpu_self(void *env)
3778 {
3779 return (cpu_single_env != NULL);
3780 }
3781
3782 static void cpu_signal(int sig)
3783 {
3784 if (cpu_single_env)
3785 cpu_exit(cpu_single_env);
3786 }
3787
3788 static void block_io_signals(void)
3789 {
3790 sigset_t set;
3791 struct sigaction sigact;
3792
3793 sigemptyset(&set);
3794 sigaddset(&set, SIGUSR2);
3795 sigaddset(&set, SIGIO);
3796 sigaddset(&set, SIGALRM);
3797 pthread_sigmask(SIG_BLOCK, &set, NULL);
3798
3799 sigemptyset(&set);
3800 sigaddset(&set, SIGUSR1);
3801 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3802
3803 memset(&sigact, 0, sizeof(sigact));
3804 sigact.sa_handler = cpu_signal;
3805 sigaction(SIGUSR1, &sigact, NULL);
3806 }
3807
3808 static void unblock_io_signals(void)
3809 {
3810 sigset_t set;
3811
3812 sigemptyset(&set);
3813 sigaddset(&set, SIGUSR2);
3814 sigaddset(&set, SIGIO);
3815 sigaddset(&set, SIGALRM);
3816 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3817
3818 sigemptyset(&set);
3819 sigaddset(&set, SIGUSR1);
3820 pthread_sigmask(SIG_BLOCK, &set, NULL);
3821 }
3822
3823 static void qemu_signal_lock(unsigned int msecs)
3824 {
3825 qemu_mutex_lock(&qemu_fair_mutex);
3826
3827 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3828 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3829 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3830 break;
3831 }
3832 qemu_mutex_unlock(&qemu_fair_mutex);
3833 }
3834
3835 static void qemu_mutex_lock_iothread(void)
3836 {
3837 if (kvm_enabled()) {
3838 qemu_mutex_lock(&qemu_fair_mutex);
3839 qemu_mutex_lock(&qemu_global_mutex);
3840 qemu_mutex_unlock(&qemu_fair_mutex);
3841 } else
3842 qemu_signal_lock(100);
3843 }
3844
3845 static void qemu_mutex_unlock_iothread(void)
3846 {
3847 qemu_mutex_unlock(&qemu_global_mutex);
3848 }
3849
3850 static int all_vcpus_paused(void)
3851 {
3852 CPUState *penv = first_cpu;
3853
3854 while (penv) {
3855 if (!penv->stopped)
3856 return 0;
3857 penv = (CPUState *)penv->next_cpu;
3858 }
3859
3860 return 1;
3861 }
3862
3863 static void pause_all_vcpus(void)
3864 {
3865 CPUState *penv = first_cpu;
3866
3867 while (penv) {
3868 penv->stop = 1;
3869 qemu_thread_signal(penv->thread, SIGUSR1);
3870 qemu_cpu_kick(penv);
3871 penv = (CPUState *)penv->next_cpu;
3872 }
3873
3874 while (!all_vcpus_paused()) {
3875 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3876 penv = first_cpu;
3877 while (penv) {
3878 qemu_thread_signal(penv->thread, SIGUSR1);
3879 penv = (CPUState *)penv->next_cpu;
3880 }
3881 }
3882 }
3883
3884 static void resume_all_vcpus(void)
3885 {
3886 CPUState *penv = first_cpu;
3887
3888 while (penv) {
3889 penv->stop = 0;
3890 penv->stopped = 0;
3891 qemu_thread_signal(penv->thread, SIGUSR1);
3892 qemu_cpu_kick(penv);
3893 penv = (CPUState *)penv->next_cpu;
3894 }
3895 }
3896
3897 static void tcg_init_vcpu(void *_env)
3898 {
3899 CPUState *env = _env;
3900 /* share a single thread for all cpus with TCG */
3901 if (!tcg_cpu_thread) {
3902 env->thread = qemu_mallocz(sizeof(QemuThread));
3903 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3904 qemu_cond_init(env->halt_cond);
3905 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3906 while (env->created == 0)
3907 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3908 tcg_cpu_thread = env->thread;
3909 tcg_halt_cond = env->halt_cond;
3910 } else {
3911 env->thread = tcg_cpu_thread;
3912 env->halt_cond = tcg_halt_cond;
3913 }
3914 }
3915
3916 static void kvm_start_vcpu(CPUState *env)
3917 {
3918 kvm_init_vcpu(env);
3919 env->thread = qemu_mallocz(sizeof(QemuThread));
3920 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3921 qemu_cond_init(env->halt_cond);
3922 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3923 while (env->created == 0)
3924 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3925 }
3926
3927 void qemu_init_vcpu(void *_env)
3928 {
3929 CPUState *env = _env;
3930
3931 if (kvm_enabled())
3932 kvm_start_vcpu(env);
3933 else
3934 tcg_init_vcpu(env);
3935 }
3936
3937 void qemu_notify_event(void)
3938 {
3939 qemu_event_increment();
3940 }
3941
3942 void vm_stop(int reason)
3943 {
3944 QemuThread me;
3945 qemu_thread_self(&me);
3946
3947 if (!qemu_thread_equal(&me, &io_thread)) {
3948 qemu_system_vmstop_request(reason);
3949 /*
3950 * FIXME: should not return to device code in case
3951 * vm_stop() has been requested.
3952 */
3953 if (cpu_single_env) {
3954 cpu_exit(cpu_single_env);
3955 cpu_single_env->stop = 1;
3956 }
3957 return;
3958 }
3959 do_vm_stop(reason);
3960 }
3961
3962 #endif
3963
3964
3965 #ifdef _WIN32
3966 static void host_main_loop_wait(int *timeout)
3967 {
3968 int ret, ret2, i;
3969 PollingEntry *pe;
3970
3971
3972 /* XXX: need to suppress polling by better using win32 events */
3973 ret = 0;
3974 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3975 ret |= pe->func(pe->opaque);
3976 }
3977 if (ret == 0) {
3978 int err;
3979 WaitObjects *w = &wait_objects;
3980
3981 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3982 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3983 if (w->func[ret - WAIT_OBJECT_0])
3984 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3985
3986 /* Check for additional signaled events */
3987 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3988
3989 /* Check if event is signaled */
3990 ret2 = WaitForSingleObject(w->events[i], 0);
3991 if(ret2 == WAIT_OBJECT_0) {
3992 if (w->func[i])
3993 w->func[i](w->opaque[i]);
3994 } else if (ret2 == WAIT_TIMEOUT) {
3995 } else {
3996 err = GetLastError();
3997 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3998 }
3999 }
4000 } else if (ret == WAIT_TIMEOUT) {
4001 } else {
4002 err = GetLastError();
4003 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4004 }
4005 }
4006
4007 *timeout = 0;
4008 }
4009 #else
4010 static void host_main_loop_wait(int *timeout)
4011 {
4012 }
4013 #endif
4014
4015 void main_loop_wait(int timeout)
4016 {
4017 IOHandlerRecord *ioh;
4018 fd_set rfds, wfds, xfds;
4019 int ret, nfds;
4020 struct timeval tv;
4021
4022 qemu_bh_update_timeout(&timeout);
4023
4024 host_main_loop_wait(&timeout);
4025
4026 /* poll any events */
4027 /* XXX: separate device handlers from system ones */
4028 nfds = -1;
4029 FD_ZERO(&rfds);
4030 FD_ZERO(&wfds);
4031 FD_ZERO(&xfds);
4032 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4033 if (ioh->deleted)
4034 continue;
4035 if (ioh->fd_read &&
4036 (!ioh->fd_read_poll ||
4037 ioh->fd_read_poll(ioh->opaque) != 0)) {
4038 FD_SET(ioh->fd, &rfds);
4039 if (ioh->fd > nfds)
4040 nfds = ioh->fd;
4041 }
4042 if (ioh->fd_write) {
4043 FD_SET(ioh->fd, &wfds);
4044 if (ioh->fd > nfds)
4045 nfds = ioh->fd;
4046 }
4047 }
4048
4049 tv.tv_sec = timeout / 1000;
4050 tv.tv_usec = (timeout % 1000) * 1000;
4051
4052 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4053
4054 qemu_mutex_unlock_iothread();
4055 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4056 qemu_mutex_lock_iothread();
4057 if (ret > 0) {
4058 IOHandlerRecord **pioh;
4059
4060 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4061 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4062 ioh->fd_read(ioh->opaque);
4063 }
4064 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4065 ioh->fd_write(ioh->opaque);
4066 }
4067 }
4068
4069 /* remove deleted IO handlers */
4070 pioh = &first_io_handler;
4071 while (*pioh) {
4072 ioh = *pioh;
4073 if (ioh->deleted) {
4074 *pioh = ioh->next;
4075 qemu_free(ioh);
4076 } else
4077 pioh = &ioh->next;
4078 }
4079 }
4080
4081 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4082
4083 /* rearm timer, if not periodic */
4084 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4085 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4086 qemu_rearm_alarm_timer(alarm_timer);
4087 }
4088
4089 /* vm time timers */
4090 if (vm_running) {
4091 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4092 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4093 qemu_get_clock(vm_clock));
4094 }
4095
4096 /* real time timers */
4097 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4098 qemu_get_clock(rt_clock));
4099
4100 /* Check bottom-halves last in case any of the earlier events triggered
4101 them. */
4102 qemu_bh_poll();
4103
4104 }
4105
4106 static int qemu_cpu_exec(CPUState *env)
4107 {
4108 int ret;
4109 #ifdef CONFIG_PROFILER
4110 int64_t ti;
4111 #endif
4112
4113 #ifdef CONFIG_PROFILER
4114 ti = profile_getclock();
4115 #endif
4116 if (use_icount) {
4117 int64_t count;
4118 int decr;
4119 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4120 env->icount_decr.u16.low = 0;
4121 env->icount_extra = 0;
4122 count = qemu_next_deadline();
4123 count = (count + (1 << icount_time_shift) - 1)
4124 >> icount_time_shift;
4125 qemu_icount += count;
4126 decr = (count > 0xffff) ? 0xffff : count;
4127 count -= decr;
4128 env->icount_decr.u16.low = decr;
4129 env->icount_extra = count;
4130 }
4131 ret = cpu_exec(env);
4132 #ifdef CONFIG_PROFILER
4133 qemu_time += profile_getclock() - ti;
4134 #endif
4135 if (use_icount) {
4136 /* Fold pending instructions back into the
4137 instruction counter, and clear the interrupt flag. */
4138 qemu_icount -= (env->icount_decr.u16.low
4139 + env->icount_extra);
4140 env->icount_decr.u32 = 0;
4141 env->icount_extra = 0;
4142 }
4143 return ret;
4144 }
4145
4146 static void tcg_cpu_exec(void)
4147 {
4148 int ret = 0;
4149
4150 if (next_cpu == NULL)
4151 next_cpu = first_cpu;
4152 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4153 CPUState *env = cur_cpu = next_cpu;
4154
4155 if (!vm_running)
4156 break;
4157 if (timer_alarm_pending) {
4158 timer_alarm_pending = 0;
4159 break;
4160 }
4161 if (cpu_can_run(env))
4162 ret = qemu_cpu_exec(env);
4163 if (ret == EXCP_DEBUG) {
4164 gdb_set_stop_cpu(env);
4165 debug_requested = 1;
4166 break;
4167 }
4168 }
4169 }
4170
4171 static int cpu_has_work(CPUState *env)
4172 {
4173 if (env->stop)
4174 return 1;
4175 if (env->stopped)
4176 return 0;
4177 if (!env->halted)
4178 return 1;
4179 if (qemu_cpu_has_work(env))
4180 return 1;
4181 return 0;
4182 }
4183
4184 static int tcg_has_work(void)
4185 {
4186 CPUState *env;
4187
4188 for (env = first_cpu; env != NULL; env = env->next_cpu)
4189 if (cpu_has_work(env))
4190 return 1;
4191 return 0;
4192 }
4193
4194 static int qemu_calculate_timeout(void)
4195 {
4196 #ifndef CONFIG_IOTHREAD
4197 int timeout;
4198
4199 if (!vm_running)
4200 timeout = 5000;
4201 else if (tcg_has_work())
4202 timeout = 0;
4203 else if (!use_icount)
4204 timeout = 5000;
4205 else {
4206 /* XXX: use timeout computed from timers */
4207 int64_t add;
4208 int64_t delta;
4209 /* Advance virtual time to the next event. */
4210 if (use_icount == 1) {
4211 /* When not using an adaptive execution frequency
4212 we tend to get badly out of sync with real time,
4213 so just delay for a reasonable amount of time. */
4214 delta = 0;
4215 } else {
4216 delta = cpu_get_icount() - cpu_get_clock();
4217 }
4218 if (delta > 0) {
4219 /* If virtual time is ahead of real time then just
4220 wait for IO. */
4221 timeout = (delta / 1000000) + 1;
4222 } else {
4223 /* Wait for either IO to occur or the next
4224 timer event. */
4225 add = qemu_next_deadline();
4226 /* We advance the timer before checking for IO.
4227 Limit the amount we advance so that early IO
4228 activity won't get the guest too far ahead. */
4229 if (add > 10000000)
4230 add = 10000000;
4231 delta += add;
4232 add = (add + (1 << icount_time_shift) - 1)
4233 >> icount_time_shift;
4234 qemu_icount += add;
4235 timeout = delta / 1000000;
4236 if (timeout < 0)
4237 timeout = 0;
4238 }
4239 }
4240
4241 return timeout;
4242 #else /* CONFIG_IOTHREAD */
4243 return 1000;
4244 #endif
4245 }
4246
4247 static int vm_can_run(void)
4248 {
4249 if (powerdown_requested)
4250 return 0;
4251 if (reset_requested)
4252 return 0;
4253 if (shutdown_requested)
4254 return 0;
4255 if (debug_requested)
4256 return 0;
4257 return 1;
4258 }
4259
4260 static void main_loop(void)
4261 {
4262 int r;
4263
4264 #ifdef CONFIG_IOTHREAD
4265 qemu_system_ready = 1;
4266 qemu_cond_broadcast(&qemu_system_cond);
4267 #endif
4268
4269 for (;;) {
4270 do {
4271 #ifdef CONFIG_PROFILER
4272 int64_t ti;
4273 #endif
4274 #ifndef CONFIG_IOTHREAD
4275 tcg_cpu_exec();
4276 #endif
4277 #ifdef CONFIG_PROFILER
4278 ti = profile_getclock();
4279 #endif
4280 main_loop_wait(qemu_calculate_timeout());
4281 #ifdef CONFIG_PROFILER
4282 dev_time += profile_getclock() - ti;
4283 #endif
4284 } while (vm_can_run());
4285
4286 if (qemu_debug_requested())
4287 vm_stop(EXCP_DEBUG);
4288 if (qemu_shutdown_requested()) {
4289 if (no_shutdown) {
4290 vm_stop(0);
4291 no_shutdown = 0;
4292 } else
4293 break;
4294 }
4295 if (qemu_reset_requested()) {
4296 pause_all_vcpus();
4297 qemu_system_reset();
4298 resume_all_vcpus();
4299 }
4300 if (qemu_powerdown_requested())
4301 qemu_system_powerdown();
4302 if ((r = qemu_vmstop_requested()))
4303 vm_stop(r);
4304 }
4305 pause_all_vcpus();
4306 }
4307
4308 static void version(void)
4309 {
4310 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4311 }
4312
4313 static void help(int exitcode)
4314 {
4315 version();
4316 printf("usage: %s [options] [disk_image]\n"
4317 "\n"
4318 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4319 "\n"
4320 #define DEF(option, opt_arg, opt_enum, opt_help) \
4321 opt_help
4322 #define DEFHEADING(text) stringify(text) "\n"
4323 #include "qemu-options.h"
4324 #undef DEF
4325 #undef DEFHEADING
4326 #undef GEN_DOCS
4327 "\n"
4328 "During emulation, the following keys are useful:\n"
4329 "ctrl-alt-f toggle full screen\n"
4330 "ctrl-alt-n switch to virtual console 'n'\n"
4331 "ctrl-alt toggle mouse and keyboard grab\n"
4332 "\n"
4333 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4334 ,
4335 "qemu",
4336 DEFAULT_RAM_SIZE,
4337 #ifndef _WIN32
4338 DEFAULT_NETWORK_SCRIPT,
4339 DEFAULT_NETWORK_DOWN_SCRIPT,
4340 #endif
4341 DEFAULT_GDBSTUB_PORT,
4342 "/tmp/qemu.log");
4343 exit(exitcode);
4344 }
4345
4346 #define HAS_ARG 0x0001
4347
4348 enum {
4349 #define DEF(option, opt_arg, opt_enum, opt_help) \
4350 opt_enum,
4351 #define DEFHEADING(text)
4352 #include "qemu-options.h"
4353 #undef DEF
4354 #undef DEFHEADING
4355 #undef GEN_DOCS
4356 };
4357
4358 typedef struct QEMUOption {
4359 const char *name;
4360 int flags;
4361 int index;
4362 } QEMUOption;
4363
4364 static const QEMUOption qemu_options[] = {
4365 { "h", 0, QEMU_OPTION_h },
4366 #define DEF(option, opt_arg, opt_enum, opt_help) \
4367 { option, opt_arg, opt_enum },
4368 #define DEFHEADING(text)
4369 #include "qemu-options.h"
4370 #undef DEF
4371 #undef DEFHEADING
4372 #undef GEN_DOCS
4373 { NULL },
4374 };
4375
4376 #ifdef HAS_AUDIO
4377 struct soundhw soundhw[] = {
4378 #ifdef HAS_AUDIO_CHOICE
4379 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4380 {
4381 "pcspk",
4382 "PC speaker",
4383 0,
4384 1,
4385 { .init_isa = pcspk_audio_init }
4386 },
4387 #endif
4388
4389 #ifdef CONFIG_SB16
4390 {
4391 "sb16",
4392 "Creative Sound Blaster 16",
4393 0,
4394 1,
4395 { .init_isa = SB16_init }
4396 },
4397 #endif
4398
4399 #ifdef CONFIG_CS4231A
4400 {
4401 "cs4231a",
4402 "CS4231A",
4403 0,
4404 1,
4405 { .init_isa = cs4231a_init }
4406 },
4407 #endif
4408
4409 #ifdef CONFIG_ADLIB
4410 {
4411 "adlib",
4412 #ifdef HAS_YMF262
4413 "Yamaha YMF262 (OPL3)",
4414 #else
4415 "Yamaha YM3812 (OPL2)",
4416 #endif
4417 0,
4418 1,
4419 { .init_isa = Adlib_init }
4420 },
4421 #endif
4422
4423 #ifdef CONFIG_GUS
4424 {
4425 "gus",
4426 "Gravis Ultrasound GF1",
4427 0,
4428 1,
4429 { .init_isa = GUS_init }
4430 },
4431 #endif
4432
4433 #ifdef CONFIG_AC97
4434 {
4435 "ac97",
4436 "Intel 82801AA AC97 Audio",
4437 0,
4438 0,
4439 { .init_pci = ac97_init }
4440 },
4441 #endif
4442
4443 #ifdef CONFIG_ES1370
4444 {
4445 "es1370",
4446 "ENSONIQ AudioPCI ES1370",
4447 0,
4448 0,
4449 { .init_pci = es1370_init }
4450 },
4451 #endif
4452
4453 #endif /* HAS_AUDIO_CHOICE */
4454
4455 { NULL, NULL, 0, 0, { NULL } }
4456 };
4457
4458 static void select_soundhw (const char *optarg)
4459 {
4460 struct soundhw *c;
4461
4462 if (*optarg == '?') {
4463 show_valid_cards:
4464
4465 printf ("Valid sound card names (comma separated):\n");
4466 for (c = soundhw; c->name; ++c) {
4467 printf ("%-11s %s\n", c->name, c->descr);
4468 }
4469 printf ("\n-soundhw all will enable all of the above\n");
4470 exit (*optarg != '?');
4471 }
4472 else {
4473 size_t l;
4474 const char *p;
4475 char *e;
4476 int bad_card = 0;
4477
4478 if (!strcmp (optarg, "all")) {
4479 for (c = soundhw; c->name; ++c) {
4480 c->enabled = 1;
4481 }
4482 return;
4483 }
4484
4485 p = optarg;
4486 while (*p) {
4487 e = strchr (p, ',');
4488 l = !e ? strlen (p) : (size_t) (e - p);
4489
4490 for (c = soundhw; c->name; ++c) {
4491 if (!strncmp (c->name, p, l)) {
4492 c->enabled = 1;
4493 break;
4494 }
4495 }
4496
4497 if (!c->name) {
4498 if (l > 80) {
4499 fprintf (stderr,
4500 "Unknown sound card name (too big to show)\n");
4501 }
4502 else {
4503 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4504 (int) l, p);
4505 }
4506 bad_card = 1;
4507 }
4508 p += l + (e != NULL);
4509 }
4510
4511 if (bad_card)
4512 goto show_valid_cards;
4513 }
4514 }
4515 #endif
4516
4517 static void select_vgahw (const char *p)
4518 {
4519 const char *opts;
4520
4521 cirrus_vga_enabled = 0;
4522 std_vga_enabled = 0;
4523 vmsvga_enabled = 0;
4524 xenfb_enabled = 0;
4525 if (strstart(p, "std", &opts)) {
4526 std_vga_enabled = 1;
4527 } else if (strstart(p, "cirrus", &opts)) {
4528 cirrus_vga_enabled = 1;
4529 } else if (strstart(p, "vmware", &opts)) {
4530 vmsvga_enabled = 1;
4531 } else if (strstart(p, "xenfb", &opts)) {
4532 xenfb_enabled = 1;
4533 } else if (!strstart(p, "none", &opts)) {
4534 invalid_vga:
4535 fprintf(stderr, "Unknown vga type: %s\n", p);
4536 exit(1);
4537 }
4538 while (*opts) {
4539 const char *nextopt;
4540
4541 if (strstart(opts, ",retrace=", &nextopt)) {
4542 opts = nextopt;
4543 if (strstart(opts, "dumb", &nextopt))
4544 vga_retrace_method = VGA_RETRACE_DUMB;
4545 else if (strstart(opts, "precise", &nextopt))
4546 vga_retrace_method = VGA_RETRACE_PRECISE;
4547 else goto invalid_vga;
4548 } else goto invalid_vga;
4549 opts = nextopt;
4550 }
4551 }
4552
4553 #ifdef TARGET_I386
4554 static int balloon_parse(const char *arg)
4555 {
4556 char buf[128];
4557 const char *p;
4558
4559 if (!strcmp(arg, "none")) {
4560 virtio_balloon = 0;
4561 } else if (!strncmp(arg, "virtio", 6)) {
4562 virtio_balloon = 1;
4563 if (arg[6] == ',') {
4564 p = arg + 7;
4565 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4566 virtio_balloon_devaddr = strdup(buf);
4567 }
4568 }
4569 } else {
4570 return -1;
4571 }
4572 return 0;
4573 }
4574 #endif
4575
4576 #ifdef _WIN32
4577 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4578 {
4579 exit(STATUS_CONTROL_C_EXIT);
4580 return TRUE;
4581 }
4582 #endif
4583
4584 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4585 {
4586 int ret;
4587
4588 if(strlen(str) != 36)
4589 return -1;
4590
4591 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4592 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4593 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4594
4595 if(ret != 16)
4596 return -1;
4597
4598 #ifdef TARGET_I386
4599 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4600 #endif
4601
4602 return 0;
4603 }
4604
4605 #define MAX_NET_CLIENTS 32
4606
4607 #ifndef _WIN32
4608
4609 static void termsig_handler(int signal)
4610 {
4611 qemu_system_shutdown_request();
4612 }
4613
4614 static void sigchld_handler(int signal)
4615 {
4616 waitpid(-1, NULL, WNOHANG);
4617 }
4618
4619 static void sighandler_setup(void)
4620 {
4621 struct sigaction act;
4622
4623 memset(&act, 0, sizeof(act));
4624 act.sa_handler = termsig_handler;
4625 sigaction(SIGINT, &act, NULL);
4626 sigaction(SIGHUP, &act, NULL);
4627 sigaction(SIGTERM, &act, NULL);
4628
4629 act.sa_handler = sigchld_handler;
4630 act.sa_flags = SA_NOCLDSTOP;
4631 sigaction(SIGCHLD, &act, NULL);
4632 }
4633
4634 #endif
4635
4636 #ifdef _WIN32
4637 /* Look for support files in the same directory as the executable. */
4638 static char *find_datadir(const char *argv0)
4639 {
4640 char *p;
4641 char buf[MAX_PATH];
4642 DWORD len;
4643
4644 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4645 if (len == 0) {
4646 return NULL;
4647 }
4648
4649 buf[len] = 0;
4650 p = buf + len - 1;
4651 while (p != buf && *p != '\\')
4652 p--;
4653 *p = 0;
4654 if (access(buf, R_OK) == 0) {
4655 return qemu_strdup(buf);
4656 }
4657 return NULL;
4658 }
4659 #else /* !_WIN32 */
4660
4661 /* Find a likely location for support files using the location of the binary.
4662 For installed binaries this will be "$bindir/../share/qemu". When
4663 running from the build tree this will be "$bindir/../pc-bios". */
4664 #define SHARE_SUFFIX "/share/qemu"
4665 #define BUILD_SUFFIX "/pc-bios"
4666 static char *find_datadir(const char *argv0)
4667 {
4668 char *dir;
4669 char *p = NULL;
4670 char *res;
4671 #ifdef PATH_MAX
4672 char buf[PATH_MAX];
4673 #endif
4674 size_t max_len;
4675
4676 #if defined(__linux__)
4677 {
4678 int len;
4679 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4680 if (len > 0) {
4681 buf[len] = 0;
4682 p = buf;
4683 }
4684 }
4685 #elif defined(__FreeBSD__)
4686 {
4687 int len;
4688 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4689 if (len > 0) {
4690 buf[len] = 0;
4691 p = buf;
4692 }
4693 }
4694 #endif
4695 /* If we don't have any way of figuring out the actual executable
4696 location then try argv[0]. */
4697 if (!p) {
4698 #ifdef PATH_MAX
4699 p = buf;
4700 #endif
4701 p = realpath(argv0, p);
4702 if (!p) {
4703 return NULL;
4704 }
4705 }
4706 dir = dirname(p);
4707 dir = dirname(dir);
4708
4709 max_len = strlen(dir) +
4710 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4711 res = qemu_mallocz(max_len);
4712 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4713 if (access(res, R_OK)) {
4714 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4715 if (access(res, R_OK)) {
4716 qemu_free(res);
4717 res = NULL;
4718 }
4719 }
4720 #ifndef PATH_MAX
4721 free(p);
4722 #endif
4723 return res;
4724 }
4725 #undef SHARE_SUFFIX
4726 #undef BUILD_SUFFIX
4727 #endif
4728
4729 char *qemu_find_file(int type, const char *name)
4730 {
4731 int len;
4732 const char *subdir;
4733 char *buf;
4734
4735 /* If name contains path separators then try it as a straight path. */
4736 if ((strchr(name, '/') || strchr(name, '\\'))
4737 && access(name, R_OK) == 0) {
4738 return strdup(name);
4739 }
4740 switch (type) {
4741 case QEMU_FILE_TYPE_BIOS:
4742 subdir = "";
4743 break;
4744 case QEMU_FILE_TYPE_KEYMAP:
4745 subdir = "keymaps/";
4746 break;
4747 default:
4748 abort();
4749 }
4750 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4751 buf = qemu_mallocz(len);
4752 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4753 if (access(buf, R_OK)) {
4754 qemu_free(buf);
4755 return NULL;
4756 }
4757 return buf;
4758 }
4759
4760 int main(int argc, char **argv, char **envp)
4761 {
4762 const char *gdbstub_dev = NULL;
4763 uint32_t boot_devices_bitmap = 0;
4764 int i;
4765 int snapshot, linux_boot, net_boot;
4766 const char *initrd_filename;
4767 const char *kernel_filename, *kernel_cmdline;
4768 const char *boot_devices = "";
4769 DisplayState *ds;
4770 DisplayChangeListener *dcl;
4771 int cyls, heads, secs, translation;
4772 const char *net_clients[MAX_NET_CLIENTS];
4773 int nb_net_clients;
4774 const char *bt_opts[MAX_BT_CMDLINE];
4775 int nb_bt_opts;
4776 int hda_index;
4777 int optind;
4778 const char *r, *optarg;
4779 CharDriverState *monitor_hd = NULL;
4780 const char *monitor_device;
4781 const char *serial_devices[MAX_SERIAL_PORTS];
4782 int serial_device_index;
4783 const char *parallel_devices[MAX_PARALLEL_PORTS];
4784 int parallel_device_index;
4785 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4786 int virtio_console_index;
4787 const char *loadvm = NULL;
4788 QEMUMachine *machine;
4789 const char *cpu_model;
4790 const char *usb_devices[MAX_USB_CMDLINE];
4791 int usb_devices_index;
4792 #ifndef _WIN32
4793 int fds[2];
4794 #endif
4795 int tb_size;
4796 const char *pid_file = NULL;
4797 const char *incoming = NULL;
4798 #ifndef _WIN32
4799 int fd = 0;
4800 struct passwd *pwd = NULL;
4801 const char *chroot_dir = NULL;
4802 const char *run_as = NULL;
4803 #endif
4804 CPUState *env;
4805 int show_vnc_port = 0;
4806
4807 qemu_cache_utils_init(envp);
4808
4809 LIST_INIT (&vm_change_state_head);
4810 #ifndef _WIN32
4811 {
4812 struct sigaction act;
4813 sigfillset(&act.sa_mask);
4814 act.sa_flags = 0;
4815 act.sa_handler = SIG_IGN;
4816 sigaction(SIGPIPE, &act, NULL);
4817 }
4818 #else
4819 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4820 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4821 QEMU to run on a single CPU */
4822 {
4823 HANDLE h;
4824 DWORD mask, smask;
4825 int i;
4826 h = GetCurrentProcess();
4827 if (GetProcessAffinityMask(h, &mask, &smask)) {
4828 for(i = 0; i < 32; i++) {
4829 if (mask & (1 << i))
4830 break;
4831 }
4832 if (i != 32) {
4833 mask = 1 << i;
4834 SetProcessAffinityMask(h, mask);
4835 }
4836 }
4837 }
4838 #endif
4839
4840 module_call_init(MODULE_INIT_MACHINE);
4841 machine = find_default_machine();
4842 cpu_model = NULL;
4843 initrd_filename = NULL;
4844 ram_size = 0;
4845 snapshot = 0;
4846 kernel_filename = NULL;
4847 kernel_cmdline = "";
4848 cyls = heads = secs = 0;
4849 translation = BIOS_ATA_TRANSLATION_AUTO;
4850 monitor_device = "vc:80Cx24C";
4851
4852 serial_devices[0] = "vc:80Cx24C";
4853 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4854 serial_devices[i] = NULL;
4855 serial_device_index = 0;
4856
4857 parallel_devices[0] = "vc:80Cx24C";
4858 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4859 parallel_devices[i] = NULL;
4860 parallel_device_index = 0;
4861
4862 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4863 virtio_consoles[i] = NULL;
4864 virtio_console_index = 0;
4865
4866 for (i = 0; i < MAX_NODES; i++) {
4867 node_mem[i] = 0;
4868 node_cpumask[i] = 0;
4869 }
4870
4871 usb_devices_index = 0;
4872
4873 nb_net_clients = 0;
4874 nb_bt_opts = 0;
4875 nb_drives = 0;
4876 nb_drives_opt = 0;
4877 nb_numa_nodes = 0;
4878 hda_index = -1;
4879
4880 nb_nics = 0;
4881
4882 tb_size = 0;
4883 autostart= 1;
4884
4885 register_watchdogs();
4886
4887 optind = 1;
4888 for(;;) {
4889 if (optind >= argc)
4890 break;
4891 r = argv[optind];
4892 if (r[0] != '-') {
4893 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4894 } else {
4895 const QEMUOption *popt;
4896
4897 optind++;
4898 /* Treat --foo the same as -foo. */
4899 if (r[1] == '-')
4900 r++;
4901 popt = qemu_options;
4902 for(;;) {
4903 if (!popt->name) {
4904 fprintf(stderr, "%s: invalid option -- '%s'\n",
4905 argv[0], r);
4906 exit(1);
4907 }
4908 if (!strcmp(popt->name, r + 1))
4909 break;
4910 popt++;
4911 }
4912 if (popt->flags & HAS_ARG) {
4913 if (optind >= argc) {
4914 fprintf(stderr, "%s: option '%s' requires an argument\n",
4915 argv[0], r);
4916 exit(1);
4917 }
4918 optarg = argv[optind++];
4919 } else {
4920 optarg = NULL;
4921 }
4922
4923 switch(popt->index) {
4924 case QEMU_OPTION_M:
4925 machine = find_machine(optarg);
4926 if (!machine) {
4927 QEMUMachine *m;
4928 printf("Supported machines are:\n");
4929 for(m = first_machine; m != NULL; m = m->next) {
4930 printf("%-10s %s%s\n",
4931 m->name, m->desc,
4932 m->is_default ? " (default)" : "");
4933 }
4934 exit(*optarg != '?');
4935 }
4936 break;
4937 case QEMU_OPTION_cpu:
4938 /* hw initialization will check this */
4939 if (*optarg == '?') {
4940 /* XXX: implement xxx_cpu_list for targets that still miss it */
4941 #if defined(cpu_list)
4942 cpu_list(stdout, &fprintf);
4943 #endif
4944 exit(0);
4945 } else {
4946 cpu_model = optarg;
4947 }
4948 break;
4949 case QEMU_OPTION_initrd:
4950 initrd_filename = optarg;
4951 break;
4952 case QEMU_OPTION_hda:
4953 if (cyls == 0)
4954 hda_index = drive_add(optarg, HD_ALIAS, 0);
4955 else
4956 hda_index = drive_add(optarg, HD_ALIAS
4957 ",cyls=%d,heads=%d,secs=%d%s",
4958 0, cyls, heads, secs,
4959 translation == BIOS_ATA_TRANSLATION_LBA ?
4960 ",trans=lba" :
4961 translation == BIOS_ATA_TRANSLATION_NONE ?
4962 ",trans=none" : "");
4963 break;
4964 case QEMU_OPTION_hdb:
4965 case QEMU_OPTION_hdc:
4966 case QEMU_OPTION_hdd:
4967 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4968 break;
4969 case QEMU_OPTION_drive:
4970 drive_add(NULL, "%s", optarg);
4971 break;
4972 case QEMU_OPTION_mtdblock:
4973 drive_add(optarg, MTD_ALIAS);
4974 break;
4975 case QEMU_OPTION_sd:
4976 drive_add(optarg, SD_ALIAS);
4977 break;
4978 case QEMU_OPTION_pflash:
4979 drive_add(optarg, PFLASH_ALIAS);
4980 break;
4981 case QEMU_OPTION_snapshot:
4982 snapshot = 1;
4983 break;
4984 case QEMU_OPTION_hdachs:
4985 {
4986 const char *p;
4987 p = optarg;
4988 cyls = strtol(p, (char **)&p, 0);
4989 if (cyls < 1 || cyls > 16383)
4990 goto chs_fail;
4991 if (*p != ',')
4992 goto chs_fail;
4993 p++;
4994 heads = strtol(p, (char **)&p, 0);
4995 if (heads < 1 || heads > 16)
4996 goto chs_fail;
4997 if (*p != ',')
4998 goto chs_fail;
4999 p++;
5000 secs = strtol(p, (char **)&p, 0);
5001 if (secs < 1 || secs > 63)
5002 goto chs_fail;
5003 if (*p == ',') {
5004 p++;
5005 if (!strcmp(p, "none"))
5006 translation = BIOS_ATA_TRANSLATION_NONE;
5007 else if (!strcmp(p, "lba"))
5008 translation = BIOS_ATA_TRANSLATION_LBA;
5009 else if (!strcmp(p, "auto"))
5010 translation = BIOS_ATA_TRANSLATION_AUTO;
5011 else
5012 goto chs_fail;
5013 } else if (*p != '\0') {
5014 chs_fail:
5015 fprintf(stderr, "qemu: invalid physical CHS format\n");
5016 exit(1);
5017 }
5018 if (hda_index != -1)
5019 snprintf(drives_opt[hda_index].opt,
5020 sizeof(drives_opt[hda_index].opt),
5021 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5022 0, cyls, heads, secs,
5023 translation == BIOS_ATA_TRANSLATION_LBA ?
5024 ",trans=lba" :
5025 translation == BIOS_ATA_TRANSLATION_NONE ?
5026 ",trans=none" : "");
5027 }
5028 break;
5029 case QEMU_OPTION_numa:
5030 if (nb_numa_nodes >= MAX_NODES) {
5031 fprintf(stderr, "qemu: too many NUMA nodes\n");
5032 exit(1);
5033 }
5034 numa_add(optarg);
5035 break;
5036 case QEMU_OPTION_nographic:
5037 display_type = DT_NOGRAPHIC;
5038 break;
5039 #ifdef CONFIG_CURSES
5040 case QEMU_OPTION_curses:
5041 display_type = DT_CURSES;
5042 break;
5043 #endif
5044 case QEMU_OPTION_portrait:
5045 graphic_rotate = 1;
5046 break;
5047 case QEMU_OPTION_kernel:
5048 kernel_filename = optarg;
5049 break;
5050 case QEMU_OPTION_append:
5051 kernel_cmdline = optarg;
5052 break;
5053 case QEMU_OPTION_cdrom:
5054 drive_add(optarg, CDROM_ALIAS);
5055 break;
5056 case QEMU_OPTION_boot:
5057 boot_devices = optarg;
5058 /* We just do some generic consistency checks */
5059 {
5060 /* Could easily be extended to 64 devices if needed */
5061 const char *p;
5062
5063 boot_devices_bitmap = 0;
5064 for (p = boot_devices; *p != '\0'; p++) {
5065 /* Allowed boot devices are:
5066 * a b : floppy disk drives
5067 * c ... f : IDE disk drives
5068 * g ... m : machine implementation dependant drives
5069 * n ... p : network devices
5070 * It's up to each machine implementation to check
5071 * if the given boot devices match the actual hardware
5072 * implementation and firmware features.
5073 */
5074 if (*p < 'a' || *p > 'q') {
5075 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5076 exit(1);
5077 }
5078 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5079 fprintf(stderr,
5080 "Boot device '%c' was given twice\n",*p);
5081 exit(1);
5082 }
5083 boot_devices_bitmap |= 1 << (*p - 'a');
5084 }
5085 }
5086 break;
5087 case QEMU_OPTION_fda:
5088 case QEMU_OPTION_fdb:
5089 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5090 break;
5091 #ifdef TARGET_I386
5092 case QEMU_OPTION_no_fd_bootchk:
5093 fd_bootchk = 0;
5094 break;
5095 #endif
5096 case QEMU_OPTION_net:
5097 if (nb_net_clients >= MAX_NET_CLIENTS) {
5098 fprintf(stderr, "qemu: too many network clients\n");
5099 exit(1);
5100 }
5101 net_clients[nb_net_clients] = optarg;
5102 nb_net_clients++;
5103 break;
5104 #ifdef CONFIG_SLIRP
5105 case QEMU_OPTION_tftp:
5106 legacy_tftp_prefix = optarg;
5107 break;
5108 case QEMU_OPTION_bootp:
5109 legacy_bootp_filename = optarg;
5110 break;
5111 #ifndef _WIN32
5112 case QEMU_OPTION_smb:
5113 net_slirp_smb(optarg);
5114 break;
5115 #endif
5116 case QEMU_OPTION_redir:
5117 net_slirp_redir(optarg);
5118 break;
5119 #endif
5120 case QEMU_OPTION_bt:
5121 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5122 fprintf(stderr, "qemu: too many bluetooth options\n");
5123 exit(1);
5124 }
5125 bt_opts[nb_bt_opts++] = optarg;
5126 break;
5127 #ifdef HAS_AUDIO
5128 case QEMU_OPTION_audio_help:
5129 AUD_help ();
5130 exit (0);
5131 break;
5132 case QEMU_OPTION_soundhw:
5133 select_soundhw (optarg);
5134 break;
5135 #endif
5136 case QEMU_OPTION_h:
5137 help(0);
5138 break;
5139 case QEMU_OPTION_version:
5140 version();
5141 exit(0);
5142 break;
5143 case QEMU_OPTION_m: {
5144 uint64_t value;
5145 char *ptr;
5146
5147 value = strtoul(optarg, &ptr, 10);
5148 switch (*ptr) {
5149 case 0: case 'M': case 'm':
5150 value <<= 20;
5151 break;
5152 case 'G': case 'g':
5153 value <<= 30;
5154 break;
5155 default:
5156 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5157 exit(1);
5158 }
5159
5160 /* On 32-bit hosts, QEMU is limited by virtual address space */
5161 if (value > (2047 << 20)
5162 #ifndef CONFIG_KQEMU
5163 && HOST_LONG_BITS == 32
5164 #endif
5165 ) {
5166 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5167 exit(1);
5168 }
5169 if (value != (uint64_t)(ram_addr_t)value) {
5170 fprintf(stderr, "qemu: ram size too large\n");
5171 exit(1);
5172 }
5173 ram_size = value;
5174 break;
5175 }
5176 case QEMU_OPTION_d:
5177 {
5178 int mask;
5179 const CPULogItem *item;
5180
5181 mask = cpu_str_to_log_mask(optarg);
5182 if (!mask) {
5183 printf("Log items (comma separated):\n");
5184 for(item = cpu_log_items; item->mask != 0; item++) {
5185 printf("%-10s %s\n", item->name, item->help);
5186 }
5187 exit(1);
5188 }
5189 cpu_set_log(mask);
5190 }
5191 break;
5192 case QEMU_OPTION_s:
5193 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5194 break;
5195 case QEMU_OPTION_gdb:
5196 gdbstub_dev = optarg;
5197 break;
5198 case QEMU_OPTION_L:
5199 data_dir = optarg;
5200 break;
5201 case QEMU_OPTION_bios:
5202 bios_name = optarg;
5203 break;
5204 case QEMU_OPTION_singlestep:
5205 singlestep = 1;
5206 break;
5207 case QEMU_OPTION_S:
5208 autostart = 0;
5209 break;
5210 #ifndef _WIN32
5211 case QEMU_OPTION_k:
5212 keyboard_layout = optarg;
5213 break;
5214 #endif
5215 case QEMU_OPTION_localtime:
5216 rtc_utc = 0;
5217 break;
5218 case QEMU_OPTION_vga:
5219 select_vgahw (optarg);
5220 break;
5221 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5222 case QEMU_OPTION_g:
5223 {
5224 const char *p;
5225 int w, h, depth;
5226 p = optarg;
5227 w = strtol(p, (char **)&p, 10);
5228 if (w <= 0) {
5229 graphic_error:
5230 fprintf(stderr, "qemu: invalid resolution or depth\n");
5231 exit(1);
5232 }
5233 if (*p != 'x')
5234 goto graphic_error;
5235 p++;
5236 h = strtol(p, (char **)&p, 10);
5237 if (h <= 0)
5238 goto graphic_error;
5239 if (*p == 'x') {
5240 p++;
5241 depth = strtol(p, (char **)&p, 10);
5242 if (depth != 8 && depth != 15 && depth != 16 &&
5243 depth != 24 && depth != 32)
5244 goto graphic_error;
5245 } else if (*p == '\0') {
5246 depth = graphic_depth;
5247 } else {
5248 goto graphic_error;
5249 }
5250
5251 graphic_width = w;
5252 graphic_height = h;
5253 graphic_depth = depth;
5254 }
5255 break;
5256 #endif
5257 case QEMU_OPTION_echr:
5258 {
5259 char *r;
5260 term_escape_char = strtol(optarg, &r, 0);
5261 if (r == optarg)
5262 printf("Bad argument to echr\n");
5263 break;
5264 }
5265 case QEMU_OPTION_monitor:
5266 monitor_device = optarg;
5267 break;
5268 case QEMU_OPTION_serial:
5269 if (serial_device_index >= MAX_SERIAL_PORTS) {
5270 fprintf(stderr, "qemu: too many serial ports\n");
5271 exit(1);
5272 }
5273 serial_devices[serial_device_index] = optarg;
5274 serial_device_index++;
5275 break;
5276 case QEMU_OPTION_watchdog:
5277 i = select_watchdog(optarg);
5278 if (i > 0)
5279 exit (i == 1 ? 1 : 0);
5280 break;
5281 case QEMU_OPTION_watchdog_action:
5282 if (select_watchdog_action(optarg) == -1) {
5283 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5284 exit(1);
5285 }
5286 break;
5287 case QEMU_OPTION_virtiocon:
5288 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5289 fprintf(stderr, "qemu: too many virtio consoles\n");
5290 exit(1);
5291 }
5292 virtio_consoles[virtio_console_index] = optarg;
5293 virtio_console_index++;
5294 break;
5295 case QEMU_OPTION_parallel:
5296 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5297 fprintf(stderr, "qemu: too many parallel ports\n");
5298 exit(1);
5299 }
5300 parallel_devices[parallel_device_index] = optarg;
5301 parallel_device_index++;
5302 break;
5303 case QEMU_OPTION_loadvm:
5304 loadvm = optarg;
5305 break;
5306 case QEMU_OPTION_full_screen:
5307 full_screen = 1;
5308 break;
5309 #ifdef CONFIG_SDL
5310 case QEMU_OPTION_no_frame:
5311 no_frame = 1;
5312 break;
5313 case QEMU_OPTION_alt_grab:
5314 alt_grab = 1;
5315 break;
5316 case QEMU_OPTION_no_quit:
5317 no_quit = 1;
5318 break;
5319 case QEMU_OPTION_sdl:
5320 display_type = DT_SDL;
5321 break;
5322 #endif
5323 case QEMU_OPTION_pidfile:
5324 pid_file = optarg;
5325 break;
5326 #ifdef TARGET_I386
5327 case QEMU_OPTION_win2k_hack:
5328 win2k_install_hack = 1;
5329 break;
5330 case QEMU_OPTION_rtc_td_hack:
5331 rtc_td_hack = 1;
5332 break;
5333 case QEMU_OPTION_acpitable:
5334 if(acpi_table_add(optarg) < 0) {
5335 fprintf(stderr, "Wrong acpi table provided\n");
5336 exit(1);
5337 }
5338 break;
5339 case QEMU_OPTION_smbios:
5340 if(smbios_entry_add(optarg) < 0) {
5341 fprintf(stderr, "Wrong smbios provided\n");
5342 exit(1);
5343 }
5344 break;
5345 #endif
5346 #ifdef CONFIG_KQEMU
5347 case QEMU_OPTION_no_kqemu:
5348 kqemu_allowed = 0;
5349 break;
5350 case QEMU_OPTION_kernel_kqemu:
5351 kqemu_allowed = 2;
5352 break;
5353 #endif
5354 #ifdef CONFIG_KVM
5355 case QEMU_OPTION_enable_kvm:
5356 kvm_allowed = 1;
5357 #ifdef CONFIG_KQEMU
5358 kqemu_allowed = 0;
5359 #endif
5360 break;
5361 #endif
5362 case QEMU_OPTION_usb:
5363 usb_enabled = 1;
5364 break;
5365 case QEMU_OPTION_usbdevice:
5366 usb_enabled = 1;
5367 if (usb_devices_index >= MAX_USB_CMDLINE) {
5368 fprintf(stderr, "Too many USB devices\n");
5369 exit(1);
5370 }
5371 usb_devices[usb_devices_index] = optarg;
5372 usb_devices_index++;
5373 break;
5374 case QEMU_OPTION_smp:
5375 smp_cpus = atoi(optarg);
5376 if (smp_cpus < 1) {
5377 fprintf(stderr, "Invalid number of CPUs\n");
5378 exit(1);
5379 }
5380 break;
5381 case QEMU_OPTION_vnc:
5382 display_type = DT_VNC;
5383 vnc_display = optarg;
5384 break;
5385 #ifdef TARGET_I386
5386 case QEMU_OPTION_no_acpi:
5387 acpi_enabled = 0;
5388 break;
5389 case QEMU_OPTION_no_hpet:
5390 no_hpet = 1;
5391 break;
5392 case QEMU_OPTION_balloon:
5393 if (balloon_parse(optarg) < 0) {
5394 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5395 exit(1);
5396 }
5397 break;
5398 #endif
5399 case QEMU_OPTION_no_reboot:
5400 no_reboot = 1;
5401 break;
5402 case QEMU_OPTION_no_shutdown:
5403 no_shutdown = 1;
5404 break;
5405 case QEMU_OPTION_show_cursor:
5406 cursor_hide = 0;
5407 break;
5408 case QEMU_OPTION_uuid:
5409 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5410 fprintf(stderr, "Fail to parse UUID string."
5411 " Wrong format.\n");
5412 exit(1);
5413 }
5414 break;
5415 #ifndef _WIN32
5416 case QEMU_OPTION_daemonize:
5417 daemonize = 1;
5418 break;
5419 #endif
5420 case QEMU_OPTION_option_rom:
5421 if (nb_option_roms >= MAX_OPTION_ROMS) {
5422 fprintf(stderr, "Too many option ROMs\n");
5423 exit(1);
5424 }
5425 option_rom[nb_option_roms] = optarg;
5426 nb_option_roms++;
5427 break;
5428 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5429 case QEMU_OPTION_semihosting:
5430 semihosting_enabled = 1;
5431 break;
5432 #endif
5433 case QEMU_OPTION_name:
5434 qemu_name = qemu_strdup(optarg);
5435 {
5436 char *p = strchr(qemu_name, ',');
5437 if (p != NULL) {
5438 *p++ = 0;
5439 if (strncmp(p, "process=", 8)) {
5440 fprintf(stderr, "Unknown subargument %s to -name", p);
5441 exit(1);
5442 }
5443 p += 8;
5444 set_proc_name(p);
5445 }
5446 }
5447 break;
5448 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5449 case QEMU_OPTION_prom_env:
5450 if (nb_prom_envs >= MAX_PROM_ENVS) {
5451 fprintf(stderr, "Too many prom variables\n");
5452 exit(1);
5453 }
5454 prom_envs[nb_prom_envs] = optarg;
5455 nb_prom_envs++;
5456 break;
5457 #endif
5458 #ifdef TARGET_ARM
5459 case QEMU_OPTION_old_param:
5460 old_param = 1;
5461 break;
5462 #endif
5463 case QEMU_OPTION_clock:
5464 configure_alarms(optarg);
5465 break;
5466 case QEMU_OPTION_startdate:
5467 {
5468 struct tm tm;
5469 time_t rtc_start_date;
5470 if (!strcmp(optarg, "now")) {
5471 rtc_date_offset = -1;
5472 } else {
5473 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5474 &tm.tm_year,
5475 &tm.tm_mon,
5476 &tm.tm_mday,
5477 &tm.tm_hour,
5478 &tm.tm_min,
5479 &tm.tm_sec) == 6) {
5480 /* OK */
5481 } else if (sscanf(optarg, "%d-%d-%d",
5482 &tm.tm_year,
5483 &tm.tm_mon,
5484 &tm.tm_mday) == 3) {
5485 tm.tm_hour = 0;
5486 tm.tm_min = 0;
5487 tm.tm_sec = 0;
5488 } else {
5489 goto date_fail;
5490 }
5491 tm.tm_year -= 1900;
5492 tm.tm_mon--;
5493 rtc_start_date = mktimegm(&tm);
5494 if (rtc_start_date == -1) {
5495 date_fail:
5496 fprintf(stderr, "Invalid date format. Valid format are:\n"
5497 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5498 exit(1);
5499 }
5500 rtc_date_offset = time(NULL) - rtc_start_date;
5501 }
5502 }
5503 break;
5504 case QEMU_OPTION_tb_size:
5505 tb_size = strtol(optarg, NULL, 0);
5506 if (tb_size < 0)
5507 tb_size = 0;
5508 break;
5509 case QEMU_OPTION_icount:
5510 use_icount = 1;
5511 if (strcmp(optarg, "auto") == 0) {
5512 icount_time_shift = -1;
5513 } else {
5514 icount_time_shift = strtol(optarg, NULL, 0);
5515 }
5516 break;
5517 case QEMU_OPTION_incoming:
5518 incoming = optarg;
5519 break;
5520 #ifndef _WIN32
5521 case QEMU_OPTION_chroot:
5522 chroot_dir = optarg;
5523 break;
5524 case QEMU_OPTION_runas:
5525 run_as = optarg;
5526 break;
5527 #endif
5528 #ifdef CONFIG_XEN
5529 case QEMU_OPTION_xen_domid:
5530 xen_domid = atoi(optarg);
5531 break;
5532 case QEMU_OPTION_xen_create:
5533 xen_mode = XEN_CREATE;
5534 break;
5535 case QEMU_OPTION_xen_attach:
5536 xen_mode = XEN_ATTACH;
5537 break;
5538 #endif
5539 }
5540 }
5541 }
5542
5543 /* If no data_dir is specified then try to find it relative to the
5544 executable path. */
5545 if (!data_dir) {
5546 data_dir = find_datadir(argv[0]);
5547 }
5548 /* If all else fails use the install patch specified when building. */
5549 if (!data_dir) {
5550 data_dir = CONFIG_QEMU_SHAREDIR;
5551 }
5552
5553 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5554 if (kvm_allowed && kqemu_allowed) {
5555 fprintf(stderr,
5556 "You can not enable both KVM and kqemu at the same time\n");
5557 exit(1);
5558 }
5559 #endif
5560
5561 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5562 if (smp_cpus > machine->max_cpus) {
5563 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5564 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5565 machine->max_cpus);
5566 exit(1);
5567 }
5568
5569 if (display_type == DT_NOGRAPHIC) {
5570 if (serial_device_index == 0)
5571 serial_devices[0] = "stdio";
5572 if (parallel_device_index == 0)
5573 parallel_devices[0] = "null";
5574 if (strncmp(monitor_device, "vc", 2) == 0)
5575 monitor_device = "stdio";
5576 }
5577
5578 #ifndef _WIN32
5579 if (daemonize) {
5580 pid_t pid;
5581
5582 if (pipe(fds) == -1)
5583 exit(1);
5584
5585 pid = fork();
5586 if (pid > 0) {
5587 uint8_t status;
5588 ssize_t len;
5589
5590 close(fds[1]);
5591
5592 again:
5593 len = read(fds[0], &status, 1);
5594 if (len == -1 && (errno == EINTR))
5595 goto again;
5596
5597 if (len != 1)
5598 exit(1);
5599 else if (status == 1) {
5600 fprintf(stderr, "Could not acquire pidfile\n");
5601 exit(1);
5602 } else
5603 exit(0);
5604 } else if (pid < 0)
5605 exit(1);
5606
5607 setsid();
5608
5609 pid = fork();
5610 if (pid > 0)
5611 exit(0);
5612 else if (pid < 0)
5613 exit(1);
5614
5615 umask(027);
5616
5617 signal(SIGTSTP, SIG_IGN);
5618 signal(SIGTTOU, SIG_IGN);
5619 signal(SIGTTIN, SIG_IGN);
5620 }
5621
5622 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5623 if (daemonize) {
5624 uint8_t status = 1;
5625 write(fds[1], &status, 1);
5626 } else
5627 fprintf(stderr, "Could not acquire pid file\n");
5628 exit(1);
5629 }
5630 #endif
5631
5632 #ifdef CONFIG_KQEMU
5633 if (smp_cpus > 1)
5634 kqemu_allowed = 0;
5635 #endif
5636 if (qemu_init_main_loop()) {
5637 fprintf(stderr, "qemu_init_main_loop failed\n");
5638 exit(1);
5639 }
5640 linux_boot = (kernel_filename != NULL);
5641
5642 if (!linux_boot && *kernel_cmdline != '\0') {
5643 fprintf(stderr, "-append only allowed with -kernel option\n");
5644 exit(1);
5645 }
5646
5647 if (!linux_boot && initrd_filename != NULL) {
5648 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5649 exit(1);
5650 }
5651
5652 /* boot to floppy or the default cd if no hard disk defined yet */
5653 if (!boot_devices[0]) {
5654 boot_devices = "cad";
5655 }
5656 setvbuf(stdout, NULL, _IOLBF, 0);
5657
5658 init_timers();
5659 if (init_timer_alarm() < 0) {
5660 fprintf(stderr, "could not initialize alarm timer\n");
5661 exit(1);
5662 }
5663 if (use_icount && icount_time_shift < 0) {
5664 use_icount = 2;
5665 /* 125MIPS seems a reasonable initial guess at the guest speed.
5666 It will be corrected fairly quickly anyway. */
5667 icount_time_shift = 3;
5668 init_icount_adjust();
5669 }
5670
5671 #ifdef _WIN32
5672 socket_init();
5673 #endif
5674
5675 /* init network clients */
5676 if (nb_net_clients == 0) {
5677 /* if no clients, we use a default config */
5678 net_clients[nb_net_clients++] = "nic";
5679 #ifdef CONFIG_SLIRP
5680 net_clients[nb_net_clients++] = "user";
5681 #endif
5682 }
5683
5684 for(i = 0;i < nb_net_clients; i++) {
5685 if (net_client_parse(net_clients[i]) < 0)
5686 exit(1);
5687 }
5688
5689 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5690 net_set_boot_mask(net_boot);
5691
5692 net_client_check();
5693
5694 /* init the bluetooth world */
5695 for (i = 0; i < nb_bt_opts; i++)
5696 if (bt_parse(bt_opts[i]))
5697 exit(1);
5698
5699 /* init the memory */
5700 if (ram_size == 0)
5701 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5702
5703 #ifdef CONFIG_KQEMU
5704 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5705 guest ram allocation. It needs to go away. */
5706 if (kqemu_allowed) {
5707 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5708 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5709 if (!kqemu_phys_ram_base) {
5710 fprintf(stderr, "Could not allocate physical memory\n");
5711 exit(1);
5712 }
5713 }
5714 #endif
5715
5716 /* init the dynamic translator */
5717 cpu_exec_init_all(tb_size * 1024 * 1024);
5718
5719 bdrv_init();
5720
5721 /* we always create the cdrom drive, even if no disk is there */
5722
5723 if (nb_drives_opt < MAX_DRIVES)
5724 drive_add(NULL, CDROM_ALIAS);
5725
5726 /* we always create at least one floppy */
5727
5728 if (nb_drives_opt < MAX_DRIVES)
5729 drive_add(NULL, FD_ALIAS, 0);
5730
5731 /* we always create one sd slot, even if no card is in it */
5732
5733 if (nb_drives_opt < MAX_DRIVES)
5734 drive_add(NULL, SD_ALIAS);
5735
5736 /* open the virtual block devices */
5737
5738 for(i = 0; i < nb_drives_opt; i++)
5739 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5740 exit(1);
5741
5742 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5743 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5744
5745 #ifndef _WIN32
5746 /* must be after terminal init, SDL library changes signal handlers */
5747 sighandler_setup();
5748 #endif
5749
5750 /* Maintain compatibility with multiple stdio monitors */
5751 if (!strcmp(monitor_device,"stdio")) {
5752 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5753 const char *devname = serial_devices[i];
5754 if (devname && !strcmp(devname,"mon:stdio")) {
5755 monitor_device = NULL;
5756 break;
5757 } else if (devname && !strcmp(devname,"stdio")) {
5758 monitor_device = NULL;
5759 serial_devices[i] = "mon:stdio";
5760 break;
5761 }
5762 }
5763 }
5764
5765 if (nb_numa_nodes > 0) {
5766 int i;
5767
5768 if (nb_numa_nodes > smp_cpus) {
5769 nb_numa_nodes = smp_cpus;
5770 }
5771
5772 /* If no memory size if given for any node, assume the default case
5773 * and distribute the available memory equally across all nodes
5774 */
5775 for (i = 0; i < nb_numa_nodes; i++) {
5776 if (node_mem[i] != 0)
5777 break;
5778 }
5779 if (i == nb_numa_nodes) {
5780 uint64_t usedmem = 0;
5781
5782 /* On Linux, the each node's border has to be 8MB aligned,
5783 * the final node gets the rest.
5784 */
5785 for (i = 0; i < nb_numa_nodes - 1; i++) {
5786 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5787 usedmem += node_mem[i];
5788 }
5789 node_mem[i] = ram_size - usedmem;
5790 }
5791
5792 for (i = 0; i < nb_numa_nodes; i++) {
5793 if (node_cpumask[i] != 0)
5794 break;
5795 }
5796 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5797 * must cope with this anyway, because there are BIOSes out there in
5798 * real machines which also use this scheme.
5799 */
5800 if (i == nb_numa_nodes) {
5801 for (i = 0; i < smp_cpus; i++) {
5802 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5803 }
5804 }
5805 }
5806
5807 if (kvm_enabled()) {
5808 int ret;
5809
5810 ret = kvm_init(smp_cpus);
5811 if (ret < 0) {
5812 fprintf(stderr, "failed to initialize KVM\n");
5813 exit(1);
5814 }
5815 }
5816
5817 if (monitor_device) {
5818 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5819 if (!monitor_hd) {
5820 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5821 exit(1);
5822 }
5823 }
5824
5825 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5826 const char *devname = serial_devices[i];
5827 if (devname && strcmp(devname, "none")) {
5828 char label[32];
5829 snprintf(label, sizeof(label), "serial%d", i);
5830 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5831 if (!serial_hds[i]) {
5832 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5833 devname);
5834 exit(1);
5835 }
5836 }
5837 }
5838
5839 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5840 const char *devname = parallel_devices[i];
5841 if (devname && strcmp(devname, "none")) {
5842 char label[32];
5843 snprintf(label, sizeof(label), "parallel%d", i);
5844 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5845 if (!parallel_hds[i]) {
5846 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5847 devname);
5848 exit(1);
5849 }
5850 }
5851 }
5852
5853 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5854 const char *devname = virtio_consoles[i];
5855 if (devname && strcmp(devname, "none")) {
5856 char label[32];
5857 snprintf(label, sizeof(label), "virtcon%d", i);
5858 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5859 if (!virtcon_hds[i]) {
5860 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5861 devname);
5862 exit(1);
5863 }
5864 }
5865 }
5866
5867 module_call_init(MODULE_INIT_DEVICE);
5868
5869 machine->init(ram_size, boot_devices,
5870 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5871
5872
5873 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5874 for (i = 0; i < nb_numa_nodes; i++) {
5875 if (node_cpumask[i] & (1 << env->cpu_index)) {
5876 env->numa_node = i;
5877 }
5878 }
5879 }
5880
5881 current_machine = machine;
5882
5883 /* init USB devices */
5884 if (usb_enabled) {
5885 for(i = 0; i < usb_devices_index; i++) {
5886 if (usb_device_add(usb_devices[i], 0) < 0) {
5887 fprintf(stderr, "Warning: could not add USB device %s\n",
5888 usb_devices[i]);
5889 }
5890 }
5891 }
5892
5893 if (!display_state)
5894 dumb_display_init();
5895 /* just use the first displaystate for the moment */
5896 ds = display_state;
5897
5898 if (display_type == DT_DEFAULT) {
5899 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5900 display_type = DT_SDL;
5901 #else
5902 display_type = DT_VNC;
5903 vnc_display = "localhost:0,to=99";
5904 show_vnc_port = 1;
5905 #endif
5906 }
5907
5908
5909 switch (display_type) {
5910 case DT_NOGRAPHIC:
5911 break;
5912 #if defined(CONFIG_CURSES)
5913 case DT_CURSES:
5914 curses_display_init(ds, full_screen);
5915 break;
5916 #endif
5917 #if defined(CONFIG_SDL)
5918 case DT_SDL:
5919 sdl_display_init(ds, full_screen, no_frame);
5920 break;
5921 #elif defined(CONFIG_COCOA)
5922 case DT_SDL:
5923 cocoa_display_init(ds, full_screen);
5924 break;
5925 #endif
5926 case DT_VNC:
5927 vnc_display_init(ds);
5928 if (vnc_display_open(ds, vnc_display) < 0)
5929 exit(1);
5930
5931 if (show_vnc_port) {
5932 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5933 }
5934 break;
5935 default:
5936 break;
5937 }
5938 dpy_resize(ds);
5939
5940 dcl = ds->listeners;
5941 while (dcl != NULL) {
5942 if (dcl->dpy_refresh != NULL) {
5943 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5944 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5945 }
5946 dcl = dcl->next;
5947 }
5948
5949 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5950 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5951 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5952 }
5953
5954 text_consoles_set_display(display_state);
5955 qemu_chr_initial_reset();
5956
5957 if (monitor_device && monitor_hd)
5958 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5959
5960 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5961 const char *devname = serial_devices[i];
5962 if (devname && strcmp(devname, "none")) {
5963 if (strstart(devname, "vc", 0))
5964 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5965 }
5966 }
5967
5968 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5969 const char *devname = parallel_devices[i];
5970 if (devname && strcmp(devname, "none")) {
5971 if (strstart(devname, "vc", 0))
5972 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5973 }
5974 }
5975
5976 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5977 const char *devname = virtio_consoles[i];
5978 if (virtcon_hds[i] && devname) {
5979 if (strstart(devname, "vc", 0))
5980 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5981 }
5982 }
5983
5984 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5985 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5986 gdbstub_dev);
5987 exit(1);
5988 }
5989
5990 if (loadvm)
5991 do_loadvm(cur_mon, loadvm);
5992
5993 if (incoming) {
5994 autostart = 0; /* fixme how to deal with -daemonize */
5995 qemu_start_incoming_migration(incoming);
5996 }
5997
5998 if (autostart)
5999 vm_start();
6000
6001 #ifndef _WIN32
6002 if (daemonize) {
6003 uint8_t status = 0;
6004 ssize_t len;
6005
6006 again1:
6007 len = write(fds[1], &status, 1);
6008 if (len == -1 && (errno == EINTR))
6009 goto again1;
6010
6011 if (len != 1)
6012 exit(1);
6013
6014 chdir("/");
6015 TFR(fd = open("/dev/null", O_RDWR));
6016 if (fd == -1)
6017 exit(1);
6018 }
6019
6020 if (run_as) {
6021 pwd = getpwnam(run_as);
6022 if (!pwd) {
6023 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6024 exit(1);
6025 }
6026 }
6027
6028 if (chroot_dir) {
6029 if (chroot(chroot_dir) < 0) {
6030 fprintf(stderr, "chroot failed\n");
6031 exit(1);
6032 }
6033 chdir("/");
6034 }
6035
6036 if (run_as) {
6037 if (setgid(pwd->pw_gid) < 0) {
6038 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6039 exit(1);
6040 }
6041 if (setuid(pwd->pw_uid) < 0) {
6042 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6043 exit(1);
6044 }
6045 if (setuid(0) != -1) {
6046 fprintf(stderr, "Dropping privileges failed\n");
6047 exit(1);
6048 }
6049 }
6050
6051 if (daemonize) {
6052 dup2(fd, 0);
6053 dup2(fd, 1);
6054 dup2(fd, 2);
6055
6056 close(fd);
6057 }
6058 #endif
6059
6060 main_loop();
6061 quit_timers();
6062 net_cleanup();
6063
6064 return 0;
6065 }