]> git.proxmox.com Git - qemu.git/blob - vl.c
Fix multiboot compilation
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 static const char *data_dir;
177 const char *bios_name = NULL;
178 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
179 to store the VM snapshots */
180 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
181 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
182 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183 static DisplayState *display_state;
184 DisplayType display_type = DT_DEFAULT;
185 const char* keyboard_layout = NULL;
186 ram_addr_t ram_size;
187 int nb_nics;
188 NICInfo nd_table[MAX_NICS];
189 int vm_running;
190 int autostart;
191 static int rtc_utc = 1;
192 static int rtc_date_offset = -1; /* -1 means no change */
193 QEMUClock *rtc_clock;
194 int vga_interface_type = VGA_NONE;
195 #ifdef TARGET_SPARC
196 int graphic_width = 1024;
197 int graphic_height = 768;
198 int graphic_depth = 8;
199 #else
200 int graphic_width = 800;
201 int graphic_height = 600;
202 int graphic_depth = 15;
203 #endif
204 static int full_screen = 0;
205 #ifdef CONFIG_SDL
206 static int no_frame = 0;
207 #endif
208 int no_quit = 0;
209 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
210 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
211 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
212 #ifdef TARGET_I386
213 int win2k_install_hack = 0;
214 int rtc_td_hack = 0;
215 #endif
216 int usb_enabled = 0;
217 int singlestep = 0;
218 int smp_cpus = 1;
219 int max_cpus = 0;
220 int smp_cores = 1;
221 int smp_threads = 1;
222 const char *vnc_display;
223 int acpi_enabled = 1;
224 int no_hpet = 0;
225 int fd_bootchk = 1;
226 int no_reboot = 0;
227 int no_shutdown = 0;
228 int cursor_hide = 1;
229 int graphic_rotate = 0;
230 uint8_t irq0override = 1;
231 #ifndef _WIN32
232 int daemonize = 0;
233 #endif
234 const char *watchdog;
235 const char *option_rom[MAX_OPTION_ROMS];
236 int nb_option_roms;
237 int semihosting_enabled = 0;
238 #ifdef TARGET_ARM
239 int old_param = 0;
240 #endif
241 const char *qemu_name;
242 int alt_grab = 0;
243 int ctrl_grab = 0;
244 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
245 unsigned int nb_prom_envs = 0;
246 const char *prom_envs[MAX_PROM_ENVS];
247 #endif
248 int boot_menu;
249
250 int nb_numa_nodes;
251 uint64_t node_mem[MAX_NODES];
252 uint64_t node_cpumask[MAX_NODES];
253
254 static CPUState *cur_cpu;
255 static CPUState *next_cpu;
256 static int timer_alarm_pending = 1;
257 /* Conversion factor from emulated instructions to virtual clock ticks. */
258 static int icount_time_shift;
259 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
260 #define MAX_ICOUNT_SHIFT 10
261 /* Compensate for varying guest execution speed. */
262 static int64_t qemu_icount_bias;
263 static QEMUTimer *icount_rt_timer;
264 static QEMUTimer *icount_vm_timer;
265 static QEMUTimer *nographic_timer;
266
267 uint8_t qemu_uuid[16];
268
269 static QEMUBootSetHandler *boot_set_handler;
270 static void *boot_set_opaque;
271
272 static int default_serial = 1;
273 static int default_parallel = 1;
274 static int default_virtcon = 1;
275 static int default_monitor = 1;
276 static int default_vga = 1;
277 static int default_floppy = 1;
278 static int default_cdrom = 1;
279 static int default_sdcard = 1;
280
281 static struct {
282 const char *driver;
283 int *flag;
284 } default_list[] = {
285 { .driver = "isa-serial", .flag = &default_serial },
286 { .driver = "isa-parallel", .flag = &default_parallel },
287 { .driver = "isa-fdc", .flag = &default_floppy },
288 { .driver = "ide-drive", .flag = &default_cdrom },
289 { .driver = "virtio-console-pci", .flag = &default_virtcon },
290 { .driver = "virtio-console-s390", .flag = &default_virtcon },
291 { .driver = "VGA", .flag = &default_vga },
292 { .driver = "cirrus-vga", .flag = &default_vga },
293 { .driver = "vmware-svga", .flag = &default_vga },
294 };
295
296 static int default_driver_check(QemuOpts *opts, void *opaque)
297 {
298 const char *driver = qemu_opt_get(opts, "driver");
299 int i;
300
301 if (!driver)
302 return 0;
303 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
304 if (strcmp(default_list[i].driver, driver) != 0)
305 continue;
306 *(default_list[i].flag) = 0;
307 }
308 return 0;
309 }
310
311 /***********************************************************/
312 /* x86 ISA bus support */
313
314 target_phys_addr_t isa_mem_base = 0;
315 PicState2 *isa_pic;
316
317 /***********************************************************/
318 void hw_error(const char *fmt, ...)
319 {
320 va_list ap;
321 CPUState *env;
322
323 va_start(ap, fmt);
324 fprintf(stderr, "qemu: hardware error: ");
325 vfprintf(stderr, fmt, ap);
326 fprintf(stderr, "\n");
327 for(env = first_cpu; env != NULL; env = env->next_cpu) {
328 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
329 #ifdef TARGET_I386
330 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
331 #else
332 cpu_dump_state(env, stderr, fprintf, 0);
333 #endif
334 }
335 va_end(ap);
336 abort();
337 }
338
339 static void set_proc_name(const char *s)
340 {
341 #if defined(__linux__) && defined(PR_SET_NAME)
342 char name[16];
343 if (!s)
344 return;
345 name[sizeof(name) - 1] = 0;
346 strncpy(name, s, sizeof(name));
347 /* Could rewrite argv[0] too, but that's a bit more complicated.
348 This simple way is enough for `top'. */
349 prctl(PR_SET_NAME, name);
350 #endif
351 }
352
353 /***************/
354 /* ballooning */
355
356 static QEMUBalloonEvent *qemu_balloon_event;
357 void *qemu_balloon_event_opaque;
358
359 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
360 {
361 qemu_balloon_event = func;
362 qemu_balloon_event_opaque = opaque;
363 }
364
365 void qemu_balloon(ram_addr_t target)
366 {
367 if (qemu_balloon_event)
368 qemu_balloon_event(qemu_balloon_event_opaque, target);
369 }
370
371 ram_addr_t qemu_balloon_status(void)
372 {
373 if (qemu_balloon_event)
374 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
375 return 0;
376 }
377
378 /***********************************************************/
379 /* keyboard/mouse */
380
381 static QEMUPutKBDEvent *qemu_put_kbd_event;
382 static void *qemu_put_kbd_event_opaque;
383 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
384 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
385
386 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
387 {
388 qemu_put_kbd_event_opaque = opaque;
389 qemu_put_kbd_event = func;
390 }
391
392 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
393 void *opaque, int absolute,
394 const char *name)
395 {
396 QEMUPutMouseEntry *s, *cursor;
397
398 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
399
400 s->qemu_put_mouse_event = func;
401 s->qemu_put_mouse_event_opaque = opaque;
402 s->qemu_put_mouse_event_absolute = absolute;
403 s->qemu_put_mouse_event_name = qemu_strdup(name);
404 s->next = NULL;
405
406 if (!qemu_put_mouse_event_head) {
407 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
408 return s;
409 }
410
411 cursor = qemu_put_mouse_event_head;
412 while (cursor->next != NULL)
413 cursor = cursor->next;
414
415 cursor->next = s;
416 qemu_put_mouse_event_current = s;
417
418 return s;
419 }
420
421 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
422 {
423 QEMUPutMouseEntry *prev = NULL, *cursor;
424
425 if (!qemu_put_mouse_event_head || entry == NULL)
426 return;
427
428 cursor = qemu_put_mouse_event_head;
429 while (cursor != NULL && cursor != entry) {
430 prev = cursor;
431 cursor = cursor->next;
432 }
433
434 if (cursor == NULL) // does not exist or list empty
435 return;
436 else if (prev == NULL) { // entry is head
437 qemu_put_mouse_event_head = cursor->next;
438 if (qemu_put_mouse_event_current == entry)
439 qemu_put_mouse_event_current = cursor->next;
440 qemu_free(entry->qemu_put_mouse_event_name);
441 qemu_free(entry);
442 return;
443 }
444
445 prev->next = entry->next;
446
447 if (qemu_put_mouse_event_current == entry)
448 qemu_put_mouse_event_current = prev;
449
450 qemu_free(entry->qemu_put_mouse_event_name);
451 qemu_free(entry);
452 }
453
454 void kbd_put_keycode(int keycode)
455 {
456 if (qemu_put_kbd_event) {
457 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
458 }
459 }
460
461 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
462 {
463 QEMUPutMouseEvent *mouse_event;
464 void *mouse_event_opaque;
465 int width;
466
467 if (!qemu_put_mouse_event_current) {
468 return;
469 }
470
471 mouse_event =
472 qemu_put_mouse_event_current->qemu_put_mouse_event;
473 mouse_event_opaque =
474 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
475
476 if (mouse_event) {
477 if (graphic_rotate) {
478 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
479 width = 0x7fff;
480 else
481 width = graphic_width - 1;
482 mouse_event(mouse_event_opaque,
483 width - dy, dx, dz, buttons_state);
484 } else
485 mouse_event(mouse_event_opaque,
486 dx, dy, dz, buttons_state);
487 }
488 }
489
490 int kbd_mouse_is_absolute(void)
491 {
492 if (!qemu_put_mouse_event_current)
493 return 0;
494
495 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
496 }
497
498 static void info_mice_iter(QObject *data, void *opaque)
499 {
500 QDict *mouse;
501 Monitor *mon = opaque;
502
503 mouse = qobject_to_qdict(data);
504 monitor_printf(mon, "%c Mouse #%" PRId64 ": %s\n",
505 (qdict_get_bool(mouse, "current") ? '*' : ' '),
506 qdict_get_int(mouse, "index"), qdict_get_str(mouse, "name"));
507 }
508
509 void do_info_mice_print(Monitor *mon, const QObject *data)
510 {
511 QList *mice_list;
512
513 mice_list = qobject_to_qlist(data);
514 if (qlist_empty(mice_list)) {
515 monitor_printf(mon, "No mouse devices connected\n");
516 return;
517 }
518
519 qlist_iter(mice_list, info_mice_iter, mon);
520 }
521
522 /**
523 * do_info_mice(): Show VM mice information
524 *
525 * Each mouse is represented by a QDict, the returned QObject is a QList of
526 * all mice.
527 *
528 * The mouse QDict contains the following:
529 *
530 * - "name": mouse's name
531 * - "index": mouse's index
532 * - "current": true if this mouse is receiving events, false otherwise
533 *
534 * Example:
535 *
536 * [ { "name": "QEMU Microsoft Mouse", "index": 0, "current": false },
537 * { "name": "QEMU PS/2 Mouse", "index": 1, "current": true } ]
538 */
539 void do_info_mice(Monitor *mon, QObject **ret_data)
540 {
541 QEMUPutMouseEntry *cursor;
542 QList *mice_list;
543 int index = 0;
544
545 mice_list = qlist_new();
546
547 if (!qemu_put_mouse_event_head) {
548 goto out;
549 }
550
551 cursor = qemu_put_mouse_event_head;
552 while (cursor != NULL) {
553 QObject *obj;
554 obj = qobject_from_jsonf("{ 'name': %s, 'index': %d, 'current': %i }",
555 cursor->qemu_put_mouse_event_name,
556 index, cursor == qemu_put_mouse_event_current);
557 qlist_append_obj(mice_list, obj);
558 index++;
559 cursor = cursor->next;
560 }
561
562 out:
563 *ret_data = QOBJECT(mice_list);
564 }
565
566 void do_mouse_set(Monitor *mon, const QDict *qdict)
567 {
568 QEMUPutMouseEntry *cursor;
569 int i = 0;
570 int index = qdict_get_int(qdict, "index");
571
572 if (!qemu_put_mouse_event_head) {
573 monitor_printf(mon, "No mouse devices connected\n");
574 return;
575 }
576
577 cursor = qemu_put_mouse_event_head;
578 while (cursor != NULL && index != i) {
579 i++;
580 cursor = cursor->next;
581 }
582
583 if (cursor != NULL)
584 qemu_put_mouse_event_current = cursor;
585 else
586 monitor_printf(mon, "Mouse at given index not found\n");
587 }
588
589 /* compute with 96 bit intermediate result: (a*b)/c */
590 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
591 {
592 union {
593 uint64_t ll;
594 struct {
595 #ifdef HOST_WORDS_BIGENDIAN
596 uint32_t high, low;
597 #else
598 uint32_t low, high;
599 #endif
600 } l;
601 } u, res;
602 uint64_t rl, rh;
603
604 u.ll = a;
605 rl = (uint64_t)u.l.low * (uint64_t)b;
606 rh = (uint64_t)u.l.high * (uint64_t)b;
607 rh += (rl >> 32);
608 res.l.high = rh / c;
609 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
610 return res.ll;
611 }
612
613 /***********************************************************/
614 /* real time host monotonic timer */
615
616 static int64_t get_clock_realtime(void)
617 {
618 struct timeval tv;
619
620 gettimeofday(&tv, NULL);
621 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
622 }
623
624 #ifdef WIN32
625
626 static int64_t clock_freq;
627
628 static void init_get_clock(void)
629 {
630 LARGE_INTEGER freq;
631 int ret;
632 ret = QueryPerformanceFrequency(&freq);
633 if (ret == 0) {
634 fprintf(stderr, "Could not calibrate ticks\n");
635 exit(1);
636 }
637 clock_freq = freq.QuadPart;
638 }
639
640 static int64_t get_clock(void)
641 {
642 LARGE_INTEGER ti;
643 QueryPerformanceCounter(&ti);
644 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
645 }
646
647 #else
648
649 static int use_rt_clock;
650
651 static void init_get_clock(void)
652 {
653 use_rt_clock = 0;
654 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
655 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
656 {
657 struct timespec ts;
658 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
659 use_rt_clock = 1;
660 }
661 }
662 #endif
663 }
664
665 static int64_t get_clock(void)
666 {
667 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
668 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
669 if (use_rt_clock) {
670 struct timespec ts;
671 clock_gettime(CLOCK_MONOTONIC, &ts);
672 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
673 } else
674 #endif
675 {
676 /* XXX: using gettimeofday leads to problems if the date
677 changes, so it should be avoided. */
678 return get_clock_realtime();
679 }
680 }
681 #endif
682
683 /* Return the virtual CPU time, based on the instruction counter. */
684 static int64_t cpu_get_icount(void)
685 {
686 int64_t icount;
687 CPUState *env = cpu_single_env;;
688 icount = qemu_icount;
689 if (env) {
690 if (!can_do_io(env))
691 fprintf(stderr, "Bad clock read\n");
692 icount -= (env->icount_decr.u16.low + env->icount_extra);
693 }
694 return qemu_icount_bias + (icount << icount_time_shift);
695 }
696
697 /***********************************************************/
698 /* guest cycle counter */
699
700 typedef struct TimersState {
701 int64_t cpu_ticks_prev;
702 int64_t cpu_ticks_offset;
703 int64_t cpu_clock_offset;
704 int32_t cpu_ticks_enabled;
705 int64_t dummy;
706 } TimersState;
707
708 TimersState timers_state;
709
710 /* return the host CPU cycle counter and handle stop/restart */
711 int64_t cpu_get_ticks(void)
712 {
713 if (use_icount) {
714 return cpu_get_icount();
715 }
716 if (!timers_state.cpu_ticks_enabled) {
717 return timers_state.cpu_ticks_offset;
718 } else {
719 int64_t ticks;
720 ticks = cpu_get_real_ticks();
721 if (timers_state.cpu_ticks_prev > ticks) {
722 /* Note: non increasing ticks may happen if the host uses
723 software suspend */
724 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
725 }
726 timers_state.cpu_ticks_prev = ticks;
727 return ticks + timers_state.cpu_ticks_offset;
728 }
729 }
730
731 /* return the host CPU monotonic timer and handle stop/restart */
732 static int64_t cpu_get_clock(void)
733 {
734 int64_t ti;
735 if (!timers_state.cpu_ticks_enabled) {
736 return timers_state.cpu_clock_offset;
737 } else {
738 ti = get_clock();
739 return ti + timers_state.cpu_clock_offset;
740 }
741 }
742
743 /* enable cpu_get_ticks() */
744 void cpu_enable_ticks(void)
745 {
746 if (!timers_state.cpu_ticks_enabled) {
747 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
748 timers_state.cpu_clock_offset -= get_clock();
749 timers_state.cpu_ticks_enabled = 1;
750 }
751 }
752
753 /* disable cpu_get_ticks() : the clock is stopped. You must not call
754 cpu_get_ticks() after that. */
755 void cpu_disable_ticks(void)
756 {
757 if (timers_state.cpu_ticks_enabled) {
758 timers_state.cpu_ticks_offset = cpu_get_ticks();
759 timers_state.cpu_clock_offset = cpu_get_clock();
760 timers_state.cpu_ticks_enabled = 0;
761 }
762 }
763
764 /***********************************************************/
765 /* timers */
766
767 #define QEMU_CLOCK_REALTIME 0
768 #define QEMU_CLOCK_VIRTUAL 1
769 #define QEMU_CLOCK_HOST 2
770
771 struct QEMUClock {
772 int type;
773 /* XXX: add frequency */
774 };
775
776 struct QEMUTimer {
777 QEMUClock *clock;
778 int64_t expire_time;
779 QEMUTimerCB *cb;
780 void *opaque;
781 struct QEMUTimer *next;
782 };
783
784 struct qemu_alarm_timer {
785 char const *name;
786 unsigned int flags;
787
788 int (*start)(struct qemu_alarm_timer *t);
789 void (*stop)(struct qemu_alarm_timer *t);
790 void (*rearm)(struct qemu_alarm_timer *t);
791 void *priv;
792 };
793
794 #define ALARM_FLAG_DYNTICKS 0x1
795 #define ALARM_FLAG_EXPIRED 0x2
796
797 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
798 {
799 return t && (t->flags & ALARM_FLAG_DYNTICKS);
800 }
801
802 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
803 {
804 if (!alarm_has_dynticks(t))
805 return;
806
807 t->rearm(t);
808 }
809
810 /* TODO: MIN_TIMER_REARM_US should be optimized */
811 #define MIN_TIMER_REARM_US 250
812
813 static struct qemu_alarm_timer *alarm_timer;
814
815 #ifdef _WIN32
816
817 struct qemu_alarm_win32 {
818 MMRESULT timerId;
819 unsigned int period;
820 } alarm_win32_data = {0, -1};
821
822 static int win32_start_timer(struct qemu_alarm_timer *t);
823 static void win32_stop_timer(struct qemu_alarm_timer *t);
824 static void win32_rearm_timer(struct qemu_alarm_timer *t);
825
826 #else
827
828 static int unix_start_timer(struct qemu_alarm_timer *t);
829 static void unix_stop_timer(struct qemu_alarm_timer *t);
830
831 #ifdef __linux__
832
833 static int dynticks_start_timer(struct qemu_alarm_timer *t);
834 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
835 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
836
837 static int hpet_start_timer(struct qemu_alarm_timer *t);
838 static void hpet_stop_timer(struct qemu_alarm_timer *t);
839
840 static int rtc_start_timer(struct qemu_alarm_timer *t);
841 static void rtc_stop_timer(struct qemu_alarm_timer *t);
842
843 #endif /* __linux__ */
844
845 #endif /* _WIN32 */
846
847 /* Correlation between real and virtual time is always going to be
848 fairly approximate, so ignore small variation.
849 When the guest is idle real and virtual time will be aligned in
850 the IO wait loop. */
851 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
852
853 static void icount_adjust(void)
854 {
855 int64_t cur_time;
856 int64_t cur_icount;
857 int64_t delta;
858 static int64_t last_delta;
859 /* If the VM is not running, then do nothing. */
860 if (!vm_running)
861 return;
862
863 cur_time = cpu_get_clock();
864 cur_icount = qemu_get_clock(vm_clock);
865 delta = cur_icount - cur_time;
866 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
867 if (delta > 0
868 && last_delta + ICOUNT_WOBBLE < delta * 2
869 && icount_time_shift > 0) {
870 /* The guest is getting too far ahead. Slow time down. */
871 icount_time_shift--;
872 }
873 if (delta < 0
874 && last_delta - ICOUNT_WOBBLE > delta * 2
875 && icount_time_shift < MAX_ICOUNT_SHIFT) {
876 /* The guest is getting too far behind. Speed time up. */
877 icount_time_shift++;
878 }
879 last_delta = delta;
880 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
881 }
882
883 static void icount_adjust_rt(void * opaque)
884 {
885 qemu_mod_timer(icount_rt_timer,
886 qemu_get_clock(rt_clock) + 1000);
887 icount_adjust();
888 }
889
890 static void icount_adjust_vm(void * opaque)
891 {
892 qemu_mod_timer(icount_vm_timer,
893 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
894 icount_adjust();
895 }
896
897 static void init_icount_adjust(void)
898 {
899 /* Have both realtime and virtual time triggers for speed adjustment.
900 The realtime trigger catches emulated time passing too slowly,
901 the virtual time trigger catches emulated time passing too fast.
902 Realtime triggers occur even when idle, so use them less frequently
903 than VM triggers. */
904 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
905 qemu_mod_timer(icount_rt_timer,
906 qemu_get_clock(rt_clock) + 1000);
907 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
908 qemu_mod_timer(icount_vm_timer,
909 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
910 }
911
912 static struct qemu_alarm_timer alarm_timers[] = {
913 #ifndef _WIN32
914 #ifdef __linux__
915 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
916 dynticks_stop_timer, dynticks_rearm_timer, NULL},
917 /* HPET - if available - is preferred */
918 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
919 /* ...otherwise try RTC */
920 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
921 #endif
922 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
923 #else
924 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
925 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
926 {"win32", 0, win32_start_timer,
927 win32_stop_timer, NULL, &alarm_win32_data},
928 #endif
929 {NULL, }
930 };
931
932 static void show_available_alarms(void)
933 {
934 int i;
935
936 printf("Available alarm timers, in order of precedence:\n");
937 for (i = 0; alarm_timers[i].name; i++)
938 printf("%s\n", alarm_timers[i].name);
939 }
940
941 static void configure_alarms(char const *opt)
942 {
943 int i;
944 int cur = 0;
945 int count = ARRAY_SIZE(alarm_timers) - 1;
946 char *arg;
947 char *name;
948 struct qemu_alarm_timer tmp;
949
950 if (!strcmp(opt, "?")) {
951 show_available_alarms();
952 exit(0);
953 }
954
955 arg = qemu_strdup(opt);
956
957 /* Reorder the array */
958 name = strtok(arg, ",");
959 while (name) {
960 for (i = 0; i < count && alarm_timers[i].name; i++) {
961 if (!strcmp(alarm_timers[i].name, name))
962 break;
963 }
964
965 if (i == count) {
966 fprintf(stderr, "Unknown clock %s\n", name);
967 goto next;
968 }
969
970 if (i < cur)
971 /* Ignore */
972 goto next;
973
974 /* Swap */
975 tmp = alarm_timers[i];
976 alarm_timers[i] = alarm_timers[cur];
977 alarm_timers[cur] = tmp;
978
979 cur++;
980 next:
981 name = strtok(NULL, ",");
982 }
983
984 qemu_free(arg);
985
986 if (cur) {
987 /* Disable remaining timers */
988 for (i = cur; i < count; i++)
989 alarm_timers[i].name = NULL;
990 } else {
991 show_available_alarms();
992 exit(1);
993 }
994 }
995
996 #define QEMU_NUM_CLOCKS 3
997
998 QEMUClock *rt_clock;
999 QEMUClock *vm_clock;
1000 QEMUClock *host_clock;
1001
1002 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
1003
1004 static QEMUClock *qemu_new_clock(int type)
1005 {
1006 QEMUClock *clock;
1007 clock = qemu_mallocz(sizeof(QEMUClock));
1008 clock->type = type;
1009 return clock;
1010 }
1011
1012 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1013 {
1014 QEMUTimer *ts;
1015
1016 ts = qemu_mallocz(sizeof(QEMUTimer));
1017 ts->clock = clock;
1018 ts->cb = cb;
1019 ts->opaque = opaque;
1020 return ts;
1021 }
1022
1023 void qemu_free_timer(QEMUTimer *ts)
1024 {
1025 qemu_free(ts);
1026 }
1027
1028 /* stop a timer, but do not dealloc it */
1029 void qemu_del_timer(QEMUTimer *ts)
1030 {
1031 QEMUTimer **pt, *t;
1032
1033 /* NOTE: this code must be signal safe because
1034 qemu_timer_expired() can be called from a signal. */
1035 pt = &active_timers[ts->clock->type];
1036 for(;;) {
1037 t = *pt;
1038 if (!t)
1039 break;
1040 if (t == ts) {
1041 *pt = t->next;
1042 break;
1043 }
1044 pt = &t->next;
1045 }
1046 }
1047
1048 /* modify the current timer so that it will be fired when current_time
1049 >= expire_time. The corresponding callback will be called. */
1050 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1051 {
1052 QEMUTimer **pt, *t;
1053
1054 qemu_del_timer(ts);
1055
1056 /* add the timer in the sorted list */
1057 /* NOTE: this code must be signal safe because
1058 qemu_timer_expired() can be called from a signal. */
1059 pt = &active_timers[ts->clock->type];
1060 for(;;) {
1061 t = *pt;
1062 if (!t)
1063 break;
1064 if (t->expire_time > expire_time)
1065 break;
1066 pt = &t->next;
1067 }
1068 ts->expire_time = expire_time;
1069 ts->next = *pt;
1070 *pt = ts;
1071
1072 /* Rearm if necessary */
1073 if (pt == &active_timers[ts->clock->type]) {
1074 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1075 qemu_rearm_alarm_timer(alarm_timer);
1076 }
1077 /* Interrupt execution to force deadline recalculation. */
1078 if (use_icount)
1079 qemu_notify_event();
1080 }
1081 }
1082
1083 int qemu_timer_pending(QEMUTimer *ts)
1084 {
1085 QEMUTimer *t;
1086 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1087 if (t == ts)
1088 return 1;
1089 }
1090 return 0;
1091 }
1092
1093 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1094 {
1095 if (!timer_head)
1096 return 0;
1097 return (timer_head->expire_time <= current_time);
1098 }
1099
1100 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1101 {
1102 QEMUTimer *ts;
1103
1104 for(;;) {
1105 ts = *ptimer_head;
1106 if (!ts || ts->expire_time > current_time)
1107 break;
1108 /* remove timer from the list before calling the callback */
1109 *ptimer_head = ts->next;
1110 ts->next = NULL;
1111
1112 /* run the callback (the timer list can be modified) */
1113 ts->cb(ts->opaque);
1114 }
1115 }
1116
1117 int64_t qemu_get_clock(QEMUClock *clock)
1118 {
1119 switch(clock->type) {
1120 case QEMU_CLOCK_REALTIME:
1121 return get_clock() / 1000000;
1122 default:
1123 case QEMU_CLOCK_VIRTUAL:
1124 if (use_icount) {
1125 return cpu_get_icount();
1126 } else {
1127 return cpu_get_clock();
1128 }
1129 case QEMU_CLOCK_HOST:
1130 return get_clock_realtime();
1131 }
1132 }
1133
1134 static void init_clocks(void)
1135 {
1136 init_get_clock();
1137 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1138 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1139 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1140
1141 rtc_clock = host_clock;
1142 }
1143
1144 /* save a timer */
1145 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1146 {
1147 uint64_t expire_time;
1148
1149 if (qemu_timer_pending(ts)) {
1150 expire_time = ts->expire_time;
1151 } else {
1152 expire_time = -1;
1153 }
1154 qemu_put_be64(f, expire_time);
1155 }
1156
1157 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1158 {
1159 uint64_t expire_time;
1160
1161 expire_time = qemu_get_be64(f);
1162 if (expire_time != -1) {
1163 qemu_mod_timer(ts, expire_time);
1164 } else {
1165 qemu_del_timer(ts);
1166 }
1167 }
1168
1169 static const VMStateDescription vmstate_timers = {
1170 .name = "timer",
1171 .version_id = 2,
1172 .minimum_version_id = 1,
1173 .minimum_version_id_old = 1,
1174 .fields = (VMStateField []) {
1175 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1176 VMSTATE_INT64(dummy, TimersState),
1177 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1178 VMSTATE_END_OF_LIST()
1179 }
1180 };
1181
1182 static void qemu_event_increment(void);
1183
1184 #ifdef _WIN32
1185 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1186 DWORD_PTR dwUser, DWORD_PTR dw1,
1187 DWORD_PTR dw2)
1188 #else
1189 static void host_alarm_handler(int host_signum)
1190 #endif
1191 {
1192 #if 0
1193 #define DISP_FREQ 1000
1194 {
1195 static int64_t delta_min = INT64_MAX;
1196 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1197 static int count;
1198 ti = qemu_get_clock(vm_clock);
1199 if (last_clock != 0) {
1200 delta = ti - last_clock;
1201 if (delta < delta_min)
1202 delta_min = delta;
1203 if (delta > delta_max)
1204 delta_max = delta;
1205 delta_cum += delta;
1206 if (++count == DISP_FREQ) {
1207 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1208 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1209 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1210 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1211 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1212 count = 0;
1213 delta_min = INT64_MAX;
1214 delta_max = 0;
1215 delta_cum = 0;
1216 }
1217 }
1218 last_clock = ti;
1219 }
1220 #endif
1221 if (alarm_has_dynticks(alarm_timer) ||
1222 (!use_icount &&
1223 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1224 qemu_get_clock(vm_clock))) ||
1225 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1226 qemu_get_clock(rt_clock)) ||
1227 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1228 qemu_get_clock(host_clock))) {
1229 qemu_event_increment();
1230 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1231
1232 #ifndef CONFIG_IOTHREAD
1233 if (next_cpu) {
1234 /* stop the currently executing cpu because a timer occured */
1235 cpu_exit(next_cpu);
1236 }
1237 #endif
1238 timer_alarm_pending = 1;
1239 qemu_notify_event();
1240 }
1241 }
1242
1243 static int64_t qemu_next_deadline(void)
1244 {
1245 /* To avoid problems with overflow limit this to 2^32. */
1246 int64_t delta = INT32_MAX;
1247
1248 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1249 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1250 qemu_get_clock(vm_clock);
1251 }
1252 if (active_timers[QEMU_CLOCK_HOST]) {
1253 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1254 qemu_get_clock(host_clock);
1255 if (hdelta < delta)
1256 delta = hdelta;
1257 }
1258
1259 if (delta < 0)
1260 delta = 0;
1261
1262 return delta;
1263 }
1264
1265 #if defined(__linux__)
1266 static uint64_t qemu_next_deadline_dyntick(void)
1267 {
1268 int64_t delta;
1269 int64_t rtdelta;
1270
1271 if (use_icount)
1272 delta = INT32_MAX;
1273 else
1274 delta = (qemu_next_deadline() + 999) / 1000;
1275
1276 if (active_timers[QEMU_CLOCK_REALTIME]) {
1277 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1278 qemu_get_clock(rt_clock))*1000;
1279 if (rtdelta < delta)
1280 delta = rtdelta;
1281 }
1282
1283 if (delta < MIN_TIMER_REARM_US)
1284 delta = MIN_TIMER_REARM_US;
1285
1286 return delta;
1287 }
1288 #endif
1289
1290 #ifndef _WIN32
1291
1292 /* Sets a specific flag */
1293 static int fcntl_setfl(int fd, int flag)
1294 {
1295 int flags;
1296
1297 flags = fcntl(fd, F_GETFL);
1298 if (flags == -1)
1299 return -errno;
1300
1301 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1302 return -errno;
1303
1304 return 0;
1305 }
1306
1307 #if defined(__linux__)
1308
1309 #define RTC_FREQ 1024
1310
1311 static void enable_sigio_timer(int fd)
1312 {
1313 struct sigaction act;
1314
1315 /* timer signal */
1316 sigfillset(&act.sa_mask);
1317 act.sa_flags = 0;
1318 act.sa_handler = host_alarm_handler;
1319
1320 sigaction(SIGIO, &act, NULL);
1321 fcntl_setfl(fd, O_ASYNC);
1322 fcntl(fd, F_SETOWN, getpid());
1323 }
1324
1325 static int hpet_start_timer(struct qemu_alarm_timer *t)
1326 {
1327 struct hpet_info info;
1328 int r, fd;
1329
1330 fd = qemu_open("/dev/hpet", O_RDONLY);
1331 if (fd < 0)
1332 return -1;
1333
1334 /* Set frequency */
1335 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1336 if (r < 0) {
1337 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1338 "error, but for better emulation accuracy type:\n"
1339 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1340 goto fail;
1341 }
1342
1343 /* Check capabilities */
1344 r = ioctl(fd, HPET_INFO, &info);
1345 if (r < 0)
1346 goto fail;
1347
1348 /* Enable periodic mode */
1349 r = ioctl(fd, HPET_EPI, 0);
1350 if (info.hi_flags && (r < 0))
1351 goto fail;
1352
1353 /* Enable interrupt */
1354 r = ioctl(fd, HPET_IE_ON, 0);
1355 if (r < 0)
1356 goto fail;
1357
1358 enable_sigio_timer(fd);
1359 t->priv = (void *)(long)fd;
1360
1361 return 0;
1362 fail:
1363 close(fd);
1364 return -1;
1365 }
1366
1367 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1368 {
1369 int fd = (long)t->priv;
1370
1371 close(fd);
1372 }
1373
1374 static int rtc_start_timer(struct qemu_alarm_timer *t)
1375 {
1376 int rtc_fd;
1377 unsigned long current_rtc_freq = 0;
1378
1379 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1380 if (rtc_fd < 0)
1381 return -1;
1382 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1383 if (current_rtc_freq != RTC_FREQ &&
1384 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1385 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1386 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1387 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1388 goto fail;
1389 }
1390 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1391 fail:
1392 close(rtc_fd);
1393 return -1;
1394 }
1395
1396 enable_sigio_timer(rtc_fd);
1397
1398 t->priv = (void *)(long)rtc_fd;
1399
1400 return 0;
1401 }
1402
1403 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1404 {
1405 int rtc_fd = (long)t->priv;
1406
1407 close(rtc_fd);
1408 }
1409
1410 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1411 {
1412 struct sigevent ev;
1413 timer_t host_timer;
1414 struct sigaction act;
1415
1416 sigfillset(&act.sa_mask);
1417 act.sa_flags = 0;
1418 act.sa_handler = host_alarm_handler;
1419
1420 sigaction(SIGALRM, &act, NULL);
1421
1422 /*
1423 * Initialize ev struct to 0 to avoid valgrind complaining
1424 * about uninitialized data in timer_create call
1425 */
1426 memset(&ev, 0, sizeof(ev));
1427 ev.sigev_value.sival_int = 0;
1428 ev.sigev_notify = SIGEV_SIGNAL;
1429 ev.sigev_signo = SIGALRM;
1430
1431 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1432 perror("timer_create");
1433
1434 /* disable dynticks */
1435 fprintf(stderr, "Dynamic Ticks disabled\n");
1436
1437 return -1;
1438 }
1439
1440 t->priv = (void *)(long)host_timer;
1441
1442 return 0;
1443 }
1444
1445 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1446 {
1447 timer_t host_timer = (timer_t)(long)t->priv;
1448
1449 timer_delete(host_timer);
1450 }
1451
1452 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1453 {
1454 timer_t host_timer = (timer_t)(long)t->priv;
1455 struct itimerspec timeout;
1456 int64_t nearest_delta_us = INT64_MAX;
1457 int64_t current_us;
1458
1459 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1460 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1461 !active_timers[QEMU_CLOCK_HOST])
1462 return;
1463
1464 nearest_delta_us = qemu_next_deadline_dyntick();
1465
1466 /* check whether a timer is already running */
1467 if (timer_gettime(host_timer, &timeout)) {
1468 perror("gettime");
1469 fprintf(stderr, "Internal timer error: aborting\n");
1470 exit(1);
1471 }
1472 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1473 if (current_us && current_us <= nearest_delta_us)
1474 return;
1475
1476 timeout.it_interval.tv_sec = 0;
1477 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1478 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1479 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1480 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1481 perror("settime");
1482 fprintf(stderr, "Internal timer error: aborting\n");
1483 exit(1);
1484 }
1485 }
1486
1487 #endif /* defined(__linux__) */
1488
1489 static int unix_start_timer(struct qemu_alarm_timer *t)
1490 {
1491 struct sigaction act;
1492 struct itimerval itv;
1493 int err;
1494
1495 /* timer signal */
1496 sigfillset(&act.sa_mask);
1497 act.sa_flags = 0;
1498 act.sa_handler = host_alarm_handler;
1499
1500 sigaction(SIGALRM, &act, NULL);
1501
1502 itv.it_interval.tv_sec = 0;
1503 /* for i386 kernel 2.6 to get 1 ms */
1504 itv.it_interval.tv_usec = 999;
1505 itv.it_value.tv_sec = 0;
1506 itv.it_value.tv_usec = 10 * 1000;
1507
1508 err = setitimer(ITIMER_REAL, &itv, NULL);
1509 if (err)
1510 return -1;
1511
1512 return 0;
1513 }
1514
1515 static void unix_stop_timer(struct qemu_alarm_timer *t)
1516 {
1517 struct itimerval itv;
1518
1519 memset(&itv, 0, sizeof(itv));
1520 setitimer(ITIMER_REAL, &itv, NULL);
1521 }
1522
1523 #endif /* !defined(_WIN32) */
1524
1525
1526 #ifdef _WIN32
1527
1528 static int win32_start_timer(struct qemu_alarm_timer *t)
1529 {
1530 TIMECAPS tc;
1531 struct qemu_alarm_win32 *data = t->priv;
1532 UINT flags;
1533
1534 memset(&tc, 0, sizeof(tc));
1535 timeGetDevCaps(&tc, sizeof(tc));
1536
1537 if (data->period < tc.wPeriodMin)
1538 data->period = tc.wPeriodMin;
1539
1540 timeBeginPeriod(data->period);
1541
1542 flags = TIME_CALLBACK_FUNCTION;
1543 if (alarm_has_dynticks(t))
1544 flags |= TIME_ONESHOT;
1545 else
1546 flags |= TIME_PERIODIC;
1547
1548 data->timerId = timeSetEvent(1, // interval (ms)
1549 data->period, // resolution
1550 host_alarm_handler, // function
1551 (DWORD)t, // parameter
1552 flags);
1553
1554 if (!data->timerId) {
1555 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1556 GetLastError());
1557 timeEndPeriod(data->period);
1558 return -1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 static void win32_stop_timer(struct qemu_alarm_timer *t)
1565 {
1566 struct qemu_alarm_win32 *data = t->priv;
1567
1568 timeKillEvent(data->timerId);
1569 timeEndPeriod(data->period);
1570 }
1571
1572 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1573 {
1574 struct qemu_alarm_win32 *data = t->priv;
1575
1576 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1577 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1578 !active_timers[QEMU_CLOCK_HOST])
1579 return;
1580
1581 timeKillEvent(data->timerId);
1582
1583 data->timerId = timeSetEvent(1,
1584 data->period,
1585 host_alarm_handler,
1586 (DWORD)t,
1587 TIME_ONESHOT | TIME_PERIODIC);
1588
1589 if (!data->timerId) {
1590 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1591 GetLastError());
1592
1593 timeEndPeriod(data->period);
1594 exit(1);
1595 }
1596 }
1597
1598 #endif /* _WIN32 */
1599
1600 static int init_timer_alarm(void)
1601 {
1602 struct qemu_alarm_timer *t = NULL;
1603 int i, err = -1;
1604
1605 for (i = 0; alarm_timers[i].name; i++) {
1606 t = &alarm_timers[i];
1607
1608 err = t->start(t);
1609 if (!err)
1610 break;
1611 }
1612
1613 if (err) {
1614 err = -ENOENT;
1615 goto fail;
1616 }
1617
1618 alarm_timer = t;
1619
1620 return 0;
1621
1622 fail:
1623 return err;
1624 }
1625
1626 static void quit_timers(void)
1627 {
1628 alarm_timer->stop(alarm_timer);
1629 alarm_timer = NULL;
1630 }
1631
1632 /***********************************************************/
1633 /* host time/date access */
1634 void qemu_get_timedate(struct tm *tm, int offset)
1635 {
1636 time_t ti;
1637 struct tm *ret;
1638
1639 time(&ti);
1640 ti += offset;
1641 if (rtc_date_offset == -1) {
1642 if (rtc_utc)
1643 ret = gmtime(&ti);
1644 else
1645 ret = localtime(&ti);
1646 } else {
1647 ti -= rtc_date_offset;
1648 ret = gmtime(&ti);
1649 }
1650
1651 memcpy(tm, ret, sizeof(struct tm));
1652 }
1653
1654 int qemu_timedate_diff(struct tm *tm)
1655 {
1656 time_t seconds;
1657
1658 if (rtc_date_offset == -1)
1659 if (rtc_utc)
1660 seconds = mktimegm(tm);
1661 else
1662 seconds = mktime(tm);
1663 else
1664 seconds = mktimegm(tm) + rtc_date_offset;
1665
1666 return seconds - time(NULL);
1667 }
1668
1669 static void configure_rtc_date_offset(const char *startdate, int legacy)
1670 {
1671 time_t rtc_start_date;
1672 struct tm tm;
1673
1674 if (!strcmp(startdate, "now") && legacy) {
1675 rtc_date_offset = -1;
1676 } else {
1677 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1678 &tm.tm_year,
1679 &tm.tm_mon,
1680 &tm.tm_mday,
1681 &tm.tm_hour,
1682 &tm.tm_min,
1683 &tm.tm_sec) == 6) {
1684 /* OK */
1685 } else if (sscanf(startdate, "%d-%d-%d",
1686 &tm.tm_year,
1687 &tm.tm_mon,
1688 &tm.tm_mday) == 3) {
1689 tm.tm_hour = 0;
1690 tm.tm_min = 0;
1691 tm.tm_sec = 0;
1692 } else {
1693 goto date_fail;
1694 }
1695 tm.tm_year -= 1900;
1696 tm.tm_mon--;
1697 rtc_start_date = mktimegm(&tm);
1698 if (rtc_start_date == -1) {
1699 date_fail:
1700 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1701 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1702 exit(1);
1703 }
1704 rtc_date_offset = time(NULL) - rtc_start_date;
1705 }
1706 }
1707
1708 static void configure_rtc(QemuOpts *opts)
1709 {
1710 const char *value;
1711
1712 value = qemu_opt_get(opts, "base");
1713 if (value) {
1714 if (!strcmp(value, "utc")) {
1715 rtc_utc = 1;
1716 } else if (!strcmp(value, "localtime")) {
1717 rtc_utc = 0;
1718 } else {
1719 configure_rtc_date_offset(value, 0);
1720 }
1721 }
1722 value = qemu_opt_get(opts, "clock");
1723 if (value) {
1724 if (!strcmp(value, "host")) {
1725 rtc_clock = host_clock;
1726 } else if (!strcmp(value, "vm")) {
1727 rtc_clock = vm_clock;
1728 } else {
1729 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1730 exit(1);
1731 }
1732 }
1733 #ifdef CONFIG_TARGET_I386
1734 value = qemu_opt_get(opts, "driftfix");
1735 if (value) {
1736 if (!strcmp(buf, "slew")) {
1737 rtc_td_hack = 1;
1738 } else if (!strcmp(buf, "none")) {
1739 rtc_td_hack = 0;
1740 } else {
1741 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1742 exit(1);
1743 }
1744 }
1745 #endif
1746 }
1747
1748 #ifdef _WIN32
1749 static void socket_cleanup(void)
1750 {
1751 WSACleanup();
1752 }
1753
1754 static int socket_init(void)
1755 {
1756 WSADATA Data;
1757 int ret, err;
1758
1759 ret = WSAStartup(MAKEWORD(2,2), &Data);
1760 if (ret != 0) {
1761 err = WSAGetLastError();
1762 fprintf(stderr, "WSAStartup: %d\n", err);
1763 return -1;
1764 }
1765 atexit(socket_cleanup);
1766 return 0;
1767 }
1768 #endif
1769
1770 /***********************************************************/
1771 /* Bluetooth support */
1772 static int nb_hcis;
1773 static int cur_hci;
1774 static struct HCIInfo *hci_table[MAX_NICS];
1775
1776 static struct bt_vlan_s {
1777 struct bt_scatternet_s net;
1778 int id;
1779 struct bt_vlan_s *next;
1780 } *first_bt_vlan;
1781
1782 /* find or alloc a new bluetooth "VLAN" */
1783 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1784 {
1785 struct bt_vlan_s **pvlan, *vlan;
1786 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1787 if (vlan->id == id)
1788 return &vlan->net;
1789 }
1790 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1791 vlan->id = id;
1792 pvlan = &first_bt_vlan;
1793 while (*pvlan != NULL)
1794 pvlan = &(*pvlan)->next;
1795 *pvlan = vlan;
1796 return &vlan->net;
1797 }
1798
1799 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1800 {
1801 }
1802
1803 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1804 {
1805 return -ENOTSUP;
1806 }
1807
1808 static struct HCIInfo null_hci = {
1809 .cmd_send = null_hci_send,
1810 .sco_send = null_hci_send,
1811 .acl_send = null_hci_send,
1812 .bdaddr_set = null_hci_addr_set,
1813 };
1814
1815 struct HCIInfo *qemu_next_hci(void)
1816 {
1817 if (cur_hci == nb_hcis)
1818 return &null_hci;
1819
1820 return hci_table[cur_hci++];
1821 }
1822
1823 static struct HCIInfo *hci_init(const char *str)
1824 {
1825 char *endp;
1826 struct bt_scatternet_s *vlan = 0;
1827
1828 if (!strcmp(str, "null"))
1829 /* null */
1830 return &null_hci;
1831 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1832 /* host[:hciN] */
1833 return bt_host_hci(str[4] ? str + 5 : "hci0");
1834 else if (!strncmp(str, "hci", 3)) {
1835 /* hci[,vlan=n] */
1836 if (str[3]) {
1837 if (!strncmp(str + 3, ",vlan=", 6)) {
1838 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1839 if (*endp)
1840 vlan = 0;
1841 }
1842 } else
1843 vlan = qemu_find_bt_vlan(0);
1844 if (vlan)
1845 return bt_new_hci(vlan);
1846 }
1847
1848 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1849
1850 return 0;
1851 }
1852
1853 static int bt_hci_parse(const char *str)
1854 {
1855 struct HCIInfo *hci;
1856 bdaddr_t bdaddr;
1857
1858 if (nb_hcis >= MAX_NICS) {
1859 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1860 return -1;
1861 }
1862
1863 hci = hci_init(str);
1864 if (!hci)
1865 return -1;
1866
1867 bdaddr.b[0] = 0x52;
1868 bdaddr.b[1] = 0x54;
1869 bdaddr.b[2] = 0x00;
1870 bdaddr.b[3] = 0x12;
1871 bdaddr.b[4] = 0x34;
1872 bdaddr.b[5] = 0x56 + nb_hcis;
1873 hci->bdaddr_set(hci, bdaddr.b);
1874
1875 hci_table[nb_hcis++] = hci;
1876
1877 return 0;
1878 }
1879
1880 static void bt_vhci_add(int vlan_id)
1881 {
1882 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1883
1884 if (!vlan->slave)
1885 fprintf(stderr, "qemu: warning: adding a VHCI to "
1886 "an empty scatternet %i\n", vlan_id);
1887
1888 bt_vhci_init(bt_new_hci(vlan));
1889 }
1890
1891 static struct bt_device_s *bt_device_add(const char *opt)
1892 {
1893 struct bt_scatternet_s *vlan;
1894 int vlan_id = 0;
1895 char *endp = strstr(opt, ",vlan=");
1896 int len = (endp ? endp - opt : strlen(opt)) + 1;
1897 char devname[10];
1898
1899 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1900
1901 if (endp) {
1902 vlan_id = strtol(endp + 6, &endp, 0);
1903 if (*endp) {
1904 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1905 return 0;
1906 }
1907 }
1908
1909 vlan = qemu_find_bt_vlan(vlan_id);
1910
1911 if (!vlan->slave)
1912 fprintf(stderr, "qemu: warning: adding a slave device to "
1913 "an empty scatternet %i\n", vlan_id);
1914
1915 if (!strcmp(devname, "keyboard"))
1916 return bt_keyboard_init(vlan);
1917
1918 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1919 return 0;
1920 }
1921
1922 static int bt_parse(const char *opt)
1923 {
1924 const char *endp, *p;
1925 int vlan;
1926
1927 if (strstart(opt, "hci", &endp)) {
1928 if (!*endp || *endp == ',') {
1929 if (*endp)
1930 if (!strstart(endp, ",vlan=", 0))
1931 opt = endp + 1;
1932
1933 return bt_hci_parse(opt);
1934 }
1935 } else if (strstart(opt, "vhci", &endp)) {
1936 if (!*endp || *endp == ',') {
1937 if (*endp) {
1938 if (strstart(endp, ",vlan=", &p)) {
1939 vlan = strtol(p, (char **) &endp, 0);
1940 if (*endp) {
1941 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1942 return 1;
1943 }
1944 } else {
1945 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1946 return 1;
1947 }
1948 } else
1949 vlan = 0;
1950
1951 bt_vhci_add(vlan);
1952 return 0;
1953 }
1954 } else if (strstart(opt, "device:", &endp))
1955 return !bt_device_add(endp);
1956
1957 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1958 return 1;
1959 }
1960
1961 /***********************************************************/
1962 /* QEMU Block devices */
1963
1964 #define HD_ALIAS "index=%d,media=disk"
1965 #define CDROM_ALIAS "index=2,media=cdrom"
1966 #define FD_ALIAS "index=%d,if=floppy"
1967 #define PFLASH_ALIAS "if=pflash"
1968 #define MTD_ALIAS "if=mtd"
1969 #define SD_ALIAS "index=0,if=sd"
1970
1971 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1972 {
1973 va_list ap;
1974 char optstr[1024];
1975 QemuOpts *opts;
1976
1977 va_start(ap, fmt);
1978 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1979 va_end(ap);
1980
1981 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1982 if (!opts) {
1983 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1984 __FUNCTION__, optstr);
1985 return NULL;
1986 }
1987 if (file)
1988 qemu_opt_set(opts, "file", file);
1989 return opts;
1990 }
1991
1992 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1993 {
1994 DriveInfo *dinfo;
1995
1996 /* seek interface, bus and unit */
1997
1998 QTAILQ_FOREACH(dinfo, &drives, next) {
1999 if (dinfo->type == type &&
2000 dinfo->bus == bus &&
2001 dinfo->unit == unit)
2002 return dinfo;
2003 }
2004
2005 return NULL;
2006 }
2007
2008 DriveInfo *drive_get_by_id(const char *id)
2009 {
2010 DriveInfo *dinfo;
2011
2012 QTAILQ_FOREACH(dinfo, &drives, next) {
2013 if (strcmp(id, dinfo->id))
2014 continue;
2015 return dinfo;
2016 }
2017 return NULL;
2018 }
2019
2020 int drive_get_max_bus(BlockInterfaceType type)
2021 {
2022 int max_bus;
2023 DriveInfo *dinfo;
2024
2025 max_bus = -1;
2026 QTAILQ_FOREACH(dinfo, &drives, next) {
2027 if(dinfo->type == type &&
2028 dinfo->bus > max_bus)
2029 max_bus = dinfo->bus;
2030 }
2031 return max_bus;
2032 }
2033
2034 const char *drive_get_serial(BlockDriverState *bdrv)
2035 {
2036 DriveInfo *dinfo;
2037
2038 QTAILQ_FOREACH(dinfo, &drives, next) {
2039 if (dinfo->bdrv == bdrv)
2040 return dinfo->serial;
2041 }
2042
2043 return "\0";
2044 }
2045
2046 BlockInterfaceErrorAction drive_get_on_error(
2047 BlockDriverState *bdrv, int is_read)
2048 {
2049 DriveInfo *dinfo;
2050
2051 QTAILQ_FOREACH(dinfo, &drives, next) {
2052 if (dinfo->bdrv == bdrv)
2053 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
2054 }
2055
2056 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
2057 }
2058
2059 static void bdrv_format_print(void *opaque, const char *name)
2060 {
2061 fprintf(stderr, " %s", name);
2062 }
2063
2064 void drive_uninit(DriveInfo *dinfo)
2065 {
2066 qemu_opts_del(dinfo->opts);
2067 bdrv_delete(dinfo->bdrv);
2068 QTAILQ_REMOVE(&drives, dinfo, next);
2069 qemu_free(dinfo);
2070 }
2071
2072 static int parse_block_error_action(const char *buf, int is_read)
2073 {
2074 if (!strcmp(buf, "ignore")) {
2075 return BLOCK_ERR_IGNORE;
2076 } else if (!is_read && !strcmp(buf, "enospc")) {
2077 return BLOCK_ERR_STOP_ENOSPC;
2078 } else if (!strcmp(buf, "stop")) {
2079 return BLOCK_ERR_STOP_ANY;
2080 } else if (!strcmp(buf, "report")) {
2081 return BLOCK_ERR_REPORT;
2082 } else {
2083 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
2084 buf, is_read ? "read" : "write");
2085 return -1;
2086 }
2087 }
2088
2089 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
2090 int *fatal_error)
2091 {
2092 const char *buf;
2093 const char *file = NULL;
2094 char devname[128];
2095 const char *serial;
2096 const char *mediastr = "";
2097 BlockInterfaceType type;
2098 enum { MEDIA_DISK, MEDIA_CDROM } media;
2099 int bus_id, unit_id;
2100 int cyls, heads, secs, translation;
2101 BlockDriver *drv = NULL;
2102 QEMUMachine *machine = opaque;
2103 int max_devs;
2104 int index;
2105 int cache;
2106 int aio = 0;
2107 int ro = 0;
2108 int bdrv_flags;
2109 int on_read_error, on_write_error;
2110 const char *devaddr;
2111 DriveInfo *dinfo;
2112 int snapshot = 0;
2113
2114 *fatal_error = 1;
2115
2116 translation = BIOS_ATA_TRANSLATION_AUTO;
2117 cache = 1;
2118
2119 if (machine && machine->use_scsi) {
2120 type = IF_SCSI;
2121 max_devs = MAX_SCSI_DEVS;
2122 pstrcpy(devname, sizeof(devname), "scsi");
2123 } else {
2124 type = IF_IDE;
2125 max_devs = MAX_IDE_DEVS;
2126 pstrcpy(devname, sizeof(devname), "ide");
2127 }
2128 media = MEDIA_DISK;
2129
2130 /* extract parameters */
2131 bus_id = qemu_opt_get_number(opts, "bus", 0);
2132 unit_id = qemu_opt_get_number(opts, "unit", -1);
2133 index = qemu_opt_get_number(opts, "index", -1);
2134
2135 cyls = qemu_opt_get_number(opts, "cyls", 0);
2136 heads = qemu_opt_get_number(opts, "heads", 0);
2137 secs = qemu_opt_get_number(opts, "secs", 0);
2138
2139 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2140 ro = qemu_opt_get_bool(opts, "readonly", 0);
2141
2142 file = qemu_opt_get(opts, "file");
2143 serial = qemu_opt_get(opts, "serial");
2144
2145 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2146 pstrcpy(devname, sizeof(devname), buf);
2147 if (!strcmp(buf, "ide")) {
2148 type = IF_IDE;
2149 max_devs = MAX_IDE_DEVS;
2150 } else if (!strcmp(buf, "scsi")) {
2151 type = IF_SCSI;
2152 max_devs = MAX_SCSI_DEVS;
2153 } else if (!strcmp(buf, "floppy")) {
2154 type = IF_FLOPPY;
2155 max_devs = 0;
2156 } else if (!strcmp(buf, "pflash")) {
2157 type = IF_PFLASH;
2158 max_devs = 0;
2159 } else if (!strcmp(buf, "mtd")) {
2160 type = IF_MTD;
2161 max_devs = 0;
2162 } else if (!strcmp(buf, "sd")) {
2163 type = IF_SD;
2164 max_devs = 0;
2165 } else if (!strcmp(buf, "virtio")) {
2166 type = IF_VIRTIO;
2167 max_devs = 0;
2168 } else if (!strcmp(buf, "xen")) {
2169 type = IF_XEN;
2170 max_devs = 0;
2171 } else if (!strcmp(buf, "none")) {
2172 type = IF_NONE;
2173 max_devs = 0;
2174 } else {
2175 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2176 return NULL;
2177 }
2178 }
2179
2180 if (cyls || heads || secs) {
2181 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2182 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2183 return NULL;
2184 }
2185 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2186 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2187 return NULL;
2188 }
2189 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2190 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2191 return NULL;
2192 }
2193 }
2194
2195 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2196 if (!cyls) {
2197 fprintf(stderr,
2198 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2199 buf);
2200 return NULL;
2201 }
2202 if (!strcmp(buf, "none"))
2203 translation = BIOS_ATA_TRANSLATION_NONE;
2204 else if (!strcmp(buf, "lba"))
2205 translation = BIOS_ATA_TRANSLATION_LBA;
2206 else if (!strcmp(buf, "auto"))
2207 translation = BIOS_ATA_TRANSLATION_AUTO;
2208 else {
2209 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2210 return NULL;
2211 }
2212 }
2213
2214 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2215 if (!strcmp(buf, "disk")) {
2216 media = MEDIA_DISK;
2217 } else if (!strcmp(buf, "cdrom")) {
2218 if (cyls || secs || heads) {
2219 fprintf(stderr,
2220 "qemu: '%s' invalid physical CHS format\n", buf);
2221 return NULL;
2222 }
2223 media = MEDIA_CDROM;
2224 } else {
2225 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2226 return NULL;
2227 }
2228 }
2229
2230 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2231 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2232 cache = 0;
2233 else if (!strcmp(buf, "writethrough"))
2234 cache = 1;
2235 else if (!strcmp(buf, "writeback"))
2236 cache = 2;
2237 else {
2238 fprintf(stderr, "qemu: invalid cache option\n");
2239 return NULL;
2240 }
2241 }
2242
2243 #ifdef CONFIG_LINUX_AIO
2244 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2245 if (!strcmp(buf, "threads"))
2246 aio = 0;
2247 else if (!strcmp(buf, "native"))
2248 aio = 1;
2249 else {
2250 fprintf(stderr, "qemu: invalid aio option\n");
2251 return NULL;
2252 }
2253 }
2254 #endif
2255
2256 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2257 if (strcmp(buf, "?") == 0) {
2258 fprintf(stderr, "qemu: Supported formats:");
2259 bdrv_iterate_format(bdrv_format_print, NULL);
2260 fprintf(stderr, "\n");
2261 return NULL;
2262 }
2263 drv = bdrv_find_whitelisted_format(buf);
2264 if (!drv) {
2265 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2266 return NULL;
2267 }
2268 }
2269
2270 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2271 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2272 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2273 fprintf(stderr, "werror is no supported by this format\n");
2274 return NULL;
2275 }
2276
2277 on_write_error = parse_block_error_action(buf, 0);
2278 if (on_write_error < 0) {
2279 return NULL;
2280 }
2281 }
2282
2283 on_read_error = BLOCK_ERR_REPORT;
2284 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2285 if (type != IF_IDE && type != IF_VIRTIO) {
2286 fprintf(stderr, "rerror is no supported by this format\n");
2287 return NULL;
2288 }
2289
2290 on_read_error = parse_block_error_action(buf, 1);
2291 if (on_read_error < 0) {
2292 return NULL;
2293 }
2294 }
2295
2296 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2297 if (type != IF_VIRTIO) {
2298 fprintf(stderr, "addr is not supported\n");
2299 return NULL;
2300 }
2301 }
2302
2303 /* compute bus and unit according index */
2304
2305 if (index != -1) {
2306 if (bus_id != 0 || unit_id != -1) {
2307 fprintf(stderr,
2308 "qemu: index cannot be used with bus and unit\n");
2309 return NULL;
2310 }
2311 if (max_devs == 0)
2312 {
2313 unit_id = index;
2314 bus_id = 0;
2315 } else {
2316 unit_id = index % max_devs;
2317 bus_id = index / max_devs;
2318 }
2319 }
2320
2321 /* if user doesn't specify a unit_id,
2322 * try to find the first free
2323 */
2324
2325 if (unit_id == -1) {
2326 unit_id = 0;
2327 while (drive_get(type, bus_id, unit_id) != NULL) {
2328 unit_id++;
2329 if (max_devs && unit_id >= max_devs) {
2330 unit_id -= max_devs;
2331 bus_id++;
2332 }
2333 }
2334 }
2335
2336 /* check unit id */
2337
2338 if (max_devs && unit_id >= max_devs) {
2339 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2340 unit_id, max_devs - 1);
2341 return NULL;
2342 }
2343
2344 /*
2345 * ignore multiple definitions
2346 */
2347
2348 if (drive_get(type, bus_id, unit_id) != NULL) {
2349 *fatal_error = 0;
2350 return NULL;
2351 }
2352
2353 /* init */
2354
2355 dinfo = qemu_mallocz(sizeof(*dinfo));
2356 if ((buf = qemu_opts_id(opts)) != NULL) {
2357 dinfo->id = qemu_strdup(buf);
2358 } else {
2359 /* no id supplied -> create one */
2360 dinfo->id = qemu_mallocz(32);
2361 if (type == IF_IDE || type == IF_SCSI)
2362 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2363 if (max_devs)
2364 snprintf(dinfo->id, 32, "%s%i%s%i",
2365 devname, bus_id, mediastr, unit_id);
2366 else
2367 snprintf(dinfo->id, 32, "%s%s%i",
2368 devname, mediastr, unit_id);
2369 }
2370 dinfo->bdrv = bdrv_new(dinfo->id);
2371 dinfo->devaddr = devaddr;
2372 dinfo->type = type;
2373 dinfo->bus = bus_id;
2374 dinfo->unit = unit_id;
2375 dinfo->on_read_error = on_read_error;
2376 dinfo->on_write_error = on_write_error;
2377 dinfo->opts = opts;
2378 if (serial)
2379 strncpy(dinfo->serial, serial, sizeof(serial));
2380 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2381
2382 switch(type) {
2383 case IF_IDE:
2384 case IF_SCSI:
2385 case IF_XEN:
2386 case IF_NONE:
2387 switch(media) {
2388 case MEDIA_DISK:
2389 if (cyls != 0) {
2390 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2391 bdrv_set_translation_hint(dinfo->bdrv, translation);
2392 }
2393 break;
2394 case MEDIA_CDROM:
2395 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2396 break;
2397 }
2398 break;
2399 case IF_SD:
2400 /* FIXME: This isn't really a floppy, but it's a reasonable
2401 approximation. */
2402 case IF_FLOPPY:
2403 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2404 break;
2405 case IF_PFLASH:
2406 case IF_MTD:
2407 break;
2408 case IF_VIRTIO:
2409 /* add virtio block device */
2410 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2411 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2412 qemu_opt_set(opts, "drive", dinfo->id);
2413 if (devaddr)
2414 qemu_opt_set(opts, "addr", devaddr);
2415 break;
2416 case IF_COUNT:
2417 abort();
2418 }
2419 if (!file) {
2420 *fatal_error = 0;
2421 return NULL;
2422 }
2423 bdrv_flags = 0;
2424 if (snapshot) {
2425 bdrv_flags |= BDRV_O_SNAPSHOT;
2426 cache = 2; /* always use write-back with snapshot */
2427 }
2428 if (cache == 0) /* no caching */
2429 bdrv_flags |= BDRV_O_NOCACHE;
2430 else if (cache == 2) /* write-back */
2431 bdrv_flags |= BDRV_O_CACHE_WB;
2432
2433 if (aio == 1) {
2434 bdrv_flags |= BDRV_O_NATIVE_AIO;
2435 } else {
2436 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2437 }
2438
2439 if (ro == 1) {
2440 if (type == IF_IDE) {
2441 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2442 return NULL;
2443 }
2444 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2445 }
2446
2447 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2448 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2449 file, strerror(errno));
2450 return NULL;
2451 }
2452
2453 if (bdrv_key_required(dinfo->bdrv))
2454 autostart = 0;
2455 *fatal_error = 0;
2456 return dinfo;
2457 }
2458
2459 static int drive_init_func(QemuOpts *opts, void *opaque)
2460 {
2461 QEMUMachine *machine = opaque;
2462 int fatal_error = 0;
2463
2464 if (drive_init(opts, machine, &fatal_error) == NULL) {
2465 if (fatal_error)
2466 return 1;
2467 }
2468 return 0;
2469 }
2470
2471 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2472 {
2473 if (NULL == qemu_opt_get(opts, "snapshot")) {
2474 qemu_opt_set(opts, "snapshot", "on");
2475 }
2476 return 0;
2477 }
2478
2479 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2480 {
2481 boot_set_handler = func;
2482 boot_set_opaque = opaque;
2483 }
2484
2485 int qemu_boot_set(const char *boot_devices)
2486 {
2487 if (!boot_set_handler) {
2488 return -EINVAL;
2489 }
2490 return boot_set_handler(boot_set_opaque, boot_devices);
2491 }
2492
2493 static int parse_bootdevices(char *devices)
2494 {
2495 /* We just do some generic consistency checks */
2496 const char *p;
2497 int bitmap = 0;
2498
2499 for (p = devices; *p != '\0'; p++) {
2500 /* Allowed boot devices are:
2501 * a-b: floppy disk drives
2502 * c-f: IDE disk drives
2503 * g-m: machine implementation dependant drives
2504 * n-p: network devices
2505 * It's up to each machine implementation to check if the given boot
2506 * devices match the actual hardware implementation and firmware
2507 * features.
2508 */
2509 if (*p < 'a' || *p > 'p') {
2510 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2511 exit(1);
2512 }
2513 if (bitmap & (1 << (*p - 'a'))) {
2514 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2515 exit(1);
2516 }
2517 bitmap |= 1 << (*p - 'a');
2518 }
2519 return bitmap;
2520 }
2521
2522 static void restore_boot_devices(void *opaque)
2523 {
2524 char *standard_boot_devices = opaque;
2525
2526 qemu_boot_set(standard_boot_devices);
2527
2528 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2529 qemu_free(standard_boot_devices);
2530 }
2531
2532 static void numa_add(const char *optarg)
2533 {
2534 char option[128];
2535 char *endptr;
2536 unsigned long long value, endvalue;
2537 int nodenr;
2538
2539 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2540 if (!strcmp(option, "node")) {
2541 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2542 nodenr = nb_numa_nodes;
2543 } else {
2544 nodenr = strtoull(option, NULL, 10);
2545 }
2546
2547 if (get_param_value(option, 128, "mem", optarg) == 0) {
2548 node_mem[nodenr] = 0;
2549 } else {
2550 value = strtoull(option, &endptr, 0);
2551 switch (*endptr) {
2552 case 0: case 'M': case 'm':
2553 value <<= 20;
2554 break;
2555 case 'G': case 'g':
2556 value <<= 30;
2557 break;
2558 }
2559 node_mem[nodenr] = value;
2560 }
2561 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2562 node_cpumask[nodenr] = 0;
2563 } else {
2564 value = strtoull(option, &endptr, 10);
2565 if (value >= 64) {
2566 value = 63;
2567 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2568 } else {
2569 if (*endptr == '-') {
2570 endvalue = strtoull(endptr+1, &endptr, 10);
2571 if (endvalue >= 63) {
2572 endvalue = 62;
2573 fprintf(stderr,
2574 "only 63 CPUs in NUMA mode supported.\n");
2575 }
2576 value = (2ULL << endvalue) - (1ULL << value);
2577 } else {
2578 value = 1ULL << value;
2579 }
2580 }
2581 node_cpumask[nodenr] = value;
2582 }
2583 nb_numa_nodes++;
2584 }
2585 return;
2586 }
2587
2588 static void smp_parse(const char *optarg)
2589 {
2590 int smp, sockets = 0, threads = 0, cores = 0;
2591 char *endptr;
2592 char option[128];
2593
2594 smp = strtoul(optarg, &endptr, 10);
2595 if (endptr != optarg) {
2596 if (*endptr == ',') {
2597 endptr++;
2598 }
2599 }
2600 if (get_param_value(option, 128, "sockets", endptr) != 0)
2601 sockets = strtoull(option, NULL, 10);
2602 if (get_param_value(option, 128, "cores", endptr) != 0)
2603 cores = strtoull(option, NULL, 10);
2604 if (get_param_value(option, 128, "threads", endptr) != 0)
2605 threads = strtoull(option, NULL, 10);
2606 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2607 max_cpus = strtoull(option, NULL, 10);
2608
2609 /* compute missing values, prefer sockets over cores over threads */
2610 if (smp == 0 || sockets == 0) {
2611 sockets = sockets > 0 ? sockets : 1;
2612 cores = cores > 0 ? cores : 1;
2613 threads = threads > 0 ? threads : 1;
2614 if (smp == 0) {
2615 smp = cores * threads * sockets;
2616 } else {
2617 sockets = smp / (cores * threads);
2618 }
2619 } else {
2620 if (cores == 0) {
2621 threads = threads > 0 ? threads : 1;
2622 cores = smp / (sockets * threads);
2623 } else {
2624 if (sockets == 0) {
2625 sockets = smp / (cores * threads);
2626 } else {
2627 threads = smp / (cores * sockets);
2628 }
2629 }
2630 }
2631 smp_cpus = smp;
2632 smp_cores = cores > 0 ? cores : 1;
2633 smp_threads = threads > 0 ? threads : 1;
2634 if (max_cpus == 0)
2635 max_cpus = smp_cpus;
2636 }
2637
2638 /***********************************************************/
2639 /* USB devices */
2640
2641 static int usb_device_add(const char *devname, int is_hotplug)
2642 {
2643 const char *p;
2644 USBDevice *dev = NULL;
2645
2646 if (!usb_enabled)
2647 return -1;
2648
2649 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2650 dev = usbdevice_create(devname);
2651 if (dev)
2652 goto done;
2653
2654 /* the other ones */
2655 if (strstart(devname, "host:", &p)) {
2656 dev = usb_host_device_open(p);
2657 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2658 dev = usb_bt_init(devname[2] ? hci_init(p) :
2659 bt_new_hci(qemu_find_bt_vlan(0)));
2660 } else {
2661 return -1;
2662 }
2663 if (!dev)
2664 return -1;
2665
2666 done:
2667 return 0;
2668 }
2669
2670 static int usb_device_del(const char *devname)
2671 {
2672 int bus_num, addr;
2673 const char *p;
2674
2675 if (strstart(devname, "host:", &p))
2676 return usb_host_device_close(p);
2677
2678 if (!usb_enabled)
2679 return -1;
2680
2681 p = strchr(devname, '.');
2682 if (!p)
2683 return -1;
2684 bus_num = strtoul(devname, NULL, 0);
2685 addr = strtoul(p + 1, NULL, 0);
2686
2687 return usb_device_delete_addr(bus_num, addr);
2688 }
2689
2690 static int usb_parse(const char *cmdline)
2691 {
2692 int r;
2693 r = usb_device_add(cmdline, 0);
2694 if (r < 0) {
2695 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2696 }
2697 return r;
2698 }
2699
2700 void do_usb_add(Monitor *mon, const QDict *qdict)
2701 {
2702 const char *devname = qdict_get_str(qdict, "devname");
2703 if (usb_device_add(devname, 1) < 0) {
2704 qemu_error("could not add USB device '%s'\n", devname);
2705 }
2706 }
2707
2708 void do_usb_del(Monitor *mon, const QDict *qdict)
2709 {
2710 const char *devname = qdict_get_str(qdict, "devname");
2711 if (usb_device_del(devname) < 0) {
2712 qemu_error("could not delete USB device '%s'\n", devname);
2713 }
2714 }
2715
2716 /***********************************************************/
2717 /* PCMCIA/Cardbus */
2718
2719 static struct pcmcia_socket_entry_s {
2720 PCMCIASocket *socket;
2721 struct pcmcia_socket_entry_s *next;
2722 } *pcmcia_sockets = 0;
2723
2724 void pcmcia_socket_register(PCMCIASocket *socket)
2725 {
2726 struct pcmcia_socket_entry_s *entry;
2727
2728 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2729 entry->socket = socket;
2730 entry->next = pcmcia_sockets;
2731 pcmcia_sockets = entry;
2732 }
2733
2734 void pcmcia_socket_unregister(PCMCIASocket *socket)
2735 {
2736 struct pcmcia_socket_entry_s *entry, **ptr;
2737
2738 ptr = &pcmcia_sockets;
2739 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2740 if (entry->socket == socket) {
2741 *ptr = entry->next;
2742 qemu_free(entry);
2743 }
2744 }
2745
2746 void pcmcia_info(Monitor *mon)
2747 {
2748 struct pcmcia_socket_entry_s *iter;
2749
2750 if (!pcmcia_sockets)
2751 monitor_printf(mon, "No PCMCIA sockets\n");
2752
2753 for (iter = pcmcia_sockets; iter; iter = iter->next)
2754 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2755 iter->socket->attached ? iter->socket->card_string :
2756 "Empty");
2757 }
2758
2759 /***********************************************************/
2760 /* register display */
2761
2762 struct DisplayAllocator default_allocator = {
2763 defaultallocator_create_displaysurface,
2764 defaultallocator_resize_displaysurface,
2765 defaultallocator_free_displaysurface
2766 };
2767
2768 void register_displaystate(DisplayState *ds)
2769 {
2770 DisplayState **s;
2771 s = &display_state;
2772 while (*s != NULL)
2773 s = &(*s)->next;
2774 ds->next = NULL;
2775 *s = ds;
2776 }
2777
2778 DisplayState *get_displaystate(void)
2779 {
2780 return display_state;
2781 }
2782
2783 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2784 {
2785 if(ds->allocator == &default_allocator) ds->allocator = da;
2786 return ds->allocator;
2787 }
2788
2789 /* dumb display */
2790
2791 static void dumb_display_init(void)
2792 {
2793 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2794 ds->allocator = &default_allocator;
2795 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2796 register_displaystate(ds);
2797 }
2798
2799 /***********************************************************/
2800 /* I/O handling */
2801
2802 typedef struct IOHandlerRecord {
2803 int fd;
2804 IOCanRWHandler *fd_read_poll;
2805 IOHandler *fd_read;
2806 IOHandler *fd_write;
2807 int deleted;
2808 void *opaque;
2809 /* temporary data */
2810 struct pollfd *ufd;
2811 struct IOHandlerRecord *next;
2812 } IOHandlerRecord;
2813
2814 static IOHandlerRecord *first_io_handler;
2815
2816 /* XXX: fd_read_poll should be suppressed, but an API change is
2817 necessary in the character devices to suppress fd_can_read(). */
2818 int qemu_set_fd_handler2(int fd,
2819 IOCanRWHandler *fd_read_poll,
2820 IOHandler *fd_read,
2821 IOHandler *fd_write,
2822 void *opaque)
2823 {
2824 IOHandlerRecord **pioh, *ioh;
2825
2826 if (!fd_read && !fd_write) {
2827 pioh = &first_io_handler;
2828 for(;;) {
2829 ioh = *pioh;
2830 if (ioh == NULL)
2831 break;
2832 if (ioh->fd == fd) {
2833 ioh->deleted = 1;
2834 break;
2835 }
2836 pioh = &ioh->next;
2837 }
2838 } else {
2839 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2840 if (ioh->fd == fd)
2841 goto found;
2842 }
2843 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2844 ioh->next = first_io_handler;
2845 first_io_handler = ioh;
2846 found:
2847 ioh->fd = fd;
2848 ioh->fd_read_poll = fd_read_poll;
2849 ioh->fd_read = fd_read;
2850 ioh->fd_write = fd_write;
2851 ioh->opaque = opaque;
2852 ioh->deleted = 0;
2853 }
2854 return 0;
2855 }
2856
2857 int qemu_set_fd_handler(int fd,
2858 IOHandler *fd_read,
2859 IOHandler *fd_write,
2860 void *opaque)
2861 {
2862 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2863 }
2864
2865 #ifdef _WIN32
2866 /***********************************************************/
2867 /* Polling handling */
2868
2869 typedef struct PollingEntry {
2870 PollingFunc *func;
2871 void *opaque;
2872 struct PollingEntry *next;
2873 } PollingEntry;
2874
2875 static PollingEntry *first_polling_entry;
2876
2877 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2878 {
2879 PollingEntry **ppe, *pe;
2880 pe = qemu_mallocz(sizeof(PollingEntry));
2881 pe->func = func;
2882 pe->opaque = opaque;
2883 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2884 *ppe = pe;
2885 return 0;
2886 }
2887
2888 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2889 {
2890 PollingEntry **ppe, *pe;
2891 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2892 pe = *ppe;
2893 if (pe->func == func && pe->opaque == opaque) {
2894 *ppe = pe->next;
2895 qemu_free(pe);
2896 break;
2897 }
2898 }
2899 }
2900
2901 /***********************************************************/
2902 /* Wait objects support */
2903 typedef struct WaitObjects {
2904 int num;
2905 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2906 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2907 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2908 } WaitObjects;
2909
2910 static WaitObjects wait_objects = {0};
2911
2912 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2913 {
2914 WaitObjects *w = &wait_objects;
2915
2916 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2917 return -1;
2918 w->events[w->num] = handle;
2919 w->func[w->num] = func;
2920 w->opaque[w->num] = opaque;
2921 w->num++;
2922 return 0;
2923 }
2924
2925 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2926 {
2927 int i, found;
2928 WaitObjects *w = &wait_objects;
2929
2930 found = 0;
2931 for (i = 0; i < w->num; i++) {
2932 if (w->events[i] == handle)
2933 found = 1;
2934 if (found) {
2935 w->events[i] = w->events[i + 1];
2936 w->func[i] = w->func[i + 1];
2937 w->opaque[i] = w->opaque[i + 1];
2938 }
2939 }
2940 if (found)
2941 w->num--;
2942 }
2943 #endif
2944
2945 /***********************************************************/
2946 /* ram save/restore */
2947
2948 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2949 #define RAM_SAVE_FLAG_COMPRESS 0x02
2950 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2951 #define RAM_SAVE_FLAG_PAGE 0x08
2952 #define RAM_SAVE_FLAG_EOS 0x10
2953
2954 static int is_dup_page(uint8_t *page, uint8_t ch)
2955 {
2956 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2957 uint32_t *array = (uint32_t *)page;
2958 int i;
2959
2960 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2961 if (array[i] != val)
2962 return 0;
2963 }
2964
2965 return 1;
2966 }
2967
2968 static int ram_save_block(QEMUFile *f)
2969 {
2970 static ram_addr_t current_addr = 0;
2971 ram_addr_t saved_addr = current_addr;
2972 ram_addr_t addr = 0;
2973 int found = 0;
2974
2975 while (addr < last_ram_offset) {
2976 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2977 uint8_t *p;
2978
2979 cpu_physical_memory_reset_dirty(current_addr,
2980 current_addr + TARGET_PAGE_SIZE,
2981 MIGRATION_DIRTY_FLAG);
2982
2983 p = qemu_get_ram_ptr(current_addr);
2984
2985 if (is_dup_page(p, *p)) {
2986 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2987 qemu_put_byte(f, *p);
2988 } else {
2989 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2990 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2991 }
2992
2993 found = 1;
2994 break;
2995 }
2996 addr += TARGET_PAGE_SIZE;
2997 current_addr = (saved_addr + addr) % last_ram_offset;
2998 }
2999
3000 return found;
3001 }
3002
3003 static uint64_t bytes_transferred;
3004
3005 static ram_addr_t ram_save_remaining(void)
3006 {
3007 ram_addr_t addr;
3008 ram_addr_t count = 0;
3009
3010 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3011 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3012 count++;
3013 }
3014
3015 return count;
3016 }
3017
3018 uint64_t ram_bytes_remaining(void)
3019 {
3020 return ram_save_remaining() * TARGET_PAGE_SIZE;
3021 }
3022
3023 uint64_t ram_bytes_transferred(void)
3024 {
3025 return bytes_transferred;
3026 }
3027
3028 uint64_t ram_bytes_total(void)
3029 {
3030 return last_ram_offset;
3031 }
3032
3033 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
3034 {
3035 ram_addr_t addr;
3036 uint64_t bytes_transferred_last;
3037 double bwidth = 0;
3038 uint64_t expected_time = 0;
3039
3040 if (stage < 0) {
3041 cpu_physical_memory_set_dirty_tracking(0);
3042 return 0;
3043 }
3044
3045 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3046 qemu_file_set_error(f);
3047 return 0;
3048 }
3049
3050 if (stage == 1) {
3051 bytes_transferred = 0;
3052
3053 /* Make sure all dirty bits are set */
3054 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3055 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3056 cpu_physical_memory_set_dirty(addr);
3057 }
3058
3059 /* Enable dirty memory tracking */
3060 cpu_physical_memory_set_dirty_tracking(1);
3061
3062 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3063 }
3064
3065 bytes_transferred_last = bytes_transferred;
3066 bwidth = get_clock();
3067
3068 while (!qemu_file_rate_limit(f)) {
3069 int ret;
3070
3071 ret = ram_save_block(f);
3072 bytes_transferred += ret * TARGET_PAGE_SIZE;
3073 if (ret == 0) /* no more blocks */
3074 break;
3075 }
3076
3077 bwidth = get_clock() - bwidth;
3078 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3079
3080 /* if we haven't transferred anything this round, force expected_time to a
3081 * a very high value, but without crashing */
3082 if (bwidth == 0)
3083 bwidth = 0.000001;
3084
3085 /* try transferring iterative blocks of memory */
3086 if (stage == 3) {
3087 /* flush all remaining blocks regardless of rate limiting */
3088 while (ram_save_block(f) != 0) {
3089 bytes_transferred += TARGET_PAGE_SIZE;
3090 }
3091 cpu_physical_memory_set_dirty_tracking(0);
3092 }
3093
3094 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3095
3096 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3097
3098 return (stage == 2) && (expected_time <= migrate_max_downtime());
3099 }
3100
3101 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3102 {
3103 ram_addr_t addr;
3104 int flags;
3105
3106 if (version_id != 3)
3107 return -EINVAL;
3108
3109 do {
3110 addr = qemu_get_be64(f);
3111
3112 flags = addr & ~TARGET_PAGE_MASK;
3113 addr &= TARGET_PAGE_MASK;
3114
3115 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3116 if (addr != last_ram_offset)
3117 return -EINVAL;
3118 }
3119
3120 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3121 uint8_t ch = qemu_get_byte(f);
3122 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3123 #ifndef _WIN32
3124 if (ch == 0 &&
3125 (!kvm_enabled() || kvm_has_sync_mmu())) {
3126 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3127 }
3128 #endif
3129 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3130 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3131 }
3132 if (qemu_file_has_error(f)) {
3133 return -EIO;
3134 }
3135 } while (!(flags & RAM_SAVE_FLAG_EOS));
3136
3137 return 0;
3138 }
3139
3140 void qemu_service_io(void)
3141 {
3142 qemu_notify_event();
3143 }
3144
3145 /***********************************************************/
3146 /* machine registration */
3147
3148 static QEMUMachine *first_machine = NULL;
3149 QEMUMachine *current_machine = NULL;
3150
3151 int qemu_register_machine(QEMUMachine *m)
3152 {
3153 QEMUMachine **pm;
3154 pm = &first_machine;
3155 while (*pm != NULL)
3156 pm = &(*pm)->next;
3157 m->next = NULL;
3158 *pm = m;
3159 return 0;
3160 }
3161
3162 static QEMUMachine *find_machine(const char *name)
3163 {
3164 QEMUMachine *m;
3165
3166 for(m = first_machine; m != NULL; m = m->next) {
3167 if (!strcmp(m->name, name))
3168 return m;
3169 if (m->alias && !strcmp(m->alias, name))
3170 return m;
3171 }
3172 return NULL;
3173 }
3174
3175 static QEMUMachine *find_default_machine(void)
3176 {
3177 QEMUMachine *m;
3178
3179 for(m = first_machine; m != NULL; m = m->next) {
3180 if (m->is_default) {
3181 return m;
3182 }
3183 }
3184 return NULL;
3185 }
3186
3187 /***********************************************************/
3188 /* main execution loop */
3189
3190 static void gui_update(void *opaque)
3191 {
3192 uint64_t interval = GUI_REFRESH_INTERVAL;
3193 DisplayState *ds = opaque;
3194 DisplayChangeListener *dcl = ds->listeners;
3195
3196 dpy_refresh(ds);
3197
3198 while (dcl != NULL) {
3199 if (dcl->gui_timer_interval &&
3200 dcl->gui_timer_interval < interval)
3201 interval = dcl->gui_timer_interval;
3202 dcl = dcl->next;
3203 }
3204 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3205 }
3206
3207 static void nographic_update(void *opaque)
3208 {
3209 uint64_t interval = GUI_REFRESH_INTERVAL;
3210
3211 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3212 }
3213
3214 struct vm_change_state_entry {
3215 VMChangeStateHandler *cb;
3216 void *opaque;
3217 QLIST_ENTRY (vm_change_state_entry) entries;
3218 };
3219
3220 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3221
3222 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3223 void *opaque)
3224 {
3225 VMChangeStateEntry *e;
3226
3227 e = qemu_mallocz(sizeof (*e));
3228
3229 e->cb = cb;
3230 e->opaque = opaque;
3231 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3232 return e;
3233 }
3234
3235 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3236 {
3237 QLIST_REMOVE (e, entries);
3238 qemu_free (e);
3239 }
3240
3241 static void vm_state_notify(int running, int reason)
3242 {
3243 VMChangeStateEntry *e;
3244
3245 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3246 e->cb(e->opaque, running, reason);
3247 }
3248 }
3249
3250 static void resume_all_vcpus(void);
3251 static void pause_all_vcpus(void);
3252
3253 void vm_start(void)
3254 {
3255 if (!vm_running) {
3256 cpu_enable_ticks();
3257 vm_running = 1;
3258 vm_state_notify(1, 0);
3259 qemu_rearm_alarm_timer(alarm_timer);
3260 resume_all_vcpus();
3261 }
3262 }
3263
3264 /* reset/shutdown handler */
3265
3266 typedef struct QEMUResetEntry {
3267 QTAILQ_ENTRY(QEMUResetEntry) entry;
3268 QEMUResetHandler *func;
3269 void *opaque;
3270 } QEMUResetEntry;
3271
3272 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3273 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3274 static int reset_requested;
3275 static int shutdown_requested;
3276 static int powerdown_requested;
3277 static int debug_requested;
3278 static int vmstop_requested;
3279
3280 int qemu_shutdown_requested(void)
3281 {
3282 int r = shutdown_requested;
3283 shutdown_requested = 0;
3284 return r;
3285 }
3286
3287 int qemu_reset_requested(void)
3288 {
3289 int r = reset_requested;
3290 reset_requested = 0;
3291 return r;
3292 }
3293
3294 int qemu_powerdown_requested(void)
3295 {
3296 int r = powerdown_requested;
3297 powerdown_requested = 0;
3298 return r;
3299 }
3300
3301 static int qemu_debug_requested(void)
3302 {
3303 int r = debug_requested;
3304 debug_requested = 0;
3305 return r;
3306 }
3307
3308 static int qemu_vmstop_requested(void)
3309 {
3310 int r = vmstop_requested;
3311 vmstop_requested = 0;
3312 return r;
3313 }
3314
3315 static void do_vm_stop(int reason)
3316 {
3317 if (vm_running) {
3318 cpu_disable_ticks();
3319 vm_running = 0;
3320 pause_all_vcpus();
3321 vm_state_notify(0, reason);
3322 }
3323 }
3324
3325 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3326 {
3327 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3328
3329 re->func = func;
3330 re->opaque = opaque;
3331 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3332 }
3333
3334 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3335 {
3336 QEMUResetEntry *re;
3337
3338 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3339 if (re->func == func && re->opaque == opaque) {
3340 QTAILQ_REMOVE(&reset_handlers, re, entry);
3341 qemu_free(re);
3342 return;
3343 }
3344 }
3345 }
3346
3347 void qemu_system_reset(void)
3348 {
3349 QEMUResetEntry *re, *nre;
3350
3351 /* reset all devices */
3352 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3353 re->func(re->opaque);
3354 }
3355 }
3356
3357 void qemu_system_reset_request(void)
3358 {
3359 if (no_reboot) {
3360 shutdown_requested = 1;
3361 } else {
3362 reset_requested = 1;
3363 }
3364 qemu_notify_event();
3365 }
3366
3367 void qemu_system_shutdown_request(void)
3368 {
3369 shutdown_requested = 1;
3370 qemu_notify_event();
3371 }
3372
3373 void qemu_system_powerdown_request(void)
3374 {
3375 powerdown_requested = 1;
3376 qemu_notify_event();
3377 }
3378
3379 #ifdef CONFIG_IOTHREAD
3380 static void qemu_system_vmstop_request(int reason)
3381 {
3382 vmstop_requested = reason;
3383 qemu_notify_event();
3384 }
3385 #endif
3386
3387 #ifndef _WIN32
3388 static int io_thread_fd = -1;
3389
3390 static void qemu_event_increment(void)
3391 {
3392 static const char byte = 0;
3393
3394 if (io_thread_fd == -1)
3395 return;
3396
3397 write(io_thread_fd, &byte, sizeof(byte));
3398 }
3399
3400 static void qemu_event_read(void *opaque)
3401 {
3402 int fd = (unsigned long)opaque;
3403 ssize_t len;
3404
3405 /* Drain the notify pipe */
3406 do {
3407 char buffer[512];
3408 len = read(fd, buffer, sizeof(buffer));
3409 } while ((len == -1 && errno == EINTR) || len > 0);
3410 }
3411
3412 static int qemu_event_init(void)
3413 {
3414 int err;
3415 int fds[2];
3416
3417 err = qemu_pipe(fds);
3418 if (err == -1)
3419 return -errno;
3420
3421 err = fcntl_setfl(fds[0], O_NONBLOCK);
3422 if (err < 0)
3423 goto fail;
3424
3425 err = fcntl_setfl(fds[1], O_NONBLOCK);
3426 if (err < 0)
3427 goto fail;
3428
3429 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3430 (void *)(unsigned long)fds[0]);
3431
3432 io_thread_fd = fds[1];
3433 return 0;
3434
3435 fail:
3436 close(fds[0]);
3437 close(fds[1]);
3438 return err;
3439 }
3440 #else
3441 HANDLE qemu_event_handle;
3442
3443 static void dummy_event_handler(void *opaque)
3444 {
3445 }
3446
3447 static int qemu_event_init(void)
3448 {
3449 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3450 if (!qemu_event_handle) {
3451 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3452 return -1;
3453 }
3454 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3455 return 0;
3456 }
3457
3458 static void qemu_event_increment(void)
3459 {
3460 if (!SetEvent(qemu_event_handle)) {
3461 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3462 GetLastError());
3463 exit (1);
3464 }
3465 }
3466 #endif
3467
3468 static int cpu_can_run(CPUState *env)
3469 {
3470 if (env->stop)
3471 return 0;
3472 if (env->stopped)
3473 return 0;
3474 if (!vm_running)
3475 return 0;
3476 return 1;
3477 }
3478
3479 #ifndef CONFIG_IOTHREAD
3480 static int qemu_init_main_loop(void)
3481 {
3482 return qemu_event_init();
3483 }
3484
3485 void qemu_init_vcpu(void *_env)
3486 {
3487 CPUState *env = _env;
3488
3489 env->nr_cores = smp_cores;
3490 env->nr_threads = smp_threads;
3491 if (kvm_enabled())
3492 kvm_init_vcpu(env);
3493 return;
3494 }
3495
3496 int qemu_cpu_self(void *env)
3497 {
3498 return 1;
3499 }
3500
3501 static void resume_all_vcpus(void)
3502 {
3503 }
3504
3505 static void pause_all_vcpus(void)
3506 {
3507 }
3508
3509 void qemu_cpu_kick(void *env)
3510 {
3511 return;
3512 }
3513
3514 void qemu_notify_event(void)
3515 {
3516 CPUState *env = cpu_single_env;
3517
3518 if (env) {
3519 cpu_exit(env);
3520 }
3521 }
3522
3523 void qemu_mutex_lock_iothread(void) {}
3524 void qemu_mutex_unlock_iothread(void) {}
3525
3526 void vm_stop(int reason)
3527 {
3528 do_vm_stop(reason);
3529 }
3530
3531 #else /* CONFIG_IOTHREAD */
3532
3533 #include "qemu-thread.h"
3534
3535 QemuMutex qemu_global_mutex;
3536 static QemuMutex qemu_fair_mutex;
3537
3538 static QemuThread io_thread;
3539
3540 static QemuThread *tcg_cpu_thread;
3541 static QemuCond *tcg_halt_cond;
3542
3543 static int qemu_system_ready;
3544 /* cpu creation */
3545 static QemuCond qemu_cpu_cond;
3546 /* system init */
3547 static QemuCond qemu_system_cond;
3548 static QemuCond qemu_pause_cond;
3549
3550 static void block_io_signals(void);
3551 static void unblock_io_signals(void);
3552 static int tcg_has_work(void);
3553
3554 static int qemu_init_main_loop(void)
3555 {
3556 int ret;
3557
3558 ret = qemu_event_init();
3559 if (ret)
3560 return ret;
3561
3562 qemu_cond_init(&qemu_pause_cond);
3563 qemu_mutex_init(&qemu_fair_mutex);
3564 qemu_mutex_init(&qemu_global_mutex);
3565 qemu_mutex_lock(&qemu_global_mutex);
3566
3567 unblock_io_signals();
3568 qemu_thread_self(&io_thread);
3569
3570 return 0;
3571 }
3572
3573 static void qemu_wait_io_event(CPUState *env)
3574 {
3575 while (!tcg_has_work())
3576 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3577
3578 qemu_mutex_unlock(&qemu_global_mutex);
3579
3580 /*
3581 * Users of qemu_global_mutex can be starved, having no chance
3582 * to acquire it since this path will get to it first.
3583 * So use another lock to provide fairness.
3584 */
3585 qemu_mutex_lock(&qemu_fair_mutex);
3586 qemu_mutex_unlock(&qemu_fair_mutex);
3587
3588 qemu_mutex_lock(&qemu_global_mutex);
3589 if (env->stop) {
3590 env->stop = 0;
3591 env->stopped = 1;
3592 qemu_cond_signal(&qemu_pause_cond);
3593 }
3594 }
3595
3596 static int qemu_cpu_exec(CPUState *env);
3597
3598 static void *kvm_cpu_thread_fn(void *arg)
3599 {
3600 CPUState *env = arg;
3601
3602 block_io_signals();
3603 qemu_thread_self(env->thread);
3604 if (kvm_enabled())
3605 kvm_init_vcpu(env);
3606
3607 /* signal CPU creation */
3608 qemu_mutex_lock(&qemu_global_mutex);
3609 env->created = 1;
3610 qemu_cond_signal(&qemu_cpu_cond);
3611
3612 /* and wait for machine initialization */
3613 while (!qemu_system_ready)
3614 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3615
3616 while (1) {
3617 if (cpu_can_run(env))
3618 qemu_cpu_exec(env);
3619 qemu_wait_io_event(env);
3620 }
3621
3622 return NULL;
3623 }
3624
3625 static void tcg_cpu_exec(void);
3626
3627 static void *tcg_cpu_thread_fn(void *arg)
3628 {
3629 CPUState *env = arg;
3630
3631 block_io_signals();
3632 qemu_thread_self(env->thread);
3633
3634 /* signal CPU creation */
3635 qemu_mutex_lock(&qemu_global_mutex);
3636 for (env = first_cpu; env != NULL; env = env->next_cpu)
3637 env->created = 1;
3638 qemu_cond_signal(&qemu_cpu_cond);
3639
3640 /* and wait for machine initialization */
3641 while (!qemu_system_ready)
3642 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3643
3644 while (1) {
3645 tcg_cpu_exec();
3646 qemu_wait_io_event(cur_cpu);
3647 }
3648
3649 return NULL;
3650 }
3651
3652 void qemu_cpu_kick(void *_env)
3653 {
3654 CPUState *env = _env;
3655 qemu_cond_broadcast(env->halt_cond);
3656 if (kvm_enabled())
3657 qemu_thread_signal(env->thread, SIGUSR1);
3658 }
3659
3660 int qemu_cpu_self(void *_env)
3661 {
3662 CPUState *env = _env;
3663 QemuThread this;
3664
3665 qemu_thread_self(&this);
3666
3667 return qemu_thread_equal(&this, env->thread);
3668 }
3669
3670 static void cpu_signal(int sig)
3671 {
3672 if (cpu_single_env)
3673 cpu_exit(cpu_single_env);
3674 }
3675
3676 static void block_io_signals(void)
3677 {
3678 sigset_t set;
3679 struct sigaction sigact;
3680
3681 sigemptyset(&set);
3682 sigaddset(&set, SIGUSR2);
3683 sigaddset(&set, SIGIO);
3684 sigaddset(&set, SIGALRM);
3685 pthread_sigmask(SIG_BLOCK, &set, NULL);
3686
3687 sigemptyset(&set);
3688 sigaddset(&set, SIGUSR1);
3689 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3690
3691 memset(&sigact, 0, sizeof(sigact));
3692 sigact.sa_handler = cpu_signal;
3693 sigaction(SIGUSR1, &sigact, NULL);
3694 }
3695
3696 static void unblock_io_signals(void)
3697 {
3698 sigset_t set;
3699
3700 sigemptyset(&set);
3701 sigaddset(&set, SIGUSR2);
3702 sigaddset(&set, SIGIO);
3703 sigaddset(&set, SIGALRM);
3704 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3705
3706 sigemptyset(&set);
3707 sigaddset(&set, SIGUSR1);
3708 pthread_sigmask(SIG_BLOCK, &set, NULL);
3709 }
3710
3711 static void qemu_signal_lock(unsigned int msecs)
3712 {
3713 qemu_mutex_lock(&qemu_fair_mutex);
3714
3715 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3716 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3717 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3718 break;
3719 }
3720 qemu_mutex_unlock(&qemu_fair_mutex);
3721 }
3722
3723 void qemu_mutex_lock_iothread(void)
3724 {
3725 if (kvm_enabled()) {
3726 qemu_mutex_lock(&qemu_fair_mutex);
3727 qemu_mutex_lock(&qemu_global_mutex);
3728 qemu_mutex_unlock(&qemu_fair_mutex);
3729 } else
3730 qemu_signal_lock(100);
3731 }
3732
3733 void qemu_mutex_unlock_iothread(void)
3734 {
3735 qemu_mutex_unlock(&qemu_global_mutex);
3736 }
3737
3738 static int all_vcpus_paused(void)
3739 {
3740 CPUState *penv = first_cpu;
3741
3742 while (penv) {
3743 if (!penv->stopped)
3744 return 0;
3745 penv = (CPUState *)penv->next_cpu;
3746 }
3747
3748 return 1;
3749 }
3750
3751 static void pause_all_vcpus(void)
3752 {
3753 CPUState *penv = first_cpu;
3754
3755 while (penv) {
3756 penv->stop = 1;
3757 qemu_thread_signal(penv->thread, SIGUSR1);
3758 qemu_cpu_kick(penv);
3759 penv = (CPUState *)penv->next_cpu;
3760 }
3761
3762 while (!all_vcpus_paused()) {
3763 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3764 penv = first_cpu;
3765 while (penv) {
3766 qemu_thread_signal(penv->thread, SIGUSR1);
3767 penv = (CPUState *)penv->next_cpu;
3768 }
3769 }
3770 }
3771
3772 static void resume_all_vcpus(void)
3773 {
3774 CPUState *penv = first_cpu;
3775
3776 while (penv) {
3777 penv->stop = 0;
3778 penv->stopped = 0;
3779 qemu_thread_signal(penv->thread, SIGUSR1);
3780 qemu_cpu_kick(penv);
3781 penv = (CPUState *)penv->next_cpu;
3782 }
3783 }
3784
3785 static void tcg_init_vcpu(void *_env)
3786 {
3787 CPUState *env = _env;
3788 /* share a single thread for all cpus with TCG */
3789 if (!tcg_cpu_thread) {
3790 env->thread = qemu_mallocz(sizeof(QemuThread));
3791 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3792 qemu_cond_init(env->halt_cond);
3793 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3794 while (env->created == 0)
3795 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3796 tcg_cpu_thread = env->thread;
3797 tcg_halt_cond = env->halt_cond;
3798 } else {
3799 env->thread = tcg_cpu_thread;
3800 env->halt_cond = tcg_halt_cond;
3801 }
3802 }
3803
3804 static void kvm_start_vcpu(CPUState *env)
3805 {
3806 env->thread = qemu_mallocz(sizeof(QemuThread));
3807 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3808 qemu_cond_init(env->halt_cond);
3809 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3810 while (env->created == 0)
3811 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3812 }
3813
3814 void qemu_init_vcpu(void *_env)
3815 {
3816 CPUState *env = _env;
3817
3818 env->nr_cores = smp_cores;
3819 env->nr_threads = smp_threads;
3820 if (kvm_enabled())
3821 kvm_start_vcpu(env);
3822 else
3823 tcg_init_vcpu(env);
3824 }
3825
3826 void qemu_notify_event(void)
3827 {
3828 qemu_event_increment();
3829 }
3830
3831 void vm_stop(int reason)
3832 {
3833 QemuThread me;
3834 qemu_thread_self(&me);
3835
3836 if (!qemu_thread_equal(&me, &io_thread)) {
3837 qemu_system_vmstop_request(reason);
3838 /*
3839 * FIXME: should not return to device code in case
3840 * vm_stop() has been requested.
3841 */
3842 if (cpu_single_env) {
3843 cpu_exit(cpu_single_env);
3844 cpu_single_env->stop = 1;
3845 }
3846 return;
3847 }
3848 do_vm_stop(reason);
3849 }
3850
3851 #endif
3852
3853
3854 #ifdef _WIN32
3855 static void host_main_loop_wait(int *timeout)
3856 {
3857 int ret, ret2, i;
3858 PollingEntry *pe;
3859
3860
3861 /* XXX: need to suppress polling by better using win32 events */
3862 ret = 0;
3863 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3864 ret |= pe->func(pe->opaque);
3865 }
3866 if (ret == 0) {
3867 int err;
3868 WaitObjects *w = &wait_objects;
3869
3870 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3871 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3872 if (w->func[ret - WAIT_OBJECT_0])
3873 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3874
3875 /* Check for additional signaled events */
3876 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3877
3878 /* Check if event is signaled */
3879 ret2 = WaitForSingleObject(w->events[i], 0);
3880 if(ret2 == WAIT_OBJECT_0) {
3881 if (w->func[i])
3882 w->func[i](w->opaque[i]);
3883 } else if (ret2 == WAIT_TIMEOUT) {
3884 } else {
3885 err = GetLastError();
3886 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3887 }
3888 }
3889 } else if (ret == WAIT_TIMEOUT) {
3890 } else {
3891 err = GetLastError();
3892 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3893 }
3894 }
3895
3896 *timeout = 0;
3897 }
3898 #else
3899 static void host_main_loop_wait(int *timeout)
3900 {
3901 }
3902 #endif
3903
3904 void main_loop_wait(int timeout)
3905 {
3906 IOHandlerRecord *ioh;
3907 fd_set rfds, wfds, xfds;
3908 int ret, nfds;
3909 struct timeval tv;
3910
3911 qemu_bh_update_timeout(&timeout);
3912
3913 host_main_loop_wait(&timeout);
3914
3915 /* poll any events */
3916 /* XXX: separate device handlers from system ones */
3917 nfds = -1;
3918 FD_ZERO(&rfds);
3919 FD_ZERO(&wfds);
3920 FD_ZERO(&xfds);
3921 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3922 if (ioh->deleted)
3923 continue;
3924 if (ioh->fd_read &&
3925 (!ioh->fd_read_poll ||
3926 ioh->fd_read_poll(ioh->opaque) != 0)) {
3927 FD_SET(ioh->fd, &rfds);
3928 if (ioh->fd > nfds)
3929 nfds = ioh->fd;
3930 }
3931 if (ioh->fd_write) {
3932 FD_SET(ioh->fd, &wfds);
3933 if (ioh->fd > nfds)
3934 nfds = ioh->fd;
3935 }
3936 }
3937
3938 tv.tv_sec = timeout / 1000;
3939 tv.tv_usec = (timeout % 1000) * 1000;
3940
3941 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3942
3943 qemu_mutex_unlock_iothread();
3944 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3945 qemu_mutex_lock_iothread();
3946 if (ret > 0) {
3947 IOHandlerRecord **pioh;
3948
3949 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3950 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3951 ioh->fd_read(ioh->opaque);
3952 }
3953 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3954 ioh->fd_write(ioh->opaque);
3955 }
3956 }
3957
3958 /* remove deleted IO handlers */
3959 pioh = &first_io_handler;
3960 while (*pioh) {
3961 ioh = *pioh;
3962 if (ioh->deleted) {
3963 *pioh = ioh->next;
3964 qemu_free(ioh);
3965 } else
3966 pioh = &ioh->next;
3967 }
3968 }
3969
3970 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3971
3972 /* rearm timer, if not periodic */
3973 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3974 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3975 qemu_rearm_alarm_timer(alarm_timer);
3976 }
3977
3978 /* vm time timers */
3979 if (vm_running) {
3980 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3981 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3982 qemu_get_clock(vm_clock));
3983 }
3984
3985 /* real time timers */
3986 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3987 qemu_get_clock(rt_clock));
3988
3989 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3990 qemu_get_clock(host_clock));
3991
3992 /* Check bottom-halves last in case any of the earlier events triggered
3993 them. */
3994 qemu_bh_poll();
3995
3996 }
3997
3998 static int qemu_cpu_exec(CPUState *env)
3999 {
4000 int ret;
4001 #ifdef CONFIG_PROFILER
4002 int64_t ti;
4003 #endif
4004
4005 #ifdef CONFIG_PROFILER
4006 ti = profile_getclock();
4007 #endif
4008 if (use_icount) {
4009 int64_t count;
4010 int decr;
4011 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4012 env->icount_decr.u16.low = 0;
4013 env->icount_extra = 0;
4014 count = qemu_next_deadline();
4015 count = (count + (1 << icount_time_shift) - 1)
4016 >> icount_time_shift;
4017 qemu_icount += count;
4018 decr = (count > 0xffff) ? 0xffff : count;
4019 count -= decr;
4020 env->icount_decr.u16.low = decr;
4021 env->icount_extra = count;
4022 }
4023 ret = cpu_exec(env);
4024 #ifdef CONFIG_PROFILER
4025 qemu_time += profile_getclock() - ti;
4026 #endif
4027 if (use_icount) {
4028 /* Fold pending instructions back into the
4029 instruction counter, and clear the interrupt flag. */
4030 qemu_icount -= (env->icount_decr.u16.low
4031 + env->icount_extra);
4032 env->icount_decr.u32 = 0;
4033 env->icount_extra = 0;
4034 }
4035 return ret;
4036 }
4037
4038 static void tcg_cpu_exec(void)
4039 {
4040 int ret = 0;
4041
4042 if (next_cpu == NULL)
4043 next_cpu = first_cpu;
4044 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4045 CPUState *env = cur_cpu = next_cpu;
4046
4047 if (timer_alarm_pending) {
4048 timer_alarm_pending = 0;
4049 break;
4050 }
4051 if (cpu_can_run(env))
4052 ret = qemu_cpu_exec(env);
4053 else if (env->stop)
4054 break;
4055
4056 if (ret == EXCP_DEBUG) {
4057 gdb_set_stop_cpu(env);
4058 debug_requested = 1;
4059 break;
4060 }
4061 }
4062 }
4063
4064 static int cpu_has_work(CPUState *env)
4065 {
4066 if (env->stop)
4067 return 1;
4068 if (env->stopped)
4069 return 0;
4070 if (!env->halted)
4071 return 1;
4072 if (qemu_cpu_has_work(env))
4073 return 1;
4074 return 0;
4075 }
4076
4077 static int tcg_has_work(void)
4078 {
4079 CPUState *env;
4080
4081 for (env = first_cpu; env != NULL; env = env->next_cpu)
4082 if (cpu_has_work(env))
4083 return 1;
4084 return 0;
4085 }
4086
4087 static int qemu_calculate_timeout(void)
4088 {
4089 #ifndef CONFIG_IOTHREAD
4090 int timeout;
4091
4092 if (!vm_running)
4093 timeout = 5000;
4094 else if (tcg_has_work())
4095 timeout = 0;
4096 else if (!use_icount)
4097 timeout = 5000;
4098 else {
4099 /* XXX: use timeout computed from timers */
4100 int64_t add;
4101 int64_t delta;
4102 /* Advance virtual time to the next event. */
4103 if (use_icount == 1) {
4104 /* When not using an adaptive execution frequency
4105 we tend to get badly out of sync with real time,
4106 so just delay for a reasonable amount of time. */
4107 delta = 0;
4108 } else {
4109 delta = cpu_get_icount() - cpu_get_clock();
4110 }
4111 if (delta > 0) {
4112 /* If virtual time is ahead of real time then just
4113 wait for IO. */
4114 timeout = (delta / 1000000) + 1;
4115 } else {
4116 /* Wait for either IO to occur or the next
4117 timer event. */
4118 add = qemu_next_deadline();
4119 /* We advance the timer before checking for IO.
4120 Limit the amount we advance so that early IO
4121 activity won't get the guest too far ahead. */
4122 if (add > 10000000)
4123 add = 10000000;
4124 delta += add;
4125 add = (add + (1 << icount_time_shift) - 1)
4126 >> icount_time_shift;
4127 qemu_icount += add;
4128 timeout = delta / 1000000;
4129 if (timeout < 0)
4130 timeout = 0;
4131 }
4132 }
4133
4134 return timeout;
4135 #else /* CONFIG_IOTHREAD */
4136 return 1000;
4137 #endif
4138 }
4139
4140 static int vm_can_run(void)
4141 {
4142 if (powerdown_requested)
4143 return 0;
4144 if (reset_requested)
4145 return 0;
4146 if (shutdown_requested)
4147 return 0;
4148 if (debug_requested)
4149 return 0;
4150 return 1;
4151 }
4152
4153 qemu_irq qemu_system_powerdown;
4154
4155 static void main_loop(void)
4156 {
4157 int r;
4158
4159 #ifdef CONFIG_IOTHREAD
4160 qemu_system_ready = 1;
4161 qemu_cond_broadcast(&qemu_system_cond);
4162 #endif
4163
4164 for (;;) {
4165 do {
4166 #ifdef CONFIG_PROFILER
4167 int64_t ti;
4168 #endif
4169 #ifndef CONFIG_IOTHREAD
4170 tcg_cpu_exec();
4171 #endif
4172 #ifdef CONFIG_PROFILER
4173 ti = profile_getclock();
4174 #endif
4175 main_loop_wait(qemu_calculate_timeout());
4176 #ifdef CONFIG_PROFILER
4177 dev_time += profile_getclock() - ti;
4178 #endif
4179 } while (vm_can_run());
4180
4181 if (qemu_debug_requested()) {
4182 monitor_protocol_event(QEVENT_DEBUG, NULL);
4183 vm_stop(EXCP_DEBUG);
4184 }
4185 if (qemu_shutdown_requested()) {
4186 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4187 if (no_shutdown) {
4188 vm_stop(0);
4189 no_shutdown = 0;
4190 } else
4191 break;
4192 }
4193 if (qemu_reset_requested()) {
4194 monitor_protocol_event(QEVENT_RESET, NULL);
4195 pause_all_vcpus();
4196 qemu_system_reset();
4197 resume_all_vcpus();
4198 }
4199 if (qemu_powerdown_requested()) {
4200 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4201 qemu_irq_raise(qemu_system_powerdown);
4202 }
4203 if ((r = qemu_vmstop_requested())) {
4204 monitor_protocol_event(QEVENT_STOP, NULL);
4205 vm_stop(r);
4206 }
4207 }
4208 pause_all_vcpus();
4209 }
4210
4211 static void version(void)
4212 {
4213 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4214 }
4215
4216 static void help(int exitcode)
4217 {
4218 version();
4219 printf("usage: %s [options] [disk_image]\n"
4220 "\n"
4221 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4222 "\n"
4223 #define DEF(option, opt_arg, opt_enum, opt_help) \
4224 opt_help
4225 #define DEFHEADING(text) stringify(text) "\n"
4226 #include "qemu-options.h"
4227 #undef DEF
4228 #undef DEFHEADING
4229 #undef GEN_DOCS
4230 "\n"
4231 "During emulation, the following keys are useful:\n"
4232 "ctrl-alt-f toggle full screen\n"
4233 "ctrl-alt-n switch to virtual console 'n'\n"
4234 "ctrl-alt toggle mouse and keyboard grab\n"
4235 "\n"
4236 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4237 ,
4238 "qemu",
4239 DEFAULT_RAM_SIZE,
4240 #ifndef _WIN32
4241 DEFAULT_NETWORK_SCRIPT,
4242 DEFAULT_NETWORK_DOWN_SCRIPT,
4243 #endif
4244 DEFAULT_GDBSTUB_PORT,
4245 "/tmp/qemu.log");
4246 exit(exitcode);
4247 }
4248
4249 #define HAS_ARG 0x0001
4250
4251 enum {
4252 #define DEF(option, opt_arg, opt_enum, opt_help) \
4253 opt_enum,
4254 #define DEFHEADING(text)
4255 #include "qemu-options.h"
4256 #undef DEF
4257 #undef DEFHEADING
4258 #undef GEN_DOCS
4259 };
4260
4261 typedef struct QEMUOption {
4262 const char *name;
4263 int flags;
4264 int index;
4265 } QEMUOption;
4266
4267 static const QEMUOption qemu_options[] = {
4268 { "h", 0, QEMU_OPTION_h },
4269 #define DEF(option, opt_arg, opt_enum, opt_help) \
4270 { option, opt_arg, opt_enum },
4271 #define DEFHEADING(text)
4272 #include "qemu-options.h"
4273 #undef DEF
4274 #undef DEFHEADING
4275 #undef GEN_DOCS
4276 { NULL },
4277 };
4278
4279 #ifdef HAS_AUDIO
4280 struct soundhw soundhw[] = {
4281 #ifdef HAS_AUDIO_CHOICE
4282 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4283 {
4284 "pcspk",
4285 "PC speaker",
4286 0,
4287 1,
4288 { .init_isa = pcspk_audio_init }
4289 },
4290 #endif
4291
4292 #ifdef CONFIG_SB16
4293 {
4294 "sb16",
4295 "Creative Sound Blaster 16",
4296 0,
4297 1,
4298 { .init_isa = SB16_init }
4299 },
4300 #endif
4301
4302 #ifdef CONFIG_CS4231A
4303 {
4304 "cs4231a",
4305 "CS4231A",
4306 0,
4307 1,
4308 { .init_isa = cs4231a_init }
4309 },
4310 #endif
4311
4312 #ifdef CONFIG_ADLIB
4313 {
4314 "adlib",
4315 #ifdef HAS_YMF262
4316 "Yamaha YMF262 (OPL3)",
4317 #else
4318 "Yamaha YM3812 (OPL2)",
4319 #endif
4320 0,
4321 1,
4322 { .init_isa = Adlib_init }
4323 },
4324 #endif
4325
4326 #ifdef CONFIG_GUS
4327 {
4328 "gus",
4329 "Gravis Ultrasound GF1",
4330 0,
4331 1,
4332 { .init_isa = GUS_init }
4333 },
4334 #endif
4335
4336 #ifdef CONFIG_AC97
4337 {
4338 "ac97",
4339 "Intel 82801AA AC97 Audio",
4340 0,
4341 0,
4342 { .init_pci = ac97_init }
4343 },
4344 #endif
4345
4346 #ifdef CONFIG_ES1370
4347 {
4348 "es1370",
4349 "ENSONIQ AudioPCI ES1370",
4350 0,
4351 0,
4352 { .init_pci = es1370_init }
4353 },
4354 #endif
4355
4356 #endif /* HAS_AUDIO_CHOICE */
4357
4358 { NULL, NULL, 0, 0, { NULL } }
4359 };
4360
4361 static void select_soundhw (const char *optarg)
4362 {
4363 struct soundhw *c;
4364
4365 if (*optarg == '?') {
4366 show_valid_cards:
4367
4368 printf ("Valid sound card names (comma separated):\n");
4369 for (c = soundhw; c->name; ++c) {
4370 printf ("%-11s %s\n", c->name, c->descr);
4371 }
4372 printf ("\n-soundhw all will enable all of the above\n");
4373 exit (*optarg != '?');
4374 }
4375 else {
4376 size_t l;
4377 const char *p;
4378 char *e;
4379 int bad_card = 0;
4380
4381 if (!strcmp (optarg, "all")) {
4382 for (c = soundhw; c->name; ++c) {
4383 c->enabled = 1;
4384 }
4385 return;
4386 }
4387
4388 p = optarg;
4389 while (*p) {
4390 e = strchr (p, ',');
4391 l = !e ? strlen (p) : (size_t) (e - p);
4392
4393 for (c = soundhw; c->name; ++c) {
4394 if (!strncmp (c->name, p, l) && !c->name[l]) {
4395 c->enabled = 1;
4396 break;
4397 }
4398 }
4399
4400 if (!c->name) {
4401 if (l > 80) {
4402 fprintf (stderr,
4403 "Unknown sound card name (too big to show)\n");
4404 }
4405 else {
4406 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4407 (int) l, p);
4408 }
4409 bad_card = 1;
4410 }
4411 p += l + (e != NULL);
4412 }
4413
4414 if (bad_card)
4415 goto show_valid_cards;
4416 }
4417 }
4418 #endif
4419
4420 static void select_vgahw (const char *p)
4421 {
4422 const char *opts;
4423
4424 default_vga = 0;
4425 vga_interface_type = VGA_NONE;
4426 if (strstart(p, "std", &opts)) {
4427 vga_interface_type = VGA_STD;
4428 } else if (strstart(p, "cirrus", &opts)) {
4429 vga_interface_type = VGA_CIRRUS;
4430 } else if (strstart(p, "vmware", &opts)) {
4431 vga_interface_type = VGA_VMWARE;
4432 } else if (strstart(p, "xenfb", &opts)) {
4433 vga_interface_type = VGA_XENFB;
4434 } else if (!strstart(p, "none", &opts)) {
4435 invalid_vga:
4436 fprintf(stderr, "Unknown vga type: %s\n", p);
4437 exit(1);
4438 }
4439 while (*opts) {
4440 const char *nextopt;
4441
4442 if (strstart(opts, ",retrace=", &nextopt)) {
4443 opts = nextopt;
4444 if (strstart(opts, "dumb", &nextopt))
4445 vga_retrace_method = VGA_RETRACE_DUMB;
4446 else if (strstart(opts, "precise", &nextopt))
4447 vga_retrace_method = VGA_RETRACE_PRECISE;
4448 else goto invalid_vga;
4449 } else goto invalid_vga;
4450 opts = nextopt;
4451 }
4452 }
4453
4454 #ifdef TARGET_I386
4455 static int balloon_parse(const char *arg)
4456 {
4457 QemuOpts *opts;
4458
4459 if (strcmp(arg, "none") == 0) {
4460 return 0;
4461 }
4462
4463 if (!strncmp(arg, "virtio", 6)) {
4464 if (arg[6] == ',') {
4465 /* have params -> parse them */
4466 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4467 if (!opts)
4468 return -1;
4469 } else {
4470 /* create empty opts */
4471 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4472 }
4473 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4474 return 0;
4475 }
4476
4477 return -1;
4478 }
4479 #endif
4480
4481 #ifdef _WIN32
4482 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4483 {
4484 exit(STATUS_CONTROL_C_EXIT);
4485 return TRUE;
4486 }
4487 #endif
4488
4489 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4490 {
4491 int ret;
4492
4493 if(strlen(str) != 36)
4494 return -1;
4495
4496 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4497 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4498 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4499
4500 if(ret != 16)
4501 return -1;
4502
4503 #ifdef TARGET_I386
4504 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4505 #endif
4506
4507 return 0;
4508 }
4509
4510 #ifndef _WIN32
4511
4512 static void termsig_handler(int signal)
4513 {
4514 qemu_system_shutdown_request();
4515 }
4516
4517 static void sigchld_handler(int signal)
4518 {
4519 waitpid(-1, NULL, WNOHANG);
4520 }
4521
4522 static void sighandler_setup(void)
4523 {
4524 struct sigaction act;
4525
4526 memset(&act, 0, sizeof(act));
4527 act.sa_handler = termsig_handler;
4528 sigaction(SIGINT, &act, NULL);
4529 sigaction(SIGHUP, &act, NULL);
4530 sigaction(SIGTERM, &act, NULL);
4531
4532 act.sa_handler = sigchld_handler;
4533 act.sa_flags = SA_NOCLDSTOP;
4534 sigaction(SIGCHLD, &act, NULL);
4535 }
4536
4537 #endif
4538
4539 #ifdef _WIN32
4540 /* Look for support files in the same directory as the executable. */
4541 static char *find_datadir(const char *argv0)
4542 {
4543 char *p;
4544 char buf[MAX_PATH];
4545 DWORD len;
4546
4547 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4548 if (len == 0) {
4549 return NULL;
4550 }
4551
4552 buf[len] = 0;
4553 p = buf + len - 1;
4554 while (p != buf && *p != '\\')
4555 p--;
4556 *p = 0;
4557 if (access(buf, R_OK) == 0) {
4558 return qemu_strdup(buf);
4559 }
4560 return NULL;
4561 }
4562 #else /* !_WIN32 */
4563
4564 /* Find a likely location for support files using the location of the binary.
4565 For installed binaries this will be "$bindir/../share/qemu". When
4566 running from the build tree this will be "$bindir/../pc-bios". */
4567 #define SHARE_SUFFIX "/share/qemu"
4568 #define BUILD_SUFFIX "/pc-bios"
4569 static char *find_datadir(const char *argv0)
4570 {
4571 char *dir;
4572 char *p = NULL;
4573 char *res;
4574 char buf[PATH_MAX];
4575 size_t max_len;
4576
4577 #if defined(__linux__)
4578 {
4579 int len;
4580 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4581 if (len > 0) {
4582 buf[len] = 0;
4583 p = buf;
4584 }
4585 }
4586 #elif defined(__FreeBSD__)
4587 {
4588 int len;
4589 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4590 if (len > 0) {
4591 buf[len] = 0;
4592 p = buf;
4593 }
4594 }
4595 #endif
4596 /* If we don't have any way of figuring out the actual executable
4597 location then try argv[0]. */
4598 if (!p) {
4599 p = realpath(argv0, buf);
4600 if (!p) {
4601 return NULL;
4602 }
4603 }
4604 dir = dirname(p);
4605 dir = dirname(dir);
4606
4607 max_len = strlen(dir) +
4608 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4609 res = qemu_mallocz(max_len);
4610 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4611 if (access(res, R_OK)) {
4612 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4613 if (access(res, R_OK)) {
4614 qemu_free(res);
4615 res = NULL;
4616 }
4617 }
4618
4619 return res;
4620 }
4621 #undef SHARE_SUFFIX
4622 #undef BUILD_SUFFIX
4623 #endif
4624
4625 char *qemu_find_file(int type, const char *name)
4626 {
4627 int len;
4628 const char *subdir;
4629 char *buf;
4630
4631 /* If name contains path separators then try it as a straight path. */
4632 if ((strchr(name, '/') || strchr(name, '\\'))
4633 && access(name, R_OK) == 0) {
4634 return qemu_strdup(name);
4635 }
4636 switch (type) {
4637 case QEMU_FILE_TYPE_BIOS:
4638 subdir = "";
4639 break;
4640 case QEMU_FILE_TYPE_KEYMAP:
4641 subdir = "keymaps/";
4642 break;
4643 default:
4644 abort();
4645 }
4646 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4647 buf = qemu_mallocz(len);
4648 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4649 if (access(buf, R_OK)) {
4650 qemu_free(buf);
4651 return NULL;
4652 }
4653 return buf;
4654 }
4655
4656 static int device_init_func(QemuOpts *opts, void *opaque)
4657 {
4658 DeviceState *dev;
4659
4660 dev = qdev_device_add(opts);
4661 if (!dev)
4662 return -1;
4663 return 0;
4664 }
4665
4666 static int chardev_init_func(QemuOpts *opts, void *opaque)
4667 {
4668 CharDriverState *chr;
4669
4670 chr = qemu_chr_open_opts(opts, NULL);
4671 if (!chr)
4672 return -1;
4673 return 0;
4674 }
4675
4676 static int mon_init_func(QemuOpts *opts, void *opaque)
4677 {
4678 CharDriverState *chr;
4679 const char *chardev;
4680 const char *mode;
4681 int flags;
4682
4683 mode = qemu_opt_get(opts, "mode");
4684 if (mode == NULL) {
4685 mode = "readline";
4686 }
4687 if (strcmp(mode, "readline") == 0) {
4688 flags = MONITOR_USE_READLINE;
4689 } else if (strcmp(mode, "control") == 0) {
4690 flags = MONITOR_USE_CONTROL;
4691 } else {
4692 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4693 exit(1);
4694 }
4695
4696 if (qemu_opt_get_bool(opts, "default", 0))
4697 flags |= MONITOR_IS_DEFAULT;
4698
4699 chardev = qemu_opt_get(opts, "chardev");
4700 chr = qemu_chr_find(chardev);
4701 if (chr == NULL) {
4702 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4703 exit(1);
4704 }
4705
4706 monitor_init(chr, flags);
4707 return 0;
4708 }
4709
4710 static void monitor_parse(const char *optarg, const char *mode)
4711 {
4712 static int monitor_device_index = 0;
4713 QemuOpts *opts;
4714 const char *p;
4715 char label[32];
4716 int def = 0;
4717
4718 if (strstart(optarg, "chardev:", &p)) {
4719 snprintf(label, sizeof(label), "%s", p);
4720 } else {
4721 if (monitor_device_index) {
4722 snprintf(label, sizeof(label), "monitor%d",
4723 monitor_device_index);
4724 } else {
4725 snprintf(label, sizeof(label), "monitor");
4726 def = 1;
4727 }
4728 opts = qemu_chr_parse_compat(label, optarg);
4729 if (!opts) {
4730 fprintf(stderr, "parse error: %s\n", optarg);
4731 exit(1);
4732 }
4733 }
4734
4735 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4736 if (!opts) {
4737 fprintf(stderr, "duplicate chardev: %s\n", label);
4738 exit(1);
4739 }
4740 qemu_opt_set(opts, "mode", mode);
4741 qemu_opt_set(opts, "chardev", label);
4742 if (def)
4743 qemu_opt_set(opts, "default", "on");
4744 monitor_device_index++;
4745 }
4746
4747 struct device_config {
4748 enum {
4749 DEV_USB, /* -usbdevice */
4750 DEV_BT, /* -bt */
4751 DEV_SERIAL, /* -serial */
4752 DEV_PARALLEL, /* -parallel */
4753 DEV_VIRTCON, /* -virtioconsole */
4754 } type;
4755 const char *cmdline;
4756 QTAILQ_ENTRY(device_config) next;
4757 };
4758 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4759
4760 static void add_device_config(int type, const char *cmdline)
4761 {
4762 struct device_config *conf;
4763
4764 conf = qemu_mallocz(sizeof(*conf));
4765 conf->type = type;
4766 conf->cmdline = cmdline;
4767 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4768 }
4769
4770 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4771 {
4772 struct device_config *conf;
4773 int rc;
4774
4775 QTAILQ_FOREACH(conf, &device_configs, next) {
4776 if (conf->type != type)
4777 continue;
4778 rc = func(conf->cmdline);
4779 if (0 != rc)
4780 return rc;
4781 }
4782 return 0;
4783 }
4784
4785 static int serial_parse(const char *devname)
4786 {
4787 static int index = 0;
4788 char label[32];
4789
4790 if (strcmp(devname, "none") == 0)
4791 return 0;
4792 if (index == MAX_SERIAL_PORTS) {
4793 fprintf(stderr, "qemu: too many serial ports\n");
4794 exit(1);
4795 }
4796 snprintf(label, sizeof(label), "serial%d", index);
4797 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4798 if (!serial_hds[index]) {
4799 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4800 devname, strerror(errno));
4801 return -1;
4802 }
4803 index++;
4804 return 0;
4805 }
4806
4807 static int parallel_parse(const char *devname)
4808 {
4809 static int index = 0;
4810 char label[32];
4811
4812 if (strcmp(devname, "none") == 0)
4813 return 0;
4814 if (index == MAX_PARALLEL_PORTS) {
4815 fprintf(stderr, "qemu: too many parallel ports\n");
4816 exit(1);
4817 }
4818 snprintf(label, sizeof(label), "parallel%d", index);
4819 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4820 if (!parallel_hds[index]) {
4821 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4822 devname, strerror(errno));
4823 return -1;
4824 }
4825 index++;
4826 return 0;
4827 }
4828
4829 static int virtcon_parse(const char *devname)
4830 {
4831 static int index = 0;
4832 char label[32];
4833
4834 if (strcmp(devname, "none") == 0)
4835 return 0;
4836 if (index == MAX_VIRTIO_CONSOLES) {
4837 fprintf(stderr, "qemu: too many virtio consoles\n");
4838 exit(1);
4839 }
4840 snprintf(label, sizeof(label), "virtcon%d", index);
4841 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4842 if (!virtcon_hds[index]) {
4843 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4844 devname, strerror(errno));
4845 return -1;
4846 }
4847 index++;
4848 return 0;
4849 }
4850
4851 int main(int argc, char **argv, char **envp)
4852 {
4853 const char *gdbstub_dev = NULL;
4854 uint32_t boot_devices_bitmap = 0;
4855 int i;
4856 int snapshot, linux_boot;
4857 const char *initrd_filename;
4858 const char *kernel_filename, *kernel_cmdline;
4859 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4860 DisplayState *ds;
4861 DisplayChangeListener *dcl;
4862 int cyls, heads, secs, translation;
4863 QemuOpts *hda_opts = NULL, *opts;
4864 int optind;
4865 const char *r, *optarg;
4866 const char *loadvm = NULL;
4867 QEMUMachine *machine;
4868 const char *cpu_model;
4869 #ifndef _WIN32
4870 int fds[2];
4871 #endif
4872 int tb_size;
4873 const char *pid_file = NULL;
4874 const char *incoming = NULL;
4875 #ifndef _WIN32
4876 int fd = 0;
4877 struct passwd *pwd = NULL;
4878 const char *chroot_dir = NULL;
4879 const char *run_as = NULL;
4880 #endif
4881 CPUState *env;
4882 int show_vnc_port = 0;
4883
4884 init_clocks();
4885
4886 qemu_errors_to_file(stderr);
4887 qemu_cache_utils_init(envp);
4888
4889 QLIST_INIT (&vm_change_state_head);
4890 #ifndef _WIN32
4891 {
4892 struct sigaction act;
4893 sigfillset(&act.sa_mask);
4894 act.sa_flags = 0;
4895 act.sa_handler = SIG_IGN;
4896 sigaction(SIGPIPE, &act, NULL);
4897 }
4898 #else
4899 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4900 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4901 QEMU to run on a single CPU */
4902 {
4903 HANDLE h;
4904 DWORD mask, smask;
4905 int i;
4906 h = GetCurrentProcess();
4907 if (GetProcessAffinityMask(h, &mask, &smask)) {
4908 for(i = 0; i < 32; i++) {
4909 if (mask & (1 << i))
4910 break;
4911 }
4912 if (i != 32) {
4913 mask = 1 << i;
4914 SetProcessAffinityMask(h, mask);
4915 }
4916 }
4917 }
4918 #endif
4919
4920 module_call_init(MODULE_INIT_MACHINE);
4921 machine = find_default_machine();
4922 cpu_model = NULL;
4923 initrd_filename = NULL;
4924 ram_size = 0;
4925 snapshot = 0;
4926 kernel_filename = NULL;
4927 kernel_cmdline = "";
4928 cyls = heads = secs = 0;
4929 translation = BIOS_ATA_TRANSLATION_AUTO;
4930
4931 for (i = 0; i < MAX_NODES; i++) {
4932 node_mem[i] = 0;
4933 node_cpumask[i] = 0;
4934 }
4935
4936 nb_numa_nodes = 0;
4937 nb_nics = 0;
4938
4939 tb_size = 0;
4940 autostart= 1;
4941
4942 optind = 1;
4943 for(;;) {
4944 if (optind >= argc)
4945 break;
4946 r = argv[optind];
4947 if (r[0] != '-') {
4948 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4949 } else {
4950 const QEMUOption *popt;
4951
4952 optind++;
4953 /* Treat --foo the same as -foo. */
4954 if (r[1] == '-')
4955 r++;
4956 popt = qemu_options;
4957 for(;;) {
4958 if (!popt->name) {
4959 fprintf(stderr, "%s: invalid option -- '%s'\n",
4960 argv[0], r);
4961 exit(1);
4962 }
4963 if (!strcmp(popt->name, r + 1))
4964 break;
4965 popt++;
4966 }
4967 if (popt->flags & HAS_ARG) {
4968 if (optind >= argc) {
4969 fprintf(stderr, "%s: option '%s' requires an argument\n",
4970 argv[0], r);
4971 exit(1);
4972 }
4973 optarg = argv[optind++];
4974 } else {
4975 optarg = NULL;
4976 }
4977
4978 switch(popt->index) {
4979 case QEMU_OPTION_M:
4980 machine = find_machine(optarg);
4981 if (!machine) {
4982 QEMUMachine *m;
4983 printf("Supported machines are:\n");
4984 for(m = first_machine; m != NULL; m = m->next) {
4985 if (m->alias)
4986 printf("%-10s %s (alias of %s)\n",
4987 m->alias, m->desc, m->name);
4988 printf("%-10s %s%s\n",
4989 m->name, m->desc,
4990 m->is_default ? " (default)" : "");
4991 }
4992 exit(*optarg != '?');
4993 }
4994 break;
4995 case QEMU_OPTION_cpu:
4996 /* hw initialization will check this */
4997 if (*optarg == '?') {
4998 /* XXX: implement xxx_cpu_list for targets that still miss it */
4999 #if defined(cpu_list)
5000 cpu_list(stdout, &fprintf);
5001 #endif
5002 exit(0);
5003 } else {
5004 cpu_model = optarg;
5005 }
5006 break;
5007 case QEMU_OPTION_initrd:
5008 initrd_filename = optarg;
5009 break;
5010 case QEMU_OPTION_hda:
5011 if (cyls == 0)
5012 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5013 else
5014 hda_opts = drive_add(optarg, HD_ALIAS
5015 ",cyls=%d,heads=%d,secs=%d%s",
5016 0, cyls, heads, secs,
5017 translation == BIOS_ATA_TRANSLATION_LBA ?
5018 ",trans=lba" :
5019 translation == BIOS_ATA_TRANSLATION_NONE ?
5020 ",trans=none" : "");
5021 break;
5022 case QEMU_OPTION_hdb:
5023 case QEMU_OPTION_hdc:
5024 case QEMU_OPTION_hdd:
5025 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5026 break;
5027 case QEMU_OPTION_drive:
5028 drive_add(NULL, "%s", optarg);
5029 break;
5030 case QEMU_OPTION_set:
5031 if (qemu_set_option(optarg) != 0)
5032 exit(1);
5033 break;
5034 case QEMU_OPTION_global:
5035 if (qemu_global_option(optarg) != 0)
5036 exit(1);
5037 break;
5038 case QEMU_OPTION_mtdblock:
5039 drive_add(optarg, MTD_ALIAS);
5040 break;
5041 case QEMU_OPTION_sd:
5042 drive_add(optarg, SD_ALIAS);
5043 break;
5044 case QEMU_OPTION_pflash:
5045 drive_add(optarg, PFLASH_ALIAS);
5046 break;
5047 case QEMU_OPTION_snapshot:
5048 snapshot = 1;
5049 break;
5050 case QEMU_OPTION_hdachs:
5051 {
5052 const char *p;
5053 p = optarg;
5054 cyls = strtol(p, (char **)&p, 0);
5055 if (cyls < 1 || cyls > 16383)
5056 goto chs_fail;
5057 if (*p != ',')
5058 goto chs_fail;
5059 p++;
5060 heads = strtol(p, (char **)&p, 0);
5061 if (heads < 1 || heads > 16)
5062 goto chs_fail;
5063 if (*p != ',')
5064 goto chs_fail;
5065 p++;
5066 secs = strtol(p, (char **)&p, 0);
5067 if (secs < 1 || secs > 63)
5068 goto chs_fail;
5069 if (*p == ',') {
5070 p++;
5071 if (!strcmp(p, "none"))
5072 translation = BIOS_ATA_TRANSLATION_NONE;
5073 else if (!strcmp(p, "lba"))
5074 translation = BIOS_ATA_TRANSLATION_LBA;
5075 else if (!strcmp(p, "auto"))
5076 translation = BIOS_ATA_TRANSLATION_AUTO;
5077 else
5078 goto chs_fail;
5079 } else if (*p != '\0') {
5080 chs_fail:
5081 fprintf(stderr, "qemu: invalid physical CHS format\n");
5082 exit(1);
5083 }
5084 if (hda_opts != NULL) {
5085 char num[16];
5086 snprintf(num, sizeof(num), "%d", cyls);
5087 qemu_opt_set(hda_opts, "cyls", num);
5088 snprintf(num, sizeof(num), "%d", heads);
5089 qemu_opt_set(hda_opts, "heads", num);
5090 snprintf(num, sizeof(num), "%d", secs);
5091 qemu_opt_set(hda_opts, "secs", num);
5092 if (translation == BIOS_ATA_TRANSLATION_LBA)
5093 qemu_opt_set(hda_opts, "trans", "lba");
5094 if (translation == BIOS_ATA_TRANSLATION_NONE)
5095 qemu_opt_set(hda_opts, "trans", "none");
5096 }
5097 }
5098 break;
5099 case QEMU_OPTION_numa:
5100 if (nb_numa_nodes >= MAX_NODES) {
5101 fprintf(stderr, "qemu: too many NUMA nodes\n");
5102 exit(1);
5103 }
5104 numa_add(optarg);
5105 break;
5106 case QEMU_OPTION_nographic:
5107 display_type = DT_NOGRAPHIC;
5108 break;
5109 #ifdef CONFIG_CURSES
5110 case QEMU_OPTION_curses:
5111 display_type = DT_CURSES;
5112 break;
5113 #endif
5114 case QEMU_OPTION_portrait:
5115 graphic_rotate = 1;
5116 break;
5117 case QEMU_OPTION_kernel:
5118 kernel_filename = optarg;
5119 break;
5120 case QEMU_OPTION_append:
5121 kernel_cmdline = optarg;
5122 break;
5123 case QEMU_OPTION_cdrom:
5124 drive_add(optarg, CDROM_ALIAS);
5125 break;
5126 case QEMU_OPTION_boot:
5127 {
5128 static const char * const params[] = {
5129 "order", "once", "menu", NULL
5130 };
5131 char buf[sizeof(boot_devices)];
5132 char *standard_boot_devices;
5133 int legacy = 0;
5134
5135 if (!strchr(optarg, '=')) {
5136 legacy = 1;
5137 pstrcpy(buf, sizeof(buf), optarg);
5138 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5139 fprintf(stderr,
5140 "qemu: unknown boot parameter '%s' in '%s'\n",
5141 buf, optarg);
5142 exit(1);
5143 }
5144
5145 if (legacy ||
5146 get_param_value(buf, sizeof(buf), "order", optarg)) {
5147 boot_devices_bitmap = parse_bootdevices(buf);
5148 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5149 }
5150 if (!legacy) {
5151 if (get_param_value(buf, sizeof(buf),
5152 "once", optarg)) {
5153 boot_devices_bitmap |= parse_bootdevices(buf);
5154 standard_boot_devices = qemu_strdup(boot_devices);
5155 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5156 qemu_register_reset(restore_boot_devices,
5157 standard_boot_devices);
5158 }
5159 if (get_param_value(buf, sizeof(buf),
5160 "menu", optarg)) {
5161 if (!strcmp(buf, "on")) {
5162 boot_menu = 1;
5163 } else if (!strcmp(buf, "off")) {
5164 boot_menu = 0;
5165 } else {
5166 fprintf(stderr,
5167 "qemu: invalid option value '%s'\n",
5168 buf);
5169 exit(1);
5170 }
5171 }
5172 }
5173 }
5174 break;
5175 case QEMU_OPTION_fda:
5176 case QEMU_OPTION_fdb:
5177 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5178 break;
5179 #ifdef TARGET_I386
5180 case QEMU_OPTION_no_fd_bootchk:
5181 fd_bootchk = 0;
5182 break;
5183 #endif
5184 case QEMU_OPTION_netdev:
5185 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5186 exit(1);
5187 }
5188 break;
5189 case QEMU_OPTION_net:
5190 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5191 exit(1);
5192 }
5193 break;
5194 #ifdef CONFIG_SLIRP
5195 case QEMU_OPTION_tftp:
5196 legacy_tftp_prefix = optarg;
5197 break;
5198 case QEMU_OPTION_bootp:
5199 legacy_bootp_filename = optarg;
5200 break;
5201 #ifndef _WIN32
5202 case QEMU_OPTION_smb:
5203 if (net_slirp_smb(optarg) < 0)
5204 exit(1);
5205 break;
5206 #endif
5207 case QEMU_OPTION_redir:
5208 if (net_slirp_redir(optarg) < 0)
5209 exit(1);
5210 break;
5211 #endif
5212 case QEMU_OPTION_bt:
5213 add_device_config(DEV_BT, optarg);
5214 break;
5215 #ifdef HAS_AUDIO
5216 case QEMU_OPTION_audio_help:
5217 AUD_help ();
5218 exit (0);
5219 break;
5220 case QEMU_OPTION_soundhw:
5221 select_soundhw (optarg);
5222 break;
5223 #endif
5224 case QEMU_OPTION_h:
5225 help(0);
5226 break;
5227 case QEMU_OPTION_version:
5228 version();
5229 exit(0);
5230 break;
5231 case QEMU_OPTION_m: {
5232 uint64_t value;
5233 char *ptr;
5234
5235 value = strtoul(optarg, &ptr, 10);
5236 switch (*ptr) {
5237 case 0: case 'M': case 'm':
5238 value <<= 20;
5239 break;
5240 case 'G': case 'g':
5241 value <<= 30;
5242 break;
5243 default:
5244 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5245 exit(1);
5246 }
5247
5248 /* On 32-bit hosts, QEMU is limited by virtual address space */
5249 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5250 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5251 exit(1);
5252 }
5253 if (value != (uint64_t)(ram_addr_t)value) {
5254 fprintf(stderr, "qemu: ram size too large\n");
5255 exit(1);
5256 }
5257 ram_size = value;
5258 break;
5259 }
5260 case QEMU_OPTION_d:
5261 {
5262 int mask;
5263 const CPULogItem *item;
5264
5265 mask = cpu_str_to_log_mask(optarg);
5266 if (!mask) {
5267 printf("Log items (comma separated):\n");
5268 for(item = cpu_log_items; item->mask != 0; item++) {
5269 printf("%-10s %s\n", item->name, item->help);
5270 }
5271 exit(1);
5272 }
5273 cpu_set_log(mask);
5274 }
5275 break;
5276 case QEMU_OPTION_s:
5277 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5278 break;
5279 case QEMU_OPTION_gdb:
5280 gdbstub_dev = optarg;
5281 break;
5282 case QEMU_OPTION_L:
5283 data_dir = optarg;
5284 break;
5285 case QEMU_OPTION_bios:
5286 bios_name = optarg;
5287 break;
5288 case QEMU_OPTION_singlestep:
5289 singlestep = 1;
5290 break;
5291 case QEMU_OPTION_S:
5292 autostart = 0;
5293 break;
5294 case QEMU_OPTION_k:
5295 keyboard_layout = optarg;
5296 break;
5297 case QEMU_OPTION_localtime:
5298 rtc_utc = 0;
5299 break;
5300 case QEMU_OPTION_vga:
5301 select_vgahw (optarg);
5302 break;
5303 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5304 case QEMU_OPTION_g:
5305 {
5306 const char *p;
5307 int w, h, depth;
5308 p = optarg;
5309 w = strtol(p, (char **)&p, 10);
5310 if (w <= 0) {
5311 graphic_error:
5312 fprintf(stderr, "qemu: invalid resolution or depth\n");
5313 exit(1);
5314 }
5315 if (*p != 'x')
5316 goto graphic_error;
5317 p++;
5318 h = strtol(p, (char **)&p, 10);
5319 if (h <= 0)
5320 goto graphic_error;
5321 if (*p == 'x') {
5322 p++;
5323 depth = strtol(p, (char **)&p, 10);
5324 if (depth != 8 && depth != 15 && depth != 16 &&
5325 depth != 24 && depth != 32)
5326 goto graphic_error;
5327 } else if (*p == '\0') {
5328 depth = graphic_depth;
5329 } else {
5330 goto graphic_error;
5331 }
5332
5333 graphic_width = w;
5334 graphic_height = h;
5335 graphic_depth = depth;
5336 }
5337 break;
5338 #endif
5339 case QEMU_OPTION_echr:
5340 {
5341 char *r;
5342 term_escape_char = strtol(optarg, &r, 0);
5343 if (r == optarg)
5344 printf("Bad argument to echr\n");
5345 break;
5346 }
5347 case QEMU_OPTION_monitor:
5348 monitor_parse(optarg, "readline");
5349 default_monitor = 0;
5350 break;
5351 case QEMU_OPTION_qmp:
5352 monitor_parse(optarg, "control");
5353 default_monitor = 0;
5354 break;
5355 case QEMU_OPTION_mon:
5356 opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5357 if (!opts) {
5358 fprintf(stderr, "parse error: %s\n", optarg);
5359 exit(1);
5360 }
5361 default_monitor = 0;
5362 break;
5363 case QEMU_OPTION_chardev:
5364 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5365 if (!opts) {
5366 fprintf(stderr, "parse error: %s\n", optarg);
5367 exit(1);
5368 }
5369 break;
5370 case QEMU_OPTION_serial:
5371 add_device_config(DEV_SERIAL, optarg);
5372 default_serial = 0;
5373 if (strncmp(optarg, "mon:", 4) == 0) {
5374 default_monitor = 0;
5375 }
5376 break;
5377 case QEMU_OPTION_watchdog:
5378 if (watchdog) {
5379 fprintf(stderr,
5380 "qemu: only one watchdog option may be given\n");
5381 return 1;
5382 }
5383 watchdog = optarg;
5384 break;
5385 case QEMU_OPTION_watchdog_action:
5386 if (select_watchdog_action(optarg) == -1) {
5387 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5388 exit(1);
5389 }
5390 break;
5391 case QEMU_OPTION_virtiocon:
5392 add_device_config(DEV_VIRTCON, optarg);
5393 default_virtcon = 0;
5394 if (strncmp(optarg, "mon:", 4) == 0) {
5395 default_monitor = 0;
5396 }
5397 break;
5398 case QEMU_OPTION_parallel:
5399 add_device_config(DEV_PARALLEL, optarg);
5400 default_parallel = 0;
5401 if (strncmp(optarg, "mon:", 4) == 0) {
5402 default_monitor = 0;
5403 }
5404 break;
5405 case QEMU_OPTION_loadvm:
5406 loadvm = optarg;
5407 break;
5408 case QEMU_OPTION_full_screen:
5409 full_screen = 1;
5410 break;
5411 #ifdef CONFIG_SDL
5412 case QEMU_OPTION_no_frame:
5413 no_frame = 1;
5414 break;
5415 case QEMU_OPTION_alt_grab:
5416 alt_grab = 1;
5417 break;
5418 case QEMU_OPTION_ctrl_grab:
5419 ctrl_grab = 1;
5420 break;
5421 case QEMU_OPTION_no_quit:
5422 no_quit = 1;
5423 break;
5424 case QEMU_OPTION_sdl:
5425 display_type = DT_SDL;
5426 break;
5427 #endif
5428 case QEMU_OPTION_pidfile:
5429 pid_file = optarg;
5430 break;
5431 #ifdef TARGET_I386
5432 case QEMU_OPTION_win2k_hack:
5433 win2k_install_hack = 1;
5434 break;
5435 case QEMU_OPTION_rtc_td_hack:
5436 rtc_td_hack = 1;
5437 break;
5438 case QEMU_OPTION_acpitable:
5439 if(acpi_table_add(optarg) < 0) {
5440 fprintf(stderr, "Wrong acpi table provided\n");
5441 exit(1);
5442 }
5443 break;
5444 case QEMU_OPTION_smbios:
5445 if(smbios_entry_add(optarg) < 0) {
5446 fprintf(stderr, "Wrong smbios provided\n");
5447 exit(1);
5448 }
5449 break;
5450 #endif
5451 #ifdef CONFIG_KVM
5452 case QEMU_OPTION_enable_kvm:
5453 kvm_allowed = 1;
5454 break;
5455 #endif
5456 case QEMU_OPTION_usb:
5457 usb_enabled = 1;
5458 break;
5459 case QEMU_OPTION_usbdevice:
5460 usb_enabled = 1;
5461 add_device_config(DEV_USB, optarg);
5462 break;
5463 case QEMU_OPTION_device:
5464 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5465 exit(1);
5466 }
5467 break;
5468 case QEMU_OPTION_smp:
5469 smp_parse(optarg);
5470 if (smp_cpus < 1) {
5471 fprintf(stderr, "Invalid number of CPUs\n");
5472 exit(1);
5473 }
5474 if (max_cpus < smp_cpus) {
5475 fprintf(stderr, "maxcpus must be equal to or greater than "
5476 "smp\n");
5477 exit(1);
5478 }
5479 if (max_cpus > 255) {
5480 fprintf(stderr, "Unsupported number of maxcpus\n");
5481 exit(1);
5482 }
5483 break;
5484 case QEMU_OPTION_vnc:
5485 display_type = DT_VNC;
5486 vnc_display = optarg;
5487 break;
5488 #ifdef TARGET_I386
5489 case QEMU_OPTION_no_acpi:
5490 acpi_enabled = 0;
5491 break;
5492 case QEMU_OPTION_no_hpet:
5493 no_hpet = 1;
5494 break;
5495 case QEMU_OPTION_balloon:
5496 if (balloon_parse(optarg) < 0) {
5497 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5498 exit(1);
5499 }
5500 break;
5501 #endif
5502 case QEMU_OPTION_no_reboot:
5503 no_reboot = 1;
5504 break;
5505 case QEMU_OPTION_no_shutdown:
5506 no_shutdown = 1;
5507 break;
5508 case QEMU_OPTION_show_cursor:
5509 cursor_hide = 0;
5510 break;
5511 case QEMU_OPTION_uuid:
5512 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5513 fprintf(stderr, "Fail to parse UUID string."
5514 " Wrong format.\n");
5515 exit(1);
5516 }
5517 break;
5518 #ifndef _WIN32
5519 case QEMU_OPTION_daemonize:
5520 daemonize = 1;
5521 break;
5522 #endif
5523 case QEMU_OPTION_option_rom:
5524 if (nb_option_roms >= MAX_OPTION_ROMS) {
5525 fprintf(stderr, "Too many option ROMs\n");
5526 exit(1);
5527 }
5528 option_rom[nb_option_roms] = optarg;
5529 nb_option_roms++;
5530 break;
5531 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5532 case QEMU_OPTION_semihosting:
5533 semihosting_enabled = 1;
5534 break;
5535 #endif
5536 case QEMU_OPTION_name:
5537 qemu_name = qemu_strdup(optarg);
5538 {
5539 char *p = strchr(qemu_name, ',');
5540 if (p != NULL) {
5541 *p++ = 0;
5542 if (strncmp(p, "process=", 8)) {
5543 fprintf(stderr, "Unknown subargument %s to -name", p);
5544 exit(1);
5545 }
5546 p += 8;
5547 set_proc_name(p);
5548 }
5549 }
5550 break;
5551 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5552 case QEMU_OPTION_prom_env:
5553 if (nb_prom_envs >= MAX_PROM_ENVS) {
5554 fprintf(stderr, "Too many prom variables\n");
5555 exit(1);
5556 }
5557 prom_envs[nb_prom_envs] = optarg;
5558 nb_prom_envs++;
5559 break;
5560 #endif
5561 #ifdef TARGET_ARM
5562 case QEMU_OPTION_old_param:
5563 old_param = 1;
5564 break;
5565 #endif
5566 case QEMU_OPTION_clock:
5567 configure_alarms(optarg);
5568 break;
5569 case QEMU_OPTION_startdate:
5570 configure_rtc_date_offset(optarg, 1);
5571 break;
5572 case QEMU_OPTION_rtc:
5573 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5574 if (!opts) {
5575 fprintf(stderr, "parse error: %s\n", optarg);
5576 exit(1);
5577 }
5578 configure_rtc(opts);
5579 break;
5580 case QEMU_OPTION_tb_size:
5581 tb_size = strtol(optarg, NULL, 0);
5582 if (tb_size < 0)
5583 tb_size = 0;
5584 break;
5585 case QEMU_OPTION_icount:
5586 use_icount = 1;
5587 if (strcmp(optarg, "auto") == 0) {
5588 icount_time_shift = -1;
5589 } else {
5590 icount_time_shift = strtol(optarg, NULL, 0);
5591 }
5592 break;
5593 case QEMU_OPTION_incoming:
5594 incoming = optarg;
5595 break;
5596 case QEMU_OPTION_nodefaults:
5597 default_serial = 0;
5598 default_parallel = 0;
5599 default_virtcon = 0;
5600 default_monitor = 0;
5601 default_vga = 0;
5602 default_net = 0;
5603 default_floppy = 0;
5604 default_cdrom = 0;
5605 default_sdcard = 0;
5606 break;
5607 #ifndef _WIN32
5608 case QEMU_OPTION_chroot:
5609 chroot_dir = optarg;
5610 break;
5611 case QEMU_OPTION_runas:
5612 run_as = optarg;
5613 break;
5614 #endif
5615 #ifdef CONFIG_XEN
5616 case QEMU_OPTION_xen_domid:
5617 xen_domid = atoi(optarg);
5618 break;
5619 case QEMU_OPTION_xen_create:
5620 xen_mode = XEN_CREATE;
5621 break;
5622 case QEMU_OPTION_xen_attach:
5623 xen_mode = XEN_ATTACH;
5624 break;
5625 #endif
5626 case QEMU_OPTION_readconfig:
5627 {
5628 FILE *fp;
5629 fp = fopen(optarg, "r");
5630 if (fp == NULL) {
5631 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5632 exit(1);
5633 }
5634 if (qemu_config_parse(fp) != 0) {
5635 exit(1);
5636 }
5637 fclose(fp);
5638 break;
5639 }
5640 case QEMU_OPTION_writeconfig:
5641 {
5642 FILE *fp;
5643 if (strcmp(optarg, "-") == 0) {
5644 fp = stdout;
5645 } else {
5646 fp = fopen(optarg, "w");
5647 if (fp == NULL) {
5648 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5649 exit(1);
5650 }
5651 }
5652 qemu_config_write(fp);
5653 fclose(fp);
5654 break;
5655 }
5656 }
5657 }
5658 }
5659
5660 /* If no data_dir is specified then try to find it relative to the
5661 executable path. */
5662 if (!data_dir) {
5663 data_dir = find_datadir(argv[0]);
5664 }
5665 /* If all else fails use the install patch specified when building. */
5666 if (!data_dir) {
5667 data_dir = CONFIG_QEMU_SHAREDIR;
5668 }
5669
5670 /*
5671 * Default to max_cpus = smp_cpus, in case the user doesn't
5672 * specify a max_cpus value.
5673 */
5674 if (!max_cpus)
5675 max_cpus = smp_cpus;
5676
5677 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5678 if (smp_cpus > machine->max_cpus) {
5679 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5680 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5681 machine->max_cpus);
5682 exit(1);
5683 }
5684
5685 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5686 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5687
5688 if (machine->no_serial) {
5689 default_serial = 0;
5690 }
5691 if (machine->no_parallel) {
5692 default_parallel = 0;
5693 }
5694 if (!machine->use_virtcon) {
5695 default_virtcon = 0;
5696 }
5697 if (machine->no_vga) {
5698 default_vga = 0;
5699 }
5700 if (machine->no_floppy) {
5701 default_floppy = 0;
5702 }
5703 if (machine->no_cdrom) {
5704 default_cdrom = 0;
5705 }
5706 if (machine->no_sdcard) {
5707 default_sdcard = 0;
5708 }
5709
5710 if (display_type == DT_NOGRAPHIC) {
5711 if (default_parallel)
5712 add_device_config(DEV_PARALLEL, "null");
5713 if (default_serial && default_monitor) {
5714 add_device_config(DEV_SERIAL, "mon:stdio");
5715 } else if (default_virtcon && default_monitor) {
5716 add_device_config(DEV_VIRTCON, "mon:stdio");
5717 } else {
5718 if (default_serial)
5719 add_device_config(DEV_SERIAL, "stdio");
5720 if (default_virtcon)
5721 add_device_config(DEV_VIRTCON, "stdio");
5722 if (default_monitor)
5723 monitor_parse("stdio", "readline");
5724 }
5725 } else {
5726 if (default_serial)
5727 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5728 if (default_parallel)
5729 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5730 if (default_monitor)
5731 monitor_parse("vc:80Cx24C", "readline");
5732 if (default_virtcon)
5733 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5734 }
5735 if (default_vga)
5736 vga_interface_type = VGA_CIRRUS;
5737
5738 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5739 exit(1);
5740
5741 #ifndef _WIN32
5742 if (daemonize) {
5743 pid_t pid;
5744
5745 if (pipe(fds) == -1)
5746 exit(1);
5747
5748 pid = fork();
5749 if (pid > 0) {
5750 uint8_t status;
5751 ssize_t len;
5752
5753 close(fds[1]);
5754
5755 again:
5756 len = read(fds[0], &status, 1);
5757 if (len == -1 && (errno == EINTR))
5758 goto again;
5759
5760 if (len != 1)
5761 exit(1);
5762 else if (status == 1) {
5763 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5764 exit(1);
5765 } else
5766 exit(0);
5767 } else if (pid < 0)
5768 exit(1);
5769
5770 close(fds[0]);
5771 qemu_set_cloexec(fds[1]);
5772
5773 setsid();
5774
5775 pid = fork();
5776 if (pid > 0)
5777 exit(0);
5778 else if (pid < 0)
5779 exit(1);
5780
5781 umask(027);
5782
5783 signal(SIGTSTP, SIG_IGN);
5784 signal(SIGTTOU, SIG_IGN);
5785 signal(SIGTTIN, SIG_IGN);
5786 }
5787
5788 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5789 if (daemonize) {
5790 uint8_t status = 1;
5791 write(fds[1], &status, 1);
5792 } else
5793 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5794 exit(1);
5795 }
5796 #endif
5797
5798 if (kvm_enabled()) {
5799 int ret;
5800
5801 ret = kvm_init(smp_cpus);
5802 if (ret < 0) {
5803 fprintf(stderr, "failed to initialize KVM\n");
5804 exit(1);
5805 }
5806 } else {
5807 /* without kvm enabled, we can only support 4095 MB RAM */
5808 if (ram_size > (4095UL << 20)) {
5809 fprintf(stderr, "qemu: without kvm support at most 4095 MB RAM can be simulated\n");
5810 exit(1);
5811 }
5812 }
5813
5814 if (qemu_init_main_loop()) {
5815 fprintf(stderr, "qemu_init_main_loop failed\n");
5816 exit(1);
5817 }
5818 linux_boot = (kernel_filename != NULL);
5819
5820 if (!linux_boot && *kernel_cmdline != '\0') {
5821 fprintf(stderr, "-append only allowed with -kernel option\n");
5822 exit(1);
5823 }
5824
5825 if (!linux_boot && initrd_filename != NULL) {
5826 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5827 exit(1);
5828 }
5829
5830 #ifndef _WIN32
5831 /* Win32 doesn't support line-buffering and requires size >= 2 */
5832 setvbuf(stdout, NULL, _IOLBF, 0);
5833 #endif
5834
5835 if (init_timer_alarm() < 0) {
5836 fprintf(stderr, "could not initialize alarm timer\n");
5837 exit(1);
5838 }
5839 if (use_icount && icount_time_shift < 0) {
5840 use_icount = 2;
5841 /* 125MIPS seems a reasonable initial guess at the guest speed.
5842 It will be corrected fairly quickly anyway. */
5843 icount_time_shift = 3;
5844 init_icount_adjust();
5845 }
5846
5847 #ifdef _WIN32
5848 socket_init();
5849 #endif
5850
5851 if (net_init_clients() < 0) {
5852 exit(1);
5853 }
5854
5855 /* init the bluetooth world */
5856 if (foreach_device_config(DEV_BT, bt_parse))
5857 exit(1);
5858
5859 /* init the memory */
5860 if (ram_size == 0)
5861 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5862
5863 /* init the dynamic translator */
5864 cpu_exec_init_all(tb_size * 1024 * 1024);
5865
5866 bdrv_init_with_whitelist();
5867
5868 blk_mig_init();
5869
5870 if (default_cdrom) {
5871 /* we always create the cdrom drive, even if no disk is there */
5872 drive_add(NULL, CDROM_ALIAS);
5873 }
5874
5875 if (default_floppy) {
5876 /* we always create at least one floppy */
5877 drive_add(NULL, FD_ALIAS, 0);
5878 }
5879
5880 if (default_sdcard) {
5881 /* we always create one sd slot, even if no card is in it */
5882 drive_add(NULL, SD_ALIAS);
5883 }
5884
5885 /* open the virtual block devices */
5886 if (snapshot)
5887 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5888 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5889 exit(1);
5890
5891 vmstate_register(0, &vmstate_timers ,&timers_state);
5892 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5893 ram_load, NULL);
5894
5895 if (nb_numa_nodes > 0) {
5896 int i;
5897
5898 if (nb_numa_nodes > smp_cpus) {
5899 nb_numa_nodes = smp_cpus;
5900 }
5901
5902 /* If no memory size if given for any node, assume the default case
5903 * and distribute the available memory equally across all nodes
5904 */
5905 for (i = 0; i < nb_numa_nodes; i++) {
5906 if (node_mem[i] != 0)
5907 break;
5908 }
5909 if (i == nb_numa_nodes) {
5910 uint64_t usedmem = 0;
5911
5912 /* On Linux, the each node's border has to be 8MB aligned,
5913 * the final node gets the rest.
5914 */
5915 for (i = 0; i < nb_numa_nodes - 1; i++) {
5916 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5917 usedmem += node_mem[i];
5918 }
5919 node_mem[i] = ram_size - usedmem;
5920 }
5921
5922 for (i = 0; i < nb_numa_nodes; i++) {
5923 if (node_cpumask[i] != 0)
5924 break;
5925 }
5926 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5927 * must cope with this anyway, because there are BIOSes out there in
5928 * real machines which also use this scheme.
5929 */
5930 if (i == nb_numa_nodes) {
5931 for (i = 0; i < smp_cpus; i++) {
5932 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5933 }
5934 }
5935 }
5936
5937 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5938 exit(1);
5939 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5940 exit(1);
5941 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5942 exit(1);
5943
5944 module_call_init(MODULE_INIT_DEVICE);
5945
5946 if (watchdog) {
5947 i = select_watchdog(watchdog);
5948 if (i > 0)
5949 exit (i == 1 ? 1 : 0);
5950 }
5951
5952 if (machine->compat_props) {
5953 qdev_prop_register_global_list(machine->compat_props);
5954 }
5955 qemu_add_globals();
5956
5957 machine->init(ram_size, boot_devices,
5958 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5959
5960
5961 #ifndef _WIN32
5962 /* must be after terminal init, SDL library changes signal handlers */
5963 sighandler_setup();
5964 #endif
5965
5966 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5967 for (i = 0; i < nb_numa_nodes; i++) {
5968 if (node_cpumask[i] & (1 << env->cpu_index)) {
5969 env->numa_node = i;
5970 }
5971 }
5972 }
5973
5974 current_machine = machine;
5975
5976 /* init USB devices */
5977 if (usb_enabled) {
5978 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5979 exit(1);
5980 }
5981
5982 /* init generic devices */
5983 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5984 exit(1);
5985
5986 net_check_clients();
5987
5988 if (!display_state)
5989 dumb_display_init();
5990 /* just use the first displaystate for the moment */
5991 ds = display_state;
5992
5993 if (display_type == DT_DEFAULT) {
5994 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5995 display_type = DT_SDL;
5996 #else
5997 display_type = DT_VNC;
5998 vnc_display = "localhost:0,to=99";
5999 show_vnc_port = 1;
6000 #endif
6001 }
6002
6003
6004 switch (display_type) {
6005 case DT_NOGRAPHIC:
6006 break;
6007 #if defined(CONFIG_CURSES)
6008 case DT_CURSES:
6009 curses_display_init(ds, full_screen);
6010 break;
6011 #endif
6012 #if defined(CONFIG_SDL)
6013 case DT_SDL:
6014 sdl_display_init(ds, full_screen, no_frame);
6015 break;
6016 #elif defined(CONFIG_COCOA)
6017 case DT_SDL:
6018 cocoa_display_init(ds, full_screen);
6019 break;
6020 #endif
6021 case DT_VNC:
6022 vnc_display_init(ds);
6023 if (vnc_display_open(ds, vnc_display) < 0)
6024 exit(1);
6025
6026 if (show_vnc_port) {
6027 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6028 }
6029 break;
6030 default:
6031 break;
6032 }
6033 dpy_resize(ds);
6034
6035 dcl = ds->listeners;
6036 while (dcl != NULL) {
6037 if (dcl->dpy_refresh != NULL) {
6038 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6039 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6040 }
6041 dcl = dcl->next;
6042 }
6043
6044 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6045 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6046 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6047 }
6048
6049 text_consoles_set_display(display_state);
6050
6051 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
6052 exit(1);
6053
6054 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6055 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6056 gdbstub_dev);
6057 exit(1);
6058 }
6059
6060 qdev_machine_creation_done();
6061
6062 if (rom_load_all() != 0) {
6063 fprintf(stderr, "rom loading failed\n");
6064 exit(1);
6065 }
6066
6067 qemu_system_reset();
6068 if (loadvm) {
6069 if (load_vmstate(cur_mon, loadvm) < 0) {
6070 autostart = 0;
6071 }
6072 }
6073
6074 if (incoming) {
6075 qemu_start_incoming_migration(incoming);
6076 } else if (autostart) {
6077 vm_start();
6078 }
6079
6080 #ifndef _WIN32
6081 if (daemonize) {
6082 uint8_t status = 0;
6083 ssize_t len;
6084
6085 again1:
6086 len = write(fds[1], &status, 1);
6087 if (len == -1 && (errno == EINTR))
6088 goto again1;
6089
6090 if (len != 1)
6091 exit(1);
6092
6093 chdir("/");
6094 TFR(fd = qemu_open("/dev/null", O_RDWR));
6095 if (fd == -1)
6096 exit(1);
6097 }
6098
6099 if (run_as) {
6100 pwd = getpwnam(run_as);
6101 if (!pwd) {
6102 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6103 exit(1);
6104 }
6105 }
6106
6107 if (chroot_dir) {
6108 if (chroot(chroot_dir) < 0) {
6109 fprintf(stderr, "chroot failed\n");
6110 exit(1);
6111 }
6112 chdir("/");
6113 }
6114
6115 if (run_as) {
6116 if (setgid(pwd->pw_gid) < 0) {
6117 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6118 exit(1);
6119 }
6120 if (setuid(pwd->pw_uid) < 0) {
6121 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6122 exit(1);
6123 }
6124 if (setuid(0) != -1) {
6125 fprintf(stderr, "Dropping privileges failed\n");
6126 exit(1);
6127 }
6128 }
6129
6130 if (daemonize) {
6131 dup2(fd, 0);
6132 dup2(fd, 1);
6133 dup2(fd, 2);
6134
6135 close(fd);
6136 }
6137 #endif
6138
6139 main_loop();
6140 quit_timers();
6141 net_cleanup();
6142
6143 return 0;
6144 }