]> git.proxmox.com Git - qemu.git/blob - vl.c
Replace -no-virtio-balloon by -balloon
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
76
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
97
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
101
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
105
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
114
115 #ifdef CONFIG_SDL
116 #if defined(__APPLE__) || defined(main)
117 #include <SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
120 {
121 return qemu_main(argc, argv, NULL);
122 }
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
127
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
132
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161
162 #include "disas.h"
163
164 #include "exec-all.h"
165
166 #include "qemu_socket.h"
167
168 #include "slirp/libslirp.h"
169
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
174
175
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
181
182 #define DEFAULT_RAM_SIZE 128
183
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
186
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
189
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
192
193 static const char *data_dir;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 DisplayType display_type = DT_DEFAULT;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 int xenfb_enabled = 0;
218 #ifdef TARGET_SPARC
219 int graphic_width = 1024;
220 int graphic_height = 768;
221 int graphic_depth = 8;
222 #else
223 int graphic_width = 800;
224 int graphic_height = 600;
225 int graphic_depth = 15;
226 #endif
227 static int full_screen = 0;
228 #ifdef CONFIG_SDL
229 static int no_frame = 0;
230 #endif
231 int no_quit = 0;
232 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
233 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
234 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
235 #ifdef TARGET_I386
236 int win2k_install_hack = 0;
237 int rtc_td_hack = 0;
238 #endif
239 int usb_enabled = 0;
240 int singlestep = 0;
241 int smp_cpus = 1;
242 const char *vnc_display;
243 int acpi_enabled = 1;
244 int no_hpet = 0;
245 int virtio_balloon = 1;
246 const char *virtio_balloon_devaddr;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
271
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
275
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
288
289 uint8_t qemu_uuid[16];
290
291 /***********************************************************/
292 /* x86 ISA bus support */
293
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
296
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
299
300 static uint32_t ioport_read(int index, uint32_t address)
301 {
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
306 };
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
311 }
312
313 static void ioport_write(int index, uint32_t address, uint32_t data)
314 {
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
319 };
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
324 }
325
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
327 {
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
332 }
333
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
335 {
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
339 }
340
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
343 {
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
349 }
350
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
352 {
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
356 }
357
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
359 {
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
364 }
365
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
367 {
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
371 }
372
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
376 {
377 int i, bsize;
378
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
388 }
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
394 }
395 return 0;
396 }
397
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
401 {
402 int i, bsize;
403
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
413 }
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
419 }
420 return 0;
421 }
422
423 void isa_unassign_ioport(int start, int length)
424 {
425 int i;
426
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
431
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
435
436 ioport_opaque[i] = NULL;
437 }
438 }
439
440 /***********************************************************/
441
442 void cpu_outb(CPUState *env, int addr, int val)
443 {
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
450 }
451
452 void cpu_outw(CPUState *env, int addr, int val)
453 {
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 }
461
462 void cpu_outl(CPUState *env, int addr, int val)
463 {
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
470 }
471
472 int cpu_inb(CPUState *env, int addr)
473 {
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
482 }
483
484 int cpu_inw(CPUState *env, int addr)
485 {
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
494 }
495
496 int cpu_inl(CPUState *env, int addr)
497 {
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
506 }
507
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
510 {
511 va_list ap;
512 CPUState *env;
513
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
525 }
526 va_end(ap);
527 abort();
528 }
529
530 /***************/
531 /* ballooning */
532
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
535
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
537 {
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
540 }
541
542 void qemu_balloon(ram_addr_t target)
543 {
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 }
547
548 ram_addr_t qemu_balloon_status(void)
549 {
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
553 }
554
555 /***********************************************************/
556 /* keyboard/mouse */
557
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
562
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
564 {
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
567 }
568
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
572 {
573 QEMUPutMouseEntry *s, *cursor;
574
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
576
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
582
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
586 }
587
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
591
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
594
595 return s;
596 }
597
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
599 {
600 QEMUPutMouseEntry *prev = NULL, *cursor;
601
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
604
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
609 }
610
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
620 }
621
622 prev->next = entry->next;
623
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
626
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
629 }
630
631 void kbd_put_keycode(int keycode)
632 {
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
635 }
636 }
637
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
639 {
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
643
644 if (!qemu_put_mouse_event_current) {
645 return;
646 }
647
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
652
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
664 }
665 }
666
667 int kbd_mouse_is_absolute(void)
668 {
669 if (!qemu_put_mouse_event_current)
670 return 0;
671
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 }
674
675 void do_info_mice(Monitor *mon)
676 {
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
679
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
683 }
684
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
693 }
694 }
695
696 void do_mouse_set(Monitor *mon, int index)
697 {
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
700
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
704 }
705
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
710 }
711
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
716 }
717
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
720 {
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
732
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
740 }
741
742 /***********************************************************/
743 /* real time host monotonic timer */
744
745 #define QEMU_TIMER_BASE 1000000000LL
746
747 #ifdef WIN32
748
749 static int64_t clock_freq;
750
751 static void init_get_clock(void)
752 {
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
759 }
760 clock_freq = freq.QuadPart;
761 }
762
763 static int64_t get_clock(void)
764 {
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 }
769
770 #else
771
772 static int use_rt_clock;
773
774 static void init_get_clock(void)
775 {
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
779 {
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
783 }
784 }
785 #endif
786 }
787
788 static int64_t get_clock(void)
789 {
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
798 {
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 }
805 }
806 #endif
807
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
810 {
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
818 }
819 return qemu_icount_bias + (icount << icount_time_shift);
820 }
821
822 /***********************************************************/
823 /* guest cycle counter */
824
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
829
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
832 {
833 if (use_icount) {
834 return cpu_get_icount();
835 }
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
845 }
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
848 }
849 }
850
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
853 {
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
860 }
861 }
862
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
865 {
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
870 }
871 }
872
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
876 {
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
881 }
882 }
883
884 /***********************************************************/
885 /* timers */
886
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
889
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
893 };
894
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
901 };
902
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
906
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
911 };
912
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
915
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
917 {
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
919 }
920
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
922 {
923 if (!alarm_has_dynticks(t))
924 return;
925
926 t->rearm(t);
927 }
928
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
931
932 static struct qemu_alarm_timer *alarm_timer;
933
934 #ifdef _WIN32
935
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
940
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
944
945 #else
946
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
949
950 #ifdef __linux__
951
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
955
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
958
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
961
962 #endif /* __linux__ */
963
964 #endif /* _WIN32 */
965
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971
972 static void icount_adjust(void)
973 {
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
981
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
991 }
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
997 }
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 }
1001
1002 static void icount_adjust_rt(void * opaque)
1003 {
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1007 }
1008
1009 static void icount_adjust_vm(void * opaque)
1010 {
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1014 }
1015
1016 static void init_icount_adjust(void)
1017 {
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 }
1030
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1049 };
1050
1051 static void show_available_alarms(void)
1052 {
1053 int i;
1054
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1058 }
1059
1060 static void configure_alarms(char const *opt)
1061 {
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1068
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1072 }
1073
1074 arg = strdup(opt);
1075
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1082 }
1083
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1087 }
1088
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1092
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1097
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1101 }
1102
1103 free(arg);
1104
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1112 }
1113 }
1114
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1117
1118 static QEMUTimer *active_timers[2];
1119
1120 static QEMUClock *qemu_new_clock(int type)
1121 {
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1126 }
1127
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1129 {
1130 QEMUTimer *ts;
1131
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1137 }
1138
1139 void qemu_free_timer(QEMUTimer *ts)
1140 {
1141 qemu_free(ts);
1142 }
1143
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1146 {
1147 QEMUTimer **pt, *t;
1148
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1159 }
1160 pt = &t->next;
1161 }
1162 }
1163
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1167 {
1168 QEMUTimer **pt, *t;
1169
1170 qemu_del_timer(ts);
1171
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1183 }
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1187
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1192 }
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1196 }
1197 }
1198
1199 int qemu_timer_pending(QEMUTimer *ts)
1200 {
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1210 {
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1214 }
1215
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1217 {
1218 QEMUTimer *ts;
1219
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1227
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1230 }
1231 }
1232
1233 int64_t qemu_get_clock(QEMUClock *clock)
1234 {
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1244 }
1245 }
1246 }
1247
1248 static void init_timers(void)
1249 {
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 }
1255
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1258 {
1259 uint64_t expire_time;
1260
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1265 }
1266 qemu_put_be64(f, expire_time);
1267 }
1268
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1270 {
1271 uint64_t expire_time;
1272
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1278 }
1279 }
1280
1281 static void timer_save(QEMUFile *f, void *opaque)
1282 {
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1285 }
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1289 }
1290
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1292 {
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1297 }
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1302 }
1303 return 0;
1304 }
1305
1306 static void qemu_event_increment(void);
1307
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1315 {
1316 #if 0
1317 #define DISP_FREQ 1000
1318 {
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1340 }
1341 }
1342 last_clock = ti;
1343 }
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1361 }
1362 #endif
1363 }
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1367 }
1368 }
1369
1370 static int64_t qemu_next_deadline(void)
1371 {
1372 int64_t delta;
1373
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1380 }
1381
1382 if (delta < 0)
1383 delta = 0;
1384
1385 return delta;
1386 }
1387
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1390 {
1391 int64_t delta;
1392 int64_t rtdelta;
1393
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1398
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1404 }
1405
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1408
1409 return delta;
1410 }
1411 #endif
1412
1413 #ifndef _WIN32
1414
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1417 {
1418 int flags;
1419
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1423
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1426
1427 return 0;
1428 }
1429
1430 #if defined(__linux__)
1431
1432 #define RTC_FREQ 1024
1433
1434 static void enable_sigio_timer(int fd)
1435 {
1436 struct sigaction act;
1437
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1442
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1446 }
1447
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 {
1450 struct hpet_info info;
1451 int r, fd;
1452
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1456
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1464 }
1465
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1470
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1475
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1480
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1483
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1488 }
1489
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 {
1492 int fd = (long)t->priv;
1493
1494 close(fd);
1495 }
1496
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 {
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1501
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1512 }
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1517 }
1518
1519 enable_sigio_timer(rtc_fd);
1520
1521 t->priv = (void *)(long)rtc_fd;
1522
1523 return 0;
1524 }
1525
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 {
1528 int rtc_fd = (long)t->priv;
1529
1530 close(rtc_fd);
1531 }
1532
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 {
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1538
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1542
1543 sigaction(SIGALRM, &act, NULL);
1544
1545 /*
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1548 */
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1553
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1556
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1559
1560 return -1;
1561 }
1562
1563 t->priv = (void *)(long)host_timer;
1564
1565 return 0;
1566 }
1567
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1569 {
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571
1572 timer_delete(host_timer);
1573 }
1574
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1576 {
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1581
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1585
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1587
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1593 }
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1597
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1606 }
1607 }
1608
1609 #endif /* defined(__linux__) */
1610
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1612 {
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1616
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1621
1622 sigaction(SIGALRM, &act, NULL);
1623
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1629
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1633
1634 return 0;
1635 }
1636
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1638 {
1639 struct itimerval itv;
1640
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1643 }
1644
1645 #endif /* !defined(_WIN32) */
1646
1647
1648 #ifdef _WIN32
1649
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 {
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1655
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1658
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1661
1662 timeBeginPeriod(data->period);
1663
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1669
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1675
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1680 }
1681
1682 return 0;
1683 }
1684
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1686 {
1687 struct qemu_alarm_win32 *data = t->priv;
1688
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1691 }
1692
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1694 {
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1697
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1701
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1704
1705 timeKillEvent(data->timerId);
1706
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1712
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1715
1716 timeEndPeriod(data->period);
1717 exit(1);
1718 }
1719 }
1720
1721 #endif /* _WIN32 */
1722
1723 static int init_timer_alarm(void)
1724 {
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1727
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1730
1731 err = t->start(t);
1732 if (!err)
1733 break;
1734 }
1735
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1739 }
1740
1741 alarm_timer = t;
1742
1743 return 0;
1744
1745 fail:
1746 return err;
1747 }
1748
1749 static void quit_timers(void)
1750 {
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1753 }
1754
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1758 {
1759 time_t ti;
1760 struct tm *ret;
1761
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1772 }
1773
1774 memcpy(tm, ret, sizeof(struct tm));
1775 }
1776
1777 int qemu_timedate_diff(struct tm *tm)
1778 {
1779 time_t seconds;
1780
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1788
1789 return seconds - time(NULL);
1790 }
1791
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1794 {
1795 WSACleanup();
1796 }
1797
1798 static int socket_init(void)
1799 {
1800 WSADATA Data;
1801 int ret, err;
1802
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1808 }
1809 atexit(socket_cleanup);
1810 return 0;
1811 }
1812 #endif
1813
1814 int get_next_param_value(char *buf, int buf_size,
1815 const char *tag, const char **pstr)
1816 {
1817 const char *p;
1818 char option[128];
1819
1820 p = *pstr;
1821 for(;;) {
1822 p = get_opt_name(option, sizeof(option), p, '=');
1823 if (*p != '=')
1824 break;
1825 p++;
1826 if (!strcmp(tag, option)) {
1827 *pstr = get_opt_value(buf, buf_size, p);
1828 if (**pstr == ',') {
1829 (*pstr)++;
1830 }
1831 return strlen(buf);
1832 } else {
1833 p = get_opt_value(NULL, 0, p);
1834 }
1835 if (*p != ',')
1836 break;
1837 p++;
1838 }
1839 return 0;
1840 }
1841
1842 int get_param_value(char *buf, int buf_size,
1843 const char *tag, const char *str)
1844 {
1845 return get_next_param_value(buf, buf_size, tag, &str);
1846 }
1847
1848 int check_params(char *buf, int buf_size,
1849 const char * const *params, const char *str)
1850 {
1851 const char *p;
1852 int i;
1853
1854 p = str;
1855 while (*p != '\0') {
1856 p = get_opt_name(buf, buf_size, p, '=');
1857 if (*p != '=') {
1858 return -1;
1859 }
1860 p++;
1861 for (i = 0; params[i] != NULL; i++) {
1862 if (!strcmp(params[i], buf)) {
1863 break;
1864 }
1865 }
1866 if (params[i] == NULL) {
1867 return -1;
1868 }
1869 p = get_opt_value(NULL, 0, p);
1870 if (*p != ',') {
1871 break;
1872 }
1873 p++;
1874 }
1875 return 0;
1876 }
1877
1878 /***********************************************************/
1879 /* Bluetooth support */
1880 static int nb_hcis;
1881 static int cur_hci;
1882 static struct HCIInfo *hci_table[MAX_NICS];
1883
1884 static struct bt_vlan_s {
1885 struct bt_scatternet_s net;
1886 int id;
1887 struct bt_vlan_s *next;
1888 } *first_bt_vlan;
1889
1890 /* find or alloc a new bluetooth "VLAN" */
1891 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1892 {
1893 struct bt_vlan_s **pvlan, *vlan;
1894 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1895 if (vlan->id == id)
1896 return &vlan->net;
1897 }
1898 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1899 vlan->id = id;
1900 pvlan = &first_bt_vlan;
1901 while (*pvlan != NULL)
1902 pvlan = &(*pvlan)->next;
1903 *pvlan = vlan;
1904 return &vlan->net;
1905 }
1906
1907 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1908 {
1909 }
1910
1911 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1912 {
1913 return -ENOTSUP;
1914 }
1915
1916 static struct HCIInfo null_hci = {
1917 .cmd_send = null_hci_send,
1918 .sco_send = null_hci_send,
1919 .acl_send = null_hci_send,
1920 .bdaddr_set = null_hci_addr_set,
1921 };
1922
1923 struct HCIInfo *qemu_next_hci(void)
1924 {
1925 if (cur_hci == nb_hcis)
1926 return &null_hci;
1927
1928 return hci_table[cur_hci++];
1929 }
1930
1931 static struct HCIInfo *hci_init(const char *str)
1932 {
1933 char *endp;
1934 struct bt_scatternet_s *vlan = 0;
1935
1936 if (!strcmp(str, "null"))
1937 /* null */
1938 return &null_hci;
1939 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1940 /* host[:hciN] */
1941 return bt_host_hci(str[4] ? str + 5 : "hci0");
1942 else if (!strncmp(str, "hci", 3)) {
1943 /* hci[,vlan=n] */
1944 if (str[3]) {
1945 if (!strncmp(str + 3, ",vlan=", 6)) {
1946 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1947 if (*endp)
1948 vlan = 0;
1949 }
1950 } else
1951 vlan = qemu_find_bt_vlan(0);
1952 if (vlan)
1953 return bt_new_hci(vlan);
1954 }
1955
1956 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1957
1958 return 0;
1959 }
1960
1961 static int bt_hci_parse(const char *str)
1962 {
1963 struct HCIInfo *hci;
1964 bdaddr_t bdaddr;
1965
1966 if (nb_hcis >= MAX_NICS) {
1967 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1968 return -1;
1969 }
1970
1971 hci = hci_init(str);
1972 if (!hci)
1973 return -1;
1974
1975 bdaddr.b[0] = 0x52;
1976 bdaddr.b[1] = 0x54;
1977 bdaddr.b[2] = 0x00;
1978 bdaddr.b[3] = 0x12;
1979 bdaddr.b[4] = 0x34;
1980 bdaddr.b[5] = 0x56 + nb_hcis;
1981 hci->bdaddr_set(hci, bdaddr.b);
1982
1983 hci_table[nb_hcis++] = hci;
1984
1985 return 0;
1986 }
1987
1988 static void bt_vhci_add(int vlan_id)
1989 {
1990 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1991
1992 if (!vlan->slave)
1993 fprintf(stderr, "qemu: warning: adding a VHCI to "
1994 "an empty scatternet %i\n", vlan_id);
1995
1996 bt_vhci_init(bt_new_hci(vlan));
1997 }
1998
1999 static struct bt_device_s *bt_device_add(const char *opt)
2000 {
2001 struct bt_scatternet_s *vlan;
2002 int vlan_id = 0;
2003 char *endp = strstr(opt, ",vlan=");
2004 int len = (endp ? endp - opt : strlen(opt)) + 1;
2005 char devname[10];
2006
2007 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2008
2009 if (endp) {
2010 vlan_id = strtol(endp + 6, &endp, 0);
2011 if (*endp) {
2012 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2013 return 0;
2014 }
2015 }
2016
2017 vlan = qemu_find_bt_vlan(vlan_id);
2018
2019 if (!vlan->slave)
2020 fprintf(stderr, "qemu: warning: adding a slave device to "
2021 "an empty scatternet %i\n", vlan_id);
2022
2023 if (!strcmp(devname, "keyboard"))
2024 return bt_keyboard_init(vlan);
2025
2026 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2027 return 0;
2028 }
2029
2030 static int bt_parse(const char *opt)
2031 {
2032 const char *endp, *p;
2033 int vlan;
2034
2035 if (strstart(opt, "hci", &endp)) {
2036 if (!*endp || *endp == ',') {
2037 if (*endp)
2038 if (!strstart(endp, ",vlan=", 0))
2039 opt = endp + 1;
2040
2041 return bt_hci_parse(opt);
2042 }
2043 } else if (strstart(opt, "vhci", &endp)) {
2044 if (!*endp || *endp == ',') {
2045 if (*endp) {
2046 if (strstart(endp, ",vlan=", &p)) {
2047 vlan = strtol(p, (char **) &endp, 0);
2048 if (*endp) {
2049 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2050 return 1;
2051 }
2052 } else {
2053 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2054 return 1;
2055 }
2056 } else
2057 vlan = 0;
2058
2059 bt_vhci_add(vlan);
2060 return 0;
2061 }
2062 } else if (strstart(opt, "device:", &endp))
2063 return !bt_device_add(endp);
2064
2065 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2066 return 1;
2067 }
2068
2069 /***********************************************************/
2070 /* QEMU Block devices */
2071
2072 #define HD_ALIAS "index=%d,media=disk"
2073 #define CDROM_ALIAS "index=2,media=cdrom"
2074 #define FD_ALIAS "index=%d,if=floppy"
2075 #define PFLASH_ALIAS "if=pflash"
2076 #define MTD_ALIAS "if=mtd"
2077 #define SD_ALIAS "index=0,if=sd"
2078
2079 static int drive_opt_get_free_idx(void)
2080 {
2081 int index;
2082
2083 for (index = 0; index < MAX_DRIVES; index++)
2084 if (!drives_opt[index].used) {
2085 drives_opt[index].used = 1;
2086 return index;
2087 }
2088
2089 return -1;
2090 }
2091
2092 static int drive_get_free_idx(void)
2093 {
2094 int index;
2095
2096 for (index = 0; index < MAX_DRIVES; index++)
2097 if (!drives_table[index].used) {
2098 drives_table[index].used = 1;
2099 return index;
2100 }
2101
2102 return -1;
2103 }
2104
2105 int drive_add(const char *file, const char *fmt, ...)
2106 {
2107 va_list ap;
2108 int index = drive_opt_get_free_idx();
2109
2110 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2111 fprintf(stderr, "qemu: too many drives\n");
2112 return -1;
2113 }
2114
2115 drives_opt[index].file = file;
2116 va_start(ap, fmt);
2117 vsnprintf(drives_opt[index].opt,
2118 sizeof(drives_opt[0].opt), fmt, ap);
2119 va_end(ap);
2120
2121 nb_drives_opt++;
2122 return index;
2123 }
2124
2125 void drive_remove(int index)
2126 {
2127 drives_opt[index].used = 0;
2128 nb_drives_opt--;
2129 }
2130
2131 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2132 {
2133 int index;
2134
2135 /* seek interface, bus and unit */
2136
2137 for (index = 0; index < MAX_DRIVES; index++)
2138 if (drives_table[index].type == type &&
2139 drives_table[index].bus == bus &&
2140 drives_table[index].unit == unit &&
2141 drives_table[index].used)
2142 return index;
2143
2144 return -1;
2145 }
2146
2147 int drive_get_max_bus(BlockInterfaceType type)
2148 {
2149 int max_bus;
2150 int index;
2151
2152 max_bus = -1;
2153 for (index = 0; index < nb_drives; index++) {
2154 if(drives_table[index].type == type &&
2155 drives_table[index].bus > max_bus)
2156 max_bus = drives_table[index].bus;
2157 }
2158 return max_bus;
2159 }
2160
2161 const char *drive_get_serial(BlockDriverState *bdrv)
2162 {
2163 int index;
2164
2165 for (index = 0; index < nb_drives; index++)
2166 if (drives_table[index].bdrv == bdrv)
2167 return drives_table[index].serial;
2168
2169 return "\0";
2170 }
2171
2172 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2173 {
2174 int index;
2175
2176 for (index = 0; index < nb_drives; index++)
2177 if (drives_table[index].bdrv == bdrv)
2178 return drives_table[index].onerror;
2179
2180 return BLOCK_ERR_STOP_ENOSPC;
2181 }
2182
2183 static void bdrv_format_print(void *opaque, const char *name)
2184 {
2185 fprintf(stderr, " %s", name);
2186 }
2187
2188 void drive_uninit(BlockDriverState *bdrv)
2189 {
2190 int i;
2191
2192 for (i = 0; i < MAX_DRIVES; i++)
2193 if (drives_table[i].bdrv == bdrv) {
2194 drives_table[i].bdrv = NULL;
2195 drives_table[i].used = 0;
2196 drive_remove(drives_table[i].drive_opt_idx);
2197 nb_drives--;
2198 break;
2199 }
2200 }
2201
2202 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2203 {
2204 char buf[128];
2205 char file[1024];
2206 char devname[128];
2207 char serial[21];
2208 const char *mediastr = "";
2209 BlockInterfaceType type;
2210 enum { MEDIA_DISK, MEDIA_CDROM } media;
2211 int bus_id, unit_id;
2212 int cyls, heads, secs, translation;
2213 BlockDriverState *bdrv;
2214 BlockDriver *drv = NULL;
2215 QEMUMachine *machine = opaque;
2216 int max_devs;
2217 int index;
2218 int cache;
2219 int bdrv_flags, onerror;
2220 const char *devaddr;
2221 int drives_table_idx;
2222 char *str = arg->opt;
2223 static const char * const params[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial",
2227 "werror", "addr",
2228 NULL };
2229
2230 if (check_params(buf, sizeof(buf), params, str) < 0) {
2231 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2232 buf, str);
2233 return -1;
2234 }
2235
2236 file[0] = 0;
2237 cyls = heads = secs = 0;
2238 bus_id = 0;
2239 unit_id = -1;
2240 translation = BIOS_ATA_TRANSLATION_AUTO;
2241 index = -1;
2242 cache = 3;
2243
2244 if (machine->use_scsi) {
2245 type = IF_SCSI;
2246 max_devs = MAX_SCSI_DEVS;
2247 pstrcpy(devname, sizeof(devname), "scsi");
2248 } else {
2249 type = IF_IDE;
2250 max_devs = MAX_IDE_DEVS;
2251 pstrcpy(devname, sizeof(devname), "ide");
2252 }
2253 media = MEDIA_DISK;
2254
2255 /* extract parameters */
2256
2257 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2258 bus_id = strtol(buf, NULL, 0);
2259 if (bus_id < 0) {
2260 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2261 return -1;
2262 }
2263 }
2264
2265 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2266 unit_id = strtol(buf, NULL, 0);
2267 if (unit_id < 0) {
2268 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2269 return -1;
2270 }
2271 }
2272
2273 if (get_param_value(buf, sizeof(buf), "if", str)) {
2274 pstrcpy(devname, sizeof(devname), buf);
2275 if (!strcmp(buf, "ide")) {
2276 type = IF_IDE;
2277 max_devs = MAX_IDE_DEVS;
2278 } else if (!strcmp(buf, "scsi")) {
2279 type = IF_SCSI;
2280 max_devs = MAX_SCSI_DEVS;
2281 } else if (!strcmp(buf, "floppy")) {
2282 type = IF_FLOPPY;
2283 max_devs = 0;
2284 } else if (!strcmp(buf, "pflash")) {
2285 type = IF_PFLASH;
2286 max_devs = 0;
2287 } else if (!strcmp(buf, "mtd")) {
2288 type = IF_MTD;
2289 max_devs = 0;
2290 } else if (!strcmp(buf, "sd")) {
2291 type = IF_SD;
2292 max_devs = 0;
2293 } else if (!strcmp(buf, "virtio")) {
2294 type = IF_VIRTIO;
2295 max_devs = 0;
2296 } else if (!strcmp(buf, "xen")) {
2297 type = IF_XEN;
2298 max_devs = 0;
2299 } else {
2300 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2301 return -1;
2302 }
2303 }
2304
2305 if (get_param_value(buf, sizeof(buf), "index", str)) {
2306 index = strtol(buf, NULL, 0);
2307 if (index < 0) {
2308 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2309 return -1;
2310 }
2311 }
2312
2313 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2314 cyls = strtol(buf, NULL, 0);
2315 }
2316
2317 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2318 heads = strtol(buf, NULL, 0);
2319 }
2320
2321 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2322 secs = strtol(buf, NULL, 0);
2323 }
2324
2325 if (cyls || heads || secs) {
2326 if (cyls < 1 || cyls > 16383) {
2327 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2328 return -1;
2329 }
2330 if (heads < 1 || heads > 16) {
2331 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2332 return -1;
2333 }
2334 if (secs < 1 || secs > 63) {
2335 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2336 return -1;
2337 }
2338 }
2339
2340 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2341 if (!cyls) {
2342 fprintf(stderr,
2343 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2344 str);
2345 return -1;
2346 }
2347 if (!strcmp(buf, "none"))
2348 translation = BIOS_ATA_TRANSLATION_NONE;
2349 else if (!strcmp(buf, "lba"))
2350 translation = BIOS_ATA_TRANSLATION_LBA;
2351 else if (!strcmp(buf, "auto"))
2352 translation = BIOS_ATA_TRANSLATION_AUTO;
2353 else {
2354 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2355 return -1;
2356 }
2357 }
2358
2359 if (get_param_value(buf, sizeof(buf), "media", str)) {
2360 if (!strcmp(buf, "disk")) {
2361 media = MEDIA_DISK;
2362 } else if (!strcmp(buf, "cdrom")) {
2363 if (cyls || secs || heads) {
2364 fprintf(stderr,
2365 "qemu: '%s' invalid physical CHS format\n", str);
2366 return -1;
2367 }
2368 media = MEDIA_CDROM;
2369 } else {
2370 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2371 return -1;
2372 }
2373 }
2374
2375 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2376 if (!strcmp(buf, "on"))
2377 snapshot = 1;
2378 else if (!strcmp(buf, "off"))
2379 snapshot = 0;
2380 else {
2381 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2382 return -1;
2383 }
2384 }
2385
2386 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2387 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2388 cache = 0;
2389 else if (!strcmp(buf, "writethrough"))
2390 cache = 1;
2391 else if (!strcmp(buf, "writeback"))
2392 cache = 2;
2393 else {
2394 fprintf(stderr, "qemu: invalid cache option\n");
2395 return -1;
2396 }
2397 }
2398
2399 if (get_param_value(buf, sizeof(buf), "format", str)) {
2400 if (strcmp(buf, "?") == 0) {
2401 fprintf(stderr, "qemu: Supported formats:");
2402 bdrv_iterate_format(bdrv_format_print, NULL);
2403 fprintf(stderr, "\n");
2404 return -1;
2405 }
2406 drv = bdrv_find_format(buf);
2407 if (!drv) {
2408 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2409 return -1;
2410 }
2411 }
2412
2413 if (arg->file == NULL)
2414 get_param_value(file, sizeof(file), "file", str);
2415 else
2416 pstrcpy(file, sizeof(file), arg->file);
2417
2418 if (!get_param_value(serial, sizeof(serial), "serial", str))
2419 memset(serial, 0, sizeof(serial));
2420
2421 onerror = BLOCK_ERR_STOP_ENOSPC;
2422 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2423 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2424 fprintf(stderr, "werror is no supported by this format\n");
2425 return -1;
2426 }
2427 if (!strcmp(buf, "ignore"))
2428 onerror = BLOCK_ERR_IGNORE;
2429 else if (!strcmp(buf, "enospc"))
2430 onerror = BLOCK_ERR_STOP_ENOSPC;
2431 else if (!strcmp(buf, "stop"))
2432 onerror = BLOCK_ERR_STOP_ANY;
2433 else if (!strcmp(buf, "report"))
2434 onerror = BLOCK_ERR_REPORT;
2435 else {
2436 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2437 return -1;
2438 }
2439 }
2440
2441 devaddr = NULL;
2442 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2443 if (type != IF_VIRTIO) {
2444 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2445 return -1;
2446 }
2447 devaddr = strdup(buf);
2448 }
2449
2450 /* compute bus and unit according index */
2451
2452 if (index != -1) {
2453 if (bus_id != 0 || unit_id != -1) {
2454 fprintf(stderr,
2455 "qemu: '%s' index cannot be used with bus and unit\n", str);
2456 return -1;
2457 }
2458 if (max_devs == 0)
2459 {
2460 unit_id = index;
2461 bus_id = 0;
2462 } else {
2463 unit_id = index % max_devs;
2464 bus_id = index / max_devs;
2465 }
2466 }
2467
2468 /* if user doesn't specify a unit_id,
2469 * try to find the first free
2470 */
2471
2472 if (unit_id == -1) {
2473 unit_id = 0;
2474 while (drive_get_index(type, bus_id, unit_id) != -1) {
2475 unit_id++;
2476 if (max_devs && unit_id >= max_devs) {
2477 unit_id -= max_devs;
2478 bus_id++;
2479 }
2480 }
2481 }
2482
2483 /* check unit id */
2484
2485 if (max_devs && unit_id >= max_devs) {
2486 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2487 str, unit_id, max_devs - 1);
2488 return -1;
2489 }
2490
2491 /*
2492 * ignore multiple definitions
2493 */
2494
2495 if (drive_get_index(type, bus_id, unit_id) != -1)
2496 return -2;
2497
2498 /* init */
2499
2500 if (type == IF_IDE || type == IF_SCSI)
2501 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2502 if (max_devs)
2503 snprintf(buf, sizeof(buf), "%s%i%s%i",
2504 devname, bus_id, mediastr, unit_id);
2505 else
2506 snprintf(buf, sizeof(buf), "%s%s%i",
2507 devname, mediastr, unit_id);
2508 bdrv = bdrv_new(buf);
2509 drives_table_idx = drive_get_free_idx();
2510 drives_table[drives_table_idx].bdrv = bdrv;
2511 drives_table[drives_table_idx].devaddr = devaddr;
2512 drives_table[drives_table_idx].type = type;
2513 drives_table[drives_table_idx].bus = bus_id;
2514 drives_table[drives_table_idx].unit = unit_id;
2515 drives_table[drives_table_idx].onerror = onerror;
2516 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2517 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2518 nb_drives++;
2519
2520 switch(type) {
2521 case IF_IDE:
2522 case IF_SCSI:
2523 case IF_XEN:
2524 switch(media) {
2525 case MEDIA_DISK:
2526 if (cyls != 0) {
2527 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2528 bdrv_set_translation_hint(bdrv, translation);
2529 }
2530 break;
2531 case MEDIA_CDROM:
2532 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2533 break;
2534 }
2535 break;
2536 case IF_SD:
2537 /* FIXME: This isn't really a floppy, but it's a reasonable
2538 approximation. */
2539 case IF_FLOPPY:
2540 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2541 break;
2542 case IF_PFLASH:
2543 case IF_MTD:
2544 case IF_VIRTIO:
2545 break;
2546 case IF_COUNT:
2547 abort();
2548 }
2549 if (!file[0])
2550 return -2;
2551 bdrv_flags = 0;
2552 if (snapshot) {
2553 bdrv_flags |= BDRV_O_SNAPSHOT;
2554 cache = 2; /* always use write-back with snapshot */
2555 }
2556 if (cache == 0) /* no caching */
2557 bdrv_flags |= BDRV_O_NOCACHE;
2558 else if (cache == 2) /* write-back */
2559 bdrv_flags |= BDRV_O_CACHE_WB;
2560 else if (cache == 3) /* not specified */
2561 bdrv_flags |= BDRV_O_CACHE_DEF;
2562 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2563 fprintf(stderr, "qemu: could not open disk image %s\n",
2564 file);
2565 return -1;
2566 }
2567 if (bdrv_key_required(bdrv))
2568 autostart = 0;
2569 return drives_table_idx;
2570 }
2571
2572 static void numa_add(const char *optarg)
2573 {
2574 char option[128];
2575 char *endptr;
2576 unsigned long long value, endvalue;
2577 int nodenr;
2578
2579 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2580 if (!strcmp(option, "node")) {
2581 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2582 nodenr = nb_numa_nodes;
2583 } else {
2584 nodenr = strtoull(option, NULL, 10);
2585 }
2586
2587 if (get_param_value(option, 128, "mem", optarg) == 0) {
2588 node_mem[nodenr] = 0;
2589 } else {
2590 value = strtoull(option, &endptr, 0);
2591 switch (*endptr) {
2592 case 0: case 'M': case 'm':
2593 value <<= 20;
2594 break;
2595 case 'G': case 'g':
2596 value <<= 30;
2597 break;
2598 }
2599 node_mem[nodenr] = value;
2600 }
2601 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2602 node_cpumask[nodenr] = 0;
2603 } else {
2604 value = strtoull(option, &endptr, 10);
2605 if (value >= 64) {
2606 value = 63;
2607 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2608 } else {
2609 if (*endptr == '-') {
2610 endvalue = strtoull(endptr+1, &endptr, 10);
2611 if (endvalue >= 63) {
2612 endvalue = 62;
2613 fprintf(stderr,
2614 "only 63 CPUs in NUMA mode supported.\n");
2615 }
2616 value = (1 << (endvalue + 1)) - (1 << value);
2617 } else {
2618 value = 1 << value;
2619 }
2620 }
2621 node_cpumask[nodenr] = value;
2622 }
2623 nb_numa_nodes++;
2624 }
2625 return;
2626 }
2627
2628 /***********************************************************/
2629 /* USB devices */
2630
2631 static USBPort *used_usb_ports;
2632 static USBPort *free_usb_ports;
2633
2634 /* ??? Maybe change this to register a hub to keep track of the topology. */
2635 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2636 usb_attachfn attach)
2637 {
2638 port->opaque = opaque;
2639 port->index = index;
2640 port->attach = attach;
2641 port->next = free_usb_ports;
2642 free_usb_ports = port;
2643 }
2644
2645 int usb_device_add_dev(USBDevice *dev)
2646 {
2647 USBPort *port;
2648
2649 /* Find a USB port to add the device to. */
2650 port = free_usb_ports;
2651 if (!port->next) {
2652 USBDevice *hub;
2653
2654 /* Create a new hub and chain it on. */
2655 free_usb_ports = NULL;
2656 port->next = used_usb_ports;
2657 used_usb_ports = port;
2658
2659 hub = usb_hub_init(VM_USB_HUB_SIZE);
2660 usb_attach(port, hub);
2661 port = free_usb_ports;
2662 }
2663
2664 free_usb_ports = port->next;
2665 port->next = used_usb_ports;
2666 used_usb_ports = port;
2667 usb_attach(port, dev);
2668 return 0;
2669 }
2670
2671 static void usb_msd_password_cb(void *opaque, int err)
2672 {
2673 USBDevice *dev = opaque;
2674
2675 if (!err)
2676 usb_device_add_dev(dev);
2677 else
2678 dev->handle_destroy(dev);
2679 }
2680
2681 static int usb_device_add(const char *devname, int is_hotplug)
2682 {
2683 const char *p;
2684 USBDevice *dev;
2685
2686 if (!free_usb_ports)
2687 return -1;
2688
2689 if (strstart(devname, "host:", &p)) {
2690 dev = usb_host_device_open(p);
2691 } else if (!strcmp(devname, "mouse")) {
2692 dev = usb_mouse_init();
2693 } else if (!strcmp(devname, "tablet")) {
2694 dev = usb_tablet_init();
2695 } else if (!strcmp(devname, "keyboard")) {
2696 dev = usb_keyboard_init();
2697 } else if (strstart(devname, "disk:", &p)) {
2698 BlockDriverState *bs;
2699
2700 dev = usb_msd_init(p);
2701 if (!dev)
2702 return -1;
2703 bs = usb_msd_get_bdrv(dev);
2704 if (bdrv_key_required(bs)) {
2705 autostart = 0;
2706 if (is_hotplug) {
2707 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2708 dev);
2709 return 0;
2710 }
2711 }
2712 } else if (!strcmp(devname, "wacom-tablet")) {
2713 dev = usb_wacom_init();
2714 } else if (strstart(devname, "serial:", &p)) {
2715 dev = usb_serial_init(p);
2716 #ifdef CONFIG_BRLAPI
2717 } else if (!strcmp(devname, "braille")) {
2718 dev = usb_baum_init();
2719 #endif
2720 } else if (strstart(devname, "net:", &p)) {
2721 int nic = nb_nics;
2722
2723 if (net_client_init(NULL, "nic", p) < 0)
2724 return -1;
2725 nd_table[nic].model = "usb";
2726 dev = usb_net_init(&nd_table[nic]);
2727 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2728 dev = usb_bt_init(devname[2] ? hci_init(p) :
2729 bt_new_hci(qemu_find_bt_vlan(0)));
2730 } else {
2731 return -1;
2732 }
2733 if (!dev)
2734 return -1;
2735
2736 return usb_device_add_dev(dev);
2737 }
2738
2739 int usb_device_del_addr(int bus_num, int addr)
2740 {
2741 USBPort *port;
2742 USBPort **lastp;
2743 USBDevice *dev;
2744
2745 if (!used_usb_ports)
2746 return -1;
2747
2748 if (bus_num != 0)
2749 return -1;
2750
2751 lastp = &used_usb_ports;
2752 port = used_usb_ports;
2753 while (port && port->dev->addr != addr) {
2754 lastp = &port->next;
2755 port = port->next;
2756 }
2757
2758 if (!port)
2759 return -1;
2760
2761 dev = port->dev;
2762 *lastp = port->next;
2763 usb_attach(port, NULL);
2764 dev->handle_destroy(dev);
2765 port->next = free_usb_ports;
2766 free_usb_ports = port;
2767 return 0;
2768 }
2769
2770 static int usb_device_del(const char *devname)
2771 {
2772 int bus_num, addr;
2773 const char *p;
2774
2775 if (strstart(devname, "host:", &p))
2776 return usb_host_device_close(p);
2777
2778 if (!used_usb_ports)
2779 return -1;
2780
2781 p = strchr(devname, '.');
2782 if (!p)
2783 return -1;
2784 bus_num = strtoul(devname, NULL, 0);
2785 addr = strtoul(p + 1, NULL, 0);
2786
2787 return usb_device_del_addr(bus_num, addr);
2788 }
2789
2790 void do_usb_add(Monitor *mon, const char *devname)
2791 {
2792 usb_device_add(devname, 1);
2793 }
2794
2795 void do_usb_del(Monitor *mon, const char *devname)
2796 {
2797 usb_device_del(devname);
2798 }
2799
2800 void usb_info(Monitor *mon)
2801 {
2802 USBDevice *dev;
2803 USBPort *port;
2804 const char *speed_str;
2805
2806 if (!usb_enabled) {
2807 monitor_printf(mon, "USB support not enabled\n");
2808 return;
2809 }
2810
2811 for (port = used_usb_ports; port; port = port->next) {
2812 dev = port->dev;
2813 if (!dev)
2814 continue;
2815 switch(dev->speed) {
2816 case USB_SPEED_LOW:
2817 speed_str = "1.5";
2818 break;
2819 case USB_SPEED_FULL:
2820 speed_str = "12";
2821 break;
2822 case USB_SPEED_HIGH:
2823 speed_str = "480";
2824 break;
2825 default:
2826 speed_str = "?";
2827 break;
2828 }
2829 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2830 0, dev->addr, speed_str, dev->devname);
2831 }
2832 }
2833
2834 /***********************************************************/
2835 /* PCMCIA/Cardbus */
2836
2837 static struct pcmcia_socket_entry_s {
2838 PCMCIASocket *socket;
2839 struct pcmcia_socket_entry_s *next;
2840 } *pcmcia_sockets = 0;
2841
2842 void pcmcia_socket_register(PCMCIASocket *socket)
2843 {
2844 struct pcmcia_socket_entry_s *entry;
2845
2846 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2847 entry->socket = socket;
2848 entry->next = pcmcia_sockets;
2849 pcmcia_sockets = entry;
2850 }
2851
2852 void pcmcia_socket_unregister(PCMCIASocket *socket)
2853 {
2854 struct pcmcia_socket_entry_s *entry, **ptr;
2855
2856 ptr = &pcmcia_sockets;
2857 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2858 if (entry->socket == socket) {
2859 *ptr = entry->next;
2860 qemu_free(entry);
2861 }
2862 }
2863
2864 void pcmcia_info(Monitor *mon)
2865 {
2866 struct pcmcia_socket_entry_s *iter;
2867
2868 if (!pcmcia_sockets)
2869 monitor_printf(mon, "No PCMCIA sockets\n");
2870
2871 for (iter = pcmcia_sockets; iter; iter = iter->next)
2872 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2873 iter->socket->attached ? iter->socket->card_string :
2874 "Empty");
2875 }
2876
2877 /***********************************************************/
2878 /* register display */
2879
2880 struct DisplayAllocator default_allocator = {
2881 defaultallocator_create_displaysurface,
2882 defaultallocator_resize_displaysurface,
2883 defaultallocator_free_displaysurface
2884 };
2885
2886 void register_displaystate(DisplayState *ds)
2887 {
2888 DisplayState **s;
2889 s = &display_state;
2890 while (*s != NULL)
2891 s = &(*s)->next;
2892 ds->next = NULL;
2893 *s = ds;
2894 }
2895
2896 DisplayState *get_displaystate(void)
2897 {
2898 return display_state;
2899 }
2900
2901 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2902 {
2903 if(ds->allocator == &default_allocator) ds->allocator = da;
2904 return ds->allocator;
2905 }
2906
2907 /* dumb display */
2908
2909 static void dumb_display_init(void)
2910 {
2911 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2912 ds->allocator = &default_allocator;
2913 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2914 register_displaystate(ds);
2915 }
2916
2917 /***********************************************************/
2918 /* I/O handling */
2919
2920 typedef struct IOHandlerRecord {
2921 int fd;
2922 IOCanRWHandler *fd_read_poll;
2923 IOHandler *fd_read;
2924 IOHandler *fd_write;
2925 int deleted;
2926 void *opaque;
2927 /* temporary data */
2928 struct pollfd *ufd;
2929 struct IOHandlerRecord *next;
2930 } IOHandlerRecord;
2931
2932 static IOHandlerRecord *first_io_handler;
2933
2934 /* XXX: fd_read_poll should be suppressed, but an API change is
2935 necessary in the character devices to suppress fd_can_read(). */
2936 int qemu_set_fd_handler2(int fd,
2937 IOCanRWHandler *fd_read_poll,
2938 IOHandler *fd_read,
2939 IOHandler *fd_write,
2940 void *opaque)
2941 {
2942 IOHandlerRecord **pioh, *ioh;
2943
2944 if (!fd_read && !fd_write) {
2945 pioh = &first_io_handler;
2946 for(;;) {
2947 ioh = *pioh;
2948 if (ioh == NULL)
2949 break;
2950 if (ioh->fd == fd) {
2951 ioh->deleted = 1;
2952 break;
2953 }
2954 pioh = &ioh->next;
2955 }
2956 } else {
2957 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2958 if (ioh->fd == fd)
2959 goto found;
2960 }
2961 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2962 ioh->next = first_io_handler;
2963 first_io_handler = ioh;
2964 found:
2965 ioh->fd = fd;
2966 ioh->fd_read_poll = fd_read_poll;
2967 ioh->fd_read = fd_read;
2968 ioh->fd_write = fd_write;
2969 ioh->opaque = opaque;
2970 ioh->deleted = 0;
2971 }
2972 return 0;
2973 }
2974
2975 int qemu_set_fd_handler(int fd,
2976 IOHandler *fd_read,
2977 IOHandler *fd_write,
2978 void *opaque)
2979 {
2980 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2981 }
2982
2983 #ifdef _WIN32
2984 /***********************************************************/
2985 /* Polling handling */
2986
2987 typedef struct PollingEntry {
2988 PollingFunc *func;
2989 void *opaque;
2990 struct PollingEntry *next;
2991 } PollingEntry;
2992
2993 static PollingEntry *first_polling_entry;
2994
2995 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2996 {
2997 PollingEntry **ppe, *pe;
2998 pe = qemu_mallocz(sizeof(PollingEntry));
2999 pe->func = func;
3000 pe->opaque = opaque;
3001 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3002 *ppe = pe;
3003 return 0;
3004 }
3005
3006 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3007 {
3008 PollingEntry **ppe, *pe;
3009 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3010 pe = *ppe;
3011 if (pe->func == func && pe->opaque == opaque) {
3012 *ppe = pe->next;
3013 qemu_free(pe);
3014 break;
3015 }
3016 }
3017 }
3018
3019 /***********************************************************/
3020 /* Wait objects support */
3021 typedef struct WaitObjects {
3022 int num;
3023 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3024 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3025 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3026 } WaitObjects;
3027
3028 static WaitObjects wait_objects = {0};
3029
3030 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3031 {
3032 WaitObjects *w = &wait_objects;
3033
3034 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3035 return -1;
3036 w->events[w->num] = handle;
3037 w->func[w->num] = func;
3038 w->opaque[w->num] = opaque;
3039 w->num++;
3040 return 0;
3041 }
3042
3043 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3044 {
3045 int i, found;
3046 WaitObjects *w = &wait_objects;
3047
3048 found = 0;
3049 for (i = 0; i < w->num; i++) {
3050 if (w->events[i] == handle)
3051 found = 1;
3052 if (found) {
3053 w->events[i] = w->events[i + 1];
3054 w->func[i] = w->func[i + 1];
3055 w->opaque[i] = w->opaque[i + 1];
3056 }
3057 }
3058 if (found)
3059 w->num--;
3060 }
3061 #endif
3062
3063 /***********************************************************/
3064 /* ram save/restore */
3065
3066 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3067 {
3068 int v;
3069
3070 v = qemu_get_byte(f);
3071 switch(v) {
3072 case 0:
3073 if (qemu_get_buffer(f, buf, len) != len)
3074 return -EIO;
3075 break;
3076 case 1:
3077 v = qemu_get_byte(f);
3078 memset(buf, v, len);
3079 break;
3080 default:
3081 return -EINVAL;
3082 }
3083
3084 if (qemu_file_has_error(f))
3085 return -EIO;
3086
3087 return 0;
3088 }
3089
3090 static int ram_load_v1(QEMUFile *f, void *opaque)
3091 {
3092 int ret;
3093 ram_addr_t i;
3094
3095 if (qemu_get_be32(f) != last_ram_offset)
3096 return -EINVAL;
3097 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3098 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3099 if (ret)
3100 return ret;
3101 }
3102 return 0;
3103 }
3104
3105 #define BDRV_HASH_BLOCK_SIZE 1024
3106 #define IOBUF_SIZE 4096
3107 #define RAM_CBLOCK_MAGIC 0xfabe
3108
3109 typedef struct RamDecompressState {
3110 z_stream zstream;
3111 QEMUFile *f;
3112 uint8_t buf[IOBUF_SIZE];
3113 } RamDecompressState;
3114
3115 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3116 {
3117 int ret;
3118 memset(s, 0, sizeof(*s));
3119 s->f = f;
3120 ret = inflateInit(&s->zstream);
3121 if (ret != Z_OK)
3122 return -1;
3123 return 0;
3124 }
3125
3126 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3127 {
3128 int ret, clen;
3129
3130 s->zstream.avail_out = len;
3131 s->zstream.next_out = buf;
3132 while (s->zstream.avail_out > 0) {
3133 if (s->zstream.avail_in == 0) {
3134 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3135 return -1;
3136 clen = qemu_get_be16(s->f);
3137 if (clen > IOBUF_SIZE)
3138 return -1;
3139 qemu_get_buffer(s->f, s->buf, clen);
3140 s->zstream.avail_in = clen;
3141 s->zstream.next_in = s->buf;
3142 }
3143 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3144 if (ret != Z_OK && ret != Z_STREAM_END) {
3145 return -1;
3146 }
3147 }
3148 return 0;
3149 }
3150
3151 static void ram_decompress_close(RamDecompressState *s)
3152 {
3153 inflateEnd(&s->zstream);
3154 }
3155
3156 #define RAM_SAVE_FLAG_FULL 0x01
3157 #define RAM_SAVE_FLAG_COMPRESS 0x02
3158 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3159 #define RAM_SAVE_FLAG_PAGE 0x08
3160 #define RAM_SAVE_FLAG_EOS 0x10
3161
3162 static int is_dup_page(uint8_t *page, uint8_t ch)
3163 {
3164 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3165 uint32_t *array = (uint32_t *)page;
3166 int i;
3167
3168 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3169 if (array[i] != val)
3170 return 0;
3171 }
3172
3173 return 1;
3174 }
3175
3176 static int ram_save_block(QEMUFile *f)
3177 {
3178 static ram_addr_t current_addr = 0;
3179 ram_addr_t saved_addr = current_addr;
3180 ram_addr_t addr = 0;
3181 int found = 0;
3182
3183 while (addr < last_ram_offset) {
3184 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3185 uint8_t *p;
3186
3187 cpu_physical_memory_reset_dirty(current_addr,
3188 current_addr + TARGET_PAGE_SIZE,
3189 MIGRATION_DIRTY_FLAG);
3190
3191 p = qemu_get_ram_ptr(current_addr);
3192
3193 if (is_dup_page(p, *p)) {
3194 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3195 qemu_put_byte(f, *p);
3196 } else {
3197 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3198 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3199 }
3200
3201 found = 1;
3202 break;
3203 }
3204 addr += TARGET_PAGE_SIZE;
3205 current_addr = (saved_addr + addr) % last_ram_offset;
3206 }
3207
3208 return found;
3209 }
3210
3211 static uint64_t bytes_transferred = 0;
3212
3213 static ram_addr_t ram_save_remaining(void)
3214 {
3215 ram_addr_t addr;
3216 ram_addr_t count = 0;
3217
3218 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3219 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3220 count++;
3221 }
3222
3223 return count;
3224 }
3225
3226 uint64_t ram_bytes_remaining(void)
3227 {
3228 return ram_save_remaining() * TARGET_PAGE_SIZE;
3229 }
3230
3231 uint64_t ram_bytes_transferred(void)
3232 {
3233 return bytes_transferred;
3234 }
3235
3236 uint64_t ram_bytes_total(void)
3237 {
3238 return last_ram_offset;
3239 }
3240
3241 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3242 {
3243 ram_addr_t addr;
3244 uint64_t bytes_transferred_last;
3245 double bwidth = 0;
3246 uint64_t expected_time = 0;
3247
3248 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3249 qemu_file_set_error(f);
3250 return 0;
3251 }
3252
3253 if (stage == 1) {
3254 /* Make sure all dirty bits are set */
3255 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3256 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3257 cpu_physical_memory_set_dirty(addr);
3258 }
3259
3260 /* Enable dirty memory tracking */
3261 cpu_physical_memory_set_dirty_tracking(1);
3262
3263 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3264 }
3265
3266 bytes_transferred_last = bytes_transferred;
3267 bwidth = get_clock();
3268
3269 while (!qemu_file_rate_limit(f)) {
3270 int ret;
3271
3272 ret = ram_save_block(f);
3273 bytes_transferred += ret * TARGET_PAGE_SIZE;
3274 if (ret == 0) /* no more blocks */
3275 break;
3276 }
3277
3278 bwidth = get_clock() - bwidth;
3279 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3280
3281 /* if we haven't transferred anything this round, force expected_time to a
3282 * a very high value, but without crashing */
3283 if (bwidth == 0)
3284 bwidth = 0.000001;
3285
3286 /* try transferring iterative blocks of memory */
3287
3288 if (stage == 3) {
3289
3290 /* flush all remaining blocks regardless of rate limiting */
3291 while (ram_save_block(f) != 0) {
3292 bytes_transferred += TARGET_PAGE_SIZE;
3293 }
3294 cpu_physical_memory_set_dirty_tracking(0);
3295 }
3296
3297 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3298
3299 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3300
3301 return (stage == 2) && (expected_time <= migrate_max_downtime());
3302 }
3303
3304 static int ram_load_dead(QEMUFile *f, void *opaque)
3305 {
3306 RamDecompressState s1, *s = &s1;
3307 uint8_t buf[10];
3308 ram_addr_t i;
3309
3310 if (ram_decompress_open(s, f) < 0)
3311 return -EINVAL;
3312 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3313 if (ram_decompress_buf(s, buf, 1) < 0) {
3314 fprintf(stderr, "Error while reading ram block header\n");
3315 goto error;
3316 }
3317 if (buf[0] == 0) {
3318 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3319 BDRV_HASH_BLOCK_SIZE) < 0) {
3320 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3321 goto error;
3322 }
3323 } else {
3324 error:
3325 printf("Error block header\n");
3326 return -EINVAL;
3327 }
3328 }
3329 ram_decompress_close(s);
3330
3331 return 0;
3332 }
3333
3334 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3335 {
3336 ram_addr_t addr;
3337 int flags;
3338
3339 if (version_id == 1)
3340 return ram_load_v1(f, opaque);
3341
3342 if (version_id == 2) {
3343 if (qemu_get_be32(f) != last_ram_offset)
3344 return -EINVAL;
3345 return ram_load_dead(f, opaque);
3346 }
3347
3348 if (version_id != 3)
3349 return -EINVAL;
3350
3351 do {
3352 addr = qemu_get_be64(f);
3353
3354 flags = addr & ~TARGET_PAGE_MASK;
3355 addr &= TARGET_PAGE_MASK;
3356
3357 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3358 if (addr != last_ram_offset)
3359 return -EINVAL;
3360 }
3361
3362 if (flags & RAM_SAVE_FLAG_FULL) {
3363 if (ram_load_dead(f, opaque) < 0)
3364 return -EINVAL;
3365 }
3366
3367 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3368 uint8_t ch = qemu_get_byte(f);
3369 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3370 #ifndef _WIN32
3371 if (ch == 0 &&
3372 (!kvm_enabled() || kvm_has_sync_mmu())) {
3373 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3374 }
3375 #endif
3376 } else if (flags & RAM_SAVE_FLAG_PAGE)
3377 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3378 } while (!(flags & RAM_SAVE_FLAG_EOS));
3379
3380 return 0;
3381 }
3382
3383 void qemu_service_io(void)
3384 {
3385 qemu_notify_event();
3386 }
3387
3388 /***********************************************************/
3389 /* bottom halves (can be seen as timers which expire ASAP) */
3390
3391 struct QEMUBH {
3392 QEMUBHFunc *cb;
3393 void *opaque;
3394 int scheduled;
3395 int idle;
3396 int deleted;
3397 QEMUBH *next;
3398 };
3399
3400 static QEMUBH *first_bh = NULL;
3401
3402 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3403 {
3404 QEMUBH *bh;
3405 bh = qemu_mallocz(sizeof(QEMUBH));
3406 bh->cb = cb;
3407 bh->opaque = opaque;
3408 bh->next = first_bh;
3409 first_bh = bh;
3410 return bh;
3411 }
3412
3413 int qemu_bh_poll(void)
3414 {
3415 QEMUBH *bh, **bhp;
3416 int ret;
3417
3418 ret = 0;
3419 for (bh = first_bh; bh; bh = bh->next) {
3420 if (!bh->deleted && bh->scheduled) {
3421 bh->scheduled = 0;
3422 if (!bh->idle)
3423 ret = 1;
3424 bh->idle = 0;
3425 bh->cb(bh->opaque);
3426 }
3427 }
3428
3429 /* remove deleted bhs */
3430 bhp = &first_bh;
3431 while (*bhp) {
3432 bh = *bhp;
3433 if (bh->deleted) {
3434 *bhp = bh->next;
3435 qemu_free(bh);
3436 } else
3437 bhp = &bh->next;
3438 }
3439
3440 return ret;
3441 }
3442
3443 void qemu_bh_schedule_idle(QEMUBH *bh)
3444 {
3445 if (bh->scheduled)
3446 return;
3447 bh->scheduled = 1;
3448 bh->idle = 1;
3449 }
3450
3451 void qemu_bh_schedule(QEMUBH *bh)
3452 {
3453 if (bh->scheduled)
3454 return;
3455 bh->scheduled = 1;
3456 bh->idle = 0;
3457 /* stop the currently executing CPU to execute the BH ASAP */
3458 qemu_notify_event();
3459 }
3460
3461 void qemu_bh_cancel(QEMUBH *bh)
3462 {
3463 bh->scheduled = 0;
3464 }
3465
3466 void qemu_bh_delete(QEMUBH *bh)
3467 {
3468 bh->scheduled = 0;
3469 bh->deleted = 1;
3470 }
3471
3472 static void qemu_bh_update_timeout(int *timeout)
3473 {
3474 QEMUBH *bh;
3475
3476 for (bh = first_bh; bh; bh = bh->next) {
3477 if (!bh->deleted && bh->scheduled) {
3478 if (bh->idle) {
3479 /* idle bottom halves will be polled at least
3480 * every 10ms */
3481 *timeout = MIN(10, *timeout);
3482 } else {
3483 /* non-idle bottom halves will be executed
3484 * immediately */
3485 *timeout = 0;
3486 break;
3487 }
3488 }
3489 }
3490 }
3491
3492 /***********************************************************/
3493 /* machine registration */
3494
3495 static QEMUMachine *first_machine = NULL;
3496 QEMUMachine *current_machine = NULL;
3497
3498 int qemu_register_machine(QEMUMachine *m)
3499 {
3500 QEMUMachine **pm;
3501 pm = &first_machine;
3502 while (*pm != NULL)
3503 pm = &(*pm)->next;
3504 m->next = NULL;
3505 *pm = m;
3506 return 0;
3507 }
3508
3509 static QEMUMachine *find_machine(const char *name)
3510 {
3511 QEMUMachine *m;
3512
3513 for(m = first_machine; m != NULL; m = m->next) {
3514 if (!strcmp(m->name, name))
3515 return m;
3516 }
3517 return NULL;
3518 }
3519
3520 static QEMUMachine *find_default_machine(void)
3521 {
3522 QEMUMachine *m;
3523
3524 for(m = first_machine; m != NULL; m = m->next) {
3525 if (m->is_default) {
3526 return m;
3527 }
3528 }
3529 return NULL;
3530 }
3531
3532 /***********************************************************/
3533 /* main execution loop */
3534
3535 static void gui_update(void *opaque)
3536 {
3537 uint64_t interval = GUI_REFRESH_INTERVAL;
3538 DisplayState *ds = opaque;
3539 DisplayChangeListener *dcl = ds->listeners;
3540
3541 dpy_refresh(ds);
3542
3543 while (dcl != NULL) {
3544 if (dcl->gui_timer_interval &&
3545 dcl->gui_timer_interval < interval)
3546 interval = dcl->gui_timer_interval;
3547 dcl = dcl->next;
3548 }
3549 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3550 }
3551
3552 static void nographic_update(void *opaque)
3553 {
3554 uint64_t interval = GUI_REFRESH_INTERVAL;
3555
3556 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3557 }
3558
3559 struct vm_change_state_entry {
3560 VMChangeStateHandler *cb;
3561 void *opaque;
3562 LIST_ENTRY (vm_change_state_entry) entries;
3563 };
3564
3565 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3566
3567 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3568 void *opaque)
3569 {
3570 VMChangeStateEntry *e;
3571
3572 e = qemu_mallocz(sizeof (*e));
3573
3574 e->cb = cb;
3575 e->opaque = opaque;
3576 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3577 return e;
3578 }
3579
3580 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3581 {
3582 LIST_REMOVE (e, entries);
3583 qemu_free (e);
3584 }
3585
3586 static void vm_state_notify(int running, int reason)
3587 {
3588 VMChangeStateEntry *e;
3589
3590 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3591 e->cb(e->opaque, running, reason);
3592 }
3593 }
3594
3595 static void resume_all_vcpus(void);
3596 static void pause_all_vcpus(void);
3597
3598 void vm_start(void)
3599 {
3600 if (!vm_running) {
3601 cpu_enable_ticks();
3602 vm_running = 1;
3603 vm_state_notify(1, 0);
3604 qemu_rearm_alarm_timer(alarm_timer);
3605 resume_all_vcpus();
3606 }
3607 }
3608
3609 /* reset/shutdown handler */
3610
3611 typedef struct QEMUResetEntry {
3612 QEMUResetHandler *func;
3613 void *opaque;
3614 struct QEMUResetEntry *next;
3615 } QEMUResetEntry;
3616
3617 static QEMUResetEntry *first_reset_entry;
3618 static int reset_requested;
3619 static int shutdown_requested;
3620 static int powerdown_requested;
3621 static int debug_requested;
3622 static int vmstop_requested;
3623
3624 int qemu_shutdown_requested(void)
3625 {
3626 int r = shutdown_requested;
3627 shutdown_requested = 0;
3628 return r;
3629 }
3630
3631 int qemu_reset_requested(void)
3632 {
3633 int r = reset_requested;
3634 reset_requested = 0;
3635 return r;
3636 }
3637
3638 int qemu_powerdown_requested(void)
3639 {
3640 int r = powerdown_requested;
3641 powerdown_requested = 0;
3642 return r;
3643 }
3644
3645 static int qemu_debug_requested(void)
3646 {
3647 int r = debug_requested;
3648 debug_requested = 0;
3649 return r;
3650 }
3651
3652 static int qemu_vmstop_requested(void)
3653 {
3654 int r = vmstop_requested;
3655 vmstop_requested = 0;
3656 return r;
3657 }
3658
3659 static void do_vm_stop(int reason)
3660 {
3661 if (vm_running) {
3662 cpu_disable_ticks();
3663 vm_running = 0;
3664 pause_all_vcpus();
3665 vm_state_notify(0, reason);
3666 }
3667 }
3668
3669 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3670 {
3671 QEMUResetEntry **pre, *re;
3672
3673 pre = &first_reset_entry;
3674 while (*pre != NULL)
3675 pre = &(*pre)->next;
3676 re = qemu_mallocz(sizeof(QEMUResetEntry));
3677 re->func = func;
3678 re->opaque = opaque;
3679 re->next = NULL;
3680 *pre = re;
3681 }
3682
3683 void qemu_system_reset(void)
3684 {
3685 QEMUResetEntry *re;
3686
3687 /* reset all devices */
3688 for(re = first_reset_entry; re != NULL; re = re->next) {
3689 re->func(re->opaque);
3690 }
3691 }
3692
3693 void qemu_system_reset_request(void)
3694 {
3695 if (no_reboot) {
3696 shutdown_requested = 1;
3697 } else {
3698 reset_requested = 1;
3699 }
3700 qemu_notify_event();
3701 }
3702
3703 void qemu_system_shutdown_request(void)
3704 {
3705 shutdown_requested = 1;
3706 qemu_notify_event();
3707 }
3708
3709 void qemu_system_powerdown_request(void)
3710 {
3711 powerdown_requested = 1;
3712 qemu_notify_event();
3713 }
3714
3715 #ifdef CONFIG_IOTHREAD
3716 static void qemu_system_vmstop_request(int reason)
3717 {
3718 vmstop_requested = reason;
3719 qemu_notify_event();
3720 }
3721 #endif
3722
3723 #ifndef _WIN32
3724 static int io_thread_fd = -1;
3725
3726 static void qemu_event_increment(void)
3727 {
3728 static const char byte = 0;
3729
3730 if (io_thread_fd == -1)
3731 return;
3732
3733 write(io_thread_fd, &byte, sizeof(byte));
3734 }
3735
3736 static void qemu_event_read(void *opaque)
3737 {
3738 int fd = (unsigned long)opaque;
3739 ssize_t len;
3740
3741 /* Drain the notify pipe */
3742 do {
3743 char buffer[512];
3744 len = read(fd, buffer, sizeof(buffer));
3745 } while ((len == -1 && errno == EINTR) || len > 0);
3746 }
3747
3748 static int qemu_event_init(void)
3749 {
3750 int err;
3751 int fds[2];
3752
3753 err = pipe(fds);
3754 if (err == -1)
3755 return -errno;
3756
3757 err = fcntl_setfl(fds[0], O_NONBLOCK);
3758 if (err < 0)
3759 goto fail;
3760
3761 err = fcntl_setfl(fds[1], O_NONBLOCK);
3762 if (err < 0)
3763 goto fail;
3764
3765 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3766 (void *)(unsigned long)fds[0]);
3767
3768 io_thread_fd = fds[1];
3769 return 0;
3770
3771 fail:
3772 close(fds[0]);
3773 close(fds[1]);
3774 return err;
3775 }
3776 #else
3777 HANDLE qemu_event_handle;
3778
3779 static void dummy_event_handler(void *opaque)
3780 {
3781 }
3782
3783 static int qemu_event_init(void)
3784 {
3785 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3786 if (!qemu_event_handle) {
3787 perror("Failed CreateEvent");
3788 return -1;
3789 }
3790 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3791 return 0;
3792 }
3793
3794 static void qemu_event_increment(void)
3795 {
3796 SetEvent(qemu_event_handle);
3797 }
3798 #endif
3799
3800 static int cpu_can_run(CPUState *env)
3801 {
3802 if (env->stop)
3803 return 0;
3804 if (env->stopped)
3805 return 0;
3806 return 1;
3807 }
3808
3809 #ifndef CONFIG_IOTHREAD
3810 static int qemu_init_main_loop(void)
3811 {
3812 return qemu_event_init();
3813 }
3814
3815 void qemu_init_vcpu(void *_env)
3816 {
3817 CPUState *env = _env;
3818
3819 if (kvm_enabled())
3820 kvm_init_vcpu(env);
3821 return;
3822 }
3823
3824 int qemu_cpu_self(void *env)
3825 {
3826 return 1;
3827 }
3828
3829 static void resume_all_vcpus(void)
3830 {
3831 }
3832
3833 static void pause_all_vcpus(void)
3834 {
3835 }
3836
3837 void qemu_cpu_kick(void *env)
3838 {
3839 return;
3840 }
3841
3842 void qemu_notify_event(void)
3843 {
3844 CPUState *env = cpu_single_env;
3845
3846 if (env) {
3847 cpu_exit(env);
3848 #ifdef USE_KQEMU
3849 if (env->kqemu_enabled)
3850 kqemu_cpu_interrupt(env);
3851 #endif
3852 }
3853 }
3854
3855 #define qemu_mutex_lock_iothread() do { } while (0)
3856 #define qemu_mutex_unlock_iothread() do { } while (0)
3857
3858 void vm_stop(int reason)
3859 {
3860 do_vm_stop(reason);
3861 }
3862
3863 #else /* CONFIG_IOTHREAD */
3864
3865 #include "qemu-thread.h"
3866
3867 QemuMutex qemu_global_mutex;
3868 static QemuMutex qemu_fair_mutex;
3869
3870 static QemuThread io_thread;
3871
3872 static QemuThread *tcg_cpu_thread;
3873 static QemuCond *tcg_halt_cond;
3874
3875 static int qemu_system_ready;
3876 /* cpu creation */
3877 static QemuCond qemu_cpu_cond;
3878 /* system init */
3879 static QemuCond qemu_system_cond;
3880 static QemuCond qemu_pause_cond;
3881
3882 static void block_io_signals(void);
3883 static void unblock_io_signals(void);
3884 static int tcg_has_work(void);
3885
3886 static int qemu_init_main_loop(void)
3887 {
3888 int ret;
3889
3890 ret = qemu_event_init();
3891 if (ret)
3892 return ret;
3893
3894 qemu_cond_init(&qemu_pause_cond);
3895 qemu_mutex_init(&qemu_fair_mutex);
3896 qemu_mutex_init(&qemu_global_mutex);
3897 qemu_mutex_lock(&qemu_global_mutex);
3898
3899 unblock_io_signals();
3900 qemu_thread_self(&io_thread);
3901
3902 return 0;
3903 }
3904
3905 static void qemu_wait_io_event(CPUState *env)
3906 {
3907 while (!tcg_has_work())
3908 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3909
3910 qemu_mutex_unlock(&qemu_global_mutex);
3911
3912 /*
3913 * Users of qemu_global_mutex can be starved, having no chance
3914 * to acquire it since this path will get to it first.
3915 * So use another lock to provide fairness.
3916 */
3917 qemu_mutex_lock(&qemu_fair_mutex);
3918 qemu_mutex_unlock(&qemu_fair_mutex);
3919
3920 qemu_mutex_lock(&qemu_global_mutex);
3921 if (env->stop) {
3922 env->stop = 0;
3923 env->stopped = 1;
3924 qemu_cond_signal(&qemu_pause_cond);
3925 }
3926 }
3927
3928 static int qemu_cpu_exec(CPUState *env);
3929
3930 static void *kvm_cpu_thread_fn(void *arg)
3931 {
3932 CPUState *env = arg;
3933
3934 block_io_signals();
3935 qemu_thread_self(env->thread);
3936
3937 /* signal CPU creation */
3938 qemu_mutex_lock(&qemu_global_mutex);
3939 env->created = 1;
3940 qemu_cond_signal(&qemu_cpu_cond);
3941
3942 /* and wait for machine initialization */
3943 while (!qemu_system_ready)
3944 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3945
3946 while (1) {
3947 if (cpu_can_run(env))
3948 qemu_cpu_exec(env);
3949 qemu_wait_io_event(env);
3950 }
3951
3952 return NULL;
3953 }
3954
3955 static void tcg_cpu_exec(void);
3956
3957 static void *tcg_cpu_thread_fn(void *arg)
3958 {
3959 CPUState *env = arg;
3960
3961 block_io_signals();
3962 qemu_thread_self(env->thread);
3963
3964 /* signal CPU creation */
3965 qemu_mutex_lock(&qemu_global_mutex);
3966 for (env = first_cpu; env != NULL; env = env->next_cpu)
3967 env->created = 1;
3968 qemu_cond_signal(&qemu_cpu_cond);
3969
3970 /* and wait for machine initialization */
3971 while (!qemu_system_ready)
3972 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3973
3974 while (1) {
3975 tcg_cpu_exec();
3976 qemu_wait_io_event(cur_cpu);
3977 }
3978
3979 return NULL;
3980 }
3981
3982 void qemu_cpu_kick(void *_env)
3983 {
3984 CPUState *env = _env;
3985 qemu_cond_broadcast(env->halt_cond);
3986 if (kvm_enabled())
3987 qemu_thread_signal(env->thread, SIGUSR1);
3988 }
3989
3990 int qemu_cpu_self(void *env)
3991 {
3992 return (cpu_single_env != NULL);
3993 }
3994
3995 static void cpu_signal(int sig)
3996 {
3997 if (cpu_single_env)
3998 cpu_exit(cpu_single_env);
3999 }
4000
4001 static void block_io_signals(void)
4002 {
4003 sigset_t set;
4004 struct sigaction sigact;
4005
4006 sigemptyset(&set);
4007 sigaddset(&set, SIGUSR2);
4008 sigaddset(&set, SIGIO);
4009 sigaddset(&set, SIGALRM);
4010 pthread_sigmask(SIG_BLOCK, &set, NULL);
4011
4012 sigemptyset(&set);
4013 sigaddset(&set, SIGUSR1);
4014 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4015
4016 memset(&sigact, 0, sizeof(sigact));
4017 sigact.sa_handler = cpu_signal;
4018 sigaction(SIGUSR1, &sigact, NULL);
4019 }
4020
4021 static void unblock_io_signals(void)
4022 {
4023 sigset_t set;
4024
4025 sigemptyset(&set);
4026 sigaddset(&set, SIGUSR2);
4027 sigaddset(&set, SIGIO);
4028 sigaddset(&set, SIGALRM);
4029 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4030
4031 sigemptyset(&set);
4032 sigaddset(&set, SIGUSR1);
4033 pthread_sigmask(SIG_BLOCK, &set, NULL);
4034 }
4035
4036 static void qemu_signal_lock(unsigned int msecs)
4037 {
4038 qemu_mutex_lock(&qemu_fair_mutex);
4039
4040 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4041 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4042 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4043 break;
4044 }
4045 qemu_mutex_unlock(&qemu_fair_mutex);
4046 }
4047
4048 static void qemu_mutex_lock_iothread(void)
4049 {
4050 if (kvm_enabled()) {
4051 qemu_mutex_lock(&qemu_fair_mutex);
4052 qemu_mutex_lock(&qemu_global_mutex);
4053 qemu_mutex_unlock(&qemu_fair_mutex);
4054 } else
4055 qemu_signal_lock(100);
4056 }
4057
4058 static void qemu_mutex_unlock_iothread(void)
4059 {
4060 qemu_mutex_unlock(&qemu_global_mutex);
4061 }
4062
4063 static int all_vcpus_paused(void)
4064 {
4065 CPUState *penv = first_cpu;
4066
4067 while (penv) {
4068 if (!penv->stopped)
4069 return 0;
4070 penv = (CPUState *)penv->next_cpu;
4071 }
4072
4073 return 1;
4074 }
4075
4076 static void pause_all_vcpus(void)
4077 {
4078 CPUState *penv = first_cpu;
4079
4080 while (penv) {
4081 penv->stop = 1;
4082 qemu_thread_signal(penv->thread, SIGUSR1);
4083 qemu_cpu_kick(penv);
4084 penv = (CPUState *)penv->next_cpu;
4085 }
4086
4087 while (!all_vcpus_paused()) {
4088 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4089 penv = first_cpu;
4090 while (penv) {
4091 qemu_thread_signal(penv->thread, SIGUSR1);
4092 penv = (CPUState *)penv->next_cpu;
4093 }
4094 }
4095 }
4096
4097 static void resume_all_vcpus(void)
4098 {
4099 CPUState *penv = first_cpu;
4100
4101 while (penv) {
4102 penv->stop = 0;
4103 penv->stopped = 0;
4104 qemu_thread_signal(penv->thread, SIGUSR1);
4105 qemu_cpu_kick(penv);
4106 penv = (CPUState *)penv->next_cpu;
4107 }
4108 }
4109
4110 static void tcg_init_vcpu(void *_env)
4111 {
4112 CPUState *env = _env;
4113 /* share a single thread for all cpus with TCG */
4114 if (!tcg_cpu_thread) {
4115 env->thread = qemu_mallocz(sizeof(QemuThread));
4116 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4117 qemu_cond_init(env->halt_cond);
4118 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4119 while (env->created == 0)
4120 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4121 tcg_cpu_thread = env->thread;
4122 tcg_halt_cond = env->halt_cond;
4123 } else {
4124 env->thread = tcg_cpu_thread;
4125 env->halt_cond = tcg_halt_cond;
4126 }
4127 }
4128
4129 static void kvm_start_vcpu(CPUState *env)
4130 {
4131 kvm_init_vcpu(env);
4132 env->thread = qemu_mallocz(sizeof(QemuThread));
4133 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4134 qemu_cond_init(env->halt_cond);
4135 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4136 while (env->created == 0)
4137 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4138 }
4139
4140 void qemu_init_vcpu(void *_env)
4141 {
4142 CPUState *env = _env;
4143
4144 if (kvm_enabled())
4145 kvm_start_vcpu(env);
4146 else
4147 tcg_init_vcpu(env);
4148 }
4149
4150 void qemu_notify_event(void)
4151 {
4152 qemu_event_increment();
4153 }
4154
4155 void vm_stop(int reason)
4156 {
4157 QemuThread me;
4158 qemu_thread_self(&me);
4159
4160 if (!qemu_thread_equal(&me, &io_thread)) {
4161 qemu_system_vmstop_request(reason);
4162 /*
4163 * FIXME: should not return to device code in case
4164 * vm_stop() has been requested.
4165 */
4166 if (cpu_single_env) {
4167 cpu_exit(cpu_single_env);
4168 cpu_single_env->stop = 1;
4169 }
4170 return;
4171 }
4172 do_vm_stop(reason);
4173 }
4174
4175 #endif
4176
4177
4178 #ifdef _WIN32
4179 static void host_main_loop_wait(int *timeout)
4180 {
4181 int ret, ret2, i;
4182 PollingEntry *pe;
4183
4184
4185 /* XXX: need to suppress polling by better using win32 events */
4186 ret = 0;
4187 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4188 ret |= pe->func(pe->opaque);
4189 }
4190 if (ret == 0) {
4191 int err;
4192 WaitObjects *w = &wait_objects;
4193
4194 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4195 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4196 if (w->func[ret - WAIT_OBJECT_0])
4197 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4198
4199 /* Check for additional signaled events */
4200 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4201
4202 /* Check if event is signaled */
4203 ret2 = WaitForSingleObject(w->events[i], 0);
4204 if(ret2 == WAIT_OBJECT_0) {
4205 if (w->func[i])
4206 w->func[i](w->opaque[i]);
4207 } else if (ret2 == WAIT_TIMEOUT) {
4208 } else {
4209 err = GetLastError();
4210 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4211 }
4212 }
4213 } else if (ret == WAIT_TIMEOUT) {
4214 } else {
4215 err = GetLastError();
4216 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4217 }
4218 }
4219
4220 *timeout = 0;
4221 }
4222 #else
4223 static void host_main_loop_wait(int *timeout)
4224 {
4225 }
4226 #endif
4227
4228 void main_loop_wait(int timeout)
4229 {
4230 IOHandlerRecord *ioh;
4231 fd_set rfds, wfds, xfds;
4232 int ret, nfds;
4233 struct timeval tv;
4234
4235 qemu_bh_update_timeout(&timeout);
4236
4237 host_main_loop_wait(&timeout);
4238
4239 /* poll any events */
4240 /* XXX: separate device handlers from system ones */
4241 nfds = -1;
4242 FD_ZERO(&rfds);
4243 FD_ZERO(&wfds);
4244 FD_ZERO(&xfds);
4245 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4246 if (ioh->deleted)
4247 continue;
4248 if (ioh->fd_read &&
4249 (!ioh->fd_read_poll ||
4250 ioh->fd_read_poll(ioh->opaque) != 0)) {
4251 FD_SET(ioh->fd, &rfds);
4252 if (ioh->fd > nfds)
4253 nfds = ioh->fd;
4254 }
4255 if (ioh->fd_write) {
4256 FD_SET(ioh->fd, &wfds);
4257 if (ioh->fd > nfds)
4258 nfds = ioh->fd;
4259 }
4260 }
4261
4262 tv.tv_sec = timeout / 1000;
4263 tv.tv_usec = (timeout % 1000) * 1000;
4264
4265 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4266
4267 qemu_mutex_unlock_iothread();
4268 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4269 qemu_mutex_lock_iothread();
4270 if (ret > 0) {
4271 IOHandlerRecord **pioh;
4272
4273 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4274 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4275 ioh->fd_read(ioh->opaque);
4276 }
4277 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4278 ioh->fd_write(ioh->opaque);
4279 }
4280 }
4281
4282 /* remove deleted IO handlers */
4283 pioh = &first_io_handler;
4284 while (*pioh) {
4285 ioh = *pioh;
4286 if (ioh->deleted) {
4287 *pioh = ioh->next;
4288 qemu_free(ioh);
4289 } else
4290 pioh = &ioh->next;
4291 }
4292 }
4293
4294 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4295
4296 /* rearm timer, if not periodic */
4297 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4298 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4299 qemu_rearm_alarm_timer(alarm_timer);
4300 }
4301
4302 /* vm time timers */
4303 if (vm_running) {
4304 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4305 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4306 qemu_get_clock(vm_clock));
4307 }
4308
4309 /* real time timers */
4310 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4311 qemu_get_clock(rt_clock));
4312
4313 /* Check bottom-halves last in case any of the earlier events triggered
4314 them. */
4315 qemu_bh_poll();
4316
4317 }
4318
4319 static int qemu_cpu_exec(CPUState *env)
4320 {
4321 int ret;
4322 #ifdef CONFIG_PROFILER
4323 int64_t ti;
4324 #endif
4325
4326 #ifdef CONFIG_PROFILER
4327 ti = profile_getclock();
4328 #endif
4329 if (use_icount) {
4330 int64_t count;
4331 int decr;
4332 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4333 env->icount_decr.u16.low = 0;
4334 env->icount_extra = 0;
4335 count = qemu_next_deadline();
4336 count = (count + (1 << icount_time_shift) - 1)
4337 >> icount_time_shift;
4338 qemu_icount += count;
4339 decr = (count > 0xffff) ? 0xffff : count;
4340 count -= decr;
4341 env->icount_decr.u16.low = decr;
4342 env->icount_extra = count;
4343 }
4344 ret = cpu_exec(env);
4345 #ifdef CONFIG_PROFILER
4346 qemu_time += profile_getclock() - ti;
4347 #endif
4348 if (use_icount) {
4349 /* Fold pending instructions back into the
4350 instruction counter, and clear the interrupt flag. */
4351 qemu_icount -= (env->icount_decr.u16.low
4352 + env->icount_extra);
4353 env->icount_decr.u32 = 0;
4354 env->icount_extra = 0;
4355 }
4356 return ret;
4357 }
4358
4359 static void tcg_cpu_exec(void)
4360 {
4361 int ret = 0;
4362
4363 if (next_cpu == NULL)
4364 next_cpu = first_cpu;
4365 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4366 CPUState *env = cur_cpu = next_cpu;
4367
4368 if (!vm_running)
4369 break;
4370 if (timer_alarm_pending) {
4371 timer_alarm_pending = 0;
4372 break;
4373 }
4374 if (cpu_can_run(env))
4375 ret = qemu_cpu_exec(env);
4376 if (ret == EXCP_DEBUG) {
4377 gdb_set_stop_cpu(env);
4378 debug_requested = 1;
4379 break;
4380 }
4381 }
4382 }
4383
4384 static int cpu_has_work(CPUState *env)
4385 {
4386 if (env->stop)
4387 return 1;
4388 if (env->stopped)
4389 return 0;
4390 if (!env->halted)
4391 return 1;
4392 if (qemu_cpu_has_work(env))
4393 return 1;
4394 return 0;
4395 }
4396
4397 static int tcg_has_work(void)
4398 {
4399 CPUState *env;
4400
4401 for (env = first_cpu; env != NULL; env = env->next_cpu)
4402 if (cpu_has_work(env))
4403 return 1;
4404 return 0;
4405 }
4406
4407 static int qemu_calculate_timeout(void)
4408 {
4409 #ifndef CONFIG_IOTHREAD
4410 int timeout;
4411
4412 if (!vm_running)
4413 timeout = 5000;
4414 else if (tcg_has_work())
4415 timeout = 0;
4416 else if (!use_icount)
4417 timeout = 5000;
4418 else {
4419 /* XXX: use timeout computed from timers */
4420 int64_t add;
4421 int64_t delta;
4422 /* Advance virtual time to the next event. */
4423 if (use_icount == 1) {
4424 /* When not using an adaptive execution frequency
4425 we tend to get badly out of sync with real time,
4426 so just delay for a reasonable amount of time. */
4427 delta = 0;
4428 } else {
4429 delta = cpu_get_icount() - cpu_get_clock();
4430 }
4431 if (delta > 0) {
4432 /* If virtual time is ahead of real time then just
4433 wait for IO. */
4434 timeout = (delta / 1000000) + 1;
4435 } else {
4436 /* Wait for either IO to occur or the next
4437 timer event. */
4438 add = qemu_next_deadline();
4439 /* We advance the timer before checking for IO.
4440 Limit the amount we advance so that early IO
4441 activity won't get the guest too far ahead. */
4442 if (add > 10000000)
4443 add = 10000000;
4444 delta += add;
4445 add = (add + (1 << icount_time_shift) - 1)
4446 >> icount_time_shift;
4447 qemu_icount += add;
4448 timeout = delta / 1000000;
4449 if (timeout < 0)
4450 timeout = 0;
4451 }
4452 }
4453
4454 return timeout;
4455 #else /* CONFIG_IOTHREAD */
4456 return 1000;
4457 #endif
4458 }
4459
4460 static int vm_can_run(void)
4461 {
4462 if (powerdown_requested)
4463 return 0;
4464 if (reset_requested)
4465 return 0;
4466 if (shutdown_requested)
4467 return 0;
4468 if (debug_requested)
4469 return 0;
4470 return 1;
4471 }
4472
4473 static void main_loop(void)
4474 {
4475 int r;
4476
4477 #ifdef CONFIG_IOTHREAD
4478 qemu_system_ready = 1;
4479 qemu_cond_broadcast(&qemu_system_cond);
4480 #endif
4481
4482 for (;;) {
4483 do {
4484 #ifdef CONFIG_PROFILER
4485 int64_t ti;
4486 #endif
4487 #ifndef CONFIG_IOTHREAD
4488 tcg_cpu_exec();
4489 #endif
4490 #ifdef CONFIG_PROFILER
4491 ti = profile_getclock();
4492 #endif
4493 main_loop_wait(qemu_calculate_timeout());
4494 #ifdef CONFIG_PROFILER
4495 dev_time += profile_getclock() - ti;
4496 #endif
4497 } while (vm_can_run());
4498
4499 if (qemu_debug_requested())
4500 vm_stop(EXCP_DEBUG);
4501 if (qemu_shutdown_requested()) {
4502 if (no_shutdown) {
4503 vm_stop(0);
4504 no_shutdown = 0;
4505 } else
4506 break;
4507 }
4508 if (qemu_reset_requested()) {
4509 pause_all_vcpus();
4510 qemu_system_reset();
4511 resume_all_vcpus();
4512 }
4513 if (qemu_powerdown_requested())
4514 qemu_system_powerdown();
4515 if ((r = qemu_vmstop_requested()))
4516 vm_stop(r);
4517 }
4518 pause_all_vcpus();
4519 }
4520
4521 static void version(void)
4522 {
4523 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4524 }
4525
4526 static void help(int exitcode)
4527 {
4528 version();
4529 printf("usage: %s [options] [disk_image]\n"
4530 "\n"
4531 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4532 "\n"
4533 #define DEF(option, opt_arg, opt_enum, opt_help) \
4534 opt_help
4535 #define DEFHEADING(text) stringify(text) "\n"
4536 #include "qemu-options.h"
4537 #undef DEF
4538 #undef DEFHEADING
4539 #undef GEN_DOCS
4540 "\n"
4541 "During emulation, the following keys are useful:\n"
4542 "ctrl-alt-f toggle full screen\n"
4543 "ctrl-alt-n switch to virtual console 'n'\n"
4544 "ctrl-alt toggle mouse and keyboard grab\n"
4545 "\n"
4546 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4547 ,
4548 "qemu",
4549 DEFAULT_RAM_SIZE,
4550 #ifndef _WIN32
4551 DEFAULT_NETWORK_SCRIPT,
4552 DEFAULT_NETWORK_DOWN_SCRIPT,
4553 #endif
4554 DEFAULT_GDBSTUB_PORT,
4555 "/tmp/qemu.log");
4556 exit(exitcode);
4557 }
4558
4559 #define HAS_ARG 0x0001
4560
4561 enum {
4562 #define DEF(option, opt_arg, opt_enum, opt_help) \
4563 opt_enum,
4564 #define DEFHEADING(text)
4565 #include "qemu-options.h"
4566 #undef DEF
4567 #undef DEFHEADING
4568 #undef GEN_DOCS
4569 };
4570
4571 typedef struct QEMUOption {
4572 const char *name;
4573 int flags;
4574 int index;
4575 } QEMUOption;
4576
4577 static const QEMUOption qemu_options[] = {
4578 { "h", 0, QEMU_OPTION_h },
4579 #define DEF(option, opt_arg, opt_enum, opt_help) \
4580 { option, opt_arg, opt_enum },
4581 #define DEFHEADING(text)
4582 #include "qemu-options.h"
4583 #undef DEF
4584 #undef DEFHEADING
4585 #undef GEN_DOCS
4586 { NULL },
4587 };
4588
4589 #ifdef HAS_AUDIO
4590 struct soundhw soundhw[] = {
4591 #ifdef HAS_AUDIO_CHOICE
4592 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4593 {
4594 "pcspk",
4595 "PC speaker",
4596 0,
4597 1,
4598 { .init_isa = pcspk_audio_init }
4599 },
4600 #endif
4601
4602 #ifdef CONFIG_SB16
4603 {
4604 "sb16",
4605 "Creative Sound Blaster 16",
4606 0,
4607 1,
4608 { .init_isa = SB16_init }
4609 },
4610 #endif
4611
4612 #ifdef CONFIG_CS4231A
4613 {
4614 "cs4231a",
4615 "CS4231A",
4616 0,
4617 1,
4618 { .init_isa = cs4231a_init }
4619 },
4620 #endif
4621
4622 #ifdef CONFIG_ADLIB
4623 {
4624 "adlib",
4625 #ifdef HAS_YMF262
4626 "Yamaha YMF262 (OPL3)",
4627 #else
4628 "Yamaha YM3812 (OPL2)",
4629 #endif
4630 0,
4631 1,
4632 { .init_isa = Adlib_init }
4633 },
4634 #endif
4635
4636 #ifdef CONFIG_GUS
4637 {
4638 "gus",
4639 "Gravis Ultrasound GF1",
4640 0,
4641 1,
4642 { .init_isa = GUS_init }
4643 },
4644 #endif
4645
4646 #ifdef CONFIG_AC97
4647 {
4648 "ac97",
4649 "Intel 82801AA AC97 Audio",
4650 0,
4651 0,
4652 { .init_pci = ac97_init }
4653 },
4654 #endif
4655
4656 #ifdef CONFIG_ES1370
4657 {
4658 "es1370",
4659 "ENSONIQ AudioPCI ES1370",
4660 0,
4661 0,
4662 { .init_pci = es1370_init }
4663 },
4664 #endif
4665
4666 #endif /* HAS_AUDIO_CHOICE */
4667
4668 { NULL, NULL, 0, 0, { NULL } }
4669 };
4670
4671 static void select_soundhw (const char *optarg)
4672 {
4673 struct soundhw *c;
4674
4675 if (*optarg == '?') {
4676 show_valid_cards:
4677
4678 printf ("Valid sound card names (comma separated):\n");
4679 for (c = soundhw; c->name; ++c) {
4680 printf ("%-11s %s\n", c->name, c->descr);
4681 }
4682 printf ("\n-soundhw all will enable all of the above\n");
4683 exit (*optarg != '?');
4684 }
4685 else {
4686 size_t l;
4687 const char *p;
4688 char *e;
4689 int bad_card = 0;
4690
4691 if (!strcmp (optarg, "all")) {
4692 for (c = soundhw; c->name; ++c) {
4693 c->enabled = 1;
4694 }
4695 return;
4696 }
4697
4698 p = optarg;
4699 while (*p) {
4700 e = strchr (p, ',');
4701 l = !e ? strlen (p) : (size_t) (e - p);
4702
4703 for (c = soundhw; c->name; ++c) {
4704 if (!strncmp (c->name, p, l)) {
4705 c->enabled = 1;
4706 break;
4707 }
4708 }
4709
4710 if (!c->name) {
4711 if (l > 80) {
4712 fprintf (stderr,
4713 "Unknown sound card name (too big to show)\n");
4714 }
4715 else {
4716 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4717 (int) l, p);
4718 }
4719 bad_card = 1;
4720 }
4721 p += l + (e != NULL);
4722 }
4723
4724 if (bad_card)
4725 goto show_valid_cards;
4726 }
4727 }
4728 #endif
4729
4730 static void select_vgahw (const char *p)
4731 {
4732 const char *opts;
4733
4734 cirrus_vga_enabled = 0;
4735 std_vga_enabled = 0;
4736 vmsvga_enabled = 0;
4737 xenfb_enabled = 0;
4738 if (strstart(p, "std", &opts)) {
4739 std_vga_enabled = 1;
4740 } else if (strstart(p, "cirrus", &opts)) {
4741 cirrus_vga_enabled = 1;
4742 } else if (strstart(p, "vmware", &opts)) {
4743 vmsvga_enabled = 1;
4744 } else if (strstart(p, "xenfb", &opts)) {
4745 xenfb_enabled = 1;
4746 } else if (!strstart(p, "none", &opts)) {
4747 invalid_vga:
4748 fprintf(stderr, "Unknown vga type: %s\n", p);
4749 exit(1);
4750 }
4751 while (*opts) {
4752 const char *nextopt;
4753
4754 if (strstart(opts, ",retrace=", &nextopt)) {
4755 opts = nextopt;
4756 if (strstart(opts, "dumb", &nextopt))
4757 vga_retrace_method = VGA_RETRACE_DUMB;
4758 else if (strstart(opts, "precise", &nextopt))
4759 vga_retrace_method = VGA_RETRACE_PRECISE;
4760 else goto invalid_vga;
4761 } else goto invalid_vga;
4762 opts = nextopt;
4763 }
4764 }
4765
4766 #ifdef TARGET_I386
4767 static int balloon_parse(const char *arg)
4768 {
4769 char buf[128];
4770 const char *p;
4771
4772 if (!strcmp(arg, "none")) {
4773 virtio_balloon = 0;
4774 } else if (!strncmp(arg, "virtio", 6)) {
4775 virtio_balloon = 1;
4776 if (arg[6] == ',') {
4777 p = arg + 7;
4778 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4779 virtio_balloon_devaddr = strdup(buf);
4780 }
4781 }
4782 } else {
4783 return -1;
4784 }
4785 return 0;
4786 }
4787 #endif
4788
4789 #ifdef _WIN32
4790 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4791 {
4792 exit(STATUS_CONTROL_C_EXIT);
4793 return TRUE;
4794 }
4795 #endif
4796
4797 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4798 {
4799 int ret;
4800
4801 if(strlen(str) != 36)
4802 return -1;
4803
4804 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4805 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4806 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4807
4808 if(ret != 16)
4809 return -1;
4810
4811 #ifdef TARGET_I386
4812 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4813 #endif
4814
4815 return 0;
4816 }
4817
4818 #define MAX_NET_CLIENTS 32
4819
4820 #ifndef _WIN32
4821
4822 static void termsig_handler(int signal)
4823 {
4824 qemu_system_shutdown_request();
4825 }
4826
4827 static void sigchld_handler(int signal)
4828 {
4829 waitpid(-1, NULL, WNOHANG);
4830 }
4831
4832 static void sighandler_setup(void)
4833 {
4834 struct sigaction act;
4835
4836 memset(&act, 0, sizeof(act));
4837 act.sa_handler = termsig_handler;
4838 sigaction(SIGINT, &act, NULL);
4839 sigaction(SIGHUP, &act, NULL);
4840 sigaction(SIGTERM, &act, NULL);
4841
4842 act.sa_handler = sigchld_handler;
4843 act.sa_flags = SA_NOCLDSTOP;
4844 sigaction(SIGCHLD, &act, NULL);
4845 }
4846
4847 #endif
4848
4849 #ifdef _WIN32
4850 /* Look for support files in the same directory as the executable. */
4851 static char *find_datadir(const char *argv0)
4852 {
4853 char *p;
4854 char buf[MAX_PATH];
4855 DWORD len;
4856
4857 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4858 if (len == 0) {
4859 return NULL;
4860 }
4861
4862 buf[len] = 0;
4863 p = buf + len - 1;
4864 while (p != buf && *p != '\\')
4865 p--;
4866 *p = 0;
4867 if (access(buf, R_OK) == 0) {
4868 return qemu_strdup(buf);
4869 }
4870 return NULL;
4871 }
4872 #else /* !_WIN32 */
4873
4874 /* Find a likely location for support files using the location of the binary.
4875 For installed binaries this will be "$bindir/../share/qemu". When
4876 running from the build tree this will be "$bindir/../pc-bios". */
4877 #define SHARE_SUFFIX "/share/qemu"
4878 #define BUILD_SUFFIX "/pc-bios"
4879 static char *find_datadir(const char *argv0)
4880 {
4881 char *dir;
4882 char *p = NULL;
4883 char *res;
4884 #ifdef PATH_MAX
4885 char buf[PATH_MAX];
4886 #endif
4887 size_t max_len;
4888
4889 #if defined(__linux__)
4890 {
4891 int len;
4892 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4893 if (len > 0) {
4894 buf[len] = 0;
4895 p = buf;
4896 }
4897 }
4898 #elif defined(__FreeBSD__)
4899 {
4900 int len;
4901 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4902 if (len > 0) {
4903 buf[len] = 0;
4904 p = buf;
4905 }
4906 }
4907 #endif
4908 /* If we don't have any way of figuring out the actual executable
4909 location then try argv[0]. */
4910 if (!p) {
4911 #ifdef PATH_MAX
4912 p = buf;
4913 #endif
4914 p = realpath(argv0, p);
4915 if (!p) {
4916 return NULL;
4917 }
4918 }
4919 dir = dirname(p);
4920 dir = dirname(dir);
4921
4922 max_len = strlen(dir) +
4923 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4924 res = qemu_mallocz(max_len);
4925 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4926 if (access(res, R_OK)) {
4927 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4928 if (access(res, R_OK)) {
4929 qemu_free(res);
4930 res = NULL;
4931 }
4932 }
4933 #ifndef PATH_MAX
4934 free(p);
4935 #endif
4936 return res;
4937 }
4938 #undef SHARE_SUFFIX
4939 #undef BUILD_SUFFIX
4940 #endif
4941
4942 char *qemu_find_file(int type, const char *name)
4943 {
4944 int len;
4945 const char *subdir;
4946 char *buf;
4947
4948 /* If name contains path separators then try it as a straight path. */
4949 if ((strchr(name, '/') || strchr(name, '\\'))
4950 && access(name, R_OK) == 0) {
4951 return strdup(name);
4952 }
4953 switch (type) {
4954 case QEMU_FILE_TYPE_BIOS:
4955 subdir = "";
4956 break;
4957 case QEMU_FILE_TYPE_KEYMAP:
4958 subdir = "keymaps/";
4959 break;
4960 default:
4961 abort();
4962 }
4963 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4964 buf = qemu_mallocz(len);
4965 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4966 if (access(buf, R_OK)) {
4967 qemu_free(buf);
4968 return NULL;
4969 }
4970 return buf;
4971 }
4972
4973 int main(int argc, char **argv, char **envp)
4974 {
4975 const char *gdbstub_dev = NULL;
4976 uint32_t boot_devices_bitmap = 0;
4977 int i;
4978 int snapshot, linux_boot, net_boot;
4979 const char *initrd_filename;
4980 const char *kernel_filename, *kernel_cmdline;
4981 const char *boot_devices = "";
4982 DisplayState *ds;
4983 DisplayChangeListener *dcl;
4984 int cyls, heads, secs, translation;
4985 const char *net_clients[MAX_NET_CLIENTS];
4986 int nb_net_clients;
4987 const char *bt_opts[MAX_BT_CMDLINE];
4988 int nb_bt_opts;
4989 int hda_index;
4990 int optind;
4991 const char *r, *optarg;
4992 CharDriverState *monitor_hd = NULL;
4993 const char *monitor_device;
4994 const char *serial_devices[MAX_SERIAL_PORTS];
4995 int serial_device_index;
4996 const char *parallel_devices[MAX_PARALLEL_PORTS];
4997 int parallel_device_index;
4998 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4999 int virtio_console_index;
5000 const char *loadvm = NULL;
5001 QEMUMachine *machine;
5002 const char *cpu_model;
5003 const char *usb_devices[MAX_USB_CMDLINE];
5004 int usb_devices_index;
5005 #ifndef _WIN32
5006 int fds[2];
5007 #endif
5008 int tb_size;
5009 const char *pid_file = NULL;
5010 const char *incoming = NULL;
5011 #ifndef _WIN32
5012 int fd = 0;
5013 struct passwd *pwd = NULL;
5014 const char *chroot_dir = NULL;
5015 const char *run_as = NULL;
5016 #endif
5017 CPUState *env;
5018 int show_vnc_port = 0;
5019
5020 qemu_cache_utils_init(envp);
5021
5022 LIST_INIT (&vm_change_state_head);
5023 #ifndef _WIN32
5024 {
5025 struct sigaction act;
5026 sigfillset(&act.sa_mask);
5027 act.sa_flags = 0;
5028 act.sa_handler = SIG_IGN;
5029 sigaction(SIGPIPE, &act, NULL);
5030 }
5031 #else
5032 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
5033 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5034 QEMU to run on a single CPU */
5035 {
5036 HANDLE h;
5037 DWORD mask, smask;
5038 int i;
5039 h = GetCurrentProcess();
5040 if (GetProcessAffinityMask(h, &mask, &smask)) {
5041 for(i = 0; i < 32; i++) {
5042 if (mask & (1 << i))
5043 break;
5044 }
5045 if (i != 32) {
5046 mask = 1 << i;
5047 SetProcessAffinityMask(h, mask);
5048 }
5049 }
5050 }
5051 #endif
5052
5053 module_call_init(MODULE_INIT_MACHINE);
5054 machine = find_default_machine();
5055 cpu_model = NULL;
5056 initrd_filename = NULL;
5057 ram_size = 0;
5058 snapshot = 0;
5059 kernel_filename = NULL;
5060 kernel_cmdline = "";
5061 cyls = heads = secs = 0;
5062 translation = BIOS_ATA_TRANSLATION_AUTO;
5063 monitor_device = "vc:80Cx24C";
5064
5065 serial_devices[0] = "vc:80Cx24C";
5066 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5067 serial_devices[i] = NULL;
5068 serial_device_index = 0;
5069
5070 parallel_devices[0] = "vc:80Cx24C";
5071 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5072 parallel_devices[i] = NULL;
5073 parallel_device_index = 0;
5074
5075 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5076 virtio_consoles[i] = NULL;
5077 virtio_console_index = 0;
5078
5079 for (i = 0; i < MAX_NODES; i++) {
5080 node_mem[i] = 0;
5081 node_cpumask[i] = 0;
5082 }
5083
5084 usb_devices_index = 0;
5085
5086 nb_net_clients = 0;
5087 nb_bt_opts = 0;
5088 nb_drives = 0;
5089 nb_drives_opt = 0;
5090 nb_numa_nodes = 0;
5091 hda_index = -1;
5092
5093 nb_nics = 0;
5094
5095 tb_size = 0;
5096 autostart= 1;
5097
5098 register_watchdogs();
5099
5100 optind = 1;
5101 for(;;) {
5102 if (optind >= argc)
5103 break;
5104 r = argv[optind];
5105 if (r[0] != '-') {
5106 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5107 } else {
5108 const QEMUOption *popt;
5109
5110 optind++;
5111 /* Treat --foo the same as -foo. */
5112 if (r[1] == '-')
5113 r++;
5114 popt = qemu_options;
5115 for(;;) {
5116 if (!popt->name) {
5117 fprintf(stderr, "%s: invalid option -- '%s'\n",
5118 argv[0], r);
5119 exit(1);
5120 }
5121 if (!strcmp(popt->name, r + 1))
5122 break;
5123 popt++;
5124 }
5125 if (popt->flags & HAS_ARG) {
5126 if (optind >= argc) {
5127 fprintf(stderr, "%s: option '%s' requires an argument\n",
5128 argv[0], r);
5129 exit(1);
5130 }
5131 optarg = argv[optind++];
5132 } else {
5133 optarg = NULL;
5134 }
5135
5136 switch(popt->index) {
5137 case QEMU_OPTION_M:
5138 machine = find_machine(optarg);
5139 if (!machine) {
5140 QEMUMachine *m;
5141 printf("Supported machines are:\n");
5142 for(m = first_machine; m != NULL; m = m->next) {
5143 printf("%-10s %s%s\n",
5144 m->name, m->desc,
5145 m->is_default ? " (default)" : "");
5146 }
5147 exit(*optarg != '?');
5148 }
5149 break;
5150 case QEMU_OPTION_cpu:
5151 /* hw initialization will check this */
5152 if (*optarg == '?') {
5153 /* XXX: implement xxx_cpu_list for targets that still miss it */
5154 #if defined(cpu_list)
5155 cpu_list(stdout, &fprintf);
5156 #endif
5157 exit(0);
5158 } else {
5159 cpu_model = optarg;
5160 }
5161 break;
5162 case QEMU_OPTION_initrd:
5163 initrd_filename = optarg;
5164 break;
5165 case QEMU_OPTION_hda:
5166 if (cyls == 0)
5167 hda_index = drive_add(optarg, HD_ALIAS, 0);
5168 else
5169 hda_index = drive_add(optarg, HD_ALIAS
5170 ",cyls=%d,heads=%d,secs=%d%s",
5171 0, cyls, heads, secs,
5172 translation == BIOS_ATA_TRANSLATION_LBA ?
5173 ",trans=lba" :
5174 translation == BIOS_ATA_TRANSLATION_NONE ?
5175 ",trans=none" : "");
5176 break;
5177 case QEMU_OPTION_hdb:
5178 case QEMU_OPTION_hdc:
5179 case QEMU_OPTION_hdd:
5180 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5181 break;
5182 case QEMU_OPTION_drive:
5183 drive_add(NULL, "%s", optarg);
5184 break;
5185 case QEMU_OPTION_mtdblock:
5186 drive_add(optarg, MTD_ALIAS);
5187 break;
5188 case QEMU_OPTION_sd:
5189 drive_add(optarg, SD_ALIAS);
5190 break;
5191 case QEMU_OPTION_pflash:
5192 drive_add(optarg, PFLASH_ALIAS);
5193 break;
5194 case QEMU_OPTION_snapshot:
5195 snapshot = 1;
5196 break;
5197 case QEMU_OPTION_hdachs:
5198 {
5199 const char *p;
5200 p = optarg;
5201 cyls = strtol(p, (char **)&p, 0);
5202 if (cyls < 1 || cyls > 16383)
5203 goto chs_fail;
5204 if (*p != ',')
5205 goto chs_fail;
5206 p++;
5207 heads = strtol(p, (char **)&p, 0);
5208 if (heads < 1 || heads > 16)
5209 goto chs_fail;
5210 if (*p != ',')
5211 goto chs_fail;
5212 p++;
5213 secs = strtol(p, (char **)&p, 0);
5214 if (secs < 1 || secs > 63)
5215 goto chs_fail;
5216 if (*p == ',') {
5217 p++;
5218 if (!strcmp(p, "none"))
5219 translation = BIOS_ATA_TRANSLATION_NONE;
5220 else if (!strcmp(p, "lba"))
5221 translation = BIOS_ATA_TRANSLATION_LBA;
5222 else if (!strcmp(p, "auto"))
5223 translation = BIOS_ATA_TRANSLATION_AUTO;
5224 else
5225 goto chs_fail;
5226 } else if (*p != '\0') {
5227 chs_fail:
5228 fprintf(stderr, "qemu: invalid physical CHS format\n");
5229 exit(1);
5230 }
5231 if (hda_index != -1)
5232 snprintf(drives_opt[hda_index].opt,
5233 sizeof(drives_opt[hda_index].opt),
5234 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5235 0, cyls, heads, secs,
5236 translation == BIOS_ATA_TRANSLATION_LBA ?
5237 ",trans=lba" :
5238 translation == BIOS_ATA_TRANSLATION_NONE ?
5239 ",trans=none" : "");
5240 }
5241 break;
5242 case QEMU_OPTION_numa:
5243 if (nb_numa_nodes >= MAX_NODES) {
5244 fprintf(stderr, "qemu: too many NUMA nodes\n");
5245 exit(1);
5246 }
5247 numa_add(optarg);
5248 break;
5249 case QEMU_OPTION_nographic:
5250 display_type = DT_NOGRAPHIC;
5251 break;
5252 #ifdef CONFIG_CURSES
5253 case QEMU_OPTION_curses:
5254 display_type = DT_CURSES;
5255 break;
5256 #endif
5257 case QEMU_OPTION_portrait:
5258 graphic_rotate = 1;
5259 break;
5260 case QEMU_OPTION_kernel:
5261 kernel_filename = optarg;
5262 break;
5263 case QEMU_OPTION_append:
5264 kernel_cmdline = optarg;
5265 break;
5266 case QEMU_OPTION_cdrom:
5267 drive_add(optarg, CDROM_ALIAS);
5268 break;
5269 case QEMU_OPTION_boot:
5270 boot_devices = optarg;
5271 /* We just do some generic consistency checks */
5272 {
5273 /* Could easily be extended to 64 devices if needed */
5274 const char *p;
5275
5276 boot_devices_bitmap = 0;
5277 for (p = boot_devices; *p != '\0'; p++) {
5278 /* Allowed boot devices are:
5279 * a b : floppy disk drives
5280 * c ... f : IDE disk drives
5281 * g ... m : machine implementation dependant drives
5282 * n ... p : network devices
5283 * It's up to each machine implementation to check
5284 * if the given boot devices match the actual hardware
5285 * implementation and firmware features.
5286 */
5287 if (*p < 'a' || *p > 'q') {
5288 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5289 exit(1);
5290 }
5291 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5292 fprintf(stderr,
5293 "Boot device '%c' was given twice\n",*p);
5294 exit(1);
5295 }
5296 boot_devices_bitmap |= 1 << (*p - 'a');
5297 }
5298 }
5299 break;
5300 case QEMU_OPTION_fda:
5301 case QEMU_OPTION_fdb:
5302 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5303 break;
5304 #ifdef TARGET_I386
5305 case QEMU_OPTION_no_fd_bootchk:
5306 fd_bootchk = 0;
5307 break;
5308 #endif
5309 case QEMU_OPTION_net:
5310 if (nb_net_clients >= MAX_NET_CLIENTS) {
5311 fprintf(stderr, "qemu: too many network clients\n");
5312 exit(1);
5313 }
5314 net_clients[nb_net_clients] = optarg;
5315 nb_net_clients++;
5316 break;
5317 #ifdef CONFIG_SLIRP
5318 case QEMU_OPTION_tftp:
5319 legacy_tftp_prefix = optarg;
5320 break;
5321 case QEMU_OPTION_bootp:
5322 legacy_bootp_filename = optarg;
5323 break;
5324 #ifndef _WIN32
5325 case QEMU_OPTION_smb:
5326 net_slirp_smb(optarg);
5327 break;
5328 #endif
5329 case QEMU_OPTION_redir:
5330 net_slirp_redir(optarg);
5331 break;
5332 #endif
5333 case QEMU_OPTION_bt:
5334 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5335 fprintf(stderr, "qemu: too many bluetooth options\n");
5336 exit(1);
5337 }
5338 bt_opts[nb_bt_opts++] = optarg;
5339 break;
5340 #ifdef HAS_AUDIO
5341 case QEMU_OPTION_audio_help:
5342 AUD_help ();
5343 exit (0);
5344 break;
5345 case QEMU_OPTION_soundhw:
5346 select_soundhw (optarg);
5347 break;
5348 #endif
5349 case QEMU_OPTION_h:
5350 help(0);
5351 break;
5352 case QEMU_OPTION_version:
5353 version();
5354 exit(0);
5355 break;
5356 case QEMU_OPTION_m: {
5357 uint64_t value;
5358 char *ptr;
5359
5360 value = strtoul(optarg, &ptr, 10);
5361 switch (*ptr) {
5362 case 0: case 'M': case 'm':
5363 value <<= 20;
5364 break;
5365 case 'G': case 'g':
5366 value <<= 30;
5367 break;
5368 default:
5369 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5370 exit(1);
5371 }
5372
5373 /* On 32-bit hosts, QEMU is limited by virtual address space */
5374 if (value > (2047 << 20)
5375 #ifndef CONFIG_KQEMU
5376 && HOST_LONG_BITS == 32
5377 #endif
5378 ) {
5379 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5380 exit(1);
5381 }
5382 if (value != (uint64_t)(ram_addr_t)value) {
5383 fprintf(stderr, "qemu: ram size too large\n");
5384 exit(1);
5385 }
5386 ram_size = value;
5387 break;
5388 }
5389 case QEMU_OPTION_d:
5390 {
5391 int mask;
5392 const CPULogItem *item;
5393
5394 mask = cpu_str_to_log_mask(optarg);
5395 if (!mask) {
5396 printf("Log items (comma separated):\n");
5397 for(item = cpu_log_items; item->mask != 0; item++) {
5398 printf("%-10s %s\n", item->name, item->help);
5399 }
5400 exit(1);
5401 }
5402 cpu_set_log(mask);
5403 }
5404 break;
5405 case QEMU_OPTION_s:
5406 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5407 break;
5408 case QEMU_OPTION_gdb:
5409 gdbstub_dev = optarg;
5410 break;
5411 case QEMU_OPTION_L:
5412 data_dir = optarg;
5413 break;
5414 case QEMU_OPTION_bios:
5415 bios_name = optarg;
5416 break;
5417 case QEMU_OPTION_singlestep:
5418 singlestep = 1;
5419 break;
5420 case QEMU_OPTION_S:
5421 autostart = 0;
5422 break;
5423 #ifndef _WIN32
5424 case QEMU_OPTION_k:
5425 keyboard_layout = optarg;
5426 break;
5427 #endif
5428 case QEMU_OPTION_localtime:
5429 rtc_utc = 0;
5430 break;
5431 case QEMU_OPTION_vga:
5432 select_vgahw (optarg);
5433 break;
5434 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5435 case QEMU_OPTION_g:
5436 {
5437 const char *p;
5438 int w, h, depth;
5439 p = optarg;
5440 w = strtol(p, (char **)&p, 10);
5441 if (w <= 0) {
5442 graphic_error:
5443 fprintf(stderr, "qemu: invalid resolution or depth\n");
5444 exit(1);
5445 }
5446 if (*p != 'x')
5447 goto graphic_error;
5448 p++;
5449 h = strtol(p, (char **)&p, 10);
5450 if (h <= 0)
5451 goto graphic_error;
5452 if (*p == 'x') {
5453 p++;
5454 depth = strtol(p, (char **)&p, 10);
5455 if (depth != 8 && depth != 15 && depth != 16 &&
5456 depth != 24 && depth != 32)
5457 goto graphic_error;
5458 } else if (*p == '\0') {
5459 depth = graphic_depth;
5460 } else {
5461 goto graphic_error;
5462 }
5463
5464 graphic_width = w;
5465 graphic_height = h;
5466 graphic_depth = depth;
5467 }
5468 break;
5469 #endif
5470 case QEMU_OPTION_echr:
5471 {
5472 char *r;
5473 term_escape_char = strtol(optarg, &r, 0);
5474 if (r == optarg)
5475 printf("Bad argument to echr\n");
5476 break;
5477 }
5478 case QEMU_OPTION_monitor:
5479 monitor_device = optarg;
5480 break;
5481 case QEMU_OPTION_serial:
5482 if (serial_device_index >= MAX_SERIAL_PORTS) {
5483 fprintf(stderr, "qemu: too many serial ports\n");
5484 exit(1);
5485 }
5486 serial_devices[serial_device_index] = optarg;
5487 serial_device_index++;
5488 break;
5489 case QEMU_OPTION_watchdog:
5490 i = select_watchdog(optarg);
5491 if (i > 0)
5492 exit (i == 1 ? 1 : 0);
5493 break;
5494 case QEMU_OPTION_watchdog_action:
5495 if (select_watchdog_action(optarg) == -1) {
5496 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5497 exit(1);
5498 }
5499 break;
5500 case QEMU_OPTION_virtiocon:
5501 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5502 fprintf(stderr, "qemu: too many virtio consoles\n");
5503 exit(1);
5504 }
5505 virtio_consoles[virtio_console_index] = optarg;
5506 virtio_console_index++;
5507 break;
5508 case QEMU_OPTION_parallel:
5509 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5510 fprintf(stderr, "qemu: too many parallel ports\n");
5511 exit(1);
5512 }
5513 parallel_devices[parallel_device_index] = optarg;
5514 parallel_device_index++;
5515 break;
5516 case QEMU_OPTION_loadvm:
5517 loadvm = optarg;
5518 break;
5519 case QEMU_OPTION_full_screen:
5520 full_screen = 1;
5521 break;
5522 #ifdef CONFIG_SDL
5523 case QEMU_OPTION_no_frame:
5524 no_frame = 1;
5525 break;
5526 case QEMU_OPTION_alt_grab:
5527 alt_grab = 1;
5528 break;
5529 case QEMU_OPTION_no_quit:
5530 no_quit = 1;
5531 break;
5532 case QEMU_OPTION_sdl:
5533 display_type = DT_SDL;
5534 break;
5535 #endif
5536 case QEMU_OPTION_pidfile:
5537 pid_file = optarg;
5538 break;
5539 #ifdef TARGET_I386
5540 case QEMU_OPTION_win2k_hack:
5541 win2k_install_hack = 1;
5542 break;
5543 case QEMU_OPTION_rtc_td_hack:
5544 rtc_td_hack = 1;
5545 break;
5546 case QEMU_OPTION_acpitable:
5547 if(acpi_table_add(optarg) < 0) {
5548 fprintf(stderr, "Wrong acpi table provided\n");
5549 exit(1);
5550 }
5551 break;
5552 case QEMU_OPTION_smbios:
5553 if(smbios_entry_add(optarg) < 0) {
5554 fprintf(stderr, "Wrong smbios provided\n");
5555 exit(1);
5556 }
5557 break;
5558 #endif
5559 #ifdef CONFIG_KQEMU
5560 case QEMU_OPTION_no_kqemu:
5561 kqemu_allowed = 0;
5562 break;
5563 case QEMU_OPTION_kernel_kqemu:
5564 kqemu_allowed = 2;
5565 break;
5566 #endif
5567 #ifdef CONFIG_KVM
5568 case QEMU_OPTION_enable_kvm:
5569 kvm_allowed = 1;
5570 #ifdef CONFIG_KQEMU
5571 kqemu_allowed = 0;
5572 #endif
5573 break;
5574 #endif
5575 case QEMU_OPTION_usb:
5576 usb_enabled = 1;
5577 break;
5578 case QEMU_OPTION_usbdevice:
5579 usb_enabled = 1;
5580 if (usb_devices_index >= MAX_USB_CMDLINE) {
5581 fprintf(stderr, "Too many USB devices\n");
5582 exit(1);
5583 }
5584 usb_devices[usb_devices_index] = optarg;
5585 usb_devices_index++;
5586 break;
5587 case QEMU_OPTION_smp:
5588 smp_cpus = atoi(optarg);
5589 if (smp_cpus < 1) {
5590 fprintf(stderr, "Invalid number of CPUs\n");
5591 exit(1);
5592 }
5593 break;
5594 case QEMU_OPTION_vnc:
5595 display_type = DT_VNC;
5596 vnc_display = optarg;
5597 break;
5598 #ifdef TARGET_I386
5599 case QEMU_OPTION_no_acpi:
5600 acpi_enabled = 0;
5601 break;
5602 case QEMU_OPTION_no_hpet:
5603 no_hpet = 1;
5604 break;
5605 case QEMU_OPTION_balloon:
5606 if (balloon_parse(optarg) < 0) {
5607 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5608 exit(1);
5609 }
5610 break;
5611 #endif
5612 case QEMU_OPTION_no_reboot:
5613 no_reboot = 1;
5614 break;
5615 case QEMU_OPTION_no_shutdown:
5616 no_shutdown = 1;
5617 break;
5618 case QEMU_OPTION_show_cursor:
5619 cursor_hide = 0;
5620 break;
5621 case QEMU_OPTION_uuid:
5622 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5623 fprintf(stderr, "Fail to parse UUID string."
5624 " Wrong format.\n");
5625 exit(1);
5626 }
5627 break;
5628 #ifndef _WIN32
5629 case QEMU_OPTION_daemonize:
5630 daemonize = 1;
5631 break;
5632 #endif
5633 case QEMU_OPTION_option_rom:
5634 if (nb_option_roms >= MAX_OPTION_ROMS) {
5635 fprintf(stderr, "Too many option ROMs\n");
5636 exit(1);
5637 }
5638 option_rom[nb_option_roms] = optarg;
5639 nb_option_roms++;
5640 break;
5641 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5642 case QEMU_OPTION_semihosting:
5643 semihosting_enabled = 1;
5644 break;
5645 #endif
5646 case QEMU_OPTION_name:
5647 qemu_name = optarg;
5648 break;
5649 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5650 case QEMU_OPTION_prom_env:
5651 if (nb_prom_envs >= MAX_PROM_ENVS) {
5652 fprintf(stderr, "Too many prom variables\n");
5653 exit(1);
5654 }
5655 prom_envs[nb_prom_envs] = optarg;
5656 nb_prom_envs++;
5657 break;
5658 #endif
5659 #ifdef TARGET_ARM
5660 case QEMU_OPTION_old_param:
5661 old_param = 1;
5662 break;
5663 #endif
5664 case QEMU_OPTION_clock:
5665 configure_alarms(optarg);
5666 break;
5667 case QEMU_OPTION_startdate:
5668 {
5669 struct tm tm;
5670 time_t rtc_start_date;
5671 if (!strcmp(optarg, "now")) {
5672 rtc_date_offset = -1;
5673 } else {
5674 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5675 &tm.tm_year,
5676 &tm.tm_mon,
5677 &tm.tm_mday,
5678 &tm.tm_hour,
5679 &tm.tm_min,
5680 &tm.tm_sec) == 6) {
5681 /* OK */
5682 } else if (sscanf(optarg, "%d-%d-%d",
5683 &tm.tm_year,
5684 &tm.tm_mon,
5685 &tm.tm_mday) == 3) {
5686 tm.tm_hour = 0;
5687 tm.tm_min = 0;
5688 tm.tm_sec = 0;
5689 } else {
5690 goto date_fail;
5691 }
5692 tm.tm_year -= 1900;
5693 tm.tm_mon--;
5694 rtc_start_date = mktimegm(&tm);
5695 if (rtc_start_date == -1) {
5696 date_fail:
5697 fprintf(stderr, "Invalid date format. Valid format are:\n"
5698 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5699 exit(1);
5700 }
5701 rtc_date_offset = time(NULL) - rtc_start_date;
5702 }
5703 }
5704 break;
5705 case QEMU_OPTION_tb_size:
5706 tb_size = strtol(optarg, NULL, 0);
5707 if (tb_size < 0)
5708 tb_size = 0;
5709 break;
5710 case QEMU_OPTION_icount:
5711 use_icount = 1;
5712 if (strcmp(optarg, "auto") == 0) {
5713 icount_time_shift = -1;
5714 } else {
5715 icount_time_shift = strtol(optarg, NULL, 0);
5716 }
5717 break;
5718 case QEMU_OPTION_incoming:
5719 incoming = optarg;
5720 break;
5721 #ifndef _WIN32
5722 case QEMU_OPTION_chroot:
5723 chroot_dir = optarg;
5724 break;
5725 case QEMU_OPTION_runas:
5726 run_as = optarg;
5727 break;
5728 #endif
5729 #ifdef CONFIG_XEN
5730 case QEMU_OPTION_xen_domid:
5731 xen_domid = atoi(optarg);
5732 break;
5733 case QEMU_OPTION_xen_create:
5734 xen_mode = XEN_CREATE;
5735 break;
5736 case QEMU_OPTION_xen_attach:
5737 xen_mode = XEN_ATTACH;
5738 break;
5739 #endif
5740 }
5741 }
5742 }
5743
5744 /* If no data_dir is specified then try to find it relative to the
5745 executable path. */
5746 if (!data_dir) {
5747 data_dir = find_datadir(argv[0]);
5748 }
5749 /* If all else fails use the install patch specified when building. */
5750 if (!data_dir) {
5751 data_dir = CONFIG_QEMU_SHAREDIR;
5752 }
5753
5754 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5755 if (kvm_allowed && kqemu_allowed) {
5756 fprintf(stderr,
5757 "You can not enable both KVM and kqemu at the same time\n");
5758 exit(1);
5759 }
5760 #endif
5761
5762 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5763 if (smp_cpus > machine->max_cpus) {
5764 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5765 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5766 machine->max_cpus);
5767 exit(1);
5768 }
5769
5770 if (display_type == DT_NOGRAPHIC) {
5771 if (serial_device_index == 0)
5772 serial_devices[0] = "stdio";
5773 if (parallel_device_index == 0)
5774 parallel_devices[0] = "null";
5775 if (strncmp(monitor_device, "vc", 2) == 0)
5776 monitor_device = "stdio";
5777 }
5778
5779 #ifndef _WIN32
5780 if (daemonize) {
5781 pid_t pid;
5782
5783 if (pipe(fds) == -1)
5784 exit(1);
5785
5786 pid = fork();
5787 if (pid > 0) {
5788 uint8_t status;
5789 ssize_t len;
5790
5791 close(fds[1]);
5792
5793 again:
5794 len = read(fds[0], &status, 1);
5795 if (len == -1 && (errno == EINTR))
5796 goto again;
5797
5798 if (len != 1)
5799 exit(1);
5800 else if (status == 1) {
5801 fprintf(stderr, "Could not acquire pidfile\n");
5802 exit(1);
5803 } else
5804 exit(0);
5805 } else if (pid < 0)
5806 exit(1);
5807
5808 setsid();
5809
5810 pid = fork();
5811 if (pid > 0)
5812 exit(0);
5813 else if (pid < 0)
5814 exit(1);
5815
5816 umask(027);
5817
5818 signal(SIGTSTP, SIG_IGN);
5819 signal(SIGTTOU, SIG_IGN);
5820 signal(SIGTTIN, SIG_IGN);
5821 }
5822
5823 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5824 if (daemonize) {
5825 uint8_t status = 1;
5826 write(fds[1], &status, 1);
5827 } else
5828 fprintf(stderr, "Could not acquire pid file\n");
5829 exit(1);
5830 }
5831 #endif
5832
5833 #ifdef CONFIG_KQEMU
5834 if (smp_cpus > 1)
5835 kqemu_allowed = 0;
5836 #endif
5837 if (qemu_init_main_loop()) {
5838 fprintf(stderr, "qemu_init_main_loop failed\n");
5839 exit(1);
5840 }
5841 linux_boot = (kernel_filename != NULL);
5842
5843 if (!linux_boot && *kernel_cmdline != '\0') {
5844 fprintf(stderr, "-append only allowed with -kernel option\n");
5845 exit(1);
5846 }
5847
5848 if (!linux_boot && initrd_filename != NULL) {
5849 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5850 exit(1);
5851 }
5852
5853 /* boot to floppy or the default cd if no hard disk defined yet */
5854 if (!boot_devices[0]) {
5855 boot_devices = "cad";
5856 }
5857 setvbuf(stdout, NULL, _IOLBF, 0);
5858
5859 init_timers();
5860 if (init_timer_alarm() < 0) {
5861 fprintf(stderr, "could not initialize alarm timer\n");
5862 exit(1);
5863 }
5864 if (use_icount && icount_time_shift < 0) {
5865 use_icount = 2;
5866 /* 125MIPS seems a reasonable initial guess at the guest speed.
5867 It will be corrected fairly quickly anyway. */
5868 icount_time_shift = 3;
5869 init_icount_adjust();
5870 }
5871
5872 #ifdef _WIN32
5873 socket_init();
5874 #endif
5875
5876 /* init network clients */
5877 if (nb_net_clients == 0) {
5878 /* if no clients, we use a default config */
5879 net_clients[nb_net_clients++] = "nic";
5880 #ifdef CONFIG_SLIRP
5881 net_clients[nb_net_clients++] = "user";
5882 #endif
5883 }
5884
5885 for(i = 0;i < nb_net_clients; i++) {
5886 if (net_client_parse(net_clients[i]) < 0)
5887 exit(1);
5888 }
5889
5890 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5891 net_set_boot_mask(net_boot);
5892
5893 net_client_check();
5894
5895 /* init the bluetooth world */
5896 for (i = 0; i < nb_bt_opts; i++)
5897 if (bt_parse(bt_opts[i]))
5898 exit(1);
5899
5900 /* init the memory */
5901 if (ram_size == 0)
5902 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5903
5904 #ifdef CONFIG_KQEMU
5905 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5906 guest ram allocation. It needs to go away. */
5907 if (kqemu_allowed) {
5908 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5909 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5910 if (!kqemu_phys_ram_base) {
5911 fprintf(stderr, "Could not allocate physical memory\n");
5912 exit(1);
5913 }
5914 }
5915 #endif
5916
5917 /* init the dynamic translator */
5918 cpu_exec_init_all(tb_size * 1024 * 1024);
5919
5920 bdrv_init();
5921
5922 /* we always create the cdrom drive, even if no disk is there */
5923
5924 if (nb_drives_opt < MAX_DRIVES)
5925 drive_add(NULL, CDROM_ALIAS);
5926
5927 /* we always create at least one floppy */
5928
5929 if (nb_drives_opt < MAX_DRIVES)
5930 drive_add(NULL, FD_ALIAS, 0);
5931
5932 /* we always create one sd slot, even if no card is in it */
5933
5934 if (nb_drives_opt < MAX_DRIVES)
5935 drive_add(NULL, SD_ALIAS);
5936
5937 /* open the virtual block devices */
5938
5939 for(i = 0; i < nb_drives_opt; i++)
5940 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5941 exit(1);
5942
5943 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5944 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5945
5946 #ifndef _WIN32
5947 /* must be after terminal init, SDL library changes signal handlers */
5948 sighandler_setup();
5949 #endif
5950
5951 /* Maintain compatibility with multiple stdio monitors */
5952 if (!strcmp(monitor_device,"stdio")) {
5953 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5954 const char *devname = serial_devices[i];
5955 if (devname && !strcmp(devname,"mon:stdio")) {
5956 monitor_device = NULL;
5957 break;
5958 } else if (devname && !strcmp(devname,"stdio")) {
5959 monitor_device = NULL;
5960 serial_devices[i] = "mon:stdio";
5961 break;
5962 }
5963 }
5964 }
5965
5966 if (nb_numa_nodes > 0) {
5967 int i;
5968
5969 if (nb_numa_nodes > smp_cpus) {
5970 nb_numa_nodes = smp_cpus;
5971 }
5972
5973 /* If no memory size if given for any node, assume the default case
5974 * and distribute the available memory equally across all nodes
5975 */
5976 for (i = 0; i < nb_numa_nodes; i++) {
5977 if (node_mem[i] != 0)
5978 break;
5979 }
5980 if (i == nb_numa_nodes) {
5981 uint64_t usedmem = 0;
5982
5983 /* On Linux, the each node's border has to be 8MB aligned,
5984 * the final node gets the rest.
5985 */
5986 for (i = 0; i < nb_numa_nodes - 1; i++) {
5987 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5988 usedmem += node_mem[i];
5989 }
5990 node_mem[i] = ram_size - usedmem;
5991 }
5992
5993 for (i = 0; i < nb_numa_nodes; i++) {
5994 if (node_cpumask[i] != 0)
5995 break;
5996 }
5997 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5998 * must cope with this anyway, because there are BIOSes out there in
5999 * real machines which also use this scheme.
6000 */
6001 if (i == nb_numa_nodes) {
6002 for (i = 0; i < smp_cpus; i++) {
6003 node_cpumask[i % nb_numa_nodes] |= 1 << i;
6004 }
6005 }
6006 }
6007
6008 if (kvm_enabled()) {
6009 int ret;
6010
6011 ret = kvm_init(smp_cpus);
6012 if (ret < 0) {
6013 fprintf(stderr, "failed to initialize KVM\n");
6014 exit(1);
6015 }
6016 }
6017
6018 if (monitor_device) {
6019 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6020 if (!monitor_hd) {
6021 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6022 exit(1);
6023 }
6024 }
6025
6026 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6027 const char *devname = serial_devices[i];
6028 if (devname && strcmp(devname, "none")) {
6029 char label[32];
6030 snprintf(label, sizeof(label), "serial%d", i);
6031 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6032 if (!serial_hds[i]) {
6033 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6034 devname);
6035 exit(1);
6036 }
6037 }
6038 }
6039
6040 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6041 const char *devname = parallel_devices[i];
6042 if (devname && strcmp(devname, "none")) {
6043 char label[32];
6044 snprintf(label, sizeof(label), "parallel%d", i);
6045 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6046 if (!parallel_hds[i]) {
6047 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6048 devname);
6049 exit(1);
6050 }
6051 }
6052 }
6053
6054 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6055 const char *devname = virtio_consoles[i];
6056 if (devname && strcmp(devname, "none")) {
6057 char label[32];
6058 snprintf(label, sizeof(label), "virtcon%d", i);
6059 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6060 if (!virtcon_hds[i]) {
6061 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6062 devname);
6063 exit(1);
6064 }
6065 }
6066 }
6067
6068 module_call_init(MODULE_INIT_DEVICE);
6069
6070 machine->init(ram_size, boot_devices,
6071 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6072
6073
6074 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6075 for (i = 0; i < nb_numa_nodes; i++) {
6076 if (node_cpumask[i] & (1 << env->cpu_index)) {
6077 env->numa_node = i;
6078 }
6079 }
6080 }
6081
6082 current_machine = machine;
6083
6084 /* init USB devices */
6085 if (usb_enabled) {
6086 for(i = 0; i < usb_devices_index; i++) {
6087 if (usb_device_add(usb_devices[i], 0) < 0) {
6088 fprintf(stderr, "Warning: could not add USB device %s\n",
6089 usb_devices[i]);
6090 }
6091 }
6092 }
6093
6094 if (!display_state)
6095 dumb_display_init();
6096 /* just use the first displaystate for the moment */
6097 ds = display_state;
6098
6099 if (display_type == DT_DEFAULT) {
6100 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6101 display_type = DT_SDL;
6102 #else
6103 display_type = DT_VNC;
6104 vnc_display = "localhost:0,to=99";
6105 show_vnc_port = 1;
6106 #endif
6107 }
6108
6109
6110 switch (display_type) {
6111 case DT_NOGRAPHIC:
6112 break;
6113 #if defined(CONFIG_CURSES)
6114 case DT_CURSES:
6115 curses_display_init(ds, full_screen);
6116 break;
6117 #endif
6118 #if defined(CONFIG_SDL)
6119 case DT_SDL:
6120 sdl_display_init(ds, full_screen, no_frame);
6121 break;
6122 #elif defined(CONFIG_COCOA)
6123 case DT_SDL:
6124 cocoa_display_init(ds, full_screen);
6125 break;
6126 #endif
6127 case DT_VNC:
6128 vnc_display_init(ds);
6129 if (vnc_display_open(ds, vnc_display) < 0)
6130 exit(1);
6131
6132 if (show_vnc_port) {
6133 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6134 }
6135 break;
6136 default:
6137 break;
6138 }
6139 dpy_resize(ds);
6140
6141 dcl = ds->listeners;
6142 while (dcl != NULL) {
6143 if (dcl->dpy_refresh != NULL) {
6144 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6145 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6146 }
6147 dcl = dcl->next;
6148 }
6149
6150 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6151 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6152 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6153 }
6154
6155 text_consoles_set_display(display_state);
6156 qemu_chr_initial_reset();
6157
6158 if (monitor_device && monitor_hd)
6159 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6160
6161 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6162 const char *devname = serial_devices[i];
6163 if (devname && strcmp(devname, "none")) {
6164 if (strstart(devname, "vc", 0))
6165 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6166 }
6167 }
6168
6169 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6170 const char *devname = parallel_devices[i];
6171 if (devname && strcmp(devname, "none")) {
6172 if (strstart(devname, "vc", 0))
6173 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6174 }
6175 }
6176
6177 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6178 const char *devname = virtio_consoles[i];
6179 if (virtcon_hds[i] && devname) {
6180 if (strstart(devname, "vc", 0))
6181 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6182 }
6183 }
6184
6185 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6186 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6187 gdbstub_dev);
6188 exit(1);
6189 }
6190
6191 if (loadvm)
6192 do_loadvm(cur_mon, loadvm);
6193
6194 if (incoming) {
6195 autostart = 0; /* fixme how to deal with -daemonize */
6196 qemu_start_incoming_migration(incoming);
6197 }
6198
6199 if (autostart)
6200 vm_start();
6201
6202 #ifndef _WIN32
6203 if (daemonize) {
6204 uint8_t status = 0;
6205 ssize_t len;
6206
6207 again1:
6208 len = write(fds[1], &status, 1);
6209 if (len == -1 && (errno == EINTR))
6210 goto again1;
6211
6212 if (len != 1)
6213 exit(1);
6214
6215 chdir("/");
6216 TFR(fd = open("/dev/null", O_RDWR));
6217 if (fd == -1)
6218 exit(1);
6219 }
6220
6221 if (run_as) {
6222 pwd = getpwnam(run_as);
6223 if (!pwd) {
6224 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6225 exit(1);
6226 }
6227 }
6228
6229 if (chroot_dir) {
6230 if (chroot(chroot_dir) < 0) {
6231 fprintf(stderr, "chroot failed\n");
6232 exit(1);
6233 }
6234 chdir("/");
6235 }
6236
6237 if (run_as) {
6238 if (setgid(pwd->pw_gid) < 0) {
6239 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6240 exit(1);
6241 }
6242 if (setuid(pwd->pw_uid) < 0) {
6243 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6244 exit(1);
6245 }
6246 if (setuid(0) != -1) {
6247 fprintf(stderr, "Dropping privileges failed\n");
6248 exit(1);
6249 }
6250 }
6251
6252 if (daemonize) {
6253 dup2(fd, 0);
6254 dup2(fd, 1);
6255 dup2(fd, 2);
6256
6257 close(fd);
6258 }
6259 #endif
6260
6261 main_loop();
6262 quit_timers();
6263 net_cleanup();
6264
6265 return 0;
6266 }