]> git.proxmox.com Git - qemu.git/blob - vl.c
QEMU set irq0override in fw_cfg
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
113
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 return qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 static const char *data_dir;
177 const char *bios_name = NULL;
178 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
179 to store the VM snapshots */
180 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
181 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
182 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183 static DisplayState *display_state;
184 DisplayType display_type = DT_DEFAULT;
185 const char* keyboard_layout = NULL;
186 int64_t ticks_per_sec;
187 ram_addr_t ram_size;
188 int nb_nics;
189 NICInfo nd_table[MAX_NICS];
190 int vm_running;
191 int autostart;
192 static int rtc_utc = 1;
193 static int rtc_date_offset = -1; /* -1 means no change */
194 int vga_interface_type = VGA_CIRRUS;
195 #ifdef TARGET_SPARC
196 int graphic_width = 1024;
197 int graphic_height = 768;
198 int graphic_depth = 8;
199 #else
200 int graphic_width = 800;
201 int graphic_height = 600;
202 int graphic_depth = 15;
203 #endif
204 static int full_screen = 0;
205 #ifdef CONFIG_SDL
206 static int no_frame = 0;
207 #endif
208 int no_quit = 0;
209 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
210 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
211 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
212 #ifdef TARGET_I386
213 int win2k_install_hack = 0;
214 int rtc_td_hack = 0;
215 #endif
216 int usb_enabled = 0;
217 int singlestep = 0;
218 int smp_cpus = 1;
219 int max_cpus = 0;
220 const char *vnc_display;
221 int acpi_enabled = 1;
222 int no_hpet = 0;
223 int virtio_balloon = 1;
224 const char *virtio_balloon_devaddr;
225 int fd_bootchk = 1;
226 int no_reboot = 0;
227 int no_shutdown = 0;
228 int cursor_hide = 1;
229 int graphic_rotate = 0;
230 uint8_t irq0override = 1;
231 #ifndef _WIN32
232 int daemonize = 0;
233 #endif
234 WatchdogTimerModel *watchdog = NULL;
235 int watchdog_action = WDT_RESET;
236 const char *option_rom[MAX_OPTION_ROMS];
237 int nb_option_roms;
238 int semihosting_enabled = 0;
239 #ifdef TARGET_ARM
240 int old_param = 0;
241 #endif
242 const char *qemu_name;
243 int alt_grab = 0;
244 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
245 unsigned int nb_prom_envs = 0;
246 const char *prom_envs[MAX_PROM_ENVS];
247 #endif
248 int boot_menu;
249
250 int nb_numa_nodes;
251 uint64_t node_mem[MAX_NODES];
252 uint64_t node_cpumask[MAX_NODES];
253
254 static CPUState *cur_cpu;
255 static CPUState *next_cpu;
256 static int timer_alarm_pending = 1;
257 /* Conversion factor from emulated instructions to virtual clock ticks. */
258 static int icount_time_shift;
259 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
260 #define MAX_ICOUNT_SHIFT 10
261 /* Compensate for varying guest execution speed. */
262 static int64_t qemu_icount_bias;
263 static QEMUTimer *icount_rt_timer;
264 static QEMUTimer *icount_vm_timer;
265 static QEMUTimer *nographic_timer;
266
267 uint8_t qemu_uuid[16];
268
269 static QEMUBootSetHandler *boot_set_handler;
270 static void *boot_set_opaque;
271
272 /***********************************************************/
273 /* x86 ISA bus support */
274
275 target_phys_addr_t isa_mem_base = 0;
276 PicState2 *isa_pic;
277
278 /***********************************************************/
279 void hw_error(const char *fmt, ...)
280 {
281 va_list ap;
282 CPUState *env;
283
284 va_start(ap, fmt);
285 fprintf(stderr, "qemu: hardware error: ");
286 vfprintf(stderr, fmt, ap);
287 fprintf(stderr, "\n");
288 for(env = first_cpu; env != NULL; env = env->next_cpu) {
289 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
290 #ifdef TARGET_I386
291 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
292 #else
293 cpu_dump_state(env, stderr, fprintf, 0);
294 #endif
295 }
296 va_end(ap);
297 abort();
298 }
299
300 static void set_proc_name(const char *s)
301 {
302 #if defined(__linux__) && defined(PR_SET_NAME)
303 char name[16];
304 if (!s)
305 return;
306 name[sizeof(name) - 1] = 0;
307 strncpy(name, s, sizeof(name));
308 /* Could rewrite argv[0] too, but that's a bit more complicated.
309 This simple way is enough for `top'. */
310 prctl(PR_SET_NAME, name);
311 #endif
312 }
313
314 /***************/
315 /* ballooning */
316
317 static QEMUBalloonEvent *qemu_balloon_event;
318 void *qemu_balloon_event_opaque;
319
320 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
321 {
322 qemu_balloon_event = func;
323 qemu_balloon_event_opaque = opaque;
324 }
325
326 void qemu_balloon(ram_addr_t target)
327 {
328 if (qemu_balloon_event)
329 qemu_balloon_event(qemu_balloon_event_opaque, target);
330 }
331
332 ram_addr_t qemu_balloon_status(void)
333 {
334 if (qemu_balloon_event)
335 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
336 return 0;
337 }
338
339 /***********************************************************/
340 /* keyboard/mouse */
341
342 static QEMUPutKBDEvent *qemu_put_kbd_event;
343 static void *qemu_put_kbd_event_opaque;
344 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
345 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
346
347 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
348 {
349 qemu_put_kbd_event_opaque = opaque;
350 qemu_put_kbd_event = func;
351 }
352
353 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
354 void *opaque, int absolute,
355 const char *name)
356 {
357 QEMUPutMouseEntry *s, *cursor;
358
359 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
360
361 s->qemu_put_mouse_event = func;
362 s->qemu_put_mouse_event_opaque = opaque;
363 s->qemu_put_mouse_event_absolute = absolute;
364 s->qemu_put_mouse_event_name = qemu_strdup(name);
365 s->next = NULL;
366
367 if (!qemu_put_mouse_event_head) {
368 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
369 return s;
370 }
371
372 cursor = qemu_put_mouse_event_head;
373 while (cursor->next != NULL)
374 cursor = cursor->next;
375
376 cursor->next = s;
377 qemu_put_mouse_event_current = s;
378
379 return s;
380 }
381
382 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
383 {
384 QEMUPutMouseEntry *prev = NULL, *cursor;
385
386 if (!qemu_put_mouse_event_head || entry == NULL)
387 return;
388
389 cursor = qemu_put_mouse_event_head;
390 while (cursor != NULL && cursor != entry) {
391 prev = cursor;
392 cursor = cursor->next;
393 }
394
395 if (cursor == NULL) // does not exist or list empty
396 return;
397 else if (prev == NULL) { // entry is head
398 qemu_put_mouse_event_head = cursor->next;
399 if (qemu_put_mouse_event_current == entry)
400 qemu_put_mouse_event_current = cursor->next;
401 qemu_free(entry->qemu_put_mouse_event_name);
402 qemu_free(entry);
403 return;
404 }
405
406 prev->next = entry->next;
407
408 if (qemu_put_mouse_event_current == entry)
409 qemu_put_mouse_event_current = prev;
410
411 qemu_free(entry->qemu_put_mouse_event_name);
412 qemu_free(entry);
413 }
414
415 void kbd_put_keycode(int keycode)
416 {
417 if (qemu_put_kbd_event) {
418 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
419 }
420 }
421
422 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
423 {
424 QEMUPutMouseEvent *mouse_event;
425 void *mouse_event_opaque;
426 int width;
427
428 if (!qemu_put_mouse_event_current) {
429 return;
430 }
431
432 mouse_event =
433 qemu_put_mouse_event_current->qemu_put_mouse_event;
434 mouse_event_opaque =
435 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
436
437 if (mouse_event) {
438 if (graphic_rotate) {
439 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
440 width = 0x7fff;
441 else
442 width = graphic_width - 1;
443 mouse_event(mouse_event_opaque,
444 width - dy, dx, dz, buttons_state);
445 } else
446 mouse_event(mouse_event_opaque,
447 dx, dy, dz, buttons_state);
448 }
449 }
450
451 int kbd_mouse_is_absolute(void)
452 {
453 if (!qemu_put_mouse_event_current)
454 return 0;
455
456 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
457 }
458
459 void do_info_mice(Monitor *mon)
460 {
461 QEMUPutMouseEntry *cursor;
462 int index = 0;
463
464 if (!qemu_put_mouse_event_head) {
465 monitor_printf(mon, "No mouse devices connected\n");
466 return;
467 }
468
469 monitor_printf(mon, "Mouse devices available:\n");
470 cursor = qemu_put_mouse_event_head;
471 while (cursor != NULL) {
472 monitor_printf(mon, "%c Mouse #%d: %s\n",
473 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
474 index, cursor->qemu_put_mouse_event_name);
475 index++;
476 cursor = cursor->next;
477 }
478 }
479
480 void do_mouse_set(Monitor *mon, int index)
481 {
482 QEMUPutMouseEntry *cursor;
483 int i = 0;
484
485 if (!qemu_put_mouse_event_head) {
486 monitor_printf(mon, "No mouse devices connected\n");
487 return;
488 }
489
490 cursor = qemu_put_mouse_event_head;
491 while (cursor != NULL && index != i) {
492 i++;
493 cursor = cursor->next;
494 }
495
496 if (cursor != NULL)
497 qemu_put_mouse_event_current = cursor;
498 else
499 monitor_printf(mon, "Mouse at given index not found\n");
500 }
501
502 /* compute with 96 bit intermediate result: (a*b)/c */
503 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
504 {
505 union {
506 uint64_t ll;
507 struct {
508 #ifdef HOST_WORDS_BIGENDIAN
509 uint32_t high, low;
510 #else
511 uint32_t low, high;
512 #endif
513 } l;
514 } u, res;
515 uint64_t rl, rh;
516
517 u.ll = a;
518 rl = (uint64_t)u.l.low * (uint64_t)b;
519 rh = (uint64_t)u.l.high * (uint64_t)b;
520 rh += (rl >> 32);
521 res.l.high = rh / c;
522 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
523 return res.ll;
524 }
525
526 /***********************************************************/
527 /* real time host monotonic timer */
528
529 #define QEMU_TIMER_BASE 1000000000LL
530
531 #ifdef WIN32
532
533 static int64_t clock_freq;
534
535 static void init_get_clock(void)
536 {
537 LARGE_INTEGER freq;
538 int ret;
539 ret = QueryPerformanceFrequency(&freq);
540 if (ret == 0) {
541 fprintf(stderr, "Could not calibrate ticks\n");
542 exit(1);
543 }
544 clock_freq = freq.QuadPart;
545 }
546
547 static int64_t get_clock(void)
548 {
549 LARGE_INTEGER ti;
550 QueryPerformanceCounter(&ti);
551 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
552 }
553
554 #else
555
556 static int use_rt_clock;
557
558 static void init_get_clock(void)
559 {
560 use_rt_clock = 0;
561 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
562 || defined(__DragonFly__)
563 {
564 struct timespec ts;
565 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
566 use_rt_clock = 1;
567 }
568 }
569 #endif
570 }
571
572 static int64_t get_clock(void)
573 {
574 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
575 || defined(__DragonFly__)
576 if (use_rt_clock) {
577 struct timespec ts;
578 clock_gettime(CLOCK_MONOTONIC, &ts);
579 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
580 } else
581 #endif
582 {
583 /* XXX: using gettimeofday leads to problems if the date
584 changes, so it should be avoided. */
585 struct timeval tv;
586 gettimeofday(&tv, NULL);
587 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
588 }
589 }
590 #endif
591
592 /* Return the virtual CPU time, based on the instruction counter. */
593 static int64_t cpu_get_icount(void)
594 {
595 int64_t icount;
596 CPUState *env = cpu_single_env;;
597 icount = qemu_icount;
598 if (env) {
599 if (!can_do_io(env))
600 fprintf(stderr, "Bad clock read\n");
601 icount -= (env->icount_decr.u16.low + env->icount_extra);
602 }
603 return qemu_icount_bias + (icount << icount_time_shift);
604 }
605
606 /***********************************************************/
607 /* guest cycle counter */
608
609 static int64_t cpu_ticks_prev;
610 static int64_t cpu_ticks_offset;
611 static int64_t cpu_clock_offset;
612 static int cpu_ticks_enabled;
613
614 /* return the host CPU cycle counter and handle stop/restart */
615 int64_t cpu_get_ticks(void)
616 {
617 if (use_icount) {
618 return cpu_get_icount();
619 }
620 if (!cpu_ticks_enabled) {
621 return cpu_ticks_offset;
622 } else {
623 int64_t ticks;
624 ticks = cpu_get_real_ticks();
625 if (cpu_ticks_prev > ticks) {
626 /* Note: non increasing ticks may happen if the host uses
627 software suspend */
628 cpu_ticks_offset += cpu_ticks_prev - ticks;
629 }
630 cpu_ticks_prev = ticks;
631 return ticks + cpu_ticks_offset;
632 }
633 }
634
635 /* return the host CPU monotonic timer and handle stop/restart */
636 static int64_t cpu_get_clock(void)
637 {
638 int64_t ti;
639 if (!cpu_ticks_enabled) {
640 return cpu_clock_offset;
641 } else {
642 ti = get_clock();
643 return ti + cpu_clock_offset;
644 }
645 }
646
647 /* enable cpu_get_ticks() */
648 void cpu_enable_ticks(void)
649 {
650 if (!cpu_ticks_enabled) {
651 cpu_ticks_offset -= cpu_get_real_ticks();
652 cpu_clock_offset -= get_clock();
653 cpu_ticks_enabled = 1;
654 }
655 }
656
657 /* disable cpu_get_ticks() : the clock is stopped. You must not call
658 cpu_get_ticks() after that. */
659 void cpu_disable_ticks(void)
660 {
661 if (cpu_ticks_enabled) {
662 cpu_ticks_offset = cpu_get_ticks();
663 cpu_clock_offset = cpu_get_clock();
664 cpu_ticks_enabled = 0;
665 }
666 }
667
668 /***********************************************************/
669 /* timers */
670
671 #define QEMU_TIMER_REALTIME 0
672 #define QEMU_TIMER_VIRTUAL 1
673
674 struct QEMUClock {
675 int type;
676 /* XXX: add frequency */
677 };
678
679 struct QEMUTimer {
680 QEMUClock *clock;
681 int64_t expire_time;
682 QEMUTimerCB *cb;
683 void *opaque;
684 struct QEMUTimer *next;
685 };
686
687 struct qemu_alarm_timer {
688 char const *name;
689 unsigned int flags;
690
691 int (*start)(struct qemu_alarm_timer *t);
692 void (*stop)(struct qemu_alarm_timer *t);
693 void (*rearm)(struct qemu_alarm_timer *t);
694 void *priv;
695 };
696
697 #define ALARM_FLAG_DYNTICKS 0x1
698 #define ALARM_FLAG_EXPIRED 0x2
699
700 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
701 {
702 return t && (t->flags & ALARM_FLAG_DYNTICKS);
703 }
704
705 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
706 {
707 if (!alarm_has_dynticks(t))
708 return;
709
710 t->rearm(t);
711 }
712
713 /* TODO: MIN_TIMER_REARM_US should be optimized */
714 #define MIN_TIMER_REARM_US 250
715
716 static struct qemu_alarm_timer *alarm_timer;
717
718 #ifdef _WIN32
719
720 struct qemu_alarm_win32 {
721 MMRESULT timerId;
722 unsigned int period;
723 } alarm_win32_data = {0, -1};
724
725 static int win32_start_timer(struct qemu_alarm_timer *t);
726 static void win32_stop_timer(struct qemu_alarm_timer *t);
727 static void win32_rearm_timer(struct qemu_alarm_timer *t);
728
729 #else
730
731 static int unix_start_timer(struct qemu_alarm_timer *t);
732 static void unix_stop_timer(struct qemu_alarm_timer *t);
733
734 #ifdef __linux__
735
736 static int dynticks_start_timer(struct qemu_alarm_timer *t);
737 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
738 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
739
740 static int hpet_start_timer(struct qemu_alarm_timer *t);
741 static void hpet_stop_timer(struct qemu_alarm_timer *t);
742
743 static int rtc_start_timer(struct qemu_alarm_timer *t);
744 static void rtc_stop_timer(struct qemu_alarm_timer *t);
745
746 #endif /* __linux__ */
747
748 #endif /* _WIN32 */
749
750 /* Correlation between real and virtual time is always going to be
751 fairly approximate, so ignore small variation.
752 When the guest is idle real and virtual time will be aligned in
753 the IO wait loop. */
754 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
755
756 static void icount_adjust(void)
757 {
758 int64_t cur_time;
759 int64_t cur_icount;
760 int64_t delta;
761 static int64_t last_delta;
762 /* If the VM is not running, then do nothing. */
763 if (!vm_running)
764 return;
765
766 cur_time = cpu_get_clock();
767 cur_icount = qemu_get_clock(vm_clock);
768 delta = cur_icount - cur_time;
769 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
770 if (delta > 0
771 && last_delta + ICOUNT_WOBBLE < delta * 2
772 && icount_time_shift > 0) {
773 /* The guest is getting too far ahead. Slow time down. */
774 icount_time_shift--;
775 }
776 if (delta < 0
777 && last_delta - ICOUNT_WOBBLE > delta * 2
778 && icount_time_shift < MAX_ICOUNT_SHIFT) {
779 /* The guest is getting too far behind. Speed time up. */
780 icount_time_shift++;
781 }
782 last_delta = delta;
783 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
784 }
785
786 static void icount_adjust_rt(void * opaque)
787 {
788 qemu_mod_timer(icount_rt_timer,
789 qemu_get_clock(rt_clock) + 1000);
790 icount_adjust();
791 }
792
793 static void icount_adjust_vm(void * opaque)
794 {
795 qemu_mod_timer(icount_vm_timer,
796 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
797 icount_adjust();
798 }
799
800 static void init_icount_adjust(void)
801 {
802 /* Have both realtime and virtual time triggers for speed adjustment.
803 The realtime trigger catches emulated time passing too slowly,
804 the virtual time trigger catches emulated time passing too fast.
805 Realtime triggers occur even when idle, so use them less frequently
806 than VM triggers. */
807 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
808 qemu_mod_timer(icount_rt_timer,
809 qemu_get_clock(rt_clock) + 1000);
810 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
811 qemu_mod_timer(icount_vm_timer,
812 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
813 }
814
815 static struct qemu_alarm_timer alarm_timers[] = {
816 #ifndef _WIN32
817 #ifdef __linux__
818 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
819 dynticks_stop_timer, dynticks_rearm_timer, NULL},
820 /* HPET - if available - is preferred */
821 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
822 /* ...otherwise try RTC */
823 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
824 #endif
825 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
826 #else
827 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
828 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
829 {"win32", 0, win32_start_timer,
830 win32_stop_timer, NULL, &alarm_win32_data},
831 #endif
832 {NULL, }
833 };
834
835 static void show_available_alarms(void)
836 {
837 int i;
838
839 printf("Available alarm timers, in order of precedence:\n");
840 for (i = 0; alarm_timers[i].name; i++)
841 printf("%s\n", alarm_timers[i].name);
842 }
843
844 static void configure_alarms(char const *opt)
845 {
846 int i;
847 int cur = 0;
848 int count = ARRAY_SIZE(alarm_timers) - 1;
849 char *arg;
850 char *name;
851 struct qemu_alarm_timer tmp;
852
853 if (!strcmp(opt, "?")) {
854 show_available_alarms();
855 exit(0);
856 }
857
858 arg = strdup(opt);
859
860 /* Reorder the array */
861 name = strtok(arg, ",");
862 while (name) {
863 for (i = 0; i < count && alarm_timers[i].name; i++) {
864 if (!strcmp(alarm_timers[i].name, name))
865 break;
866 }
867
868 if (i == count) {
869 fprintf(stderr, "Unknown clock %s\n", name);
870 goto next;
871 }
872
873 if (i < cur)
874 /* Ignore */
875 goto next;
876
877 /* Swap */
878 tmp = alarm_timers[i];
879 alarm_timers[i] = alarm_timers[cur];
880 alarm_timers[cur] = tmp;
881
882 cur++;
883 next:
884 name = strtok(NULL, ",");
885 }
886
887 free(arg);
888
889 if (cur) {
890 /* Disable remaining timers */
891 for (i = cur; i < count; i++)
892 alarm_timers[i].name = NULL;
893 } else {
894 show_available_alarms();
895 exit(1);
896 }
897 }
898
899 QEMUClock *rt_clock;
900 QEMUClock *vm_clock;
901
902 static QEMUTimer *active_timers[2];
903
904 static QEMUClock *qemu_new_clock(int type)
905 {
906 QEMUClock *clock;
907 clock = qemu_mallocz(sizeof(QEMUClock));
908 clock->type = type;
909 return clock;
910 }
911
912 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
913 {
914 QEMUTimer *ts;
915
916 ts = qemu_mallocz(sizeof(QEMUTimer));
917 ts->clock = clock;
918 ts->cb = cb;
919 ts->opaque = opaque;
920 return ts;
921 }
922
923 void qemu_free_timer(QEMUTimer *ts)
924 {
925 qemu_free(ts);
926 }
927
928 /* stop a timer, but do not dealloc it */
929 void qemu_del_timer(QEMUTimer *ts)
930 {
931 QEMUTimer **pt, *t;
932
933 /* NOTE: this code must be signal safe because
934 qemu_timer_expired() can be called from a signal. */
935 pt = &active_timers[ts->clock->type];
936 for(;;) {
937 t = *pt;
938 if (!t)
939 break;
940 if (t == ts) {
941 *pt = t->next;
942 break;
943 }
944 pt = &t->next;
945 }
946 }
947
948 /* modify the current timer so that it will be fired when current_time
949 >= expire_time. The corresponding callback will be called. */
950 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
951 {
952 QEMUTimer **pt, *t;
953
954 qemu_del_timer(ts);
955
956 /* add the timer in the sorted list */
957 /* NOTE: this code must be signal safe because
958 qemu_timer_expired() can be called from a signal. */
959 pt = &active_timers[ts->clock->type];
960 for(;;) {
961 t = *pt;
962 if (!t)
963 break;
964 if (t->expire_time > expire_time)
965 break;
966 pt = &t->next;
967 }
968 ts->expire_time = expire_time;
969 ts->next = *pt;
970 *pt = ts;
971
972 /* Rearm if necessary */
973 if (pt == &active_timers[ts->clock->type]) {
974 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
975 qemu_rearm_alarm_timer(alarm_timer);
976 }
977 /* Interrupt execution to force deadline recalculation. */
978 if (use_icount)
979 qemu_notify_event();
980 }
981 }
982
983 int qemu_timer_pending(QEMUTimer *ts)
984 {
985 QEMUTimer *t;
986 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
987 if (t == ts)
988 return 1;
989 }
990 return 0;
991 }
992
993 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
994 {
995 if (!timer_head)
996 return 0;
997 return (timer_head->expire_time <= current_time);
998 }
999
1000 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1001 {
1002 QEMUTimer *ts;
1003
1004 for(;;) {
1005 ts = *ptimer_head;
1006 if (!ts || ts->expire_time > current_time)
1007 break;
1008 /* remove timer from the list before calling the callback */
1009 *ptimer_head = ts->next;
1010 ts->next = NULL;
1011
1012 /* run the callback (the timer list can be modified) */
1013 ts->cb(ts->opaque);
1014 }
1015 }
1016
1017 int64_t qemu_get_clock(QEMUClock *clock)
1018 {
1019 switch(clock->type) {
1020 case QEMU_TIMER_REALTIME:
1021 return get_clock() / 1000000;
1022 default:
1023 case QEMU_TIMER_VIRTUAL:
1024 if (use_icount) {
1025 return cpu_get_icount();
1026 } else {
1027 return cpu_get_clock();
1028 }
1029 }
1030 }
1031
1032 static void init_timers(void)
1033 {
1034 init_get_clock();
1035 ticks_per_sec = QEMU_TIMER_BASE;
1036 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1037 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1038 }
1039
1040 /* save a timer */
1041 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1042 {
1043 uint64_t expire_time;
1044
1045 if (qemu_timer_pending(ts)) {
1046 expire_time = ts->expire_time;
1047 } else {
1048 expire_time = -1;
1049 }
1050 qemu_put_be64(f, expire_time);
1051 }
1052
1053 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1054 {
1055 uint64_t expire_time;
1056
1057 expire_time = qemu_get_be64(f);
1058 if (expire_time != -1) {
1059 qemu_mod_timer(ts, expire_time);
1060 } else {
1061 qemu_del_timer(ts);
1062 }
1063 }
1064
1065 static void timer_save(QEMUFile *f, void *opaque)
1066 {
1067 if (cpu_ticks_enabled) {
1068 hw_error("cannot save state if virtual timers are running");
1069 }
1070 qemu_put_be64(f, cpu_ticks_offset);
1071 qemu_put_be64(f, ticks_per_sec);
1072 qemu_put_be64(f, cpu_clock_offset);
1073 }
1074
1075 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1076 {
1077 if (version_id != 1 && version_id != 2)
1078 return -EINVAL;
1079 if (cpu_ticks_enabled) {
1080 return -EINVAL;
1081 }
1082 cpu_ticks_offset=qemu_get_be64(f);
1083 ticks_per_sec=qemu_get_be64(f);
1084 if (version_id == 2) {
1085 cpu_clock_offset=qemu_get_be64(f);
1086 }
1087 return 0;
1088 }
1089
1090 static void qemu_event_increment(void);
1091
1092 #ifdef _WIN32
1093 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1094 DWORD_PTR dwUser, DWORD_PTR dw1,
1095 DWORD_PTR dw2)
1096 #else
1097 static void host_alarm_handler(int host_signum)
1098 #endif
1099 {
1100 #if 0
1101 #define DISP_FREQ 1000
1102 {
1103 static int64_t delta_min = INT64_MAX;
1104 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1105 static int count;
1106 ti = qemu_get_clock(vm_clock);
1107 if (last_clock != 0) {
1108 delta = ti - last_clock;
1109 if (delta < delta_min)
1110 delta_min = delta;
1111 if (delta > delta_max)
1112 delta_max = delta;
1113 delta_cum += delta;
1114 if (++count == DISP_FREQ) {
1115 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1116 muldiv64(delta_min, 1000000, ticks_per_sec),
1117 muldiv64(delta_max, 1000000, ticks_per_sec),
1118 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1119 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1120 count = 0;
1121 delta_min = INT64_MAX;
1122 delta_max = 0;
1123 delta_cum = 0;
1124 }
1125 }
1126 last_clock = ti;
1127 }
1128 #endif
1129 if (alarm_has_dynticks(alarm_timer) ||
1130 (!use_icount &&
1131 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1132 qemu_get_clock(vm_clock))) ||
1133 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1134 qemu_get_clock(rt_clock))) {
1135 qemu_event_increment();
1136 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1137
1138 #ifndef CONFIG_IOTHREAD
1139 if (next_cpu) {
1140 /* stop the currently executing cpu because a timer occured */
1141 cpu_exit(next_cpu);
1142 #ifdef CONFIG_KQEMU
1143 if (next_cpu->kqemu_enabled) {
1144 kqemu_cpu_interrupt(next_cpu);
1145 }
1146 #endif
1147 }
1148 #endif
1149 timer_alarm_pending = 1;
1150 qemu_notify_event();
1151 }
1152 }
1153
1154 static int64_t qemu_next_deadline(void)
1155 {
1156 int64_t delta;
1157
1158 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1159 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1160 qemu_get_clock(vm_clock);
1161 } else {
1162 /* To avoid problems with overflow limit this to 2^32. */
1163 delta = INT32_MAX;
1164 }
1165
1166 if (delta < 0)
1167 delta = 0;
1168
1169 return delta;
1170 }
1171
1172 #if defined(__linux__) || defined(_WIN32)
1173 static uint64_t qemu_next_deadline_dyntick(void)
1174 {
1175 int64_t delta;
1176 int64_t rtdelta;
1177
1178 if (use_icount)
1179 delta = INT32_MAX;
1180 else
1181 delta = (qemu_next_deadline() + 999) / 1000;
1182
1183 if (active_timers[QEMU_TIMER_REALTIME]) {
1184 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1185 qemu_get_clock(rt_clock))*1000;
1186 if (rtdelta < delta)
1187 delta = rtdelta;
1188 }
1189
1190 if (delta < MIN_TIMER_REARM_US)
1191 delta = MIN_TIMER_REARM_US;
1192
1193 return delta;
1194 }
1195 #endif
1196
1197 #ifndef _WIN32
1198
1199 /* Sets a specific flag */
1200 static int fcntl_setfl(int fd, int flag)
1201 {
1202 int flags;
1203
1204 flags = fcntl(fd, F_GETFL);
1205 if (flags == -1)
1206 return -errno;
1207
1208 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1209 return -errno;
1210
1211 return 0;
1212 }
1213
1214 #if defined(__linux__)
1215
1216 #define RTC_FREQ 1024
1217
1218 static void enable_sigio_timer(int fd)
1219 {
1220 struct sigaction act;
1221
1222 /* timer signal */
1223 sigfillset(&act.sa_mask);
1224 act.sa_flags = 0;
1225 act.sa_handler = host_alarm_handler;
1226
1227 sigaction(SIGIO, &act, NULL);
1228 fcntl_setfl(fd, O_ASYNC);
1229 fcntl(fd, F_SETOWN, getpid());
1230 }
1231
1232 static int hpet_start_timer(struct qemu_alarm_timer *t)
1233 {
1234 struct hpet_info info;
1235 int r, fd;
1236
1237 fd = open("/dev/hpet", O_RDONLY);
1238 if (fd < 0)
1239 return -1;
1240
1241 /* Set frequency */
1242 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1243 if (r < 0) {
1244 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1245 "error, but for better emulation accuracy type:\n"
1246 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1247 goto fail;
1248 }
1249
1250 /* Check capabilities */
1251 r = ioctl(fd, HPET_INFO, &info);
1252 if (r < 0)
1253 goto fail;
1254
1255 /* Enable periodic mode */
1256 r = ioctl(fd, HPET_EPI, 0);
1257 if (info.hi_flags && (r < 0))
1258 goto fail;
1259
1260 /* Enable interrupt */
1261 r = ioctl(fd, HPET_IE_ON, 0);
1262 if (r < 0)
1263 goto fail;
1264
1265 enable_sigio_timer(fd);
1266 t->priv = (void *)(long)fd;
1267
1268 return 0;
1269 fail:
1270 close(fd);
1271 return -1;
1272 }
1273
1274 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1275 {
1276 int fd = (long)t->priv;
1277
1278 close(fd);
1279 }
1280
1281 static int rtc_start_timer(struct qemu_alarm_timer *t)
1282 {
1283 int rtc_fd;
1284 unsigned long current_rtc_freq = 0;
1285
1286 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1287 if (rtc_fd < 0)
1288 return -1;
1289 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1290 if (current_rtc_freq != RTC_FREQ &&
1291 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1292 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1293 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1294 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1295 goto fail;
1296 }
1297 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1298 fail:
1299 close(rtc_fd);
1300 return -1;
1301 }
1302
1303 enable_sigio_timer(rtc_fd);
1304
1305 t->priv = (void *)(long)rtc_fd;
1306
1307 return 0;
1308 }
1309
1310 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1311 {
1312 int rtc_fd = (long)t->priv;
1313
1314 close(rtc_fd);
1315 }
1316
1317 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1318 {
1319 struct sigevent ev;
1320 timer_t host_timer;
1321 struct sigaction act;
1322
1323 sigfillset(&act.sa_mask);
1324 act.sa_flags = 0;
1325 act.sa_handler = host_alarm_handler;
1326
1327 sigaction(SIGALRM, &act, NULL);
1328
1329 /*
1330 * Initialize ev struct to 0 to avoid valgrind complaining
1331 * about uninitialized data in timer_create call
1332 */
1333 memset(&ev, 0, sizeof(ev));
1334 ev.sigev_value.sival_int = 0;
1335 ev.sigev_notify = SIGEV_SIGNAL;
1336 ev.sigev_signo = SIGALRM;
1337
1338 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1339 perror("timer_create");
1340
1341 /* disable dynticks */
1342 fprintf(stderr, "Dynamic Ticks disabled\n");
1343
1344 return -1;
1345 }
1346
1347 t->priv = (void *)(long)host_timer;
1348
1349 return 0;
1350 }
1351
1352 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1353 {
1354 timer_t host_timer = (timer_t)(long)t->priv;
1355
1356 timer_delete(host_timer);
1357 }
1358
1359 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1360 {
1361 timer_t host_timer = (timer_t)(long)t->priv;
1362 struct itimerspec timeout;
1363 int64_t nearest_delta_us = INT64_MAX;
1364 int64_t current_us;
1365
1366 if (!active_timers[QEMU_TIMER_REALTIME] &&
1367 !active_timers[QEMU_TIMER_VIRTUAL])
1368 return;
1369
1370 nearest_delta_us = qemu_next_deadline_dyntick();
1371
1372 /* check whether a timer is already running */
1373 if (timer_gettime(host_timer, &timeout)) {
1374 perror("gettime");
1375 fprintf(stderr, "Internal timer error: aborting\n");
1376 exit(1);
1377 }
1378 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1379 if (current_us && current_us <= nearest_delta_us)
1380 return;
1381
1382 timeout.it_interval.tv_sec = 0;
1383 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1384 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1385 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1386 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1387 perror("settime");
1388 fprintf(stderr, "Internal timer error: aborting\n");
1389 exit(1);
1390 }
1391 }
1392
1393 #endif /* defined(__linux__) */
1394
1395 static int unix_start_timer(struct qemu_alarm_timer *t)
1396 {
1397 struct sigaction act;
1398 struct itimerval itv;
1399 int err;
1400
1401 /* timer signal */
1402 sigfillset(&act.sa_mask);
1403 act.sa_flags = 0;
1404 act.sa_handler = host_alarm_handler;
1405
1406 sigaction(SIGALRM, &act, NULL);
1407
1408 itv.it_interval.tv_sec = 0;
1409 /* for i386 kernel 2.6 to get 1 ms */
1410 itv.it_interval.tv_usec = 999;
1411 itv.it_value.tv_sec = 0;
1412 itv.it_value.tv_usec = 10 * 1000;
1413
1414 err = setitimer(ITIMER_REAL, &itv, NULL);
1415 if (err)
1416 return -1;
1417
1418 return 0;
1419 }
1420
1421 static void unix_stop_timer(struct qemu_alarm_timer *t)
1422 {
1423 struct itimerval itv;
1424
1425 memset(&itv, 0, sizeof(itv));
1426 setitimer(ITIMER_REAL, &itv, NULL);
1427 }
1428
1429 #endif /* !defined(_WIN32) */
1430
1431
1432 #ifdef _WIN32
1433
1434 static int win32_start_timer(struct qemu_alarm_timer *t)
1435 {
1436 TIMECAPS tc;
1437 struct qemu_alarm_win32 *data = t->priv;
1438 UINT flags;
1439
1440 memset(&tc, 0, sizeof(tc));
1441 timeGetDevCaps(&tc, sizeof(tc));
1442
1443 if (data->period < tc.wPeriodMin)
1444 data->period = tc.wPeriodMin;
1445
1446 timeBeginPeriod(data->period);
1447
1448 flags = TIME_CALLBACK_FUNCTION;
1449 if (alarm_has_dynticks(t))
1450 flags |= TIME_ONESHOT;
1451 else
1452 flags |= TIME_PERIODIC;
1453
1454 data->timerId = timeSetEvent(1, // interval (ms)
1455 data->period, // resolution
1456 host_alarm_handler, // function
1457 (DWORD)t, // parameter
1458 flags);
1459
1460 if (!data->timerId) {
1461 perror("Failed to initialize win32 alarm timer");
1462 timeEndPeriod(data->period);
1463 return -1;
1464 }
1465
1466 return 0;
1467 }
1468
1469 static void win32_stop_timer(struct qemu_alarm_timer *t)
1470 {
1471 struct qemu_alarm_win32 *data = t->priv;
1472
1473 timeKillEvent(data->timerId);
1474 timeEndPeriod(data->period);
1475 }
1476
1477 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1478 {
1479 struct qemu_alarm_win32 *data = t->priv;
1480 uint64_t nearest_delta_us;
1481
1482 if (!active_timers[QEMU_TIMER_REALTIME] &&
1483 !active_timers[QEMU_TIMER_VIRTUAL])
1484 return;
1485
1486 nearest_delta_us = qemu_next_deadline_dyntick();
1487 nearest_delta_us /= 1000;
1488
1489 timeKillEvent(data->timerId);
1490
1491 data->timerId = timeSetEvent(1,
1492 data->period,
1493 host_alarm_handler,
1494 (DWORD)t,
1495 TIME_ONESHOT | TIME_PERIODIC);
1496
1497 if (!data->timerId) {
1498 perror("Failed to re-arm win32 alarm timer");
1499
1500 timeEndPeriod(data->period);
1501 exit(1);
1502 }
1503 }
1504
1505 #endif /* _WIN32 */
1506
1507 static int init_timer_alarm(void)
1508 {
1509 struct qemu_alarm_timer *t = NULL;
1510 int i, err = -1;
1511
1512 for (i = 0; alarm_timers[i].name; i++) {
1513 t = &alarm_timers[i];
1514
1515 err = t->start(t);
1516 if (!err)
1517 break;
1518 }
1519
1520 if (err) {
1521 err = -ENOENT;
1522 goto fail;
1523 }
1524
1525 alarm_timer = t;
1526
1527 return 0;
1528
1529 fail:
1530 return err;
1531 }
1532
1533 static void quit_timers(void)
1534 {
1535 alarm_timer->stop(alarm_timer);
1536 alarm_timer = NULL;
1537 }
1538
1539 /***********************************************************/
1540 /* host time/date access */
1541 void qemu_get_timedate(struct tm *tm, int offset)
1542 {
1543 time_t ti;
1544 struct tm *ret;
1545
1546 time(&ti);
1547 ti += offset;
1548 if (rtc_date_offset == -1) {
1549 if (rtc_utc)
1550 ret = gmtime(&ti);
1551 else
1552 ret = localtime(&ti);
1553 } else {
1554 ti -= rtc_date_offset;
1555 ret = gmtime(&ti);
1556 }
1557
1558 memcpy(tm, ret, sizeof(struct tm));
1559 }
1560
1561 int qemu_timedate_diff(struct tm *tm)
1562 {
1563 time_t seconds;
1564
1565 if (rtc_date_offset == -1)
1566 if (rtc_utc)
1567 seconds = mktimegm(tm);
1568 else
1569 seconds = mktime(tm);
1570 else
1571 seconds = mktimegm(tm) + rtc_date_offset;
1572
1573 return seconds - time(NULL);
1574 }
1575
1576 #ifdef _WIN32
1577 static void socket_cleanup(void)
1578 {
1579 WSACleanup();
1580 }
1581
1582 static int socket_init(void)
1583 {
1584 WSADATA Data;
1585 int ret, err;
1586
1587 ret = WSAStartup(MAKEWORD(2,2), &Data);
1588 if (ret != 0) {
1589 err = WSAGetLastError();
1590 fprintf(stderr, "WSAStartup: %d\n", err);
1591 return -1;
1592 }
1593 atexit(socket_cleanup);
1594 return 0;
1595 }
1596 #endif
1597
1598 /***********************************************************/
1599 /* Bluetooth support */
1600 static int nb_hcis;
1601 static int cur_hci;
1602 static struct HCIInfo *hci_table[MAX_NICS];
1603
1604 static struct bt_vlan_s {
1605 struct bt_scatternet_s net;
1606 int id;
1607 struct bt_vlan_s *next;
1608 } *first_bt_vlan;
1609
1610 /* find or alloc a new bluetooth "VLAN" */
1611 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1612 {
1613 struct bt_vlan_s **pvlan, *vlan;
1614 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1615 if (vlan->id == id)
1616 return &vlan->net;
1617 }
1618 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1619 vlan->id = id;
1620 pvlan = &first_bt_vlan;
1621 while (*pvlan != NULL)
1622 pvlan = &(*pvlan)->next;
1623 *pvlan = vlan;
1624 return &vlan->net;
1625 }
1626
1627 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1628 {
1629 }
1630
1631 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1632 {
1633 return -ENOTSUP;
1634 }
1635
1636 static struct HCIInfo null_hci = {
1637 .cmd_send = null_hci_send,
1638 .sco_send = null_hci_send,
1639 .acl_send = null_hci_send,
1640 .bdaddr_set = null_hci_addr_set,
1641 };
1642
1643 struct HCIInfo *qemu_next_hci(void)
1644 {
1645 if (cur_hci == nb_hcis)
1646 return &null_hci;
1647
1648 return hci_table[cur_hci++];
1649 }
1650
1651 static struct HCIInfo *hci_init(const char *str)
1652 {
1653 char *endp;
1654 struct bt_scatternet_s *vlan = 0;
1655
1656 if (!strcmp(str, "null"))
1657 /* null */
1658 return &null_hci;
1659 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1660 /* host[:hciN] */
1661 return bt_host_hci(str[4] ? str + 5 : "hci0");
1662 else if (!strncmp(str, "hci", 3)) {
1663 /* hci[,vlan=n] */
1664 if (str[3]) {
1665 if (!strncmp(str + 3, ",vlan=", 6)) {
1666 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1667 if (*endp)
1668 vlan = 0;
1669 }
1670 } else
1671 vlan = qemu_find_bt_vlan(0);
1672 if (vlan)
1673 return bt_new_hci(vlan);
1674 }
1675
1676 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1677
1678 return 0;
1679 }
1680
1681 static int bt_hci_parse(const char *str)
1682 {
1683 struct HCIInfo *hci;
1684 bdaddr_t bdaddr;
1685
1686 if (nb_hcis >= MAX_NICS) {
1687 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1688 return -1;
1689 }
1690
1691 hci = hci_init(str);
1692 if (!hci)
1693 return -1;
1694
1695 bdaddr.b[0] = 0x52;
1696 bdaddr.b[1] = 0x54;
1697 bdaddr.b[2] = 0x00;
1698 bdaddr.b[3] = 0x12;
1699 bdaddr.b[4] = 0x34;
1700 bdaddr.b[5] = 0x56 + nb_hcis;
1701 hci->bdaddr_set(hci, bdaddr.b);
1702
1703 hci_table[nb_hcis++] = hci;
1704
1705 return 0;
1706 }
1707
1708 static void bt_vhci_add(int vlan_id)
1709 {
1710 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1711
1712 if (!vlan->slave)
1713 fprintf(stderr, "qemu: warning: adding a VHCI to "
1714 "an empty scatternet %i\n", vlan_id);
1715
1716 bt_vhci_init(bt_new_hci(vlan));
1717 }
1718
1719 static struct bt_device_s *bt_device_add(const char *opt)
1720 {
1721 struct bt_scatternet_s *vlan;
1722 int vlan_id = 0;
1723 char *endp = strstr(opt, ",vlan=");
1724 int len = (endp ? endp - opt : strlen(opt)) + 1;
1725 char devname[10];
1726
1727 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1728
1729 if (endp) {
1730 vlan_id = strtol(endp + 6, &endp, 0);
1731 if (*endp) {
1732 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1733 return 0;
1734 }
1735 }
1736
1737 vlan = qemu_find_bt_vlan(vlan_id);
1738
1739 if (!vlan->slave)
1740 fprintf(stderr, "qemu: warning: adding a slave device to "
1741 "an empty scatternet %i\n", vlan_id);
1742
1743 if (!strcmp(devname, "keyboard"))
1744 return bt_keyboard_init(vlan);
1745
1746 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1747 return 0;
1748 }
1749
1750 static int bt_parse(const char *opt)
1751 {
1752 const char *endp, *p;
1753 int vlan;
1754
1755 if (strstart(opt, "hci", &endp)) {
1756 if (!*endp || *endp == ',') {
1757 if (*endp)
1758 if (!strstart(endp, ",vlan=", 0))
1759 opt = endp + 1;
1760
1761 return bt_hci_parse(opt);
1762 }
1763 } else if (strstart(opt, "vhci", &endp)) {
1764 if (!*endp || *endp == ',') {
1765 if (*endp) {
1766 if (strstart(endp, ",vlan=", &p)) {
1767 vlan = strtol(p, (char **) &endp, 0);
1768 if (*endp) {
1769 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1770 return 1;
1771 }
1772 } else {
1773 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1774 return 1;
1775 }
1776 } else
1777 vlan = 0;
1778
1779 bt_vhci_add(vlan);
1780 return 0;
1781 }
1782 } else if (strstart(opt, "device:", &endp))
1783 return !bt_device_add(endp);
1784
1785 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1786 return 1;
1787 }
1788
1789 /***********************************************************/
1790 /* QEMU Block devices */
1791
1792 #define HD_ALIAS "index=%d,media=disk"
1793 #define CDROM_ALIAS "index=2,media=cdrom"
1794 #define FD_ALIAS "index=%d,if=floppy"
1795 #define PFLASH_ALIAS "if=pflash"
1796 #define MTD_ALIAS "if=mtd"
1797 #define SD_ALIAS "index=0,if=sd"
1798
1799 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1800 {
1801 va_list ap;
1802 char optstr[1024];
1803 QemuOpts *opts;
1804
1805 va_start(ap, fmt);
1806 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1807 va_end(ap);
1808
1809 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1810 if (!opts) {
1811 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1812 __FUNCTION__, optstr);
1813 return NULL;
1814 }
1815 if (file)
1816 qemu_opt_set(opts, "file", file);
1817 return opts;
1818 }
1819
1820 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1821 {
1822 DriveInfo *dinfo;
1823
1824 /* seek interface, bus and unit */
1825
1826 TAILQ_FOREACH(dinfo, &drives, next) {
1827 if (dinfo->type == type &&
1828 dinfo->bus == bus &&
1829 dinfo->unit == unit)
1830 return dinfo;
1831 }
1832
1833 return NULL;
1834 }
1835
1836 DriveInfo *drive_get_by_id(const char *id)
1837 {
1838 DriveInfo *dinfo;
1839
1840 TAILQ_FOREACH(dinfo, &drives, next) {
1841 if (strcmp(id, dinfo->id))
1842 continue;
1843 return dinfo;
1844 }
1845 return NULL;
1846 }
1847
1848 int drive_get_max_bus(BlockInterfaceType type)
1849 {
1850 int max_bus;
1851 DriveInfo *dinfo;
1852
1853 max_bus = -1;
1854 TAILQ_FOREACH(dinfo, &drives, next) {
1855 if(dinfo->type == type &&
1856 dinfo->bus > max_bus)
1857 max_bus = dinfo->bus;
1858 }
1859 return max_bus;
1860 }
1861
1862 const char *drive_get_serial(BlockDriverState *bdrv)
1863 {
1864 DriveInfo *dinfo;
1865
1866 TAILQ_FOREACH(dinfo, &drives, next) {
1867 if (dinfo->bdrv == bdrv)
1868 return dinfo->serial;
1869 }
1870
1871 return "\0";
1872 }
1873
1874 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1875 {
1876 DriveInfo *dinfo;
1877
1878 TAILQ_FOREACH(dinfo, &drives, next) {
1879 if (dinfo->bdrv == bdrv)
1880 return dinfo->onerror;
1881 }
1882
1883 return BLOCK_ERR_STOP_ENOSPC;
1884 }
1885
1886 static void bdrv_format_print(void *opaque, const char *name)
1887 {
1888 fprintf(stderr, " %s", name);
1889 }
1890
1891 void drive_uninit(BlockDriverState *bdrv)
1892 {
1893 DriveInfo *dinfo;
1894
1895 TAILQ_FOREACH(dinfo, &drives, next) {
1896 if (dinfo->bdrv != bdrv)
1897 continue;
1898 qemu_opts_del(dinfo->opts);
1899 TAILQ_REMOVE(&drives, dinfo, next);
1900 qemu_free(dinfo);
1901 break;
1902 }
1903 }
1904
1905 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1906 int *fatal_error)
1907 {
1908 const char *buf;
1909 const char *file = NULL;
1910 char devname[128];
1911 const char *serial;
1912 const char *mediastr = "";
1913 BlockInterfaceType type;
1914 enum { MEDIA_DISK, MEDIA_CDROM } media;
1915 int bus_id, unit_id;
1916 int cyls, heads, secs, translation;
1917 BlockDriver *drv = NULL;
1918 QEMUMachine *machine = opaque;
1919 int max_devs;
1920 int index;
1921 int cache;
1922 int bdrv_flags, onerror;
1923 const char *devaddr;
1924 DriveInfo *dinfo;
1925 int snapshot = 0;
1926
1927 *fatal_error = 1;
1928
1929 translation = BIOS_ATA_TRANSLATION_AUTO;
1930 cache = 1;
1931
1932 if (machine->use_scsi) {
1933 type = IF_SCSI;
1934 max_devs = MAX_SCSI_DEVS;
1935 pstrcpy(devname, sizeof(devname), "scsi");
1936 } else {
1937 type = IF_IDE;
1938 max_devs = MAX_IDE_DEVS;
1939 pstrcpy(devname, sizeof(devname), "ide");
1940 }
1941 media = MEDIA_DISK;
1942
1943 /* extract parameters */
1944 bus_id = qemu_opt_get_number(opts, "bus", 0);
1945 unit_id = qemu_opt_get_number(opts, "unit", -1);
1946 index = qemu_opt_get_number(opts, "index", -1);
1947
1948 cyls = qemu_opt_get_number(opts, "cyls", 0);
1949 heads = qemu_opt_get_number(opts, "heads", 0);
1950 secs = qemu_opt_get_number(opts, "secs", 0);
1951
1952 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1953
1954 file = qemu_opt_get(opts, "file");
1955 serial = qemu_opt_get(opts, "serial");
1956
1957 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1958 pstrcpy(devname, sizeof(devname), buf);
1959 if (!strcmp(buf, "ide")) {
1960 type = IF_IDE;
1961 max_devs = MAX_IDE_DEVS;
1962 } else if (!strcmp(buf, "scsi")) {
1963 type = IF_SCSI;
1964 max_devs = MAX_SCSI_DEVS;
1965 } else if (!strcmp(buf, "floppy")) {
1966 type = IF_FLOPPY;
1967 max_devs = 0;
1968 } else if (!strcmp(buf, "pflash")) {
1969 type = IF_PFLASH;
1970 max_devs = 0;
1971 } else if (!strcmp(buf, "mtd")) {
1972 type = IF_MTD;
1973 max_devs = 0;
1974 } else if (!strcmp(buf, "sd")) {
1975 type = IF_SD;
1976 max_devs = 0;
1977 } else if (!strcmp(buf, "virtio")) {
1978 type = IF_VIRTIO;
1979 max_devs = 0;
1980 } else if (!strcmp(buf, "xen")) {
1981 type = IF_XEN;
1982 max_devs = 0;
1983 } else if (!strcmp(buf, "none")) {
1984 type = IF_NONE;
1985 max_devs = 0;
1986 } else {
1987 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1988 return NULL;
1989 }
1990 }
1991
1992 if (cyls || heads || secs) {
1993 if (cyls < 1 || cyls > 16383) {
1994 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1995 return NULL;
1996 }
1997 if (heads < 1 || heads > 16) {
1998 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1999 return NULL;
2000 }
2001 if (secs < 1 || secs > 63) {
2002 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2003 return NULL;
2004 }
2005 }
2006
2007 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2008 if (!cyls) {
2009 fprintf(stderr,
2010 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2011 buf);
2012 return NULL;
2013 }
2014 if (!strcmp(buf, "none"))
2015 translation = BIOS_ATA_TRANSLATION_NONE;
2016 else if (!strcmp(buf, "lba"))
2017 translation = BIOS_ATA_TRANSLATION_LBA;
2018 else if (!strcmp(buf, "auto"))
2019 translation = BIOS_ATA_TRANSLATION_AUTO;
2020 else {
2021 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2022 return NULL;
2023 }
2024 }
2025
2026 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2027 if (!strcmp(buf, "disk")) {
2028 media = MEDIA_DISK;
2029 } else if (!strcmp(buf, "cdrom")) {
2030 if (cyls || secs || heads) {
2031 fprintf(stderr,
2032 "qemu: '%s' invalid physical CHS format\n", buf);
2033 return NULL;
2034 }
2035 media = MEDIA_CDROM;
2036 } else {
2037 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2038 return NULL;
2039 }
2040 }
2041
2042 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2043 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2044 cache = 0;
2045 else if (!strcmp(buf, "writethrough"))
2046 cache = 1;
2047 else if (!strcmp(buf, "writeback"))
2048 cache = 2;
2049 else {
2050 fprintf(stderr, "qemu: invalid cache option\n");
2051 return NULL;
2052 }
2053 }
2054
2055 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2056 if (strcmp(buf, "?") == 0) {
2057 fprintf(stderr, "qemu: Supported formats:");
2058 bdrv_iterate_format(bdrv_format_print, NULL);
2059 fprintf(stderr, "\n");
2060 return NULL;
2061 }
2062 drv = bdrv_find_format(buf);
2063 if (!drv) {
2064 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2065 return NULL;
2066 }
2067 }
2068
2069 onerror = BLOCK_ERR_STOP_ENOSPC;
2070 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2071 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2072 fprintf(stderr, "werror is no supported by this format\n");
2073 return NULL;
2074 }
2075 if (!strcmp(buf, "ignore"))
2076 onerror = BLOCK_ERR_IGNORE;
2077 else if (!strcmp(buf, "enospc"))
2078 onerror = BLOCK_ERR_STOP_ENOSPC;
2079 else if (!strcmp(buf, "stop"))
2080 onerror = BLOCK_ERR_STOP_ANY;
2081 else if (!strcmp(buf, "report"))
2082 onerror = BLOCK_ERR_REPORT;
2083 else {
2084 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2085 return NULL;
2086 }
2087 }
2088
2089 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2090 if (type != IF_VIRTIO) {
2091 fprintf(stderr, "addr is not supported\n");
2092 return NULL;
2093 }
2094 }
2095
2096 /* compute bus and unit according index */
2097
2098 if (index != -1) {
2099 if (bus_id != 0 || unit_id != -1) {
2100 fprintf(stderr,
2101 "qemu: index cannot be used with bus and unit\n");
2102 return NULL;
2103 }
2104 if (max_devs == 0)
2105 {
2106 unit_id = index;
2107 bus_id = 0;
2108 } else {
2109 unit_id = index % max_devs;
2110 bus_id = index / max_devs;
2111 }
2112 }
2113
2114 /* if user doesn't specify a unit_id,
2115 * try to find the first free
2116 */
2117
2118 if (unit_id == -1) {
2119 unit_id = 0;
2120 while (drive_get(type, bus_id, unit_id) != NULL) {
2121 unit_id++;
2122 if (max_devs && unit_id >= max_devs) {
2123 unit_id -= max_devs;
2124 bus_id++;
2125 }
2126 }
2127 }
2128
2129 /* check unit id */
2130
2131 if (max_devs && unit_id >= max_devs) {
2132 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2133 unit_id, max_devs - 1);
2134 return NULL;
2135 }
2136
2137 /*
2138 * ignore multiple definitions
2139 */
2140
2141 if (drive_get(type, bus_id, unit_id) != NULL) {
2142 *fatal_error = 0;
2143 return NULL;
2144 }
2145
2146 /* init */
2147
2148 dinfo = qemu_mallocz(sizeof(*dinfo));
2149 if ((buf = qemu_opts_id(opts)) != NULL) {
2150 dinfo->id = qemu_strdup(buf);
2151 } else {
2152 /* no id supplied -> create one */
2153 dinfo->id = qemu_mallocz(32);
2154 if (type == IF_IDE || type == IF_SCSI)
2155 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2156 if (max_devs)
2157 snprintf(dinfo->id, 32, "%s%i%s%i",
2158 devname, bus_id, mediastr, unit_id);
2159 else
2160 snprintf(dinfo->id, 32, "%s%s%i",
2161 devname, mediastr, unit_id);
2162 }
2163 dinfo->bdrv = bdrv_new(dinfo->id);
2164 dinfo->devaddr = devaddr;
2165 dinfo->type = type;
2166 dinfo->bus = bus_id;
2167 dinfo->unit = unit_id;
2168 dinfo->onerror = onerror;
2169 dinfo->opts = opts;
2170 if (serial)
2171 strncpy(dinfo->serial, serial, sizeof(serial));
2172 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2173
2174 switch(type) {
2175 case IF_IDE:
2176 case IF_SCSI:
2177 case IF_XEN:
2178 switch(media) {
2179 case MEDIA_DISK:
2180 if (cyls != 0) {
2181 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2182 bdrv_set_translation_hint(dinfo->bdrv, translation);
2183 }
2184 break;
2185 case MEDIA_CDROM:
2186 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2187 break;
2188 }
2189 break;
2190 case IF_SD:
2191 /* FIXME: This isn't really a floppy, but it's a reasonable
2192 approximation. */
2193 case IF_FLOPPY:
2194 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2195 break;
2196 case IF_PFLASH:
2197 case IF_MTD:
2198 case IF_NONE:
2199 break;
2200 case IF_VIRTIO:
2201 /* add virtio block device */
2202 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2203 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2204 qemu_opt_set(opts, "drive", dinfo->id);
2205 if (devaddr)
2206 qemu_opt_set(opts, "addr", devaddr);
2207 break;
2208 case IF_COUNT:
2209 abort();
2210 }
2211 if (!file) {
2212 *fatal_error = 0;
2213 return NULL;
2214 }
2215 bdrv_flags = 0;
2216 if (snapshot) {
2217 bdrv_flags |= BDRV_O_SNAPSHOT;
2218 cache = 2; /* always use write-back with snapshot */
2219 }
2220 if (cache == 0) /* no caching */
2221 bdrv_flags |= BDRV_O_NOCACHE;
2222 else if (cache == 2) /* write-back */
2223 bdrv_flags |= BDRV_O_CACHE_WB;
2224 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2225 fprintf(stderr, "qemu: could not open disk image %s\n",
2226 file);
2227 return NULL;
2228 }
2229 if (bdrv_key_required(dinfo->bdrv))
2230 autostart = 0;
2231 *fatal_error = 0;
2232 return dinfo;
2233 }
2234
2235 static int drive_init_func(QemuOpts *opts, void *opaque)
2236 {
2237 QEMUMachine *machine = opaque;
2238 int fatal_error = 0;
2239
2240 if (drive_init(opts, machine, &fatal_error) == NULL) {
2241 if (fatal_error)
2242 return 1;
2243 }
2244 return 0;
2245 }
2246
2247 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2248 {
2249 if (NULL == qemu_opt_get(opts, "snapshot")) {
2250 qemu_opt_set(opts, "snapshot", "on");
2251 }
2252 return 0;
2253 }
2254
2255 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2256 {
2257 boot_set_handler = func;
2258 boot_set_opaque = opaque;
2259 }
2260
2261 int qemu_boot_set(const char *boot_devices)
2262 {
2263 if (!boot_set_handler) {
2264 return -EINVAL;
2265 }
2266 return boot_set_handler(boot_set_opaque, boot_devices);
2267 }
2268
2269 static int parse_bootdevices(char *devices)
2270 {
2271 /* We just do some generic consistency checks */
2272 const char *p;
2273 int bitmap = 0;
2274
2275 for (p = devices; *p != '\0'; p++) {
2276 /* Allowed boot devices are:
2277 * a-b: floppy disk drives
2278 * c-f: IDE disk drives
2279 * g-m: machine implementation dependant drives
2280 * n-p: network devices
2281 * It's up to each machine implementation to check if the given boot
2282 * devices match the actual hardware implementation and firmware
2283 * features.
2284 */
2285 if (*p < 'a' || *p > 'p') {
2286 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2287 exit(1);
2288 }
2289 if (bitmap & (1 << (*p - 'a'))) {
2290 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2291 exit(1);
2292 }
2293 bitmap |= 1 << (*p - 'a');
2294 }
2295 return bitmap;
2296 }
2297
2298 static void restore_boot_devices(void *opaque)
2299 {
2300 char *standard_boot_devices = opaque;
2301
2302 qemu_boot_set(standard_boot_devices);
2303
2304 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2305 qemu_free(standard_boot_devices);
2306 }
2307
2308 static void numa_add(const char *optarg)
2309 {
2310 char option[128];
2311 char *endptr;
2312 unsigned long long value, endvalue;
2313 int nodenr;
2314
2315 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2316 if (!strcmp(option, "node")) {
2317 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2318 nodenr = nb_numa_nodes;
2319 } else {
2320 nodenr = strtoull(option, NULL, 10);
2321 }
2322
2323 if (get_param_value(option, 128, "mem", optarg) == 0) {
2324 node_mem[nodenr] = 0;
2325 } else {
2326 value = strtoull(option, &endptr, 0);
2327 switch (*endptr) {
2328 case 0: case 'M': case 'm':
2329 value <<= 20;
2330 break;
2331 case 'G': case 'g':
2332 value <<= 30;
2333 break;
2334 }
2335 node_mem[nodenr] = value;
2336 }
2337 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2338 node_cpumask[nodenr] = 0;
2339 } else {
2340 value = strtoull(option, &endptr, 10);
2341 if (value >= 64) {
2342 value = 63;
2343 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2344 } else {
2345 if (*endptr == '-') {
2346 endvalue = strtoull(endptr+1, &endptr, 10);
2347 if (endvalue >= 63) {
2348 endvalue = 62;
2349 fprintf(stderr,
2350 "only 63 CPUs in NUMA mode supported.\n");
2351 }
2352 value = (1 << (endvalue + 1)) - (1 << value);
2353 } else {
2354 value = 1 << value;
2355 }
2356 }
2357 node_cpumask[nodenr] = value;
2358 }
2359 nb_numa_nodes++;
2360 }
2361 return;
2362 }
2363
2364 /***********************************************************/
2365 /* USB devices */
2366
2367 static USBPort *used_usb_ports;
2368 static USBPort *free_usb_ports;
2369
2370 /* ??? Maybe change this to register a hub to keep track of the topology. */
2371 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2372 usb_attachfn attach)
2373 {
2374 port->opaque = opaque;
2375 port->index = index;
2376 port->attach = attach;
2377 port->next = free_usb_ports;
2378 free_usb_ports = port;
2379 }
2380
2381 int usb_device_add_dev(USBDevice *dev)
2382 {
2383 USBPort *port;
2384
2385 /* Find a USB port to add the device to. */
2386 port = free_usb_ports;
2387 if (!port->next) {
2388 USBDevice *hub;
2389
2390 /* Create a new hub and chain it on. */
2391 free_usb_ports = NULL;
2392 port->next = used_usb_ports;
2393 used_usb_ports = port;
2394
2395 hub = usb_hub_init(VM_USB_HUB_SIZE);
2396 usb_attach(port, hub);
2397 port = free_usb_ports;
2398 }
2399
2400 free_usb_ports = port->next;
2401 port->next = used_usb_ports;
2402 used_usb_ports = port;
2403 usb_attach(port, dev);
2404 return 0;
2405 }
2406
2407 static void usb_msd_password_cb(void *opaque, int err)
2408 {
2409 USBDevice *dev = opaque;
2410
2411 if (!err)
2412 usb_device_add_dev(dev);
2413 else
2414 dev->handle_destroy(dev);
2415 }
2416
2417 static int usb_device_add(const char *devname, int is_hotplug)
2418 {
2419 const char *p;
2420 USBDevice *dev;
2421
2422 if (!free_usb_ports)
2423 return -1;
2424
2425 if (strstart(devname, "host:", &p)) {
2426 dev = usb_host_device_open(p);
2427 } else if (!strcmp(devname, "mouse")) {
2428 dev = usb_mouse_init();
2429 } else if (!strcmp(devname, "tablet")) {
2430 dev = usb_tablet_init();
2431 } else if (!strcmp(devname, "keyboard")) {
2432 dev = usb_keyboard_init();
2433 } else if (strstart(devname, "disk:", &p)) {
2434 BlockDriverState *bs;
2435
2436 dev = usb_msd_init(p);
2437 if (!dev)
2438 return -1;
2439 bs = usb_msd_get_bdrv(dev);
2440 if (bdrv_key_required(bs)) {
2441 autostart = 0;
2442 if (is_hotplug) {
2443 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2444 dev);
2445 return 0;
2446 }
2447 }
2448 } else if (!strcmp(devname, "wacom-tablet")) {
2449 dev = usb_wacom_init();
2450 } else if (strstart(devname, "serial:", &p)) {
2451 dev = usb_serial_init(p);
2452 #ifdef CONFIG_BRLAPI
2453 } else if (!strcmp(devname, "braille")) {
2454 dev = usb_baum_init();
2455 #endif
2456 } else if (strstart(devname, "net:", &p)) {
2457 int nic = nb_nics;
2458
2459 if (net_client_init(NULL, "nic", p) < 0)
2460 return -1;
2461 nd_table[nic].model = "usb";
2462 dev = usb_net_init(&nd_table[nic]);
2463 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2464 dev = usb_bt_init(devname[2] ? hci_init(p) :
2465 bt_new_hci(qemu_find_bt_vlan(0)));
2466 } else {
2467 return -1;
2468 }
2469 if (!dev)
2470 return -1;
2471
2472 return usb_device_add_dev(dev);
2473 }
2474
2475 int usb_device_del_addr(int bus_num, int addr)
2476 {
2477 USBPort *port;
2478 USBPort **lastp;
2479 USBDevice *dev;
2480
2481 if (!used_usb_ports)
2482 return -1;
2483
2484 if (bus_num != 0)
2485 return -1;
2486
2487 lastp = &used_usb_ports;
2488 port = used_usb_ports;
2489 while (port && port->dev->addr != addr) {
2490 lastp = &port->next;
2491 port = port->next;
2492 }
2493
2494 if (!port)
2495 return -1;
2496
2497 dev = port->dev;
2498 *lastp = port->next;
2499 usb_attach(port, NULL);
2500 dev->handle_destroy(dev);
2501 port->next = free_usb_ports;
2502 free_usb_ports = port;
2503 return 0;
2504 }
2505
2506 static int usb_device_del(const char *devname)
2507 {
2508 int bus_num, addr;
2509 const char *p;
2510
2511 if (strstart(devname, "host:", &p))
2512 return usb_host_device_close(p);
2513
2514 if (!used_usb_ports)
2515 return -1;
2516
2517 p = strchr(devname, '.');
2518 if (!p)
2519 return -1;
2520 bus_num = strtoul(devname, NULL, 0);
2521 addr = strtoul(p + 1, NULL, 0);
2522
2523 return usb_device_del_addr(bus_num, addr);
2524 }
2525
2526 static int usb_parse(const char *cmdline)
2527 {
2528 return usb_device_add(cmdline, 0);
2529 }
2530
2531 void do_usb_add(Monitor *mon, const char *devname)
2532 {
2533 usb_device_add(devname, 1);
2534 }
2535
2536 void do_usb_del(Monitor *mon, const char *devname)
2537 {
2538 usb_device_del(devname);
2539 }
2540
2541 void usb_info(Monitor *mon)
2542 {
2543 USBDevice *dev;
2544 USBPort *port;
2545 const char *speed_str;
2546
2547 if (!usb_enabled) {
2548 monitor_printf(mon, "USB support not enabled\n");
2549 return;
2550 }
2551
2552 for (port = used_usb_ports; port; port = port->next) {
2553 dev = port->dev;
2554 if (!dev)
2555 continue;
2556 switch(dev->speed) {
2557 case USB_SPEED_LOW:
2558 speed_str = "1.5";
2559 break;
2560 case USB_SPEED_FULL:
2561 speed_str = "12";
2562 break;
2563 case USB_SPEED_HIGH:
2564 speed_str = "480";
2565 break;
2566 default:
2567 speed_str = "?";
2568 break;
2569 }
2570 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2571 0, dev->addr, speed_str, dev->devname);
2572 }
2573 }
2574
2575 /***********************************************************/
2576 /* PCMCIA/Cardbus */
2577
2578 static struct pcmcia_socket_entry_s {
2579 PCMCIASocket *socket;
2580 struct pcmcia_socket_entry_s *next;
2581 } *pcmcia_sockets = 0;
2582
2583 void pcmcia_socket_register(PCMCIASocket *socket)
2584 {
2585 struct pcmcia_socket_entry_s *entry;
2586
2587 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2588 entry->socket = socket;
2589 entry->next = pcmcia_sockets;
2590 pcmcia_sockets = entry;
2591 }
2592
2593 void pcmcia_socket_unregister(PCMCIASocket *socket)
2594 {
2595 struct pcmcia_socket_entry_s *entry, **ptr;
2596
2597 ptr = &pcmcia_sockets;
2598 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2599 if (entry->socket == socket) {
2600 *ptr = entry->next;
2601 qemu_free(entry);
2602 }
2603 }
2604
2605 void pcmcia_info(Monitor *mon)
2606 {
2607 struct pcmcia_socket_entry_s *iter;
2608
2609 if (!pcmcia_sockets)
2610 monitor_printf(mon, "No PCMCIA sockets\n");
2611
2612 for (iter = pcmcia_sockets; iter; iter = iter->next)
2613 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2614 iter->socket->attached ? iter->socket->card_string :
2615 "Empty");
2616 }
2617
2618 /***********************************************************/
2619 /* register display */
2620
2621 struct DisplayAllocator default_allocator = {
2622 defaultallocator_create_displaysurface,
2623 defaultallocator_resize_displaysurface,
2624 defaultallocator_free_displaysurface
2625 };
2626
2627 void register_displaystate(DisplayState *ds)
2628 {
2629 DisplayState **s;
2630 s = &display_state;
2631 while (*s != NULL)
2632 s = &(*s)->next;
2633 ds->next = NULL;
2634 *s = ds;
2635 }
2636
2637 DisplayState *get_displaystate(void)
2638 {
2639 return display_state;
2640 }
2641
2642 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2643 {
2644 if(ds->allocator == &default_allocator) ds->allocator = da;
2645 return ds->allocator;
2646 }
2647
2648 /* dumb display */
2649
2650 static void dumb_display_init(void)
2651 {
2652 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2653 ds->allocator = &default_allocator;
2654 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2655 register_displaystate(ds);
2656 }
2657
2658 /***********************************************************/
2659 /* I/O handling */
2660
2661 typedef struct IOHandlerRecord {
2662 int fd;
2663 IOCanRWHandler *fd_read_poll;
2664 IOHandler *fd_read;
2665 IOHandler *fd_write;
2666 int deleted;
2667 void *opaque;
2668 /* temporary data */
2669 struct pollfd *ufd;
2670 struct IOHandlerRecord *next;
2671 } IOHandlerRecord;
2672
2673 static IOHandlerRecord *first_io_handler;
2674
2675 /* XXX: fd_read_poll should be suppressed, but an API change is
2676 necessary in the character devices to suppress fd_can_read(). */
2677 int qemu_set_fd_handler2(int fd,
2678 IOCanRWHandler *fd_read_poll,
2679 IOHandler *fd_read,
2680 IOHandler *fd_write,
2681 void *opaque)
2682 {
2683 IOHandlerRecord **pioh, *ioh;
2684
2685 if (!fd_read && !fd_write) {
2686 pioh = &first_io_handler;
2687 for(;;) {
2688 ioh = *pioh;
2689 if (ioh == NULL)
2690 break;
2691 if (ioh->fd == fd) {
2692 ioh->deleted = 1;
2693 break;
2694 }
2695 pioh = &ioh->next;
2696 }
2697 } else {
2698 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2699 if (ioh->fd == fd)
2700 goto found;
2701 }
2702 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2703 ioh->next = first_io_handler;
2704 first_io_handler = ioh;
2705 found:
2706 ioh->fd = fd;
2707 ioh->fd_read_poll = fd_read_poll;
2708 ioh->fd_read = fd_read;
2709 ioh->fd_write = fd_write;
2710 ioh->opaque = opaque;
2711 ioh->deleted = 0;
2712 }
2713 return 0;
2714 }
2715
2716 int qemu_set_fd_handler(int fd,
2717 IOHandler *fd_read,
2718 IOHandler *fd_write,
2719 void *opaque)
2720 {
2721 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2722 }
2723
2724 #ifdef _WIN32
2725 /***********************************************************/
2726 /* Polling handling */
2727
2728 typedef struct PollingEntry {
2729 PollingFunc *func;
2730 void *opaque;
2731 struct PollingEntry *next;
2732 } PollingEntry;
2733
2734 static PollingEntry *first_polling_entry;
2735
2736 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2737 {
2738 PollingEntry **ppe, *pe;
2739 pe = qemu_mallocz(sizeof(PollingEntry));
2740 pe->func = func;
2741 pe->opaque = opaque;
2742 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2743 *ppe = pe;
2744 return 0;
2745 }
2746
2747 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2748 {
2749 PollingEntry **ppe, *pe;
2750 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2751 pe = *ppe;
2752 if (pe->func == func && pe->opaque == opaque) {
2753 *ppe = pe->next;
2754 qemu_free(pe);
2755 break;
2756 }
2757 }
2758 }
2759
2760 /***********************************************************/
2761 /* Wait objects support */
2762 typedef struct WaitObjects {
2763 int num;
2764 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2765 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2766 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2767 } WaitObjects;
2768
2769 static WaitObjects wait_objects = {0};
2770
2771 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2772 {
2773 WaitObjects *w = &wait_objects;
2774
2775 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2776 return -1;
2777 w->events[w->num] = handle;
2778 w->func[w->num] = func;
2779 w->opaque[w->num] = opaque;
2780 w->num++;
2781 return 0;
2782 }
2783
2784 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2785 {
2786 int i, found;
2787 WaitObjects *w = &wait_objects;
2788
2789 found = 0;
2790 for (i = 0; i < w->num; i++) {
2791 if (w->events[i] == handle)
2792 found = 1;
2793 if (found) {
2794 w->events[i] = w->events[i + 1];
2795 w->func[i] = w->func[i + 1];
2796 w->opaque[i] = w->opaque[i + 1];
2797 }
2798 }
2799 if (found)
2800 w->num--;
2801 }
2802 #endif
2803
2804 /***********************************************************/
2805 /* ram save/restore */
2806
2807 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2808 {
2809 int v;
2810
2811 v = qemu_get_byte(f);
2812 switch(v) {
2813 case 0:
2814 if (qemu_get_buffer(f, buf, len) != len)
2815 return -EIO;
2816 break;
2817 case 1:
2818 v = qemu_get_byte(f);
2819 memset(buf, v, len);
2820 break;
2821 default:
2822 return -EINVAL;
2823 }
2824
2825 if (qemu_file_has_error(f))
2826 return -EIO;
2827
2828 return 0;
2829 }
2830
2831 static int ram_load_v1(QEMUFile *f, void *opaque)
2832 {
2833 int ret;
2834 ram_addr_t i;
2835
2836 if (qemu_get_be32(f) != last_ram_offset)
2837 return -EINVAL;
2838 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2839 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2840 if (ret)
2841 return ret;
2842 }
2843 return 0;
2844 }
2845
2846 #define BDRV_HASH_BLOCK_SIZE 1024
2847 #define IOBUF_SIZE 4096
2848 #define RAM_CBLOCK_MAGIC 0xfabe
2849
2850 typedef struct RamDecompressState {
2851 z_stream zstream;
2852 QEMUFile *f;
2853 uint8_t buf[IOBUF_SIZE];
2854 } RamDecompressState;
2855
2856 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2857 {
2858 int ret;
2859 memset(s, 0, sizeof(*s));
2860 s->f = f;
2861 ret = inflateInit(&s->zstream);
2862 if (ret != Z_OK)
2863 return -1;
2864 return 0;
2865 }
2866
2867 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2868 {
2869 int ret, clen;
2870
2871 s->zstream.avail_out = len;
2872 s->zstream.next_out = buf;
2873 while (s->zstream.avail_out > 0) {
2874 if (s->zstream.avail_in == 0) {
2875 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2876 return -1;
2877 clen = qemu_get_be16(s->f);
2878 if (clen > IOBUF_SIZE)
2879 return -1;
2880 qemu_get_buffer(s->f, s->buf, clen);
2881 s->zstream.avail_in = clen;
2882 s->zstream.next_in = s->buf;
2883 }
2884 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2885 if (ret != Z_OK && ret != Z_STREAM_END) {
2886 return -1;
2887 }
2888 }
2889 return 0;
2890 }
2891
2892 static void ram_decompress_close(RamDecompressState *s)
2893 {
2894 inflateEnd(&s->zstream);
2895 }
2896
2897 #define RAM_SAVE_FLAG_FULL 0x01
2898 #define RAM_SAVE_FLAG_COMPRESS 0x02
2899 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2900 #define RAM_SAVE_FLAG_PAGE 0x08
2901 #define RAM_SAVE_FLAG_EOS 0x10
2902
2903 static int is_dup_page(uint8_t *page, uint8_t ch)
2904 {
2905 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2906 uint32_t *array = (uint32_t *)page;
2907 int i;
2908
2909 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2910 if (array[i] != val)
2911 return 0;
2912 }
2913
2914 return 1;
2915 }
2916
2917 static int ram_save_block(QEMUFile *f)
2918 {
2919 static ram_addr_t current_addr = 0;
2920 ram_addr_t saved_addr = current_addr;
2921 ram_addr_t addr = 0;
2922 int found = 0;
2923
2924 while (addr < last_ram_offset) {
2925 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2926 uint8_t *p;
2927
2928 cpu_physical_memory_reset_dirty(current_addr,
2929 current_addr + TARGET_PAGE_SIZE,
2930 MIGRATION_DIRTY_FLAG);
2931
2932 p = qemu_get_ram_ptr(current_addr);
2933
2934 if (is_dup_page(p, *p)) {
2935 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2936 qemu_put_byte(f, *p);
2937 } else {
2938 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2939 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2940 }
2941
2942 found = 1;
2943 break;
2944 }
2945 addr += TARGET_PAGE_SIZE;
2946 current_addr = (saved_addr + addr) % last_ram_offset;
2947 }
2948
2949 return found;
2950 }
2951
2952 static uint64_t bytes_transferred = 0;
2953
2954 static ram_addr_t ram_save_remaining(void)
2955 {
2956 ram_addr_t addr;
2957 ram_addr_t count = 0;
2958
2959 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2960 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2961 count++;
2962 }
2963
2964 return count;
2965 }
2966
2967 uint64_t ram_bytes_remaining(void)
2968 {
2969 return ram_save_remaining() * TARGET_PAGE_SIZE;
2970 }
2971
2972 uint64_t ram_bytes_transferred(void)
2973 {
2974 return bytes_transferred;
2975 }
2976
2977 uint64_t ram_bytes_total(void)
2978 {
2979 return last_ram_offset;
2980 }
2981
2982 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2983 {
2984 ram_addr_t addr;
2985 uint64_t bytes_transferred_last;
2986 double bwidth = 0;
2987 uint64_t expected_time = 0;
2988
2989 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2990 qemu_file_set_error(f);
2991 return 0;
2992 }
2993
2994 if (stage == 1) {
2995 /* Make sure all dirty bits are set */
2996 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2997 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2998 cpu_physical_memory_set_dirty(addr);
2999 }
3000
3001 /* Enable dirty memory tracking */
3002 cpu_physical_memory_set_dirty_tracking(1);
3003
3004 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3005 }
3006
3007 bytes_transferred_last = bytes_transferred;
3008 bwidth = get_clock();
3009
3010 while (!qemu_file_rate_limit(f)) {
3011 int ret;
3012
3013 ret = ram_save_block(f);
3014 bytes_transferred += ret * TARGET_PAGE_SIZE;
3015 if (ret == 0) /* no more blocks */
3016 break;
3017 }
3018
3019 bwidth = get_clock() - bwidth;
3020 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3021
3022 /* if we haven't transferred anything this round, force expected_time to a
3023 * a very high value, but without crashing */
3024 if (bwidth == 0)
3025 bwidth = 0.000001;
3026
3027 /* try transferring iterative blocks of memory */
3028
3029 if (stage == 3) {
3030
3031 /* flush all remaining blocks regardless of rate limiting */
3032 while (ram_save_block(f) != 0) {
3033 bytes_transferred += TARGET_PAGE_SIZE;
3034 }
3035 cpu_physical_memory_set_dirty_tracking(0);
3036 }
3037
3038 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3039
3040 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3041
3042 return (stage == 2) && (expected_time <= migrate_max_downtime());
3043 }
3044
3045 static int ram_load_dead(QEMUFile *f, void *opaque)
3046 {
3047 RamDecompressState s1, *s = &s1;
3048 uint8_t buf[10];
3049 ram_addr_t i;
3050
3051 if (ram_decompress_open(s, f) < 0)
3052 return -EINVAL;
3053 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3054 if (ram_decompress_buf(s, buf, 1) < 0) {
3055 fprintf(stderr, "Error while reading ram block header\n");
3056 goto error;
3057 }
3058 if (buf[0] == 0) {
3059 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3060 BDRV_HASH_BLOCK_SIZE) < 0) {
3061 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3062 goto error;
3063 }
3064 } else {
3065 error:
3066 printf("Error block header\n");
3067 return -EINVAL;
3068 }
3069 }
3070 ram_decompress_close(s);
3071
3072 return 0;
3073 }
3074
3075 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3076 {
3077 ram_addr_t addr;
3078 int flags;
3079
3080 if (version_id == 1)
3081 return ram_load_v1(f, opaque);
3082
3083 if (version_id == 2) {
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 return ram_load_dead(f, opaque);
3087 }
3088
3089 if (version_id != 3)
3090 return -EINVAL;
3091
3092 do {
3093 addr = qemu_get_be64(f);
3094
3095 flags = addr & ~TARGET_PAGE_MASK;
3096 addr &= TARGET_PAGE_MASK;
3097
3098 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3099 if (addr != last_ram_offset)
3100 return -EINVAL;
3101 }
3102
3103 if (flags & RAM_SAVE_FLAG_FULL) {
3104 if (ram_load_dead(f, opaque) < 0)
3105 return -EINVAL;
3106 }
3107
3108 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3109 uint8_t ch = qemu_get_byte(f);
3110 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3111 #ifndef _WIN32
3112 if (ch == 0 &&
3113 (!kvm_enabled() || kvm_has_sync_mmu())) {
3114 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3115 }
3116 #endif
3117 } else if (flags & RAM_SAVE_FLAG_PAGE)
3118 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3119 } while (!(flags & RAM_SAVE_FLAG_EOS));
3120
3121 return 0;
3122 }
3123
3124 void qemu_service_io(void)
3125 {
3126 qemu_notify_event();
3127 }
3128
3129 /***********************************************************/
3130 /* bottom halves (can be seen as timers which expire ASAP) */
3131
3132 struct QEMUBH {
3133 QEMUBHFunc *cb;
3134 void *opaque;
3135 int scheduled;
3136 int idle;
3137 int deleted;
3138 QEMUBH *next;
3139 };
3140
3141 static QEMUBH *first_bh = NULL;
3142
3143 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3144 {
3145 QEMUBH *bh;
3146 bh = qemu_mallocz(sizeof(QEMUBH));
3147 bh->cb = cb;
3148 bh->opaque = opaque;
3149 bh->next = first_bh;
3150 first_bh = bh;
3151 return bh;
3152 }
3153
3154 int qemu_bh_poll(void)
3155 {
3156 QEMUBH *bh, **bhp;
3157 int ret;
3158
3159 ret = 0;
3160 for (bh = first_bh; bh; bh = bh->next) {
3161 if (!bh->deleted && bh->scheduled) {
3162 bh->scheduled = 0;
3163 if (!bh->idle)
3164 ret = 1;
3165 bh->idle = 0;
3166 bh->cb(bh->opaque);
3167 }
3168 }
3169
3170 /* remove deleted bhs */
3171 bhp = &first_bh;
3172 while (*bhp) {
3173 bh = *bhp;
3174 if (bh->deleted) {
3175 *bhp = bh->next;
3176 qemu_free(bh);
3177 } else
3178 bhp = &bh->next;
3179 }
3180
3181 return ret;
3182 }
3183
3184 void qemu_bh_schedule_idle(QEMUBH *bh)
3185 {
3186 if (bh->scheduled)
3187 return;
3188 bh->scheduled = 1;
3189 bh->idle = 1;
3190 }
3191
3192 void qemu_bh_schedule(QEMUBH *bh)
3193 {
3194 if (bh->scheduled)
3195 return;
3196 bh->scheduled = 1;
3197 bh->idle = 0;
3198 /* stop the currently executing CPU to execute the BH ASAP */
3199 qemu_notify_event();
3200 }
3201
3202 void qemu_bh_cancel(QEMUBH *bh)
3203 {
3204 bh->scheduled = 0;
3205 }
3206
3207 void qemu_bh_delete(QEMUBH *bh)
3208 {
3209 bh->scheduled = 0;
3210 bh->deleted = 1;
3211 }
3212
3213 static void qemu_bh_update_timeout(int *timeout)
3214 {
3215 QEMUBH *bh;
3216
3217 for (bh = first_bh; bh; bh = bh->next) {
3218 if (!bh->deleted && bh->scheduled) {
3219 if (bh->idle) {
3220 /* idle bottom halves will be polled at least
3221 * every 10ms */
3222 *timeout = MIN(10, *timeout);
3223 } else {
3224 /* non-idle bottom halves will be executed
3225 * immediately */
3226 *timeout = 0;
3227 break;
3228 }
3229 }
3230 }
3231 }
3232
3233 /***********************************************************/
3234 /* machine registration */
3235
3236 static QEMUMachine *first_machine = NULL;
3237 QEMUMachine *current_machine = NULL;
3238
3239 int qemu_register_machine(QEMUMachine *m)
3240 {
3241 QEMUMachine **pm;
3242 pm = &first_machine;
3243 while (*pm != NULL)
3244 pm = &(*pm)->next;
3245 m->next = NULL;
3246 *pm = m;
3247 return 0;
3248 }
3249
3250 static QEMUMachine *find_machine(const char *name)
3251 {
3252 QEMUMachine *m;
3253
3254 for(m = first_machine; m != NULL; m = m->next) {
3255 if (!strcmp(m->name, name))
3256 return m;
3257 if (m->alias && !strcmp(m->alias, name))
3258 return m;
3259 }
3260 return NULL;
3261 }
3262
3263 static QEMUMachine *find_default_machine(void)
3264 {
3265 QEMUMachine *m;
3266
3267 for(m = first_machine; m != NULL; m = m->next) {
3268 if (m->is_default) {
3269 return m;
3270 }
3271 }
3272 return NULL;
3273 }
3274
3275 /***********************************************************/
3276 /* main execution loop */
3277
3278 static void gui_update(void *opaque)
3279 {
3280 uint64_t interval = GUI_REFRESH_INTERVAL;
3281 DisplayState *ds = opaque;
3282 DisplayChangeListener *dcl = ds->listeners;
3283
3284 dpy_refresh(ds);
3285
3286 while (dcl != NULL) {
3287 if (dcl->gui_timer_interval &&
3288 dcl->gui_timer_interval < interval)
3289 interval = dcl->gui_timer_interval;
3290 dcl = dcl->next;
3291 }
3292 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3293 }
3294
3295 static void nographic_update(void *opaque)
3296 {
3297 uint64_t interval = GUI_REFRESH_INTERVAL;
3298
3299 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3300 }
3301
3302 struct vm_change_state_entry {
3303 VMChangeStateHandler *cb;
3304 void *opaque;
3305 LIST_ENTRY (vm_change_state_entry) entries;
3306 };
3307
3308 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3309
3310 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3311 void *opaque)
3312 {
3313 VMChangeStateEntry *e;
3314
3315 e = qemu_mallocz(sizeof (*e));
3316
3317 e->cb = cb;
3318 e->opaque = opaque;
3319 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3320 return e;
3321 }
3322
3323 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3324 {
3325 LIST_REMOVE (e, entries);
3326 qemu_free (e);
3327 }
3328
3329 static void vm_state_notify(int running, int reason)
3330 {
3331 VMChangeStateEntry *e;
3332
3333 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3334 e->cb(e->opaque, running, reason);
3335 }
3336 }
3337
3338 static void resume_all_vcpus(void);
3339 static void pause_all_vcpus(void);
3340
3341 void vm_start(void)
3342 {
3343 if (!vm_running) {
3344 cpu_enable_ticks();
3345 vm_running = 1;
3346 vm_state_notify(1, 0);
3347 qemu_rearm_alarm_timer(alarm_timer);
3348 resume_all_vcpus();
3349 }
3350 }
3351
3352 /* reset/shutdown handler */
3353
3354 typedef struct QEMUResetEntry {
3355 TAILQ_ENTRY(QEMUResetEntry) entry;
3356 QEMUResetHandler *func;
3357 void *opaque;
3358 } QEMUResetEntry;
3359
3360 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3361 TAILQ_HEAD_INITIALIZER(reset_handlers);
3362 static int reset_requested;
3363 static int shutdown_requested;
3364 static int powerdown_requested;
3365 static int debug_requested;
3366 static int vmstop_requested;
3367
3368 int qemu_shutdown_requested(void)
3369 {
3370 int r = shutdown_requested;
3371 shutdown_requested = 0;
3372 return r;
3373 }
3374
3375 int qemu_reset_requested(void)
3376 {
3377 int r = reset_requested;
3378 reset_requested = 0;
3379 return r;
3380 }
3381
3382 int qemu_powerdown_requested(void)
3383 {
3384 int r = powerdown_requested;
3385 powerdown_requested = 0;
3386 return r;
3387 }
3388
3389 static int qemu_debug_requested(void)
3390 {
3391 int r = debug_requested;
3392 debug_requested = 0;
3393 return r;
3394 }
3395
3396 static int qemu_vmstop_requested(void)
3397 {
3398 int r = vmstop_requested;
3399 vmstop_requested = 0;
3400 return r;
3401 }
3402
3403 static void do_vm_stop(int reason)
3404 {
3405 if (vm_running) {
3406 cpu_disable_ticks();
3407 vm_running = 0;
3408 pause_all_vcpus();
3409 vm_state_notify(0, reason);
3410 }
3411 }
3412
3413 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3414 {
3415 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3416
3417 re->func = func;
3418 re->opaque = opaque;
3419 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3420 }
3421
3422 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3423 {
3424 QEMUResetEntry *re;
3425
3426 TAILQ_FOREACH(re, &reset_handlers, entry) {
3427 if (re->func == func && re->opaque == opaque) {
3428 TAILQ_REMOVE(&reset_handlers, re, entry);
3429 qemu_free(re);
3430 return;
3431 }
3432 }
3433 }
3434
3435 void qemu_system_reset(void)
3436 {
3437 QEMUResetEntry *re, *nre;
3438
3439 /* reset all devices */
3440 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3441 re->func(re->opaque);
3442 }
3443 }
3444
3445 void qemu_system_reset_request(void)
3446 {
3447 if (no_reboot) {
3448 shutdown_requested = 1;
3449 } else {
3450 reset_requested = 1;
3451 }
3452 qemu_notify_event();
3453 }
3454
3455 void qemu_system_shutdown_request(void)
3456 {
3457 shutdown_requested = 1;
3458 qemu_notify_event();
3459 }
3460
3461 void qemu_system_powerdown_request(void)
3462 {
3463 powerdown_requested = 1;
3464 qemu_notify_event();
3465 }
3466
3467 #ifdef CONFIG_IOTHREAD
3468 static void qemu_system_vmstop_request(int reason)
3469 {
3470 vmstop_requested = reason;
3471 qemu_notify_event();
3472 }
3473 #endif
3474
3475 #ifndef _WIN32
3476 static int io_thread_fd = -1;
3477
3478 static void qemu_event_increment(void)
3479 {
3480 static const char byte = 0;
3481
3482 if (io_thread_fd == -1)
3483 return;
3484
3485 write(io_thread_fd, &byte, sizeof(byte));
3486 }
3487
3488 static void qemu_event_read(void *opaque)
3489 {
3490 int fd = (unsigned long)opaque;
3491 ssize_t len;
3492
3493 /* Drain the notify pipe */
3494 do {
3495 char buffer[512];
3496 len = read(fd, buffer, sizeof(buffer));
3497 } while ((len == -1 && errno == EINTR) || len > 0);
3498 }
3499
3500 static int qemu_event_init(void)
3501 {
3502 int err;
3503 int fds[2];
3504
3505 err = pipe(fds);
3506 if (err == -1)
3507 return -errno;
3508
3509 err = fcntl_setfl(fds[0], O_NONBLOCK);
3510 if (err < 0)
3511 goto fail;
3512
3513 err = fcntl_setfl(fds[1], O_NONBLOCK);
3514 if (err < 0)
3515 goto fail;
3516
3517 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3518 (void *)(unsigned long)fds[0]);
3519
3520 io_thread_fd = fds[1];
3521 return 0;
3522
3523 fail:
3524 close(fds[0]);
3525 close(fds[1]);
3526 return err;
3527 }
3528 #else
3529 HANDLE qemu_event_handle;
3530
3531 static void dummy_event_handler(void *opaque)
3532 {
3533 }
3534
3535 static int qemu_event_init(void)
3536 {
3537 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3538 if (!qemu_event_handle) {
3539 perror("Failed CreateEvent");
3540 return -1;
3541 }
3542 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3543 return 0;
3544 }
3545
3546 static void qemu_event_increment(void)
3547 {
3548 SetEvent(qemu_event_handle);
3549 }
3550 #endif
3551
3552 static int cpu_can_run(CPUState *env)
3553 {
3554 if (env->stop)
3555 return 0;
3556 if (env->stopped)
3557 return 0;
3558 return 1;
3559 }
3560
3561 #ifndef CONFIG_IOTHREAD
3562 static int qemu_init_main_loop(void)
3563 {
3564 return qemu_event_init();
3565 }
3566
3567 void qemu_init_vcpu(void *_env)
3568 {
3569 CPUState *env = _env;
3570
3571 if (kvm_enabled())
3572 kvm_init_vcpu(env);
3573 return;
3574 }
3575
3576 int qemu_cpu_self(void *env)
3577 {
3578 return 1;
3579 }
3580
3581 static void resume_all_vcpus(void)
3582 {
3583 }
3584
3585 static void pause_all_vcpus(void)
3586 {
3587 }
3588
3589 void qemu_cpu_kick(void *env)
3590 {
3591 return;
3592 }
3593
3594 void qemu_notify_event(void)
3595 {
3596 CPUState *env = cpu_single_env;
3597
3598 if (env) {
3599 cpu_exit(env);
3600 #ifdef USE_KQEMU
3601 if (env->kqemu_enabled)
3602 kqemu_cpu_interrupt(env);
3603 #endif
3604 }
3605 }
3606
3607 #define qemu_mutex_lock_iothread() do { } while (0)
3608 #define qemu_mutex_unlock_iothread() do { } while (0)
3609
3610 void vm_stop(int reason)
3611 {
3612 do_vm_stop(reason);
3613 }
3614
3615 #else /* CONFIG_IOTHREAD */
3616
3617 #include "qemu-thread.h"
3618
3619 QemuMutex qemu_global_mutex;
3620 static QemuMutex qemu_fair_mutex;
3621
3622 static QemuThread io_thread;
3623
3624 static QemuThread *tcg_cpu_thread;
3625 static QemuCond *tcg_halt_cond;
3626
3627 static int qemu_system_ready;
3628 /* cpu creation */
3629 static QemuCond qemu_cpu_cond;
3630 /* system init */
3631 static QemuCond qemu_system_cond;
3632 static QemuCond qemu_pause_cond;
3633
3634 static void block_io_signals(void);
3635 static void unblock_io_signals(void);
3636 static int tcg_has_work(void);
3637
3638 static int qemu_init_main_loop(void)
3639 {
3640 int ret;
3641
3642 ret = qemu_event_init();
3643 if (ret)
3644 return ret;
3645
3646 qemu_cond_init(&qemu_pause_cond);
3647 qemu_mutex_init(&qemu_fair_mutex);
3648 qemu_mutex_init(&qemu_global_mutex);
3649 qemu_mutex_lock(&qemu_global_mutex);
3650
3651 unblock_io_signals();
3652 qemu_thread_self(&io_thread);
3653
3654 return 0;
3655 }
3656
3657 static void qemu_wait_io_event(CPUState *env)
3658 {
3659 while (!tcg_has_work())
3660 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3661
3662 qemu_mutex_unlock(&qemu_global_mutex);
3663
3664 /*
3665 * Users of qemu_global_mutex can be starved, having no chance
3666 * to acquire it since this path will get to it first.
3667 * So use another lock to provide fairness.
3668 */
3669 qemu_mutex_lock(&qemu_fair_mutex);
3670 qemu_mutex_unlock(&qemu_fair_mutex);
3671
3672 qemu_mutex_lock(&qemu_global_mutex);
3673 if (env->stop) {
3674 env->stop = 0;
3675 env->stopped = 1;
3676 qemu_cond_signal(&qemu_pause_cond);
3677 }
3678 }
3679
3680 static int qemu_cpu_exec(CPUState *env);
3681
3682 static void *kvm_cpu_thread_fn(void *arg)
3683 {
3684 CPUState *env = arg;
3685
3686 block_io_signals();
3687 qemu_thread_self(env->thread);
3688
3689 /* signal CPU creation */
3690 qemu_mutex_lock(&qemu_global_mutex);
3691 env->created = 1;
3692 qemu_cond_signal(&qemu_cpu_cond);
3693
3694 /* and wait for machine initialization */
3695 while (!qemu_system_ready)
3696 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3697
3698 while (1) {
3699 if (cpu_can_run(env))
3700 qemu_cpu_exec(env);
3701 qemu_wait_io_event(env);
3702 }
3703
3704 return NULL;
3705 }
3706
3707 static void tcg_cpu_exec(void);
3708
3709 static void *tcg_cpu_thread_fn(void *arg)
3710 {
3711 CPUState *env = arg;
3712
3713 block_io_signals();
3714 qemu_thread_self(env->thread);
3715
3716 /* signal CPU creation */
3717 qemu_mutex_lock(&qemu_global_mutex);
3718 for (env = first_cpu; env != NULL; env = env->next_cpu)
3719 env->created = 1;
3720 qemu_cond_signal(&qemu_cpu_cond);
3721
3722 /* and wait for machine initialization */
3723 while (!qemu_system_ready)
3724 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3725
3726 while (1) {
3727 tcg_cpu_exec();
3728 qemu_wait_io_event(cur_cpu);
3729 }
3730
3731 return NULL;
3732 }
3733
3734 void qemu_cpu_kick(void *_env)
3735 {
3736 CPUState *env = _env;
3737 qemu_cond_broadcast(env->halt_cond);
3738 if (kvm_enabled())
3739 qemu_thread_signal(env->thread, SIGUSR1);
3740 }
3741
3742 int qemu_cpu_self(void *env)
3743 {
3744 return (cpu_single_env != NULL);
3745 }
3746
3747 static void cpu_signal(int sig)
3748 {
3749 if (cpu_single_env)
3750 cpu_exit(cpu_single_env);
3751 }
3752
3753 static void block_io_signals(void)
3754 {
3755 sigset_t set;
3756 struct sigaction sigact;
3757
3758 sigemptyset(&set);
3759 sigaddset(&set, SIGUSR2);
3760 sigaddset(&set, SIGIO);
3761 sigaddset(&set, SIGALRM);
3762 pthread_sigmask(SIG_BLOCK, &set, NULL);
3763
3764 sigemptyset(&set);
3765 sigaddset(&set, SIGUSR1);
3766 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3767
3768 memset(&sigact, 0, sizeof(sigact));
3769 sigact.sa_handler = cpu_signal;
3770 sigaction(SIGUSR1, &sigact, NULL);
3771 }
3772
3773 static void unblock_io_signals(void)
3774 {
3775 sigset_t set;
3776
3777 sigemptyset(&set);
3778 sigaddset(&set, SIGUSR2);
3779 sigaddset(&set, SIGIO);
3780 sigaddset(&set, SIGALRM);
3781 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3782
3783 sigemptyset(&set);
3784 sigaddset(&set, SIGUSR1);
3785 pthread_sigmask(SIG_BLOCK, &set, NULL);
3786 }
3787
3788 static void qemu_signal_lock(unsigned int msecs)
3789 {
3790 qemu_mutex_lock(&qemu_fair_mutex);
3791
3792 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3793 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3794 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3795 break;
3796 }
3797 qemu_mutex_unlock(&qemu_fair_mutex);
3798 }
3799
3800 static void qemu_mutex_lock_iothread(void)
3801 {
3802 if (kvm_enabled()) {
3803 qemu_mutex_lock(&qemu_fair_mutex);
3804 qemu_mutex_lock(&qemu_global_mutex);
3805 qemu_mutex_unlock(&qemu_fair_mutex);
3806 } else
3807 qemu_signal_lock(100);
3808 }
3809
3810 static void qemu_mutex_unlock_iothread(void)
3811 {
3812 qemu_mutex_unlock(&qemu_global_mutex);
3813 }
3814
3815 static int all_vcpus_paused(void)
3816 {
3817 CPUState *penv = first_cpu;
3818
3819 while (penv) {
3820 if (!penv->stopped)
3821 return 0;
3822 penv = (CPUState *)penv->next_cpu;
3823 }
3824
3825 return 1;
3826 }
3827
3828 static void pause_all_vcpus(void)
3829 {
3830 CPUState *penv = first_cpu;
3831
3832 while (penv) {
3833 penv->stop = 1;
3834 qemu_thread_signal(penv->thread, SIGUSR1);
3835 qemu_cpu_kick(penv);
3836 penv = (CPUState *)penv->next_cpu;
3837 }
3838
3839 while (!all_vcpus_paused()) {
3840 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3841 penv = first_cpu;
3842 while (penv) {
3843 qemu_thread_signal(penv->thread, SIGUSR1);
3844 penv = (CPUState *)penv->next_cpu;
3845 }
3846 }
3847 }
3848
3849 static void resume_all_vcpus(void)
3850 {
3851 CPUState *penv = first_cpu;
3852
3853 while (penv) {
3854 penv->stop = 0;
3855 penv->stopped = 0;
3856 qemu_thread_signal(penv->thread, SIGUSR1);
3857 qemu_cpu_kick(penv);
3858 penv = (CPUState *)penv->next_cpu;
3859 }
3860 }
3861
3862 static void tcg_init_vcpu(void *_env)
3863 {
3864 CPUState *env = _env;
3865 /* share a single thread for all cpus with TCG */
3866 if (!tcg_cpu_thread) {
3867 env->thread = qemu_mallocz(sizeof(QemuThread));
3868 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3869 qemu_cond_init(env->halt_cond);
3870 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3871 while (env->created == 0)
3872 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3873 tcg_cpu_thread = env->thread;
3874 tcg_halt_cond = env->halt_cond;
3875 } else {
3876 env->thread = tcg_cpu_thread;
3877 env->halt_cond = tcg_halt_cond;
3878 }
3879 }
3880
3881 static void kvm_start_vcpu(CPUState *env)
3882 {
3883 kvm_init_vcpu(env);
3884 env->thread = qemu_mallocz(sizeof(QemuThread));
3885 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3886 qemu_cond_init(env->halt_cond);
3887 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3888 while (env->created == 0)
3889 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3890 }
3891
3892 void qemu_init_vcpu(void *_env)
3893 {
3894 CPUState *env = _env;
3895
3896 if (kvm_enabled())
3897 kvm_start_vcpu(env);
3898 else
3899 tcg_init_vcpu(env);
3900 }
3901
3902 void qemu_notify_event(void)
3903 {
3904 qemu_event_increment();
3905 }
3906
3907 void vm_stop(int reason)
3908 {
3909 QemuThread me;
3910 qemu_thread_self(&me);
3911
3912 if (!qemu_thread_equal(&me, &io_thread)) {
3913 qemu_system_vmstop_request(reason);
3914 /*
3915 * FIXME: should not return to device code in case
3916 * vm_stop() has been requested.
3917 */
3918 if (cpu_single_env) {
3919 cpu_exit(cpu_single_env);
3920 cpu_single_env->stop = 1;
3921 }
3922 return;
3923 }
3924 do_vm_stop(reason);
3925 }
3926
3927 #endif
3928
3929
3930 #ifdef _WIN32
3931 static void host_main_loop_wait(int *timeout)
3932 {
3933 int ret, ret2, i;
3934 PollingEntry *pe;
3935
3936
3937 /* XXX: need to suppress polling by better using win32 events */
3938 ret = 0;
3939 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3940 ret |= pe->func(pe->opaque);
3941 }
3942 if (ret == 0) {
3943 int err;
3944 WaitObjects *w = &wait_objects;
3945
3946 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3947 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3948 if (w->func[ret - WAIT_OBJECT_0])
3949 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3950
3951 /* Check for additional signaled events */
3952 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3953
3954 /* Check if event is signaled */
3955 ret2 = WaitForSingleObject(w->events[i], 0);
3956 if(ret2 == WAIT_OBJECT_0) {
3957 if (w->func[i])
3958 w->func[i](w->opaque[i]);
3959 } else if (ret2 == WAIT_TIMEOUT) {
3960 } else {
3961 err = GetLastError();
3962 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3963 }
3964 }
3965 } else if (ret == WAIT_TIMEOUT) {
3966 } else {
3967 err = GetLastError();
3968 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3969 }
3970 }
3971
3972 *timeout = 0;
3973 }
3974 #else
3975 static void host_main_loop_wait(int *timeout)
3976 {
3977 }
3978 #endif
3979
3980 void main_loop_wait(int timeout)
3981 {
3982 IOHandlerRecord *ioh;
3983 fd_set rfds, wfds, xfds;
3984 int ret, nfds;
3985 struct timeval tv;
3986
3987 qemu_bh_update_timeout(&timeout);
3988
3989 host_main_loop_wait(&timeout);
3990
3991 /* poll any events */
3992 /* XXX: separate device handlers from system ones */
3993 nfds = -1;
3994 FD_ZERO(&rfds);
3995 FD_ZERO(&wfds);
3996 FD_ZERO(&xfds);
3997 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3998 if (ioh->deleted)
3999 continue;
4000 if (ioh->fd_read &&
4001 (!ioh->fd_read_poll ||
4002 ioh->fd_read_poll(ioh->opaque) != 0)) {
4003 FD_SET(ioh->fd, &rfds);
4004 if (ioh->fd > nfds)
4005 nfds = ioh->fd;
4006 }
4007 if (ioh->fd_write) {
4008 FD_SET(ioh->fd, &wfds);
4009 if (ioh->fd > nfds)
4010 nfds = ioh->fd;
4011 }
4012 }
4013
4014 tv.tv_sec = timeout / 1000;
4015 tv.tv_usec = (timeout % 1000) * 1000;
4016
4017 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4018
4019 qemu_mutex_unlock_iothread();
4020 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4021 qemu_mutex_lock_iothread();
4022 if (ret > 0) {
4023 IOHandlerRecord **pioh;
4024
4025 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4026 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4027 ioh->fd_read(ioh->opaque);
4028 }
4029 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4030 ioh->fd_write(ioh->opaque);
4031 }
4032 }
4033
4034 /* remove deleted IO handlers */
4035 pioh = &first_io_handler;
4036 while (*pioh) {
4037 ioh = *pioh;
4038 if (ioh->deleted) {
4039 *pioh = ioh->next;
4040 qemu_free(ioh);
4041 } else
4042 pioh = &ioh->next;
4043 }
4044 }
4045
4046 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4047
4048 /* rearm timer, if not periodic */
4049 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4050 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4051 qemu_rearm_alarm_timer(alarm_timer);
4052 }
4053
4054 /* vm time timers */
4055 if (vm_running) {
4056 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4057 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4058 qemu_get_clock(vm_clock));
4059 }
4060
4061 /* real time timers */
4062 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4063 qemu_get_clock(rt_clock));
4064
4065 /* Check bottom-halves last in case any of the earlier events triggered
4066 them. */
4067 qemu_bh_poll();
4068
4069 }
4070
4071 static int qemu_cpu_exec(CPUState *env)
4072 {
4073 int ret;
4074 #ifdef CONFIG_PROFILER
4075 int64_t ti;
4076 #endif
4077
4078 #ifdef CONFIG_PROFILER
4079 ti = profile_getclock();
4080 #endif
4081 if (use_icount) {
4082 int64_t count;
4083 int decr;
4084 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4085 env->icount_decr.u16.low = 0;
4086 env->icount_extra = 0;
4087 count = qemu_next_deadline();
4088 count = (count + (1 << icount_time_shift) - 1)
4089 >> icount_time_shift;
4090 qemu_icount += count;
4091 decr = (count > 0xffff) ? 0xffff : count;
4092 count -= decr;
4093 env->icount_decr.u16.low = decr;
4094 env->icount_extra = count;
4095 }
4096 ret = cpu_exec(env);
4097 #ifdef CONFIG_PROFILER
4098 qemu_time += profile_getclock() - ti;
4099 #endif
4100 if (use_icount) {
4101 /* Fold pending instructions back into the
4102 instruction counter, and clear the interrupt flag. */
4103 qemu_icount -= (env->icount_decr.u16.low
4104 + env->icount_extra);
4105 env->icount_decr.u32 = 0;
4106 env->icount_extra = 0;
4107 }
4108 return ret;
4109 }
4110
4111 static void tcg_cpu_exec(void)
4112 {
4113 int ret = 0;
4114
4115 if (next_cpu == NULL)
4116 next_cpu = first_cpu;
4117 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4118 CPUState *env = cur_cpu = next_cpu;
4119
4120 if (!vm_running)
4121 break;
4122 if (timer_alarm_pending) {
4123 timer_alarm_pending = 0;
4124 break;
4125 }
4126 if (cpu_can_run(env))
4127 ret = qemu_cpu_exec(env);
4128 if (ret == EXCP_DEBUG) {
4129 gdb_set_stop_cpu(env);
4130 debug_requested = 1;
4131 break;
4132 }
4133 }
4134 }
4135
4136 static int cpu_has_work(CPUState *env)
4137 {
4138 if (env->stop)
4139 return 1;
4140 if (env->stopped)
4141 return 0;
4142 if (!env->halted)
4143 return 1;
4144 if (qemu_cpu_has_work(env))
4145 return 1;
4146 return 0;
4147 }
4148
4149 static int tcg_has_work(void)
4150 {
4151 CPUState *env;
4152
4153 for (env = first_cpu; env != NULL; env = env->next_cpu)
4154 if (cpu_has_work(env))
4155 return 1;
4156 return 0;
4157 }
4158
4159 static int qemu_calculate_timeout(void)
4160 {
4161 #ifndef CONFIG_IOTHREAD
4162 int timeout;
4163
4164 if (!vm_running)
4165 timeout = 5000;
4166 else if (tcg_has_work())
4167 timeout = 0;
4168 else if (!use_icount)
4169 timeout = 5000;
4170 else {
4171 /* XXX: use timeout computed from timers */
4172 int64_t add;
4173 int64_t delta;
4174 /* Advance virtual time to the next event. */
4175 if (use_icount == 1) {
4176 /* When not using an adaptive execution frequency
4177 we tend to get badly out of sync with real time,
4178 so just delay for a reasonable amount of time. */
4179 delta = 0;
4180 } else {
4181 delta = cpu_get_icount() - cpu_get_clock();
4182 }
4183 if (delta > 0) {
4184 /* If virtual time is ahead of real time then just
4185 wait for IO. */
4186 timeout = (delta / 1000000) + 1;
4187 } else {
4188 /* Wait for either IO to occur or the next
4189 timer event. */
4190 add = qemu_next_deadline();
4191 /* We advance the timer before checking for IO.
4192 Limit the amount we advance so that early IO
4193 activity won't get the guest too far ahead. */
4194 if (add > 10000000)
4195 add = 10000000;
4196 delta += add;
4197 add = (add + (1 << icount_time_shift) - 1)
4198 >> icount_time_shift;
4199 qemu_icount += add;
4200 timeout = delta / 1000000;
4201 if (timeout < 0)
4202 timeout = 0;
4203 }
4204 }
4205
4206 return timeout;
4207 #else /* CONFIG_IOTHREAD */
4208 return 1000;
4209 #endif
4210 }
4211
4212 static int vm_can_run(void)
4213 {
4214 if (powerdown_requested)
4215 return 0;
4216 if (reset_requested)
4217 return 0;
4218 if (shutdown_requested)
4219 return 0;
4220 if (debug_requested)
4221 return 0;
4222 return 1;
4223 }
4224
4225 qemu_irq qemu_system_powerdown;
4226
4227 static void main_loop(void)
4228 {
4229 int r;
4230
4231 #ifdef CONFIG_IOTHREAD
4232 qemu_system_ready = 1;
4233 qemu_cond_broadcast(&qemu_system_cond);
4234 #endif
4235
4236 for (;;) {
4237 do {
4238 #ifdef CONFIG_PROFILER
4239 int64_t ti;
4240 #endif
4241 #ifndef CONFIG_IOTHREAD
4242 tcg_cpu_exec();
4243 #endif
4244 #ifdef CONFIG_PROFILER
4245 ti = profile_getclock();
4246 #endif
4247 main_loop_wait(qemu_calculate_timeout());
4248 #ifdef CONFIG_PROFILER
4249 dev_time += profile_getclock() - ti;
4250 #endif
4251 } while (vm_can_run());
4252
4253 if (qemu_debug_requested())
4254 vm_stop(EXCP_DEBUG);
4255 if (qemu_shutdown_requested()) {
4256 if (no_shutdown) {
4257 vm_stop(0);
4258 no_shutdown = 0;
4259 } else
4260 break;
4261 }
4262 if (qemu_reset_requested()) {
4263 pause_all_vcpus();
4264 qemu_system_reset();
4265 resume_all_vcpus();
4266 }
4267 if (qemu_powerdown_requested()) {
4268 qemu_irq_raise(qemu_system_powerdown);
4269 }
4270 if ((r = qemu_vmstop_requested()))
4271 vm_stop(r);
4272 }
4273 pause_all_vcpus();
4274 }
4275
4276 static void version(void)
4277 {
4278 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4279 }
4280
4281 static void help(int exitcode)
4282 {
4283 version();
4284 printf("usage: %s [options] [disk_image]\n"
4285 "\n"
4286 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4287 "\n"
4288 #define DEF(option, opt_arg, opt_enum, opt_help) \
4289 opt_help
4290 #define DEFHEADING(text) stringify(text) "\n"
4291 #include "qemu-options.h"
4292 #undef DEF
4293 #undef DEFHEADING
4294 #undef GEN_DOCS
4295 "\n"
4296 "During emulation, the following keys are useful:\n"
4297 "ctrl-alt-f toggle full screen\n"
4298 "ctrl-alt-n switch to virtual console 'n'\n"
4299 "ctrl-alt toggle mouse and keyboard grab\n"
4300 "\n"
4301 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4302 ,
4303 "qemu",
4304 DEFAULT_RAM_SIZE,
4305 #ifndef _WIN32
4306 DEFAULT_NETWORK_SCRIPT,
4307 DEFAULT_NETWORK_DOWN_SCRIPT,
4308 #endif
4309 DEFAULT_GDBSTUB_PORT,
4310 "/tmp/qemu.log");
4311 exit(exitcode);
4312 }
4313
4314 #define HAS_ARG 0x0001
4315
4316 enum {
4317 #define DEF(option, opt_arg, opt_enum, opt_help) \
4318 opt_enum,
4319 #define DEFHEADING(text)
4320 #include "qemu-options.h"
4321 #undef DEF
4322 #undef DEFHEADING
4323 #undef GEN_DOCS
4324 };
4325
4326 typedef struct QEMUOption {
4327 const char *name;
4328 int flags;
4329 int index;
4330 } QEMUOption;
4331
4332 static const QEMUOption qemu_options[] = {
4333 { "h", 0, QEMU_OPTION_h },
4334 #define DEF(option, opt_arg, opt_enum, opt_help) \
4335 { option, opt_arg, opt_enum },
4336 #define DEFHEADING(text)
4337 #include "qemu-options.h"
4338 #undef DEF
4339 #undef DEFHEADING
4340 #undef GEN_DOCS
4341 { NULL },
4342 };
4343
4344 #ifdef HAS_AUDIO
4345 struct soundhw soundhw[] = {
4346 #ifdef HAS_AUDIO_CHOICE
4347 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4348 {
4349 "pcspk",
4350 "PC speaker",
4351 0,
4352 1,
4353 { .init_isa = pcspk_audio_init }
4354 },
4355 #endif
4356
4357 #ifdef CONFIG_SB16
4358 {
4359 "sb16",
4360 "Creative Sound Blaster 16",
4361 0,
4362 1,
4363 { .init_isa = SB16_init }
4364 },
4365 #endif
4366
4367 #ifdef CONFIG_CS4231A
4368 {
4369 "cs4231a",
4370 "CS4231A",
4371 0,
4372 1,
4373 { .init_isa = cs4231a_init }
4374 },
4375 #endif
4376
4377 #ifdef CONFIG_ADLIB
4378 {
4379 "adlib",
4380 #ifdef HAS_YMF262
4381 "Yamaha YMF262 (OPL3)",
4382 #else
4383 "Yamaha YM3812 (OPL2)",
4384 #endif
4385 0,
4386 1,
4387 { .init_isa = Adlib_init }
4388 },
4389 #endif
4390
4391 #ifdef CONFIG_GUS
4392 {
4393 "gus",
4394 "Gravis Ultrasound GF1",
4395 0,
4396 1,
4397 { .init_isa = GUS_init }
4398 },
4399 #endif
4400
4401 #ifdef CONFIG_AC97
4402 {
4403 "ac97",
4404 "Intel 82801AA AC97 Audio",
4405 0,
4406 0,
4407 { .init_pci = ac97_init }
4408 },
4409 #endif
4410
4411 #ifdef CONFIG_ES1370
4412 {
4413 "es1370",
4414 "ENSONIQ AudioPCI ES1370",
4415 0,
4416 0,
4417 { .init_pci = es1370_init }
4418 },
4419 #endif
4420
4421 #endif /* HAS_AUDIO_CHOICE */
4422
4423 { NULL, NULL, 0, 0, { NULL } }
4424 };
4425
4426 static void select_soundhw (const char *optarg)
4427 {
4428 struct soundhw *c;
4429
4430 if (*optarg == '?') {
4431 show_valid_cards:
4432
4433 printf ("Valid sound card names (comma separated):\n");
4434 for (c = soundhw; c->name; ++c) {
4435 printf ("%-11s %s\n", c->name, c->descr);
4436 }
4437 printf ("\n-soundhw all will enable all of the above\n");
4438 exit (*optarg != '?');
4439 }
4440 else {
4441 size_t l;
4442 const char *p;
4443 char *e;
4444 int bad_card = 0;
4445
4446 if (!strcmp (optarg, "all")) {
4447 for (c = soundhw; c->name; ++c) {
4448 c->enabled = 1;
4449 }
4450 return;
4451 }
4452
4453 p = optarg;
4454 while (*p) {
4455 e = strchr (p, ',');
4456 l = !e ? strlen (p) : (size_t) (e - p);
4457
4458 for (c = soundhw; c->name; ++c) {
4459 if (!strncmp (c->name, p, l)) {
4460 c->enabled = 1;
4461 break;
4462 }
4463 }
4464
4465 if (!c->name) {
4466 if (l > 80) {
4467 fprintf (stderr,
4468 "Unknown sound card name (too big to show)\n");
4469 }
4470 else {
4471 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4472 (int) l, p);
4473 }
4474 bad_card = 1;
4475 }
4476 p += l + (e != NULL);
4477 }
4478
4479 if (bad_card)
4480 goto show_valid_cards;
4481 }
4482 }
4483 #endif
4484
4485 static void select_vgahw (const char *p)
4486 {
4487 const char *opts;
4488
4489 vga_interface_type = VGA_NONE;
4490 if (strstart(p, "std", &opts)) {
4491 vga_interface_type = VGA_STD;
4492 } else if (strstart(p, "cirrus", &opts)) {
4493 vga_interface_type = VGA_CIRRUS;
4494 } else if (strstart(p, "vmware", &opts)) {
4495 vga_interface_type = VGA_VMWARE;
4496 } else if (strstart(p, "xenfb", &opts)) {
4497 vga_interface_type = VGA_XENFB;
4498 } else if (!strstart(p, "none", &opts)) {
4499 invalid_vga:
4500 fprintf(stderr, "Unknown vga type: %s\n", p);
4501 exit(1);
4502 }
4503 while (*opts) {
4504 const char *nextopt;
4505
4506 if (strstart(opts, ",retrace=", &nextopt)) {
4507 opts = nextopt;
4508 if (strstart(opts, "dumb", &nextopt))
4509 vga_retrace_method = VGA_RETRACE_DUMB;
4510 else if (strstart(opts, "precise", &nextopt))
4511 vga_retrace_method = VGA_RETRACE_PRECISE;
4512 else goto invalid_vga;
4513 } else goto invalid_vga;
4514 opts = nextopt;
4515 }
4516 }
4517
4518 #ifdef TARGET_I386
4519 static int balloon_parse(const char *arg)
4520 {
4521 char buf[128];
4522 const char *p;
4523
4524 if (!strcmp(arg, "none")) {
4525 virtio_balloon = 0;
4526 } else if (!strncmp(arg, "virtio", 6)) {
4527 virtio_balloon = 1;
4528 if (arg[6] == ',') {
4529 p = arg + 7;
4530 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4531 virtio_balloon_devaddr = strdup(buf);
4532 }
4533 }
4534 } else {
4535 return -1;
4536 }
4537 return 0;
4538 }
4539 #endif
4540
4541 #ifdef _WIN32
4542 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4543 {
4544 exit(STATUS_CONTROL_C_EXIT);
4545 return TRUE;
4546 }
4547 #endif
4548
4549 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4550 {
4551 int ret;
4552
4553 if(strlen(str) != 36)
4554 return -1;
4555
4556 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4557 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4558 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4559
4560 if(ret != 16)
4561 return -1;
4562
4563 #ifdef TARGET_I386
4564 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4565 #endif
4566
4567 return 0;
4568 }
4569
4570 #define MAX_NET_CLIENTS 32
4571
4572 #ifndef _WIN32
4573
4574 static void termsig_handler(int signal)
4575 {
4576 qemu_system_shutdown_request();
4577 }
4578
4579 static void sigchld_handler(int signal)
4580 {
4581 waitpid(-1, NULL, WNOHANG);
4582 }
4583
4584 static void sighandler_setup(void)
4585 {
4586 struct sigaction act;
4587
4588 memset(&act, 0, sizeof(act));
4589 act.sa_handler = termsig_handler;
4590 sigaction(SIGINT, &act, NULL);
4591 sigaction(SIGHUP, &act, NULL);
4592 sigaction(SIGTERM, &act, NULL);
4593
4594 act.sa_handler = sigchld_handler;
4595 act.sa_flags = SA_NOCLDSTOP;
4596 sigaction(SIGCHLD, &act, NULL);
4597 }
4598
4599 #endif
4600
4601 #ifdef _WIN32
4602 /* Look for support files in the same directory as the executable. */
4603 static char *find_datadir(const char *argv0)
4604 {
4605 char *p;
4606 char buf[MAX_PATH];
4607 DWORD len;
4608
4609 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4610 if (len == 0) {
4611 return NULL;
4612 }
4613
4614 buf[len] = 0;
4615 p = buf + len - 1;
4616 while (p != buf && *p != '\\')
4617 p--;
4618 *p = 0;
4619 if (access(buf, R_OK) == 0) {
4620 return qemu_strdup(buf);
4621 }
4622 return NULL;
4623 }
4624 #else /* !_WIN32 */
4625
4626 /* Find a likely location for support files using the location of the binary.
4627 For installed binaries this will be "$bindir/../share/qemu". When
4628 running from the build tree this will be "$bindir/../pc-bios". */
4629 #define SHARE_SUFFIX "/share/qemu"
4630 #define BUILD_SUFFIX "/pc-bios"
4631 static char *find_datadir(const char *argv0)
4632 {
4633 char *dir;
4634 char *p = NULL;
4635 char *res;
4636 #ifdef PATH_MAX
4637 char buf[PATH_MAX];
4638 #endif
4639 size_t max_len;
4640
4641 #if defined(__linux__)
4642 {
4643 int len;
4644 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4645 if (len > 0) {
4646 buf[len] = 0;
4647 p = buf;
4648 }
4649 }
4650 #elif defined(__FreeBSD__)
4651 {
4652 int len;
4653 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4654 if (len > 0) {
4655 buf[len] = 0;
4656 p = buf;
4657 }
4658 }
4659 #endif
4660 /* If we don't have any way of figuring out the actual executable
4661 location then try argv[0]. */
4662 if (!p) {
4663 #ifdef PATH_MAX
4664 p = buf;
4665 #endif
4666 p = realpath(argv0, p);
4667 if (!p) {
4668 return NULL;
4669 }
4670 }
4671 dir = dirname(p);
4672 dir = dirname(dir);
4673
4674 max_len = strlen(dir) +
4675 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4676 res = qemu_mallocz(max_len);
4677 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4678 if (access(res, R_OK)) {
4679 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4680 if (access(res, R_OK)) {
4681 qemu_free(res);
4682 res = NULL;
4683 }
4684 }
4685 #ifndef PATH_MAX
4686 free(p);
4687 #endif
4688 return res;
4689 }
4690 #undef SHARE_SUFFIX
4691 #undef BUILD_SUFFIX
4692 #endif
4693
4694 char *qemu_find_file(int type, const char *name)
4695 {
4696 int len;
4697 const char *subdir;
4698 char *buf;
4699
4700 /* If name contains path separators then try it as a straight path. */
4701 if ((strchr(name, '/') || strchr(name, '\\'))
4702 && access(name, R_OK) == 0) {
4703 return strdup(name);
4704 }
4705 switch (type) {
4706 case QEMU_FILE_TYPE_BIOS:
4707 subdir = "";
4708 break;
4709 case QEMU_FILE_TYPE_KEYMAP:
4710 subdir = "keymaps/";
4711 break;
4712 default:
4713 abort();
4714 }
4715 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4716 buf = qemu_mallocz(len);
4717 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4718 if (access(buf, R_OK)) {
4719 qemu_free(buf);
4720 return NULL;
4721 }
4722 return buf;
4723 }
4724
4725 static int device_init_func(QemuOpts *opts, void *opaque)
4726 {
4727 DeviceState *dev;
4728
4729 dev = qdev_device_add(opts);
4730 if (!dev)
4731 return -1;
4732 return 0;
4733 }
4734
4735 struct device_config {
4736 enum {
4737 DEV_USB, /* -usbdevice */
4738 DEV_BT, /* -bt */
4739 } type;
4740 const char *cmdline;
4741 TAILQ_ENTRY(device_config) next;
4742 };
4743 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4744
4745 static void add_device_config(int type, const char *cmdline)
4746 {
4747 struct device_config *conf;
4748
4749 conf = qemu_mallocz(sizeof(*conf));
4750 conf->type = type;
4751 conf->cmdline = cmdline;
4752 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4753 }
4754
4755 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4756 {
4757 struct device_config *conf;
4758 int rc;
4759
4760 TAILQ_FOREACH(conf, &device_configs, next) {
4761 if (conf->type != type)
4762 continue;
4763 rc = func(conf->cmdline);
4764 if (0 != rc)
4765 return rc;
4766 }
4767 return 0;
4768 }
4769
4770 int main(int argc, char **argv, char **envp)
4771 {
4772 const char *gdbstub_dev = NULL;
4773 uint32_t boot_devices_bitmap = 0;
4774 int i;
4775 int snapshot, linux_boot, net_boot;
4776 const char *initrd_filename;
4777 const char *kernel_filename, *kernel_cmdline;
4778 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4779 DisplayState *ds;
4780 DisplayChangeListener *dcl;
4781 int cyls, heads, secs, translation;
4782 const char *net_clients[MAX_NET_CLIENTS];
4783 int nb_net_clients;
4784 QemuOpts *hda_opts = NULL, *opts;
4785 int optind;
4786 const char *r, *optarg;
4787 CharDriverState *monitor_hd = NULL;
4788 const char *monitor_device;
4789 const char *serial_devices[MAX_SERIAL_PORTS];
4790 int serial_device_index;
4791 const char *parallel_devices[MAX_PARALLEL_PORTS];
4792 int parallel_device_index;
4793 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4794 int virtio_console_index;
4795 const char *loadvm = NULL;
4796 QEMUMachine *machine;
4797 const char *cpu_model;
4798 #ifndef _WIN32
4799 int fds[2];
4800 #endif
4801 int tb_size;
4802 const char *pid_file = NULL;
4803 const char *incoming = NULL;
4804 #ifndef _WIN32
4805 int fd = 0;
4806 struct passwd *pwd = NULL;
4807 const char *chroot_dir = NULL;
4808 const char *run_as = NULL;
4809 #endif
4810 CPUState *env;
4811 int show_vnc_port = 0;
4812
4813 qemu_cache_utils_init(envp);
4814
4815 LIST_INIT (&vm_change_state_head);
4816 #ifndef _WIN32
4817 {
4818 struct sigaction act;
4819 sigfillset(&act.sa_mask);
4820 act.sa_flags = 0;
4821 act.sa_handler = SIG_IGN;
4822 sigaction(SIGPIPE, &act, NULL);
4823 }
4824 #else
4825 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4826 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4827 QEMU to run on a single CPU */
4828 {
4829 HANDLE h;
4830 DWORD mask, smask;
4831 int i;
4832 h = GetCurrentProcess();
4833 if (GetProcessAffinityMask(h, &mask, &smask)) {
4834 for(i = 0; i < 32; i++) {
4835 if (mask & (1 << i))
4836 break;
4837 }
4838 if (i != 32) {
4839 mask = 1 << i;
4840 SetProcessAffinityMask(h, mask);
4841 }
4842 }
4843 }
4844 #endif
4845
4846 module_call_init(MODULE_INIT_MACHINE);
4847 machine = find_default_machine();
4848 cpu_model = NULL;
4849 initrd_filename = NULL;
4850 ram_size = 0;
4851 snapshot = 0;
4852 kernel_filename = NULL;
4853 kernel_cmdline = "";
4854 cyls = heads = secs = 0;
4855 translation = BIOS_ATA_TRANSLATION_AUTO;
4856 monitor_device = "vc:80Cx24C";
4857
4858 serial_devices[0] = "vc:80Cx24C";
4859 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4860 serial_devices[i] = NULL;
4861 serial_device_index = 0;
4862
4863 parallel_devices[0] = "vc:80Cx24C";
4864 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4865 parallel_devices[i] = NULL;
4866 parallel_device_index = 0;
4867
4868 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4869 virtio_consoles[i] = NULL;
4870 virtio_console_index = 0;
4871
4872 for (i = 0; i < MAX_NODES; i++) {
4873 node_mem[i] = 0;
4874 node_cpumask[i] = 0;
4875 }
4876
4877 nb_net_clients = 0;
4878 nb_numa_nodes = 0;
4879 nb_nics = 0;
4880
4881 tb_size = 0;
4882 autostart= 1;
4883
4884 register_watchdogs();
4885
4886 optind = 1;
4887 for(;;) {
4888 if (optind >= argc)
4889 break;
4890 r = argv[optind];
4891 if (r[0] != '-') {
4892 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4893 } else {
4894 const QEMUOption *popt;
4895
4896 optind++;
4897 /* Treat --foo the same as -foo. */
4898 if (r[1] == '-')
4899 r++;
4900 popt = qemu_options;
4901 for(;;) {
4902 if (!popt->name) {
4903 fprintf(stderr, "%s: invalid option -- '%s'\n",
4904 argv[0], r);
4905 exit(1);
4906 }
4907 if (!strcmp(popt->name, r + 1))
4908 break;
4909 popt++;
4910 }
4911 if (popt->flags & HAS_ARG) {
4912 if (optind >= argc) {
4913 fprintf(stderr, "%s: option '%s' requires an argument\n",
4914 argv[0], r);
4915 exit(1);
4916 }
4917 optarg = argv[optind++];
4918 } else {
4919 optarg = NULL;
4920 }
4921
4922 switch(popt->index) {
4923 case QEMU_OPTION_M:
4924 machine = find_machine(optarg);
4925 if (!machine) {
4926 QEMUMachine *m;
4927 printf("Supported machines are:\n");
4928 for(m = first_machine; m != NULL; m = m->next) {
4929 if (m->alias)
4930 printf("%-10s %s (alias of %s)\n",
4931 m->alias, m->desc, m->name);
4932 printf("%-10s %s%s\n",
4933 m->name, m->desc,
4934 m->is_default ? " (default)" : "");
4935 }
4936 exit(*optarg != '?');
4937 }
4938 break;
4939 case QEMU_OPTION_cpu:
4940 /* hw initialization will check this */
4941 if (*optarg == '?') {
4942 /* XXX: implement xxx_cpu_list for targets that still miss it */
4943 #if defined(cpu_list)
4944 cpu_list(stdout, &fprintf);
4945 #endif
4946 exit(0);
4947 } else {
4948 cpu_model = optarg;
4949 }
4950 break;
4951 case QEMU_OPTION_initrd:
4952 initrd_filename = optarg;
4953 break;
4954 case QEMU_OPTION_hda:
4955 if (cyls == 0)
4956 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4957 else
4958 hda_opts = drive_add(optarg, HD_ALIAS
4959 ",cyls=%d,heads=%d,secs=%d%s",
4960 0, cyls, heads, secs,
4961 translation == BIOS_ATA_TRANSLATION_LBA ?
4962 ",trans=lba" :
4963 translation == BIOS_ATA_TRANSLATION_NONE ?
4964 ",trans=none" : "");
4965 break;
4966 case QEMU_OPTION_hdb:
4967 case QEMU_OPTION_hdc:
4968 case QEMU_OPTION_hdd:
4969 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4970 break;
4971 case QEMU_OPTION_drive:
4972 drive_add(NULL, "%s", optarg);
4973 break;
4974 case QEMU_OPTION_set:
4975 if (qemu_set_option(optarg) != 0)
4976 exit(1);
4977 break;
4978 case QEMU_OPTION_mtdblock:
4979 drive_add(optarg, MTD_ALIAS);
4980 break;
4981 case QEMU_OPTION_sd:
4982 drive_add(optarg, SD_ALIAS);
4983 break;
4984 case QEMU_OPTION_pflash:
4985 drive_add(optarg, PFLASH_ALIAS);
4986 break;
4987 case QEMU_OPTION_snapshot:
4988 snapshot = 1;
4989 break;
4990 case QEMU_OPTION_hdachs:
4991 {
4992 const char *p;
4993 p = optarg;
4994 cyls = strtol(p, (char **)&p, 0);
4995 if (cyls < 1 || cyls > 16383)
4996 goto chs_fail;
4997 if (*p != ',')
4998 goto chs_fail;
4999 p++;
5000 heads = strtol(p, (char **)&p, 0);
5001 if (heads < 1 || heads > 16)
5002 goto chs_fail;
5003 if (*p != ',')
5004 goto chs_fail;
5005 p++;
5006 secs = strtol(p, (char **)&p, 0);
5007 if (secs < 1 || secs > 63)
5008 goto chs_fail;
5009 if (*p == ',') {
5010 p++;
5011 if (!strcmp(p, "none"))
5012 translation = BIOS_ATA_TRANSLATION_NONE;
5013 else if (!strcmp(p, "lba"))
5014 translation = BIOS_ATA_TRANSLATION_LBA;
5015 else if (!strcmp(p, "auto"))
5016 translation = BIOS_ATA_TRANSLATION_AUTO;
5017 else
5018 goto chs_fail;
5019 } else if (*p != '\0') {
5020 chs_fail:
5021 fprintf(stderr, "qemu: invalid physical CHS format\n");
5022 exit(1);
5023 }
5024 if (hda_opts != NULL) {
5025 char num[16];
5026 snprintf(num, sizeof(num), "%d", cyls);
5027 qemu_opt_set(hda_opts, "cyls", num);
5028 snprintf(num, sizeof(num), "%d", heads);
5029 qemu_opt_set(hda_opts, "heads", num);
5030 snprintf(num, sizeof(num), "%d", secs);
5031 qemu_opt_set(hda_opts, "secs", num);
5032 if (translation == BIOS_ATA_TRANSLATION_LBA)
5033 qemu_opt_set(hda_opts, "trans", "lba");
5034 if (translation == BIOS_ATA_TRANSLATION_NONE)
5035 qemu_opt_set(hda_opts, "trans", "none");
5036 }
5037 }
5038 break;
5039 case QEMU_OPTION_numa:
5040 if (nb_numa_nodes >= MAX_NODES) {
5041 fprintf(stderr, "qemu: too many NUMA nodes\n");
5042 exit(1);
5043 }
5044 numa_add(optarg);
5045 break;
5046 case QEMU_OPTION_nographic:
5047 display_type = DT_NOGRAPHIC;
5048 break;
5049 #ifdef CONFIG_CURSES
5050 case QEMU_OPTION_curses:
5051 display_type = DT_CURSES;
5052 break;
5053 #endif
5054 case QEMU_OPTION_portrait:
5055 graphic_rotate = 1;
5056 break;
5057 case QEMU_OPTION_kernel:
5058 kernel_filename = optarg;
5059 break;
5060 case QEMU_OPTION_append:
5061 kernel_cmdline = optarg;
5062 break;
5063 case QEMU_OPTION_cdrom:
5064 drive_add(optarg, CDROM_ALIAS);
5065 break;
5066 case QEMU_OPTION_boot:
5067 {
5068 static const char * const params[] = {
5069 "order", "once", "menu", NULL
5070 };
5071 char buf[sizeof(boot_devices)];
5072 char *standard_boot_devices;
5073 int legacy = 0;
5074
5075 if (!strchr(optarg, '=')) {
5076 legacy = 1;
5077 pstrcpy(buf, sizeof(buf), optarg);
5078 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5079 fprintf(stderr,
5080 "qemu: unknown boot parameter '%s' in '%s'\n",
5081 buf, optarg);
5082 exit(1);
5083 }
5084
5085 if (legacy ||
5086 get_param_value(buf, sizeof(buf), "order", optarg)) {
5087 boot_devices_bitmap = parse_bootdevices(buf);
5088 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5089 }
5090 if (!legacy) {
5091 if (get_param_value(buf, sizeof(buf),
5092 "once", optarg)) {
5093 boot_devices_bitmap |= parse_bootdevices(buf);
5094 standard_boot_devices = qemu_strdup(boot_devices);
5095 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5096 qemu_register_reset(restore_boot_devices,
5097 standard_boot_devices);
5098 }
5099 if (get_param_value(buf, sizeof(buf),
5100 "menu", optarg)) {
5101 if (!strcmp(buf, "on")) {
5102 boot_menu = 1;
5103 } else if (!strcmp(buf, "off")) {
5104 boot_menu = 0;
5105 } else {
5106 fprintf(stderr,
5107 "qemu: invalid option value '%s'\n",
5108 buf);
5109 exit(1);
5110 }
5111 }
5112 }
5113 }
5114 break;
5115 case QEMU_OPTION_fda:
5116 case QEMU_OPTION_fdb:
5117 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5118 break;
5119 #ifdef TARGET_I386
5120 case QEMU_OPTION_no_fd_bootchk:
5121 fd_bootchk = 0;
5122 break;
5123 #endif
5124 case QEMU_OPTION_net:
5125 if (nb_net_clients >= MAX_NET_CLIENTS) {
5126 fprintf(stderr, "qemu: too many network clients\n");
5127 exit(1);
5128 }
5129 net_clients[nb_net_clients] = optarg;
5130 nb_net_clients++;
5131 break;
5132 #ifdef CONFIG_SLIRP
5133 case QEMU_OPTION_tftp:
5134 legacy_tftp_prefix = optarg;
5135 break;
5136 case QEMU_OPTION_bootp:
5137 legacy_bootp_filename = optarg;
5138 break;
5139 #ifndef _WIN32
5140 case QEMU_OPTION_smb:
5141 net_slirp_smb(optarg);
5142 break;
5143 #endif
5144 case QEMU_OPTION_redir:
5145 net_slirp_redir(optarg);
5146 break;
5147 #endif
5148 case QEMU_OPTION_bt:
5149 add_device_config(DEV_BT, optarg);
5150 break;
5151 #ifdef HAS_AUDIO
5152 case QEMU_OPTION_audio_help:
5153 AUD_help ();
5154 exit (0);
5155 break;
5156 case QEMU_OPTION_soundhw:
5157 select_soundhw (optarg);
5158 break;
5159 #endif
5160 case QEMU_OPTION_h:
5161 help(0);
5162 break;
5163 case QEMU_OPTION_version:
5164 version();
5165 exit(0);
5166 break;
5167 case QEMU_OPTION_m: {
5168 uint64_t value;
5169 char *ptr;
5170
5171 value = strtoul(optarg, &ptr, 10);
5172 switch (*ptr) {
5173 case 0: case 'M': case 'm':
5174 value <<= 20;
5175 break;
5176 case 'G': case 'g':
5177 value <<= 30;
5178 break;
5179 default:
5180 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5181 exit(1);
5182 }
5183
5184 /* On 32-bit hosts, QEMU is limited by virtual address space */
5185 if (value > (2047 << 20)
5186 #ifndef CONFIG_KQEMU
5187 && HOST_LONG_BITS == 32
5188 #endif
5189 ) {
5190 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5191 exit(1);
5192 }
5193 if (value != (uint64_t)(ram_addr_t)value) {
5194 fprintf(stderr, "qemu: ram size too large\n");
5195 exit(1);
5196 }
5197 ram_size = value;
5198 break;
5199 }
5200 case QEMU_OPTION_d:
5201 {
5202 int mask;
5203 const CPULogItem *item;
5204
5205 mask = cpu_str_to_log_mask(optarg);
5206 if (!mask) {
5207 printf("Log items (comma separated):\n");
5208 for(item = cpu_log_items; item->mask != 0; item++) {
5209 printf("%-10s %s\n", item->name, item->help);
5210 }
5211 exit(1);
5212 }
5213 cpu_set_log(mask);
5214 }
5215 break;
5216 case QEMU_OPTION_s:
5217 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5218 break;
5219 case QEMU_OPTION_gdb:
5220 gdbstub_dev = optarg;
5221 break;
5222 case QEMU_OPTION_L:
5223 data_dir = optarg;
5224 break;
5225 case QEMU_OPTION_bios:
5226 bios_name = optarg;
5227 break;
5228 case QEMU_OPTION_singlestep:
5229 singlestep = 1;
5230 break;
5231 case QEMU_OPTION_S:
5232 autostart = 0;
5233 break;
5234 #ifndef _WIN32
5235 case QEMU_OPTION_k:
5236 keyboard_layout = optarg;
5237 break;
5238 #endif
5239 case QEMU_OPTION_localtime:
5240 rtc_utc = 0;
5241 break;
5242 case QEMU_OPTION_vga:
5243 select_vgahw (optarg);
5244 break;
5245 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5246 case QEMU_OPTION_g:
5247 {
5248 const char *p;
5249 int w, h, depth;
5250 p = optarg;
5251 w = strtol(p, (char **)&p, 10);
5252 if (w <= 0) {
5253 graphic_error:
5254 fprintf(stderr, "qemu: invalid resolution or depth\n");
5255 exit(1);
5256 }
5257 if (*p != 'x')
5258 goto graphic_error;
5259 p++;
5260 h = strtol(p, (char **)&p, 10);
5261 if (h <= 0)
5262 goto graphic_error;
5263 if (*p == 'x') {
5264 p++;
5265 depth = strtol(p, (char **)&p, 10);
5266 if (depth != 8 && depth != 15 && depth != 16 &&
5267 depth != 24 && depth != 32)
5268 goto graphic_error;
5269 } else if (*p == '\0') {
5270 depth = graphic_depth;
5271 } else {
5272 goto graphic_error;
5273 }
5274
5275 graphic_width = w;
5276 graphic_height = h;
5277 graphic_depth = depth;
5278 }
5279 break;
5280 #endif
5281 case QEMU_OPTION_echr:
5282 {
5283 char *r;
5284 term_escape_char = strtol(optarg, &r, 0);
5285 if (r == optarg)
5286 printf("Bad argument to echr\n");
5287 break;
5288 }
5289 case QEMU_OPTION_monitor:
5290 monitor_device = optarg;
5291 break;
5292 case QEMU_OPTION_serial:
5293 if (serial_device_index >= MAX_SERIAL_PORTS) {
5294 fprintf(stderr, "qemu: too many serial ports\n");
5295 exit(1);
5296 }
5297 serial_devices[serial_device_index] = optarg;
5298 serial_device_index++;
5299 break;
5300 case QEMU_OPTION_watchdog:
5301 i = select_watchdog(optarg);
5302 if (i > 0)
5303 exit (i == 1 ? 1 : 0);
5304 break;
5305 case QEMU_OPTION_watchdog_action:
5306 if (select_watchdog_action(optarg) == -1) {
5307 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5308 exit(1);
5309 }
5310 break;
5311 case QEMU_OPTION_virtiocon:
5312 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5313 fprintf(stderr, "qemu: too many virtio consoles\n");
5314 exit(1);
5315 }
5316 virtio_consoles[virtio_console_index] = optarg;
5317 virtio_console_index++;
5318 break;
5319 case QEMU_OPTION_parallel:
5320 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5321 fprintf(stderr, "qemu: too many parallel ports\n");
5322 exit(1);
5323 }
5324 parallel_devices[parallel_device_index] = optarg;
5325 parallel_device_index++;
5326 break;
5327 case QEMU_OPTION_loadvm:
5328 loadvm = optarg;
5329 break;
5330 case QEMU_OPTION_full_screen:
5331 full_screen = 1;
5332 break;
5333 #ifdef CONFIG_SDL
5334 case QEMU_OPTION_no_frame:
5335 no_frame = 1;
5336 break;
5337 case QEMU_OPTION_alt_grab:
5338 alt_grab = 1;
5339 break;
5340 case QEMU_OPTION_no_quit:
5341 no_quit = 1;
5342 break;
5343 case QEMU_OPTION_sdl:
5344 display_type = DT_SDL;
5345 break;
5346 #endif
5347 case QEMU_OPTION_pidfile:
5348 pid_file = optarg;
5349 break;
5350 #ifdef TARGET_I386
5351 case QEMU_OPTION_win2k_hack:
5352 win2k_install_hack = 1;
5353 break;
5354 case QEMU_OPTION_rtc_td_hack:
5355 rtc_td_hack = 1;
5356 break;
5357 case QEMU_OPTION_acpitable:
5358 if(acpi_table_add(optarg) < 0) {
5359 fprintf(stderr, "Wrong acpi table provided\n");
5360 exit(1);
5361 }
5362 break;
5363 case QEMU_OPTION_smbios:
5364 if(smbios_entry_add(optarg) < 0) {
5365 fprintf(stderr, "Wrong smbios provided\n");
5366 exit(1);
5367 }
5368 break;
5369 #endif
5370 #ifdef CONFIG_KQEMU
5371 case QEMU_OPTION_enable_kqemu:
5372 kqemu_allowed = 1;
5373 break;
5374 case QEMU_OPTION_kernel_kqemu:
5375 kqemu_allowed = 2;
5376 break;
5377 #endif
5378 #ifdef CONFIG_KVM
5379 case QEMU_OPTION_enable_kvm:
5380 kvm_allowed = 1;
5381 #ifdef CONFIG_KQEMU
5382 kqemu_allowed = 0;
5383 #endif
5384 break;
5385 #endif
5386 case QEMU_OPTION_usb:
5387 usb_enabled = 1;
5388 break;
5389 case QEMU_OPTION_usbdevice:
5390 usb_enabled = 1;
5391 add_device_config(DEV_USB, optarg);
5392 break;
5393 case QEMU_OPTION_device:
5394 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5395 if (!opts) {
5396 fprintf(stderr, "parse error: %s\n", optarg);
5397 exit(1);
5398 }
5399 break;
5400 case QEMU_OPTION_smp:
5401 {
5402 char *p;
5403 char option[128];
5404 smp_cpus = strtol(optarg, &p, 10);
5405 if (smp_cpus < 1) {
5406 fprintf(stderr, "Invalid number of CPUs\n");
5407 exit(1);
5408 }
5409 if (*p++ != ',')
5410 break;
5411 if (get_param_value(option, 128, "maxcpus", p))
5412 max_cpus = strtol(option, NULL, 0);
5413 if (max_cpus < smp_cpus) {
5414 fprintf(stderr, "maxcpus must be equal to or greater than "
5415 "smp\n");
5416 exit(1);
5417 }
5418 if (max_cpus > 255) {
5419 fprintf(stderr, "Unsupported number of maxcpus\n");
5420 exit(1);
5421 }
5422 break;
5423 }
5424 case QEMU_OPTION_vnc:
5425 display_type = DT_VNC;
5426 vnc_display = optarg;
5427 break;
5428 #ifdef TARGET_I386
5429 case QEMU_OPTION_no_acpi:
5430 acpi_enabled = 0;
5431 break;
5432 case QEMU_OPTION_no_hpet:
5433 no_hpet = 1;
5434 break;
5435 case QEMU_OPTION_balloon:
5436 if (balloon_parse(optarg) < 0) {
5437 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5438 exit(1);
5439 }
5440 break;
5441 #endif
5442 case QEMU_OPTION_no_reboot:
5443 no_reboot = 1;
5444 break;
5445 case QEMU_OPTION_no_shutdown:
5446 no_shutdown = 1;
5447 break;
5448 case QEMU_OPTION_show_cursor:
5449 cursor_hide = 0;
5450 break;
5451 case QEMU_OPTION_uuid:
5452 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5453 fprintf(stderr, "Fail to parse UUID string."
5454 " Wrong format.\n");
5455 exit(1);
5456 }
5457 break;
5458 #ifndef _WIN32
5459 case QEMU_OPTION_daemonize:
5460 daemonize = 1;
5461 break;
5462 #endif
5463 case QEMU_OPTION_option_rom:
5464 if (nb_option_roms >= MAX_OPTION_ROMS) {
5465 fprintf(stderr, "Too many option ROMs\n");
5466 exit(1);
5467 }
5468 option_rom[nb_option_roms] = optarg;
5469 nb_option_roms++;
5470 break;
5471 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5472 case QEMU_OPTION_semihosting:
5473 semihosting_enabled = 1;
5474 break;
5475 #endif
5476 case QEMU_OPTION_name:
5477 qemu_name = qemu_strdup(optarg);
5478 {
5479 char *p = strchr(qemu_name, ',');
5480 if (p != NULL) {
5481 *p++ = 0;
5482 if (strncmp(p, "process=", 8)) {
5483 fprintf(stderr, "Unknown subargument %s to -name", p);
5484 exit(1);
5485 }
5486 p += 8;
5487 set_proc_name(p);
5488 }
5489 }
5490 break;
5491 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5492 case QEMU_OPTION_prom_env:
5493 if (nb_prom_envs >= MAX_PROM_ENVS) {
5494 fprintf(stderr, "Too many prom variables\n");
5495 exit(1);
5496 }
5497 prom_envs[nb_prom_envs] = optarg;
5498 nb_prom_envs++;
5499 break;
5500 #endif
5501 #ifdef TARGET_ARM
5502 case QEMU_OPTION_old_param:
5503 old_param = 1;
5504 break;
5505 #endif
5506 case QEMU_OPTION_clock:
5507 configure_alarms(optarg);
5508 break;
5509 case QEMU_OPTION_startdate:
5510 {
5511 struct tm tm;
5512 time_t rtc_start_date;
5513 if (!strcmp(optarg, "now")) {
5514 rtc_date_offset = -1;
5515 } else {
5516 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5517 &tm.tm_year,
5518 &tm.tm_mon,
5519 &tm.tm_mday,
5520 &tm.tm_hour,
5521 &tm.tm_min,
5522 &tm.tm_sec) == 6) {
5523 /* OK */
5524 } else if (sscanf(optarg, "%d-%d-%d",
5525 &tm.tm_year,
5526 &tm.tm_mon,
5527 &tm.tm_mday) == 3) {
5528 tm.tm_hour = 0;
5529 tm.tm_min = 0;
5530 tm.tm_sec = 0;
5531 } else {
5532 goto date_fail;
5533 }
5534 tm.tm_year -= 1900;
5535 tm.tm_mon--;
5536 rtc_start_date = mktimegm(&tm);
5537 if (rtc_start_date == -1) {
5538 date_fail:
5539 fprintf(stderr, "Invalid date format. Valid format are:\n"
5540 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5541 exit(1);
5542 }
5543 rtc_date_offset = time(NULL) - rtc_start_date;
5544 }
5545 }
5546 break;
5547 case QEMU_OPTION_tb_size:
5548 tb_size = strtol(optarg, NULL, 0);
5549 if (tb_size < 0)
5550 tb_size = 0;
5551 break;
5552 case QEMU_OPTION_icount:
5553 use_icount = 1;
5554 if (strcmp(optarg, "auto") == 0) {
5555 icount_time_shift = -1;
5556 } else {
5557 icount_time_shift = strtol(optarg, NULL, 0);
5558 }
5559 break;
5560 case QEMU_OPTION_incoming:
5561 incoming = optarg;
5562 break;
5563 #ifndef _WIN32
5564 case QEMU_OPTION_chroot:
5565 chroot_dir = optarg;
5566 break;
5567 case QEMU_OPTION_runas:
5568 run_as = optarg;
5569 break;
5570 #endif
5571 #ifdef CONFIG_XEN
5572 case QEMU_OPTION_xen_domid:
5573 xen_domid = atoi(optarg);
5574 break;
5575 case QEMU_OPTION_xen_create:
5576 xen_mode = XEN_CREATE;
5577 break;
5578 case QEMU_OPTION_xen_attach:
5579 xen_mode = XEN_ATTACH;
5580 break;
5581 #endif
5582 }
5583 }
5584 }
5585
5586 /* If no data_dir is specified then try to find it relative to the
5587 executable path. */
5588 if (!data_dir) {
5589 data_dir = find_datadir(argv[0]);
5590 }
5591 /* If all else fails use the install patch specified when building. */
5592 if (!data_dir) {
5593 data_dir = CONFIG_QEMU_SHAREDIR;
5594 }
5595
5596 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5597 if (kvm_allowed && kqemu_allowed) {
5598 fprintf(stderr,
5599 "You can not enable both KVM and kqemu at the same time\n");
5600 exit(1);
5601 }
5602 #endif
5603
5604 /*
5605 * Default to max_cpus = smp_cpus, in case the user doesn't
5606 * specify a max_cpus value.
5607 */
5608 if (!max_cpus)
5609 max_cpus = smp_cpus;
5610
5611 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5612 if (smp_cpus > machine->max_cpus) {
5613 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5614 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5615 machine->max_cpus);
5616 exit(1);
5617 }
5618
5619 if (display_type == DT_NOGRAPHIC) {
5620 if (serial_device_index == 0)
5621 serial_devices[0] = "stdio";
5622 if (parallel_device_index == 0)
5623 parallel_devices[0] = "null";
5624 if (strncmp(monitor_device, "vc", 2) == 0)
5625 monitor_device = "stdio";
5626 }
5627
5628 #ifndef _WIN32
5629 if (daemonize) {
5630 pid_t pid;
5631
5632 if (pipe(fds) == -1)
5633 exit(1);
5634
5635 pid = fork();
5636 if (pid > 0) {
5637 uint8_t status;
5638 ssize_t len;
5639
5640 close(fds[1]);
5641
5642 again:
5643 len = read(fds[0], &status, 1);
5644 if (len == -1 && (errno == EINTR))
5645 goto again;
5646
5647 if (len != 1)
5648 exit(1);
5649 else if (status == 1) {
5650 fprintf(stderr, "Could not acquire pidfile\n");
5651 exit(1);
5652 } else
5653 exit(0);
5654 } else if (pid < 0)
5655 exit(1);
5656
5657 setsid();
5658
5659 pid = fork();
5660 if (pid > 0)
5661 exit(0);
5662 else if (pid < 0)
5663 exit(1);
5664
5665 umask(027);
5666
5667 signal(SIGTSTP, SIG_IGN);
5668 signal(SIGTTOU, SIG_IGN);
5669 signal(SIGTTIN, SIG_IGN);
5670 }
5671
5672 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5673 if (daemonize) {
5674 uint8_t status = 1;
5675 write(fds[1], &status, 1);
5676 } else
5677 fprintf(stderr, "Could not acquire pid file\n");
5678 exit(1);
5679 }
5680 #endif
5681
5682 #ifdef CONFIG_KQEMU
5683 if (smp_cpus > 1)
5684 kqemu_allowed = 0;
5685 #endif
5686 if (qemu_init_main_loop()) {
5687 fprintf(stderr, "qemu_init_main_loop failed\n");
5688 exit(1);
5689 }
5690 linux_boot = (kernel_filename != NULL);
5691
5692 if (!linux_boot && *kernel_cmdline != '\0') {
5693 fprintf(stderr, "-append only allowed with -kernel option\n");
5694 exit(1);
5695 }
5696
5697 if (!linux_boot && initrd_filename != NULL) {
5698 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5699 exit(1);
5700 }
5701
5702 #ifndef _WIN32
5703 /* Win32 doesn't support line-buffering and requires size >= 2 */
5704 setvbuf(stdout, NULL, _IOLBF, 0);
5705 #endif
5706
5707 init_timers();
5708 if (init_timer_alarm() < 0) {
5709 fprintf(stderr, "could not initialize alarm timer\n");
5710 exit(1);
5711 }
5712 if (use_icount && icount_time_shift < 0) {
5713 use_icount = 2;
5714 /* 125MIPS seems a reasonable initial guess at the guest speed.
5715 It will be corrected fairly quickly anyway. */
5716 icount_time_shift = 3;
5717 init_icount_adjust();
5718 }
5719
5720 #ifdef _WIN32
5721 socket_init();
5722 #endif
5723
5724 /* init network clients */
5725 if (nb_net_clients == 0) {
5726 /* if no clients, we use a default config */
5727 net_clients[nb_net_clients++] = "nic";
5728 #ifdef CONFIG_SLIRP
5729 net_clients[nb_net_clients++] = "user";
5730 #endif
5731 }
5732
5733 for(i = 0;i < nb_net_clients; i++) {
5734 if (net_client_parse(net_clients[i]) < 0)
5735 exit(1);
5736 }
5737
5738 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5739 net_set_boot_mask(net_boot);
5740
5741 net_client_check();
5742
5743 /* init the bluetooth world */
5744 if (foreach_device_config(DEV_BT, bt_parse))
5745 exit(1);
5746
5747 /* init the memory */
5748 if (ram_size == 0)
5749 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5750
5751 #ifdef CONFIG_KQEMU
5752 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5753 guest ram allocation. It needs to go away. */
5754 if (kqemu_allowed) {
5755 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5756 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5757 if (!kqemu_phys_ram_base) {
5758 fprintf(stderr, "Could not allocate physical memory\n");
5759 exit(1);
5760 }
5761 }
5762 #endif
5763
5764 /* init the dynamic translator */
5765 cpu_exec_init_all(tb_size * 1024 * 1024);
5766
5767 bdrv_init();
5768
5769 /* we always create the cdrom drive, even if no disk is there */
5770 drive_add(NULL, CDROM_ALIAS);
5771
5772 /* we always create at least one floppy */
5773 drive_add(NULL, FD_ALIAS, 0);
5774
5775 /* we always create one sd slot, even if no card is in it */
5776 drive_add(NULL, SD_ALIAS);
5777
5778 /* open the virtual block devices */
5779 if (snapshot)
5780 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5781 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5782 exit(1);
5783
5784 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5785 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5786
5787 #ifndef _WIN32
5788 /* must be after terminal init, SDL library changes signal handlers */
5789 sighandler_setup();
5790 #endif
5791
5792 /* Maintain compatibility with multiple stdio monitors */
5793 if (!strcmp(monitor_device,"stdio")) {
5794 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5795 const char *devname = serial_devices[i];
5796 if (devname && !strcmp(devname,"mon:stdio")) {
5797 monitor_device = NULL;
5798 break;
5799 } else if (devname && !strcmp(devname,"stdio")) {
5800 monitor_device = NULL;
5801 serial_devices[i] = "mon:stdio";
5802 break;
5803 }
5804 }
5805 }
5806
5807 if (nb_numa_nodes > 0) {
5808 int i;
5809
5810 if (nb_numa_nodes > smp_cpus) {
5811 nb_numa_nodes = smp_cpus;
5812 }
5813
5814 /* If no memory size if given for any node, assume the default case
5815 * and distribute the available memory equally across all nodes
5816 */
5817 for (i = 0; i < nb_numa_nodes; i++) {
5818 if (node_mem[i] != 0)
5819 break;
5820 }
5821 if (i == nb_numa_nodes) {
5822 uint64_t usedmem = 0;
5823
5824 /* On Linux, the each node's border has to be 8MB aligned,
5825 * the final node gets the rest.
5826 */
5827 for (i = 0; i < nb_numa_nodes - 1; i++) {
5828 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5829 usedmem += node_mem[i];
5830 }
5831 node_mem[i] = ram_size - usedmem;
5832 }
5833
5834 for (i = 0; i < nb_numa_nodes; i++) {
5835 if (node_cpumask[i] != 0)
5836 break;
5837 }
5838 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5839 * must cope with this anyway, because there are BIOSes out there in
5840 * real machines which also use this scheme.
5841 */
5842 if (i == nb_numa_nodes) {
5843 for (i = 0; i < smp_cpus; i++) {
5844 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5845 }
5846 }
5847 }
5848
5849 if (kvm_enabled()) {
5850 int ret;
5851
5852 ret = kvm_init(smp_cpus);
5853 if (ret < 0) {
5854 fprintf(stderr, "failed to initialize KVM\n");
5855 exit(1);
5856 }
5857 }
5858
5859 if (monitor_device) {
5860 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5861 if (!monitor_hd) {
5862 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5863 exit(1);
5864 }
5865 }
5866
5867 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5868 const char *devname = serial_devices[i];
5869 if (devname && strcmp(devname, "none")) {
5870 char label[32];
5871 snprintf(label, sizeof(label), "serial%d", i);
5872 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5873 if (!serial_hds[i]) {
5874 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5875 devname);
5876 exit(1);
5877 }
5878 }
5879 }
5880
5881 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5882 const char *devname = parallel_devices[i];
5883 if (devname && strcmp(devname, "none")) {
5884 char label[32];
5885 snprintf(label, sizeof(label), "parallel%d", i);
5886 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5887 if (!parallel_hds[i]) {
5888 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5889 devname);
5890 exit(1);
5891 }
5892 }
5893 }
5894
5895 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5896 const char *devname = virtio_consoles[i];
5897 if (devname && strcmp(devname, "none")) {
5898 char label[32];
5899 snprintf(label, sizeof(label), "virtcon%d", i);
5900 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5901 if (!virtcon_hds[i]) {
5902 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5903 devname);
5904 exit(1);
5905 }
5906 }
5907 }
5908
5909 module_call_init(MODULE_INIT_DEVICE);
5910
5911 if (machine->compat_props) {
5912 qdev_prop_register_compat(machine->compat_props);
5913 }
5914 machine->init(ram_size, boot_devices,
5915 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5916
5917
5918 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5919 for (i = 0; i < nb_numa_nodes; i++) {
5920 if (node_cpumask[i] & (1 << env->cpu_index)) {
5921 env->numa_node = i;
5922 }
5923 }
5924 }
5925
5926 current_machine = machine;
5927
5928 /* init USB devices */
5929 if (usb_enabled) {
5930 foreach_device_config(DEV_USB, usb_parse);
5931 }
5932
5933 /* init generic devices */
5934 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5935 exit(1);
5936
5937 if (!display_state)
5938 dumb_display_init();
5939 /* just use the first displaystate for the moment */
5940 ds = display_state;
5941
5942 if (display_type == DT_DEFAULT) {
5943 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5944 display_type = DT_SDL;
5945 #else
5946 display_type = DT_VNC;
5947 vnc_display = "localhost:0,to=99";
5948 show_vnc_port = 1;
5949 #endif
5950 }
5951
5952
5953 switch (display_type) {
5954 case DT_NOGRAPHIC:
5955 break;
5956 #if defined(CONFIG_CURSES)
5957 case DT_CURSES:
5958 curses_display_init(ds, full_screen);
5959 break;
5960 #endif
5961 #if defined(CONFIG_SDL)
5962 case DT_SDL:
5963 sdl_display_init(ds, full_screen, no_frame);
5964 break;
5965 #elif defined(CONFIG_COCOA)
5966 case DT_SDL:
5967 cocoa_display_init(ds, full_screen);
5968 break;
5969 #endif
5970 case DT_VNC:
5971 vnc_display_init(ds);
5972 if (vnc_display_open(ds, vnc_display) < 0)
5973 exit(1);
5974
5975 if (show_vnc_port) {
5976 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5977 }
5978 break;
5979 default:
5980 break;
5981 }
5982 dpy_resize(ds);
5983
5984 dcl = ds->listeners;
5985 while (dcl != NULL) {
5986 if (dcl->dpy_refresh != NULL) {
5987 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5988 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5989 }
5990 dcl = dcl->next;
5991 }
5992
5993 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5994 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5995 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5996 }
5997
5998 text_consoles_set_display(display_state);
5999 qemu_chr_initial_reset();
6000
6001 if (monitor_device && monitor_hd)
6002 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6003
6004 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6005 const char *devname = serial_devices[i];
6006 if (devname && strcmp(devname, "none")) {
6007 if (strstart(devname, "vc", 0))
6008 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6009 }
6010 }
6011
6012 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6013 const char *devname = parallel_devices[i];
6014 if (devname && strcmp(devname, "none")) {
6015 if (strstart(devname, "vc", 0))
6016 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6017 }
6018 }
6019
6020 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6021 const char *devname = virtio_consoles[i];
6022 if (virtcon_hds[i] && devname) {
6023 if (strstart(devname, "vc", 0))
6024 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6025 }
6026 }
6027
6028 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6029 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6030 gdbstub_dev);
6031 exit(1);
6032 }
6033
6034 if (loadvm)
6035 do_loadvm(cur_mon, loadvm);
6036
6037 if (incoming) {
6038 qemu_start_incoming_migration(incoming);
6039 } else if (autostart) {
6040 vm_start();
6041 }
6042
6043 #ifndef _WIN32
6044 if (daemonize) {
6045 uint8_t status = 0;
6046 ssize_t len;
6047
6048 again1:
6049 len = write(fds[1], &status, 1);
6050 if (len == -1 && (errno == EINTR))
6051 goto again1;
6052
6053 if (len != 1)
6054 exit(1);
6055
6056 chdir("/");
6057 TFR(fd = open("/dev/null", O_RDWR));
6058 if (fd == -1)
6059 exit(1);
6060 }
6061
6062 if (run_as) {
6063 pwd = getpwnam(run_as);
6064 if (!pwd) {
6065 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6066 exit(1);
6067 }
6068 }
6069
6070 if (chroot_dir) {
6071 if (chroot(chroot_dir) < 0) {
6072 fprintf(stderr, "chroot failed\n");
6073 exit(1);
6074 }
6075 chdir("/");
6076 }
6077
6078 if (run_as) {
6079 if (setgid(pwd->pw_gid) < 0) {
6080 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6081 exit(1);
6082 }
6083 if (setuid(pwd->pw_uid) < 0) {
6084 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6085 exit(1);
6086 }
6087 if (setuid(0) != -1) {
6088 fprintf(stderr, "Dropping privileges failed\n");
6089 exit(1);
6090 }
6091 }
6092
6093 if (daemonize) {
6094 dup2(fd, 0);
6095 dup2(fd, 1);
6096 dup2(fd, 2);
6097
6098 close(fd);
6099 }
6100 #endif
6101
6102 main_loop();
6103 quit_timers();
6104 net_cleanup();
6105
6106 return 0;
6107 }