]> git.proxmox.com Git - qemu.git/blob - vl.c
virtio-net: Add version_id 7 placeholder for vnet header support
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
76
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
97
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
101
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
105
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
114
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
120 {
121 qemu_main(argc, argv, NULL);
122 }
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
127
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
132
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161
162 #include "disas.h"
163
164 #include "exec-all.h"
165
166 #include "qemu_socket.h"
167
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
170 #endif
171
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
176
177
178 #ifdef DEBUG_IOPORT
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 #else
181 # define LOG_IOPORT(...) do { } while (0)
182 #endif
183
184 #define DEFAULT_RAM_SIZE 128
185
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
188
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
191
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
194
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
203 int nb_drives;
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
271
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
275
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
288
289 uint8_t qemu_uuid[16];
290
291 /***********************************************************/
292 /* x86 ISA bus support */
293
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
296
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
299
300 static uint32_t ioport_read(int index, uint32_t address)
301 {
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
306 };
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
311 }
312
313 static void ioport_write(int index, uint32_t address, uint32_t data)
314 {
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
319 };
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
324 }
325
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
327 {
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
332 }
333
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
335 {
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
339 }
340
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
343 {
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
349 }
350
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
352 {
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
356 }
357
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
359 {
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
364 }
365
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
367 {
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
371 }
372
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
376 {
377 int i, bsize;
378
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
388 }
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
394 }
395 return 0;
396 }
397
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
401 {
402 int i, bsize;
403
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
413 }
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
419 }
420 return 0;
421 }
422
423 void isa_unassign_ioport(int start, int length)
424 {
425 int i;
426
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
431
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
435
436 ioport_opaque[i] = NULL;
437 }
438 }
439
440 /***********************************************************/
441
442 void cpu_outb(CPUState *env, int addr, int val)
443 {
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
450 }
451
452 void cpu_outw(CPUState *env, int addr, int val)
453 {
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 }
461
462 void cpu_outl(CPUState *env, int addr, int val)
463 {
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
470 }
471
472 int cpu_inb(CPUState *env, int addr)
473 {
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
482 }
483
484 int cpu_inw(CPUState *env, int addr)
485 {
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
494 }
495
496 int cpu_inl(CPUState *env, int addr)
497 {
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
506 }
507
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
510 {
511 va_list ap;
512 CPUState *env;
513
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
525 }
526 va_end(ap);
527 abort();
528 }
529
530 /***************/
531 /* ballooning */
532
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
535
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
537 {
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
540 }
541
542 void qemu_balloon(ram_addr_t target)
543 {
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 }
547
548 ram_addr_t qemu_balloon_status(void)
549 {
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
553 }
554
555 /***********************************************************/
556 /* keyboard/mouse */
557
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
562
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
564 {
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
567 }
568
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
572 {
573 QEMUPutMouseEntry *s, *cursor;
574
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
576
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
582
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
586 }
587
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
591
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
594
595 return s;
596 }
597
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
599 {
600 QEMUPutMouseEntry *prev = NULL, *cursor;
601
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
604
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
609 }
610
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
620 }
621
622 prev->next = entry->next;
623
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
626
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
629 }
630
631 void kbd_put_keycode(int keycode)
632 {
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
635 }
636 }
637
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
639 {
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
643
644 if (!qemu_put_mouse_event_current) {
645 return;
646 }
647
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
652
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
664 }
665 }
666
667 int kbd_mouse_is_absolute(void)
668 {
669 if (!qemu_put_mouse_event_current)
670 return 0;
671
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 }
674
675 void do_info_mice(Monitor *mon)
676 {
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
679
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
683 }
684
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
693 }
694 }
695
696 void do_mouse_set(Monitor *mon, int index)
697 {
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
700
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
704 }
705
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
710 }
711
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
716 }
717
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
720 {
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
732
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
740 }
741
742 /***********************************************************/
743 /* real time host monotonic timer */
744
745 #define QEMU_TIMER_BASE 1000000000LL
746
747 #ifdef WIN32
748
749 static int64_t clock_freq;
750
751 static void init_get_clock(void)
752 {
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
759 }
760 clock_freq = freq.QuadPart;
761 }
762
763 static int64_t get_clock(void)
764 {
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 }
769
770 #else
771
772 static int use_rt_clock;
773
774 static void init_get_clock(void)
775 {
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
779 {
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
783 }
784 }
785 #endif
786 }
787
788 static int64_t get_clock(void)
789 {
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
798 {
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 }
805 }
806 #endif
807
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
810 {
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
818 }
819 return qemu_icount_bias + (icount << icount_time_shift);
820 }
821
822 /***********************************************************/
823 /* guest cycle counter */
824
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
829
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
832 {
833 if (use_icount) {
834 return cpu_get_icount();
835 }
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
845 }
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
848 }
849 }
850
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
853 {
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
860 }
861 }
862
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
865 {
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
870 }
871 }
872
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
876 {
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
881 }
882 }
883
884 /***********************************************************/
885 /* timers */
886
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
889
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
893 };
894
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
901 };
902
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
906
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
911 };
912
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
915
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
917 {
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
919 }
920
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
922 {
923 if (!alarm_has_dynticks(t))
924 return;
925
926 t->rearm(t);
927 }
928
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
931
932 static struct qemu_alarm_timer *alarm_timer;
933
934 #ifdef _WIN32
935
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
940
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
944
945 #else
946
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
949
950 #ifdef __linux__
951
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
955
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
958
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
961
962 #endif /* __linux__ */
963
964 #endif /* _WIN32 */
965
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971
972 static void icount_adjust(void)
973 {
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
981
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
991 }
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
997 }
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 }
1001
1002 static void icount_adjust_rt(void * opaque)
1003 {
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1007 }
1008
1009 static void icount_adjust_vm(void * opaque)
1010 {
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1014 }
1015
1016 static void init_icount_adjust(void)
1017 {
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 }
1030
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1049 };
1050
1051 static void show_available_alarms(void)
1052 {
1053 int i;
1054
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1058 }
1059
1060 static void configure_alarms(char const *opt)
1061 {
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1068
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1072 }
1073
1074 arg = strdup(opt);
1075
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1082 }
1083
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1087 }
1088
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1092
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1097
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1101 }
1102
1103 free(arg);
1104
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1112 }
1113 }
1114
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1117
1118 static QEMUTimer *active_timers[2];
1119
1120 static QEMUClock *qemu_new_clock(int type)
1121 {
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1126 }
1127
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1129 {
1130 QEMUTimer *ts;
1131
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1137 }
1138
1139 void qemu_free_timer(QEMUTimer *ts)
1140 {
1141 qemu_free(ts);
1142 }
1143
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1146 {
1147 QEMUTimer **pt, *t;
1148
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1159 }
1160 pt = &t->next;
1161 }
1162 }
1163
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1167 {
1168 QEMUTimer **pt, *t;
1169
1170 qemu_del_timer(ts);
1171
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1183 }
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1187
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1192 }
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1196 }
1197 }
1198
1199 int qemu_timer_pending(QEMUTimer *ts)
1200 {
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1210 {
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1214 }
1215
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1217 {
1218 QEMUTimer *ts;
1219
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1227
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1230 }
1231 }
1232
1233 int64_t qemu_get_clock(QEMUClock *clock)
1234 {
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1244 }
1245 }
1246 }
1247
1248 static void init_timers(void)
1249 {
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 }
1255
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1258 {
1259 uint64_t expire_time;
1260
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1265 }
1266 qemu_put_be64(f, expire_time);
1267 }
1268
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1270 {
1271 uint64_t expire_time;
1272
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1278 }
1279 }
1280
1281 static void timer_save(QEMUFile *f, void *opaque)
1282 {
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1285 }
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1289 }
1290
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1292 {
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1297 }
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1302 }
1303 return 0;
1304 }
1305
1306 static void qemu_event_increment(void);
1307
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1315 {
1316 #if 0
1317 #define DISP_FREQ 1000
1318 {
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1340 }
1341 }
1342 last_clock = ti;
1343 }
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1361 }
1362 #endif
1363 }
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1367 }
1368 }
1369
1370 static int64_t qemu_next_deadline(void)
1371 {
1372 int64_t delta;
1373
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1380 }
1381
1382 if (delta < 0)
1383 delta = 0;
1384
1385 return delta;
1386 }
1387
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1390 {
1391 int64_t delta;
1392 int64_t rtdelta;
1393
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1398
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1404 }
1405
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1408
1409 return delta;
1410 }
1411 #endif
1412
1413 #ifndef _WIN32
1414
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1417 {
1418 int flags;
1419
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1423
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1426
1427 return 0;
1428 }
1429
1430 #if defined(__linux__)
1431
1432 #define RTC_FREQ 1024
1433
1434 static void enable_sigio_timer(int fd)
1435 {
1436 struct sigaction act;
1437
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1442
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1446 }
1447
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 {
1450 struct hpet_info info;
1451 int r, fd;
1452
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1456
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1464 }
1465
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1470
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1475
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1480
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1483
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1488 }
1489
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 {
1492 int fd = (long)t->priv;
1493
1494 close(fd);
1495 }
1496
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 {
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1501
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1512 }
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1517 }
1518
1519 enable_sigio_timer(rtc_fd);
1520
1521 t->priv = (void *)(long)rtc_fd;
1522
1523 return 0;
1524 }
1525
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 {
1528 int rtc_fd = (long)t->priv;
1529
1530 close(rtc_fd);
1531 }
1532
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 {
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1538
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1542
1543 sigaction(SIGALRM, &act, NULL);
1544
1545 /*
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1548 */
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1553
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1556
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1559
1560 return -1;
1561 }
1562
1563 t->priv = (void *)(long)host_timer;
1564
1565 return 0;
1566 }
1567
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1569 {
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571
1572 timer_delete(host_timer);
1573 }
1574
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1576 {
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1581
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1585
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1587
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1593 }
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1597
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1606 }
1607 }
1608
1609 #endif /* defined(__linux__) */
1610
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1612 {
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1616
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1621
1622 sigaction(SIGALRM, &act, NULL);
1623
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1629
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1633
1634 return 0;
1635 }
1636
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1638 {
1639 struct itimerval itv;
1640
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1643 }
1644
1645 #endif /* !defined(_WIN32) */
1646
1647
1648 #ifdef _WIN32
1649
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 {
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1655
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1658
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1661
1662 timeBeginPeriod(data->period);
1663
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1669
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1675
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1680 }
1681
1682 return 0;
1683 }
1684
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1686 {
1687 struct qemu_alarm_win32 *data = t->priv;
1688
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1691 }
1692
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1694 {
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1697
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1701
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1704
1705 timeKillEvent(data->timerId);
1706
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1712
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1715
1716 timeEndPeriod(data->period);
1717 exit(1);
1718 }
1719 }
1720
1721 #endif /* _WIN32 */
1722
1723 static int init_timer_alarm(void)
1724 {
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1727
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1730
1731 err = t->start(t);
1732 if (!err)
1733 break;
1734 }
1735
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1739 }
1740
1741 alarm_timer = t;
1742
1743 return 0;
1744
1745 fail:
1746 return err;
1747 }
1748
1749 static void quit_timers(void)
1750 {
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1753 }
1754
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1758 {
1759 time_t ti;
1760 struct tm *ret;
1761
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1772 }
1773
1774 memcpy(tm, ret, sizeof(struct tm));
1775 }
1776
1777 int qemu_timedate_diff(struct tm *tm)
1778 {
1779 time_t seconds;
1780
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1788
1789 return seconds - time(NULL);
1790 }
1791
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1794 {
1795 WSACleanup();
1796 }
1797
1798 static int socket_init(void)
1799 {
1800 WSADATA Data;
1801 int ret, err;
1802
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1808 }
1809 atexit(socket_cleanup);
1810 return 0;
1811 }
1812 #endif
1813
1814 int get_param_value(char *buf, int buf_size,
1815 const char *tag, const char *str)
1816 {
1817 const char *p;
1818 char option[128];
1819
1820 p = str;
1821 for(;;) {
1822 p = get_opt_name(option, sizeof(option), p, '=');
1823 if (*p != '=')
1824 break;
1825 p++;
1826 if (!strcmp(tag, option)) {
1827 (void)get_opt_value(buf, buf_size, p);
1828 return strlen(buf);
1829 } else {
1830 p = get_opt_value(NULL, 0, p);
1831 }
1832 if (*p != ',')
1833 break;
1834 p++;
1835 }
1836 return 0;
1837 }
1838
1839 int check_params(char *buf, int buf_size,
1840 const char * const *params, const char *str)
1841 {
1842 const char *p;
1843 int i;
1844
1845 p = str;
1846 while (*p != '\0') {
1847 p = get_opt_name(buf, buf_size, p, '=');
1848 if (*p != '=') {
1849 return -1;
1850 }
1851 p++;
1852 for (i = 0; params[i] != NULL; i++) {
1853 if (!strcmp(params[i], buf)) {
1854 break;
1855 }
1856 }
1857 if (params[i] == NULL) {
1858 return -1;
1859 }
1860 p = get_opt_value(NULL, 0, p);
1861 if (*p != ',') {
1862 break;
1863 }
1864 p++;
1865 }
1866 return 0;
1867 }
1868
1869 /***********************************************************/
1870 /* Bluetooth support */
1871 static int nb_hcis;
1872 static int cur_hci;
1873 static struct HCIInfo *hci_table[MAX_NICS];
1874
1875 static struct bt_vlan_s {
1876 struct bt_scatternet_s net;
1877 int id;
1878 struct bt_vlan_s *next;
1879 } *first_bt_vlan;
1880
1881 /* find or alloc a new bluetooth "VLAN" */
1882 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1883 {
1884 struct bt_vlan_s **pvlan, *vlan;
1885 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1886 if (vlan->id == id)
1887 return &vlan->net;
1888 }
1889 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1890 vlan->id = id;
1891 pvlan = &first_bt_vlan;
1892 while (*pvlan != NULL)
1893 pvlan = &(*pvlan)->next;
1894 *pvlan = vlan;
1895 return &vlan->net;
1896 }
1897
1898 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1899 {
1900 }
1901
1902 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1903 {
1904 return -ENOTSUP;
1905 }
1906
1907 static struct HCIInfo null_hci = {
1908 .cmd_send = null_hci_send,
1909 .sco_send = null_hci_send,
1910 .acl_send = null_hci_send,
1911 .bdaddr_set = null_hci_addr_set,
1912 };
1913
1914 struct HCIInfo *qemu_next_hci(void)
1915 {
1916 if (cur_hci == nb_hcis)
1917 return &null_hci;
1918
1919 return hci_table[cur_hci++];
1920 }
1921
1922 static struct HCIInfo *hci_init(const char *str)
1923 {
1924 char *endp;
1925 struct bt_scatternet_s *vlan = 0;
1926
1927 if (!strcmp(str, "null"))
1928 /* null */
1929 return &null_hci;
1930 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1931 /* host[:hciN] */
1932 return bt_host_hci(str[4] ? str + 5 : "hci0");
1933 else if (!strncmp(str, "hci", 3)) {
1934 /* hci[,vlan=n] */
1935 if (str[3]) {
1936 if (!strncmp(str + 3, ",vlan=", 6)) {
1937 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1938 if (*endp)
1939 vlan = 0;
1940 }
1941 } else
1942 vlan = qemu_find_bt_vlan(0);
1943 if (vlan)
1944 return bt_new_hci(vlan);
1945 }
1946
1947 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1948
1949 return 0;
1950 }
1951
1952 static int bt_hci_parse(const char *str)
1953 {
1954 struct HCIInfo *hci;
1955 bdaddr_t bdaddr;
1956
1957 if (nb_hcis >= MAX_NICS) {
1958 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1959 return -1;
1960 }
1961
1962 hci = hci_init(str);
1963 if (!hci)
1964 return -1;
1965
1966 bdaddr.b[0] = 0x52;
1967 bdaddr.b[1] = 0x54;
1968 bdaddr.b[2] = 0x00;
1969 bdaddr.b[3] = 0x12;
1970 bdaddr.b[4] = 0x34;
1971 bdaddr.b[5] = 0x56 + nb_hcis;
1972 hci->bdaddr_set(hci, bdaddr.b);
1973
1974 hci_table[nb_hcis++] = hci;
1975
1976 return 0;
1977 }
1978
1979 static void bt_vhci_add(int vlan_id)
1980 {
1981 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1982
1983 if (!vlan->slave)
1984 fprintf(stderr, "qemu: warning: adding a VHCI to "
1985 "an empty scatternet %i\n", vlan_id);
1986
1987 bt_vhci_init(bt_new_hci(vlan));
1988 }
1989
1990 static struct bt_device_s *bt_device_add(const char *opt)
1991 {
1992 struct bt_scatternet_s *vlan;
1993 int vlan_id = 0;
1994 char *endp = strstr(opt, ",vlan=");
1995 int len = (endp ? endp - opt : strlen(opt)) + 1;
1996 char devname[10];
1997
1998 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1999
2000 if (endp) {
2001 vlan_id = strtol(endp + 6, &endp, 0);
2002 if (*endp) {
2003 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2004 return 0;
2005 }
2006 }
2007
2008 vlan = qemu_find_bt_vlan(vlan_id);
2009
2010 if (!vlan->slave)
2011 fprintf(stderr, "qemu: warning: adding a slave device to "
2012 "an empty scatternet %i\n", vlan_id);
2013
2014 if (!strcmp(devname, "keyboard"))
2015 return bt_keyboard_init(vlan);
2016
2017 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2018 return 0;
2019 }
2020
2021 static int bt_parse(const char *opt)
2022 {
2023 const char *endp, *p;
2024 int vlan;
2025
2026 if (strstart(opt, "hci", &endp)) {
2027 if (!*endp || *endp == ',') {
2028 if (*endp)
2029 if (!strstart(endp, ",vlan=", 0))
2030 opt = endp + 1;
2031
2032 return bt_hci_parse(opt);
2033 }
2034 } else if (strstart(opt, "vhci", &endp)) {
2035 if (!*endp || *endp == ',') {
2036 if (*endp) {
2037 if (strstart(endp, ",vlan=", &p)) {
2038 vlan = strtol(p, (char **) &endp, 0);
2039 if (*endp) {
2040 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2041 return 1;
2042 }
2043 } else {
2044 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2045 return 1;
2046 }
2047 } else
2048 vlan = 0;
2049
2050 bt_vhci_add(vlan);
2051 return 0;
2052 }
2053 } else if (strstart(opt, "device:", &endp))
2054 return !bt_device_add(endp);
2055
2056 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2057 return 1;
2058 }
2059
2060 /***********************************************************/
2061 /* QEMU Block devices */
2062
2063 #define HD_ALIAS "index=%d,media=disk"
2064 #define CDROM_ALIAS "index=2,media=cdrom"
2065 #define FD_ALIAS "index=%d,if=floppy"
2066 #define PFLASH_ALIAS "if=pflash"
2067 #define MTD_ALIAS "if=mtd"
2068 #define SD_ALIAS "index=0,if=sd"
2069
2070 static int drive_opt_get_free_idx(void)
2071 {
2072 int index;
2073
2074 for (index = 0; index < MAX_DRIVES; index++)
2075 if (!drives_opt[index].used) {
2076 drives_opt[index].used = 1;
2077 return index;
2078 }
2079
2080 return -1;
2081 }
2082
2083 static int drive_get_free_idx(void)
2084 {
2085 int index;
2086
2087 for (index = 0; index < MAX_DRIVES; index++)
2088 if (!drives_table[index].used) {
2089 drives_table[index].used = 1;
2090 return index;
2091 }
2092
2093 return -1;
2094 }
2095
2096 int drive_add(const char *file, const char *fmt, ...)
2097 {
2098 va_list ap;
2099 int index = drive_opt_get_free_idx();
2100
2101 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2102 fprintf(stderr, "qemu: too many drives\n");
2103 return -1;
2104 }
2105
2106 drives_opt[index].file = file;
2107 va_start(ap, fmt);
2108 vsnprintf(drives_opt[index].opt,
2109 sizeof(drives_opt[0].opt), fmt, ap);
2110 va_end(ap);
2111
2112 nb_drives_opt++;
2113 return index;
2114 }
2115
2116 void drive_remove(int index)
2117 {
2118 drives_opt[index].used = 0;
2119 nb_drives_opt--;
2120 }
2121
2122 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2123 {
2124 int index;
2125
2126 /* seek interface, bus and unit */
2127
2128 for (index = 0; index < MAX_DRIVES; index++)
2129 if (drives_table[index].type == type &&
2130 drives_table[index].bus == bus &&
2131 drives_table[index].unit == unit &&
2132 drives_table[index].used)
2133 return index;
2134
2135 return -1;
2136 }
2137
2138 int drive_get_max_bus(BlockInterfaceType type)
2139 {
2140 int max_bus;
2141 int index;
2142
2143 max_bus = -1;
2144 for (index = 0; index < nb_drives; index++) {
2145 if(drives_table[index].type == type &&
2146 drives_table[index].bus > max_bus)
2147 max_bus = drives_table[index].bus;
2148 }
2149 return max_bus;
2150 }
2151
2152 const char *drive_get_serial(BlockDriverState *bdrv)
2153 {
2154 int index;
2155
2156 for (index = 0; index < nb_drives; index++)
2157 if (drives_table[index].bdrv == bdrv)
2158 return drives_table[index].serial;
2159
2160 return "\0";
2161 }
2162
2163 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2164 {
2165 int index;
2166
2167 for (index = 0; index < nb_drives; index++)
2168 if (drives_table[index].bdrv == bdrv)
2169 return drives_table[index].onerror;
2170
2171 return BLOCK_ERR_STOP_ENOSPC;
2172 }
2173
2174 static void bdrv_format_print(void *opaque, const char *name)
2175 {
2176 fprintf(stderr, " %s", name);
2177 }
2178
2179 void drive_uninit(BlockDriverState *bdrv)
2180 {
2181 int i;
2182
2183 for (i = 0; i < MAX_DRIVES; i++)
2184 if (drives_table[i].bdrv == bdrv) {
2185 drives_table[i].bdrv = NULL;
2186 drives_table[i].used = 0;
2187 drive_remove(drives_table[i].drive_opt_idx);
2188 nb_drives--;
2189 break;
2190 }
2191 }
2192
2193 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2194 {
2195 char buf[128];
2196 char file[1024];
2197 char devname[128];
2198 char serial[21];
2199 const char *mediastr = "";
2200 BlockInterfaceType type;
2201 enum { MEDIA_DISK, MEDIA_CDROM } media;
2202 int bus_id, unit_id;
2203 int cyls, heads, secs, translation;
2204 BlockDriverState *bdrv;
2205 BlockDriver *drv = NULL;
2206 QEMUMachine *machine = opaque;
2207 int max_devs;
2208 int index;
2209 int cache;
2210 int bdrv_flags, onerror;
2211 int drives_table_idx;
2212 char *str = arg->opt;
2213 static const char * const params[] = { "bus", "unit", "if", "index",
2214 "cyls", "heads", "secs", "trans",
2215 "media", "snapshot", "file",
2216 "cache", "format", "serial", "werror",
2217 NULL };
2218
2219 if (check_params(buf, sizeof(buf), params, str) < 0) {
2220 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2221 buf, str);
2222 return -1;
2223 }
2224
2225 file[0] = 0;
2226 cyls = heads = secs = 0;
2227 bus_id = 0;
2228 unit_id = -1;
2229 translation = BIOS_ATA_TRANSLATION_AUTO;
2230 index = -1;
2231 cache = 3;
2232
2233 if (machine->use_scsi) {
2234 type = IF_SCSI;
2235 max_devs = MAX_SCSI_DEVS;
2236 pstrcpy(devname, sizeof(devname), "scsi");
2237 } else {
2238 type = IF_IDE;
2239 max_devs = MAX_IDE_DEVS;
2240 pstrcpy(devname, sizeof(devname), "ide");
2241 }
2242 media = MEDIA_DISK;
2243
2244 /* extract parameters */
2245
2246 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2247 bus_id = strtol(buf, NULL, 0);
2248 if (bus_id < 0) {
2249 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2250 return -1;
2251 }
2252 }
2253
2254 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2255 unit_id = strtol(buf, NULL, 0);
2256 if (unit_id < 0) {
2257 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2258 return -1;
2259 }
2260 }
2261
2262 if (get_param_value(buf, sizeof(buf), "if", str)) {
2263 pstrcpy(devname, sizeof(devname), buf);
2264 if (!strcmp(buf, "ide")) {
2265 type = IF_IDE;
2266 max_devs = MAX_IDE_DEVS;
2267 } else if (!strcmp(buf, "scsi")) {
2268 type = IF_SCSI;
2269 max_devs = MAX_SCSI_DEVS;
2270 } else if (!strcmp(buf, "floppy")) {
2271 type = IF_FLOPPY;
2272 max_devs = 0;
2273 } else if (!strcmp(buf, "pflash")) {
2274 type = IF_PFLASH;
2275 max_devs = 0;
2276 } else if (!strcmp(buf, "mtd")) {
2277 type = IF_MTD;
2278 max_devs = 0;
2279 } else if (!strcmp(buf, "sd")) {
2280 type = IF_SD;
2281 max_devs = 0;
2282 } else if (!strcmp(buf, "virtio")) {
2283 type = IF_VIRTIO;
2284 max_devs = 0;
2285 } else if (!strcmp(buf, "xen")) {
2286 type = IF_XEN;
2287 max_devs = 0;
2288 } else {
2289 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2290 return -1;
2291 }
2292 }
2293
2294 if (get_param_value(buf, sizeof(buf), "index", str)) {
2295 index = strtol(buf, NULL, 0);
2296 if (index < 0) {
2297 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2298 return -1;
2299 }
2300 }
2301
2302 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2303 cyls = strtol(buf, NULL, 0);
2304 }
2305
2306 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2307 heads = strtol(buf, NULL, 0);
2308 }
2309
2310 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2311 secs = strtol(buf, NULL, 0);
2312 }
2313
2314 if (cyls || heads || secs) {
2315 if (cyls < 1 || cyls > 16383) {
2316 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2317 return -1;
2318 }
2319 if (heads < 1 || heads > 16) {
2320 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2321 return -1;
2322 }
2323 if (secs < 1 || secs > 63) {
2324 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2325 return -1;
2326 }
2327 }
2328
2329 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2330 if (!cyls) {
2331 fprintf(stderr,
2332 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2333 str);
2334 return -1;
2335 }
2336 if (!strcmp(buf, "none"))
2337 translation = BIOS_ATA_TRANSLATION_NONE;
2338 else if (!strcmp(buf, "lba"))
2339 translation = BIOS_ATA_TRANSLATION_LBA;
2340 else if (!strcmp(buf, "auto"))
2341 translation = BIOS_ATA_TRANSLATION_AUTO;
2342 else {
2343 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2344 return -1;
2345 }
2346 }
2347
2348 if (get_param_value(buf, sizeof(buf), "media", str)) {
2349 if (!strcmp(buf, "disk")) {
2350 media = MEDIA_DISK;
2351 } else if (!strcmp(buf, "cdrom")) {
2352 if (cyls || secs || heads) {
2353 fprintf(stderr,
2354 "qemu: '%s' invalid physical CHS format\n", str);
2355 return -1;
2356 }
2357 media = MEDIA_CDROM;
2358 } else {
2359 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2360 return -1;
2361 }
2362 }
2363
2364 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2365 if (!strcmp(buf, "on"))
2366 snapshot = 1;
2367 else if (!strcmp(buf, "off"))
2368 snapshot = 0;
2369 else {
2370 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2371 return -1;
2372 }
2373 }
2374
2375 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2376 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2377 cache = 0;
2378 else if (!strcmp(buf, "writethrough"))
2379 cache = 1;
2380 else if (!strcmp(buf, "writeback"))
2381 cache = 2;
2382 else {
2383 fprintf(stderr, "qemu: invalid cache option\n");
2384 return -1;
2385 }
2386 }
2387
2388 if (get_param_value(buf, sizeof(buf), "format", str)) {
2389 if (strcmp(buf, "?") == 0) {
2390 fprintf(stderr, "qemu: Supported formats:");
2391 bdrv_iterate_format(bdrv_format_print, NULL);
2392 fprintf(stderr, "\n");
2393 return -1;
2394 }
2395 drv = bdrv_find_format(buf);
2396 if (!drv) {
2397 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2398 return -1;
2399 }
2400 }
2401
2402 if (arg->file == NULL)
2403 get_param_value(file, sizeof(file), "file", str);
2404 else
2405 pstrcpy(file, sizeof(file), arg->file);
2406
2407 if (!get_param_value(serial, sizeof(serial), "serial", str))
2408 memset(serial, 0, sizeof(serial));
2409
2410 onerror = BLOCK_ERR_STOP_ENOSPC;
2411 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2412 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2413 fprintf(stderr, "werror is no supported by this format\n");
2414 return -1;
2415 }
2416 if (!strcmp(buf, "ignore"))
2417 onerror = BLOCK_ERR_IGNORE;
2418 else if (!strcmp(buf, "enospc"))
2419 onerror = BLOCK_ERR_STOP_ENOSPC;
2420 else if (!strcmp(buf, "stop"))
2421 onerror = BLOCK_ERR_STOP_ANY;
2422 else if (!strcmp(buf, "report"))
2423 onerror = BLOCK_ERR_REPORT;
2424 else {
2425 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2426 return -1;
2427 }
2428 }
2429
2430 /* compute bus and unit according index */
2431
2432 if (index != -1) {
2433 if (bus_id != 0 || unit_id != -1) {
2434 fprintf(stderr,
2435 "qemu: '%s' index cannot be used with bus and unit\n", str);
2436 return -1;
2437 }
2438 if (max_devs == 0)
2439 {
2440 unit_id = index;
2441 bus_id = 0;
2442 } else {
2443 unit_id = index % max_devs;
2444 bus_id = index / max_devs;
2445 }
2446 }
2447
2448 /* if user doesn't specify a unit_id,
2449 * try to find the first free
2450 */
2451
2452 if (unit_id == -1) {
2453 unit_id = 0;
2454 while (drive_get_index(type, bus_id, unit_id) != -1) {
2455 unit_id++;
2456 if (max_devs && unit_id >= max_devs) {
2457 unit_id -= max_devs;
2458 bus_id++;
2459 }
2460 }
2461 }
2462
2463 /* check unit id */
2464
2465 if (max_devs && unit_id >= max_devs) {
2466 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2467 str, unit_id, max_devs - 1);
2468 return -1;
2469 }
2470
2471 /*
2472 * ignore multiple definitions
2473 */
2474
2475 if (drive_get_index(type, bus_id, unit_id) != -1)
2476 return -2;
2477
2478 /* init */
2479
2480 if (type == IF_IDE || type == IF_SCSI)
2481 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2482 if (max_devs)
2483 snprintf(buf, sizeof(buf), "%s%i%s%i",
2484 devname, bus_id, mediastr, unit_id);
2485 else
2486 snprintf(buf, sizeof(buf), "%s%s%i",
2487 devname, mediastr, unit_id);
2488 bdrv = bdrv_new(buf);
2489 drives_table_idx = drive_get_free_idx();
2490 drives_table[drives_table_idx].bdrv = bdrv;
2491 drives_table[drives_table_idx].type = type;
2492 drives_table[drives_table_idx].bus = bus_id;
2493 drives_table[drives_table_idx].unit = unit_id;
2494 drives_table[drives_table_idx].onerror = onerror;
2495 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2496 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2497 nb_drives++;
2498
2499 switch(type) {
2500 case IF_IDE:
2501 case IF_SCSI:
2502 case IF_XEN:
2503 switch(media) {
2504 case MEDIA_DISK:
2505 if (cyls != 0) {
2506 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2507 bdrv_set_translation_hint(bdrv, translation);
2508 }
2509 break;
2510 case MEDIA_CDROM:
2511 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2512 break;
2513 }
2514 break;
2515 case IF_SD:
2516 /* FIXME: This isn't really a floppy, but it's a reasonable
2517 approximation. */
2518 case IF_FLOPPY:
2519 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2520 break;
2521 case IF_PFLASH:
2522 case IF_MTD:
2523 case IF_VIRTIO:
2524 break;
2525 case IF_COUNT:
2526 abort();
2527 }
2528 if (!file[0])
2529 return -2;
2530 bdrv_flags = 0;
2531 if (snapshot) {
2532 bdrv_flags |= BDRV_O_SNAPSHOT;
2533 cache = 2; /* always use write-back with snapshot */
2534 }
2535 if (cache == 0) /* no caching */
2536 bdrv_flags |= BDRV_O_NOCACHE;
2537 else if (cache == 2) /* write-back */
2538 bdrv_flags |= BDRV_O_CACHE_WB;
2539 else if (cache == 3) /* not specified */
2540 bdrv_flags |= BDRV_O_CACHE_DEF;
2541 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2542 fprintf(stderr, "qemu: could not open disk image %s\n",
2543 file);
2544 return -1;
2545 }
2546 if (bdrv_key_required(bdrv))
2547 autostart = 0;
2548 return drives_table_idx;
2549 }
2550
2551 static void numa_add(const char *optarg)
2552 {
2553 char option[128];
2554 char *endptr;
2555 unsigned long long value, endvalue;
2556 int nodenr;
2557
2558 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2559 if (!strcmp(option, "node")) {
2560 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2561 nodenr = nb_numa_nodes;
2562 } else {
2563 nodenr = strtoull(option, NULL, 10);
2564 }
2565
2566 if (get_param_value(option, 128, "mem", optarg) == 0) {
2567 node_mem[nodenr] = 0;
2568 } else {
2569 value = strtoull(option, &endptr, 0);
2570 switch (*endptr) {
2571 case 0: case 'M': case 'm':
2572 value <<= 20;
2573 break;
2574 case 'G': case 'g':
2575 value <<= 30;
2576 break;
2577 }
2578 node_mem[nodenr] = value;
2579 }
2580 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2581 node_cpumask[nodenr] = 0;
2582 } else {
2583 value = strtoull(option, &endptr, 10);
2584 if (value >= 64) {
2585 value = 63;
2586 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2587 } else {
2588 if (*endptr == '-') {
2589 endvalue = strtoull(endptr+1, &endptr, 10);
2590 if (endvalue >= 63) {
2591 endvalue = 62;
2592 fprintf(stderr,
2593 "only 63 CPUs in NUMA mode supported.\n");
2594 }
2595 value = (1 << (endvalue + 1)) - (1 << value);
2596 } else {
2597 value = 1 << value;
2598 }
2599 }
2600 node_cpumask[nodenr] = value;
2601 }
2602 nb_numa_nodes++;
2603 }
2604 return;
2605 }
2606
2607 /***********************************************************/
2608 /* USB devices */
2609
2610 static USBPort *used_usb_ports;
2611 static USBPort *free_usb_ports;
2612
2613 /* ??? Maybe change this to register a hub to keep track of the topology. */
2614 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2615 usb_attachfn attach)
2616 {
2617 port->opaque = opaque;
2618 port->index = index;
2619 port->attach = attach;
2620 port->next = free_usb_ports;
2621 free_usb_ports = port;
2622 }
2623
2624 int usb_device_add_dev(USBDevice *dev)
2625 {
2626 USBPort *port;
2627
2628 /* Find a USB port to add the device to. */
2629 port = free_usb_ports;
2630 if (!port->next) {
2631 USBDevice *hub;
2632
2633 /* Create a new hub and chain it on. */
2634 free_usb_ports = NULL;
2635 port->next = used_usb_ports;
2636 used_usb_ports = port;
2637
2638 hub = usb_hub_init(VM_USB_HUB_SIZE);
2639 usb_attach(port, hub);
2640 port = free_usb_ports;
2641 }
2642
2643 free_usb_ports = port->next;
2644 port->next = used_usb_ports;
2645 used_usb_ports = port;
2646 usb_attach(port, dev);
2647 return 0;
2648 }
2649
2650 static void usb_msd_password_cb(void *opaque, int err)
2651 {
2652 USBDevice *dev = opaque;
2653
2654 if (!err)
2655 usb_device_add_dev(dev);
2656 else
2657 dev->handle_destroy(dev);
2658 }
2659
2660 static int usb_device_add(const char *devname, int is_hotplug)
2661 {
2662 const char *p;
2663 USBDevice *dev;
2664
2665 if (!free_usb_ports)
2666 return -1;
2667
2668 if (strstart(devname, "host:", &p)) {
2669 dev = usb_host_device_open(p);
2670 } else if (!strcmp(devname, "mouse")) {
2671 dev = usb_mouse_init();
2672 } else if (!strcmp(devname, "tablet")) {
2673 dev = usb_tablet_init();
2674 } else if (!strcmp(devname, "keyboard")) {
2675 dev = usb_keyboard_init();
2676 } else if (strstart(devname, "disk:", &p)) {
2677 BlockDriverState *bs;
2678
2679 dev = usb_msd_init(p);
2680 if (!dev)
2681 return -1;
2682 bs = usb_msd_get_bdrv(dev);
2683 if (bdrv_key_required(bs)) {
2684 autostart = 0;
2685 if (is_hotplug) {
2686 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2687 dev);
2688 return 0;
2689 }
2690 }
2691 } else if (!strcmp(devname, "wacom-tablet")) {
2692 dev = usb_wacom_init();
2693 } else if (strstart(devname, "serial:", &p)) {
2694 dev = usb_serial_init(p);
2695 #ifdef CONFIG_BRLAPI
2696 } else if (!strcmp(devname, "braille")) {
2697 dev = usb_baum_init();
2698 #endif
2699 } else if (strstart(devname, "net:", &p)) {
2700 int nic = nb_nics;
2701
2702 if (net_client_init(NULL, "nic", p) < 0)
2703 return -1;
2704 nd_table[nic].model = "usb";
2705 dev = usb_net_init(&nd_table[nic]);
2706 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2707 dev = usb_bt_init(devname[2] ? hci_init(p) :
2708 bt_new_hci(qemu_find_bt_vlan(0)));
2709 } else {
2710 return -1;
2711 }
2712 if (!dev)
2713 return -1;
2714
2715 return usb_device_add_dev(dev);
2716 }
2717
2718 int usb_device_del_addr(int bus_num, int addr)
2719 {
2720 USBPort *port;
2721 USBPort **lastp;
2722 USBDevice *dev;
2723
2724 if (!used_usb_ports)
2725 return -1;
2726
2727 if (bus_num != 0)
2728 return -1;
2729
2730 lastp = &used_usb_ports;
2731 port = used_usb_ports;
2732 while (port && port->dev->addr != addr) {
2733 lastp = &port->next;
2734 port = port->next;
2735 }
2736
2737 if (!port)
2738 return -1;
2739
2740 dev = port->dev;
2741 *lastp = port->next;
2742 usb_attach(port, NULL);
2743 dev->handle_destroy(dev);
2744 port->next = free_usb_ports;
2745 free_usb_ports = port;
2746 return 0;
2747 }
2748
2749 static int usb_device_del(const char *devname)
2750 {
2751 int bus_num, addr;
2752 const char *p;
2753
2754 if (strstart(devname, "host:", &p))
2755 return usb_host_device_close(p);
2756
2757 if (!used_usb_ports)
2758 return -1;
2759
2760 p = strchr(devname, '.');
2761 if (!p)
2762 return -1;
2763 bus_num = strtoul(devname, NULL, 0);
2764 addr = strtoul(p + 1, NULL, 0);
2765
2766 return usb_device_del_addr(bus_num, addr);
2767 }
2768
2769 void do_usb_add(Monitor *mon, const char *devname)
2770 {
2771 usb_device_add(devname, 1);
2772 }
2773
2774 void do_usb_del(Monitor *mon, const char *devname)
2775 {
2776 usb_device_del(devname);
2777 }
2778
2779 void usb_info(Monitor *mon)
2780 {
2781 USBDevice *dev;
2782 USBPort *port;
2783 const char *speed_str;
2784
2785 if (!usb_enabled) {
2786 monitor_printf(mon, "USB support not enabled\n");
2787 return;
2788 }
2789
2790 for (port = used_usb_ports; port; port = port->next) {
2791 dev = port->dev;
2792 if (!dev)
2793 continue;
2794 switch(dev->speed) {
2795 case USB_SPEED_LOW:
2796 speed_str = "1.5";
2797 break;
2798 case USB_SPEED_FULL:
2799 speed_str = "12";
2800 break;
2801 case USB_SPEED_HIGH:
2802 speed_str = "480";
2803 break;
2804 default:
2805 speed_str = "?";
2806 break;
2807 }
2808 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2809 0, dev->addr, speed_str, dev->devname);
2810 }
2811 }
2812
2813 /***********************************************************/
2814 /* PCMCIA/Cardbus */
2815
2816 static struct pcmcia_socket_entry_s {
2817 PCMCIASocket *socket;
2818 struct pcmcia_socket_entry_s *next;
2819 } *pcmcia_sockets = 0;
2820
2821 void pcmcia_socket_register(PCMCIASocket *socket)
2822 {
2823 struct pcmcia_socket_entry_s *entry;
2824
2825 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2826 entry->socket = socket;
2827 entry->next = pcmcia_sockets;
2828 pcmcia_sockets = entry;
2829 }
2830
2831 void pcmcia_socket_unregister(PCMCIASocket *socket)
2832 {
2833 struct pcmcia_socket_entry_s *entry, **ptr;
2834
2835 ptr = &pcmcia_sockets;
2836 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2837 if (entry->socket == socket) {
2838 *ptr = entry->next;
2839 qemu_free(entry);
2840 }
2841 }
2842
2843 void pcmcia_info(Monitor *mon)
2844 {
2845 struct pcmcia_socket_entry_s *iter;
2846
2847 if (!pcmcia_sockets)
2848 monitor_printf(mon, "No PCMCIA sockets\n");
2849
2850 for (iter = pcmcia_sockets; iter; iter = iter->next)
2851 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2852 iter->socket->attached ? iter->socket->card_string :
2853 "Empty");
2854 }
2855
2856 /***********************************************************/
2857 /* register display */
2858
2859 struct DisplayAllocator default_allocator = {
2860 defaultallocator_create_displaysurface,
2861 defaultallocator_resize_displaysurface,
2862 defaultallocator_free_displaysurface
2863 };
2864
2865 void register_displaystate(DisplayState *ds)
2866 {
2867 DisplayState **s;
2868 s = &display_state;
2869 while (*s != NULL)
2870 s = &(*s)->next;
2871 ds->next = NULL;
2872 *s = ds;
2873 }
2874
2875 DisplayState *get_displaystate(void)
2876 {
2877 return display_state;
2878 }
2879
2880 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2881 {
2882 if(ds->allocator == &default_allocator) ds->allocator = da;
2883 return ds->allocator;
2884 }
2885
2886 /* dumb display */
2887
2888 static void dumb_display_init(void)
2889 {
2890 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2891 ds->allocator = &default_allocator;
2892 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2893 register_displaystate(ds);
2894 }
2895
2896 /***********************************************************/
2897 /* I/O handling */
2898
2899 typedef struct IOHandlerRecord {
2900 int fd;
2901 IOCanRWHandler *fd_read_poll;
2902 IOHandler *fd_read;
2903 IOHandler *fd_write;
2904 int deleted;
2905 void *opaque;
2906 /* temporary data */
2907 struct pollfd *ufd;
2908 struct IOHandlerRecord *next;
2909 } IOHandlerRecord;
2910
2911 static IOHandlerRecord *first_io_handler;
2912
2913 /* XXX: fd_read_poll should be suppressed, but an API change is
2914 necessary in the character devices to suppress fd_can_read(). */
2915 int qemu_set_fd_handler2(int fd,
2916 IOCanRWHandler *fd_read_poll,
2917 IOHandler *fd_read,
2918 IOHandler *fd_write,
2919 void *opaque)
2920 {
2921 IOHandlerRecord **pioh, *ioh;
2922
2923 if (!fd_read && !fd_write) {
2924 pioh = &first_io_handler;
2925 for(;;) {
2926 ioh = *pioh;
2927 if (ioh == NULL)
2928 break;
2929 if (ioh->fd == fd) {
2930 ioh->deleted = 1;
2931 break;
2932 }
2933 pioh = &ioh->next;
2934 }
2935 } else {
2936 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2937 if (ioh->fd == fd)
2938 goto found;
2939 }
2940 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2941 ioh->next = first_io_handler;
2942 first_io_handler = ioh;
2943 found:
2944 ioh->fd = fd;
2945 ioh->fd_read_poll = fd_read_poll;
2946 ioh->fd_read = fd_read;
2947 ioh->fd_write = fd_write;
2948 ioh->opaque = opaque;
2949 ioh->deleted = 0;
2950 }
2951 return 0;
2952 }
2953
2954 int qemu_set_fd_handler(int fd,
2955 IOHandler *fd_read,
2956 IOHandler *fd_write,
2957 void *opaque)
2958 {
2959 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2960 }
2961
2962 #ifdef _WIN32
2963 /***********************************************************/
2964 /* Polling handling */
2965
2966 typedef struct PollingEntry {
2967 PollingFunc *func;
2968 void *opaque;
2969 struct PollingEntry *next;
2970 } PollingEntry;
2971
2972 static PollingEntry *first_polling_entry;
2973
2974 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2975 {
2976 PollingEntry **ppe, *pe;
2977 pe = qemu_mallocz(sizeof(PollingEntry));
2978 pe->func = func;
2979 pe->opaque = opaque;
2980 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2981 *ppe = pe;
2982 return 0;
2983 }
2984
2985 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2986 {
2987 PollingEntry **ppe, *pe;
2988 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2989 pe = *ppe;
2990 if (pe->func == func && pe->opaque == opaque) {
2991 *ppe = pe->next;
2992 qemu_free(pe);
2993 break;
2994 }
2995 }
2996 }
2997
2998 /***********************************************************/
2999 /* Wait objects support */
3000 typedef struct WaitObjects {
3001 int num;
3002 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3003 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3004 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3005 } WaitObjects;
3006
3007 static WaitObjects wait_objects = {0};
3008
3009 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3010 {
3011 WaitObjects *w = &wait_objects;
3012
3013 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3014 return -1;
3015 w->events[w->num] = handle;
3016 w->func[w->num] = func;
3017 w->opaque[w->num] = opaque;
3018 w->num++;
3019 return 0;
3020 }
3021
3022 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3023 {
3024 int i, found;
3025 WaitObjects *w = &wait_objects;
3026
3027 found = 0;
3028 for (i = 0; i < w->num; i++) {
3029 if (w->events[i] == handle)
3030 found = 1;
3031 if (found) {
3032 w->events[i] = w->events[i + 1];
3033 w->func[i] = w->func[i + 1];
3034 w->opaque[i] = w->opaque[i + 1];
3035 }
3036 }
3037 if (found)
3038 w->num--;
3039 }
3040 #endif
3041
3042 /***********************************************************/
3043 /* ram save/restore */
3044
3045 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3046 {
3047 int v;
3048
3049 v = qemu_get_byte(f);
3050 switch(v) {
3051 case 0:
3052 if (qemu_get_buffer(f, buf, len) != len)
3053 return -EIO;
3054 break;
3055 case 1:
3056 v = qemu_get_byte(f);
3057 memset(buf, v, len);
3058 break;
3059 default:
3060 return -EINVAL;
3061 }
3062
3063 if (qemu_file_has_error(f))
3064 return -EIO;
3065
3066 return 0;
3067 }
3068
3069 static int ram_load_v1(QEMUFile *f, void *opaque)
3070 {
3071 int ret;
3072 ram_addr_t i;
3073
3074 if (qemu_get_be32(f) != last_ram_offset)
3075 return -EINVAL;
3076 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3077 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3078 if (ret)
3079 return ret;
3080 }
3081 return 0;
3082 }
3083
3084 #define BDRV_HASH_BLOCK_SIZE 1024
3085 #define IOBUF_SIZE 4096
3086 #define RAM_CBLOCK_MAGIC 0xfabe
3087
3088 typedef struct RamDecompressState {
3089 z_stream zstream;
3090 QEMUFile *f;
3091 uint8_t buf[IOBUF_SIZE];
3092 } RamDecompressState;
3093
3094 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3095 {
3096 int ret;
3097 memset(s, 0, sizeof(*s));
3098 s->f = f;
3099 ret = inflateInit(&s->zstream);
3100 if (ret != Z_OK)
3101 return -1;
3102 return 0;
3103 }
3104
3105 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3106 {
3107 int ret, clen;
3108
3109 s->zstream.avail_out = len;
3110 s->zstream.next_out = buf;
3111 while (s->zstream.avail_out > 0) {
3112 if (s->zstream.avail_in == 0) {
3113 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3114 return -1;
3115 clen = qemu_get_be16(s->f);
3116 if (clen > IOBUF_SIZE)
3117 return -1;
3118 qemu_get_buffer(s->f, s->buf, clen);
3119 s->zstream.avail_in = clen;
3120 s->zstream.next_in = s->buf;
3121 }
3122 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3123 if (ret != Z_OK && ret != Z_STREAM_END) {
3124 return -1;
3125 }
3126 }
3127 return 0;
3128 }
3129
3130 static void ram_decompress_close(RamDecompressState *s)
3131 {
3132 inflateEnd(&s->zstream);
3133 }
3134
3135 #define RAM_SAVE_FLAG_FULL 0x01
3136 #define RAM_SAVE_FLAG_COMPRESS 0x02
3137 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3138 #define RAM_SAVE_FLAG_PAGE 0x08
3139 #define RAM_SAVE_FLAG_EOS 0x10
3140
3141 static int is_dup_page(uint8_t *page, uint8_t ch)
3142 {
3143 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3144 uint32_t *array = (uint32_t *)page;
3145 int i;
3146
3147 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3148 if (array[i] != val)
3149 return 0;
3150 }
3151
3152 return 1;
3153 }
3154
3155 static int ram_save_block(QEMUFile *f)
3156 {
3157 static ram_addr_t current_addr = 0;
3158 ram_addr_t saved_addr = current_addr;
3159 ram_addr_t addr = 0;
3160 int found = 0;
3161
3162 while (addr < last_ram_offset) {
3163 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3164 uint8_t *p;
3165
3166 cpu_physical_memory_reset_dirty(current_addr,
3167 current_addr + TARGET_PAGE_SIZE,
3168 MIGRATION_DIRTY_FLAG);
3169
3170 p = qemu_get_ram_ptr(current_addr);
3171
3172 if (is_dup_page(p, *p)) {
3173 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3174 qemu_put_byte(f, *p);
3175 } else {
3176 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3177 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3178 }
3179
3180 found = 1;
3181 break;
3182 }
3183 addr += TARGET_PAGE_SIZE;
3184 current_addr = (saved_addr + addr) % last_ram_offset;
3185 }
3186
3187 return found;
3188 }
3189
3190 static ram_addr_t ram_save_threshold = 10;
3191 static uint64_t bytes_transferred = 0;
3192
3193 static ram_addr_t ram_save_remaining(void)
3194 {
3195 ram_addr_t addr;
3196 ram_addr_t count = 0;
3197
3198 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3199 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3200 count++;
3201 }
3202
3203 return count;
3204 }
3205
3206 uint64_t ram_bytes_remaining(void)
3207 {
3208 return ram_save_remaining() * TARGET_PAGE_SIZE;
3209 }
3210
3211 uint64_t ram_bytes_transferred(void)
3212 {
3213 return bytes_transferred;
3214 }
3215
3216 uint64_t ram_bytes_total(void)
3217 {
3218 return last_ram_offset;
3219 }
3220
3221 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3222 {
3223 ram_addr_t addr;
3224
3225 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3226 qemu_file_set_error(f);
3227 return 0;
3228 }
3229
3230 if (stage == 1) {
3231 /* Make sure all dirty bits are set */
3232 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3233 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3234 cpu_physical_memory_set_dirty(addr);
3235 }
3236
3237 /* Enable dirty memory tracking */
3238 cpu_physical_memory_set_dirty_tracking(1);
3239
3240 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3241 }
3242
3243 while (!qemu_file_rate_limit(f)) {
3244 int ret;
3245
3246 ret = ram_save_block(f);
3247 bytes_transferred += ret * TARGET_PAGE_SIZE;
3248 if (ret == 0) /* no more blocks */
3249 break;
3250 }
3251
3252 /* try transferring iterative blocks of memory */
3253
3254 if (stage == 3) {
3255
3256 /* flush all remaining blocks regardless of rate limiting */
3257 while (ram_save_block(f) != 0) {
3258 bytes_transferred += TARGET_PAGE_SIZE;
3259 }
3260 cpu_physical_memory_set_dirty_tracking(0);
3261 }
3262
3263 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3264
3265 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3266 }
3267
3268 static int ram_load_dead(QEMUFile *f, void *opaque)
3269 {
3270 RamDecompressState s1, *s = &s1;
3271 uint8_t buf[10];
3272 ram_addr_t i;
3273
3274 if (ram_decompress_open(s, f) < 0)
3275 return -EINVAL;
3276 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3277 if (ram_decompress_buf(s, buf, 1) < 0) {
3278 fprintf(stderr, "Error while reading ram block header\n");
3279 goto error;
3280 }
3281 if (buf[0] == 0) {
3282 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3283 BDRV_HASH_BLOCK_SIZE) < 0) {
3284 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3285 goto error;
3286 }
3287 } else {
3288 error:
3289 printf("Error block header\n");
3290 return -EINVAL;
3291 }
3292 }
3293 ram_decompress_close(s);
3294
3295 return 0;
3296 }
3297
3298 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3299 {
3300 ram_addr_t addr;
3301 int flags;
3302
3303 if (version_id == 1)
3304 return ram_load_v1(f, opaque);
3305
3306 if (version_id == 2) {
3307 if (qemu_get_be32(f) != last_ram_offset)
3308 return -EINVAL;
3309 return ram_load_dead(f, opaque);
3310 }
3311
3312 if (version_id != 3)
3313 return -EINVAL;
3314
3315 do {
3316 addr = qemu_get_be64(f);
3317
3318 flags = addr & ~TARGET_PAGE_MASK;
3319 addr &= TARGET_PAGE_MASK;
3320
3321 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3322 if (addr != last_ram_offset)
3323 return -EINVAL;
3324 }
3325
3326 if (flags & RAM_SAVE_FLAG_FULL) {
3327 if (ram_load_dead(f, opaque) < 0)
3328 return -EINVAL;
3329 }
3330
3331 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3332 uint8_t ch = qemu_get_byte(f);
3333 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3334 } else if (flags & RAM_SAVE_FLAG_PAGE)
3335 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3336 } while (!(flags & RAM_SAVE_FLAG_EOS));
3337
3338 return 0;
3339 }
3340
3341 void qemu_service_io(void)
3342 {
3343 qemu_notify_event();
3344 }
3345
3346 /***********************************************************/
3347 /* bottom halves (can be seen as timers which expire ASAP) */
3348
3349 struct QEMUBH {
3350 QEMUBHFunc *cb;
3351 void *opaque;
3352 int scheduled;
3353 int idle;
3354 int deleted;
3355 QEMUBH *next;
3356 };
3357
3358 static QEMUBH *first_bh = NULL;
3359
3360 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3361 {
3362 QEMUBH *bh;
3363 bh = qemu_mallocz(sizeof(QEMUBH));
3364 bh->cb = cb;
3365 bh->opaque = opaque;
3366 bh->next = first_bh;
3367 first_bh = bh;
3368 return bh;
3369 }
3370
3371 int qemu_bh_poll(void)
3372 {
3373 QEMUBH *bh, **bhp;
3374 int ret;
3375
3376 ret = 0;
3377 for (bh = first_bh; bh; bh = bh->next) {
3378 if (!bh->deleted && bh->scheduled) {
3379 bh->scheduled = 0;
3380 if (!bh->idle)
3381 ret = 1;
3382 bh->idle = 0;
3383 bh->cb(bh->opaque);
3384 }
3385 }
3386
3387 /* remove deleted bhs */
3388 bhp = &first_bh;
3389 while (*bhp) {
3390 bh = *bhp;
3391 if (bh->deleted) {
3392 *bhp = bh->next;
3393 qemu_free(bh);
3394 } else
3395 bhp = &bh->next;
3396 }
3397
3398 return ret;
3399 }
3400
3401 void qemu_bh_schedule_idle(QEMUBH *bh)
3402 {
3403 if (bh->scheduled)
3404 return;
3405 bh->scheduled = 1;
3406 bh->idle = 1;
3407 }
3408
3409 void qemu_bh_schedule(QEMUBH *bh)
3410 {
3411 if (bh->scheduled)
3412 return;
3413 bh->scheduled = 1;
3414 bh->idle = 0;
3415 /* stop the currently executing CPU to execute the BH ASAP */
3416 qemu_notify_event();
3417 }
3418
3419 void qemu_bh_cancel(QEMUBH *bh)
3420 {
3421 bh->scheduled = 0;
3422 }
3423
3424 void qemu_bh_delete(QEMUBH *bh)
3425 {
3426 bh->scheduled = 0;
3427 bh->deleted = 1;
3428 }
3429
3430 static void qemu_bh_update_timeout(int *timeout)
3431 {
3432 QEMUBH *bh;
3433
3434 for (bh = first_bh; bh; bh = bh->next) {
3435 if (!bh->deleted && bh->scheduled) {
3436 if (bh->idle) {
3437 /* idle bottom halves will be polled at least
3438 * every 10ms */
3439 *timeout = MIN(10, *timeout);
3440 } else {
3441 /* non-idle bottom halves will be executed
3442 * immediately */
3443 *timeout = 0;
3444 break;
3445 }
3446 }
3447 }
3448 }
3449
3450 /***********************************************************/
3451 /* machine registration */
3452
3453 static QEMUMachine *first_machine = NULL;
3454 QEMUMachine *current_machine = NULL;
3455
3456 int qemu_register_machine(QEMUMachine *m)
3457 {
3458 QEMUMachine **pm;
3459 pm = &first_machine;
3460 while (*pm != NULL)
3461 pm = &(*pm)->next;
3462 m->next = NULL;
3463 *pm = m;
3464 return 0;
3465 }
3466
3467 static QEMUMachine *find_machine(const char *name)
3468 {
3469 QEMUMachine *m;
3470
3471 for(m = first_machine; m != NULL; m = m->next) {
3472 if (!strcmp(m->name, name))
3473 return m;
3474 }
3475 return NULL;
3476 }
3477
3478 static QEMUMachine *find_default_machine(void)
3479 {
3480 QEMUMachine *m;
3481
3482 for(m = first_machine; m != NULL; m = m->next) {
3483 if (m->is_default) {
3484 return m;
3485 }
3486 }
3487 return NULL;
3488 }
3489
3490 /***********************************************************/
3491 /* main execution loop */
3492
3493 static void gui_update(void *opaque)
3494 {
3495 uint64_t interval = GUI_REFRESH_INTERVAL;
3496 DisplayState *ds = opaque;
3497 DisplayChangeListener *dcl = ds->listeners;
3498
3499 dpy_refresh(ds);
3500
3501 while (dcl != NULL) {
3502 if (dcl->gui_timer_interval &&
3503 dcl->gui_timer_interval < interval)
3504 interval = dcl->gui_timer_interval;
3505 dcl = dcl->next;
3506 }
3507 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3508 }
3509
3510 static void nographic_update(void *opaque)
3511 {
3512 uint64_t interval = GUI_REFRESH_INTERVAL;
3513
3514 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3515 }
3516
3517 struct vm_change_state_entry {
3518 VMChangeStateHandler *cb;
3519 void *opaque;
3520 LIST_ENTRY (vm_change_state_entry) entries;
3521 };
3522
3523 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3524
3525 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3526 void *opaque)
3527 {
3528 VMChangeStateEntry *e;
3529
3530 e = qemu_mallocz(sizeof (*e));
3531
3532 e->cb = cb;
3533 e->opaque = opaque;
3534 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3535 return e;
3536 }
3537
3538 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3539 {
3540 LIST_REMOVE (e, entries);
3541 qemu_free (e);
3542 }
3543
3544 static void vm_state_notify(int running, int reason)
3545 {
3546 VMChangeStateEntry *e;
3547
3548 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3549 e->cb(e->opaque, running, reason);
3550 }
3551 }
3552
3553 static void resume_all_vcpus(void);
3554 static void pause_all_vcpus(void);
3555
3556 void vm_start(void)
3557 {
3558 if (!vm_running) {
3559 cpu_enable_ticks();
3560 vm_running = 1;
3561 vm_state_notify(1, 0);
3562 qemu_rearm_alarm_timer(alarm_timer);
3563 resume_all_vcpus();
3564 }
3565 }
3566
3567 /* reset/shutdown handler */
3568
3569 typedef struct QEMUResetEntry {
3570 QEMUResetHandler *func;
3571 void *opaque;
3572 int order;
3573 struct QEMUResetEntry *next;
3574 } QEMUResetEntry;
3575
3576 static QEMUResetEntry *first_reset_entry;
3577 static int reset_requested;
3578 static int shutdown_requested;
3579 static int powerdown_requested;
3580 static int debug_requested;
3581 static int vmstop_requested;
3582
3583 int qemu_shutdown_requested(void)
3584 {
3585 int r = shutdown_requested;
3586 shutdown_requested = 0;
3587 return r;
3588 }
3589
3590 int qemu_reset_requested(void)
3591 {
3592 int r = reset_requested;
3593 reset_requested = 0;
3594 return r;
3595 }
3596
3597 int qemu_powerdown_requested(void)
3598 {
3599 int r = powerdown_requested;
3600 powerdown_requested = 0;
3601 return r;
3602 }
3603
3604 static int qemu_debug_requested(void)
3605 {
3606 int r = debug_requested;
3607 debug_requested = 0;
3608 return r;
3609 }
3610
3611 static int qemu_vmstop_requested(void)
3612 {
3613 int r = vmstop_requested;
3614 vmstop_requested = 0;
3615 return r;
3616 }
3617
3618 static void do_vm_stop(int reason)
3619 {
3620 if (vm_running) {
3621 cpu_disable_ticks();
3622 vm_running = 0;
3623 pause_all_vcpus();
3624 vm_state_notify(0, reason);
3625 }
3626 }
3627
3628 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3629 {
3630 QEMUResetEntry **pre, *re;
3631
3632 pre = &first_reset_entry;
3633 while (*pre != NULL && (*pre)->order >= order) {
3634 pre = &(*pre)->next;
3635 }
3636 re = qemu_mallocz(sizeof(QEMUResetEntry));
3637 re->func = func;
3638 re->opaque = opaque;
3639 re->order = order;
3640 re->next = NULL;
3641 *pre = re;
3642 }
3643
3644 void qemu_system_reset(void)
3645 {
3646 QEMUResetEntry *re;
3647
3648 /* reset all devices */
3649 for(re = first_reset_entry; re != NULL; re = re->next) {
3650 re->func(re->opaque);
3651 }
3652 }
3653
3654 void qemu_system_reset_request(void)
3655 {
3656 if (no_reboot) {
3657 shutdown_requested = 1;
3658 } else {
3659 reset_requested = 1;
3660 }
3661 qemu_notify_event();
3662 }
3663
3664 void qemu_system_shutdown_request(void)
3665 {
3666 shutdown_requested = 1;
3667 qemu_notify_event();
3668 }
3669
3670 void qemu_system_powerdown_request(void)
3671 {
3672 powerdown_requested = 1;
3673 qemu_notify_event();
3674 }
3675
3676 #ifdef CONFIG_IOTHREAD
3677 static void qemu_system_vmstop_request(int reason)
3678 {
3679 vmstop_requested = reason;
3680 qemu_notify_event();
3681 }
3682 #endif
3683
3684 #ifndef _WIN32
3685 static int io_thread_fd = -1;
3686
3687 static void qemu_event_increment(void)
3688 {
3689 static const char byte = 0;
3690
3691 if (io_thread_fd == -1)
3692 return;
3693
3694 write(io_thread_fd, &byte, sizeof(byte));
3695 }
3696
3697 static void qemu_event_read(void *opaque)
3698 {
3699 int fd = (unsigned long)opaque;
3700 ssize_t len;
3701
3702 /* Drain the notify pipe */
3703 do {
3704 char buffer[512];
3705 len = read(fd, buffer, sizeof(buffer));
3706 } while ((len == -1 && errno == EINTR) || len > 0);
3707 }
3708
3709 static int qemu_event_init(void)
3710 {
3711 int err;
3712 int fds[2];
3713
3714 err = pipe(fds);
3715 if (err == -1)
3716 return -errno;
3717
3718 err = fcntl_setfl(fds[0], O_NONBLOCK);
3719 if (err < 0)
3720 goto fail;
3721
3722 err = fcntl_setfl(fds[1], O_NONBLOCK);
3723 if (err < 0)
3724 goto fail;
3725
3726 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3727 (void *)(unsigned long)fds[0]);
3728
3729 io_thread_fd = fds[1];
3730 return 0;
3731
3732 fail:
3733 close(fds[0]);
3734 close(fds[1]);
3735 return err;
3736 }
3737 #else
3738 HANDLE qemu_event_handle;
3739
3740 static void dummy_event_handler(void *opaque)
3741 {
3742 }
3743
3744 static int qemu_event_init(void)
3745 {
3746 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3747 if (!qemu_event_handle) {
3748 perror("Failed CreateEvent");
3749 return -1;
3750 }
3751 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3752 return 0;
3753 }
3754
3755 static void qemu_event_increment(void)
3756 {
3757 SetEvent(qemu_event_handle);
3758 }
3759 #endif
3760
3761 static int cpu_can_run(CPUState *env)
3762 {
3763 if (env->stop)
3764 return 0;
3765 if (env->stopped)
3766 return 0;
3767 return 1;
3768 }
3769
3770 #ifndef CONFIG_IOTHREAD
3771 static int qemu_init_main_loop(void)
3772 {
3773 return qemu_event_init();
3774 }
3775
3776 void qemu_init_vcpu(void *_env)
3777 {
3778 CPUState *env = _env;
3779
3780 if (kvm_enabled())
3781 kvm_init_vcpu(env);
3782 return;
3783 }
3784
3785 int qemu_cpu_self(void *env)
3786 {
3787 return 1;
3788 }
3789
3790 static void resume_all_vcpus(void)
3791 {
3792 }
3793
3794 static void pause_all_vcpus(void)
3795 {
3796 }
3797
3798 void qemu_cpu_kick(void *env)
3799 {
3800 return;
3801 }
3802
3803 void qemu_notify_event(void)
3804 {
3805 CPUState *env = cpu_single_env;
3806
3807 if (env) {
3808 cpu_exit(env);
3809 #ifdef USE_KQEMU
3810 if (env->kqemu_enabled)
3811 kqemu_cpu_interrupt(env);
3812 #endif
3813 }
3814 }
3815
3816 #define qemu_mutex_lock_iothread() do { } while (0)
3817 #define qemu_mutex_unlock_iothread() do { } while (0)
3818
3819 void vm_stop(int reason)
3820 {
3821 do_vm_stop(reason);
3822 }
3823
3824 #else /* CONFIG_IOTHREAD */
3825
3826 #include "qemu-thread.h"
3827
3828 QemuMutex qemu_global_mutex;
3829 static QemuMutex qemu_fair_mutex;
3830
3831 static QemuThread io_thread;
3832
3833 static QemuThread *tcg_cpu_thread;
3834 static QemuCond *tcg_halt_cond;
3835
3836 static int qemu_system_ready;
3837 /* cpu creation */
3838 static QemuCond qemu_cpu_cond;
3839 /* system init */
3840 static QemuCond qemu_system_cond;
3841 static QemuCond qemu_pause_cond;
3842
3843 static void block_io_signals(void);
3844 static void unblock_io_signals(void);
3845 static int tcg_has_work(void);
3846
3847 static int qemu_init_main_loop(void)
3848 {
3849 int ret;
3850
3851 ret = qemu_event_init();
3852 if (ret)
3853 return ret;
3854
3855 qemu_cond_init(&qemu_pause_cond);
3856 qemu_mutex_init(&qemu_fair_mutex);
3857 qemu_mutex_init(&qemu_global_mutex);
3858 qemu_mutex_lock(&qemu_global_mutex);
3859
3860 unblock_io_signals();
3861 qemu_thread_self(&io_thread);
3862
3863 return 0;
3864 }
3865
3866 static void qemu_wait_io_event(CPUState *env)
3867 {
3868 while (!tcg_has_work())
3869 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3870
3871 qemu_mutex_unlock(&qemu_global_mutex);
3872
3873 /*
3874 * Users of qemu_global_mutex can be starved, having no chance
3875 * to acquire it since this path will get to it first.
3876 * So use another lock to provide fairness.
3877 */
3878 qemu_mutex_lock(&qemu_fair_mutex);
3879 qemu_mutex_unlock(&qemu_fair_mutex);
3880
3881 qemu_mutex_lock(&qemu_global_mutex);
3882 if (env->stop) {
3883 env->stop = 0;
3884 env->stopped = 1;
3885 qemu_cond_signal(&qemu_pause_cond);
3886 }
3887 }
3888
3889 static int qemu_cpu_exec(CPUState *env);
3890
3891 static void *kvm_cpu_thread_fn(void *arg)
3892 {
3893 CPUState *env = arg;
3894
3895 block_io_signals();
3896 qemu_thread_self(env->thread);
3897
3898 /* signal CPU creation */
3899 qemu_mutex_lock(&qemu_global_mutex);
3900 env->created = 1;
3901 qemu_cond_signal(&qemu_cpu_cond);
3902
3903 /* and wait for machine initialization */
3904 while (!qemu_system_ready)
3905 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3906
3907 while (1) {
3908 if (cpu_can_run(env))
3909 qemu_cpu_exec(env);
3910 qemu_wait_io_event(env);
3911 }
3912
3913 return NULL;
3914 }
3915
3916 static void tcg_cpu_exec(void);
3917
3918 static void *tcg_cpu_thread_fn(void *arg)
3919 {
3920 CPUState *env = arg;
3921
3922 block_io_signals();
3923 qemu_thread_self(env->thread);
3924
3925 /* signal CPU creation */
3926 qemu_mutex_lock(&qemu_global_mutex);
3927 for (env = first_cpu; env != NULL; env = env->next_cpu)
3928 env->created = 1;
3929 qemu_cond_signal(&qemu_cpu_cond);
3930
3931 /* and wait for machine initialization */
3932 while (!qemu_system_ready)
3933 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3934
3935 while (1) {
3936 tcg_cpu_exec();
3937 qemu_wait_io_event(cur_cpu);
3938 }
3939
3940 return NULL;
3941 }
3942
3943 void qemu_cpu_kick(void *_env)
3944 {
3945 CPUState *env = _env;
3946 qemu_cond_broadcast(env->halt_cond);
3947 if (kvm_enabled())
3948 qemu_thread_signal(env->thread, SIGUSR1);
3949 }
3950
3951 int qemu_cpu_self(void *env)
3952 {
3953 return (cpu_single_env != NULL);
3954 }
3955
3956 static void cpu_signal(int sig)
3957 {
3958 if (cpu_single_env)
3959 cpu_exit(cpu_single_env);
3960 }
3961
3962 static void block_io_signals(void)
3963 {
3964 sigset_t set;
3965 struct sigaction sigact;
3966
3967 sigemptyset(&set);
3968 sigaddset(&set, SIGUSR2);
3969 sigaddset(&set, SIGIO);
3970 sigaddset(&set, SIGALRM);
3971 pthread_sigmask(SIG_BLOCK, &set, NULL);
3972
3973 sigemptyset(&set);
3974 sigaddset(&set, SIGUSR1);
3975 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3976
3977 memset(&sigact, 0, sizeof(sigact));
3978 sigact.sa_handler = cpu_signal;
3979 sigaction(SIGUSR1, &sigact, NULL);
3980 }
3981
3982 static void unblock_io_signals(void)
3983 {
3984 sigset_t set;
3985
3986 sigemptyset(&set);
3987 sigaddset(&set, SIGUSR2);
3988 sigaddset(&set, SIGIO);
3989 sigaddset(&set, SIGALRM);
3990 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3991
3992 sigemptyset(&set);
3993 sigaddset(&set, SIGUSR1);
3994 pthread_sigmask(SIG_BLOCK, &set, NULL);
3995 }
3996
3997 static void qemu_signal_lock(unsigned int msecs)
3998 {
3999 qemu_mutex_lock(&qemu_fair_mutex);
4000
4001 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4002 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4003 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4004 break;
4005 }
4006 qemu_mutex_unlock(&qemu_fair_mutex);
4007 }
4008
4009 static void qemu_mutex_lock_iothread(void)
4010 {
4011 if (kvm_enabled()) {
4012 qemu_mutex_lock(&qemu_fair_mutex);
4013 qemu_mutex_lock(&qemu_global_mutex);
4014 qemu_mutex_unlock(&qemu_fair_mutex);
4015 } else
4016 qemu_signal_lock(100);
4017 }
4018
4019 static void qemu_mutex_unlock_iothread(void)
4020 {
4021 qemu_mutex_unlock(&qemu_global_mutex);
4022 }
4023
4024 static int all_vcpus_paused(void)
4025 {
4026 CPUState *penv = first_cpu;
4027
4028 while (penv) {
4029 if (!penv->stopped)
4030 return 0;
4031 penv = (CPUState *)penv->next_cpu;
4032 }
4033
4034 return 1;
4035 }
4036
4037 static void pause_all_vcpus(void)
4038 {
4039 CPUState *penv = first_cpu;
4040
4041 while (penv) {
4042 penv->stop = 1;
4043 qemu_thread_signal(penv->thread, SIGUSR1);
4044 qemu_cpu_kick(penv);
4045 penv = (CPUState *)penv->next_cpu;
4046 }
4047
4048 while (!all_vcpus_paused()) {
4049 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4050 penv = first_cpu;
4051 while (penv) {
4052 qemu_thread_signal(penv->thread, SIGUSR1);
4053 penv = (CPUState *)penv->next_cpu;
4054 }
4055 }
4056 }
4057
4058 static void resume_all_vcpus(void)
4059 {
4060 CPUState *penv = first_cpu;
4061
4062 while (penv) {
4063 penv->stop = 0;
4064 penv->stopped = 0;
4065 qemu_thread_signal(penv->thread, SIGUSR1);
4066 qemu_cpu_kick(penv);
4067 penv = (CPUState *)penv->next_cpu;
4068 }
4069 }
4070
4071 static void tcg_init_vcpu(void *_env)
4072 {
4073 CPUState *env = _env;
4074 /* share a single thread for all cpus with TCG */
4075 if (!tcg_cpu_thread) {
4076 env->thread = qemu_mallocz(sizeof(QemuThread));
4077 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4078 qemu_cond_init(env->halt_cond);
4079 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4080 while (env->created == 0)
4081 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4082 tcg_cpu_thread = env->thread;
4083 tcg_halt_cond = env->halt_cond;
4084 } else {
4085 env->thread = tcg_cpu_thread;
4086 env->halt_cond = tcg_halt_cond;
4087 }
4088 }
4089
4090 static void kvm_start_vcpu(CPUState *env)
4091 {
4092 kvm_init_vcpu(env);
4093 env->thread = qemu_mallocz(sizeof(QemuThread));
4094 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4095 qemu_cond_init(env->halt_cond);
4096 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4097 while (env->created == 0)
4098 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4099 }
4100
4101 void qemu_init_vcpu(void *_env)
4102 {
4103 CPUState *env = _env;
4104
4105 if (kvm_enabled())
4106 kvm_start_vcpu(env);
4107 else
4108 tcg_init_vcpu(env);
4109 }
4110
4111 void qemu_notify_event(void)
4112 {
4113 qemu_event_increment();
4114 }
4115
4116 void vm_stop(int reason)
4117 {
4118 QemuThread me;
4119 qemu_thread_self(&me);
4120
4121 if (!qemu_thread_equal(&me, &io_thread)) {
4122 qemu_system_vmstop_request(reason);
4123 /*
4124 * FIXME: should not return to device code in case
4125 * vm_stop() has been requested.
4126 */
4127 if (cpu_single_env) {
4128 cpu_exit(cpu_single_env);
4129 cpu_single_env->stop = 1;
4130 }
4131 return;
4132 }
4133 do_vm_stop(reason);
4134 }
4135
4136 #endif
4137
4138
4139 #ifdef _WIN32
4140 static void host_main_loop_wait(int *timeout)
4141 {
4142 int ret, ret2, i;
4143 PollingEntry *pe;
4144
4145
4146 /* XXX: need to suppress polling by better using win32 events */
4147 ret = 0;
4148 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4149 ret |= pe->func(pe->opaque);
4150 }
4151 if (ret == 0) {
4152 int err;
4153 WaitObjects *w = &wait_objects;
4154
4155 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4156 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4157 if (w->func[ret - WAIT_OBJECT_0])
4158 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4159
4160 /* Check for additional signaled events */
4161 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4162
4163 /* Check if event is signaled */
4164 ret2 = WaitForSingleObject(w->events[i], 0);
4165 if(ret2 == WAIT_OBJECT_0) {
4166 if (w->func[i])
4167 w->func[i](w->opaque[i]);
4168 } else if (ret2 == WAIT_TIMEOUT) {
4169 } else {
4170 err = GetLastError();
4171 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4172 }
4173 }
4174 } else if (ret == WAIT_TIMEOUT) {
4175 } else {
4176 err = GetLastError();
4177 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4178 }
4179 }
4180
4181 *timeout = 0;
4182 }
4183 #else
4184 static void host_main_loop_wait(int *timeout)
4185 {
4186 }
4187 #endif
4188
4189 void main_loop_wait(int timeout)
4190 {
4191 IOHandlerRecord *ioh;
4192 fd_set rfds, wfds, xfds;
4193 int ret, nfds;
4194 struct timeval tv;
4195
4196 qemu_bh_update_timeout(&timeout);
4197
4198 host_main_loop_wait(&timeout);
4199
4200 /* poll any events */
4201 /* XXX: separate device handlers from system ones */
4202 nfds = -1;
4203 FD_ZERO(&rfds);
4204 FD_ZERO(&wfds);
4205 FD_ZERO(&xfds);
4206 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4207 if (ioh->deleted)
4208 continue;
4209 if (ioh->fd_read &&
4210 (!ioh->fd_read_poll ||
4211 ioh->fd_read_poll(ioh->opaque) != 0)) {
4212 FD_SET(ioh->fd, &rfds);
4213 if (ioh->fd > nfds)
4214 nfds = ioh->fd;
4215 }
4216 if (ioh->fd_write) {
4217 FD_SET(ioh->fd, &wfds);
4218 if (ioh->fd > nfds)
4219 nfds = ioh->fd;
4220 }
4221 }
4222
4223 tv.tv_sec = timeout / 1000;
4224 tv.tv_usec = (timeout % 1000) * 1000;
4225
4226 #if defined(CONFIG_SLIRP)
4227 if (slirp_is_inited()) {
4228 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4229 }
4230 #endif
4231 qemu_mutex_unlock_iothread();
4232 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4233 qemu_mutex_lock_iothread();
4234 if (ret > 0) {
4235 IOHandlerRecord **pioh;
4236
4237 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4238 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4239 ioh->fd_read(ioh->opaque);
4240 }
4241 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4242 ioh->fd_write(ioh->opaque);
4243 }
4244 }
4245
4246 /* remove deleted IO handlers */
4247 pioh = &first_io_handler;
4248 while (*pioh) {
4249 ioh = *pioh;
4250 if (ioh->deleted) {
4251 *pioh = ioh->next;
4252 qemu_free(ioh);
4253 } else
4254 pioh = &ioh->next;
4255 }
4256 }
4257 #if defined(CONFIG_SLIRP)
4258 if (slirp_is_inited()) {
4259 if (ret < 0) {
4260 FD_ZERO(&rfds);
4261 FD_ZERO(&wfds);
4262 FD_ZERO(&xfds);
4263 }
4264 slirp_select_poll(&rfds, &wfds, &xfds);
4265 }
4266 #endif
4267
4268 /* rearm timer, if not periodic */
4269 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4270 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4271 qemu_rearm_alarm_timer(alarm_timer);
4272 }
4273
4274 /* vm time timers */
4275 if (vm_running) {
4276 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4277 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4278 qemu_get_clock(vm_clock));
4279 }
4280
4281 /* real time timers */
4282 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4283 qemu_get_clock(rt_clock));
4284
4285 /* Check bottom-halves last in case any of the earlier events triggered
4286 them. */
4287 qemu_bh_poll();
4288
4289 }
4290
4291 static int qemu_cpu_exec(CPUState *env)
4292 {
4293 int ret;
4294 #ifdef CONFIG_PROFILER
4295 int64_t ti;
4296 #endif
4297
4298 #ifdef CONFIG_PROFILER
4299 ti = profile_getclock();
4300 #endif
4301 if (use_icount) {
4302 int64_t count;
4303 int decr;
4304 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4305 env->icount_decr.u16.low = 0;
4306 env->icount_extra = 0;
4307 count = qemu_next_deadline();
4308 count = (count + (1 << icount_time_shift) - 1)
4309 >> icount_time_shift;
4310 qemu_icount += count;
4311 decr = (count > 0xffff) ? 0xffff : count;
4312 count -= decr;
4313 env->icount_decr.u16.low = decr;
4314 env->icount_extra = count;
4315 }
4316 ret = cpu_exec(env);
4317 #ifdef CONFIG_PROFILER
4318 qemu_time += profile_getclock() - ti;
4319 #endif
4320 if (use_icount) {
4321 /* Fold pending instructions back into the
4322 instruction counter, and clear the interrupt flag. */
4323 qemu_icount -= (env->icount_decr.u16.low
4324 + env->icount_extra);
4325 env->icount_decr.u32 = 0;
4326 env->icount_extra = 0;
4327 }
4328 return ret;
4329 }
4330
4331 static void tcg_cpu_exec(void)
4332 {
4333 int ret = 0;
4334
4335 if (next_cpu == NULL)
4336 next_cpu = first_cpu;
4337 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4338 CPUState *env = cur_cpu = next_cpu;
4339
4340 if (!vm_running)
4341 break;
4342 if (timer_alarm_pending) {
4343 timer_alarm_pending = 0;
4344 break;
4345 }
4346 if (cpu_can_run(env))
4347 ret = qemu_cpu_exec(env);
4348 if (ret == EXCP_DEBUG) {
4349 gdb_set_stop_cpu(env);
4350 debug_requested = 1;
4351 break;
4352 }
4353 }
4354 }
4355
4356 static int cpu_has_work(CPUState *env)
4357 {
4358 if (env->stop)
4359 return 1;
4360 if (env->stopped)
4361 return 0;
4362 if (!env->halted)
4363 return 1;
4364 if (qemu_cpu_has_work(env))
4365 return 1;
4366 return 0;
4367 }
4368
4369 static int tcg_has_work(void)
4370 {
4371 CPUState *env;
4372
4373 for (env = first_cpu; env != NULL; env = env->next_cpu)
4374 if (cpu_has_work(env))
4375 return 1;
4376 return 0;
4377 }
4378
4379 static int qemu_calculate_timeout(void)
4380 {
4381 int timeout;
4382
4383 if (!vm_running)
4384 timeout = 5000;
4385 else if (tcg_has_work())
4386 timeout = 0;
4387 else if (!use_icount)
4388 timeout = 5000;
4389 else {
4390 /* XXX: use timeout computed from timers */
4391 int64_t add;
4392 int64_t delta;
4393 /* Advance virtual time to the next event. */
4394 if (use_icount == 1) {
4395 /* When not using an adaptive execution frequency
4396 we tend to get badly out of sync with real time,
4397 so just delay for a reasonable amount of time. */
4398 delta = 0;
4399 } else {
4400 delta = cpu_get_icount() - cpu_get_clock();
4401 }
4402 if (delta > 0) {
4403 /* If virtual time is ahead of real time then just
4404 wait for IO. */
4405 timeout = (delta / 1000000) + 1;
4406 } else {
4407 /* Wait for either IO to occur or the next
4408 timer event. */
4409 add = qemu_next_deadline();
4410 /* We advance the timer before checking for IO.
4411 Limit the amount we advance so that early IO
4412 activity won't get the guest too far ahead. */
4413 if (add > 10000000)
4414 add = 10000000;
4415 delta += add;
4416 add = (add + (1 << icount_time_shift) - 1)
4417 >> icount_time_shift;
4418 qemu_icount += add;
4419 timeout = delta / 1000000;
4420 if (timeout < 0)
4421 timeout = 0;
4422 }
4423 }
4424
4425 return timeout;
4426 }
4427
4428 static int vm_can_run(void)
4429 {
4430 if (powerdown_requested)
4431 return 0;
4432 if (reset_requested)
4433 return 0;
4434 if (shutdown_requested)
4435 return 0;
4436 if (debug_requested)
4437 return 0;
4438 return 1;
4439 }
4440
4441 static void main_loop(void)
4442 {
4443 int r;
4444
4445 #ifdef CONFIG_IOTHREAD
4446 qemu_system_ready = 1;
4447 qemu_cond_broadcast(&qemu_system_cond);
4448 #endif
4449
4450 for (;;) {
4451 do {
4452 #ifdef CONFIG_PROFILER
4453 int64_t ti;
4454 #endif
4455 #ifndef CONFIG_IOTHREAD
4456 tcg_cpu_exec();
4457 #endif
4458 #ifdef CONFIG_PROFILER
4459 ti = profile_getclock();
4460 #endif
4461 #ifdef CONFIG_IOTHREAD
4462 main_loop_wait(1000);
4463 #else
4464 main_loop_wait(qemu_calculate_timeout());
4465 #endif
4466 #ifdef CONFIG_PROFILER
4467 dev_time += profile_getclock() - ti;
4468 #endif
4469 } while (vm_can_run());
4470
4471 if (qemu_debug_requested())
4472 vm_stop(EXCP_DEBUG);
4473 if (qemu_shutdown_requested()) {
4474 if (no_shutdown) {
4475 vm_stop(0);
4476 no_shutdown = 0;
4477 } else
4478 break;
4479 }
4480 if (qemu_reset_requested()) {
4481 pause_all_vcpus();
4482 qemu_system_reset();
4483 resume_all_vcpus();
4484 }
4485 if (qemu_powerdown_requested())
4486 qemu_system_powerdown();
4487 if ((r = qemu_vmstop_requested()))
4488 vm_stop(r);
4489 }
4490 pause_all_vcpus();
4491 }
4492
4493 static void version(void)
4494 {
4495 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4496 }
4497
4498 static void help(int exitcode)
4499 {
4500 version();
4501 printf("usage: %s [options] [disk_image]\n"
4502 "\n"
4503 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4504 "\n"
4505 #define DEF(option, opt_arg, opt_enum, opt_help) \
4506 opt_help
4507 #define DEFHEADING(text) stringify(text) "\n"
4508 #include "qemu-options.h"
4509 #undef DEF
4510 #undef DEFHEADING
4511 #undef GEN_DOCS
4512 "\n"
4513 "During emulation, the following keys are useful:\n"
4514 "ctrl-alt-f toggle full screen\n"
4515 "ctrl-alt-n switch to virtual console 'n'\n"
4516 "ctrl-alt toggle mouse and keyboard grab\n"
4517 "\n"
4518 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4519 ,
4520 "qemu",
4521 DEFAULT_RAM_SIZE,
4522 #ifndef _WIN32
4523 DEFAULT_NETWORK_SCRIPT,
4524 DEFAULT_NETWORK_DOWN_SCRIPT,
4525 #endif
4526 DEFAULT_GDBSTUB_PORT,
4527 "/tmp/qemu.log");
4528 exit(exitcode);
4529 }
4530
4531 #define HAS_ARG 0x0001
4532
4533 enum {
4534 #define DEF(option, opt_arg, opt_enum, opt_help) \
4535 opt_enum,
4536 #define DEFHEADING(text)
4537 #include "qemu-options.h"
4538 #undef DEF
4539 #undef DEFHEADING
4540 #undef GEN_DOCS
4541 };
4542
4543 typedef struct QEMUOption {
4544 const char *name;
4545 int flags;
4546 int index;
4547 } QEMUOption;
4548
4549 static const QEMUOption qemu_options[] = {
4550 { "h", 0, QEMU_OPTION_h },
4551 #define DEF(option, opt_arg, opt_enum, opt_help) \
4552 { option, opt_arg, opt_enum },
4553 #define DEFHEADING(text)
4554 #include "qemu-options.h"
4555 #undef DEF
4556 #undef DEFHEADING
4557 #undef GEN_DOCS
4558 { NULL },
4559 };
4560
4561 #ifdef HAS_AUDIO
4562 struct soundhw soundhw[] = {
4563 #ifdef HAS_AUDIO_CHOICE
4564 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4565 {
4566 "pcspk",
4567 "PC speaker",
4568 0,
4569 1,
4570 { .init_isa = pcspk_audio_init }
4571 },
4572 #endif
4573
4574 #ifdef CONFIG_SB16
4575 {
4576 "sb16",
4577 "Creative Sound Blaster 16",
4578 0,
4579 1,
4580 { .init_isa = SB16_init }
4581 },
4582 #endif
4583
4584 #ifdef CONFIG_CS4231A
4585 {
4586 "cs4231a",
4587 "CS4231A",
4588 0,
4589 1,
4590 { .init_isa = cs4231a_init }
4591 },
4592 #endif
4593
4594 #ifdef CONFIG_ADLIB
4595 {
4596 "adlib",
4597 #ifdef HAS_YMF262
4598 "Yamaha YMF262 (OPL3)",
4599 #else
4600 "Yamaha YM3812 (OPL2)",
4601 #endif
4602 0,
4603 1,
4604 { .init_isa = Adlib_init }
4605 },
4606 #endif
4607
4608 #ifdef CONFIG_GUS
4609 {
4610 "gus",
4611 "Gravis Ultrasound GF1",
4612 0,
4613 1,
4614 { .init_isa = GUS_init }
4615 },
4616 #endif
4617
4618 #ifdef CONFIG_AC97
4619 {
4620 "ac97",
4621 "Intel 82801AA AC97 Audio",
4622 0,
4623 0,
4624 { .init_pci = ac97_init }
4625 },
4626 #endif
4627
4628 #ifdef CONFIG_ES1370
4629 {
4630 "es1370",
4631 "ENSONIQ AudioPCI ES1370",
4632 0,
4633 0,
4634 { .init_pci = es1370_init }
4635 },
4636 #endif
4637
4638 #endif /* HAS_AUDIO_CHOICE */
4639
4640 { NULL, NULL, 0, 0, { NULL } }
4641 };
4642
4643 static void select_soundhw (const char *optarg)
4644 {
4645 struct soundhw *c;
4646
4647 if (*optarg == '?') {
4648 show_valid_cards:
4649
4650 printf ("Valid sound card names (comma separated):\n");
4651 for (c = soundhw; c->name; ++c) {
4652 printf ("%-11s %s\n", c->name, c->descr);
4653 }
4654 printf ("\n-soundhw all will enable all of the above\n");
4655 exit (*optarg != '?');
4656 }
4657 else {
4658 size_t l;
4659 const char *p;
4660 char *e;
4661 int bad_card = 0;
4662
4663 if (!strcmp (optarg, "all")) {
4664 for (c = soundhw; c->name; ++c) {
4665 c->enabled = 1;
4666 }
4667 return;
4668 }
4669
4670 p = optarg;
4671 while (*p) {
4672 e = strchr (p, ',');
4673 l = !e ? strlen (p) : (size_t) (e - p);
4674
4675 for (c = soundhw; c->name; ++c) {
4676 if (!strncmp (c->name, p, l)) {
4677 c->enabled = 1;
4678 break;
4679 }
4680 }
4681
4682 if (!c->name) {
4683 if (l > 80) {
4684 fprintf (stderr,
4685 "Unknown sound card name (too big to show)\n");
4686 }
4687 else {
4688 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4689 (int) l, p);
4690 }
4691 bad_card = 1;
4692 }
4693 p += l + (e != NULL);
4694 }
4695
4696 if (bad_card)
4697 goto show_valid_cards;
4698 }
4699 }
4700 #endif
4701
4702 static void select_vgahw (const char *p)
4703 {
4704 const char *opts;
4705
4706 cirrus_vga_enabled = 0;
4707 std_vga_enabled = 0;
4708 vmsvga_enabled = 0;
4709 xenfb_enabled = 0;
4710 if (strstart(p, "std", &opts)) {
4711 std_vga_enabled = 1;
4712 } else if (strstart(p, "cirrus", &opts)) {
4713 cirrus_vga_enabled = 1;
4714 } else if (strstart(p, "vmware", &opts)) {
4715 vmsvga_enabled = 1;
4716 } else if (strstart(p, "xenfb", &opts)) {
4717 xenfb_enabled = 1;
4718 } else if (!strstart(p, "none", &opts)) {
4719 invalid_vga:
4720 fprintf(stderr, "Unknown vga type: %s\n", p);
4721 exit(1);
4722 }
4723 while (*opts) {
4724 const char *nextopt;
4725
4726 if (strstart(opts, ",retrace=", &nextopt)) {
4727 opts = nextopt;
4728 if (strstart(opts, "dumb", &nextopt))
4729 vga_retrace_method = VGA_RETRACE_DUMB;
4730 else if (strstart(opts, "precise", &nextopt))
4731 vga_retrace_method = VGA_RETRACE_PRECISE;
4732 else goto invalid_vga;
4733 } else goto invalid_vga;
4734 opts = nextopt;
4735 }
4736 }
4737
4738 #ifdef _WIN32
4739 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4740 {
4741 exit(STATUS_CONTROL_C_EXIT);
4742 return TRUE;
4743 }
4744 #endif
4745
4746 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4747 {
4748 int ret;
4749
4750 if(strlen(str) != 36)
4751 return -1;
4752
4753 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4754 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4755 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4756
4757 if(ret != 16)
4758 return -1;
4759
4760 #ifdef TARGET_I386
4761 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4762 #endif
4763
4764 return 0;
4765 }
4766
4767 #define MAX_NET_CLIENTS 32
4768
4769 #ifndef _WIN32
4770
4771 static void termsig_handler(int signal)
4772 {
4773 qemu_system_shutdown_request();
4774 }
4775
4776 static void sigchld_handler(int signal)
4777 {
4778 waitpid(-1, NULL, WNOHANG);
4779 }
4780
4781 static void sighandler_setup(void)
4782 {
4783 struct sigaction act;
4784
4785 memset(&act, 0, sizeof(act));
4786 act.sa_handler = termsig_handler;
4787 sigaction(SIGINT, &act, NULL);
4788 sigaction(SIGHUP, &act, NULL);
4789 sigaction(SIGTERM, &act, NULL);
4790
4791 act.sa_handler = sigchld_handler;
4792 act.sa_flags = SA_NOCLDSTOP;
4793 sigaction(SIGCHLD, &act, NULL);
4794 }
4795
4796 #endif
4797
4798 #ifdef _WIN32
4799 /* Look for support files in the same directory as the executable. */
4800 static char *find_datadir(const char *argv0)
4801 {
4802 char *p;
4803 char buf[MAX_PATH];
4804 DWORD len;
4805
4806 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4807 if (len == 0) {
4808 return len;
4809 }
4810
4811 buf[len] = 0;
4812 p = buf + len - 1;
4813 while (p != buf && *p != '\\')
4814 p--;
4815 *p = 0;
4816 if (access(buf, R_OK) == 0) {
4817 return qemu_strdup(buf);
4818 }
4819 return NULL;
4820 }
4821 #else /* !_WIN32 */
4822
4823 /* Find a likely location for support files using the location of the binary.
4824 For installed binaries this will be "$bindir/../share/qemu". When
4825 running from the build tree this will be "$bindir/../pc-bios". */
4826 #define SHARE_SUFFIX "/share/qemu"
4827 #define BUILD_SUFFIX "/pc-bios"
4828 static char *find_datadir(const char *argv0)
4829 {
4830 char *dir;
4831 char *p = NULL;
4832 char *res;
4833 #ifdef PATH_MAX
4834 char buf[PATH_MAX];
4835 #endif
4836
4837 #if defined(__linux__)
4838 {
4839 int len;
4840 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4841 if (len > 0) {
4842 buf[len] = 0;
4843 p = buf;
4844 }
4845 }
4846 #elif defined(__FreeBSD__)
4847 {
4848 int len;
4849 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4850 if (len > 0) {
4851 buf[len] = 0;
4852 p = buf;
4853 }
4854 }
4855 #endif
4856 /* If we don't have any way of figuring out the actual executable
4857 location then try argv[0]. */
4858 if (!p) {
4859 #ifdef PATH_MAX
4860 p = buf;
4861 #endif
4862 p = realpath(argv0, p);
4863 if (!p) {
4864 return NULL;
4865 }
4866 }
4867 dir = dirname(p);
4868 dir = dirname(dir);
4869
4870 res = qemu_mallocz(strlen(dir) +
4871 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1);
4872 sprintf(res, "%s%s", dir, SHARE_SUFFIX);
4873 if (access(res, R_OK)) {
4874 sprintf(res, "%s%s", dir, BUILD_SUFFIX);
4875 if (access(res, R_OK)) {
4876 qemu_free(res);
4877 res = NULL;
4878 }
4879 }
4880 #ifndef PATH_MAX
4881 free(p);
4882 #endif
4883 return res;
4884 }
4885 #undef SHARE_SUFFIX
4886 #undef BUILD_SUFFIX
4887 #endif
4888
4889 char *qemu_find_file(int type, const char *name)
4890 {
4891 int len;
4892 const char *subdir;
4893 char *buf;
4894
4895 /* If name contains path separators then try it as a straight path. */
4896 if ((strchr(name, '/') || strchr(name, '\\'))
4897 && access(name, R_OK) == 0) {
4898 return strdup(name);
4899 }
4900 switch (type) {
4901 case QEMU_FILE_TYPE_BIOS:
4902 subdir = "";
4903 break;
4904 case QEMU_FILE_TYPE_KEYMAP:
4905 subdir = "keymaps/";
4906 break;
4907 default:
4908 abort();
4909 }
4910 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4911 buf = qemu_mallocz(len);
4912 sprintf(buf, "%s/%s%s", data_dir, subdir, name);
4913 if (access(buf, R_OK)) {
4914 qemu_free(buf);
4915 return NULL;
4916 }
4917 return buf;
4918 }
4919
4920 int main(int argc, char **argv, char **envp)
4921 {
4922 const char *gdbstub_dev = NULL;
4923 uint32_t boot_devices_bitmap = 0;
4924 int i;
4925 int snapshot, linux_boot, net_boot;
4926 const char *initrd_filename;
4927 const char *kernel_filename, *kernel_cmdline;
4928 const char *boot_devices = "";
4929 DisplayState *ds;
4930 DisplayChangeListener *dcl;
4931 int cyls, heads, secs, translation;
4932 const char *net_clients[MAX_NET_CLIENTS];
4933 int nb_net_clients;
4934 const char *bt_opts[MAX_BT_CMDLINE];
4935 int nb_bt_opts;
4936 int hda_index;
4937 int optind;
4938 const char *r, *optarg;
4939 CharDriverState *monitor_hd = NULL;
4940 const char *monitor_device;
4941 const char *serial_devices[MAX_SERIAL_PORTS];
4942 int serial_device_index;
4943 const char *parallel_devices[MAX_PARALLEL_PORTS];
4944 int parallel_device_index;
4945 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4946 int virtio_console_index;
4947 const char *loadvm = NULL;
4948 QEMUMachine *machine;
4949 const char *cpu_model;
4950 const char *usb_devices[MAX_USB_CMDLINE];
4951 int usb_devices_index;
4952 #ifndef _WIN32
4953 int fds[2];
4954 #endif
4955 int tb_size;
4956 const char *pid_file = NULL;
4957 const char *incoming = NULL;
4958 #ifndef _WIN32
4959 int fd = 0;
4960 struct passwd *pwd = NULL;
4961 const char *chroot_dir = NULL;
4962 const char *run_as = NULL;
4963 #endif
4964 CPUState *env;
4965 int show_vnc_port = 0;
4966
4967 qemu_cache_utils_init(envp);
4968
4969 LIST_INIT (&vm_change_state_head);
4970 #ifndef _WIN32
4971 {
4972 struct sigaction act;
4973 sigfillset(&act.sa_mask);
4974 act.sa_flags = 0;
4975 act.sa_handler = SIG_IGN;
4976 sigaction(SIGPIPE, &act, NULL);
4977 }
4978 #else
4979 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4980 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4981 QEMU to run on a single CPU */
4982 {
4983 HANDLE h;
4984 DWORD mask, smask;
4985 int i;
4986 h = GetCurrentProcess();
4987 if (GetProcessAffinityMask(h, &mask, &smask)) {
4988 for(i = 0; i < 32; i++) {
4989 if (mask & (1 << i))
4990 break;
4991 }
4992 if (i != 32) {
4993 mask = 1 << i;
4994 SetProcessAffinityMask(h, mask);
4995 }
4996 }
4997 }
4998 #endif
4999
5000 module_call_init(MODULE_INIT_MACHINE);
5001 machine = find_default_machine();
5002 cpu_model = NULL;
5003 initrd_filename = NULL;
5004 ram_size = 0;
5005 snapshot = 0;
5006 kernel_filename = NULL;
5007 kernel_cmdline = "";
5008 cyls = heads = secs = 0;
5009 translation = BIOS_ATA_TRANSLATION_AUTO;
5010 monitor_device = "vc:80Cx24C";
5011
5012 serial_devices[0] = "vc:80Cx24C";
5013 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5014 serial_devices[i] = NULL;
5015 serial_device_index = 0;
5016
5017 parallel_devices[0] = "vc:80Cx24C";
5018 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5019 parallel_devices[i] = NULL;
5020 parallel_device_index = 0;
5021
5022 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5023 virtio_consoles[i] = NULL;
5024 virtio_console_index = 0;
5025
5026 for (i = 0; i < MAX_NODES; i++) {
5027 node_mem[i] = 0;
5028 node_cpumask[i] = 0;
5029 }
5030
5031 usb_devices_index = 0;
5032
5033 nb_net_clients = 0;
5034 nb_bt_opts = 0;
5035 nb_drives = 0;
5036 nb_drives_opt = 0;
5037 nb_numa_nodes = 0;
5038 hda_index = -1;
5039
5040 nb_nics = 0;
5041
5042 tb_size = 0;
5043 autostart= 1;
5044
5045 register_watchdogs();
5046
5047 optind = 1;
5048 for(;;) {
5049 if (optind >= argc)
5050 break;
5051 r = argv[optind];
5052 if (r[0] != '-') {
5053 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5054 } else {
5055 const QEMUOption *popt;
5056
5057 optind++;
5058 /* Treat --foo the same as -foo. */
5059 if (r[1] == '-')
5060 r++;
5061 popt = qemu_options;
5062 for(;;) {
5063 if (!popt->name) {
5064 fprintf(stderr, "%s: invalid option -- '%s'\n",
5065 argv[0], r);
5066 exit(1);
5067 }
5068 if (!strcmp(popt->name, r + 1))
5069 break;
5070 popt++;
5071 }
5072 if (popt->flags & HAS_ARG) {
5073 if (optind >= argc) {
5074 fprintf(stderr, "%s: option '%s' requires an argument\n",
5075 argv[0], r);
5076 exit(1);
5077 }
5078 optarg = argv[optind++];
5079 } else {
5080 optarg = NULL;
5081 }
5082
5083 switch(popt->index) {
5084 case QEMU_OPTION_M:
5085 machine = find_machine(optarg);
5086 if (!machine) {
5087 QEMUMachine *m;
5088 printf("Supported machines are:\n");
5089 for(m = first_machine; m != NULL; m = m->next) {
5090 printf("%-10s %s%s\n",
5091 m->name, m->desc,
5092 m->is_default ? " (default)" : "");
5093 }
5094 exit(*optarg != '?');
5095 }
5096 break;
5097 case QEMU_OPTION_cpu:
5098 /* hw initialization will check this */
5099 if (*optarg == '?') {
5100 /* XXX: implement xxx_cpu_list for targets that still miss it */
5101 #if defined(cpu_list)
5102 cpu_list(stdout, &fprintf);
5103 #endif
5104 exit(0);
5105 } else {
5106 cpu_model = optarg;
5107 }
5108 break;
5109 case QEMU_OPTION_initrd:
5110 initrd_filename = optarg;
5111 break;
5112 case QEMU_OPTION_hda:
5113 if (cyls == 0)
5114 hda_index = drive_add(optarg, HD_ALIAS, 0);
5115 else
5116 hda_index = drive_add(optarg, HD_ALIAS
5117 ",cyls=%d,heads=%d,secs=%d%s",
5118 0, cyls, heads, secs,
5119 translation == BIOS_ATA_TRANSLATION_LBA ?
5120 ",trans=lba" :
5121 translation == BIOS_ATA_TRANSLATION_NONE ?
5122 ",trans=none" : "");
5123 break;
5124 case QEMU_OPTION_hdb:
5125 case QEMU_OPTION_hdc:
5126 case QEMU_OPTION_hdd:
5127 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5128 break;
5129 case QEMU_OPTION_drive:
5130 drive_add(NULL, "%s", optarg);
5131 break;
5132 case QEMU_OPTION_mtdblock:
5133 drive_add(optarg, MTD_ALIAS);
5134 break;
5135 case QEMU_OPTION_sd:
5136 drive_add(optarg, SD_ALIAS);
5137 break;
5138 case QEMU_OPTION_pflash:
5139 drive_add(optarg, PFLASH_ALIAS);
5140 break;
5141 case QEMU_OPTION_snapshot:
5142 snapshot = 1;
5143 break;
5144 case QEMU_OPTION_hdachs:
5145 {
5146 const char *p;
5147 p = optarg;
5148 cyls = strtol(p, (char **)&p, 0);
5149 if (cyls < 1 || cyls > 16383)
5150 goto chs_fail;
5151 if (*p != ',')
5152 goto chs_fail;
5153 p++;
5154 heads = strtol(p, (char **)&p, 0);
5155 if (heads < 1 || heads > 16)
5156 goto chs_fail;
5157 if (*p != ',')
5158 goto chs_fail;
5159 p++;
5160 secs = strtol(p, (char **)&p, 0);
5161 if (secs < 1 || secs > 63)
5162 goto chs_fail;
5163 if (*p == ',') {
5164 p++;
5165 if (!strcmp(p, "none"))
5166 translation = BIOS_ATA_TRANSLATION_NONE;
5167 else if (!strcmp(p, "lba"))
5168 translation = BIOS_ATA_TRANSLATION_LBA;
5169 else if (!strcmp(p, "auto"))
5170 translation = BIOS_ATA_TRANSLATION_AUTO;
5171 else
5172 goto chs_fail;
5173 } else if (*p != '\0') {
5174 chs_fail:
5175 fprintf(stderr, "qemu: invalid physical CHS format\n");
5176 exit(1);
5177 }
5178 if (hda_index != -1)
5179 snprintf(drives_opt[hda_index].opt,
5180 sizeof(drives_opt[hda_index].opt),
5181 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5182 0, cyls, heads, secs,
5183 translation == BIOS_ATA_TRANSLATION_LBA ?
5184 ",trans=lba" :
5185 translation == BIOS_ATA_TRANSLATION_NONE ?
5186 ",trans=none" : "");
5187 }
5188 break;
5189 case QEMU_OPTION_numa:
5190 if (nb_numa_nodes >= MAX_NODES) {
5191 fprintf(stderr, "qemu: too many NUMA nodes\n");
5192 exit(1);
5193 }
5194 numa_add(optarg);
5195 break;
5196 case QEMU_OPTION_nographic:
5197 display_type = DT_NOGRAPHIC;
5198 break;
5199 #ifdef CONFIG_CURSES
5200 case QEMU_OPTION_curses:
5201 display_type = DT_CURSES;
5202 break;
5203 #endif
5204 case QEMU_OPTION_portrait:
5205 graphic_rotate = 1;
5206 break;
5207 case QEMU_OPTION_kernel:
5208 kernel_filename = optarg;
5209 break;
5210 case QEMU_OPTION_append:
5211 kernel_cmdline = optarg;
5212 break;
5213 case QEMU_OPTION_cdrom:
5214 drive_add(optarg, CDROM_ALIAS);
5215 break;
5216 case QEMU_OPTION_boot:
5217 boot_devices = optarg;
5218 /* We just do some generic consistency checks */
5219 {
5220 /* Could easily be extended to 64 devices if needed */
5221 const char *p;
5222
5223 boot_devices_bitmap = 0;
5224 for (p = boot_devices; *p != '\0'; p++) {
5225 /* Allowed boot devices are:
5226 * a b : floppy disk drives
5227 * c ... f : IDE disk drives
5228 * g ... m : machine implementation dependant drives
5229 * n ... p : network devices
5230 * It's up to each machine implementation to check
5231 * if the given boot devices match the actual hardware
5232 * implementation and firmware features.
5233 */
5234 if (*p < 'a' || *p > 'q') {
5235 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5236 exit(1);
5237 }
5238 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5239 fprintf(stderr,
5240 "Boot device '%c' was given twice\n",*p);
5241 exit(1);
5242 }
5243 boot_devices_bitmap |= 1 << (*p - 'a');
5244 }
5245 }
5246 break;
5247 case QEMU_OPTION_fda:
5248 case QEMU_OPTION_fdb:
5249 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5250 break;
5251 #ifdef TARGET_I386
5252 case QEMU_OPTION_no_fd_bootchk:
5253 fd_bootchk = 0;
5254 break;
5255 #endif
5256 case QEMU_OPTION_net:
5257 if (nb_net_clients >= MAX_NET_CLIENTS) {
5258 fprintf(stderr, "qemu: too many network clients\n");
5259 exit(1);
5260 }
5261 net_clients[nb_net_clients] = optarg;
5262 nb_net_clients++;
5263 break;
5264 #ifdef CONFIG_SLIRP
5265 case QEMU_OPTION_tftp:
5266 tftp_prefix = optarg;
5267 break;
5268 case QEMU_OPTION_bootp:
5269 bootp_filename = optarg;
5270 break;
5271 #ifndef _WIN32
5272 case QEMU_OPTION_smb:
5273 net_slirp_smb(optarg);
5274 break;
5275 #endif
5276 case QEMU_OPTION_redir:
5277 net_slirp_redir(NULL, optarg, NULL);
5278 break;
5279 #endif
5280 case QEMU_OPTION_bt:
5281 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5282 fprintf(stderr, "qemu: too many bluetooth options\n");
5283 exit(1);
5284 }
5285 bt_opts[nb_bt_opts++] = optarg;
5286 break;
5287 #ifdef HAS_AUDIO
5288 case QEMU_OPTION_audio_help:
5289 AUD_help ();
5290 exit (0);
5291 break;
5292 case QEMU_OPTION_soundhw:
5293 select_soundhw (optarg);
5294 break;
5295 #endif
5296 case QEMU_OPTION_h:
5297 help(0);
5298 break;
5299 case QEMU_OPTION_version:
5300 version();
5301 exit(0);
5302 break;
5303 case QEMU_OPTION_m: {
5304 uint64_t value;
5305 char *ptr;
5306
5307 value = strtoul(optarg, &ptr, 10);
5308 switch (*ptr) {
5309 case 0: case 'M': case 'm':
5310 value <<= 20;
5311 break;
5312 case 'G': case 'g':
5313 value <<= 30;
5314 break;
5315 default:
5316 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5317 exit(1);
5318 }
5319
5320 /* On 32-bit hosts, QEMU is limited by virtual address space */
5321 if (value > (2047 << 20)
5322 #ifndef CONFIG_KQEMU
5323 && HOST_LONG_BITS == 32
5324 #endif
5325 ) {
5326 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5327 exit(1);
5328 }
5329 if (value != (uint64_t)(ram_addr_t)value) {
5330 fprintf(stderr, "qemu: ram size too large\n");
5331 exit(1);
5332 }
5333 ram_size = value;
5334 break;
5335 }
5336 case QEMU_OPTION_d:
5337 {
5338 int mask;
5339 const CPULogItem *item;
5340
5341 mask = cpu_str_to_log_mask(optarg);
5342 if (!mask) {
5343 printf("Log items (comma separated):\n");
5344 for(item = cpu_log_items; item->mask != 0; item++) {
5345 printf("%-10s %s\n", item->name, item->help);
5346 }
5347 exit(1);
5348 }
5349 cpu_set_log(mask);
5350 }
5351 break;
5352 case QEMU_OPTION_s:
5353 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5354 break;
5355 case QEMU_OPTION_gdb:
5356 gdbstub_dev = optarg;
5357 break;
5358 case QEMU_OPTION_L:
5359 data_dir = optarg;
5360 break;
5361 case QEMU_OPTION_bios:
5362 bios_name = optarg;
5363 break;
5364 case QEMU_OPTION_singlestep:
5365 singlestep = 1;
5366 break;
5367 case QEMU_OPTION_S:
5368 autostart = 0;
5369 break;
5370 #ifndef _WIN32
5371 case QEMU_OPTION_k:
5372 keyboard_layout = optarg;
5373 break;
5374 #endif
5375 case QEMU_OPTION_localtime:
5376 rtc_utc = 0;
5377 break;
5378 case QEMU_OPTION_vga:
5379 select_vgahw (optarg);
5380 break;
5381 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5382 case QEMU_OPTION_g:
5383 {
5384 const char *p;
5385 int w, h, depth;
5386 p = optarg;
5387 w = strtol(p, (char **)&p, 10);
5388 if (w <= 0) {
5389 graphic_error:
5390 fprintf(stderr, "qemu: invalid resolution or depth\n");
5391 exit(1);
5392 }
5393 if (*p != 'x')
5394 goto graphic_error;
5395 p++;
5396 h = strtol(p, (char **)&p, 10);
5397 if (h <= 0)
5398 goto graphic_error;
5399 if (*p == 'x') {
5400 p++;
5401 depth = strtol(p, (char **)&p, 10);
5402 if (depth != 8 && depth != 15 && depth != 16 &&
5403 depth != 24 && depth != 32)
5404 goto graphic_error;
5405 } else if (*p == '\0') {
5406 depth = graphic_depth;
5407 } else {
5408 goto graphic_error;
5409 }
5410
5411 graphic_width = w;
5412 graphic_height = h;
5413 graphic_depth = depth;
5414 }
5415 break;
5416 #endif
5417 case QEMU_OPTION_echr:
5418 {
5419 char *r;
5420 term_escape_char = strtol(optarg, &r, 0);
5421 if (r == optarg)
5422 printf("Bad argument to echr\n");
5423 break;
5424 }
5425 case QEMU_OPTION_monitor:
5426 monitor_device = optarg;
5427 break;
5428 case QEMU_OPTION_serial:
5429 if (serial_device_index >= MAX_SERIAL_PORTS) {
5430 fprintf(stderr, "qemu: too many serial ports\n");
5431 exit(1);
5432 }
5433 serial_devices[serial_device_index] = optarg;
5434 serial_device_index++;
5435 break;
5436 case QEMU_OPTION_watchdog:
5437 i = select_watchdog(optarg);
5438 if (i > 0)
5439 exit (i == 1 ? 1 : 0);
5440 break;
5441 case QEMU_OPTION_watchdog_action:
5442 if (select_watchdog_action(optarg) == -1) {
5443 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5444 exit(1);
5445 }
5446 break;
5447 case QEMU_OPTION_virtiocon:
5448 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5449 fprintf(stderr, "qemu: too many virtio consoles\n");
5450 exit(1);
5451 }
5452 virtio_consoles[virtio_console_index] = optarg;
5453 virtio_console_index++;
5454 break;
5455 case QEMU_OPTION_parallel:
5456 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5457 fprintf(stderr, "qemu: too many parallel ports\n");
5458 exit(1);
5459 }
5460 parallel_devices[parallel_device_index] = optarg;
5461 parallel_device_index++;
5462 break;
5463 case QEMU_OPTION_loadvm:
5464 loadvm = optarg;
5465 break;
5466 case QEMU_OPTION_full_screen:
5467 full_screen = 1;
5468 break;
5469 #ifdef CONFIG_SDL
5470 case QEMU_OPTION_no_frame:
5471 no_frame = 1;
5472 break;
5473 case QEMU_OPTION_alt_grab:
5474 alt_grab = 1;
5475 break;
5476 case QEMU_OPTION_no_quit:
5477 no_quit = 1;
5478 break;
5479 case QEMU_OPTION_sdl:
5480 display_type = DT_SDL;
5481 break;
5482 #endif
5483 case QEMU_OPTION_pidfile:
5484 pid_file = optarg;
5485 break;
5486 #ifdef TARGET_I386
5487 case QEMU_OPTION_win2k_hack:
5488 win2k_install_hack = 1;
5489 break;
5490 case QEMU_OPTION_rtc_td_hack:
5491 rtc_td_hack = 1;
5492 break;
5493 case QEMU_OPTION_acpitable:
5494 if(acpi_table_add(optarg) < 0) {
5495 fprintf(stderr, "Wrong acpi table provided\n");
5496 exit(1);
5497 }
5498 break;
5499 case QEMU_OPTION_smbios:
5500 if(smbios_entry_add(optarg) < 0) {
5501 fprintf(stderr, "Wrong smbios provided\n");
5502 exit(1);
5503 }
5504 break;
5505 #endif
5506 #ifdef CONFIG_KQEMU
5507 case QEMU_OPTION_no_kqemu:
5508 kqemu_allowed = 0;
5509 break;
5510 case QEMU_OPTION_kernel_kqemu:
5511 kqemu_allowed = 2;
5512 break;
5513 #endif
5514 #ifdef CONFIG_KVM
5515 case QEMU_OPTION_enable_kvm:
5516 kvm_allowed = 1;
5517 #ifdef CONFIG_KQEMU
5518 kqemu_allowed = 0;
5519 #endif
5520 break;
5521 #endif
5522 case QEMU_OPTION_usb:
5523 usb_enabled = 1;
5524 break;
5525 case QEMU_OPTION_usbdevice:
5526 usb_enabled = 1;
5527 if (usb_devices_index >= MAX_USB_CMDLINE) {
5528 fprintf(stderr, "Too many USB devices\n");
5529 exit(1);
5530 }
5531 usb_devices[usb_devices_index] = optarg;
5532 usb_devices_index++;
5533 break;
5534 case QEMU_OPTION_smp:
5535 smp_cpus = atoi(optarg);
5536 if (smp_cpus < 1) {
5537 fprintf(stderr, "Invalid number of CPUs\n");
5538 exit(1);
5539 }
5540 break;
5541 case QEMU_OPTION_vnc:
5542 display_type = DT_VNC;
5543 vnc_display = optarg;
5544 break;
5545 #ifdef TARGET_I386
5546 case QEMU_OPTION_no_acpi:
5547 acpi_enabled = 0;
5548 break;
5549 case QEMU_OPTION_no_hpet:
5550 no_hpet = 1;
5551 break;
5552 #endif
5553 case QEMU_OPTION_no_reboot:
5554 no_reboot = 1;
5555 break;
5556 case QEMU_OPTION_no_shutdown:
5557 no_shutdown = 1;
5558 break;
5559 case QEMU_OPTION_show_cursor:
5560 cursor_hide = 0;
5561 break;
5562 case QEMU_OPTION_uuid:
5563 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5564 fprintf(stderr, "Fail to parse UUID string."
5565 " Wrong format.\n");
5566 exit(1);
5567 }
5568 break;
5569 #ifndef _WIN32
5570 case QEMU_OPTION_daemonize:
5571 daemonize = 1;
5572 break;
5573 #endif
5574 case QEMU_OPTION_option_rom:
5575 if (nb_option_roms >= MAX_OPTION_ROMS) {
5576 fprintf(stderr, "Too many option ROMs\n");
5577 exit(1);
5578 }
5579 option_rom[nb_option_roms] = optarg;
5580 nb_option_roms++;
5581 break;
5582 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5583 case QEMU_OPTION_semihosting:
5584 semihosting_enabled = 1;
5585 break;
5586 #endif
5587 case QEMU_OPTION_name:
5588 qemu_name = optarg;
5589 break;
5590 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5591 case QEMU_OPTION_prom_env:
5592 if (nb_prom_envs >= MAX_PROM_ENVS) {
5593 fprintf(stderr, "Too many prom variables\n");
5594 exit(1);
5595 }
5596 prom_envs[nb_prom_envs] = optarg;
5597 nb_prom_envs++;
5598 break;
5599 #endif
5600 #ifdef TARGET_ARM
5601 case QEMU_OPTION_old_param:
5602 old_param = 1;
5603 break;
5604 #endif
5605 case QEMU_OPTION_clock:
5606 configure_alarms(optarg);
5607 break;
5608 case QEMU_OPTION_startdate:
5609 {
5610 struct tm tm;
5611 time_t rtc_start_date;
5612 if (!strcmp(optarg, "now")) {
5613 rtc_date_offset = -1;
5614 } else {
5615 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5616 &tm.tm_year,
5617 &tm.tm_mon,
5618 &tm.tm_mday,
5619 &tm.tm_hour,
5620 &tm.tm_min,
5621 &tm.tm_sec) == 6) {
5622 /* OK */
5623 } else if (sscanf(optarg, "%d-%d-%d",
5624 &tm.tm_year,
5625 &tm.tm_mon,
5626 &tm.tm_mday) == 3) {
5627 tm.tm_hour = 0;
5628 tm.tm_min = 0;
5629 tm.tm_sec = 0;
5630 } else {
5631 goto date_fail;
5632 }
5633 tm.tm_year -= 1900;
5634 tm.tm_mon--;
5635 rtc_start_date = mktimegm(&tm);
5636 if (rtc_start_date == -1) {
5637 date_fail:
5638 fprintf(stderr, "Invalid date format. Valid format are:\n"
5639 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5640 exit(1);
5641 }
5642 rtc_date_offset = time(NULL) - rtc_start_date;
5643 }
5644 }
5645 break;
5646 case QEMU_OPTION_tb_size:
5647 tb_size = strtol(optarg, NULL, 0);
5648 if (tb_size < 0)
5649 tb_size = 0;
5650 break;
5651 case QEMU_OPTION_icount:
5652 use_icount = 1;
5653 if (strcmp(optarg, "auto") == 0) {
5654 icount_time_shift = -1;
5655 } else {
5656 icount_time_shift = strtol(optarg, NULL, 0);
5657 }
5658 break;
5659 case QEMU_OPTION_incoming:
5660 incoming = optarg;
5661 break;
5662 #ifndef _WIN32
5663 case QEMU_OPTION_chroot:
5664 chroot_dir = optarg;
5665 break;
5666 case QEMU_OPTION_runas:
5667 run_as = optarg;
5668 break;
5669 #endif
5670 #ifdef CONFIG_XEN
5671 case QEMU_OPTION_xen_domid:
5672 xen_domid = atoi(optarg);
5673 break;
5674 case QEMU_OPTION_xen_create:
5675 xen_mode = XEN_CREATE;
5676 break;
5677 case QEMU_OPTION_xen_attach:
5678 xen_mode = XEN_ATTACH;
5679 break;
5680 #endif
5681 }
5682 }
5683 }
5684
5685 /* If no data_dir is specified then try to find it relative to the
5686 executable path. */
5687 if (!data_dir) {
5688 data_dir = find_datadir(argv[0]);
5689 }
5690 /* If all else fails use the install patch specified when building. */
5691 if (!data_dir) {
5692 data_dir = CONFIG_QEMU_SHAREDIR;
5693 }
5694
5695 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5696 if (kvm_allowed && kqemu_allowed) {
5697 fprintf(stderr,
5698 "You can not enable both KVM and kqemu at the same time\n");
5699 exit(1);
5700 }
5701 #endif
5702
5703 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5704 if (smp_cpus > machine->max_cpus) {
5705 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5706 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5707 machine->max_cpus);
5708 exit(1);
5709 }
5710
5711 if (display_type == DT_NOGRAPHIC) {
5712 if (serial_device_index == 0)
5713 serial_devices[0] = "stdio";
5714 if (parallel_device_index == 0)
5715 parallel_devices[0] = "null";
5716 if (strncmp(monitor_device, "vc", 2) == 0)
5717 monitor_device = "stdio";
5718 }
5719
5720 #ifndef _WIN32
5721 if (daemonize) {
5722 pid_t pid;
5723
5724 if (pipe(fds) == -1)
5725 exit(1);
5726
5727 pid = fork();
5728 if (pid > 0) {
5729 uint8_t status;
5730 ssize_t len;
5731
5732 close(fds[1]);
5733
5734 again:
5735 len = read(fds[0], &status, 1);
5736 if (len == -1 && (errno == EINTR))
5737 goto again;
5738
5739 if (len != 1)
5740 exit(1);
5741 else if (status == 1) {
5742 fprintf(stderr, "Could not acquire pidfile\n");
5743 exit(1);
5744 } else
5745 exit(0);
5746 } else if (pid < 0)
5747 exit(1);
5748
5749 setsid();
5750
5751 pid = fork();
5752 if (pid > 0)
5753 exit(0);
5754 else if (pid < 0)
5755 exit(1);
5756
5757 umask(027);
5758
5759 signal(SIGTSTP, SIG_IGN);
5760 signal(SIGTTOU, SIG_IGN);
5761 signal(SIGTTIN, SIG_IGN);
5762 }
5763
5764 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5765 if (daemonize) {
5766 uint8_t status = 1;
5767 write(fds[1], &status, 1);
5768 } else
5769 fprintf(stderr, "Could not acquire pid file\n");
5770 exit(1);
5771 }
5772 #endif
5773
5774 #ifdef CONFIG_KQEMU
5775 if (smp_cpus > 1)
5776 kqemu_allowed = 0;
5777 #endif
5778 if (qemu_init_main_loop()) {
5779 fprintf(stderr, "qemu_init_main_loop failed\n");
5780 exit(1);
5781 }
5782 linux_boot = (kernel_filename != NULL);
5783 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5784
5785 if (!linux_boot && *kernel_cmdline != '\0') {
5786 fprintf(stderr, "-append only allowed with -kernel option\n");
5787 exit(1);
5788 }
5789
5790 if (!linux_boot && initrd_filename != NULL) {
5791 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5792 exit(1);
5793 }
5794
5795 /* boot to floppy or the default cd if no hard disk defined yet */
5796 if (!boot_devices[0]) {
5797 boot_devices = "cad";
5798 }
5799 setvbuf(stdout, NULL, _IOLBF, 0);
5800
5801 init_timers();
5802 if (init_timer_alarm() < 0) {
5803 fprintf(stderr, "could not initialize alarm timer\n");
5804 exit(1);
5805 }
5806 if (use_icount && icount_time_shift < 0) {
5807 use_icount = 2;
5808 /* 125MIPS seems a reasonable initial guess at the guest speed.
5809 It will be corrected fairly quickly anyway. */
5810 icount_time_shift = 3;
5811 init_icount_adjust();
5812 }
5813
5814 #ifdef _WIN32
5815 socket_init();
5816 #endif
5817
5818 /* init network clients */
5819 if (nb_net_clients == 0) {
5820 /* if no clients, we use a default config */
5821 net_clients[nb_net_clients++] = "nic";
5822 #ifdef CONFIG_SLIRP
5823 net_clients[nb_net_clients++] = "user";
5824 #endif
5825 }
5826
5827 for(i = 0;i < nb_net_clients; i++) {
5828 if (net_client_parse(net_clients[i]) < 0)
5829 exit(1);
5830 }
5831 net_client_check();
5832
5833 #ifdef TARGET_I386
5834 /* XXX: this should be moved in the PC machine instantiation code */
5835 if (net_boot != 0) {
5836 int netroms = 0;
5837 for (i = 0; i < nb_nics && i < 4; i++) {
5838 const char *model = nd_table[i].model;
5839 char buf[1024];
5840 char *filename;
5841 if (net_boot & (1 << i)) {
5842 if (model == NULL)
5843 model = "ne2k_pci";
5844 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5845 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5846 if (filename && get_image_size(filename) > 0) {
5847 if (nb_option_roms >= MAX_OPTION_ROMS) {
5848 fprintf(stderr, "Too many option ROMs\n");
5849 exit(1);
5850 }
5851 option_rom[nb_option_roms] = qemu_strdup(buf);
5852 nb_option_roms++;
5853 netroms++;
5854 }
5855 if (filename) {
5856 qemu_free(filename);
5857 }
5858 }
5859 }
5860 if (netroms == 0) {
5861 fprintf(stderr, "No valid PXE rom found for network device\n");
5862 exit(1);
5863 }
5864 }
5865 #endif
5866
5867 /* init the bluetooth world */
5868 for (i = 0; i < nb_bt_opts; i++)
5869 if (bt_parse(bt_opts[i]))
5870 exit(1);
5871
5872 /* init the memory */
5873 if (ram_size == 0)
5874 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5875
5876 #ifdef CONFIG_KQEMU
5877 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5878 guest ram allocation. It needs to go away. */
5879 if (kqemu_allowed) {
5880 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5881 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5882 if (!kqemu_phys_ram_base) {
5883 fprintf(stderr, "Could not allocate physical memory\n");
5884 exit(1);
5885 }
5886 }
5887 #endif
5888
5889 /* init the dynamic translator */
5890 cpu_exec_init_all(tb_size * 1024 * 1024);
5891
5892 bdrv_init();
5893
5894 /* we always create the cdrom drive, even if no disk is there */
5895
5896 if (nb_drives_opt < MAX_DRIVES)
5897 drive_add(NULL, CDROM_ALIAS);
5898
5899 /* we always create at least one floppy */
5900
5901 if (nb_drives_opt < MAX_DRIVES)
5902 drive_add(NULL, FD_ALIAS, 0);
5903
5904 /* we always create one sd slot, even if no card is in it */
5905
5906 if (nb_drives_opt < MAX_DRIVES)
5907 drive_add(NULL, SD_ALIAS);
5908
5909 /* open the virtual block devices */
5910
5911 for(i = 0; i < nb_drives_opt; i++)
5912 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5913 exit(1);
5914
5915 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5916 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5917
5918 #ifndef _WIN32
5919 /* must be after terminal init, SDL library changes signal handlers */
5920 sighandler_setup();
5921 #endif
5922
5923 /* Maintain compatibility with multiple stdio monitors */
5924 if (!strcmp(monitor_device,"stdio")) {
5925 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5926 const char *devname = serial_devices[i];
5927 if (devname && !strcmp(devname,"mon:stdio")) {
5928 monitor_device = NULL;
5929 break;
5930 } else if (devname && !strcmp(devname,"stdio")) {
5931 monitor_device = NULL;
5932 serial_devices[i] = "mon:stdio";
5933 break;
5934 }
5935 }
5936 }
5937
5938 if (nb_numa_nodes > 0) {
5939 int i;
5940
5941 if (nb_numa_nodes > smp_cpus) {
5942 nb_numa_nodes = smp_cpus;
5943 }
5944
5945 /* If no memory size if given for any node, assume the default case
5946 * and distribute the available memory equally across all nodes
5947 */
5948 for (i = 0; i < nb_numa_nodes; i++) {
5949 if (node_mem[i] != 0)
5950 break;
5951 }
5952 if (i == nb_numa_nodes) {
5953 uint64_t usedmem = 0;
5954
5955 /* On Linux, the each node's border has to be 8MB aligned,
5956 * the final node gets the rest.
5957 */
5958 for (i = 0; i < nb_numa_nodes - 1; i++) {
5959 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5960 usedmem += node_mem[i];
5961 }
5962 node_mem[i] = ram_size - usedmem;
5963 }
5964
5965 for (i = 0; i < nb_numa_nodes; i++) {
5966 if (node_cpumask[i] != 0)
5967 break;
5968 }
5969 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5970 * must cope with this anyway, because there are BIOSes out there in
5971 * real machines which also use this scheme.
5972 */
5973 if (i == nb_numa_nodes) {
5974 for (i = 0; i < smp_cpus; i++) {
5975 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5976 }
5977 }
5978 }
5979
5980 if (kvm_enabled()) {
5981 int ret;
5982
5983 ret = kvm_init(smp_cpus);
5984 if (ret < 0) {
5985 fprintf(stderr, "failed to initialize KVM\n");
5986 exit(1);
5987 }
5988 }
5989
5990 if (monitor_device) {
5991 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5992 if (!monitor_hd) {
5993 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5994 exit(1);
5995 }
5996 }
5997
5998 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5999 const char *devname = serial_devices[i];
6000 if (devname && strcmp(devname, "none")) {
6001 char label[32];
6002 snprintf(label, sizeof(label), "serial%d", i);
6003 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6004 if (!serial_hds[i]) {
6005 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6006 devname);
6007 exit(1);
6008 }
6009 }
6010 }
6011
6012 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6013 const char *devname = parallel_devices[i];
6014 if (devname && strcmp(devname, "none")) {
6015 char label[32];
6016 snprintf(label, sizeof(label), "parallel%d", i);
6017 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6018 if (!parallel_hds[i]) {
6019 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6020 devname);
6021 exit(1);
6022 }
6023 }
6024 }
6025
6026 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6027 const char *devname = virtio_consoles[i];
6028 if (devname && strcmp(devname, "none")) {
6029 char label[32];
6030 snprintf(label, sizeof(label), "virtcon%d", i);
6031 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6032 if (!virtcon_hds[i]) {
6033 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6034 devname);
6035 exit(1);
6036 }
6037 }
6038 }
6039
6040 module_call_init(MODULE_INIT_DEVICE);
6041
6042 machine->init(ram_size, boot_devices,
6043 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6044
6045
6046 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6047 for (i = 0; i < nb_numa_nodes; i++) {
6048 if (node_cpumask[i] & (1 << env->cpu_index)) {
6049 env->numa_node = i;
6050 }
6051 }
6052 }
6053
6054 current_machine = machine;
6055
6056 /* Set KVM's vcpu state to qemu's initial CPUState. */
6057 if (kvm_enabled()) {
6058 int ret;
6059
6060 ret = kvm_sync_vcpus();
6061 if (ret < 0) {
6062 fprintf(stderr, "failed to initialize vcpus\n");
6063 exit(1);
6064 }
6065 }
6066
6067 /* init USB devices */
6068 if (usb_enabled) {
6069 for(i = 0; i < usb_devices_index; i++) {
6070 if (usb_device_add(usb_devices[i], 0) < 0) {
6071 fprintf(stderr, "Warning: could not add USB device %s\n",
6072 usb_devices[i]);
6073 }
6074 }
6075 }
6076
6077 if (!display_state)
6078 dumb_display_init();
6079 /* just use the first displaystate for the moment */
6080 ds = display_state;
6081
6082 if (display_type == DT_DEFAULT) {
6083 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6084 display_type = DT_SDL;
6085 #else
6086 display_type = DT_VNC;
6087 vnc_display = "localhost:0,to=99";
6088 show_vnc_port = 1;
6089 #endif
6090 }
6091
6092
6093 switch (display_type) {
6094 case DT_NOGRAPHIC:
6095 break;
6096 #if defined(CONFIG_CURSES)
6097 case DT_CURSES:
6098 curses_display_init(ds, full_screen);
6099 break;
6100 #endif
6101 #if defined(CONFIG_SDL)
6102 case DT_SDL:
6103 sdl_display_init(ds, full_screen, no_frame);
6104 break;
6105 #elif defined(CONFIG_COCOA)
6106 case DT_SDL:
6107 cocoa_display_init(ds, full_screen);
6108 break;
6109 #endif
6110 case DT_VNC:
6111 vnc_display_init(ds);
6112 if (vnc_display_open(ds, vnc_display) < 0)
6113 exit(1);
6114
6115 if (show_vnc_port) {
6116 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6117 }
6118 break;
6119 default:
6120 break;
6121 }
6122 dpy_resize(ds);
6123
6124 dcl = ds->listeners;
6125 while (dcl != NULL) {
6126 if (dcl->dpy_refresh != NULL) {
6127 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6128 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6129 }
6130 dcl = dcl->next;
6131 }
6132
6133 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6134 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6135 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6136 }
6137
6138 text_consoles_set_display(display_state);
6139 qemu_chr_initial_reset();
6140
6141 if (monitor_device && monitor_hd)
6142 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6143
6144 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6145 const char *devname = serial_devices[i];
6146 if (devname && strcmp(devname, "none")) {
6147 char label[32];
6148 snprintf(label, sizeof(label), "serial%d", i);
6149 if (strstart(devname, "vc", 0))
6150 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6151 }
6152 }
6153
6154 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6155 const char *devname = parallel_devices[i];
6156 if (devname && strcmp(devname, "none")) {
6157 char label[32];
6158 snprintf(label, sizeof(label), "parallel%d", i);
6159 if (strstart(devname, "vc", 0))
6160 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6161 }
6162 }
6163
6164 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6165 const char *devname = virtio_consoles[i];
6166 if (virtcon_hds[i] && devname) {
6167 char label[32];
6168 snprintf(label, sizeof(label), "virtcon%d", i);
6169 if (strstart(devname, "vc", 0))
6170 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6171 }
6172 }
6173
6174 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6175 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6176 gdbstub_dev);
6177 exit(1);
6178 }
6179
6180 if (loadvm)
6181 do_loadvm(cur_mon, loadvm);
6182
6183 if (incoming) {
6184 autostart = 0; /* fixme how to deal with -daemonize */
6185 qemu_start_incoming_migration(incoming);
6186 }
6187
6188 if (autostart)
6189 vm_start();
6190
6191 #ifndef _WIN32
6192 if (daemonize) {
6193 uint8_t status = 0;
6194 ssize_t len;
6195
6196 again1:
6197 len = write(fds[1], &status, 1);
6198 if (len == -1 && (errno == EINTR))
6199 goto again1;
6200
6201 if (len != 1)
6202 exit(1);
6203
6204 chdir("/");
6205 TFR(fd = open("/dev/null", O_RDWR));
6206 if (fd == -1)
6207 exit(1);
6208 }
6209
6210 if (run_as) {
6211 pwd = getpwnam(run_as);
6212 if (!pwd) {
6213 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6214 exit(1);
6215 }
6216 }
6217
6218 if (chroot_dir) {
6219 if (chroot(chroot_dir) < 0) {
6220 fprintf(stderr, "chroot failed\n");
6221 exit(1);
6222 }
6223 chdir("/");
6224 }
6225
6226 if (run_as) {
6227 if (setgid(pwd->pw_gid) < 0) {
6228 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6229 exit(1);
6230 }
6231 if (setuid(pwd->pw_uid) < 0) {
6232 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6233 exit(1);
6234 }
6235 if (setuid(0) != -1) {
6236 fprintf(stderr, "Dropping privileges failed\n");
6237 exit(1);
6238 }
6239 }
6240
6241 if (daemonize) {
6242 dup2(fd, 0);
6243 dup2(fd, 1);
6244 dup2(fd, 2);
6245
6246 close(fd);
6247 }
6248 #endif
6249
6250 main_loop();
6251 quit_timers();
6252 net_cleanup();
6253
6254 return 0;
6255 }