]> git.proxmox.com Git - qemu.git/blob - vl.c
qemu_create_pidfile implementation for Win32, based on a patch by
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
77
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
81
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
89
90 #include "qemu_socket.h"
91
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
97
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
102
103 #include "disas.h"
104
105 #include "exec-all.h"
106
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
113
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
116
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
126
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
129
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
132
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 /* point to the block driver where the snapshots are managed */
142 BlockDriverState *bs_snapshots;
143 int vga_ram_size;
144 static DisplayState display_state;
145 int nographic;
146 const char* keyboard_layout = NULL;
147 int64_t ticks_per_sec;
148 int boot_device = 'c';
149 int ram_size;
150 int pit_min_timer_count = 0;
151 int nb_nics;
152 NICInfo nd_table[MAX_NICS];
153 QEMUTimer *gui_timer;
154 int vm_running;
155 int rtc_utc = 1;
156 int cirrus_vga_enabled = 1;
157 #ifdef TARGET_SPARC
158 int graphic_width = 1024;
159 int graphic_height = 768;
160 #else
161 int graphic_width = 800;
162 int graphic_height = 600;
163 #endif
164 int graphic_depth = 15;
165 int full_screen = 0;
166 int no_frame = 0;
167 int no_quit = 0;
168 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
169 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
170 #ifdef TARGET_I386
171 int win2k_install_hack = 0;
172 #endif
173 int usb_enabled = 0;
174 static VLANState *first_vlan;
175 int smp_cpus = 1;
176 const char *vnc_display;
177 #if defined(TARGET_SPARC)
178 #define MAX_CPUS 16
179 #elif defined(TARGET_I386)
180 #define MAX_CPUS 255
181 #else
182 #define MAX_CPUS 1
183 #endif
184 int acpi_enabled = 1;
185 int fd_bootchk = 1;
186 int no_reboot = 0;
187 int daemonize = 0;
188 const char *option_rom[MAX_OPTION_ROMS];
189 int nb_option_roms;
190 int semihosting_enabled = 0;
191 int autostart = 1;
192 const char *qemu_name;
193
194 /***********************************************************/
195 /* x86 ISA bus support */
196
197 target_phys_addr_t isa_mem_base = 0;
198 PicState2 *isa_pic;
199
200 uint32_t default_ioport_readb(void *opaque, uint32_t address)
201 {
202 #ifdef DEBUG_UNUSED_IOPORT
203 fprintf(stderr, "unused inb: port=0x%04x\n", address);
204 #endif
205 return 0xff;
206 }
207
208 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
209 {
210 #ifdef DEBUG_UNUSED_IOPORT
211 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
212 #endif
213 }
214
215 /* default is to make two byte accesses */
216 uint32_t default_ioport_readw(void *opaque, uint32_t address)
217 {
218 uint32_t data;
219 data = ioport_read_table[0][address](ioport_opaque[address], address);
220 address = (address + 1) & (MAX_IOPORTS - 1);
221 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
222 return data;
223 }
224
225 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
226 {
227 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
228 address = (address + 1) & (MAX_IOPORTS - 1);
229 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
230 }
231
232 uint32_t default_ioport_readl(void *opaque, uint32_t address)
233 {
234 #ifdef DEBUG_UNUSED_IOPORT
235 fprintf(stderr, "unused inl: port=0x%04x\n", address);
236 #endif
237 return 0xffffffff;
238 }
239
240 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
241 {
242 #ifdef DEBUG_UNUSED_IOPORT
243 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
244 #endif
245 }
246
247 void init_ioports(void)
248 {
249 int i;
250
251 for(i = 0; i < MAX_IOPORTS; i++) {
252 ioport_read_table[0][i] = default_ioport_readb;
253 ioport_write_table[0][i] = default_ioport_writeb;
254 ioport_read_table[1][i] = default_ioport_readw;
255 ioport_write_table[1][i] = default_ioport_writew;
256 ioport_read_table[2][i] = default_ioport_readl;
257 ioport_write_table[2][i] = default_ioport_writel;
258 }
259 }
260
261 /* size is the word size in byte */
262 int register_ioport_read(int start, int length, int size,
263 IOPortReadFunc *func, void *opaque)
264 {
265 int i, bsize;
266
267 if (size == 1) {
268 bsize = 0;
269 } else if (size == 2) {
270 bsize = 1;
271 } else if (size == 4) {
272 bsize = 2;
273 } else {
274 hw_error("register_ioport_read: invalid size");
275 return -1;
276 }
277 for(i = start; i < start + length; i += size) {
278 ioport_read_table[bsize][i] = func;
279 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
280 hw_error("register_ioport_read: invalid opaque");
281 ioport_opaque[i] = opaque;
282 }
283 return 0;
284 }
285
286 /* size is the word size in byte */
287 int register_ioport_write(int start, int length, int size,
288 IOPortWriteFunc *func, void *opaque)
289 {
290 int i, bsize;
291
292 if (size == 1) {
293 bsize = 0;
294 } else if (size == 2) {
295 bsize = 1;
296 } else if (size == 4) {
297 bsize = 2;
298 } else {
299 hw_error("register_ioport_write: invalid size");
300 return -1;
301 }
302 for(i = start; i < start + length; i += size) {
303 ioport_write_table[bsize][i] = func;
304 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
305 hw_error("register_ioport_write: invalid opaque");
306 ioport_opaque[i] = opaque;
307 }
308 return 0;
309 }
310
311 void isa_unassign_ioport(int start, int length)
312 {
313 int i;
314
315 for(i = start; i < start + length; i++) {
316 ioport_read_table[0][i] = default_ioport_readb;
317 ioport_read_table[1][i] = default_ioport_readw;
318 ioport_read_table[2][i] = default_ioport_readl;
319
320 ioport_write_table[0][i] = default_ioport_writeb;
321 ioport_write_table[1][i] = default_ioport_writew;
322 ioport_write_table[2][i] = default_ioport_writel;
323 }
324 }
325
326 /***********************************************************/
327
328 void cpu_outb(CPUState *env, int addr, int val)
329 {
330 #ifdef DEBUG_IOPORT
331 if (loglevel & CPU_LOG_IOPORT)
332 fprintf(logfile, "outb: %04x %02x\n", addr, val);
333 #endif
334 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
335 #ifdef USE_KQEMU
336 if (env)
337 env->last_io_time = cpu_get_time_fast();
338 #endif
339 }
340
341 void cpu_outw(CPUState *env, int addr, int val)
342 {
343 #ifdef DEBUG_IOPORT
344 if (loglevel & CPU_LOG_IOPORT)
345 fprintf(logfile, "outw: %04x %04x\n", addr, val);
346 #endif
347 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
348 #ifdef USE_KQEMU
349 if (env)
350 env->last_io_time = cpu_get_time_fast();
351 #endif
352 }
353
354 void cpu_outl(CPUState *env, int addr, int val)
355 {
356 #ifdef DEBUG_IOPORT
357 if (loglevel & CPU_LOG_IOPORT)
358 fprintf(logfile, "outl: %04x %08x\n", addr, val);
359 #endif
360 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
361 #ifdef USE_KQEMU
362 if (env)
363 env->last_io_time = cpu_get_time_fast();
364 #endif
365 }
366
367 int cpu_inb(CPUState *env, int addr)
368 {
369 int val;
370 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
371 #ifdef DEBUG_IOPORT
372 if (loglevel & CPU_LOG_IOPORT)
373 fprintf(logfile, "inb : %04x %02x\n", addr, val);
374 #endif
375 #ifdef USE_KQEMU
376 if (env)
377 env->last_io_time = cpu_get_time_fast();
378 #endif
379 return val;
380 }
381
382 int cpu_inw(CPUState *env, int addr)
383 {
384 int val;
385 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
386 #ifdef DEBUG_IOPORT
387 if (loglevel & CPU_LOG_IOPORT)
388 fprintf(logfile, "inw : %04x %04x\n", addr, val);
389 #endif
390 #ifdef USE_KQEMU
391 if (env)
392 env->last_io_time = cpu_get_time_fast();
393 #endif
394 return val;
395 }
396
397 int cpu_inl(CPUState *env, int addr)
398 {
399 int val;
400 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
401 #ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "inl : %04x %08x\n", addr, val);
404 #endif
405 #ifdef USE_KQEMU
406 if (env)
407 env->last_io_time = cpu_get_time_fast();
408 #endif
409 return val;
410 }
411
412 /***********************************************************/
413 void hw_error(const char *fmt, ...)
414 {
415 va_list ap;
416 CPUState *env;
417
418 va_start(ap, fmt);
419 fprintf(stderr, "qemu: hardware error: ");
420 vfprintf(stderr, fmt, ap);
421 fprintf(stderr, "\n");
422 for(env = first_cpu; env != NULL; env = env->next_cpu) {
423 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
424 #ifdef TARGET_I386
425 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
426 #else
427 cpu_dump_state(env, stderr, fprintf, 0);
428 #endif
429 }
430 va_end(ap);
431 abort();
432 }
433
434 /***********************************************************/
435 /* keyboard/mouse */
436
437 static QEMUPutKBDEvent *qemu_put_kbd_event;
438 static void *qemu_put_kbd_event_opaque;
439 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
440 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
441
442 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
443 {
444 qemu_put_kbd_event_opaque = opaque;
445 qemu_put_kbd_event = func;
446 }
447
448 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
449 void *opaque, int absolute,
450 const char *name)
451 {
452 QEMUPutMouseEntry *s, *cursor;
453
454 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
455 if (!s)
456 return NULL;
457
458 s->qemu_put_mouse_event = func;
459 s->qemu_put_mouse_event_opaque = opaque;
460 s->qemu_put_mouse_event_absolute = absolute;
461 s->qemu_put_mouse_event_name = qemu_strdup(name);
462 s->next = NULL;
463
464 if (!qemu_put_mouse_event_head) {
465 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
466 return s;
467 }
468
469 cursor = qemu_put_mouse_event_head;
470 while (cursor->next != NULL)
471 cursor = cursor->next;
472
473 cursor->next = s;
474 qemu_put_mouse_event_current = s;
475
476 return s;
477 }
478
479 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
480 {
481 QEMUPutMouseEntry *prev = NULL, *cursor;
482
483 if (!qemu_put_mouse_event_head || entry == NULL)
484 return;
485
486 cursor = qemu_put_mouse_event_head;
487 while (cursor != NULL && cursor != entry) {
488 prev = cursor;
489 cursor = cursor->next;
490 }
491
492 if (cursor == NULL) // does not exist or list empty
493 return;
494 else if (prev == NULL) { // entry is head
495 qemu_put_mouse_event_head = cursor->next;
496 if (qemu_put_mouse_event_current == entry)
497 qemu_put_mouse_event_current = cursor->next;
498 qemu_free(entry->qemu_put_mouse_event_name);
499 qemu_free(entry);
500 return;
501 }
502
503 prev->next = entry->next;
504
505 if (qemu_put_mouse_event_current == entry)
506 qemu_put_mouse_event_current = prev;
507
508 qemu_free(entry->qemu_put_mouse_event_name);
509 qemu_free(entry);
510 }
511
512 void kbd_put_keycode(int keycode)
513 {
514 if (qemu_put_kbd_event) {
515 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
516 }
517 }
518
519 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
520 {
521 QEMUPutMouseEvent *mouse_event;
522 void *mouse_event_opaque;
523
524 if (!qemu_put_mouse_event_current) {
525 return;
526 }
527
528 mouse_event =
529 qemu_put_mouse_event_current->qemu_put_mouse_event;
530 mouse_event_opaque =
531 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
532
533 if (mouse_event) {
534 mouse_event(mouse_event_opaque, dx, dy, dz, buttons_state);
535 }
536 }
537
538 int kbd_mouse_is_absolute(void)
539 {
540 if (!qemu_put_mouse_event_current)
541 return 0;
542
543 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
544 }
545
546 void do_info_mice(void)
547 {
548 QEMUPutMouseEntry *cursor;
549 int index = 0;
550
551 if (!qemu_put_mouse_event_head) {
552 term_printf("No mouse devices connected\n");
553 return;
554 }
555
556 term_printf("Mouse devices available:\n");
557 cursor = qemu_put_mouse_event_head;
558 while (cursor != NULL) {
559 term_printf("%c Mouse #%d: %s\n",
560 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
561 index, cursor->qemu_put_mouse_event_name);
562 index++;
563 cursor = cursor->next;
564 }
565 }
566
567 void do_mouse_set(int index)
568 {
569 QEMUPutMouseEntry *cursor;
570 int i = 0;
571
572 if (!qemu_put_mouse_event_head) {
573 term_printf("No mouse devices connected\n");
574 return;
575 }
576
577 cursor = qemu_put_mouse_event_head;
578 while (cursor != NULL && index != i) {
579 i++;
580 cursor = cursor->next;
581 }
582
583 if (cursor != NULL)
584 qemu_put_mouse_event_current = cursor;
585 else
586 term_printf("Mouse at given index not found\n");
587 }
588
589 /* compute with 96 bit intermediate result: (a*b)/c */
590 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
591 {
592 union {
593 uint64_t ll;
594 struct {
595 #ifdef WORDS_BIGENDIAN
596 uint32_t high, low;
597 #else
598 uint32_t low, high;
599 #endif
600 } l;
601 } u, res;
602 uint64_t rl, rh;
603
604 u.ll = a;
605 rl = (uint64_t)u.l.low * (uint64_t)b;
606 rh = (uint64_t)u.l.high * (uint64_t)b;
607 rh += (rl >> 32);
608 res.l.high = rh / c;
609 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
610 return res.ll;
611 }
612
613 /***********************************************************/
614 /* real time host monotonic timer */
615
616 #define QEMU_TIMER_BASE 1000000000LL
617
618 #ifdef WIN32
619
620 static int64_t clock_freq;
621
622 static void init_get_clock(void)
623 {
624 LARGE_INTEGER freq;
625 int ret;
626 ret = QueryPerformanceFrequency(&freq);
627 if (ret == 0) {
628 fprintf(stderr, "Could not calibrate ticks\n");
629 exit(1);
630 }
631 clock_freq = freq.QuadPart;
632 }
633
634 static int64_t get_clock(void)
635 {
636 LARGE_INTEGER ti;
637 QueryPerformanceCounter(&ti);
638 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
639 }
640
641 #else
642
643 static int use_rt_clock;
644
645 static void init_get_clock(void)
646 {
647 use_rt_clock = 0;
648 #if defined(__linux__)
649 {
650 struct timespec ts;
651 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
652 use_rt_clock = 1;
653 }
654 }
655 #endif
656 }
657
658 static int64_t get_clock(void)
659 {
660 #if defined(__linux__)
661 if (use_rt_clock) {
662 struct timespec ts;
663 clock_gettime(CLOCK_MONOTONIC, &ts);
664 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
665 } else
666 #endif
667 {
668 /* XXX: using gettimeofday leads to problems if the date
669 changes, so it should be avoided. */
670 struct timeval tv;
671 gettimeofday(&tv, NULL);
672 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
673 }
674 }
675
676 #endif
677
678 /***********************************************************/
679 /* guest cycle counter */
680
681 static int64_t cpu_ticks_prev;
682 static int64_t cpu_ticks_offset;
683 static int64_t cpu_clock_offset;
684 static int cpu_ticks_enabled;
685
686 /* return the host CPU cycle counter and handle stop/restart */
687 int64_t cpu_get_ticks(void)
688 {
689 if (!cpu_ticks_enabled) {
690 return cpu_ticks_offset;
691 } else {
692 int64_t ticks;
693 ticks = cpu_get_real_ticks();
694 if (cpu_ticks_prev > ticks) {
695 /* Note: non increasing ticks may happen if the host uses
696 software suspend */
697 cpu_ticks_offset += cpu_ticks_prev - ticks;
698 }
699 cpu_ticks_prev = ticks;
700 return ticks + cpu_ticks_offset;
701 }
702 }
703
704 /* return the host CPU monotonic timer and handle stop/restart */
705 static int64_t cpu_get_clock(void)
706 {
707 int64_t ti;
708 if (!cpu_ticks_enabled) {
709 return cpu_clock_offset;
710 } else {
711 ti = get_clock();
712 return ti + cpu_clock_offset;
713 }
714 }
715
716 /* enable cpu_get_ticks() */
717 void cpu_enable_ticks(void)
718 {
719 if (!cpu_ticks_enabled) {
720 cpu_ticks_offset -= cpu_get_real_ticks();
721 cpu_clock_offset -= get_clock();
722 cpu_ticks_enabled = 1;
723 }
724 }
725
726 /* disable cpu_get_ticks() : the clock is stopped. You must not call
727 cpu_get_ticks() after that. */
728 void cpu_disable_ticks(void)
729 {
730 if (cpu_ticks_enabled) {
731 cpu_ticks_offset = cpu_get_ticks();
732 cpu_clock_offset = cpu_get_clock();
733 cpu_ticks_enabled = 0;
734 }
735 }
736
737 /***********************************************************/
738 /* timers */
739
740 #define QEMU_TIMER_REALTIME 0
741 #define QEMU_TIMER_VIRTUAL 1
742
743 struct QEMUClock {
744 int type;
745 /* XXX: add frequency */
746 };
747
748 struct QEMUTimer {
749 QEMUClock *clock;
750 int64_t expire_time;
751 QEMUTimerCB *cb;
752 void *opaque;
753 struct QEMUTimer *next;
754 };
755
756 QEMUClock *rt_clock;
757 QEMUClock *vm_clock;
758
759 static QEMUTimer *active_timers[2];
760 #ifdef _WIN32
761 static MMRESULT timerID;
762 static HANDLE host_alarm = NULL;
763 static unsigned int period = 1;
764 #else
765 /* frequency of the times() clock tick */
766 static int timer_freq;
767 #endif
768
769 QEMUClock *qemu_new_clock(int type)
770 {
771 QEMUClock *clock;
772 clock = qemu_mallocz(sizeof(QEMUClock));
773 if (!clock)
774 return NULL;
775 clock->type = type;
776 return clock;
777 }
778
779 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
780 {
781 QEMUTimer *ts;
782
783 ts = qemu_mallocz(sizeof(QEMUTimer));
784 ts->clock = clock;
785 ts->cb = cb;
786 ts->opaque = opaque;
787 return ts;
788 }
789
790 void qemu_free_timer(QEMUTimer *ts)
791 {
792 qemu_free(ts);
793 }
794
795 /* stop a timer, but do not dealloc it */
796 void qemu_del_timer(QEMUTimer *ts)
797 {
798 QEMUTimer **pt, *t;
799
800 /* NOTE: this code must be signal safe because
801 qemu_timer_expired() can be called from a signal. */
802 pt = &active_timers[ts->clock->type];
803 for(;;) {
804 t = *pt;
805 if (!t)
806 break;
807 if (t == ts) {
808 *pt = t->next;
809 break;
810 }
811 pt = &t->next;
812 }
813 }
814
815 /* modify the current timer so that it will be fired when current_time
816 >= expire_time. The corresponding callback will be called. */
817 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
818 {
819 QEMUTimer **pt, *t;
820
821 qemu_del_timer(ts);
822
823 /* add the timer in the sorted list */
824 /* NOTE: this code must be signal safe because
825 qemu_timer_expired() can be called from a signal. */
826 pt = &active_timers[ts->clock->type];
827 for(;;) {
828 t = *pt;
829 if (!t)
830 break;
831 if (t->expire_time > expire_time)
832 break;
833 pt = &t->next;
834 }
835 ts->expire_time = expire_time;
836 ts->next = *pt;
837 *pt = ts;
838 }
839
840 int qemu_timer_pending(QEMUTimer *ts)
841 {
842 QEMUTimer *t;
843 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
844 if (t == ts)
845 return 1;
846 }
847 return 0;
848 }
849
850 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
851 {
852 if (!timer_head)
853 return 0;
854 return (timer_head->expire_time <= current_time);
855 }
856
857 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
858 {
859 QEMUTimer *ts;
860
861 for(;;) {
862 ts = *ptimer_head;
863 if (!ts || ts->expire_time > current_time)
864 break;
865 /* remove timer from the list before calling the callback */
866 *ptimer_head = ts->next;
867 ts->next = NULL;
868
869 /* run the callback (the timer list can be modified) */
870 ts->cb(ts->opaque);
871 }
872 }
873
874 int64_t qemu_get_clock(QEMUClock *clock)
875 {
876 switch(clock->type) {
877 case QEMU_TIMER_REALTIME:
878 return get_clock() / 1000000;
879 default:
880 case QEMU_TIMER_VIRTUAL:
881 return cpu_get_clock();
882 }
883 }
884
885 static void init_timers(void)
886 {
887 init_get_clock();
888 ticks_per_sec = QEMU_TIMER_BASE;
889 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
890 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
891 }
892
893 /* save a timer */
894 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
895 {
896 uint64_t expire_time;
897
898 if (qemu_timer_pending(ts)) {
899 expire_time = ts->expire_time;
900 } else {
901 expire_time = -1;
902 }
903 qemu_put_be64(f, expire_time);
904 }
905
906 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
907 {
908 uint64_t expire_time;
909
910 expire_time = qemu_get_be64(f);
911 if (expire_time != -1) {
912 qemu_mod_timer(ts, expire_time);
913 } else {
914 qemu_del_timer(ts);
915 }
916 }
917
918 static void timer_save(QEMUFile *f, void *opaque)
919 {
920 if (cpu_ticks_enabled) {
921 hw_error("cannot save state if virtual timers are running");
922 }
923 qemu_put_be64s(f, &cpu_ticks_offset);
924 qemu_put_be64s(f, &ticks_per_sec);
925 qemu_put_be64s(f, &cpu_clock_offset);
926 }
927
928 static int timer_load(QEMUFile *f, void *opaque, int version_id)
929 {
930 if (version_id != 1 && version_id != 2)
931 return -EINVAL;
932 if (cpu_ticks_enabled) {
933 return -EINVAL;
934 }
935 qemu_get_be64s(f, &cpu_ticks_offset);
936 qemu_get_be64s(f, &ticks_per_sec);
937 if (version_id == 2) {
938 qemu_get_be64s(f, &cpu_clock_offset);
939 }
940 return 0;
941 }
942
943 #ifdef _WIN32
944 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
945 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
946 #else
947 static void host_alarm_handler(int host_signum)
948 #endif
949 {
950 #if 0
951 #define DISP_FREQ 1000
952 {
953 static int64_t delta_min = INT64_MAX;
954 static int64_t delta_max, delta_cum, last_clock, delta, ti;
955 static int count;
956 ti = qemu_get_clock(vm_clock);
957 if (last_clock != 0) {
958 delta = ti - last_clock;
959 if (delta < delta_min)
960 delta_min = delta;
961 if (delta > delta_max)
962 delta_max = delta;
963 delta_cum += delta;
964 if (++count == DISP_FREQ) {
965 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
966 muldiv64(delta_min, 1000000, ticks_per_sec),
967 muldiv64(delta_max, 1000000, ticks_per_sec),
968 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
969 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
970 count = 0;
971 delta_min = INT64_MAX;
972 delta_max = 0;
973 delta_cum = 0;
974 }
975 }
976 last_clock = ti;
977 }
978 #endif
979 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
980 qemu_get_clock(vm_clock)) ||
981 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
982 qemu_get_clock(rt_clock))) {
983 #ifdef _WIN32
984 SetEvent(host_alarm);
985 #endif
986 CPUState *env = cpu_single_env;
987 if (env) {
988 /* stop the currently executing cpu because a timer occured */
989 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
990 #ifdef USE_KQEMU
991 if (env->kqemu_enabled) {
992 kqemu_cpu_interrupt(env);
993 }
994 #endif
995 }
996 }
997 }
998
999 #ifndef _WIN32
1000
1001 #if defined(__linux__)
1002
1003 #define RTC_FREQ 1024
1004
1005 static int rtc_fd;
1006
1007 static int start_rtc_timer(void)
1008 {
1009 rtc_fd = open("/dev/rtc", O_RDONLY);
1010 if (rtc_fd < 0)
1011 return -1;
1012 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1013 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1014 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1015 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1016 goto fail;
1017 }
1018 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1019 fail:
1020 close(rtc_fd);
1021 return -1;
1022 }
1023 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1024 return 0;
1025 }
1026
1027 #else
1028
1029 static int start_rtc_timer(void)
1030 {
1031 return -1;
1032 }
1033
1034 #endif /* !defined(__linux__) */
1035
1036 #endif /* !defined(_WIN32) */
1037
1038 static void init_timer_alarm(void)
1039 {
1040 #ifdef _WIN32
1041 {
1042 int count=0;
1043 TIMECAPS tc;
1044
1045 ZeroMemory(&tc, sizeof(TIMECAPS));
1046 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1047 if (period < tc.wPeriodMin)
1048 period = tc.wPeriodMin;
1049 timeBeginPeriod(period);
1050 timerID = timeSetEvent(1, // interval (ms)
1051 period, // resolution
1052 host_alarm_handler, // function
1053 (DWORD)&count, // user parameter
1054 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1055 if( !timerID ) {
1056 perror("failed timer alarm");
1057 exit(1);
1058 }
1059 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1060 if (!host_alarm) {
1061 perror("failed CreateEvent");
1062 exit(1);
1063 }
1064 qemu_add_wait_object(host_alarm, NULL, NULL);
1065 }
1066 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1067 #else
1068 {
1069 struct sigaction act;
1070 struct itimerval itv;
1071
1072 /* get times() syscall frequency */
1073 timer_freq = sysconf(_SC_CLK_TCK);
1074
1075 /* timer signal */
1076 sigfillset(&act.sa_mask);
1077 act.sa_flags = 0;
1078 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1079 act.sa_flags |= SA_ONSTACK;
1080 #endif
1081 act.sa_handler = host_alarm_handler;
1082 sigaction(SIGALRM, &act, NULL);
1083
1084 itv.it_interval.tv_sec = 0;
1085 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1086 itv.it_value.tv_sec = 0;
1087 itv.it_value.tv_usec = 10 * 1000;
1088 setitimer(ITIMER_REAL, &itv, NULL);
1089 /* we probe the tick duration of the kernel to inform the user if
1090 the emulated kernel requested a too high timer frequency */
1091 getitimer(ITIMER_REAL, &itv);
1092
1093 #if defined(__linux__)
1094 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1095 have timers with 1 ms resolution. The correct solution will
1096 be to use the POSIX real time timers available in recent
1097 2.6 kernels */
1098 if (itv.it_interval.tv_usec > 1000 || 1) {
1099 /* try to use /dev/rtc to have a faster timer */
1100 if (start_rtc_timer() < 0)
1101 goto use_itimer;
1102 /* disable itimer */
1103 itv.it_interval.tv_sec = 0;
1104 itv.it_interval.tv_usec = 0;
1105 itv.it_value.tv_sec = 0;
1106 itv.it_value.tv_usec = 0;
1107 setitimer(ITIMER_REAL, &itv, NULL);
1108
1109 /* use the RTC */
1110 sigaction(SIGIO, &act, NULL);
1111 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1112 fcntl(rtc_fd, F_SETOWN, getpid());
1113 } else
1114 #endif /* defined(__linux__) */
1115 {
1116 use_itimer:
1117 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1118 PIT_FREQ) / 1000000;
1119 }
1120 }
1121 #endif
1122 }
1123
1124 void quit_timers(void)
1125 {
1126 #ifdef _WIN32
1127 timeKillEvent(timerID);
1128 timeEndPeriod(period);
1129 if (host_alarm) {
1130 CloseHandle(host_alarm);
1131 host_alarm = NULL;
1132 }
1133 #endif
1134 }
1135
1136 /***********************************************************/
1137 /* character device */
1138
1139 static void qemu_chr_event(CharDriverState *s, int event)
1140 {
1141 if (!s->chr_event)
1142 return;
1143 s->chr_event(s->handler_opaque, event);
1144 }
1145
1146 static void qemu_chr_reset_bh(void *opaque)
1147 {
1148 CharDriverState *s = opaque;
1149 qemu_chr_event(s, CHR_EVENT_RESET);
1150 qemu_bh_delete(s->bh);
1151 s->bh = NULL;
1152 }
1153
1154 void qemu_chr_reset(CharDriverState *s)
1155 {
1156 if (s->bh == NULL) {
1157 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1158 qemu_bh_schedule(s->bh);
1159 }
1160 }
1161
1162 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1163 {
1164 return s->chr_write(s, buf, len);
1165 }
1166
1167 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1168 {
1169 if (!s->chr_ioctl)
1170 return -ENOTSUP;
1171 return s->chr_ioctl(s, cmd, arg);
1172 }
1173
1174 int qemu_chr_can_read(CharDriverState *s)
1175 {
1176 if (!s->chr_can_read)
1177 return 0;
1178 return s->chr_can_read(s->handler_opaque);
1179 }
1180
1181 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1182 {
1183 s->chr_read(s->handler_opaque, buf, len);
1184 }
1185
1186
1187 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1188 {
1189 char buf[4096];
1190 va_list ap;
1191 va_start(ap, fmt);
1192 vsnprintf(buf, sizeof(buf), fmt, ap);
1193 qemu_chr_write(s, buf, strlen(buf));
1194 va_end(ap);
1195 }
1196
1197 void qemu_chr_send_event(CharDriverState *s, int event)
1198 {
1199 if (s->chr_send_event)
1200 s->chr_send_event(s, event);
1201 }
1202
1203 void qemu_chr_add_handlers(CharDriverState *s,
1204 IOCanRWHandler *fd_can_read,
1205 IOReadHandler *fd_read,
1206 IOEventHandler *fd_event,
1207 void *opaque)
1208 {
1209 s->chr_can_read = fd_can_read;
1210 s->chr_read = fd_read;
1211 s->chr_event = fd_event;
1212 s->handler_opaque = opaque;
1213 if (s->chr_update_read_handler)
1214 s->chr_update_read_handler(s);
1215 }
1216
1217 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1218 {
1219 return len;
1220 }
1221
1222 static CharDriverState *qemu_chr_open_null(void)
1223 {
1224 CharDriverState *chr;
1225
1226 chr = qemu_mallocz(sizeof(CharDriverState));
1227 if (!chr)
1228 return NULL;
1229 chr->chr_write = null_chr_write;
1230 return chr;
1231 }
1232
1233 /* MUX driver for serial I/O splitting */
1234 static int term_timestamps;
1235 static int64_t term_timestamps_start;
1236 #define MAX_MUX 4
1237 typedef struct {
1238 IOCanRWHandler *chr_can_read[MAX_MUX];
1239 IOReadHandler *chr_read[MAX_MUX];
1240 IOEventHandler *chr_event[MAX_MUX];
1241 void *ext_opaque[MAX_MUX];
1242 CharDriverState *drv;
1243 int mux_cnt;
1244 int term_got_escape;
1245 int max_size;
1246 } MuxDriver;
1247
1248
1249 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1250 {
1251 MuxDriver *d = chr->opaque;
1252 int ret;
1253 if (!term_timestamps) {
1254 ret = d->drv->chr_write(d->drv, buf, len);
1255 } else {
1256 int i;
1257
1258 ret = 0;
1259 for(i = 0; i < len; i++) {
1260 ret += d->drv->chr_write(d->drv, buf+i, 1);
1261 if (buf[i] == '\n') {
1262 char buf1[64];
1263 int64_t ti;
1264 int secs;
1265
1266 ti = get_clock();
1267 if (term_timestamps_start == -1)
1268 term_timestamps_start = ti;
1269 ti -= term_timestamps_start;
1270 secs = ti / 1000000000;
1271 snprintf(buf1, sizeof(buf1),
1272 "[%02d:%02d:%02d.%03d] ",
1273 secs / 3600,
1274 (secs / 60) % 60,
1275 secs % 60,
1276 (int)((ti / 1000000) % 1000));
1277 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1278 }
1279 }
1280 }
1281 return ret;
1282 }
1283
1284 static char *mux_help[] = {
1285 "% h print this help\n\r",
1286 "% x exit emulator\n\r",
1287 "% s save disk data back to file (if -snapshot)\n\r",
1288 "% t toggle console timestamps\n\r"
1289 "% b send break (magic sysrq)\n\r",
1290 "% c switch between console and monitor\n\r",
1291 "% % sends %\n\r",
1292 NULL
1293 };
1294
1295 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1296 static void mux_print_help(CharDriverState *chr)
1297 {
1298 int i, j;
1299 char ebuf[15] = "Escape-Char";
1300 char cbuf[50] = "\n\r";
1301
1302 if (term_escape_char > 0 && term_escape_char < 26) {
1303 sprintf(cbuf,"\n\r");
1304 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1305 } else {
1306 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1307 }
1308 chr->chr_write(chr, cbuf, strlen(cbuf));
1309 for (i = 0; mux_help[i] != NULL; i++) {
1310 for (j=0; mux_help[i][j] != '\0'; j++) {
1311 if (mux_help[i][j] == '%')
1312 chr->chr_write(chr, ebuf, strlen(ebuf));
1313 else
1314 chr->chr_write(chr, &mux_help[i][j], 1);
1315 }
1316 }
1317 }
1318
1319 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1320 {
1321 if (d->term_got_escape) {
1322 d->term_got_escape = 0;
1323 if (ch == term_escape_char)
1324 goto send_char;
1325 switch(ch) {
1326 case '?':
1327 case 'h':
1328 mux_print_help(chr);
1329 break;
1330 case 'x':
1331 {
1332 char *term = "QEMU: Terminated\n\r";
1333 chr->chr_write(chr,term,strlen(term));
1334 exit(0);
1335 break;
1336 }
1337 case 's':
1338 {
1339 int i;
1340 for (i = 0; i < MAX_DISKS; i++) {
1341 if (bs_table[i])
1342 bdrv_commit(bs_table[i]);
1343 }
1344 }
1345 break;
1346 case 'b':
1347 if (chr->chr_event)
1348 chr->chr_event(chr->opaque, CHR_EVENT_BREAK);
1349 break;
1350 case 'c':
1351 /* Switch to the next registered device */
1352 chr->focus++;
1353 if (chr->focus >= d->mux_cnt)
1354 chr->focus = 0;
1355 break;
1356 case 't':
1357 term_timestamps = !term_timestamps;
1358 term_timestamps_start = -1;
1359 break;
1360 }
1361 } else if (ch == term_escape_char) {
1362 d->term_got_escape = 1;
1363 } else {
1364 send_char:
1365 return 1;
1366 }
1367 return 0;
1368 }
1369
1370 static int mux_chr_can_read(void *opaque)
1371 {
1372 CharDriverState *chr = opaque;
1373 MuxDriver *d = chr->opaque;
1374 if (d->chr_can_read[chr->focus])
1375 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1376 return 0;
1377 }
1378
1379 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1380 {
1381 CharDriverState *chr = opaque;
1382 MuxDriver *d = chr->opaque;
1383 int i;
1384 for(i = 0; i < size; i++)
1385 if (mux_proc_byte(chr, d, buf[i]))
1386 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1387 }
1388
1389 static void mux_chr_event(void *opaque, int event)
1390 {
1391 CharDriverState *chr = opaque;
1392 MuxDriver *d = chr->opaque;
1393 int i;
1394
1395 /* Send the event to all registered listeners */
1396 for (i = 0; i < d->mux_cnt; i++)
1397 if (d->chr_event[i])
1398 d->chr_event[i](d->ext_opaque[i], event);
1399 }
1400
1401 static void mux_chr_update_read_handler(CharDriverState *chr)
1402 {
1403 MuxDriver *d = chr->opaque;
1404
1405 if (d->mux_cnt >= MAX_MUX) {
1406 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1407 return;
1408 }
1409 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1410 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1411 d->chr_read[d->mux_cnt] = chr->chr_read;
1412 d->chr_event[d->mux_cnt] = chr->chr_event;
1413 /* Fix up the real driver with mux routines */
1414 if (d->mux_cnt == 0) {
1415 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1416 mux_chr_event, chr);
1417 }
1418 chr->focus = d->mux_cnt;
1419 d->mux_cnt++;
1420 }
1421
1422 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1423 {
1424 CharDriverState *chr;
1425 MuxDriver *d;
1426
1427 chr = qemu_mallocz(sizeof(CharDriverState));
1428 if (!chr)
1429 return NULL;
1430 d = qemu_mallocz(sizeof(MuxDriver));
1431 if (!d) {
1432 free(chr);
1433 return NULL;
1434 }
1435
1436 chr->opaque = d;
1437 d->drv = drv;
1438 chr->focus = -1;
1439 chr->chr_write = mux_chr_write;
1440 chr->chr_update_read_handler = mux_chr_update_read_handler;
1441 return chr;
1442 }
1443
1444
1445 #ifdef _WIN32
1446
1447 static void socket_cleanup(void)
1448 {
1449 WSACleanup();
1450 }
1451
1452 static int socket_init(void)
1453 {
1454 WSADATA Data;
1455 int ret, err;
1456
1457 ret = WSAStartup(MAKEWORD(2,2), &Data);
1458 if (ret != 0) {
1459 err = WSAGetLastError();
1460 fprintf(stderr, "WSAStartup: %d\n", err);
1461 return -1;
1462 }
1463 atexit(socket_cleanup);
1464 return 0;
1465 }
1466
1467 static int send_all(int fd, const uint8_t *buf, int len1)
1468 {
1469 int ret, len;
1470
1471 len = len1;
1472 while (len > 0) {
1473 ret = send(fd, buf, len, 0);
1474 if (ret < 0) {
1475 int errno;
1476 errno = WSAGetLastError();
1477 if (errno != WSAEWOULDBLOCK) {
1478 return -1;
1479 }
1480 } else if (ret == 0) {
1481 break;
1482 } else {
1483 buf += ret;
1484 len -= ret;
1485 }
1486 }
1487 return len1 - len;
1488 }
1489
1490 void socket_set_nonblock(int fd)
1491 {
1492 unsigned long opt = 1;
1493 ioctlsocket(fd, FIONBIO, &opt);
1494 }
1495
1496 #else
1497
1498 static int unix_write(int fd, const uint8_t *buf, int len1)
1499 {
1500 int ret, len;
1501
1502 len = len1;
1503 while (len > 0) {
1504 ret = write(fd, buf, len);
1505 if (ret < 0) {
1506 if (errno != EINTR && errno != EAGAIN)
1507 return -1;
1508 } else if (ret == 0) {
1509 break;
1510 } else {
1511 buf += ret;
1512 len -= ret;
1513 }
1514 }
1515 return len1 - len;
1516 }
1517
1518 static inline int send_all(int fd, const uint8_t *buf, int len1)
1519 {
1520 return unix_write(fd, buf, len1);
1521 }
1522
1523 void socket_set_nonblock(int fd)
1524 {
1525 fcntl(fd, F_SETFL, O_NONBLOCK);
1526 }
1527 #endif /* !_WIN32 */
1528
1529 #ifndef _WIN32
1530
1531 typedef struct {
1532 int fd_in, fd_out;
1533 int max_size;
1534 } FDCharDriver;
1535
1536 #define STDIO_MAX_CLIENTS 1
1537 static int stdio_nb_clients = 0;
1538
1539 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1540 {
1541 FDCharDriver *s = chr->opaque;
1542 return unix_write(s->fd_out, buf, len);
1543 }
1544
1545 static int fd_chr_read_poll(void *opaque)
1546 {
1547 CharDriverState *chr = opaque;
1548 FDCharDriver *s = chr->opaque;
1549
1550 s->max_size = qemu_chr_can_read(chr);
1551 return s->max_size;
1552 }
1553
1554 static void fd_chr_read(void *opaque)
1555 {
1556 CharDriverState *chr = opaque;
1557 FDCharDriver *s = chr->opaque;
1558 int size, len;
1559 uint8_t buf[1024];
1560
1561 len = sizeof(buf);
1562 if (len > s->max_size)
1563 len = s->max_size;
1564 if (len == 0)
1565 return;
1566 size = read(s->fd_in, buf, len);
1567 if (size == 0) {
1568 /* FD has been closed. Remove it from the active list. */
1569 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1570 return;
1571 }
1572 if (size > 0) {
1573 qemu_chr_read(chr, buf, size);
1574 }
1575 }
1576
1577 static void fd_chr_update_read_handler(CharDriverState *chr)
1578 {
1579 FDCharDriver *s = chr->opaque;
1580
1581 if (s->fd_in >= 0) {
1582 if (nographic && s->fd_in == 0) {
1583 } else {
1584 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1585 fd_chr_read, NULL, chr);
1586 }
1587 }
1588 }
1589
1590 /* open a character device to a unix fd */
1591 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1592 {
1593 CharDriverState *chr;
1594 FDCharDriver *s;
1595
1596 chr = qemu_mallocz(sizeof(CharDriverState));
1597 if (!chr)
1598 return NULL;
1599 s = qemu_mallocz(sizeof(FDCharDriver));
1600 if (!s) {
1601 free(chr);
1602 return NULL;
1603 }
1604 s->fd_in = fd_in;
1605 s->fd_out = fd_out;
1606 chr->opaque = s;
1607 chr->chr_write = fd_chr_write;
1608 chr->chr_update_read_handler = fd_chr_update_read_handler;
1609
1610 qemu_chr_reset(chr);
1611
1612 return chr;
1613 }
1614
1615 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1616 {
1617 int fd_out;
1618
1619 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1620 if (fd_out < 0)
1621 return NULL;
1622 return qemu_chr_open_fd(-1, fd_out);
1623 }
1624
1625 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1626 {
1627 int fd_in, fd_out;
1628 char filename_in[256], filename_out[256];
1629
1630 snprintf(filename_in, 256, "%s.in", filename);
1631 snprintf(filename_out, 256, "%s.out", filename);
1632 fd_in = open(filename_in, O_RDWR | O_BINARY);
1633 fd_out = open(filename_out, O_RDWR | O_BINARY);
1634 if (fd_in < 0 || fd_out < 0) {
1635 if (fd_in >= 0)
1636 close(fd_in);
1637 if (fd_out >= 0)
1638 close(fd_out);
1639 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1640 if (fd_in < 0)
1641 return NULL;
1642 }
1643 return qemu_chr_open_fd(fd_in, fd_out);
1644 }
1645
1646
1647 /* for STDIO, we handle the case where several clients use it
1648 (nographic mode) */
1649
1650 #define TERM_FIFO_MAX_SIZE 1
1651
1652 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1653 static int term_fifo_size;
1654
1655 static int stdio_read_poll(void *opaque)
1656 {
1657 CharDriverState *chr = opaque;
1658
1659 /* try to flush the queue if needed */
1660 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1661 qemu_chr_read(chr, term_fifo, 1);
1662 term_fifo_size = 0;
1663 }
1664 /* see if we can absorb more chars */
1665 if (term_fifo_size == 0)
1666 return 1;
1667 else
1668 return 0;
1669 }
1670
1671 static void stdio_read(void *opaque)
1672 {
1673 int size;
1674 uint8_t buf[1];
1675 CharDriverState *chr = opaque;
1676
1677 size = read(0, buf, 1);
1678 if (size == 0) {
1679 /* stdin has been closed. Remove it from the active list. */
1680 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1681 return;
1682 }
1683 if (size > 0) {
1684 if (qemu_chr_can_read(chr) > 0) {
1685 qemu_chr_read(chr, buf, 1);
1686 } else if (term_fifo_size == 0) {
1687 term_fifo[term_fifo_size++] = buf[0];
1688 }
1689 }
1690 }
1691
1692 /* init terminal so that we can grab keys */
1693 static struct termios oldtty;
1694 static int old_fd0_flags;
1695
1696 static void term_exit(void)
1697 {
1698 tcsetattr (0, TCSANOW, &oldtty);
1699 fcntl(0, F_SETFL, old_fd0_flags);
1700 }
1701
1702 static void term_init(void)
1703 {
1704 struct termios tty;
1705
1706 tcgetattr (0, &tty);
1707 oldtty = tty;
1708 old_fd0_flags = fcntl(0, F_GETFL);
1709
1710 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1711 |INLCR|IGNCR|ICRNL|IXON);
1712 tty.c_oflag |= OPOST;
1713 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1714 /* if graphical mode, we allow Ctrl-C handling */
1715 if (nographic)
1716 tty.c_lflag &= ~ISIG;
1717 tty.c_cflag &= ~(CSIZE|PARENB);
1718 tty.c_cflag |= CS8;
1719 tty.c_cc[VMIN] = 1;
1720 tty.c_cc[VTIME] = 0;
1721
1722 tcsetattr (0, TCSANOW, &tty);
1723
1724 atexit(term_exit);
1725
1726 fcntl(0, F_SETFL, O_NONBLOCK);
1727 }
1728
1729 static CharDriverState *qemu_chr_open_stdio(void)
1730 {
1731 CharDriverState *chr;
1732
1733 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1734 return NULL;
1735 chr = qemu_chr_open_fd(0, 1);
1736 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1737 stdio_nb_clients++;
1738 term_init();
1739
1740 return chr;
1741 }
1742
1743 #if defined(__linux__)
1744 static CharDriverState *qemu_chr_open_pty(void)
1745 {
1746 struct termios tty;
1747 char slave_name[1024];
1748 int master_fd, slave_fd;
1749
1750 /* Not satisfying */
1751 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1752 return NULL;
1753 }
1754
1755 /* Disabling local echo and line-buffered output */
1756 tcgetattr (master_fd, &tty);
1757 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1758 tty.c_cc[VMIN] = 1;
1759 tty.c_cc[VTIME] = 0;
1760 tcsetattr (master_fd, TCSAFLUSH, &tty);
1761
1762 fprintf(stderr, "char device redirected to %s\n", slave_name);
1763 return qemu_chr_open_fd(master_fd, master_fd);
1764 }
1765
1766 static void tty_serial_init(int fd, int speed,
1767 int parity, int data_bits, int stop_bits)
1768 {
1769 struct termios tty;
1770 speed_t spd;
1771
1772 #if 0
1773 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1774 speed, parity, data_bits, stop_bits);
1775 #endif
1776 tcgetattr (fd, &tty);
1777
1778 switch(speed) {
1779 case 50:
1780 spd = B50;
1781 break;
1782 case 75:
1783 spd = B75;
1784 break;
1785 case 300:
1786 spd = B300;
1787 break;
1788 case 600:
1789 spd = B600;
1790 break;
1791 case 1200:
1792 spd = B1200;
1793 break;
1794 case 2400:
1795 spd = B2400;
1796 break;
1797 case 4800:
1798 spd = B4800;
1799 break;
1800 case 9600:
1801 spd = B9600;
1802 break;
1803 case 19200:
1804 spd = B19200;
1805 break;
1806 case 38400:
1807 spd = B38400;
1808 break;
1809 case 57600:
1810 spd = B57600;
1811 break;
1812 default:
1813 case 115200:
1814 spd = B115200;
1815 break;
1816 }
1817
1818 cfsetispeed(&tty, spd);
1819 cfsetospeed(&tty, spd);
1820
1821 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1822 |INLCR|IGNCR|ICRNL|IXON);
1823 tty.c_oflag |= OPOST;
1824 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1825 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1826 switch(data_bits) {
1827 default:
1828 case 8:
1829 tty.c_cflag |= CS8;
1830 break;
1831 case 7:
1832 tty.c_cflag |= CS7;
1833 break;
1834 case 6:
1835 tty.c_cflag |= CS6;
1836 break;
1837 case 5:
1838 tty.c_cflag |= CS5;
1839 break;
1840 }
1841 switch(parity) {
1842 default:
1843 case 'N':
1844 break;
1845 case 'E':
1846 tty.c_cflag |= PARENB;
1847 break;
1848 case 'O':
1849 tty.c_cflag |= PARENB | PARODD;
1850 break;
1851 }
1852 if (stop_bits == 2)
1853 tty.c_cflag |= CSTOPB;
1854
1855 tcsetattr (fd, TCSANOW, &tty);
1856 }
1857
1858 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1859 {
1860 FDCharDriver *s = chr->opaque;
1861
1862 switch(cmd) {
1863 case CHR_IOCTL_SERIAL_SET_PARAMS:
1864 {
1865 QEMUSerialSetParams *ssp = arg;
1866 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1867 ssp->data_bits, ssp->stop_bits);
1868 }
1869 break;
1870 case CHR_IOCTL_SERIAL_SET_BREAK:
1871 {
1872 int enable = *(int *)arg;
1873 if (enable)
1874 tcsendbreak(s->fd_in, 1);
1875 }
1876 break;
1877 default:
1878 return -ENOTSUP;
1879 }
1880 return 0;
1881 }
1882
1883 static CharDriverState *qemu_chr_open_tty(const char *filename)
1884 {
1885 CharDriverState *chr;
1886 int fd;
1887
1888 fd = open(filename, O_RDWR | O_NONBLOCK);
1889 if (fd < 0)
1890 return NULL;
1891 fcntl(fd, F_SETFL, O_NONBLOCK);
1892 tty_serial_init(fd, 115200, 'N', 8, 1);
1893 chr = qemu_chr_open_fd(fd, fd);
1894 if (!chr)
1895 return NULL;
1896 chr->chr_ioctl = tty_serial_ioctl;
1897 qemu_chr_reset(chr);
1898 return chr;
1899 }
1900
1901 typedef struct {
1902 int fd;
1903 int mode;
1904 } ParallelCharDriver;
1905
1906 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1907 {
1908 if (s->mode != mode) {
1909 int m = mode;
1910 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1911 return 0;
1912 s->mode = mode;
1913 }
1914 return 1;
1915 }
1916
1917 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1918 {
1919 ParallelCharDriver *drv = chr->opaque;
1920 int fd = drv->fd;
1921 uint8_t b;
1922
1923 switch(cmd) {
1924 case CHR_IOCTL_PP_READ_DATA:
1925 if (ioctl(fd, PPRDATA, &b) < 0)
1926 return -ENOTSUP;
1927 *(uint8_t *)arg = b;
1928 break;
1929 case CHR_IOCTL_PP_WRITE_DATA:
1930 b = *(uint8_t *)arg;
1931 if (ioctl(fd, PPWDATA, &b) < 0)
1932 return -ENOTSUP;
1933 break;
1934 case CHR_IOCTL_PP_READ_CONTROL:
1935 if (ioctl(fd, PPRCONTROL, &b) < 0)
1936 return -ENOTSUP;
1937 /* Linux gives only the lowest bits, and no way to know data
1938 direction! For better compatibility set the fixed upper
1939 bits. */
1940 *(uint8_t *)arg = b | 0xc0;
1941 break;
1942 case CHR_IOCTL_PP_WRITE_CONTROL:
1943 b = *(uint8_t *)arg;
1944 if (ioctl(fd, PPWCONTROL, &b) < 0)
1945 return -ENOTSUP;
1946 break;
1947 case CHR_IOCTL_PP_READ_STATUS:
1948 if (ioctl(fd, PPRSTATUS, &b) < 0)
1949 return -ENOTSUP;
1950 *(uint8_t *)arg = b;
1951 break;
1952 case CHR_IOCTL_PP_EPP_READ_ADDR:
1953 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1954 struct ParallelIOArg *parg = arg;
1955 int n = read(fd, parg->buffer, parg->count);
1956 if (n != parg->count) {
1957 return -EIO;
1958 }
1959 }
1960 break;
1961 case CHR_IOCTL_PP_EPP_READ:
1962 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1963 struct ParallelIOArg *parg = arg;
1964 int n = read(fd, parg->buffer, parg->count);
1965 if (n != parg->count) {
1966 return -EIO;
1967 }
1968 }
1969 break;
1970 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1971 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1972 struct ParallelIOArg *parg = arg;
1973 int n = write(fd, parg->buffer, parg->count);
1974 if (n != parg->count) {
1975 return -EIO;
1976 }
1977 }
1978 break;
1979 case CHR_IOCTL_PP_EPP_WRITE:
1980 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1981 struct ParallelIOArg *parg = arg;
1982 int n = write(fd, parg->buffer, parg->count);
1983 if (n != parg->count) {
1984 return -EIO;
1985 }
1986 }
1987 break;
1988 default:
1989 return -ENOTSUP;
1990 }
1991 return 0;
1992 }
1993
1994 static void pp_close(CharDriverState *chr)
1995 {
1996 ParallelCharDriver *drv = chr->opaque;
1997 int fd = drv->fd;
1998
1999 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2000 ioctl(fd, PPRELEASE);
2001 close(fd);
2002 qemu_free(drv);
2003 }
2004
2005 static CharDriverState *qemu_chr_open_pp(const char *filename)
2006 {
2007 CharDriverState *chr;
2008 ParallelCharDriver *drv;
2009 int fd;
2010
2011 fd = open(filename, O_RDWR);
2012 if (fd < 0)
2013 return NULL;
2014
2015 if (ioctl(fd, PPCLAIM) < 0) {
2016 close(fd);
2017 return NULL;
2018 }
2019
2020 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2021 if (!drv) {
2022 close(fd);
2023 return NULL;
2024 }
2025 drv->fd = fd;
2026 drv->mode = IEEE1284_MODE_COMPAT;
2027
2028 chr = qemu_mallocz(sizeof(CharDriverState));
2029 if (!chr) {
2030 qemu_free(drv);
2031 close(fd);
2032 return NULL;
2033 }
2034 chr->chr_write = null_chr_write;
2035 chr->chr_ioctl = pp_ioctl;
2036 chr->chr_close = pp_close;
2037 chr->opaque = drv;
2038
2039 qemu_chr_reset(chr);
2040
2041 return chr;
2042 }
2043
2044 #else
2045 static CharDriverState *qemu_chr_open_pty(void)
2046 {
2047 return NULL;
2048 }
2049 #endif
2050
2051 #endif /* !defined(_WIN32) */
2052
2053 #ifdef _WIN32
2054 typedef struct {
2055 int max_size;
2056 HANDLE hcom, hrecv, hsend;
2057 OVERLAPPED orecv, osend;
2058 BOOL fpipe;
2059 DWORD len;
2060 } WinCharState;
2061
2062 #define NSENDBUF 2048
2063 #define NRECVBUF 2048
2064 #define MAXCONNECT 1
2065 #define NTIMEOUT 5000
2066
2067 static int win_chr_poll(void *opaque);
2068 static int win_chr_pipe_poll(void *opaque);
2069
2070 static void win_chr_close(CharDriverState *chr)
2071 {
2072 WinCharState *s = chr->opaque;
2073
2074 if (s->hsend) {
2075 CloseHandle(s->hsend);
2076 s->hsend = NULL;
2077 }
2078 if (s->hrecv) {
2079 CloseHandle(s->hrecv);
2080 s->hrecv = NULL;
2081 }
2082 if (s->hcom) {
2083 CloseHandle(s->hcom);
2084 s->hcom = NULL;
2085 }
2086 if (s->fpipe)
2087 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2088 else
2089 qemu_del_polling_cb(win_chr_poll, chr);
2090 }
2091
2092 static int win_chr_init(CharDriverState *chr, const char *filename)
2093 {
2094 WinCharState *s = chr->opaque;
2095 COMMCONFIG comcfg;
2096 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2097 COMSTAT comstat;
2098 DWORD size;
2099 DWORD err;
2100
2101 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2102 if (!s->hsend) {
2103 fprintf(stderr, "Failed CreateEvent\n");
2104 goto fail;
2105 }
2106 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2107 if (!s->hrecv) {
2108 fprintf(stderr, "Failed CreateEvent\n");
2109 goto fail;
2110 }
2111
2112 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2113 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2114 if (s->hcom == INVALID_HANDLE_VALUE) {
2115 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2116 s->hcom = NULL;
2117 goto fail;
2118 }
2119
2120 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2121 fprintf(stderr, "Failed SetupComm\n");
2122 goto fail;
2123 }
2124
2125 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2126 size = sizeof(COMMCONFIG);
2127 GetDefaultCommConfig(filename, &comcfg, &size);
2128 comcfg.dcb.DCBlength = sizeof(DCB);
2129 CommConfigDialog(filename, NULL, &comcfg);
2130
2131 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2132 fprintf(stderr, "Failed SetCommState\n");
2133 goto fail;
2134 }
2135
2136 if (!SetCommMask(s->hcom, EV_ERR)) {
2137 fprintf(stderr, "Failed SetCommMask\n");
2138 goto fail;
2139 }
2140
2141 cto.ReadIntervalTimeout = MAXDWORD;
2142 if (!SetCommTimeouts(s->hcom, &cto)) {
2143 fprintf(stderr, "Failed SetCommTimeouts\n");
2144 goto fail;
2145 }
2146
2147 if (!ClearCommError(s->hcom, &err, &comstat)) {
2148 fprintf(stderr, "Failed ClearCommError\n");
2149 goto fail;
2150 }
2151 qemu_add_polling_cb(win_chr_poll, chr);
2152 return 0;
2153
2154 fail:
2155 win_chr_close(chr);
2156 return -1;
2157 }
2158
2159 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2160 {
2161 WinCharState *s = chr->opaque;
2162 DWORD len, ret, size, err;
2163
2164 len = len1;
2165 ZeroMemory(&s->osend, sizeof(s->osend));
2166 s->osend.hEvent = s->hsend;
2167 while (len > 0) {
2168 if (s->hsend)
2169 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2170 else
2171 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2172 if (!ret) {
2173 err = GetLastError();
2174 if (err == ERROR_IO_PENDING) {
2175 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2176 if (ret) {
2177 buf += size;
2178 len -= size;
2179 } else {
2180 break;
2181 }
2182 } else {
2183 break;
2184 }
2185 } else {
2186 buf += size;
2187 len -= size;
2188 }
2189 }
2190 return len1 - len;
2191 }
2192
2193 static int win_chr_read_poll(CharDriverState *chr)
2194 {
2195 WinCharState *s = chr->opaque;
2196
2197 s->max_size = qemu_chr_can_read(chr);
2198 return s->max_size;
2199 }
2200
2201 static void win_chr_readfile(CharDriverState *chr)
2202 {
2203 WinCharState *s = chr->opaque;
2204 int ret, err;
2205 uint8_t buf[1024];
2206 DWORD size;
2207
2208 ZeroMemory(&s->orecv, sizeof(s->orecv));
2209 s->orecv.hEvent = s->hrecv;
2210 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2211 if (!ret) {
2212 err = GetLastError();
2213 if (err == ERROR_IO_PENDING) {
2214 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2215 }
2216 }
2217
2218 if (size > 0) {
2219 qemu_chr_read(chr, buf, size);
2220 }
2221 }
2222
2223 static void win_chr_read(CharDriverState *chr)
2224 {
2225 WinCharState *s = chr->opaque;
2226
2227 if (s->len > s->max_size)
2228 s->len = s->max_size;
2229 if (s->len == 0)
2230 return;
2231
2232 win_chr_readfile(chr);
2233 }
2234
2235 static int win_chr_poll(void *opaque)
2236 {
2237 CharDriverState *chr = opaque;
2238 WinCharState *s = chr->opaque;
2239 COMSTAT status;
2240 DWORD comerr;
2241
2242 ClearCommError(s->hcom, &comerr, &status);
2243 if (status.cbInQue > 0) {
2244 s->len = status.cbInQue;
2245 win_chr_read_poll(chr);
2246 win_chr_read(chr);
2247 return 1;
2248 }
2249 return 0;
2250 }
2251
2252 static CharDriverState *qemu_chr_open_win(const char *filename)
2253 {
2254 CharDriverState *chr;
2255 WinCharState *s;
2256
2257 chr = qemu_mallocz(sizeof(CharDriverState));
2258 if (!chr)
2259 return NULL;
2260 s = qemu_mallocz(sizeof(WinCharState));
2261 if (!s) {
2262 free(chr);
2263 return NULL;
2264 }
2265 chr->opaque = s;
2266 chr->chr_write = win_chr_write;
2267 chr->chr_close = win_chr_close;
2268
2269 if (win_chr_init(chr, filename) < 0) {
2270 free(s);
2271 free(chr);
2272 return NULL;
2273 }
2274 qemu_chr_reset(chr);
2275 return chr;
2276 }
2277
2278 static int win_chr_pipe_poll(void *opaque)
2279 {
2280 CharDriverState *chr = opaque;
2281 WinCharState *s = chr->opaque;
2282 DWORD size;
2283
2284 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2285 if (size > 0) {
2286 s->len = size;
2287 win_chr_read_poll(chr);
2288 win_chr_read(chr);
2289 return 1;
2290 }
2291 return 0;
2292 }
2293
2294 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2295 {
2296 WinCharState *s = chr->opaque;
2297 OVERLAPPED ov;
2298 int ret;
2299 DWORD size;
2300 char openname[256];
2301
2302 s->fpipe = TRUE;
2303
2304 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2305 if (!s->hsend) {
2306 fprintf(stderr, "Failed CreateEvent\n");
2307 goto fail;
2308 }
2309 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2310 if (!s->hrecv) {
2311 fprintf(stderr, "Failed CreateEvent\n");
2312 goto fail;
2313 }
2314
2315 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2316 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2317 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2318 PIPE_WAIT,
2319 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2320 if (s->hcom == INVALID_HANDLE_VALUE) {
2321 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2322 s->hcom = NULL;
2323 goto fail;
2324 }
2325
2326 ZeroMemory(&ov, sizeof(ov));
2327 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2328 ret = ConnectNamedPipe(s->hcom, &ov);
2329 if (ret) {
2330 fprintf(stderr, "Failed ConnectNamedPipe\n");
2331 goto fail;
2332 }
2333
2334 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2335 if (!ret) {
2336 fprintf(stderr, "Failed GetOverlappedResult\n");
2337 if (ov.hEvent) {
2338 CloseHandle(ov.hEvent);
2339 ov.hEvent = NULL;
2340 }
2341 goto fail;
2342 }
2343
2344 if (ov.hEvent) {
2345 CloseHandle(ov.hEvent);
2346 ov.hEvent = NULL;
2347 }
2348 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2349 return 0;
2350
2351 fail:
2352 win_chr_close(chr);
2353 return -1;
2354 }
2355
2356
2357 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2358 {
2359 CharDriverState *chr;
2360 WinCharState *s;
2361
2362 chr = qemu_mallocz(sizeof(CharDriverState));
2363 if (!chr)
2364 return NULL;
2365 s = qemu_mallocz(sizeof(WinCharState));
2366 if (!s) {
2367 free(chr);
2368 return NULL;
2369 }
2370 chr->opaque = s;
2371 chr->chr_write = win_chr_write;
2372 chr->chr_close = win_chr_close;
2373
2374 if (win_chr_pipe_init(chr, filename) < 0) {
2375 free(s);
2376 free(chr);
2377 return NULL;
2378 }
2379 qemu_chr_reset(chr);
2380 return chr;
2381 }
2382
2383 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2384 {
2385 CharDriverState *chr;
2386 WinCharState *s;
2387
2388 chr = qemu_mallocz(sizeof(CharDriverState));
2389 if (!chr)
2390 return NULL;
2391 s = qemu_mallocz(sizeof(WinCharState));
2392 if (!s) {
2393 free(chr);
2394 return NULL;
2395 }
2396 s->hcom = fd_out;
2397 chr->opaque = s;
2398 chr->chr_write = win_chr_write;
2399 qemu_chr_reset(chr);
2400 return chr;
2401 }
2402
2403 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2404 {
2405 HANDLE fd_out;
2406
2407 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2408 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2409 if (fd_out == INVALID_HANDLE_VALUE)
2410 return NULL;
2411
2412 return qemu_chr_open_win_file(fd_out);
2413 }
2414 #endif
2415
2416 /***********************************************************/
2417 /* UDP Net console */
2418
2419 typedef struct {
2420 int fd;
2421 struct sockaddr_in daddr;
2422 char buf[1024];
2423 int bufcnt;
2424 int bufptr;
2425 int max_size;
2426 } NetCharDriver;
2427
2428 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2429 {
2430 NetCharDriver *s = chr->opaque;
2431
2432 return sendto(s->fd, buf, len, 0,
2433 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2434 }
2435
2436 static int udp_chr_read_poll(void *opaque)
2437 {
2438 CharDriverState *chr = opaque;
2439 NetCharDriver *s = chr->opaque;
2440
2441 s->max_size = qemu_chr_can_read(chr);
2442
2443 /* If there were any stray characters in the queue process them
2444 * first
2445 */
2446 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2447 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2448 s->bufptr++;
2449 s->max_size = qemu_chr_can_read(chr);
2450 }
2451 return s->max_size;
2452 }
2453
2454 static void udp_chr_read(void *opaque)
2455 {
2456 CharDriverState *chr = opaque;
2457 NetCharDriver *s = chr->opaque;
2458
2459 if (s->max_size == 0)
2460 return;
2461 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2462 s->bufptr = s->bufcnt;
2463 if (s->bufcnt <= 0)
2464 return;
2465
2466 s->bufptr = 0;
2467 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2468 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2469 s->bufptr++;
2470 s->max_size = qemu_chr_can_read(chr);
2471 }
2472 }
2473
2474 static void udp_chr_update_read_handler(CharDriverState *chr)
2475 {
2476 NetCharDriver *s = chr->opaque;
2477
2478 if (s->fd >= 0) {
2479 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2480 udp_chr_read, NULL, chr);
2481 }
2482 }
2483
2484 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2485 #ifndef _WIN32
2486 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2487 #endif
2488 int parse_host_src_port(struct sockaddr_in *haddr,
2489 struct sockaddr_in *saddr,
2490 const char *str);
2491
2492 static CharDriverState *qemu_chr_open_udp(const char *def)
2493 {
2494 CharDriverState *chr = NULL;
2495 NetCharDriver *s = NULL;
2496 int fd = -1;
2497 struct sockaddr_in saddr;
2498
2499 chr = qemu_mallocz(sizeof(CharDriverState));
2500 if (!chr)
2501 goto return_err;
2502 s = qemu_mallocz(sizeof(NetCharDriver));
2503 if (!s)
2504 goto return_err;
2505
2506 fd = socket(PF_INET, SOCK_DGRAM, 0);
2507 if (fd < 0) {
2508 perror("socket(PF_INET, SOCK_DGRAM)");
2509 goto return_err;
2510 }
2511
2512 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2513 printf("Could not parse: %s\n", def);
2514 goto return_err;
2515 }
2516
2517 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2518 {
2519 perror("bind");
2520 goto return_err;
2521 }
2522
2523 s->fd = fd;
2524 s->bufcnt = 0;
2525 s->bufptr = 0;
2526 chr->opaque = s;
2527 chr->chr_write = udp_chr_write;
2528 chr->chr_update_read_handler = udp_chr_update_read_handler;
2529 return chr;
2530
2531 return_err:
2532 if (chr)
2533 free(chr);
2534 if (s)
2535 free(s);
2536 if (fd >= 0)
2537 closesocket(fd);
2538 return NULL;
2539 }
2540
2541 /***********************************************************/
2542 /* TCP Net console */
2543
2544 typedef struct {
2545 int fd, listen_fd;
2546 int connected;
2547 int max_size;
2548 int do_telnetopt;
2549 int do_nodelay;
2550 int is_unix;
2551 } TCPCharDriver;
2552
2553 static void tcp_chr_accept(void *opaque);
2554
2555 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2556 {
2557 TCPCharDriver *s = chr->opaque;
2558 if (s->connected) {
2559 return send_all(s->fd, buf, len);
2560 } else {
2561 /* XXX: indicate an error ? */
2562 return len;
2563 }
2564 }
2565
2566 static int tcp_chr_read_poll(void *opaque)
2567 {
2568 CharDriverState *chr = opaque;
2569 TCPCharDriver *s = chr->opaque;
2570 if (!s->connected)
2571 return 0;
2572 s->max_size = qemu_chr_can_read(chr);
2573 return s->max_size;
2574 }
2575
2576 #define IAC 255
2577 #define IAC_BREAK 243
2578 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2579 TCPCharDriver *s,
2580 char *buf, int *size)
2581 {
2582 /* Handle any telnet client's basic IAC options to satisfy char by
2583 * char mode with no echo. All IAC options will be removed from
2584 * the buf and the do_telnetopt variable will be used to track the
2585 * state of the width of the IAC information.
2586 *
2587 * IAC commands come in sets of 3 bytes with the exception of the
2588 * "IAC BREAK" command and the double IAC.
2589 */
2590
2591 int i;
2592 int j = 0;
2593
2594 for (i = 0; i < *size; i++) {
2595 if (s->do_telnetopt > 1) {
2596 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2597 /* Double IAC means send an IAC */
2598 if (j != i)
2599 buf[j] = buf[i];
2600 j++;
2601 s->do_telnetopt = 1;
2602 } else {
2603 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2604 /* Handle IAC break commands by sending a serial break */
2605 qemu_chr_event(chr, CHR_EVENT_BREAK);
2606 s->do_telnetopt++;
2607 }
2608 s->do_telnetopt++;
2609 }
2610 if (s->do_telnetopt >= 4) {
2611 s->do_telnetopt = 1;
2612 }
2613 } else {
2614 if ((unsigned char)buf[i] == IAC) {
2615 s->do_telnetopt = 2;
2616 } else {
2617 if (j != i)
2618 buf[j] = buf[i];
2619 j++;
2620 }
2621 }
2622 }
2623 *size = j;
2624 }
2625
2626 static void tcp_chr_read(void *opaque)
2627 {
2628 CharDriverState *chr = opaque;
2629 TCPCharDriver *s = chr->opaque;
2630 uint8_t buf[1024];
2631 int len, size;
2632
2633 if (!s->connected || s->max_size <= 0)
2634 return;
2635 len = sizeof(buf);
2636 if (len > s->max_size)
2637 len = s->max_size;
2638 size = recv(s->fd, buf, len, 0);
2639 if (size == 0) {
2640 /* connection closed */
2641 s->connected = 0;
2642 if (s->listen_fd >= 0) {
2643 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2644 }
2645 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2646 closesocket(s->fd);
2647 s->fd = -1;
2648 } else if (size > 0) {
2649 if (s->do_telnetopt)
2650 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2651 if (size > 0)
2652 qemu_chr_read(chr, buf, size);
2653 }
2654 }
2655
2656 static void tcp_chr_connect(void *opaque)
2657 {
2658 CharDriverState *chr = opaque;
2659 TCPCharDriver *s = chr->opaque;
2660
2661 s->connected = 1;
2662 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2663 tcp_chr_read, NULL, chr);
2664 qemu_chr_reset(chr);
2665 }
2666
2667 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2668 static void tcp_chr_telnet_init(int fd)
2669 {
2670 char buf[3];
2671 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2672 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2673 send(fd, (char *)buf, 3, 0);
2674 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2675 send(fd, (char *)buf, 3, 0);
2676 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2677 send(fd, (char *)buf, 3, 0);
2678 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2679 send(fd, (char *)buf, 3, 0);
2680 }
2681
2682 static void socket_set_nodelay(int fd)
2683 {
2684 int val = 1;
2685 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2686 }
2687
2688 static void tcp_chr_accept(void *opaque)
2689 {
2690 CharDriverState *chr = opaque;
2691 TCPCharDriver *s = chr->opaque;
2692 struct sockaddr_in saddr;
2693 #ifndef _WIN32
2694 struct sockaddr_un uaddr;
2695 #endif
2696 struct sockaddr *addr;
2697 socklen_t len;
2698 int fd;
2699
2700 for(;;) {
2701 #ifndef _WIN32
2702 if (s->is_unix) {
2703 len = sizeof(uaddr);
2704 addr = (struct sockaddr *)&uaddr;
2705 } else
2706 #endif
2707 {
2708 len = sizeof(saddr);
2709 addr = (struct sockaddr *)&saddr;
2710 }
2711 fd = accept(s->listen_fd, addr, &len);
2712 if (fd < 0 && errno != EINTR) {
2713 return;
2714 } else if (fd >= 0) {
2715 if (s->do_telnetopt)
2716 tcp_chr_telnet_init(fd);
2717 break;
2718 }
2719 }
2720 socket_set_nonblock(fd);
2721 if (s->do_nodelay)
2722 socket_set_nodelay(fd);
2723 s->fd = fd;
2724 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2725 tcp_chr_connect(chr);
2726 }
2727
2728 static void tcp_chr_close(CharDriverState *chr)
2729 {
2730 TCPCharDriver *s = chr->opaque;
2731 if (s->fd >= 0)
2732 closesocket(s->fd);
2733 if (s->listen_fd >= 0)
2734 closesocket(s->listen_fd);
2735 qemu_free(s);
2736 }
2737
2738 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2739 int is_telnet,
2740 int is_unix)
2741 {
2742 CharDriverState *chr = NULL;
2743 TCPCharDriver *s = NULL;
2744 int fd = -1, ret, err, val;
2745 int is_listen = 0;
2746 int is_waitconnect = 1;
2747 int do_nodelay = 0;
2748 const char *ptr;
2749 struct sockaddr_in saddr;
2750 #ifndef _WIN32
2751 struct sockaddr_un uaddr;
2752 #endif
2753 struct sockaddr *addr;
2754 socklen_t addrlen;
2755
2756 #ifndef _WIN32
2757 if (is_unix) {
2758 addr = (struct sockaddr *)&uaddr;
2759 addrlen = sizeof(uaddr);
2760 if (parse_unix_path(&uaddr, host_str) < 0)
2761 goto fail;
2762 } else
2763 #endif
2764 {
2765 addr = (struct sockaddr *)&saddr;
2766 addrlen = sizeof(saddr);
2767 if (parse_host_port(&saddr, host_str) < 0)
2768 goto fail;
2769 }
2770
2771 ptr = host_str;
2772 while((ptr = strchr(ptr,','))) {
2773 ptr++;
2774 if (!strncmp(ptr,"server",6)) {
2775 is_listen = 1;
2776 } else if (!strncmp(ptr,"nowait",6)) {
2777 is_waitconnect = 0;
2778 } else if (!strncmp(ptr,"nodelay",6)) {
2779 do_nodelay = 1;
2780 } else {
2781 printf("Unknown option: %s\n", ptr);
2782 goto fail;
2783 }
2784 }
2785 if (!is_listen)
2786 is_waitconnect = 0;
2787
2788 chr = qemu_mallocz(sizeof(CharDriverState));
2789 if (!chr)
2790 goto fail;
2791 s = qemu_mallocz(sizeof(TCPCharDriver));
2792 if (!s)
2793 goto fail;
2794
2795 #ifndef _WIN32
2796 if (is_unix)
2797 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2798 else
2799 #endif
2800 fd = socket(PF_INET, SOCK_STREAM, 0);
2801
2802 if (fd < 0)
2803 goto fail;
2804
2805 if (!is_waitconnect)
2806 socket_set_nonblock(fd);
2807
2808 s->connected = 0;
2809 s->fd = -1;
2810 s->listen_fd = -1;
2811 s->is_unix = is_unix;
2812 s->do_nodelay = do_nodelay && !is_unix;
2813
2814 chr->opaque = s;
2815 chr->chr_write = tcp_chr_write;
2816 chr->chr_close = tcp_chr_close;
2817
2818 if (is_listen) {
2819 /* allow fast reuse */
2820 #ifndef _WIN32
2821 if (is_unix) {
2822 char path[109];
2823 strncpy(path, uaddr.sun_path, 108);
2824 path[108] = 0;
2825 unlink(path);
2826 } else
2827 #endif
2828 {
2829 val = 1;
2830 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2831 }
2832
2833 ret = bind(fd, addr, addrlen);
2834 if (ret < 0)
2835 goto fail;
2836
2837 ret = listen(fd, 0);
2838 if (ret < 0)
2839 goto fail;
2840
2841 s->listen_fd = fd;
2842 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2843 if (is_telnet)
2844 s->do_telnetopt = 1;
2845 } else {
2846 for(;;) {
2847 ret = connect(fd, addr, addrlen);
2848 if (ret < 0) {
2849 err = socket_error();
2850 if (err == EINTR || err == EWOULDBLOCK) {
2851 } else if (err == EINPROGRESS) {
2852 break;
2853 #ifdef _WIN32
2854 } else if (err == WSAEALREADY) {
2855 break;
2856 #endif
2857 } else {
2858 goto fail;
2859 }
2860 } else {
2861 s->connected = 1;
2862 break;
2863 }
2864 }
2865 s->fd = fd;
2866 socket_set_nodelay(fd);
2867 if (s->connected)
2868 tcp_chr_connect(chr);
2869 else
2870 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2871 }
2872
2873 if (is_listen && is_waitconnect) {
2874 printf("QEMU waiting for connection on: %s\n", host_str);
2875 tcp_chr_accept(chr);
2876 socket_set_nonblock(s->listen_fd);
2877 }
2878
2879 return chr;
2880 fail:
2881 if (fd >= 0)
2882 closesocket(fd);
2883 qemu_free(s);
2884 qemu_free(chr);
2885 return NULL;
2886 }
2887
2888 CharDriverState *qemu_chr_open(const char *filename)
2889 {
2890 const char *p;
2891
2892 if (!strcmp(filename, "vc")) {
2893 return text_console_init(&display_state);
2894 } else if (!strcmp(filename, "null")) {
2895 return qemu_chr_open_null();
2896 } else
2897 if (strstart(filename, "tcp:", &p)) {
2898 return qemu_chr_open_tcp(p, 0, 0);
2899 } else
2900 if (strstart(filename, "telnet:", &p)) {
2901 return qemu_chr_open_tcp(p, 1, 0);
2902 } else
2903 if (strstart(filename, "udp:", &p)) {
2904 return qemu_chr_open_udp(p);
2905 } else
2906 if (strstart(filename, "mon:", &p)) {
2907 CharDriverState *drv = qemu_chr_open(p);
2908 if (drv) {
2909 drv = qemu_chr_open_mux(drv);
2910 monitor_init(drv, !nographic);
2911 return drv;
2912 }
2913 printf("Unable to open driver: %s\n", p);
2914 return 0;
2915 } else
2916 #ifndef _WIN32
2917 if (strstart(filename, "unix:", &p)) {
2918 return qemu_chr_open_tcp(p, 0, 1);
2919 } else if (strstart(filename, "file:", &p)) {
2920 return qemu_chr_open_file_out(p);
2921 } else if (strstart(filename, "pipe:", &p)) {
2922 return qemu_chr_open_pipe(p);
2923 } else if (!strcmp(filename, "pty")) {
2924 return qemu_chr_open_pty();
2925 } else if (!strcmp(filename, "stdio")) {
2926 return qemu_chr_open_stdio();
2927 } else
2928 #endif
2929 #if defined(__linux__)
2930 if (strstart(filename, "/dev/parport", NULL)) {
2931 return qemu_chr_open_pp(filename);
2932 } else
2933 if (strstart(filename, "/dev/", NULL)) {
2934 return qemu_chr_open_tty(filename);
2935 } else
2936 #endif
2937 #ifdef _WIN32
2938 if (strstart(filename, "COM", NULL)) {
2939 return qemu_chr_open_win(filename);
2940 } else
2941 if (strstart(filename, "pipe:", &p)) {
2942 return qemu_chr_open_win_pipe(p);
2943 } else
2944 if (strstart(filename, "file:", &p)) {
2945 return qemu_chr_open_win_file_out(p);
2946 }
2947 #endif
2948 {
2949 return NULL;
2950 }
2951 }
2952
2953 void qemu_chr_close(CharDriverState *chr)
2954 {
2955 if (chr->chr_close)
2956 chr->chr_close(chr);
2957 }
2958
2959 /***********************************************************/
2960 /* network device redirectors */
2961
2962 void hex_dump(FILE *f, const uint8_t *buf, int size)
2963 {
2964 int len, i, j, c;
2965
2966 for(i=0;i<size;i+=16) {
2967 len = size - i;
2968 if (len > 16)
2969 len = 16;
2970 fprintf(f, "%08x ", i);
2971 for(j=0;j<16;j++) {
2972 if (j < len)
2973 fprintf(f, " %02x", buf[i+j]);
2974 else
2975 fprintf(f, " ");
2976 }
2977 fprintf(f, " ");
2978 for(j=0;j<len;j++) {
2979 c = buf[i+j];
2980 if (c < ' ' || c > '~')
2981 c = '.';
2982 fprintf(f, "%c", c);
2983 }
2984 fprintf(f, "\n");
2985 }
2986 }
2987
2988 static int parse_macaddr(uint8_t *macaddr, const char *p)
2989 {
2990 int i;
2991 for(i = 0; i < 6; i++) {
2992 macaddr[i] = strtol(p, (char **)&p, 16);
2993 if (i == 5) {
2994 if (*p != '\0')
2995 return -1;
2996 } else {
2997 if (*p != ':')
2998 return -1;
2999 p++;
3000 }
3001 }
3002 return 0;
3003 }
3004
3005 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3006 {
3007 const char *p, *p1;
3008 int len;
3009 p = *pp;
3010 p1 = strchr(p, sep);
3011 if (!p1)
3012 return -1;
3013 len = p1 - p;
3014 p1++;
3015 if (buf_size > 0) {
3016 if (len > buf_size - 1)
3017 len = buf_size - 1;
3018 memcpy(buf, p, len);
3019 buf[len] = '\0';
3020 }
3021 *pp = p1;
3022 return 0;
3023 }
3024
3025 int parse_host_src_port(struct sockaddr_in *haddr,
3026 struct sockaddr_in *saddr,
3027 const char *input_str)
3028 {
3029 char *str = strdup(input_str);
3030 char *host_str = str;
3031 char *src_str;
3032 char *ptr;
3033
3034 /*
3035 * Chop off any extra arguments at the end of the string which
3036 * would start with a comma, then fill in the src port information
3037 * if it was provided else use the "any address" and "any port".
3038 */
3039 if ((ptr = strchr(str,',')))
3040 *ptr = '\0';
3041
3042 if ((src_str = strchr(input_str,'@'))) {
3043 *src_str = '\0';
3044 src_str++;
3045 }
3046
3047 if (parse_host_port(haddr, host_str) < 0)
3048 goto fail;
3049
3050 if (!src_str || *src_str == '\0')
3051 src_str = ":0";
3052
3053 if (parse_host_port(saddr, src_str) < 0)
3054 goto fail;
3055
3056 free(str);
3057 return(0);
3058
3059 fail:
3060 free(str);
3061 return -1;
3062 }
3063
3064 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3065 {
3066 char buf[512];
3067 struct hostent *he;
3068 const char *p, *r;
3069 int port;
3070
3071 p = str;
3072 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3073 return -1;
3074 saddr->sin_family = AF_INET;
3075 if (buf[0] == '\0') {
3076 saddr->sin_addr.s_addr = 0;
3077 } else {
3078 if (isdigit(buf[0])) {
3079 if (!inet_aton(buf, &saddr->sin_addr))
3080 return -1;
3081 } else {
3082 if ((he = gethostbyname(buf)) == NULL)
3083 return - 1;
3084 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3085 }
3086 }
3087 port = strtol(p, (char **)&r, 0);
3088 if (r == p)
3089 return -1;
3090 saddr->sin_port = htons(port);
3091 return 0;
3092 }
3093
3094 #ifndef _WIN32
3095 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3096 {
3097 const char *p;
3098 int len;
3099
3100 len = MIN(108, strlen(str));
3101 p = strchr(str, ',');
3102 if (p)
3103 len = MIN(len, p - str);
3104
3105 memset(uaddr, 0, sizeof(*uaddr));
3106
3107 uaddr->sun_family = AF_UNIX;
3108 memcpy(uaddr->sun_path, str, len);
3109
3110 return 0;
3111 }
3112 #endif
3113
3114 /* find or alloc a new VLAN */
3115 VLANState *qemu_find_vlan(int id)
3116 {
3117 VLANState **pvlan, *vlan;
3118 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3119 if (vlan->id == id)
3120 return vlan;
3121 }
3122 vlan = qemu_mallocz(sizeof(VLANState));
3123 if (!vlan)
3124 return NULL;
3125 vlan->id = id;
3126 vlan->next = NULL;
3127 pvlan = &first_vlan;
3128 while (*pvlan != NULL)
3129 pvlan = &(*pvlan)->next;
3130 *pvlan = vlan;
3131 return vlan;
3132 }
3133
3134 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3135 IOReadHandler *fd_read,
3136 IOCanRWHandler *fd_can_read,
3137 void *opaque)
3138 {
3139 VLANClientState *vc, **pvc;
3140 vc = qemu_mallocz(sizeof(VLANClientState));
3141 if (!vc)
3142 return NULL;
3143 vc->fd_read = fd_read;
3144 vc->fd_can_read = fd_can_read;
3145 vc->opaque = opaque;
3146 vc->vlan = vlan;
3147
3148 vc->next = NULL;
3149 pvc = &vlan->first_client;
3150 while (*pvc != NULL)
3151 pvc = &(*pvc)->next;
3152 *pvc = vc;
3153 return vc;
3154 }
3155
3156 int qemu_can_send_packet(VLANClientState *vc1)
3157 {
3158 VLANState *vlan = vc1->vlan;
3159 VLANClientState *vc;
3160
3161 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3162 if (vc != vc1) {
3163 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3164 return 0;
3165 }
3166 }
3167 return 1;
3168 }
3169
3170 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3171 {
3172 VLANState *vlan = vc1->vlan;
3173 VLANClientState *vc;
3174
3175 #if 0
3176 printf("vlan %d send:\n", vlan->id);
3177 hex_dump(stdout, buf, size);
3178 #endif
3179 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3180 if (vc != vc1) {
3181 vc->fd_read(vc->opaque, buf, size);
3182 }
3183 }
3184 }
3185
3186 #if defined(CONFIG_SLIRP)
3187
3188 /* slirp network adapter */
3189
3190 static int slirp_inited;
3191 static VLANClientState *slirp_vc;
3192
3193 int slirp_can_output(void)
3194 {
3195 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3196 }
3197
3198 void slirp_output(const uint8_t *pkt, int pkt_len)
3199 {
3200 #if 0
3201 printf("slirp output:\n");
3202 hex_dump(stdout, pkt, pkt_len);
3203 #endif
3204 if (!slirp_vc)
3205 return;
3206 qemu_send_packet(slirp_vc, pkt, pkt_len);
3207 }
3208
3209 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3210 {
3211 #if 0
3212 printf("slirp input:\n");
3213 hex_dump(stdout, buf, size);
3214 #endif
3215 slirp_input(buf, size);
3216 }
3217
3218 static int net_slirp_init(VLANState *vlan)
3219 {
3220 if (!slirp_inited) {
3221 slirp_inited = 1;
3222 slirp_init();
3223 }
3224 slirp_vc = qemu_new_vlan_client(vlan,
3225 slirp_receive, NULL, NULL);
3226 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3227 return 0;
3228 }
3229
3230 static void net_slirp_redir(const char *redir_str)
3231 {
3232 int is_udp;
3233 char buf[256], *r;
3234 const char *p;
3235 struct in_addr guest_addr;
3236 int host_port, guest_port;
3237
3238 if (!slirp_inited) {
3239 slirp_inited = 1;
3240 slirp_init();
3241 }
3242
3243 p = redir_str;
3244 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3245 goto fail;
3246 if (!strcmp(buf, "tcp")) {
3247 is_udp = 0;
3248 } else if (!strcmp(buf, "udp")) {
3249 is_udp = 1;
3250 } else {
3251 goto fail;
3252 }
3253
3254 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3255 goto fail;
3256 host_port = strtol(buf, &r, 0);
3257 if (r == buf)
3258 goto fail;
3259
3260 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3261 goto fail;
3262 if (buf[0] == '\0') {
3263 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3264 }
3265 if (!inet_aton(buf, &guest_addr))
3266 goto fail;
3267
3268 guest_port = strtol(p, &r, 0);
3269 if (r == p)
3270 goto fail;
3271
3272 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3273 fprintf(stderr, "qemu: could not set up redirection\n");
3274 exit(1);
3275 }
3276 return;
3277 fail:
3278 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3279 exit(1);
3280 }
3281
3282 #ifndef _WIN32
3283
3284 char smb_dir[1024];
3285
3286 static void smb_exit(void)
3287 {
3288 DIR *d;
3289 struct dirent *de;
3290 char filename[1024];
3291
3292 /* erase all the files in the directory */
3293 d = opendir(smb_dir);
3294 for(;;) {
3295 de = readdir(d);
3296 if (!de)
3297 break;
3298 if (strcmp(de->d_name, ".") != 0 &&
3299 strcmp(de->d_name, "..") != 0) {
3300 snprintf(filename, sizeof(filename), "%s/%s",
3301 smb_dir, de->d_name);
3302 unlink(filename);
3303 }
3304 }
3305 closedir(d);
3306 rmdir(smb_dir);
3307 }
3308
3309 /* automatic user mode samba server configuration */
3310 void net_slirp_smb(const char *exported_dir)
3311 {
3312 char smb_conf[1024];
3313 char smb_cmdline[1024];
3314 FILE *f;
3315
3316 if (!slirp_inited) {
3317 slirp_inited = 1;
3318 slirp_init();
3319 }
3320
3321 /* XXX: better tmp dir construction */
3322 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3323 if (mkdir(smb_dir, 0700) < 0) {
3324 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3325 exit(1);
3326 }
3327 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3328
3329 f = fopen(smb_conf, "w");
3330 if (!f) {
3331 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3332 exit(1);
3333 }
3334 fprintf(f,
3335 "[global]\n"
3336 "private dir=%s\n"
3337 "smb ports=0\n"
3338 "socket address=127.0.0.1\n"
3339 "pid directory=%s\n"
3340 "lock directory=%s\n"
3341 "log file=%s/log.smbd\n"
3342 "smb passwd file=%s/smbpasswd\n"
3343 "security = share\n"
3344 "[qemu]\n"
3345 "path=%s\n"
3346 "read only=no\n"
3347 "guest ok=yes\n",
3348 smb_dir,
3349 smb_dir,
3350 smb_dir,
3351 smb_dir,
3352 smb_dir,
3353 exported_dir
3354 );
3355 fclose(f);
3356 atexit(smb_exit);
3357
3358 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3359 SMBD_COMMAND, smb_conf);
3360
3361 slirp_add_exec(0, smb_cmdline, 4, 139);
3362 }
3363
3364 #endif /* !defined(_WIN32) */
3365
3366 #endif /* CONFIG_SLIRP */
3367
3368 #if !defined(_WIN32)
3369
3370 typedef struct TAPState {
3371 VLANClientState *vc;
3372 int fd;
3373 } TAPState;
3374
3375 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3376 {
3377 TAPState *s = opaque;
3378 int ret;
3379 for(;;) {
3380 ret = write(s->fd, buf, size);
3381 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3382 } else {
3383 break;
3384 }
3385 }
3386 }
3387
3388 static void tap_send(void *opaque)
3389 {
3390 TAPState *s = opaque;
3391 uint8_t buf[4096];
3392 int size;
3393
3394 #ifdef __sun__
3395 struct strbuf sbuf;
3396 int f = 0;
3397 sbuf.maxlen = sizeof(buf);
3398 sbuf.buf = buf;
3399 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3400 #else
3401 size = read(s->fd, buf, sizeof(buf));
3402 #endif
3403 if (size > 0) {
3404 qemu_send_packet(s->vc, buf, size);
3405 }
3406 }
3407
3408 /* fd support */
3409
3410 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3411 {
3412 TAPState *s;
3413
3414 s = qemu_mallocz(sizeof(TAPState));
3415 if (!s)
3416 return NULL;
3417 s->fd = fd;
3418 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3419 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3420 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3421 return s;
3422 }
3423
3424 #ifdef _BSD
3425 static int tap_open(char *ifname, int ifname_size)
3426 {
3427 int fd;
3428 char *dev;
3429 struct stat s;
3430
3431 fd = open("/dev/tap", O_RDWR);
3432 if (fd < 0) {
3433 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3434 return -1;
3435 }
3436
3437 fstat(fd, &s);
3438 dev = devname(s.st_rdev, S_IFCHR);
3439 pstrcpy(ifname, ifname_size, dev);
3440
3441 fcntl(fd, F_SETFL, O_NONBLOCK);
3442 return fd;
3443 }
3444 #elif defined(__sun__)
3445 #define TUNNEWPPA (('T'<<16) | 0x0001)
3446 /*
3447 * Allocate TAP device, returns opened fd.
3448 * Stores dev name in the first arg(must be large enough).
3449 */
3450 int tap_alloc(char *dev)
3451 {
3452 int tap_fd, if_fd, ppa = -1;
3453 static int ip_fd = 0;
3454 char *ptr;
3455
3456 static int arp_fd = 0;
3457 int ip_muxid, arp_muxid;
3458 struct strioctl strioc_if, strioc_ppa;
3459 int link_type = I_PLINK;;
3460 struct lifreq ifr;
3461 char actual_name[32] = "";
3462
3463 memset(&ifr, 0x0, sizeof(ifr));
3464
3465 if( *dev ){
3466 ptr = dev;
3467 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3468 ppa = atoi(ptr);
3469 }
3470
3471 /* Check if IP device was opened */
3472 if( ip_fd )
3473 close(ip_fd);
3474
3475 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3476 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3477 return -1;
3478 }
3479
3480 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3481 syslog(LOG_ERR, "Can't open /dev/tap");
3482 return -1;
3483 }
3484
3485 /* Assign a new PPA and get its unit number. */
3486 strioc_ppa.ic_cmd = TUNNEWPPA;
3487 strioc_ppa.ic_timout = 0;
3488 strioc_ppa.ic_len = sizeof(ppa);
3489 strioc_ppa.ic_dp = (char *)&ppa;
3490 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3491 syslog (LOG_ERR, "Can't assign new interface");
3492
3493 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3494 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3495 return -1;
3496 }
3497 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3498 syslog(LOG_ERR, "Can't push IP module");
3499 return -1;
3500 }
3501
3502 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3503 syslog(LOG_ERR, "Can't get flags\n");
3504
3505 snprintf (actual_name, 32, "tap%d", ppa);
3506 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3507
3508 ifr.lifr_ppa = ppa;
3509 /* Assign ppa according to the unit number returned by tun device */
3510
3511 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3512 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3513 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3514 syslog (LOG_ERR, "Can't get flags\n");
3515 /* Push arp module to if_fd */
3516 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3517 syslog (LOG_ERR, "Can't push ARP module (2)");
3518
3519 /* Push arp module to ip_fd */
3520 if (ioctl (ip_fd, I_POP, NULL) < 0)
3521 syslog (LOG_ERR, "I_POP failed\n");
3522 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3523 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3524 /* Open arp_fd */
3525 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3526 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3527
3528 /* Set ifname to arp */
3529 strioc_if.ic_cmd = SIOCSLIFNAME;
3530 strioc_if.ic_timout = 0;
3531 strioc_if.ic_len = sizeof(ifr);
3532 strioc_if.ic_dp = (char *)&ifr;
3533 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3534 syslog (LOG_ERR, "Can't set ifname to arp\n");
3535 }
3536
3537 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3538 syslog(LOG_ERR, "Can't link TAP device to IP");
3539 return -1;
3540 }
3541
3542 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3543 syslog (LOG_ERR, "Can't link TAP device to ARP");
3544
3545 close (if_fd);
3546
3547 memset(&ifr, 0x0, sizeof(ifr));
3548 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3549 ifr.lifr_ip_muxid = ip_muxid;
3550 ifr.lifr_arp_muxid = arp_muxid;
3551
3552 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3553 {
3554 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3555 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3556 syslog (LOG_ERR, "Can't set multiplexor id");
3557 }
3558
3559 sprintf(dev, "tap%d", ppa);
3560 return tap_fd;
3561 }
3562
3563 static int tap_open(char *ifname, int ifname_size)
3564 {
3565 char dev[10]="";
3566 int fd;
3567 if( (fd = tap_alloc(dev)) < 0 ){
3568 fprintf(stderr, "Cannot allocate TAP device\n");
3569 return -1;
3570 }
3571 pstrcpy(ifname, ifname_size, dev);
3572 fcntl(fd, F_SETFL, O_NONBLOCK);
3573 return fd;
3574 }
3575 #else
3576 static int tap_open(char *ifname, int ifname_size)
3577 {
3578 struct ifreq ifr;
3579 int fd, ret;
3580
3581 fd = open("/dev/net/tun", O_RDWR);
3582 if (fd < 0) {
3583 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3584 return -1;
3585 }
3586 memset(&ifr, 0, sizeof(ifr));
3587 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3588 if (ifname[0] != '\0')
3589 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3590 else
3591 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3592 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3593 if (ret != 0) {
3594 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3595 close(fd);
3596 return -1;
3597 }
3598 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3599 fcntl(fd, F_SETFL, O_NONBLOCK);
3600 return fd;
3601 }
3602 #endif
3603
3604 static int net_tap_init(VLANState *vlan, const char *ifname1,
3605 const char *setup_script)
3606 {
3607 TAPState *s;
3608 int pid, status, fd;
3609 char *args[3];
3610 char **parg;
3611 char ifname[128];
3612
3613 if (ifname1 != NULL)
3614 pstrcpy(ifname, sizeof(ifname), ifname1);
3615 else
3616 ifname[0] = '\0';
3617 fd = tap_open(ifname, sizeof(ifname));
3618 if (fd < 0)
3619 return -1;
3620
3621 if (!setup_script || !strcmp(setup_script, "no"))
3622 setup_script = "";
3623 if (setup_script[0] != '\0') {
3624 /* try to launch network init script */
3625 pid = fork();
3626 if (pid >= 0) {
3627 if (pid == 0) {
3628 int open_max = sysconf (_SC_OPEN_MAX), i;
3629 for (i = 0; i < open_max; i++)
3630 if (i != STDIN_FILENO &&
3631 i != STDOUT_FILENO &&
3632 i != STDERR_FILENO &&
3633 i != fd)
3634 close(i);
3635
3636 parg = args;
3637 *parg++ = (char *)setup_script;
3638 *parg++ = ifname;
3639 *parg++ = NULL;
3640 execv(setup_script, args);
3641 _exit(1);
3642 }
3643 while (waitpid(pid, &status, 0) != pid);
3644 if (!WIFEXITED(status) ||
3645 WEXITSTATUS(status) != 0) {
3646 fprintf(stderr, "%s: could not launch network script\n",
3647 setup_script);
3648 return -1;
3649 }
3650 }
3651 }
3652 s = net_tap_fd_init(vlan, fd);
3653 if (!s)
3654 return -1;
3655 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3656 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3657 return 0;
3658 }
3659
3660 #endif /* !_WIN32 */
3661
3662 /* network connection */
3663 typedef struct NetSocketState {
3664 VLANClientState *vc;
3665 int fd;
3666 int state; /* 0 = getting length, 1 = getting data */
3667 int index;
3668 int packet_len;
3669 uint8_t buf[4096];
3670 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3671 } NetSocketState;
3672
3673 typedef struct NetSocketListenState {
3674 VLANState *vlan;
3675 int fd;
3676 } NetSocketListenState;
3677
3678 /* XXX: we consider we can send the whole packet without blocking */
3679 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3680 {
3681 NetSocketState *s = opaque;
3682 uint32_t len;
3683 len = htonl(size);
3684
3685 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3686 send_all(s->fd, buf, size);
3687 }
3688
3689 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3690 {
3691 NetSocketState *s = opaque;
3692 sendto(s->fd, buf, size, 0,
3693 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3694 }
3695
3696 static void net_socket_send(void *opaque)
3697 {
3698 NetSocketState *s = opaque;
3699 int l, size, err;
3700 uint8_t buf1[4096];
3701 const uint8_t *buf;
3702
3703 size = recv(s->fd, buf1, sizeof(buf1), 0);
3704 if (size < 0) {
3705 err = socket_error();
3706 if (err != EWOULDBLOCK)
3707 goto eoc;
3708 } else if (size == 0) {
3709 /* end of connection */
3710 eoc:
3711 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3712 closesocket(s->fd);
3713 return;
3714 }
3715 buf = buf1;
3716 while (size > 0) {
3717 /* reassemble a packet from the network */
3718 switch(s->state) {
3719 case 0:
3720 l = 4 - s->index;
3721 if (l > size)
3722 l = size;
3723 memcpy(s->buf + s->index, buf, l);
3724 buf += l;
3725 size -= l;
3726 s->index += l;
3727 if (s->index == 4) {
3728 /* got length */
3729 s->packet_len = ntohl(*(uint32_t *)s->buf);
3730 s->index = 0;
3731 s->state = 1;
3732 }
3733 break;
3734 case 1:
3735 l = s->packet_len - s->index;
3736 if (l > size)
3737 l = size;
3738 memcpy(s->buf + s->index, buf, l);
3739 s->index += l;
3740 buf += l;
3741 size -= l;
3742 if (s->index >= s->packet_len) {
3743 qemu_send_packet(s->vc, s->buf, s->packet_len);
3744 s->index = 0;
3745 s->state = 0;
3746 }
3747 break;
3748 }
3749 }
3750 }
3751
3752 static void net_socket_send_dgram(void *opaque)
3753 {
3754 NetSocketState *s = opaque;
3755 int size;
3756
3757 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3758 if (size < 0)
3759 return;
3760 if (size == 0) {
3761 /* end of connection */
3762 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3763 return;
3764 }
3765 qemu_send_packet(s->vc, s->buf, size);
3766 }
3767
3768 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3769 {
3770 struct ip_mreq imr;
3771 int fd;
3772 int val, ret;
3773 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3774 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3775 inet_ntoa(mcastaddr->sin_addr),
3776 (int)ntohl(mcastaddr->sin_addr.s_addr));
3777 return -1;
3778
3779 }
3780 fd = socket(PF_INET, SOCK_DGRAM, 0);
3781 if (fd < 0) {
3782 perror("socket(PF_INET, SOCK_DGRAM)");
3783 return -1;
3784 }
3785
3786 val = 1;
3787 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3788 (const char *)&val, sizeof(val));
3789 if (ret < 0) {
3790 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3791 goto fail;
3792 }
3793
3794 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3795 if (ret < 0) {
3796 perror("bind");
3797 goto fail;
3798 }
3799
3800 /* Add host to multicast group */
3801 imr.imr_multiaddr = mcastaddr->sin_addr;
3802 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3803
3804 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3805 (const char *)&imr, sizeof(struct ip_mreq));
3806 if (ret < 0) {
3807 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3808 goto fail;
3809 }
3810
3811 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3812 val = 1;
3813 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3814 (const char *)&val, sizeof(val));
3815 if (ret < 0) {
3816 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3817 goto fail;
3818 }
3819
3820 socket_set_nonblock(fd);
3821 return fd;
3822 fail:
3823 if (fd >= 0)
3824 closesocket(fd);
3825 return -1;
3826 }
3827
3828 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3829 int is_connected)
3830 {
3831 struct sockaddr_in saddr;
3832 int newfd;
3833 socklen_t saddr_len;
3834 NetSocketState *s;
3835
3836 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3837 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3838 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3839 */
3840
3841 if (is_connected) {
3842 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3843 /* must be bound */
3844 if (saddr.sin_addr.s_addr==0) {
3845 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3846 fd);
3847 return NULL;
3848 }
3849 /* clone dgram socket */
3850 newfd = net_socket_mcast_create(&saddr);
3851 if (newfd < 0) {
3852 /* error already reported by net_socket_mcast_create() */
3853 close(fd);
3854 return NULL;
3855 }
3856 /* clone newfd to fd, close newfd */
3857 dup2(newfd, fd);
3858 close(newfd);
3859
3860 } else {
3861 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3862 fd, strerror(errno));
3863 return NULL;
3864 }
3865 }
3866
3867 s = qemu_mallocz(sizeof(NetSocketState));
3868 if (!s)
3869 return NULL;
3870 s->fd = fd;
3871
3872 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3873 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3874
3875 /* mcast: save bound address as dst */
3876 if (is_connected) s->dgram_dst=saddr;
3877
3878 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3879 "socket: fd=%d (%s mcast=%s:%d)",
3880 fd, is_connected? "cloned" : "",
3881 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3882 return s;
3883 }
3884
3885 static void net_socket_connect(void *opaque)
3886 {
3887 NetSocketState *s = opaque;
3888 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3889 }
3890
3891 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3892 int is_connected)
3893 {
3894 NetSocketState *s;
3895 s = qemu_mallocz(sizeof(NetSocketState));
3896 if (!s)
3897 return NULL;
3898 s->fd = fd;
3899 s->vc = qemu_new_vlan_client(vlan,
3900 net_socket_receive, NULL, s);
3901 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3902 "socket: fd=%d", fd);
3903 if (is_connected) {
3904 net_socket_connect(s);
3905 } else {
3906 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3907 }
3908 return s;
3909 }
3910
3911 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3912 int is_connected)
3913 {
3914 int so_type=-1, optlen=sizeof(so_type);
3915
3916 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3917 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3918 return NULL;
3919 }
3920 switch(so_type) {
3921 case SOCK_DGRAM:
3922 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3923 case SOCK_STREAM:
3924 return net_socket_fd_init_stream(vlan, fd, is_connected);
3925 default:
3926 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3927 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3928 return net_socket_fd_init_stream(vlan, fd, is_connected);
3929 }
3930 return NULL;
3931 }
3932
3933 static void net_socket_accept(void *opaque)
3934 {
3935 NetSocketListenState *s = opaque;
3936 NetSocketState *s1;
3937 struct sockaddr_in saddr;
3938 socklen_t len;
3939 int fd;
3940
3941 for(;;) {
3942 len = sizeof(saddr);
3943 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3944 if (fd < 0 && errno != EINTR) {
3945 return;
3946 } else if (fd >= 0) {
3947 break;
3948 }
3949 }
3950 s1 = net_socket_fd_init(s->vlan, fd, 1);
3951 if (!s1) {
3952 closesocket(fd);
3953 } else {
3954 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3955 "socket: connection from %s:%d",
3956 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3957 }
3958 }
3959
3960 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3961 {
3962 NetSocketListenState *s;
3963 int fd, val, ret;
3964 struct sockaddr_in saddr;
3965
3966 if (parse_host_port(&saddr, host_str) < 0)
3967 return -1;
3968
3969 s = qemu_mallocz(sizeof(NetSocketListenState));
3970 if (!s)
3971 return -1;
3972
3973 fd = socket(PF_INET, SOCK_STREAM, 0);
3974 if (fd < 0) {
3975 perror("socket");
3976 return -1;
3977 }
3978 socket_set_nonblock(fd);
3979
3980 /* allow fast reuse */
3981 val = 1;
3982 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3983
3984 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3985 if (ret < 0) {
3986 perror("bind");
3987 return -1;
3988 }
3989 ret = listen(fd, 0);
3990 if (ret < 0) {
3991 perror("listen");
3992 return -1;
3993 }
3994 s->vlan = vlan;
3995 s->fd = fd;
3996 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
3997 return 0;
3998 }
3999
4000 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4001 {
4002 NetSocketState *s;
4003 int fd, connected, ret, err;
4004 struct sockaddr_in saddr;
4005
4006 if (parse_host_port(&saddr, host_str) < 0)
4007 return -1;
4008
4009 fd = socket(PF_INET, SOCK_STREAM, 0);
4010 if (fd < 0) {
4011 perror("socket");
4012 return -1;
4013 }
4014 socket_set_nonblock(fd);
4015
4016 connected = 0;
4017 for(;;) {
4018 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4019 if (ret < 0) {
4020 err = socket_error();
4021 if (err == EINTR || err == EWOULDBLOCK) {
4022 } else if (err == EINPROGRESS) {
4023 break;
4024 #ifdef _WIN32
4025 } else if (err == WSAEALREADY) {
4026 break;
4027 #endif
4028 } else {
4029 perror("connect");
4030 closesocket(fd);
4031 return -1;
4032 }
4033 } else {
4034 connected = 1;
4035 break;
4036 }
4037 }
4038 s = net_socket_fd_init(vlan, fd, connected);
4039 if (!s)
4040 return -1;
4041 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4042 "socket: connect to %s:%d",
4043 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4044 return 0;
4045 }
4046
4047 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4048 {
4049 NetSocketState *s;
4050 int fd;
4051 struct sockaddr_in saddr;
4052
4053 if (parse_host_port(&saddr, host_str) < 0)
4054 return -1;
4055
4056
4057 fd = net_socket_mcast_create(&saddr);
4058 if (fd < 0)
4059 return -1;
4060
4061 s = net_socket_fd_init(vlan, fd, 0);
4062 if (!s)
4063 return -1;
4064
4065 s->dgram_dst = saddr;
4066
4067 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4068 "socket: mcast=%s:%d",
4069 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4070 return 0;
4071
4072 }
4073
4074 static int get_param_value(char *buf, int buf_size,
4075 const char *tag, const char *str)
4076 {
4077 const char *p;
4078 char *q;
4079 char option[128];
4080
4081 p = str;
4082 for(;;) {
4083 q = option;
4084 while (*p != '\0' && *p != '=') {
4085 if ((q - option) < sizeof(option) - 1)
4086 *q++ = *p;
4087 p++;
4088 }
4089 *q = '\0';
4090 if (*p != '=')
4091 break;
4092 p++;
4093 if (!strcmp(tag, option)) {
4094 q = buf;
4095 while (*p != '\0' && *p != ',') {
4096 if ((q - buf) < buf_size - 1)
4097 *q++ = *p;
4098 p++;
4099 }
4100 *q = '\0';
4101 return q - buf;
4102 } else {
4103 while (*p != '\0' && *p != ',') {
4104 p++;
4105 }
4106 }
4107 if (*p != ',')
4108 break;
4109 p++;
4110 }
4111 return 0;
4112 }
4113
4114 static int net_client_init(const char *str)
4115 {
4116 const char *p;
4117 char *q;
4118 char device[64];
4119 char buf[1024];
4120 int vlan_id, ret;
4121 VLANState *vlan;
4122
4123 p = str;
4124 q = device;
4125 while (*p != '\0' && *p != ',') {
4126 if ((q - device) < sizeof(device) - 1)
4127 *q++ = *p;
4128 p++;
4129 }
4130 *q = '\0';
4131 if (*p == ',')
4132 p++;
4133 vlan_id = 0;
4134 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4135 vlan_id = strtol(buf, NULL, 0);
4136 }
4137 vlan = qemu_find_vlan(vlan_id);
4138 if (!vlan) {
4139 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4140 return -1;
4141 }
4142 if (!strcmp(device, "nic")) {
4143 NICInfo *nd;
4144 uint8_t *macaddr;
4145
4146 if (nb_nics >= MAX_NICS) {
4147 fprintf(stderr, "Too Many NICs\n");
4148 return -1;
4149 }
4150 nd = &nd_table[nb_nics];
4151 macaddr = nd->macaddr;
4152 macaddr[0] = 0x52;
4153 macaddr[1] = 0x54;
4154 macaddr[2] = 0x00;
4155 macaddr[3] = 0x12;
4156 macaddr[4] = 0x34;
4157 macaddr[5] = 0x56 + nb_nics;
4158
4159 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4160 if (parse_macaddr(macaddr, buf) < 0) {
4161 fprintf(stderr, "invalid syntax for ethernet address\n");
4162 return -1;
4163 }
4164 }
4165 if (get_param_value(buf, sizeof(buf), "model", p)) {
4166 nd->model = strdup(buf);
4167 }
4168 nd->vlan = vlan;
4169 nb_nics++;
4170 ret = 0;
4171 } else
4172 if (!strcmp(device, "none")) {
4173 /* does nothing. It is needed to signal that no network cards
4174 are wanted */
4175 ret = 0;
4176 } else
4177 #ifdef CONFIG_SLIRP
4178 if (!strcmp(device, "user")) {
4179 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4180 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4181 }
4182 ret = net_slirp_init(vlan);
4183 } else
4184 #endif
4185 #ifdef _WIN32
4186 if (!strcmp(device, "tap")) {
4187 char ifname[64];
4188 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4189 fprintf(stderr, "tap: no interface name\n");
4190 return -1;
4191 }
4192 ret = tap_win32_init(vlan, ifname);
4193 } else
4194 #else
4195 if (!strcmp(device, "tap")) {
4196 char ifname[64];
4197 char setup_script[1024];
4198 int fd;
4199 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4200 fd = strtol(buf, NULL, 0);
4201 ret = -1;
4202 if (net_tap_fd_init(vlan, fd))
4203 ret = 0;
4204 } else {
4205 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4206 ifname[0] = '\0';
4207 }
4208 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4209 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4210 }
4211 ret = net_tap_init(vlan, ifname, setup_script);
4212 }
4213 } else
4214 #endif
4215 if (!strcmp(device, "socket")) {
4216 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4217 int fd;
4218 fd = strtol(buf, NULL, 0);
4219 ret = -1;
4220 if (net_socket_fd_init(vlan, fd, 1))
4221 ret = 0;
4222 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4223 ret = net_socket_listen_init(vlan, buf);
4224 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4225 ret = net_socket_connect_init(vlan, buf);
4226 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4227 ret = net_socket_mcast_init(vlan, buf);
4228 } else {
4229 fprintf(stderr, "Unknown socket options: %s\n", p);
4230 return -1;
4231 }
4232 } else
4233 {
4234 fprintf(stderr, "Unknown network device: %s\n", device);
4235 return -1;
4236 }
4237 if (ret < 0) {
4238 fprintf(stderr, "Could not initialize device '%s'\n", device);
4239 }
4240
4241 return ret;
4242 }
4243
4244 void do_info_network(void)
4245 {
4246 VLANState *vlan;
4247 VLANClientState *vc;
4248
4249 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4250 term_printf("VLAN %d devices:\n", vlan->id);
4251 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4252 term_printf(" %s\n", vc->info_str);
4253 }
4254 }
4255
4256 /***********************************************************/
4257 /* USB devices */
4258
4259 static USBPort *used_usb_ports;
4260 static USBPort *free_usb_ports;
4261
4262 /* ??? Maybe change this to register a hub to keep track of the topology. */
4263 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4264 usb_attachfn attach)
4265 {
4266 port->opaque = opaque;
4267 port->index = index;
4268 port->attach = attach;
4269 port->next = free_usb_ports;
4270 free_usb_ports = port;
4271 }
4272
4273 static int usb_device_add(const char *devname)
4274 {
4275 const char *p;
4276 USBDevice *dev;
4277 USBPort *port;
4278
4279 if (!free_usb_ports)
4280 return -1;
4281
4282 if (strstart(devname, "host:", &p)) {
4283 dev = usb_host_device_open(p);
4284 } else if (!strcmp(devname, "mouse")) {
4285 dev = usb_mouse_init();
4286 } else if (!strcmp(devname, "tablet")) {
4287 dev = usb_tablet_init();
4288 } else if (strstart(devname, "disk:", &p)) {
4289 dev = usb_msd_init(p);
4290 } else {
4291 return -1;
4292 }
4293 if (!dev)
4294 return -1;
4295
4296 /* Find a USB port to add the device to. */
4297 port = free_usb_ports;
4298 if (!port->next) {
4299 USBDevice *hub;
4300
4301 /* Create a new hub and chain it on. */
4302 free_usb_ports = NULL;
4303 port->next = used_usb_ports;
4304 used_usb_ports = port;
4305
4306 hub = usb_hub_init(VM_USB_HUB_SIZE);
4307 usb_attach(port, hub);
4308 port = free_usb_ports;
4309 }
4310
4311 free_usb_ports = port->next;
4312 port->next = used_usb_ports;
4313 used_usb_ports = port;
4314 usb_attach(port, dev);
4315 return 0;
4316 }
4317
4318 static int usb_device_del(const char *devname)
4319 {
4320 USBPort *port;
4321 USBPort **lastp;
4322 USBDevice *dev;
4323 int bus_num, addr;
4324 const char *p;
4325
4326 if (!used_usb_ports)
4327 return -1;
4328
4329 p = strchr(devname, '.');
4330 if (!p)
4331 return -1;
4332 bus_num = strtoul(devname, NULL, 0);
4333 addr = strtoul(p + 1, NULL, 0);
4334 if (bus_num != 0)
4335 return -1;
4336
4337 lastp = &used_usb_ports;
4338 port = used_usb_ports;
4339 while (port && port->dev->addr != addr) {
4340 lastp = &port->next;
4341 port = port->next;
4342 }
4343
4344 if (!port)
4345 return -1;
4346
4347 dev = port->dev;
4348 *lastp = port->next;
4349 usb_attach(port, NULL);
4350 dev->handle_destroy(dev);
4351 port->next = free_usb_ports;
4352 free_usb_ports = port;
4353 return 0;
4354 }
4355
4356 void do_usb_add(const char *devname)
4357 {
4358 int ret;
4359 ret = usb_device_add(devname);
4360 if (ret < 0)
4361 term_printf("Could not add USB device '%s'\n", devname);
4362 }
4363
4364 void do_usb_del(const char *devname)
4365 {
4366 int ret;
4367 ret = usb_device_del(devname);
4368 if (ret < 0)
4369 term_printf("Could not remove USB device '%s'\n", devname);
4370 }
4371
4372 void usb_info(void)
4373 {
4374 USBDevice *dev;
4375 USBPort *port;
4376 const char *speed_str;
4377
4378 if (!usb_enabled) {
4379 term_printf("USB support not enabled\n");
4380 return;
4381 }
4382
4383 for (port = used_usb_ports; port; port = port->next) {
4384 dev = port->dev;
4385 if (!dev)
4386 continue;
4387 switch(dev->speed) {
4388 case USB_SPEED_LOW:
4389 speed_str = "1.5";
4390 break;
4391 case USB_SPEED_FULL:
4392 speed_str = "12";
4393 break;
4394 case USB_SPEED_HIGH:
4395 speed_str = "480";
4396 break;
4397 default:
4398 speed_str = "?";
4399 break;
4400 }
4401 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4402 0, dev->addr, speed_str, dev->devname);
4403 }
4404 }
4405
4406 /***********************************************************/
4407 /* dumb display */
4408
4409 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4410 {
4411 }
4412
4413 static void dumb_resize(DisplayState *ds, int w, int h)
4414 {
4415 }
4416
4417 static void dumb_refresh(DisplayState *ds)
4418 {
4419 vga_hw_update();
4420 }
4421
4422 void dumb_display_init(DisplayState *ds)
4423 {
4424 ds->data = NULL;
4425 ds->linesize = 0;
4426 ds->depth = 0;
4427 ds->dpy_update = dumb_update;
4428 ds->dpy_resize = dumb_resize;
4429 ds->dpy_refresh = dumb_refresh;
4430 }
4431
4432 /***********************************************************/
4433 /* I/O handling */
4434
4435 #define MAX_IO_HANDLERS 64
4436
4437 typedef struct IOHandlerRecord {
4438 int fd;
4439 IOCanRWHandler *fd_read_poll;
4440 IOHandler *fd_read;
4441 IOHandler *fd_write;
4442 int deleted;
4443 void *opaque;
4444 /* temporary data */
4445 struct pollfd *ufd;
4446 struct IOHandlerRecord *next;
4447 } IOHandlerRecord;
4448
4449 static IOHandlerRecord *first_io_handler;
4450
4451 /* XXX: fd_read_poll should be suppressed, but an API change is
4452 necessary in the character devices to suppress fd_can_read(). */
4453 int qemu_set_fd_handler2(int fd,
4454 IOCanRWHandler *fd_read_poll,
4455 IOHandler *fd_read,
4456 IOHandler *fd_write,
4457 void *opaque)
4458 {
4459 IOHandlerRecord **pioh, *ioh;
4460
4461 if (!fd_read && !fd_write) {
4462 pioh = &first_io_handler;
4463 for(;;) {
4464 ioh = *pioh;
4465 if (ioh == NULL)
4466 break;
4467 if (ioh->fd == fd) {
4468 ioh->deleted = 1;
4469 break;
4470 }
4471 pioh = &ioh->next;
4472 }
4473 } else {
4474 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4475 if (ioh->fd == fd)
4476 goto found;
4477 }
4478 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4479 if (!ioh)
4480 return -1;
4481 ioh->next = first_io_handler;
4482 first_io_handler = ioh;
4483 found:
4484 ioh->fd = fd;
4485 ioh->fd_read_poll = fd_read_poll;
4486 ioh->fd_read = fd_read;
4487 ioh->fd_write = fd_write;
4488 ioh->opaque = opaque;
4489 ioh->deleted = 0;
4490 }
4491 return 0;
4492 }
4493
4494 int qemu_set_fd_handler(int fd,
4495 IOHandler *fd_read,
4496 IOHandler *fd_write,
4497 void *opaque)
4498 {
4499 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4500 }
4501
4502 /***********************************************************/
4503 /* Polling handling */
4504
4505 typedef struct PollingEntry {
4506 PollingFunc *func;
4507 void *opaque;
4508 struct PollingEntry *next;
4509 } PollingEntry;
4510
4511 static PollingEntry *first_polling_entry;
4512
4513 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4514 {
4515 PollingEntry **ppe, *pe;
4516 pe = qemu_mallocz(sizeof(PollingEntry));
4517 if (!pe)
4518 return -1;
4519 pe->func = func;
4520 pe->opaque = opaque;
4521 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4522 *ppe = pe;
4523 return 0;
4524 }
4525
4526 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4527 {
4528 PollingEntry **ppe, *pe;
4529 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4530 pe = *ppe;
4531 if (pe->func == func && pe->opaque == opaque) {
4532 *ppe = pe->next;
4533 qemu_free(pe);
4534 break;
4535 }
4536 }
4537 }
4538
4539 #ifdef _WIN32
4540 /***********************************************************/
4541 /* Wait objects support */
4542 typedef struct WaitObjects {
4543 int num;
4544 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4545 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4546 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4547 } WaitObjects;
4548
4549 static WaitObjects wait_objects = {0};
4550
4551 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4552 {
4553 WaitObjects *w = &wait_objects;
4554
4555 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4556 return -1;
4557 w->events[w->num] = handle;
4558 w->func[w->num] = func;
4559 w->opaque[w->num] = opaque;
4560 w->num++;
4561 return 0;
4562 }
4563
4564 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4565 {
4566 int i, found;
4567 WaitObjects *w = &wait_objects;
4568
4569 found = 0;
4570 for (i = 0; i < w->num; i++) {
4571 if (w->events[i] == handle)
4572 found = 1;
4573 if (found) {
4574 w->events[i] = w->events[i + 1];
4575 w->func[i] = w->func[i + 1];
4576 w->opaque[i] = w->opaque[i + 1];
4577 }
4578 }
4579 if (found)
4580 w->num--;
4581 }
4582 #endif
4583
4584 /***********************************************************/
4585 /* savevm/loadvm support */
4586
4587 #define IO_BUF_SIZE 32768
4588
4589 struct QEMUFile {
4590 FILE *outfile;
4591 BlockDriverState *bs;
4592 int is_file;
4593 int is_writable;
4594 int64_t base_offset;
4595 int64_t buf_offset; /* start of buffer when writing, end of buffer
4596 when reading */
4597 int buf_index;
4598 int buf_size; /* 0 when writing */
4599 uint8_t buf[IO_BUF_SIZE];
4600 };
4601
4602 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4603 {
4604 QEMUFile *f;
4605
4606 f = qemu_mallocz(sizeof(QEMUFile));
4607 if (!f)
4608 return NULL;
4609 if (!strcmp(mode, "wb")) {
4610 f->is_writable = 1;
4611 } else if (!strcmp(mode, "rb")) {
4612 f->is_writable = 0;
4613 } else {
4614 goto fail;
4615 }
4616 f->outfile = fopen(filename, mode);
4617 if (!f->outfile)
4618 goto fail;
4619 f->is_file = 1;
4620 return f;
4621 fail:
4622 if (f->outfile)
4623 fclose(f->outfile);
4624 qemu_free(f);
4625 return NULL;
4626 }
4627
4628 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4629 {
4630 QEMUFile *f;
4631
4632 f = qemu_mallocz(sizeof(QEMUFile));
4633 if (!f)
4634 return NULL;
4635 f->is_file = 0;
4636 f->bs = bs;
4637 f->is_writable = is_writable;
4638 f->base_offset = offset;
4639 return f;
4640 }
4641
4642 void qemu_fflush(QEMUFile *f)
4643 {
4644 if (!f->is_writable)
4645 return;
4646 if (f->buf_index > 0) {
4647 if (f->is_file) {
4648 fseek(f->outfile, f->buf_offset, SEEK_SET);
4649 fwrite(f->buf, 1, f->buf_index, f->outfile);
4650 } else {
4651 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4652 f->buf, f->buf_index);
4653 }
4654 f->buf_offset += f->buf_index;
4655 f->buf_index = 0;
4656 }
4657 }
4658
4659 static void qemu_fill_buffer(QEMUFile *f)
4660 {
4661 int len;
4662
4663 if (f->is_writable)
4664 return;
4665 if (f->is_file) {
4666 fseek(f->outfile, f->buf_offset, SEEK_SET);
4667 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4668 if (len < 0)
4669 len = 0;
4670 } else {
4671 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4672 f->buf, IO_BUF_SIZE);
4673 if (len < 0)
4674 len = 0;
4675 }
4676 f->buf_index = 0;
4677 f->buf_size = len;
4678 f->buf_offset += len;
4679 }
4680
4681 void qemu_fclose(QEMUFile *f)
4682 {
4683 if (f->is_writable)
4684 qemu_fflush(f);
4685 if (f->is_file) {
4686 fclose(f->outfile);
4687 }
4688 qemu_free(f);
4689 }
4690
4691 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4692 {
4693 int l;
4694 while (size > 0) {
4695 l = IO_BUF_SIZE - f->buf_index;
4696 if (l > size)
4697 l = size;
4698 memcpy(f->buf + f->buf_index, buf, l);
4699 f->buf_index += l;
4700 buf += l;
4701 size -= l;
4702 if (f->buf_index >= IO_BUF_SIZE)
4703 qemu_fflush(f);
4704 }
4705 }
4706
4707 void qemu_put_byte(QEMUFile *f, int v)
4708 {
4709 f->buf[f->buf_index++] = v;
4710 if (f->buf_index >= IO_BUF_SIZE)
4711 qemu_fflush(f);
4712 }
4713
4714 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4715 {
4716 int size, l;
4717
4718 size = size1;
4719 while (size > 0) {
4720 l = f->buf_size - f->buf_index;
4721 if (l == 0) {
4722 qemu_fill_buffer(f);
4723 l = f->buf_size - f->buf_index;
4724 if (l == 0)
4725 break;
4726 }
4727 if (l > size)
4728 l = size;
4729 memcpy(buf, f->buf + f->buf_index, l);
4730 f->buf_index += l;
4731 buf += l;
4732 size -= l;
4733 }
4734 return size1 - size;
4735 }
4736
4737 int qemu_get_byte(QEMUFile *f)
4738 {
4739 if (f->buf_index >= f->buf_size) {
4740 qemu_fill_buffer(f);
4741 if (f->buf_index >= f->buf_size)
4742 return 0;
4743 }
4744 return f->buf[f->buf_index++];
4745 }
4746
4747 int64_t qemu_ftell(QEMUFile *f)
4748 {
4749 return f->buf_offset - f->buf_size + f->buf_index;
4750 }
4751
4752 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4753 {
4754 if (whence == SEEK_SET) {
4755 /* nothing to do */
4756 } else if (whence == SEEK_CUR) {
4757 pos += qemu_ftell(f);
4758 } else {
4759 /* SEEK_END not supported */
4760 return -1;
4761 }
4762 if (f->is_writable) {
4763 qemu_fflush(f);
4764 f->buf_offset = pos;
4765 } else {
4766 f->buf_offset = pos;
4767 f->buf_index = 0;
4768 f->buf_size = 0;
4769 }
4770 return pos;
4771 }
4772
4773 void qemu_put_be16(QEMUFile *f, unsigned int v)
4774 {
4775 qemu_put_byte(f, v >> 8);
4776 qemu_put_byte(f, v);
4777 }
4778
4779 void qemu_put_be32(QEMUFile *f, unsigned int v)
4780 {
4781 qemu_put_byte(f, v >> 24);
4782 qemu_put_byte(f, v >> 16);
4783 qemu_put_byte(f, v >> 8);
4784 qemu_put_byte(f, v);
4785 }
4786
4787 void qemu_put_be64(QEMUFile *f, uint64_t v)
4788 {
4789 qemu_put_be32(f, v >> 32);
4790 qemu_put_be32(f, v);
4791 }
4792
4793 unsigned int qemu_get_be16(QEMUFile *f)
4794 {
4795 unsigned int v;
4796 v = qemu_get_byte(f) << 8;
4797 v |= qemu_get_byte(f);
4798 return v;
4799 }
4800
4801 unsigned int qemu_get_be32(QEMUFile *f)
4802 {
4803 unsigned int v;
4804 v = qemu_get_byte(f) << 24;
4805 v |= qemu_get_byte(f) << 16;
4806 v |= qemu_get_byte(f) << 8;
4807 v |= qemu_get_byte(f);
4808 return v;
4809 }
4810
4811 uint64_t qemu_get_be64(QEMUFile *f)
4812 {
4813 uint64_t v;
4814 v = (uint64_t)qemu_get_be32(f) << 32;
4815 v |= qemu_get_be32(f);
4816 return v;
4817 }
4818
4819 typedef struct SaveStateEntry {
4820 char idstr[256];
4821 int instance_id;
4822 int version_id;
4823 SaveStateHandler *save_state;
4824 LoadStateHandler *load_state;
4825 void *opaque;
4826 struct SaveStateEntry *next;
4827 } SaveStateEntry;
4828
4829 static SaveStateEntry *first_se;
4830
4831 int register_savevm(const char *idstr,
4832 int instance_id,
4833 int version_id,
4834 SaveStateHandler *save_state,
4835 LoadStateHandler *load_state,
4836 void *opaque)
4837 {
4838 SaveStateEntry *se, **pse;
4839
4840 se = qemu_malloc(sizeof(SaveStateEntry));
4841 if (!se)
4842 return -1;
4843 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4844 se->instance_id = instance_id;
4845 se->version_id = version_id;
4846 se->save_state = save_state;
4847 se->load_state = load_state;
4848 se->opaque = opaque;
4849 se->next = NULL;
4850
4851 /* add at the end of list */
4852 pse = &first_se;
4853 while (*pse != NULL)
4854 pse = &(*pse)->next;
4855 *pse = se;
4856 return 0;
4857 }
4858
4859 #define QEMU_VM_FILE_MAGIC 0x5145564d
4860 #define QEMU_VM_FILE_VERSION 0x00000002
4861
4862 int qemu_savevm_state(QEMUFile *f)
4863 {
4864 SaveStateEntry *se;
4865 int len, ret;
4866 int64_t cur_pos, len_pos, total_len_pos;
4867
4868 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4869 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4870 total_len_pos = qemu_ftell(f);
4871 qemu_put_be64(f, 0); /* total size */
4872
4873 for(se = first_se; se != NULL; se = se->next) {
4874 /* ID string */
4875 len = strlen(se->idstr);
4876 qemu_put_byte(f, len);
4877 qemu_put_buffer(f, se->idstr, len);
4878
4879 qemu_put_be32(f, se->instance_id);
4880 qemu_put_be32(f, se->version_id);
4881
4882 /* record size: filled later */
4883 len_pos = qemu_ftell(f);
4884 qemu_put_be32(f, 0);
4885
4886 se->save_state(f, se->opaque);
4887
4888 /* fill record size */
4889 cur_pos = qemu_ftell(f);
4890 len = cur_pos - len_pos - 4;
4891 qemu_fseek(f, len_pos, SEEK_SET);
4892 qemu_put_be32(f, len);
4893 qemu_fseek(f, cur_pos, SEEK_SET);
4894 }
4895 cur_pos = qemu_ftell(f);
4896 qemu_fseek(f, total_len_pos, SEEK_SET);
4897 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4898 qemu_fseek(f, cur_pos, SEEK_SET);
4899
4900 ret = 0;
4901 return ret;
4902 }
4903
4904 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4905 {
4906 SaveStateEntry *se;
4907
4908 for(se = first_se; se != NULL; se = se->next) {
4909 if (!strcmp(se->idstr, idstr) &&
4910 instance_id == se->instance_id)
4911 return se;
4912 }
4913 return NULL;
4914 }
4915
4916 int qemu_loadvm_state(QEMUFile *f)
4917 {
4918 SaveStateEntry *se;
4919 int len, ret, instance_id, record_len, version_id;
4920 int64_t total_len, end_pos, cur_pos;
4921 unsigned int v;
4922 char idstr[256];
4923
4924 v = qemu_get_be32(f);
4925 if (v != QEMU_VM_FILE_MAGIC)
4926 goto fail;
4927 v = qemu_get_be32(f);
4928 if (v != QEMU_VM_FILE_VERSION) {
4929 fail:
4930 ret = -1;
4931 goto the_end;
4932 }
4933 total_len = qemu_get_be64(f);
4934 end_pos = total_len + qemu_ftell(f);
4935 for(;;) {
4936 if (qemu_ftell(f) >= end_pos)
4937 break;
4938 len = qemu_get_byte(f);
4939 qemu_get_buffer(f, idstr, len);
4940 idstr[len] = '\0';
4941 instance_id = qemu_get_be32(f);
4942 version_id = qemu_get_be32(f);
4943 record_len = qemu_get_be32(f);
4944 #if 0
4945 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4946 idstr, instance_id, version_id, record_len);
4947 #endif
4948 cur_pos = qemu_ftell(f);
4949 se = find_se(idstr, instance_id);
4950 if (!se) {
4951 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4952 instance_id, idstr);
4953 } else {
4954 ret = se->load_state(f, se->opaque, version_id);
4955 if (ret < 0) {
4956 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4957 instance_id, idstr);
4958 }
4959 }
4960 /* always seek to exact end of record */
4961 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4962 }
4963 ret = 0;
4964 the_end:
4965 return ret;
4966 }
4967
4968 /* device can contain snapshots */
4969 static int bdrv_can_snapshot(BlockDriverState *bs)
4970 {
4971 return (bs &&
4972 !bdrv_is_removable(bs) &&
4973 !bdrv_is_read_only(bs));
4974 }
4975
4976 /* device must be snapshots in order to have a reliable snapshot */
4977 static int bdrv_has_snapshot(BlockDriverState *bs)
4978 {
4979 return (bs &&
4980 !bdrv_is_removable(bs) &&
4981 !bdrv_is_read_only(bs));
4982 }
4983
4984 static BlockDriverState *get_bs_snapshots(void)
4985 {
4986 BlockDriverState *bs;
4987 int i;
4988
4989 if (bs_snapshots)
4990 return bs_snapshots;
4991 for(i = 0; i <= MAX_DISKS; i++) {
4992 bs = bs_table[i];
4993 if (bdrv_can_snapshot(bs))
4994 goto ok;
4995 }
4996 return NULL;
4997 ok:
4998 bs_snapshots = bs;
4999 return bs;
5000 }
5001
5002 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5003 const char *name)
5004 {
5005 QEMUSnapshotInfo *sn_tab, *sn;
5006 int nb_sns, i, ret;
5007
5008 ret = -ENOENT;
5009 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5010 if (nb_sns < 0)
5011 return ret;
5012 for(i = 0; i < nb_sns; i++) {
5013 sn = &sn_tab[i];
5014 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5015 *sn_info = *sn;
5016 ret = 0;
5017 break;
5018 }
5019 }
5020 qemu_free(sn_tab);
5021 return ret;
5022 }
5023
5024 void do_savevm(const char *name)
5025 {
5026 BlockDriverState *bs, *bs1;
5027 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5028 int must_delete, ret, i;
5029 BlockDriverInfo bdi1, *bdi = &bdi1;
5030 QEMUFile *f;
5031 int saved_vm_running;
5032 #ifdef _WIN32
5033 struct _timeb tb;
5034 #else
5035 struct timeval tv;
5036 #endif
5037
5038 bs = get_bs_snapshots();
5039 if (!bs) {
5040 term_printf("No block device can accept snapshots\n");
5041 return;
5042 }
5043
5044 /* ??? Should this occur after vm_stop? */
5045 qemu_aio_flush();
5046
5047 saved_vm_running = vm_running;
5048 vm_stop(0);
5049
5050 must_delete = 0;
5051 if (name) {
5052 ret = bdrv_snapshot_find(bs, old_sn, name);
5053 if (ret >= 0) {
5054 must_delete = 1;
5055 }
5056 }
5057 memset(sn, 0, sizeof(*sn));
5058 if (must_delete) {
5059 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5060 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5061 } else {
5062 if (name)
5063 pstrcpy(sn->name, sizeof(sn->name), name);
5064 }
5065
5066 /* fill auxiliary fields */
5067 #ifdef _WIN32
5068 _ftime(&tb);
5069 sn->date_sec = tb.time;
5070 sn->date_nsec = tb.millitm * 1000000;
5071 #else
5072 gettimeofday(&tv, NULL);
5073 sn->date_sec = tv.tv_sec;
5074 sn->date_nsec = tv.tv_usec * 1000;
5075 #endif
5076 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5077
5078 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5079 term_printf("Device %s does not support VM state snapshots\n",
5080 bdrv_get_device_name(bs));
5081 goto the_end;
5082 }
5083
5084 /* save the VM state */
5085 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5086 if (!f) {
5087 term_printf("Could not open VM state file\n");
5088 goto the_end;
5089 }
5090 ret = qemu_savevm_state(f);
5091 sn->vm_state_size = qemu_ftell(f);
5092 qemu_fclose(f);
5093 if (ret < 0) {
5094 term_printf("Error %d while writing VM\n", ret);
5095 goto the_end;
5096 }
5097
5098 /* create the snapshots */
5099
5100 for(i = 0; i < MAX_DISKS; i++) {
5101 bs1 = bs_table[i];
5102 if (bdrv_has_snapshot(bs1)) {
5103 if (must_delete) {
5104 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5105 if (ret < 0) {
5106 term_printf("Error while deleting snapshot on '%s'\n",
5107 bdrv_get_device_name(bs1));
5108 }
5109 }
5110 ret = bdrv_snapshot_create(bs1, sn);
5111 if (ret < 0) {
5112 term_printf("Error while creating snapshot on '%s'\n",
5113 bdrv_get_device_name(bs1));
5114 }
5115 }
5116 }
5117
5118 the_end:
5119 if (saved_vm_running)
5120 vm_start();
5121 }
5122
5123 void do_loadvm(const char *name)
5124 {
5125 BlockDriverState *bs, *bs1;
5126 BlockDriverInfo bdi1, *bdi = &bdi1;
5127 QEMUFile *f;
5128 int i, ret;
5129 int saved_vm_running;
5130
5131 bs = get_bs_snapshots();
5132 if (!bs) {
5133 term_printf("No block device supports snapshots\n");
5134 return;
5135 }
5136
5137 /* Flush all IO requests so they don't interfere with the new state. */
5138 qemu_aio_flush();
5139
5140 saved_vm_running = vm_running;
5141 vm_stop(0);
5142
5143 for(i = 0; i <= MAX_DISKS; i++) {
5144 bs1 = bs_table[i];
5145 if (bdrv_has_snapshot(bs1)) {
5146 ret = bdrv_snapshot_goto(bs1, name);
5147 if (ret < 0) {
5148 if (bs != bs1)
5149 term_printf("Warning: ");
5150 switch(ret) {
5151 case -ENOTSUP:
5152 term_printf("Snapshots not supported on device '%s'\n",
5153 bdrv_get_device_name(bs1));
5154 break;
5155 case -ENOENT:
5156 term_printf("Could not find snapshot '%s' on device '%s'\n",
5157 name, bdrv_get_device_name(bs1));
5158 break;
5159 default:
5160 term_printf("Error %d while activating snapshot on '%s'\n",
5161 ret, bdrv_get_device_name(bs1));
5162 break;
5163 }
5164 /* fatal on snapshot block device */
5165 if (bs == bs1)
5166 goto the_end;
5167 }
5168 }
5169 }
5170
5171 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5172 term_printf("Device %s does not support VM state snapshots\n",
5173 bdrv_get_device_name(bs));
5174 return;
5175 }
5176
5177 /* restore the VM state */
5178 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5179 if (!f) {
5180 term_printf("Could not open VM state file\n");
5181 goto the_end;
5182 }
5183 ret = qemu_loadvm_state(f);
5184 qemu_fclose(f);
5185 if (ret < 0) {
5186 term_printf("Error %d while loading VM state\n", ret);
5187 }
5188 the_end:
5189 if (saved_vm_running)
5190 vm_start();
5191 }
5192
5193 void do_delvm(const char *name)
5194 {
5195 BlockDriverState *bs, *bs1;
5196 int i, ret;
5197
5198 bs = get_bs_snapshots();
5199 if (!bs) {
5200 term_printf("No block device supports snapshots\n");
5201 return;
5202 }
5203
5204 for(i = 0; i <= MAX_DISKS; i++) {
5205 bs1 = bs_table[i];
5206 if (bdrv_has_snapshot(bs1)) {
5207 ret = bdrv_snapshot_delete(bs1, name);
5208 if (ret < 0) {
5209 if (ret == -ENOTSUP)
5210 term_printf("Snapshots not supported on device '%s'\n",
5211 bdrv_get_device_name(bs1));
5212 else
5213 term_printf("Error %d while deleting snapshot on '%s'\n",
5214 ret, bdrv_get_device_name(bs1));
5215 }
5216 }
5217 }
5218 }
5219
5220 void do_info_snapshots(void)
5221 {
5222 BlockDriverState *bs, *bs1;
5223 QEMUSnapshotInfo *sn_tab, *sn;
5224 int nb_sns, i;
5225 char buf[256];
5226
5227 bs = get_bs_snapshots();
5228 if (!bs) {
5229 term_printf("No available block device supports snapshots\n");
5230 return;
5231 }
5232 term_printf("Snapshot devices:");
5233 for(i = 0; i <= MAX_DISKS; i++) {
5234 bs1 = bs_table[i];
5235 if (bdrv_has_snapshot(bs1)) {
5236 if (bs == bs1)
5237 term_printf(" %s", bdrv_get_device_name(bs1));
5238 }
5239 }
5240 term_printf("\n");
5241
5242 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5243 if (nb_sns < 0) {
5244 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5245 return;
5246 }
5247 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5248 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5249 for(i = 0; i < nb_sns; i++) {
5250 sn = &sn_tab[i];
5251 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5252 }
5253 qemu_free(sn_tab);
5254 }
5255
5256 /***********************************************************/
5257 /* cpu save/restore */
5258
5259 #if defined(TARGET_I386)
5260
5261 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5262 {
5263 qemu_put_be32(f, dt->selector);
5264 qemu_put_betl(f, dt->base);
5265 qemu_put_be32(f, dt->limit);
5266 qemu_put_be32(f, dt->flags);
5267 }
5268
5269 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5270 {
5271 dt->selector = qemu_get_be32(f);
5272 dt->base = qemu_get_betl(f);
5273 dt->limit = qemu_get_be32(f);
5274 dt->flags = qemu_get_be32(f);
5275 }
5276
5277 void cpu_save(QEMUFile *f, void *opaque)
5278 {
5279 CPUState *env = opaque;
5280 uint16_t fptag, fpus, fpuc, fpregs_format;
5281 uint32_t hflags;
5282 int i;
5283
5284 for(i = 0; i < CPU_NB_REGS; i++)
5285 qemu_put_betls(f, &env->regs[i]);
5286 qemu_put_betls(f, &env->eip);
5287 qemu_put_betls(f, &env->eflags);
5288 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5289 qemu_put_be32s(f, &hflags);
5290
5291 /* FPU */
5292 fpuc = env->fpuc;
5293 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5294 fptag = 0;
5295 for(i = 0; i < 8; i++) {
5296 fptag |= ((!env->fptags[i]) << i);
5297 }
5298
5299 qemu_put_be16s(f, &fpuc);
5300 qemu_put_be16s(f, &fpus);
5301 qemu_put_be16s(f, &fptag);
5302
5303 #ifdef USE_X86LDOUBLE
5304 fpregs_format = 0;
5305 #else
5306 fpregs_format = 1;
5307 #endif
5308 qemu_put_be16s(f, &fpregs_format);
5309
5310 for(i = 0; i < 8; i++) {
5311 #ifdef USE_X86LDOUBLE
5312 {
5313 uint64_t mant;
5314 uint16_t exp;
5315 /* we save the real CPU data (in case of MMX usage only 'mant'
5316 contains the MMX register */
5317 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5318 qemu_put_be64(f, mant);
5319 qemu_put_be16(f, exp);
5320 }
5321 #else
5322 /* if we use doubles for float emulation, we save the doubles to
5323 avoid losing information in case of MMX usage. It can give
5324 problems if the image is restored on a CPU where long
5325 doubles are used instead. */
5326 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5327 #endif
5328 }
5329
5330 for(i = 0; i < 6; i++)
5331 cpu_put_seg(f, &env->segs[i]);
5332 cpu_put_seg(f, &env->ldt);
5333 cpu_put_seg(f, &env->tr);
5334 cpu_put_seg(f, &env->gdt);
5335 cpu_put_seg(f, &env->idt);
5336
5337 qemu_put_be32s(f, &env->sysenter_cs);
5338 qemu_put_be32s(f, &env->sysenter_esp);
5339 qemu_put_be32s(f, &env->sysenter_eip);
5340
5341 qemu_put_betls(f, &env->cr[0]);
5342 qemu_put_betls(f, &env->cr[2]);
5343 qemu_put_betls(f, &env->cr[3]);
5344 qemu_put_betls(f, &env->cr[4]);
5345
5346 for(i = 0; i < 8; i++)
5347 qemu_put_betls(f, &env->dr[i]);
5348
5349 /* MMU */
5350 qemu_put_be32s(f, &env->a20_mask);
5351
5352 /* XMM */
5353 qemu_put_be32s(f, &env->mxcsr);
5354 for(i = 0; i < CPU_NB_REGS; i++) {
5355 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5356 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5357 }
5358
5359 #ifdef TARGET_X86_64
5360 qemu_put_be64s(f, &env->efer);
5361 qemu_put_be64s(f, &env->star);
5362 qemu_put_be64s(f, &env->lstar);
5363 qemu_put_be64s(f, &env->cstar);
5364 qemu_put_be64s(f, &env->fmask);
5365 qemu_put_be64s(f, &env->kernelgsbase);
5366 #endif
5367 qemu_put_be32s(f, &env->smbase);
5368 }
5369
5370 #ifdef USE_X86LDOUBLE
5371 /* XXX: add that in a FPU generic layer */
5372 union x86_longdouble {
5373 uint64_t mant;
5374 uint16_t exp;
5375 };
5376
5377 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5378 #define EXPBIAS1 1023
5379 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5380 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5381
5382 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5383 {
5384 int e;
5385 /* mantissa */
5386 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5387 /* exponent + sign */
5388 e = EXPD1(temp) - EXPBIAS1 + 16383;
5389 e |= SIGND1(temp) >> 16;
5390 p->exp = e;
5391 }
5392 #endif
5393
5394 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5395 {
5396 CPUState *env = opaque;
5397 int i, guess_mmx;
5398 uint32_t hflags;
5399 uint16_t fpus, fpuc, fptag, fpregs_format;
5400
5401 if (version_id != 3 && version_id != 4)
5402 return -EINVAL;
5403 for(i = 0; i < CPU_NB_REGS; i++)
5404 qemu_get_betls(f, &env->regs[i]);
5405 qemu_get_betls(f, &env->eip);
5406 qemu_get_betls(f, &env->eflags);
5407 qemu_get_be32s(f, &hflags);
5408
5409 qemu_get_be16s(f, &fpuc);
5410 qemu_get_be16s(f, &fpus);
5411 qemu_get_be16s(f, &fptag);
5412 qemu_get_be16s(f, &fpregs_format);
5413
5414 /* NOTE: we cannot always restore the FPU state if the image come
5415 from a host with a different 'USE_X86LDOUBLE' define. We guess
5416 if we are in an MMX state to restore correctly in that case. */
5417 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5418 for(i = 0; i < 8; i++) {
5419 uint64_t mant;
5420 uint16_t exp;
5421
5422 switch(fpregs_format) {
5423 case 0:
5424 mant = qemu_get_be64(f);
5425 exp = qemu_get_be16(f);
5426 #ifdef USE_X86LDOUBLE
5427 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5428 #else
5429 /* difficult case */
5430 if (guess_mmx)
5431 env->fpregs[i].mmx.MMX_Q(0) = mant;
5432 else
5433 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5434 #endif
5435 break;
5436 case 1:
5437 mant = qemu_get_be64(f);
5438 #ifdef USE_X86LDOUBLE
5439 {
5440 union x86_longdouble *p;
5441 /* difficult case */
5442 p = (void *)&env->fpregs[i];
5443 if (guess_mmx) {
5444 p->mant = mant;
5445 p->exp = 0xffff;
5446 } else {
5447 fp64_to_fp80(p, mant);
5448 }
5449 }
5450 #else
5451 env->fpregs[i].mmx.MMX_Q(0) = mant;
5452 #endif
5453 break;
5454 default:
5455 return -EINVAL;
5456 }
5457 }
5458
5459 env->fpuc = fpuc;
5460 /* XXX: restore FPU round state */
5461 env->fpstt = (fpus >> 11) & 7;
5462 env->fpus = fpus & ~0x3800;
5463 fptag ^= 0xff;
5464 for(i = 0; i < 8; i++) {
5465 env->fptags[i] = (fptag >> i) & 1;
5466 }
5467
5468 for(i = 0; i < 6; i++)
5469 cpu_get_seg(f, &env->segs[i]);
5470 cpu_get_seg(f, &env->ldt);
5471 cpu_get_seg(f, &env->tr);
5472 cpu_get_seg(f, &env->gdt);
5473 cpu_get_seg(f, &env->idt);
5474
5475 qemu_get_be32s(f, &env->sysenter_cs);
5476 qemu_get_be32s(f, &env->sysenter_esp);
5477 qemu_get_be32s(f, &env->sysenter_eip);
5478
5479 qemu_get_betls(f, &env->cr[0]);
5480 qemu_get_betls(f, &env->cr[2]);
5481 qemu_get_betls(f, &env->cr[3]);
5482 qemu_get_betls(f, &env->cr[4]);
5483
5484 for(i = 0; i < 8; i++)
5485 qemu_get_betls(f, &env->dr[i]);
5486
5487 /* MMU */
5488 qemu_get_be32s(f, &env->a20_mask);
5489
5490 qemu_get_be32s(f, &env->mxcsr);
5491 for(i = 0; i < CPU_NB_REGS; i++) {
5492 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5493 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5494 }
5495
5496 #ifdef TARGET_X86_64
5497 qemu_get_be64s(f, &env->efer);
5498 qemu_get_be64s(f, &env->star);
5499 qemu_get_be64s(f, &env->lstar);
5500 qemu_get_be64s(f, &env->cstar);
5501 qemu_get_be64s(f, &env->fmask);
5502 qemu_get_be64s(f, &env->kernelgsbase);
5503 #endif
5504 if (version_id >= 4)
5505 qemu_get_be32s(f, &env->smbase);
5506
5507 /* XXX: compute hflags from scratch, except for CPL and IIF */
5508 env->hflags = hflags;
5509 tlb_flush(env, 1);
5510 return 0;
5511 }
5512
5513 #elif defined(TARGET_PPC)
5514 void cpu_save(QEMUFile *f, void *opaque)
5515 {
5516 }
5517
5518 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5519 {
5520 return 0;
5521 }
5522
5523 #elif defined(TARGET_MIPS)
5524 void cpu_save(QEMUFile *f, void *opaque)
5525 {
5526 }
5527
5528 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5529 {
5530 return 0;
5531 }
5532
5533 #elif defined(TARGET_SPARC)
5534 void cpu_save(QEMUFile *f, void *opaque)
5535 {
5536 CPUState *env = opaque;
5537 int i;
5538 uint32_t tmp;
5539
5540 for(i = 0; i < 8; i++)
5541 qemu_put_betls(f, &env->gregs[i]);
5542 for(i = 0; i < NWINDOWS * 16; i++)
5543 qemu_put_betls(f, &env->regbase[i]);
5544
5545 /* FPU */
5546 for(i = 0; i < TARGET_FPREGS; i++) {
5547 union {
5548 float32 f;
5549 uint32_t i;
5550 } u;
5551 u.f = env->fpr[i];
5552 qemu_put_be32(f, u.i);
5553 }
5554
5555 qemu_put_betls(f, &env->pc);
5556 qemu_put_betls(f, &env->npc);
5557 qemu_put_betls(f, &env->y);
5558 tmp = GET_PSR(env);
5559 qemu_put_be32(f, tmp);
5560 qemu_put_betls(f, &env->fsr);
5561 qemu_put_betls(f, &env->tbr);
5562 #ifndef TARGET_SPARC64
5563 qemu_put_be32s(f, &env->wim);
5564 /* MMU */
5565 for(i = 0; i < 16; i++)
5566 qemu_put_be32s(f, &env->mmuregs[i]);
5567 #endif
5568 }
5569
5570 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5571 {
5572 CPUState *env = opaque;
5573 int i;
5574 uint32_t tmp;
5575
5576 for(i = 0; i < 8; i++)
5577 qemu_get_betls(f, &env->gregs[i]);
5578 for(i = 0; i < NWINDOWS * 16; i++)
5579 qemu_get_betls(f, &env->regbase[i]);
5580
5581 /* FPU */
5582 for(i = 0; i < TARGET_FPREGS; i++) {
5583 union {
5584 float32 f;
5585 uint32_t i;
5586 } u;
5587 u.i = qemu_get_be32(f);
5588 env->fpr[i] = u.f;
5589 }
5590
5591 qemu_get_betls(f, &env->pc);
5592 qemu_get_betls(f, &env->npc);
5593 qemu_get_betls(f, &env->y);
5594 tmp = qemu_get_be32(f);
5595 env->cwp = 0; /* needed to ensure that the wrapping registers are
5596 correctly updated */
5597 PUT_PSR(env, tmp);
5598 qemu_get_betls(f, &env->fsr);
5599 qemu_get_betls(f, &env->tbr);
5600 #ifndef TARGET_SPARC64
5601 qemu_get_be32s(f, &env->wim);
5602 /* MMU */
5603 for(i = 0; i < 16; i++)
5604 qemu_get_be32s(f, &env->mmuregs[i]);
5605 #endif
5606 tlb_flush(env, 1);
5607 return 0;
5608 }
5609
5610 #elif defined(TARGET_ARM)
5611
5612 /* ??? Need to implement these. */
5613 void cpu_save(QEMUFile *f, void *opaque)
5614 {
5615 }
5616
5617 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5618 {
5619 return 0;
5620 }
5621
5622 #else
5623
5624 #warning No CPU save/restore functions
5625
5626 #endif
5627
5628 /***********************************************************/
5629 /* ram save/restore */
5630
5631 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5632 {
5633 int v;
5634
5635 v = qemu_get_byte(f);
5636 switch(v) {
5637 case 0:
5638 if (qemu_get_buffer(f, buf, len) != len)
5639 return -EIO;
5640 break;
5641 case 1:
5642 v = qemu_get_byte(f);
5643 memset(buf, v, len);
5644 break;
5645 default:
5646 return -EINVAL;
5647 }
5648 return 0;
5649 }
5650
5651 static int ram_load_v1(QEMUFile *f, void *opaque)
5652 {
5653 int i, ret;
5654
5655 if (qemu_get_be32(f) != phys_ram_size)
5656 return -EINVAL;
5657 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5658 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5659 if (ret)
5660 return ret;
5661 }
5662 return 0;
5663 }
5664
5665 #define BDRV_HASH_BLOCK_SIZE 1024
5666 #define IOBUF_SIZE 4096
5667 #define RAM_CBLOCK_MAGIC 0xfabe
5668
5669 typedef struct RamCompressState {
5670 z_stream zstream;
5671 QEMUFile *f;
5672 uint8_t buf[IOBUF_SIZE];
5673 } RamCompressState;
5674
5675 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5676 {
5677 int ret;
5678 memset(s, 0, sizeof(*s));
5679 s->f = f;
5680 ret = deflateInit2(&s->zstream, 1,
5681 Z_DEFLATED, 15,
5682 9, Z_DEFAULT_STRATEGY);
5683 if (ret != Z_OK)
5684 return -1;
5685 s->zstream.avail_out = IOBUF_SIZE;
5686 s->zstream.next_out = s->buf;
5687 return 0;
5688 }
5689
5690 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5691 {
5692 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5693 qemu_put_be16(s->f, len);
5694 qemu_put_buffer(s->f, buf, len);
5695 }
5696
5697 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5698 {
5699 int ret;
5700
5701 s->zstream.avail_in = len;
5702 s->zstream.next_in = (uint8_t *)buf;
5703 while (s->zstream.avail_in > 0) {
5704 ret = deflate(&s->zstream, Z_NO_FLUSH);
5705 if (ret != Z_OK)
5706 return -1;
5707 if (s->zstream.avail_out == 0) {
5708 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5709 s->zstream.avail_out = IOBUF_SIZE;
5710 s->zstream.next_out = s->buf;
5711 }
5712 }
5713 return 0;
5714 }
5715
5716 static void ram_compress_close(RamCompressState *s)
5717 {
5718 int len, ret;
5719
5720 /* compress last bytes */
5721 for(;;) {
5722 ret = deflate(&s->zstream, Z_FINISH);
5723 if (ret == Z_OK || ret == Z_STREAM_END) {
5724 len = IOBUF_SIZE - s->zstream.avail_out;
5725 if (len > 0) {
5726 ram_put_cblock(s, s->buf, len);
5727 }
5728 s->zstream.avail_out = IOBUF_SIZE;
5729 s->zstream.next_out = s->buf;
5730 if (ret == Z_STREAM_END)
5731 break;
5732 } else {
5733 goto fail;
5734 }
5735 }
5736 fail:
5737 deflateEnd(&s->zstream);
5738 }
5739
5740 typedef struct RamDecompressState {
5741 z_stream zstream;
5742 QEMUFile *f;
5743 uint8_t buf[IOBUF_SIZE];
5744 } RamDecompressState;
5745
5746 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5747 {
5748 int ret;
5749 memset(s, 0, sizeof(*s));
5750 s->f = f;
5751 ret = inflateInit(&s->zstream);
5752 if (ret != Z_OK)
5753 return -1;
5754 return 0;
5755 }
5756
5757 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5758 {
5759 int ret, clen;
5760
5761 s->zstream.avail_out = len;
5762 s->zstream.next_out = buf;
5763 while (s->zstream.avail_out > 0) {
5764 if (s->zstream.avail_in == 0) {
5765 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5766 return -1;
5767 clen = qemu_get_be16(s->f);
5768 if (clen > IOBUF_SIZE)
5769 return -1;
5770 qemu_get_buffer(s->f, s->buf, clen);
5771 s->zstream.avail_in = clen;
5772 s->zstream.next_in = s->buf;
5773 }
5774 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5775 if (ret != Z_OK && ret != Z_STREAM_END) {
5776 return -1;
5777 }
5778 }
5779 return 0;
5780 }
5781
5782 static void ram_decompress_close(RamDecompressState *s)
5783 {
5784 inflateEnd(&s->zstream);
5785 }
5786
5787 static void ram_save(QEMUFile *f, void *opaque)
5788 {
5789 int i;
5790 RamCompressState s1, *s = &s1;
5791 uint8_t buf[10];
5792
5793 qemu_put_be32(f, phys_ram_size);
5794 if (ram_compress_open(s, f) < 0)
5795 return;
5796 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5797 #if 0
5798 if (tight_savevm_enabled) {
5799 int64_t sector_num;
5800 int j;
5801
5802 /* find if the memory block is available on a virtual
5803 block device */
5804 sector_num = -1;
5805 for(j = 0; j < MAX_DISKS; j++) {
5806 if (bs_table[j]) {
5807 sector_num = bdrv_hash_find(bs_table[j],
5808 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5809 if (sector_num >= 0)
5810 break;
5811 }
5812 }
5813 if (j == MAX_DISKS)
5814 goto normal_compress;
5815 buf[0] = 1;
5816 buf[1] = j;
5817 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5818 ram_compress_buf(s, buf, 10);
5819 } else
5820 #endif
5821 {
5822 // normal_compress:
5823 buf[0] = 0;
5824 ram_compress_buf(s, buf, 1);
5825 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5826 }
5827 }
5828 ram_compress_close(s);
5829 }
5830
5831 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5832 {
5833 RamDecompressState s1, *s = &s1;
5834 uint8_t buf[10];
5835 int i;
5836
5837 if (version_id == 1)
5838 return ram_load_v1(f, opaque);
5839 if (version_id != 2)
5840 return -EINVAL;
5841 if (qemu_get_be32(f) != phys_ram_size)
5842 return -EINVAL;
5843 if (ram_decompress_open(s, f) < 0)
5844 return -EINVAL;
5845 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5846 if (ram_decompress_buf(s, buf, 1) < 0) {
5847 fprintf(stderr, "Error while reading ram block header\n");
5848 goto error;
5849 }
5850 if (buf[0] == 0) {
5851 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5852 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5853 goto error;
5854 }
5855 } else
5856 #if 0
5857 if (buf[0] == 1) {
5858 int bs_index;
5859 int64_t sector_num;
5860
5861 ram_decompress_buf(s, buf + 1, 9);
5862 bs_index = buf[1];
5863 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5864 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5865 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5866 goto error;
5867 }
5868 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5869 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5870 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5871 bs_index, sector_num);
5872 goto error;
5873 }
5874 } else
5875 #endif
5876 {
5877 error:
5878 printf("Error block header\n");
5879 return -EINVAL;
5880 }
5881 }
5882 ram_decompress_close(s);
5883 return 0;
5884 }
5885
5886 /***********************************************************/
5887 /* bottom halves (can be seen as timers which expire ASAP) */
5888
5889 struct QEMUBH {
5890 QEMUBHFunc *cb;
5891 void *opaque;
5892 int scheduled;
5893 QEMUBH *next;
5894 };
5895
5896 static QEMUBH *first_bh = NULL;
5897
5898 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5899 {
5900 QEMUBH *bh;
5901 bh = qemu_mallocz(sizeof(QEMUBH));
5902 if (!bh)
5903 return NULL;
5904 bh->cb = cb;
5905 bh->opaque = opaque;
5906 return bh;
5907 }
5908
5909 int qemu_bh_poll(void)
5910 {
5911 QEMUBH *bh, **pbh;
5912 int ret;
5913
5914 ret = 0;
5915 for(;;) {
5916 pbh = &first_bh;
5917 bh = *pbh;
5918 if (!bh)
5919 break;
5920 ret = 1;
5921 *pbh = bh->next;
5922 bh->scheduled = 0;
5923 bh->cb(bh->opaque);
5924 }
5925 return ret;
5926 }
5927
5928 void qemu_bh_schedule(QEMUBH *bh)
5929 {
5930 CPUState *env = cpu_single_env;
5931 if (bh->scheduled)
5932 return;
5933 bh->scheduled = 1;
5934 bh->next = first_bh;
5935 first_bh = bh;
5936
5937 /* stop the currently executing CPU to execute the BH ASAP */
5938 if (env) {
5939 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5940 }
5941 }
5942
5943 void qemu_bh_cancel(QEMUBH *bh)
5944 {
5945 QEMUBH **pbh;
5946 if (bh->scheduled) {
5947 pbh = &first_bh;
5948 while (*pbh != bh)
5949 pbh = &(*pbh)->next;
5950 *pbh = bh->next;
5951 bh->scheduled = 0;
5952 }
5953 }
5954
5955 void qemu_bh_delete(QEMUBH *bh)
5956 {
5957 qemu_bh_cancel(bh);
5958 qemu_free(bh);
5959 }
5960
5961 /***********************************************************/
5962 /* machine registration */
5963
5964 QEMUMachine *first_machine = NULL;
5965
5966 int qemu_register_machine(QEMUMachine *m)
5967 {
5968 QEMUMachine **pm;
5969 pm = &first_machine;
5970 while (*pm != NULL)
5971 pm = &(*pm)->next;
5972 m->next = NULL;
5973 *pm = m;
5974 return 0;
5975 }
5976
5977 QEMUMachine *find_machine(const char *name)
5978 {
5979 QEMUMachine *m;
5980
5981 for(m = first_machine; m != NULL; m = m->next) {
5982 if (!strcmp(m->name, name))
5983 return m;
5984 }
5985 return NULL;
5986 }
5987
5988 /***********************************************************/
5989 /* main execution loop */
5990
5991 void gui_update(void *opaque)
5992 {
5993 display_state.dpy_refresh(&display_state);
5994 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
5995 }
5996
5997 struct vm_change_state_entry {
5998 VMChangeStateHandler *cb;
5999 void *opaque;
6000 LIST_ENTRY (vm_change_state_entry) entries;
6001 };
6002
6003 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6004
6005 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6006 void *opaque)
6007 {
6008 VMChangeStateEntry *e;
6009
6010 e = qemu_mallocz(sizeof (*e));
6011 if (!e)
6012 return NULL;
6013
6014 e->cb = cb;
6015 e->opaque = opaque;
6016 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6017 return e;
6018 }
6019
6020 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6021 {
6022 LIST_REMOVE (e, entries);
6023 qemu_free (e);
6024 }
6025
6026 static void vm_state_notify(int running)
6027 {
6028 VMChangeStateEntry *e;
6029
6030 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6031 e->cb(e->opaque, running);
6032 }
6033 }
6034
6035 /* XXX: support several handlers */
6036 static VMStopHandler *vm_stop_cb;
6037 static void *vm_stop_opaque;
6038
6039 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6040 {
6041 vm_stop_cb = cb;
6042 vm_stop_opaque = opaque;
6043 return 0;
6044 }
6045
6046 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6047 {
6048 vm_stop_cb = NULL;
6049 }
6050
6051 void vm_start(void)
6052 {
6053 if (!vm_running) {
6054 cpu_enable_ticks();
6055 vm_running = 1;
6056 vm_state_notify(1);
6057 }
6058 }
6059
6060 void vm_stop(int reason)
6061 {
6062 if (vm_running) {
6063 cpu_disable_ticks();
6064 vm_running = 0;
6065 if (reason != 0) {
6066 if (vm_stop_cb) {
6067 vm_stop_cb(vm_stop_opaque, reason);
6068 }
6069 }
6070 vm_state_notify(0);
6071 }
6072 }
6073
6074 /* reset/shutdown handler */
6075
6076 typedef struct QEMUResetEntry {
6077 QEMUResetHandler *func;
6078 void *opaque;
6079 struct QEMUResetEntry *next;
6080 } QEMUResetEntry;
6081
6082 static QEMUResetEntry *first_reset_entry;
6083 static int reset_requested;
6084 static int shutdown_requested;
6085 static int powerdown_requested;
6086
6087 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6088 {
6089 QEMUResetEntry **pre, *re;
6090
6091 pre = &first_reset_entry;
6092 while (*pre != NULL)
6093 pre = &(*pre)->next;
6094 re = qemu_mallocz(sizeof(QEMUResetEntry));
6095 re->func = func;
6096 re->opaque = opaque;
6097 re->next = NULL;
6098 *pre = re;
6099 }
6100
6101 static void qemu_system_reset(void)
6102 {
6103 QEMUResetEntry *re;
6104
6105 /* reset all devices */
6106 for(re = first_reset_entry; re != NULL; re = re->next) {
6107 re->func(re->opaque);
6108 }
6109 }
6110
6111 void qemu_system_reset_request(void)
6112 {
6113 if (no_reboot) {
6114 shutdown_requested = 1;
6115 } else {
6116 reset_requested = 1;
6117 }
6118 if (cpu_single_env)
6119 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6120 }
6121
6122 void qemu_system_shutdown_request(void)
6123 {
6124 shutdown_requested = 1;
6125 if (cpu_single_env)
6126 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6127 }
6128
6129 void qemu_system_powerdown_request(void)
6130 {
6131 powerdown_requested = 1;
6132 if (cpu_single_env)
6133 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6134 }
6135
6136 void main_loop_wait(int timeout)
6137 {
6138 IOHandlerRecord *ioh;
6139 fd_set rfds, wfds, xfds;
6140 int ret, nfds;
6141 struct timeval tv;
6142 PollingEntry *pe;
6143
6144
6145 /* XXX: need to suppress polling by better using win32 events */
6146 ret = 0;
6147 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6148 ret |= pe->func(pe->opaque);
6149 }
6150 #ifdef _WIN32
6151 if (ret == 0 && timeout > 0) {
6152 int err;
6153 WaitObjects *w = &wait_objects;
6154
6155 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6156 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6157 if (w->func[ret - WAIT_OBJECT_0])
6158 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6159 } else if (ret == WAIT_TIMEOUT) {
6160 } else {
6161 err = GetLastError();
6162 fprintf(stderr, "Wait error %d %d\n", ret, err);
6163 }
6164 }
6165 #endif
6166 /* poll any events */
6167 /* XXX: separate device handlers from system ones */
6168 nfds = -1;
6169 FD_ZERO(&rfds);
6170 FD_ZERO(&wfds);
6171 FD_ZERO(&xfds);
6172 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6173 if (ioh->deleted)
6174 continue;
6175 if (ioh->fd_read &&
6176 (!ioh->fd_read_poll ||
6177 ioh->fd_read_poll(ioh->opaque) != 0)) {
6178 FD_SET(ioh->fd, &rfds);
6179 if (ioh->fd > nfds)
6180 nfds = ioh->fd;
6181 }
6182 if (ioh->fd_write) {
6183 FD_SET(ioh->fd, &wfds);
6184 if (ioh->fd > nfds)
6185 nfds = ioh->fd;
6186 }
6187 }
6188
6189 tv.tv_sec = 0;
6190 #ifdef _WIN32
6191 tv.tv_usec = 0;
6192 #else
6193 tv.tv_usec = timeout * 1000;
6194 #endif
6195 #if defined(CONFIG_SLIRP)
6196 if (slirp_inited) {
6197 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6198 }
6199 #endif
6200 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6201 if (ret > 0) {
6202 IOHandlerRecord **pioh;
6203
6204 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6205 if (ioh->deleted)
6206 continue;
6207 if (FD_ISSET(ioh->fd, &rfds)) {
6208 ioh->fd_read(ioh->opaque);
6209 }
6210 if (FD_ISSET(ioh->fd, &wfds)) {
6211 ioh->fd_write(ioh->opaque);
6212 }
6213 }
6214
6215 /* remove deleted IO handlers */
6216 pioh = &first_io_handler;
6217 while (*pioh) {
6218 ioh = *pioh;
6219 if (ioh->deleted) {
6220 *pioh = ioh->next;
6221 qemu_free(ioh);
6222 } else
6223 pioh = &ioh->next;
6224 }
6225 }
6226 #if defined(CONFIG_SLIRP)
6227 if (slirp_inited) {
6228 if (ret < 0) {
6229 FD_ZERO(&rfds);
6230 FD_ZERO(&wfds);
6231 FD_ZERO(&xfds);
6232 }
6233 slirp_select_poll(&rfds, &wfds, &xfds);
6234 }
6235 #endif
6236 qemu_aio_poll();
6237 qemu_bh_poll();
6238
6239 if (vm_running) {
6240 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6241 qemu_get_clock(vm_clock));
6242 /* run dma transfers, if any */
6243 DMA_run();
6244 }
6245
6246 /* real time timers */
6247 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6248 qemu_get_clock(rt_clock));
6249 }
6250
6251 static CPUState *cur_cpu;
6252
6253 int main_loop(void)
6254 {
6255 int ret, timeout;
6256 #ifdef CONFIG_PROFILER
6257 int64_t ti;
6258 #endif
6259 CPUState *env;
6260
6261 cur_cpu = first_cpu;
6262 for(;;) {
6263 if (vm_running) {
6264
6265 env = cur_cpu;
6266 for(;;) {
6267 /* get next cpu */
6268 env = env->next_cpu;
6269 if (!env)
6270 env = first_cpu;
6271 #ifdef CONFIG_PROFILER
6272 ti = profile_getclock();
6273 #endif
6274 ret = cpu_exec(env);
6275 #ifdef CONFIG_PROFILER
6276 qemu_time += profile_getclock() - ti;
6277 #endif
6278 if (ret == EXCP_HLT) {
6279 /* Give the next CPU a chance to run. */
6280 cur_cpu = env;
6281 continue;
6282 }
6283 if (ret != EXCP_HALTED)
6284 break;
6285 /* all CPUs are halted ? */
6286 if (env == cur_cpu)
6287 break;
6288 }
6289 cur_cpu = env;
6290
6291 if (shutdown_requested) {
6292 ret = EXCP_INTERRUPT;
6293 break;
6294 }
6295 if (reset_requested) {
6296 reset_requested = 0;
6297 qemu_system_reset();
6298 ret = EXCP_INTERRUPT;
6299 }
6300 if (powerdown_requested) {
6301 powerdown_requested = 0;
6302 qemu_system_powerdown();
6303 ret = EXCP_INTERRUPT;
6304 }
6305 if (ret == EXCP_DEBUG) {
6306 vm_stop(EXCP_DEBUG);
6307 }
6308 /* If all cpus are halted then wait until the next IRQ */
6309 /* XXX: use timeout computed from timers */
6310 if (ret == EXCP_HALTED)
6311 timeout = 10;
6312 else
6313 timeout = 0;
6314 } else {
6315 timeout = 10;
6316 }
6317 #ifdef CONFIG_PROFILER
6318 ti = profile_getclock();
6319 #endif
6320 main_loop_wait(timeout);
6321 #ifdef CONFIG_PROFILER
6322 dev_time += profile_getclock() - ti;
6323 #endif
6324 }
6325 cpu_disable_ticks();
6326 return ret;
6327 }
6328
6329 void help(void)
6330 {
6331 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6332 "usage: %s [options] [disk_image]\n"
6333 "\n"
6334 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6335 "\n"
6336 "Standard options:\n"
6337 "-M machine select emulated machine (-M ? for list)\n"
6338 "-cpu cpu select CPU (-cpu ? for list)\n"
6339 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6340 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6341 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6342 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6343 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6344 "-snapshot write to temporary files instead of disk image files\n"
6345 #ifdef CONFIG_SDL
6346 "-no-frame open SDL window without a frame and window decorations\n"
6347 "-no-quit disable SDL window close capability\n"
6348 #endif
6349 #ifdef TARGET_I386
6350 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6351 #endif
6352 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6353 "-smp n set the number of CPUs to 'n' [default=1]\n"
6354 "-nographic disable graphical output and redirect serial I/Os to console\n"
6355 #ifndef _WIN32
6356 "-k language use keyboard layout (for example \"fr\" for French)\n"
6357 #endif
6358 #ifdef HAS_AUDIO
6359 "-audio-help print list of audio drivers and their options\n"
6360 "-soundhw c1,... enable audio support\n"
6361 " and only specified sound cards (comma separated list)\n"
6362 " use -soundhw ? to get the list of supported cards\n"
6363 " use -soundhw all to enable all of them\n"
6364 #endif
6365 "-localtime set the real time clock to local time [default=utc]\n"
6366 "-full-screen start in full screen\n"
6367 #ifdef TARGET_I386
6368 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6369 #endif
6370 "-usb enable the USB driver (will be the default soon)\n"
6371 "-usbdevice name add the host or guest USB device 'name'\n"
6372 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6373 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6374 #endif
6375 "-name string set the name of the guest\n"
6376 "\n"
6377 "Network options:\n"
6378 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6379 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6380 #ifdef CONFIG_SLIRP
6381 "-net user[,vlan=n][,hostname=host]\n"
6382 " connect the user mode network stack to VLAN 'n' and send\n"
6383 " hostname 'host' to DHCP clients\n"
6384 #endif
6385 #ifdef _WIN32
6386 "-net tap[,vlan=n],ifname=name\n"
6387 " connect the host TAP network interface to VLAN 'n'\n"
6388 #else
6389 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6390 " connect the host TAP network interface to VLAN 'n' and use\n"
6391 " the network script 'file' (default=%s);\n"
6392 " use 'script=no' to disable script execution;\n"
6393 " use 'fd=h' to connect to an already opened TAP interface\n"
6394 #endif
6395 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6396 " connect the vlan 'n' to another VLAN using a socket connection\n"
6397 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6398 " connect the vlan 'n' to multicast maddr and port\n"
6399 "-net none use it alone to have zero network devices; if no -net option\n"
6400 " is provided, the default is '-net nic -net user'\n"
6401 "\n"
6402 #ifdef CONFIG_SLIRP
6403 "-tftp dir allow tftp access to files in dir [-net user]\n"
6404 "-bootp file advertise file in BOOTP replies\n"
6405 #ifndef _WIN32
6406 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6407 #endif
6408 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6409 " redirect TCP or UDP connections from host to guest [-net user]\n"
6410 #endif
6411 "\n"
6412 "Linux boot specific:\n"
6413 "-kernel bzImage use 'bzImage' as kernel image\n"
6414 "-append cmdline use 'cmdline' as kernel command line\n"
6415 "-initrd file use 'file' as initial ram disk\n"
6416 "\n"
6417 "Debug/Expert options:\n"
6418 "-monitor dev redirect the monitor to char device 'dev'\n"
6419 "-serial dev redirect the serial port to char device 'dev'\n"
6420 "-parallel dev redirect the parallel port to char device 'dev'\n"
6421 "-pidfile file Write PID to 'file'\n"
6422 "-S freeze CPU at startup (use 'c' to start execution)\n"
6423 "-s wait gdb connection to port\n"
6424 "-p port set gdb connection port [default=%s]\n"
6425 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6426 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6427 " translation (t=none or lba) (usually qemu can guess them)\n"
6428 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6429 #ifdef USE_KQEMU
6430 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6431 "-no-kqemu disable KQEMU kernel module usage\n"
6432 #endif
6433 #ifdef USE_CODE_COPY
6434 "-no-code-copy disable code copy acceleration\n"
6435 #endif
6436 #ifdef TARGET_I386
6437 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6438 " (default is CL-GD5446 PCI VGA)\n"
6439 "-no-acpi disable ACPI\n"
6440 #endif
6441 "-no-reboot exit instead of rebooting\n"
6442 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6443 "-vnc display start a VNC server on display\n"
6444 #ifndef _WIN32
6445 "-daemonize daemonize QEMU after initializing\n"
6446 #endif
6447 "-option-rom rom load a file, rom, into the option ROM space\n"
6448 "\n"
6449 "During emulation, the following keys are useful:\n"
6450 "ctrl-alt-f toggle full screen\n"
6451 "ctrl-alt-n switch to virtual console 'n'\n"
6452 "ctrl-alt toggle mouse and keyboard grab\n"
6453 "\n"
6454 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6455 ,
6456 "qemu",
6457 DEFAULT_RAM_SIZE,
6458 #ifndef _WIN32
6459 DEFAULT_NETWORK_SCRIPT,
6460 #endif
6461 DEFAULT_GDBSTUB_PORT,
6462 "/tmp/qemu.log");
6463 exit(1);
6464 }
6465
6466 #define HAS_ARG 0x0001
6467
6468 enum {
6469 QEMU_OPTION_h,
6470
6471 QEMU_OPTION_M,
6472 QEMU_OPTION_cpu,
6473 QEMU_OPTION_fda,
6474 QEMU_OPTION_fdb,
6475 QEMU_OPTION_hda,
6476 QEMU_OPTION_hdb,
6477 QEMU_OPTION_hdc,
6478 QEMU_OPTION_hdd,
6479 QEMU_OPTION_cdrom,
6480 QEMU_OPTION_boot,
6481 QEMU_OPTION_snapshot,
6482 #ifdef TARGET_I386
6483 QEMU_OPTION_no_fd_bootchk,
6484 #endif
6485 QEMU_OPTION_m,
6486 QEMU_OPTION_nographic,
6487 #ifdef HAS_AUDIO
6488 QEMU_OPTION_audio_help,
6489 QEMU_OPTION_soundhw,
6490 #endif
6491
6492 QEMU_OPTION_net,
6493 QEMU_OPTION_tftp,
6494 QEMU_OPTION_bootp,
6495 QEMU_OPTION_smb,
6496 QEMU_OPTION_redir,
6497
6498 QEMU_OPTION_kernel,
6499 QEMU_OPTION_append,
6500 QEMU_OPTION_initrd,
6501
6502 QEMU_OPTION_S,
6503 QEMU_OPTION_s,
6504 QEMU_OPTION_p,
6505 QEMU_OPTION_d,
6506 QEMU_OPTION_hdachs,
6507 QEMU_OPTION_L,
6508 QEMU_OPTION_no_code_copy,
6509 QEMU_OPTION_k,
6510 QEMU_OPTION_localtime,
6511 QEMU_OPTION_cirrusvga,
6512 QEMU_OPTION_g,
6513 QEMU_OPTION_std_vga,
6514 QEMU_OPTION_echr,
6515 QEMU_OPTION_monitor,
6516 QEMU_OPTION_serial,
6517 QEMU_OPTION_parallel,
6518 QEMU_OPTION_loadvm,
6519 QEMU_OPTION_full_screen,
6520 QEMU_OPTION_no_frame,
6521 QEMU_OPTION_no_quit,
6522 QEMU_OPTION_pidfile,
6523 QEMU_OPTION_no_kqemu,
6524 QEMU_OPTION_kernel_kqemu,
6525 QEMU_OPTION_win2k_hack,
6526 QEMU_OPTION_usb,
6527 QEMU_OPTION_usbdevice,
6528 QEMU_OPTION_smp,
6529 QEMU_OPTION_vnc,
6530 QEMU_OPTION_no_acpi,
6531 QEMU_OPTION_no_reboot,
6532 QEMU_OPTION_daemonize,
6533 QEMU_OPTION_option_rom,
6534 QEMU_OPTION_semihosting,
6535 QEMU_OPTION_name,
6536 };
6537
6538 typedef struct QEMUOption {
6539 const char *name;
6540 int flags;
6541 int index;
6542 } QEMUOption;
6543
6544 const QEMUOption qemu_options[] = {
6545 { "h", 0, QEMU_OPTION_h },
6546 { "help", 0, QEMU_OPTION_h },
6547
6548 { "M", HAS_ARG, QEMU_OPTION_M },
6549 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6550 { "fda", HAS_ARG, QEMU_OPTION_fda },
6551 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6552 { "hda", HAS_ARG, QEMU_OPTION_hda },
6553 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6554 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6555 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6556 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6557 { "boot", HAS_ARG, QEMU_OPTION_boot },
6558 { "snapshot", 0, QEMU_OPTION_snapshot },
6559 #ifdef TARGET_I386
6560 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6561 #endif
6562 { "m", HAS_ARG, QEMU_OPTION_m },
6563 { "nographic", 0, QEMU_OPTION_nographic },
6564 { "k", HAS_ARG, QEMU_OPTION_k },
6565 #ifdef HAS_AUDIO
6566 { "audio-help", 0, QEMU_OPTION_audio_help },
6567 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6568 #endif
6569
6570 { "net", HAS_ARG, QEMU_OPTION_net},
6571 #ifdef CONFIG_SLIRP
6572 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6573 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6574 #ifndef _WIN32
6575 { "smb", HAS_ARG, QEMU_OPTION_smb },
6576 #endif
6577 { "redir", HAS_ARG, QEMU_OPTION_redir },
6578 #endif
6579
6580 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6581 { "append", HAS_ARG, QEMU_OPTION_append },
6582 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6583
6584 { "S", 0, QEMU_OPTION_S },
6585 { "s", 0, QEMU_OPTION_s },
6586 { "p", HAS_ARG, QEMU_OPTION_p },
6587 { "d", HAS_ARG, QEMU_OPTION_d },
6588 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6589 { "L", HAS_ARG, QEMU_OPTION_L },
6590 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6591 #ifdef USE_KQEMU
6592 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6593 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6594 #endif
6595 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6596 { "g", 1, QEMU_OPTION_g },
6597 #endif
6598 { "localtime", 0, QEMU_OPTION_localtime },
6599 { "std-vga", 0, QEMU_OPTION_std_vga },
6600 { "echr", 1, QEMU_OPTION_echr },
6601 { "monitor", 1, QEMU_OPTION_monitor },
6602 { "serial", 1, QEMU_OPTION_serial },
6603 { "parallel", 1, QEMU_OPTION_parallel },
6604 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6605 { "full-screen", 0, QEMU_OPTION_full_screen },
6606 #ifdef CONFIG_SDL
6607 { "no-frame", 0, QEMU_OPTION_no_frame },
6608 { "no-quit", 0, QEMU_OPTION_no_quit },
6609 #endif
6610 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6611 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6612 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6613 { "smp", HAS_ARG, QEMU_OPTION_smp },
6614 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6615
6616 /* temporary options */
6617 { "usb", 0, QEMU_OPTION_usb },
6618 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6619 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6620 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6621 { "daemonize", 0, QEMU_OPTION_daemonize },
6622 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6623 #if defined(TARGET_ARM)
6624 { "semihosting", 0, QEMU_OPTION_semihosting },
6625 #endif
6626 { "name", HAS_ARG, QEMU_OPTION_name },
6627 { NULL },
6628 };
6629
6630 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6631
6632 /* this stack is only used during signal handling */
6633 #define SIGNAL_STACK_SIZE 32768
6634
6635 static uint8_t *signal_stack;
6636
6637 #endif
6638
6639 /* password input */
6640
6641 static BlockDriverState *get_bdrv(int index)
6642 {
6643 BlockDriverState *bs;
6644
6645 if (index < 4) {
6646 bs = bs_table[index];
6647 } else if (index < 6) {
6648 bs = fd_table[index - 4];
6649 } else {
6650 bs = NULL;
6651 }
6652 return bs;
6653 }
6654
6655 static void read_passwords(void)
6656 {
6657 BlockDriverState *bs;
6658 int i, j;
6659 char password[256];
6660
6661 for(i = 0; i < 6; i++) {
6662 bs = get_bdrv(i);
6663 if (bs && bdrv_is_encrypted(bs)) {
6664 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
6665 for(j = 0; j < 3; j++) {
6666 monitor_readline("Password: ",
6667 1, password, sizeof(password));
6668 if (bdrv_set_key(bs, password) == 0)
6669 break;
6670 term_printf("invalid password\n");
6671 }
6672 }
6673 }
6674 }
6675
6676 /* XXX: currently we cannot use simultaneously different CPUs */
6677 void register_machines(void)
6678 {
6679 #if defined(TARGET_I386)
6680 qemu_register_machine(&pc_machine);
6681 qemu_register_machine(&isapc_machine);
6682 #elif defined(TARGET_PPC)
6683 qemu_register_machine(&heathrow_machine);
6684 qemu_register_machine(&core99_machine);
6685 qemu_register_machine(&prep_machine);
6686 #elif defined(TARGET_MIPS)
6687 qemu_register_machine(&mips_machine);
6688 qemu_register_machine(&mips_malta_machine);
6689 #elif defined(TARGET_SPARC)
6690 #ifdef TARGET_SPARC64
6691 qemu_register_machine(&sun4u_machine);
6692 #else
6693 qemu_register_machine(&sun4m_machine);
6694 #endif
6695 #elif defined(TARGET_ARM)
6696 qemu_register_machine(&integratorcp_machine);
6697 qemu_register_machine(&versatilepb_machine);
6698 qemu_register_machine(&versatileab_machine);
6699 qemu_register_machine(&realview_machine);
6700 #elif defined(TARGET_SH4)
6701 qemu_register_machine(&shix_machine);
6702 #else
6703 #error unsupported CPU
6704 #endif
6705 }
6706
6707 #ifdef HAS_AUDIO
6708 struct soundhw soundhw[] = {
6709 #ifdef TARGET_I386
6710 {
6711 "pcspk",
6712 "PC speaker",
6713 0,
6714 1,
6715 { .init_isa = pcspk_audio_init }
6716 },
6717 #endif
6718 {
6719 "sb16",
6720 "Creative Sound Blaster 16",
6721 0,
6722 1,
6723 { .init_isa = SB16_init }
6724 },
6725
6726 #ifdef CONFIG_ADLIB
6727 {
6728 "adlib",
6729 #ifdef HAS_YMF262
6730 "Yamaha YMF262 (OPL3)",
6731 #else
6732 "Yamaha YM3812 (OPL2)",
6733 #endif
6734 0,
6735 1,
6736 { .init_isa = Adlib_init }
6737 },
6738 #endif
6739
6740 #ifdef CONFIG_GUS
6741 {
6742 "gus",
6743 "Gravis Ultrasound GF1",
6744 0,
6745 1,
6746 { .init_isa = GUS_init }
6747 },
6748 #endif
6749
6750 {
6751 "es1370",
6752 "ENSONIQ AudioPCI ES1370",
6753 0,
6754 0,
6755 { .init_pci = es1370_init }
6756 },
6757
6758 { NULL, NULL, 0, 0, { NULL } }
6759 };
6760
6761 static void select_soundhw (const char *optarg)
6762 {
6763 struct soundhw *c;
6764
6765 if (*optarg == '?') {
6766 show_valid_cards:
6767
6768 printf ("Valid sound card names (comma separated):\n");
6769 for (c = soundhw; c->name; ++c) {
6770 printf ("%-11s %s\n", c->name, c->descr);
6771 }
6772 printf ("\n-soundhw all will enable all of the above\n");
6773 exit (*optarg != '?');
6774 }
6775 else {
6776 size_t l;
6777 const char *p;
6778 char *e;
6779 int bad_card = 0;
6780
6781 if (!strcmp (optarg, "all")) {
6782 for (c = soundhw; c->name; ++c) {
6783 c->enabled = 1;
6784 }
6785 return;
6786 }
6787
6788 p = optarg;
6789 while (*p) {
6790 e = strchr (p, ',');
6791 l = !e ? strlen (p) : (size_t) (e - p);
6792
6793 for (c = soundhw; c->name; ++c) {
6794 if (!strncmp (c->name, p, l)) {
6795 c->enabled = 1;
6796 break;
6797 }
6798 }
6799
6800 if (!c->name) {
6801 if (l > 80) {
6802 fprintf (stderr,
6803 "Unknown sound card name (too big to show)\n");
6804 }
6805 else {
6806 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6807 (int) l, p);
6808 }
6809 bad_card = 1;
6810 }
6811 p += l + (e != NULL);
6812 }
6813
6814 if (bad_card)
6815 goto show_valid_cards;
6816 }
6817 }
6818 #endif
6819
6820 #ifdef _WIN32
6821 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6822 {
6823 exit(STATUS_CONTROL_C_EXIT);
6824 return TRUE;
6825 }
6826 #endif
6827
6828 #define MAX_NET_CLIENTS 32
6829
6830 int main(int argc, char **argv)
6831 {
6832 #ifdef CONFIG_GDBSTUB
6833 int use_gdbstub;
6834 const char *gdbstub_port;
6835 #endif
6836 int i, cdrom_index;
6837 int snapshot, linux_boot;
6838 const char *initrd_filename;
6839 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6840 const char *kernel_filename, *kernel_cmdline;
6841 DisplayState *ds = &display_state;
6842 int cyls, heads, secs, translation;
6843 char net_clients[MAX_NET_CLIENTS][256];
6844 int nb_net_clients;
6845 int optind;
6846 const char *r, *optarg;
6847 CharDriverState *monitor_hd;
6848 char monitor_device[128];
6849 char serial_devices[MAX_SERIAL_PORTS][128];
6850 int serial_device_index;
6851 char parallel_devices[MAX_PARALLEL_PORTS][128];
6852 int parallel_device_index;
6853 const char *loadvm = NULL;
6854 QEMUMachine *machine;
6855 const char *cpu_model;
6856 char usb_devices[MAX_USB_CMDLINE][128];
6857 int usb_devices_index;
6858 int fds[2];
6859 const char *pid_file = NULL;
6860
6861 LIST_INIT (&vm_change_state_head);
6862 #ifndef _WIN32
6863 {
6864 struct sigaction act;
6865 sigfillset(&act.sa_mask);
6866 act.sa_flags = 0;
6867 act.sa_handler = SIG_IGN;
6868 sigaction(SIGPIPE, &act, NULL);
6869 }
6870 #else
6871 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6872 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6873 QEMU to run on a single CPU */
6874 {
6875 HANDLE h;
6876 DWORD mask, smask;
6877 int i;
6878 h = GetCurrentProcess();
6879 if (GetProcessAffinityMask(h, &mask, &smask)) {
6880 for(i = 0; i < 32; i++) {
6881 if (mask & (1 << i))
6882 break;
6883 }
6884 if (i != 32) {
6885 mask = 1 << i;
6886 SetProcessAffinityMask(h, mask);
6887 }
6888 }
6889 }
6890 #endif
6891
6892 register_machines();
6893 machine = first_machine;
6894 cpu_model = NULL;
6895 initrd_filename = NULL;
6896 for(i = 0; i < MAX_FD; i++)
6897 fd_filename[i] = NULL;
6898 for(i = 0; i < MAX_DISKS; i++)
6899 hd_filename[i] = NULL;
6900 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6901 vga_ram_size = VGA_RAM_SIZE;
6902 #ifdef CONFIG_GDBSTUB
6903 use_gdbstub = 0;
6904 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6905 #endif
6906 snapshot = 0;
6907 nographic = 0;
6908 kernel_filename = NULL;
6909 kernel_cmdline = "";
6910 #ifdef TARGET_PPC
6911 cdrom_index = 1;
6912 #else
6913 cdrom_index = 2;
6914 #endif
6915 cyls = heads = secs = 0;
6916 translation = BIOS_ATA_TRANSLATION_AUTO;
6917 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6918
6919 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6920 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6921 serial_devices[i][0] = '\0';
6922 serial_device_index = 0;
6923
6924 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6925 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6926 parallel_devices[i][0] = '\0';
6927 parallel_device_index = 0;
6928
6929 usb_devices_index = 0;
6930
6931 nb_net_clients = 0;
6932
6933 nb_nics = 0;
6934 /* default mac address of the first network interface */
6935
6936 optind = 1;
6937 for(;;) {
6938 if (optind >= argc)
6939 break;
6940 r = argv[optind];
6941 if (r[0] != '-') {
6942 hd_filename[0] = argv[optind++];
6943 } else {
6944 const QEMUOption *popt;
6945
6946 optind++;
6947 /* Treat --foo the same as -foo. */
6948 if (r[1] == '-')
6949 r++;
6950 popt = qemu_options;
6951 for(;;) {
6952 if (!popt->name) {
6953 fprintf(stderr, "%s: invalid option -- '%s'\n",
6954 argv[0], r);
6955 exit(1);
6956 }
6957 if (!strcmp(popt->name, r + 1))
6958 break;
6959 popt++;
6960 }
6961 if (popt->flags & HAS_ARG) {
6962 if (optind >= argc) {
6963 fprintf(stderr, "%s: option '%s' requires an argument\n",
6964 argv[0], r);
6965 exit(1);
6966 }
6967 optarg = argv[optind++];
6968 } else {
6969 optarg = NULL;
6970 }
6971
6972 switch(popt->index) {
6973 case QEMU_OPTION_M:
6974 machine = find_machine(optarg);
6975 if (!machine) {
6976 QEMUMachine *m;
6977 printf("Supported machines are:\n");
6978 for(m = first_machine; m != NULL; m = m->next) {
6979 printf("%-10s %s%s\n",
6980 m->name, m->desc,
6981 m == first_machine ? " (default)" : "");
6982 }
6983 exit(1);
6984 }
6985 break;
6986 case QEMU_OPTION_cpu:
6987 /* hw initialization will check this */
6988 if (optarg[0] == '?') {
6989 #if defined(TARGET_PPC)
6990 ppc_cpu_list(stdout, &fprintf);
6991 #elif defined(TARGET_ARM)
6992 arm_cpu_list();
6993 #elif defined(TARGET_MIPS)
6994 mips_cpu_list(stdout, &fprintf);
6995 #elif defined(TARGET_SPARC)
6996 sparc_cpu_list(stdout, &fprintf);
6997 #endif
6998 exit(1);
6999 } else {
7000 cpu_model = optarg;
7001 }
7002 break;
7003 case QEMU_OPTION_initrd:
7004 initrd_filename = optarg;
7005 break;
7006 case QEMU_OPTION_hda:
7007 case QEMU_OPTION_hdb:
7008 case QEMU_OPTION_hdc:
7009 case QEMU_OPTION_hdd:
7010 {
7011 int hd_index;
7012 hd_index = popt->index - QEMU_OPTION_hda;
7013 hd_filename[hd_index] = optarg;
7014 if (hd_index == cdrom_index)
7015 cdrom_index = -1;
7016 }
7017 break;
7018 case QEMU_OPTION_snapshot:
7019 snapshot = 1;
7020 break;
7021 case QEMU_OPTION_hdachs:
7022 {
7023 const char *p;
7024 p = optarg;
7025 cyls = strtol(p, (char **)&p, 0);
7026 if (cyls < 1 || cyls > 16383)
7027 goto chs_fail;
7028 if (*p != ',')
7029 goto chs_fail;
7030 p++;
7031 heads = strtol(p, (char **)&p, 0);
7032 if (heads < 1 || heads > 16)
7033 goto chs_fail;
7034 if (*p != ',')
7035 goto chs_fail;
7036 p++;
7037 secs = strtol(p, (char **)&p, 0);
7038 if (secs < 1 || secs > 63)
7039 goto chs_fail;
7040 if (*p == ',') {
7041 p++;
7042 if (!strcmp(p, "none"))
7043 translation = BIOS_ATA_TRANSLATION_NONE;
7044 else if (!strcmp(p, "lba"))
7045 translation = BIOS_ATA_TRANSLATION_LBA;
7046 else if (!strcmp(p, "auto"))
7047 translation = BIOS_ATA_TRANSLATION_AUTO;
7048 else
7049 goto chs_fail;
7050 } else if (*p != '\0') {
7051 chs_fail:
7052 fprintf(stderr, "qemu: invalid physical CHS format\n");
7053 exit(1);
7054 }
7055 }
7056 break;
7057 case QEMU_OPTION_nographic:
7058 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7059 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7060 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7061 nographic = 1;
7062 break;
7063 case QEMU_OPTION_kernel:
7064 kernel_filename = optarg;
7065 break;
7066 case QEMU_OPTION_append:
7067 kernel_cmdline = optarg;
7068 break;
7069 case QEMU_OPTION_cdrom:
7070 if (cdrom_index >= 0) {
7071 hd_filename[cdrom_index] = optarg;
7072 }
7073 break;
7074 case QEMU_OPTION_boot:
7075 boot_device = optarg[0];
7076 if (boot_device != 'a' &&
7077 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7078 // Network boot
7079 boot_device != 'n' &&
7080 #endif
7081 boot_device != 'c' && boot_device != 'd') {
7082 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7083 exit(1);
7084 }
7085 break;
7086 case QEMU_OPTION_fda:
7087 fd_filename[0] = optarg;
7088 break;
7089 case QEMU_OPTION_fdb:
7090 fd_filename[1] = optarg;
7091 break;
7092 #ifdef TARGET_I386
7093 case QEMU_OPTION_no_fd_bootchk:
7094 fd_bootchk = 0;
7095 break;
7096 #endif
7097 case QEMU_OPTION_no_code_copy:
7098 code_copy_enabled = 0;
7099 break;
7100 case QEMU_OPTION_net:
7101 if (nb_net_clients >= MAX_NET_CLIENTS) {
7102 fprintf(stderr, "qemu: too many network clients\n");
7103 exit(1);
7104 }
7105 pstrcpy(net_clients[nb_net_clients],
7106 sizeof(net_clients[0]),
7107 optarg);
7108 nb_net_clients++;
7109 break;
7110 #ifdef CONFIG_SLIRP
7111 case QEMU_OPTION_tftp:
7112 tftp_prefix = optarg;
7113 break;
7114 case QEMU_OPTION_bootp:
7115 bootp_filename = optarg;
7116 break;
7117 #ifndef _WIN32
7118 case QEMU_OPTION_smb:
7119 net_slirp_smb(optarg);
7120 break;
7121 #endif
7122 case QEMU_OPTION_redir:
7123 net_slirp_redir(optarg);
7124 break;
7125 #endif
7126 #ifdef HAS_AUDIO
7127 case QEMU_OPTION_audio_help:
7128 AUD_help ();
7129 exit (0);
7130 break;
7131 case QEMU_OPTION_soundhw:
7132 select_soundhw (optarg);
7133 break;
7134 #endif
7135 case QEMU_OPTION_h:
7136 help();
7137 break;
7138 case QEMU_OPTION_m:
7139 ram_size = atoi(optarg) * 1024 * 1024;
7140 if (ram_size <= 0)
7141 help();
7142 if (ram_size > PHYS_RAM_MAX_SIZE) {
7143 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7144 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7145 exit(1);
7146 }
7147 break;
7148 case QEMU_OPTION_d:
7149 {
7150 int mask;
7151 CPULogItem *item;
7152
7153 mask = cpu_str_to_log_mask(optarg);
7154 if (!mask) {
7155 printf("Log items (comma separated):\n");
7156 for(item = cpu_log_items; item->mask != 0; item++) {
7157 printf("%-10s %s\n", item->name, item->help);
7158 }
7159 exit(1);
7160 }
7161 cpu_set_log(mask);
7162 }
7163 break;
7164 #ifdef CONFIG_GDBSTUB
7165 case QEMU_OPTION_s:
7166 use_gdbstub = 1;
7167 break;
7168 case QEMU_OPTION_p:
7169 gdbstub_port = optarg;
7170 break;
7171 #endif
7172 case QEMU_OPTION_L:
7173 bios_dir = optarg;
7174 break;
7175 case QEMU_OPTION_S:
7176 autostart = 0;
7177 break;
7178 case QEMU_OPTION_k:
7179 keyboard_layout = optarg;
7180 break;
7181 case QEMU_OPTION_localtime:
7182 rtc_utc = 0;
7183 break;
7184 case QEMU_OPTION_cirrusvga:
7185 cirrus_vga_enabled = 1;
7186 break;
7187 case QEMU_OPTION_std_vga:
7188 cirrus_vga_enabled = 0;
7189 break;
7190 case QEMU_OPTION_g:
7191 {
7192 const char *p;
7193 int w, h, depth;
7194 p = optarg;
7195 w = strtol(p, (char **)&p, 10);
7196 if (w <= 0) {
7197 graphic_error:
7198 fprintf(stderr, "qemu: invalid resolution or depth\n");
7199 exit(1);
7200 }
7201 if (*p != 'x')
7202 goto graphic_error;
7203 p++;
7204 h = strtol(p, (char **)&p, 10);
7205 if (h <= 0)
7206 goto graphic_error;
7207 if (*p == 'x') {
7208 p++;
7209 depth = strtol(p, (char **)&p, 10);
7210 if (depth != 8 && depth != 15 && depth != 16 &&
7211 depth != 24 && depth != 32)
7212 goto graphic_error;
7213 } else if (*p == '\0') {
7214 depth = graphic_depth;
7215 } else {
7216 goto graphic_error;
7217 }
7218
7219 graphic_width = w;
7220 graphic_height = h;
7221 graphic_depth = depth;
7222 }
7223 break;
7224 case QEMU_OPTION_echr:
7225 {
7226 char *r;
7227 term_escape_char = strtol(optarg, &r, 0);
7228 if (r == optarg)
7229 printf("Bad argument to echr\n");
7230 break;
7231 }
7232 case QEMU_OPTION_monitor:
7233 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7234 break;
7235 case QEMU_OPTION_serial:
7236 if (serial_device_index >= MAX_SERIAL_PORTS) {
7237 fprintf(stderr, "qemu: too many serial ports\n");
7238 exit(1);
7239 }
7240 pstrcpy(serial_devices[serial_device_index],
7241 sizeof(serial_devices[0]), optarg);
7242 serial_device_index++;
7243 break;
7244 case QEMU_OPTION_parallel:
7245 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7246 fprintf(stderr, "qemu: too many parallel ports\n");
7247 exit(1);
7248 }
7249 pstrcpy(parallel_devices[parallel_device_index],
7250 sizeof(parallel_devices[0]), optarg);
7251 parallel_device_index++;
7252 break;
7253 case QEMU_OPTION_loadvm:
7254 loadvm = optarg;
7255 break;
7256 case QEMU_OPTION_full_screen:
7257 full_screen = 1;
7258 break;
7259 #ifdef CONFIG_SDL
7260 case QEMU_OPTION_no_frame:
7261 no_frame = 1;
7262 break;
7263 case QEMU_OPTION_no_quit:
7264 no_quit = 1;
7265 break;
7266 #endif
7267 case QEMU_OPTION_pidfile:
7268 pid_file = optarg;
7269 break;
7270 #ifdef TARGET_I386
7271 case QEMU_OPTION_win2k_hack:
7272 win2k_install_hack = 1;
7273 break;
7274 #endif
7275 #ifdef USE_KQEMU
7276 case QEMU_OPTION_no_kqemu:
7277 kqemu_allowed = 0;
7278 break;
7279 case QEMU_OPTION_kernel_kqemu:
7280 kqemu_allowed = 2;
7281 break;
7282 #endif
7283 case QEMU_OPTION_usb:
7284 usb_enabled = 1;
7285 break;
7286 case QEMU_OPTION_usbdevice:
7287 usb_enabled = 1;
7288 if (usb_devices_index >= MAX_USB_CMDLINE) {
7289 fprintf(stderr, "Too many USB devices\n");
7290 exit(1);
7291 }
7292 pstrcpy(usb_devices[usb_devices_index],
7293 sizeof(usb_devices[usb_devices_index]),
7294 optarg);
7295 usb_devices_index++;
7296 break;
7297 case QEMU_OPTION_smp:
7298 smp_cpus = atoi(optarg);
7299 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7300 fprintf(stderr, "Invalid number of CPUs\n");
7301 exit(1);
7302 }
7303 break;
7304 case QEMU_OPTION_vnc:
7305 vnc_display = optarg;
7306 break;
7307 case QEMU_OPTION_no_acpi:
7308 acpi_enabled = 0;
7309 break;
7310 case QEMU_OPTION_no_reboot:
7311 no_reboot = 1;
7312 break;
7313 case QEMU_OPTION_daemonize:
7314 daemonize = 1;
7315 break;
7316 case QEMU_OPTION_option_rom:
7317 if (nb_option_roms >= MAX_OPTION_ROMS) {
7318 fprintf(stderr, "Too many option ROMs\n");
7319 exit(1);
7320 }
7321 option_rom[nb_option_roms] = optarg;
7322 nb_option_roms++;
7323 break;
7324 case QEMU_OPTION_semihosting:
7325 semihosting_enabled = 1;
7326 break;
7327 case QEMU_OPTION_name:
7328 qemu_name = optarg;
7329 break;
7330 }
7331 }
7332 }
7333
7334 #ifndef _WIN32
7335 if (daemonize && !nographic && vnc_display == NULL) {
7336 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7337 daemonize = 0;
7338 }
7339
7340 if (daemonize) {
7341 pid_t pid;
7342
7343 if (pipe(fds) == -1)
7344 exit(1);
7345
7346 pid = fork();
7347 if (pid > 0) {
7348 uint8_t status;
7349 ssize_t len;
7350
7351 close(fds[1]);
7352
7353 again:
7354 len = read(fds[0], &status, 1);
7355 if (len == -1 && (errno == EINTR))
7356 goto again;
7357
7358 if (len != 1)
7359 exit(1);
7360 else if (status == 1) {
7361 fprintf(stderr, "Could not acquire pidfile\n");
7362 exit(1);
7363 } else
7364 exit(0);
7365 } else if (pid < 0)
7366 exit(1);
7367
7368 setsid();
7369
7370 pid = fork();
7371 if (pid > 0)
7372 exit(0);
7373 else if (pid < 0)
7374 exit(1);
7375
7376 umask(027);
7377 chdir("/");
7378
7379 signal(SIGTSTP, SIG_IGN);
7380 signal(SIGTTOU, SIG_IGN);
7381 signal(SIGTTIN, SIG_IGN);
7382 }
7383 #endif
7384
7385 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7386 if (daemonize) {
7387 uint8_t status = 1;
7388 write(fds[1], &status, 1);
7389 } else
7390 fprintf(stderr, "Could not acquire pid file\n");
7391 exit(1);
7392 }
7393
7394 #ifdef USE_KQEMU
7395 if (smp_cpus > 1)
7396 kqemu_allowed = 0;
7397 #endif
7398 linux_boot = (kernel_filename != NULL);
7399
7400 if (!linux_boot &&
7401 boot_device != 'n' &&
7402 hd_filename[0] == '\0' &&
7403 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7404 fd_filename[0] == '\0')
7405 help();
7406
7407 /* boot to floppy or the default cd if no hard disk defined yet */
7408 if (hd_filename[0] == '\0' && boot_device == 'c') {
7409 if (fd_filename[0] != '\0')
7410 boot_device = 'a';
7411 else
7412 boot_device = 'd';
7413 }
7414
7415 setvbuf(stdout, NULL, _IOLBF, 0);
7416
7417 init_timers();
7418 init_timer_alarm();
7419 qemu_aio_init();
7420
7421 #ifdef _WIN32
7422 socket_init();
7423 #endif
7424
7425 /* init network clients */
7426 if (nb_net_clients == 0) {
7427 /* if no clients, we use a default config */
7428 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7429 "nic");
7430 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7431 "user");
7432 nb_net_clients = 2;
7433 }
7434
7435 for(i = 0;i < nb_net_clients; i++) {
7436 if (net_client_init(net_clients[i]) < 0)
7437 exit(1);
7438 }
7439
7440 #ifdef TARGET_I386
7441 if (boot_device == 'n') {
7442 for (i = 0; i < nb_nics; i++) {
7443 const char *model = nd_table[i].model;
7444 char buf[1024];
7445 if (model == NULL)
7446 model = "ne2k_pci";
7447 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7448 if (get_image_size(buf) > 0) {
7449 option_rom[nb_option_roms] = strdup(buf);
7450 nb_option_roms++;
7451 break;
7452 }
7453 }
7454 if (i == nb_nics) {
7455 fprintf(stderr, "No valid PXE rom found for network device\n");
7456 exit(1);
7457 }
7458 boot_device = 'c'; /* to prevent confusion by the BIOS */
7459 }
7460 #endif
7461
7462 /* init the memory */
7463 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7464
7465 phys_ram_base = qemu_vmalloc(phys_ram_size);
7466 if (!phys_ram_base) {
7467 fprintf(stderr, "Could not allocate physical memory\n");
7468 exit(1);
7469 }
7470
7471 /* we always create the cdrom drive, even if no disk is there */
7472 bdrv_init();
7473 if (cdrom_index >= 0) {
7474 bs_table[cdrom_index] = bdrv_new("cdrom");
7475 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7476 }
7477
7478 /* open the virtual block devices */
7479 for(i = 0; i < MAX_DISKS; i++) {
7480 if (hd_filename[i]) {
7481 if (!bs_table[i]) {
7482 char buf[64];
7483 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7484 bs_table[i] = bdrv_new(buf);
7485 }
7486 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7487 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7488 hd_filename[i]);
7489 exit(1);
7490 }
7491 if (i == 0 && cyls != 0) {
7492 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7493 bdrv_set_translation_hint(bs_table[i], translation);
7494 }
7495 }
7496 }
7497
7498 /* we always create at least one floppy disk */
7499 fd_table[0] = bdrv_new("fda");
7500 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7501
7502 for(i = 0; i < MAX_FD; i++) {
7503 if (fd_filename[i]) {
7504 if (!fd_table[i]) {
7505 char buf[64];
7506 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7507 fd_table[i] = bdrv_new(buf);
7508 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7509 }
7510 if (fd_filename[i] != '\0') {
7511 if (bdrv_open(fd_table[i], fd_filename[i],
7512 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7513 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7514 fd_filename[i]);
7515 exit(1);
7516 }
7517 }
7518 }
7519 }
7520
7521 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7522 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7523
7524 init_ioports();
7525
7526 /* terminal init */
7527 if (nographic) {
7528 dumb_display_init(ds);
7529 } else if (vnc_display != NULL) {
7530 vnc_display_init(ds, vnc_display);
7531 } else {
7532 #if defined(CONFIG_SDL)
7533 sdl_display_init(ds, full_screen, no_frame);
7534 #elif defined(CONFIG_COCOA)
7535 cocoa_display_init(ds, full_screen);
7536 #else
7537 dumb_display_init(ds);
7538 #endif
7539 }
7540
7541 /* Maintain compatibility with multiple stdio monitors */
7542 if (!strcmp(monitor_device,"stdio")) {
7543 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7544 if (!strcmp(serial_devices[i],"mon:stdio")) {
7545 monitor_device[0] = '\0';
7546 break;
7547 } else if (!strcmp(serial_devices[i],"stdio")) {
7548 monitor_device[0] = '\0';
7549 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7550 break;
7551 }
7552 }
7553 }
7554 if (monitor_device[0] != '\0') {
7555 monitor_hd = qemu_chr_open(monitor_device);
7556 if (!monitor_hd) {
7557 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7558 exit(1);
7559 }
7560 monitor_init(monitor_hd, !nographic);
7561 }
7562
7563 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7564 const char *devname = serial_devices[i];
7565 if (devname[0] != '\0' && strcmp(devname, "none")) {
7566 serial_hds[i] = qemu_chr_open(devname);
7567 if (!serial_hds[i]) {
7568 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7569 devname);
7570 exit(1);
7571 }
7572 if (!strcmp(devname, "vc"))
7573 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7574 }
7575 }
7576
7577 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7578 const char *devname = parallel_devices[i];
7579 if (devname[0] != '\0' && strcmp(devname, "none")) {
7580 parallel_hds[i] = qemu_chr_open(devname);
7581 if (!parallel_hds[i]) {
7582 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7583 devname);
7584 exit(1);
7585 }
7586 if (!strcmp(devname, "vc"))
7587 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7588 }
7589 }
7590
7591 machine->init(ram_size, vga_ram_size, boot_device,
7592 ds, fd_filename, snapshot,
7593 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7594
7595 /* init USB devices */
7596 if (usb_enabled) {
7597 for(i = 0; i < usb_devices_index; i++) {
7598 if (usb_device_add(usb_devices[i]) < 0) {
7599 fprintf(stderr, "Warning: could not add USB device %s\n",
7600 usb_devices[i]);
7601 }
7602 }
7603 }
7604
7605 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7606 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7607
7608 #ifdef CONFIG_GDBSTUB
7609 if (use_gdbstub) {
7610 /* XXX: use standard host:port notation and modify options
7611 accordingly. */
7612 if (gdbserver_start(gdbstub_port) < 0) {
7613 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7614 gdbstub_port);
7615 exit(1);
7616 }
7617 } else
7618 #endif
7619 if (loadvm)
7620 do_loadvm(loadvm);
7621
7622 {
7623 /* XXX: simplify init */
7624 read_passwords();
7625 if (autostart) {
7626 vm_start();
7627 }
7628 }
7629
7630 if (daemonize) {
7631 uint8_t status = 0;
7632 ssize_t len;
7633 int fd;
7634
7635 again1:
7636 len = write(fds[1], &status, 1);
7637 if (len == -1 && (errno == EINTR))
7638 goto again1;
7639
7640 if (len != 1)
7641 exit(1);
7642
7643 fd = open("/dev/null", O_RDWR);
7644 if (fd == -1)
7645 exit(1);
7646
7647 dup2(fd, 0);
7648 dup2(fd, 1);
7649 dup2(fd, 2);
7650
7651 close(fd);
7652 }
7653
7654 main_loop();
7655 quit_timers();
7656 return 0;
7657 }