]> git.proxmox.com Git - qemu.git/blob - vl.c
Unbreak large mem support by removing kqemu
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
113
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 return qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 static const char *data_dir;
177 const char *bios_name = NULL;
178 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
179 to store the VM snapshots */
180 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
181 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
182 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183 static DisplayState *display_state;
184 DisplayType display_type = DT_DEFAULT;
185 const char* keyboard_layout = NULL;
186 int64_t ticks_per_sec;
187 ram_addr_t ram_size;
188 int nb_nics;
189 NICInfo nd_table[MAX_NICS];
190 int vm_running;
191 int autostart;
192 static int rtc_utc = 1;
193 static int rtc_date_offset = -1; /* -1 means no change */
194 int vga_interface_type = VGA_CIRRUS;
195 #ifdef TARGET_SPARC
196 int graphic_width = 1024;
197 int graphic_height = 768;
198 int graphic_depth = 8;
199 #else
200 int graphic_width = 800;
201 int graphic_height = 600;
202 int graphic_depth = 15;
203 #endif
204 static int full_screen = 0;
205 #ifdef CONFIG_SDL
206 static int no_frame = 0;
207 #endif
208 int no_quit = 0;
209 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
210 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
211 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
212 #ifdef TARGET_I386
213 int win2k_install_hack = 0;
214 int rtc_td_hack = 0;
215 #endif
216 int usb_enabled = 0;
217 int singlestep = 0;
218 int smp_cpus = 1;
219 int max_cpus = 0;
220 const char *vnc_display;
221 int acpi_enabled = 1;
222 int no_hpet = 0;
223 int virtio_balloon = 1;
224 const char *virtio_balloon_devaddr;
225 int fd_bootchk = 1;
226 int no_reboot = 0;
227 int no_shutdown = 0;
228 int cursor_hide = 1;
229 int graphic_rotate = 0;
230 uint8_t irq0override = 1;
231 #ifndef _WIN32
232 int daemonize = 0;
233 #endif
234 WatchdogTimerModel *watchdog = NULL;
235 int watchdog_action = WDT_RESET;
236 const char *option_rom[MAX_OPTION_ROMS];
237 int nb_option_roms;
238 int semihosting_enabled = 0;
239 #ifdef TARGET_ARM
240 int old_param = 0;
241 #endif
242 const char *qemu_name;
243 int alt_grab = 0;
244 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
245 unsigned int nb_prom_envs = 0;
246 const char *prom_envs[MAX_PROM_ENVS];
247 #endif
248 int boot_menu;
249
250 int nb_numa_nodes;
251 uint64_t node_mem[MAX_NODES];
252 uint64_t node_cpumask[MAX_NODES];
253
254 static CPUState *cur_cpu;
255 static CPUState *next_cpu;
256 static int timer_alarm_pending = 1;
257 /* Conversion factor from emulated instructions to virtual clock ticks. */
258 static int icount_time_shift;
259 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
260 #define MAX_ICOUNT_SHIFT 10
261 /* Compensate for varying guest execution speed. */
262 static int64_t qemu_icount_bias;
263 static QEMUTimer *icount_rt_timer;
264 static QEMUTimer *icount_vm_timer;
265 static QEMUTimer *nographic_timer;
266
267 uint8_t qemu_uuid[16];
268
269 static QEMUBootSetHandler *boot_set_handler;
270 static void *boot_set_opaque;
271
272 /***********************************************************/
273 /* x86 ISA bus support */
274
275 target_phys_addr_t isa_mem_base = 0;
276 PicState2 *isa_pic;
277
278 /***********************************************************/
279 void hw_error(const char *fmt, ...)
280 {
281 va_list ap;
282 CPUState *env;
283
284 va_start(ap, fmt);
285 fprintf(stderr, "qemu: hardware error: ");
286 vfprintf(stderr, fmt, ap);
287 fprintf(stderr, "\n");
288 for(env = first_cpu; env != NULL; env = env->next_cpu) {
289 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
290 #ifdef TARGET_I386
291 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
292 #else
293 cpu_dump_state(env, stderr, fprintf, 0);
294 #endif
295 }
296 va_end(ap);
297 abort();
298 }
299
300 static void set_proc_name(const char *s)
301 {
302 #if defined(__linux__) && defined(PR_SET_NAME)
303 char name[16];
304 if (!s)
305 return;
306 name[sizeof(name) - 1] = 0;
307 strncpy(name, s, sizeof(name));
308 /* Could rewrite argv[0] too, but that's a bit more complicated.
309 This simple way is enough for `top'. */
310 prctl(PR_SET_NAME, name);
311 #endif
312 }
313
314 /***************/
315 /* ballooning */
316
317 static QEMUBalloonEvent *qemu_balloon_event;
318 void *qemu_balloon_event_opaque;
319
320 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
321 {
322 qemu_balloon_event = func;
323 qemu_balloon_event_opaque = opaque;
324 }
325
326 void qemu_balloon(ram_addr_t target)
327 {
328 if (qemu_balloon_event)
329 qemu_balloon_event(qemu_balloon_event_opaque, target);
330 }
331
332 ram_addr_t qemu_balloon_status(void)
333 {
334 if (qemu_balloon_event)
335 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
336 return 0;
337 }
338
339 /***********************************************************/
340 /* keyboard/mouse */
341
342 static QEMUPutKBDEvent *qemu_put_kbd_event;
343 static void *qemu_put_kbd_event_opaque;
344 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
345 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
346
347 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
348 {
349 qemu_put_kbd_event_opaque = opaque;
350 qemu_put_kbd_event = func;
351 }
352
353 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
354 void *opaque, int absolute,
355 const char *name)
356 {
357 QEMUPutMouseEntry *s, *cursor;
358
359 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
360
361 s->qemu_put_mouse_event = func;
362 s->qemu_put_mouse_event_opaque = opaque;
363 s->qemu_put_mouse_event_absolute = absolute;
364 s->qemu_put_mouse_event_name = qemu_strdup(name);
365 s->next = NULL;
366
367 if (!qemu_put_mouse_event_head) {
368 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
369 return s;
370 }
371
372 cursor = qemu_put_mouse_event_head;
373 while (cursor->next != NULL)
374 cursor = cursor->next;
375
376 cursor->next = s;
377 qemu_put_mouse_event_current = s;
378
379 return s;
380 }
381
382 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
383 {
384 QEMUPutMouseEntry *prev = NULL, *cursor;
385
386 if (!qemu_put_mouse_event_head || entry == NULL)
387 return;
388
389 cursor = qemu_put_mouse_event_head;
390 while (cursor != NULL && cursor != entry) {
391 prev = cursor;
392 cursor = cursor->next;
393 }
394
395 if (cursor == NULL) // does not exist or list empty
396 return;
397 else if (prev == NULL) { // entry is head
398 qemu_put_mouse_event_head = cursor->next;
399 if (qemu_put_mouse_event_current == entry)
400 qemu_put_mouse_event_current = cursor->next;
401 qemu_free(entry->qemu_put_mouse_event_name);
402 qemu_free(entry);
403 return;
404 }
405
406 prev->next = entry->next;
407
408 if (qemu_put_mouse_event_current == entry)
409 qemu_put_mouse_event_current = prev;
410
411 qemu_free(entry->qemu_put_mouse_event_name);
412 qemu_free(entry);
413 }
414
415 void kbd_put_keycode(int keycode)
416 {
417 if (qemu_put_kbd_event) {
418 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
419 }
420 }
421
422 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
423 {
424 QEMUPutMouseEvent *mouse_event;
425 void *mouse_event_opaque;
426 int width;
427
428 if (!qemu_put_mouse_event_current) {
429 return;
430 }
431
432 mouse_event =
433 qemu_put_mouse_event_current->qemu_put_mouse_event;
434 mouse_event_opaque =
435 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
436
437 if (mouse_event) {
438 if (graphic_rotate) {
439 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
440 width = 0x7fff;
441 else
442 width = graphic_width - 1;
443 mouse_event(mouse_event_opaque,
444 width - dy, dx, dz, buttons_state);
445 } else
446 mouse_event(mouse_event_opaque,
447 dx, dy, dz, buttons_state);
448 }
449 }
450
451 int kbd_mouse_is_absolute(void)
452 {
453 if (!qemu_put_mouse_event_current)
454 return 0;
455
456 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
457 }
458
459 void do_info_mice(Monitor *mon)
460 {
461 QEMUPutMouseEntry *cursor;
462 int index = 0;
463
464 if (!qemu_put_mouse_event_head) {
465 monitor_printf(mon, "No mouse devices connected\n");
466 return;
467 }
468
469 monitor_printf(mon, "Mouse devices available:\n");
470 cursor = qemu_put_mouse_event_head;
471 while (cursor != NULL) {
472 monitor_printf(mon, "%c Mouse #%d: %s\n",
473 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
474 index, cursor->qemu_put_mouse_event_name);
475 index++;
476 cursor = cursor->next;
477 }
478 }
479
480 void do_mouse_set(Monitor *mon, int index)
481 {
482 QEMUPutMouseEntry *cursor;
483 int i = 0;
484
485 if (!qemu_put_mouse_event_head) {
486 monitor_printf(mon, "No mouse devices connected\n");
487 return;
488 }
489
490 cursor = qemu_put_mouse_event_head;
491 while (cursor != NULL && index != i) {
492 i++;
493 cursor = cursor->next;
494 }
495
496 if (cursor != NULL)
497 qemu_put_mouse_event_current = cursor;
498 else
499 monitor_printf(mon, "Mouse at given index not found\n");
500 }
501
502 /* compute with 96 bit intermediate result: (a*b)/c */
503 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
504 {
505 union {
506 uint64_t ll;
507 struct {
508 #ifdef HOST_WORDS_BIGENDIAN
509 uint32_t high, low;
510 #else
511 uint32_t low, high;
512 #endif
513 } l;
514 } u, res;
515 uint64_t rl, rh;
516
517 u.ll = a;
518 rl = (uint64_t)u.l.low * (uint64_t)b;
519 rh = (uint64_t)u.l.high * (uint64_t)b;
520 rh += (rl >> 32);
521 res.l.high = rh / c;
522 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
523 return res.ll;
524 }
525
526 /***********************************************************/
527 /* real time host monotonic timer */
528
529 #define QEMU_TIMER_BASE 1000000000LL
530
531 #ifdef WIN32
532
533 static int64_t clock_freq;
534
535 static void init_get_clock(void)
536 {
537 LARGE_INTEGER freq;
538 int ret;
539 ret = QueryPerformanceFrequency(&freq);
540 if (ret == 0) {
541 fprintf(stderr, "Could not calibrate ticks\n");
542 exit(1);
543 }
544 clock_freq = freq.QuadPart;
545 }
546
547 static int64_t get_clock(void)
548 {
549 LARGE_INTEGER ti;
550 QueryPerformanceCounter(&ti);
551 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
552 }
553
554 #else
555
556 static int use_rt_clock;
557
558 static void init_get_clock(void)
559 {
560 use_rt_clock = 0;
561 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
562 || defined(__DragonFly__)
563 {
564 struct timespec ts;
565 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
566 use_rt_clock = 1;
567 }
568 }
569 #endif
570 }
571
572 static int64_t get_clock(void)
573 {
574 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
575 || defined(__DragonFly__)
576 if (use_rt_clock) {
577 struct timespec ts;
578 clock_gettime(CLOCK_MONOTONIC, &ts);
579 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
580 } else
581 #endif
582 {
583 /* XXX: using gettimeofday leads to problems if the date
584 changes, so it should be avoided. */
585 struct timeval tv;
586 gettimeofday(&tv, NULL);
587 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
588 }
589 }
590 #endif
591
592 /* Return the virtual CPU time, based on the instruction counter. */
593 static int64_t cpu_get_icount(void)
594 {
595 int64_t icount;
596 CPUState *env = cpu_single_env;;
597 icount = qemu_icount;
598 if (env) {
599 if (!can_do_io(env))
600 fprintf(stderr, "Bad clock read\n");
601 icount -= (env->icount_decr.u16.low + env->icount_extra);
602 }
603 return qemu_icount_bias + (icount << icount_time_shift);
604 }
605
606 /***********************************************************/
607 /* guest cycle counter */
608
609 static int64_t cpu_ticks_prev;
610 static int64_t cpu_ticks_offset;
611 static int64_t cpu_clock_offset;
612 static int cpu_ticks_enabled;
613
614 /* return the host CPU cycle counter and handle stop/restart */
615 int64_t cpu_get_ticks(void)
616 {
617 if (use_icount) {
618 return cpu_get_icount();
619 }
620 if (!cpu_ticks_enabled) {
621 return cpu_ticks_offset;
622 } else {
623 int64_t ticks;
624 ticks = cpu_get_real_ticks();
625 if (cpu_ticks_prev > ticks) {
626 /* Note: non increasing ticks may happen if the host uses
627 software suspend */
628 cpu_ticks_offset += cpu_ticks_prev - ticks;
629 }
630 cpu_ticks_prev = ticks;
631 return ticks + cpu_ticks_offset;
632 }
633 }
634
635 /* return the host CPU monotonic timer and handle stop/restart */
636 static int64_t cpu_get_clock(void)
637 {
638 int64_t ti;
639 if (!cpu_ticks_enabled) {
640 return cpu_clock_offset;
641 } else {
642 ti = get_clock();
643 return ti + cpu_clock_offset;
644 }
645 }
646
647 /* enable cpu_get_ticks() */
648 void cpu_enable_ticks(void)
649 {
650 if (!cpu_ticks_enabled) {
651 cpu_ticks_offset -= cpu_get_real_ticks();
652 cpu_clock_offset -= get_clock();
653 cpu_ticks_enabled = 1;
654 }
655 }
656
657 /* disable cpu_get_ticks() : the clock is stopped. You must not call
658 cpu_get_ticks() after that. */
659 void cpu_disable_ticks(void)
660 {
661 if (cpu_ticks_enabled) {
662 cpu_ticks_offset = cpu_get_ticks();
663 cpu_clock_offset = cpu_get_clock();
664 cpu_ticks_enabled = 0;
665 }
666 }
667
668 /***********************************************************/
669 /* timers */
670
671 #define QEMU_TIMER_REALTIME 0
672 #define QEMU_TIMER_VIRTUAL 1
673
674 struct QEMUClock {
675 int type;
676 /* XXX: add frequency */
677 };
678
679 struct QEMUTimer {
680 QEMUClock *clock;
681 int64_t expire_time;
682 QEMUTimerCB *cb;
683 void *opaque;
684 struct QEMUTimer *next;
685 };
686
687 struct qemu_alarm_timer {
688 char const *name;
689 unsigned int flags;
690
691 int (*start)(struct qemu_alarm_timer *t);
692 void (*stop)(struct qemu_alarm_timer *t);
693 void (*rearm)(struct qemu_alarm_timer *t);
694 void *priv;
695 };
696
697 #define ALARM_FLAG_DYNTICKS 0x1
698 #define ALARM_FLAG_EXPIRED 0x2
699
700 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
701 {
702 return t && (t->flags & ALARM_FLAG_DYNTICKS);
703 }
704
705 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
706 {
707 if (!alarm_has_dynticks(t))
708 return;
709
710 t->rearm(t);
711 }
712
713 /* TODO: MIN_TIMER_REARM_US should be optimized */
714 #define MIN_TIMER_REARM_US 250
715
716 static struct qemu_alarm_timer *alarm_timer;
717
718 #ifdef _WIN32
719
720 struct qemu_alarm_win32 {
721 MMRESULT timerId;
722 unsigned int period;
723 } alarm_win32_data = {0, -1};
724
725 static int win32_start_timer(struct qemu_alarm_timer *t);
726 static void win32_stop_timer(struct qemu_alarm_timer *t);
727 static void win32_rearm_timer(struct qemu_alarm_timer *t);
728
729 #else
730
731 static int unix_start_timer(struct qemu_alarm_timer *t);
732 static void unix_stop_timer(struct qemu_alarm_timer *t);
733
734 #ifdef __linux__
735
736 static int dynticks_start_timer(struct qemu_alarm_timer *t);
737 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
738 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
739
740 static int hpet_start_timer(struct qemu_alarm_timer *t);
741 static void hpet_stop_timer(struct qemu_alarm_timer *t);
742
743 static int rtc_start_timer(struct qemu_alarm_timer *t);
744 static void rtc_stop_timer(struct qemu_alarm_timer *t);
745
746 #endif /* __linux__ */
747
748 #endif /* _WIN32 */
749
750 /* Correlation between real and virtual time is always going to be
751 fairly approximate, so ignore small variation.
752 When the guest is idle real and virtual time will be aligned in
753 the IO wait loop. */
754 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
755
756 static void icount_adjust(void)
757 {
758 int64_t cur_time;
759 int64_t cur_icount;
760 int64_t delta;
761 static int64_t last_delta;
762 /* If the VM is not running, then do nothing. */
763 if (!vm_running)
764 return;
765
766 cur_time = cpu_get_clock();
767 cur_icount = qemu_get_clock(vm_clock);
768 delta = cur_icount - cur_time;
769 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
770 if (delta > 0
771 && last_delta + ICOUNT_WOBBLE < delta * 2
772 && icount_time_shift > 0) {
773 /* The guest is getting too far ahead. Slow time down. */
774 icount_time_shift--;
775 }
776 if (delta < 0
777 && last_delta - ICOUNT_WOBBLE > delta * 2
778 && icount_time_shift < MAX_ICOUNT_SHIFT) {
779 /* The guest is getting too far behind. Speed time up. */
780 icount_time_shift++;
781 }
782 last_delta = delta;
783 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
784 }
785
786 static void icount_adjust_rt(void * opaque)
787 {
788 qemu_mod_timer(icount_rt_timer,
789 qemu_get_clock(rt_clock) + 1000);
790 icount_adjust();
791 }
792
793 static void icount_adjust_vm(void * opaque)
794 {
795 qemu_mod_timer(icount_vm_timer,
796 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
797 icount_adjust();
798 }
799
800 static void init_icount_adjust(void)
801 {
802 /* Have both realtime and virtual time triggers for speed adjustment.
803 The realtime trigger catches emulated time passing too slowly,
804 the virtual time trigger catches emulated time passing too fast.
805 Realtime triggers occur even when idle, so use them less frequently
806 than VM triggers. */
807 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
808 qemu_mod_timer(icount_rt_timer,
809 qemu_get_clock(rt_clock) + 1000);
810 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
811 qemu_mod_timer(icount_vm_timer,
812 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
813 }
814
815 static struct qemu_alarm_timer alarm_timers[] = {
816 #ifndef _WIN32
817 #ifdef __linux__
818 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
819 dynticks_stop_timer, dynticks_rearm_timer, NULL},
820 /* HPET - if available - is preferred */
821 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
822 /* ...otherwise try RTC */
823 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
824 #endif
825 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
826 #else
827 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
828 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
829 {"win32", 0, win32_start_timer,
830 win32_stop_timer, NULL, &alarm_win32_data},
831 #endif
832 {NULL, }
833 };
834
835 static void show_available_alarms(void)
836 {
837 int i;
838
839 printf("Available alarm timers, in order of precedence:\n");
840 for (i = 0; alarm_timers[i].name; i++)
841 printf("%s\n", alarm_timers[i].name);
842 }
843
844 static void configure_alarms(char const *opt)
845 {
846 int i;
847 int cur = 0;
848 int count = ARRAY_SIZE(alarm_timers) - 1;
849 char *arg;
850 char *name;
851 struct qemu_alarm_timer tmp;
852
853 if (!strcmp(opt, "?")) {
854 show_available_alarms();
855 exit(0);
856 }
857
858 arg = strdup(opt);
859
860 /* Reorder the array */
861 name = strtok(arg, ",");
862 while (name) {
863 for (i = 0; i < count && alarm_timers[i].name; i++) {
864 if (!strcmp(alarm_timers[i].name, name))
865 break;
866 }
867
868 if (i == count) {
869 fprintf(stderr, "Unknown clock %s\n", name);
870 goto next;
871 }
872
873 if (i < cur)
874 /* Ignore */
875 goto next;
876
877 /* Swap */
878 tmp = alarm_timers[i];
879 alarm_timers[i] = alarm_timers[cur];
880 alarm_timers[cur] = tmp;
881
882 cur++;
883 next:
884 name = strtok(NULL, ",");
885 }
886
887 free(arg);
888
889 if (cur) {
890 /* Disable remaining timers */
891 for (i = cur; i < count; i++)
892 alarm_timers[i].name = NULL;
893 } else {
894 show_available_alarms();
895 exit(1);
896 }
897 }
898
899 QEMUClock *rt_clock;
900 QEMUClock *vm_clock;
901
902 static QEMUTimer *active_timers[2];
903
904 static QEMUClock *qemu_new_clock(int type)
905 {
906 QEMUClock *clock;
907 clock = qemu_mallocz(sizeof(QEMUClock));
908 clock->type = type;
909 return clock;
910 }
911
912 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
913 {
914 QEMUTimer *ts;
915
916 ts = qemu_mallocz(sizeof(QEMUTimer));
917 ts->clock = clock;
918 ts->cb = cb;
919 ts->opaque = opaque;
920 return ts;
921 }
922
923 void qemu_free_timer(QEMUTimer *ts)
924 {
925 qemu_free(ts);
926 }
927
928 /* stop a timer, but do not dealloc it */
929 void qemu_del_timer(QEMUTimer *ts)
930 {
931 QEMUTimer **pt, *t;
932
933 /* NOTE: this code must be signal safe because
934 qemu_timer_expired() can be called from a signal. */
935 pt = &active_timers[ts->clock->type];
936 for(;;) {
937 t = *pt;
938 if (!t)
939 break;
940 if (t == ts) {
941 *pt = t->next;
942 break;
943 }
944 pt = &t->next;
945 }
946 }
947
948 /* modify the current timer so that it will be fired when current_time
949 >= expire_time. The corresponding callback will be called. */
950 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
951 {
952 QEMUTimer **pt, *t;
953
954 qemu_del_timer(ts);
955
956 /* add the timer in the sorted list */
957 /* NOTE: this code must be signal safe because
958 qemu_timer_expired() can be called from a signal. */
959 pt = &active_timers[ts->clock->type];
960 for(;;) {
961 t = *pt;
962 if (!t)
963 break;
964 if (t->expire_time > expire_time)
965 break;
966 pt = &t->next;
967 }
968 ts->expire_time = expire_time;
969 ts->next = *pt;
970 *pt = ts;
971
972 /* Rearm if necessary */
973 if (pt == &active_timers[ts->clock->type]) {
974 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
975 qemu_rearm_alarm_timer(alarm_timer);
976 }
977 /* Interrupt execution to force deadline recalculation. */
978 if (use_icount)
979 qemu_notify_event();
980 }
981 }
982
983 int qemu_timer_pending(QEMUTimer *ts)
984 {
985 QEMUTimer *t;
986 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
987 if (t == ts)
988 return 1;
989 }
990 return 0;
991 }
992
993 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
994 {
995 if (!timer_head)
996 return 0;
997 return (timer_head->expire_time <= current_time);
998 }
999
1000 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1001 {
1002 QEMUTimer *ts;
1003
1004 for(;;) {
1005 ts = *ptimer_head;
1006 if (!ts || ts->expire_time > current_time)
1007 break;
1008 /* remove timer from the list before calling the callback */
1009 *ptimer_head = ts->next;
1010 ts->next = NULL;
1011
1012 /* run the callback (the timer list can be modified) */
1013 ts->cb(ts->opaque);
1014 }
1015 }
1016
1017 int64_t qemu_get_clock(QEMUClock *clock)
1018 {
1019 switch(clock->type) {
1020 case QEMU_TIMER_REALTIME:
1021 return get_clock() / 1000000;
1022 default:
1023 case QEMU_TIMER_VIRTUAL:
1024 if (use_icount) {
1025 return cpu_get_icount();
1026 } else {
1027 return cpu_get_clock();
1028 }
1029 }
1030 }
1031
1032 static void init_timers(void)
1033 {
1034 init_get_clock();
1035 ticks_per_sec = QEMU_TIMER_BASE;
1036 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1037 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1038 }
1039
1040 /* save a timer */
1041 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1042 {
1043 uint64_t expire_time;
1044
1045 if (qemu_timer_pending(ts)) {
1046 expire_time = ts->expire_time;
1047 } else {
1048 expire_time = -1;
1049 }
1050 qemu_put_be64(f, expire_time);
1051 }
1052
1053 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1054 {
1055 uint64_t expire_time;
1056
1057 expire_time = qemu_get_be64(f);
1058 if (expire_time != -1) {
1059 qemu_mod_timer(ts, expire_time);
1060 } else {
1061 qemu_del_timer(ts);
1062 }
1063 }
1064
1065 static void timer_save(QEMUFile *f, void *opaque)
1066 {
1067 if (cpu_ticks_enabled) {
1068 hw_error("cannot save state if virtual timers are running");
1069 }
1070 qemu_put_be64(f, cpu_ticks_offset);
1071 qemu_put_be64(f, ticks_per_sec);
1072 qemu_put_be64(f, cpu_clock_offset);
1073 }
1074
1075 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1076 {
1077 if (version_id != 1 && version_id != 2)
1078 return -EINVAL;
1079 if (cpu_ticks_enabled) {
1080 return -EINVAL;
1081 }
1082 cpu_ticks_offset=qemu_get_be64(f);
1083 ticks_per_sec=qemu_get_be64(f);
1084 if (version_id == 2) {
1085 cpu_clock_offset=qemu_get_be64(f);
1086 }
1087 return 0;
1088 }
1089
1090 static void qemu_event_increment(void);
1091
1092 #ifdef _WIN32
1093 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1094 DWORD_PTR dwUser, DWORD_PTR dw1,
1095 DWORD_PTR dw2)
1096 #else
1097 static void host_alarm_handler(int host_signum)
1098 #endif
1099 {
1100 #if 0
1101 #define DISP_FREQ 1000
1102 {
1103 static int64_t delta_min = INT64_MAX;
1104 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1105 static int count;
1106 ti = qemu_get_clock(vm_clock);
1107 if (last_clock != 0) {
1108 delta = ti - last_clock;
1109 if (delta < delta_min)
1110 delta_min = delta;
1111 if (delta > delta_max)
1112 delta_max = delta;
1113 delta_cum += delta;
1114 if (++count == DISP_FREQ) {
1115 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1116 muldiv64(delta_min, 1000000, ticks_per_sec),
1117 muldiv64(delta_max, 1000000, ticks_per_sec),
1118 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1119 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1120 count = 0;
1121 delta_min = INT64_MAX;
1122 delta_max = 0;
1123 delta_cum = 0;
1124 }
1125 }
1126 last_clock = ti;
1127 }
1128 #endif
1129 if (alarm_has_dynticks(alarm_timer) ||
1130 (!use_icount &&
1131 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1132 qemu_get_clock(vm_clock))) ||
1133 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1134 qemu_get_clock(rt_clock))) {
1135 qemu_event_increment();
1136 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1137
1138 #ifndef CONFIG_IOTHREAD
1139 if (next_cpu) {
1140 /* stop the currently executing cpu because a timer occured */
1141 cpu_exit(next_cpu);
1142 }
1143 #endif
1144 timer_alarm_pending = 1;
1145 qemu_notify_event();
1146 }
1147 }
1148
1149 static int64_t qemu_next_deadline(void)
1150 {
1151 int64_t delta;
1152
1153 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1154 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1155 qemu_get_clock(vm_clock);
1156 } else {
1157 /* To avoid problems with overflow limit this to 2^32. */
1158 delta = INT32_MAX;
1159 }
1160
1161 if (delta < 0)
1162 delta = 0;
1163
1164 return delta;
1165 }
1166
1167 #if defined(__linux__) || defined(_WIN32)
1168 static uint64_t qemu_next_deadline_dyntick(void)
1169 {
1170 int64_t delta;
1171 int64_t rtdelta;
1172
1173 if (use_icount)
1174 delta = INT32_MAX;
1175 else
1176 delta = (qemu_next_deadline() + 999) / 1000;
1177
1178 if (active_timers[QEMU_TIMER_REALTIME]) {
1179 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1180 qemu_get_clock(rt_clock))*1000;
1181 if (rtdelta < delta)
1182 delta = rtdelta;
1183 }
1184
1185 if (delta < MIN_TIMER_REARM_US)
1186 delta = MIN_TIMER_REARM_US;
1187
1188 return delta;
1189 }
1190 #endif
1191
1192 #ifndef _WIN32
1193
1194 /* Sets a specific flag */
1195 static int fcntl_setfl(int fd, int flag)
1196 {
1197 int flags;
1198
1199 flags = fcntl(fd, F_GETFL);
1200 if (flags == -1)
1201 return -errno;
1202
1203 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1204 return -errno;
1205
1206 return 0;
1207 }
1208
1209 #if defined(__linux__)
1210
1211 #define RTC_FREQ 1024
1212
1213 static void enable_sigio_timer(int fd)
1214 {
1215 struct sigaction act;
1216
1217 /* timer signal */
1218 sigfillset(&act.sa_mask);
1219 act.sa_flags = 0;
1220 act.sa_handler = host_alarm_handler;
1221
1222 sigaction(SIGIO, &act, NULL);
1223 fcntl_setfl(fd, O_ASYNC);
1224 fcntl(fd, F_SETOWN, getpid());
1225 }
1226
1227 static int hpet_start_timer(struct qemu_alarm_timer *t)
1228 {
1229 struct hpet_info info;
1230 int r, fd;
1231
1232 fd = open("/dev/hpet", O_RDONLY);
1233 if (fd < 0)
1234 return -1;
1235
1236 /* Set frequency */
1237 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1238 if (r < 0) {
1239 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1240 "error, but for better emulation accuracy type:\n"
1241 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1242 goto fail;
1243 }
1244
1245 /* Check capabilities */
1246 r = ioctl(fd, HPET_INFO, &info);
1247 if (r < 0)
1248 goto fail;
1249
1250 /* Enable periodic mode */
1251 r = ioctl(fd, HPET_EPI, 0);
1252 if (info.hi_flags && (r < 0))
1253 goto fail;
1254
1255 /* Enable interrupt */
1256 r = ioctl(fd, HPET_IE_ON, 0);
1257 if (r < 0)
1258 goto fail;
1259
1260 enable_sigio_timer(fd);
1261 t->priv = (void *)(long)fd;
1262
1263 return 0;
1264 fail:
1265 close(fd);
1266 return -1;
1267 }
1268
1269 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1270 {
1271 int fd = (long)t->priv;
1272
1273 close(fd);
1274 }
1275
1276 static int rtc_start_timer(struct qemu_alarm_timer *t)
1277 {
1278 int rtc_fd;
1279 unsigned long current_rtc_freq = 0;
1280
1281 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1282 if (rtc_fd < 0)
1283 return -1;
1284 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1285 if (current_rtc_freq != RTC_FREQ &&
1286 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1287 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1288 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1289 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1290 goto fail;
1291 }
1292 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1293 fail:
1294 close(rtc_fd);
1295 return -1;
1296 }
1297
1298 enable_sigio_timer(rtc_fd);
1299
1300 t->priv = (void *)(long)rtc_fd;
1301
1302 return 0;
1303 }
1304
1305 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1306 {
1307 int rtc_fd = (long)t->priv;
1308
1309 close(rtc_fd);
1310 }
1311
1312 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1313 {
1314 struct sigevent ev;
1315 timer_t host_timer;
1316 struct sigaction act;
1317
1318 sigfillset(&act.sa_mask);
1319 act.sa_flags = 0;
1320 act.sa_handler = host_alarm_handler;
1321
1322 sigaction(SIGALRM, &act, NULL);
1323
1324 /*
1325 * Initialize ev struct to 0 to avoid valgrind complaining
1326 * about uninitialized data in timer_create call
1327 */
1328 memset(&ev, 0, sizeof(ev));
1329 ev.sigev_value.sival_int = 0;
1330 ev.sigev_notify = SIGEV_SIGNAL;
1331 ev.sigev_signo = SIGALRM;
1332
1333 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1334 perror("timer_create");
1335
1336 /* disable dynticks */
1337 fprintf(stderr, "Dynamic Ticks disabled\n");
1338
1339 return -1;
1340 }
1341
1342 t->priv = (void *)(long)host_timer;
1343
1344 return 0;
1345 }
1346
1347 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1348 {
1349 timer_t host_timer = (timer_t)(long)t->priv;
1350
1351 timer_delete(host_timer);
1352 }
1353
1354 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1355 {
1356 timer_t host_timer = (timer_t)(long)t->priv;
1357 struct itimerspec timeout;
1358 int64_t nearest_delta_us = INT64_MAX;
1359 int64_t current_us;
1360
1361 if (!active_timers[QEMU_TIMER_REALTIME] &&
1362 !active_timers[QEMU_TIMER_VIRTUAL])
1363 return;
1364
1365 nearest_delta_us = qemu_next_deadline_dyntick();
1366
1367 /* check whether a timer is already running */
1368 if (timer_gettime(host_timer, &timeout)) {
1369 perror("gettime");
1370 fprintf(stderr, "Internal timer error: aborting\n");
1371 exit(1);
1372 }
1373 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1374 if (current_us && current_us <= nearest_delta_us)
1375 return;
1376
1377 timeout.it_interval.tv_sec = 0;
1378 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1379 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1380 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1381 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1382 perror("settime");
1383 fprintf(stderr, "Internal timer error: aborting\n");
1384 exit(1);
1385 }
1386 }
1387
1388 #endif /* defined(__linux__) */
1389
1390 static int unix_start_timer(struct qemu_alarm_timer *t)
1391 {
1392 struct sigaction act;
1393 struct itimerval itv;
1394 int err;
1395
1396 /* timer signal */
1397 sigfillset(&act.sa_mask);
1398 act.sa_flags = 0;
1399 act.sa_handler = host_alarm_handler;
1400
1401 sigaction(SIGALRM, &act, NULL);
1402
1403 itv.it_interval.tv_sec = 0;
1404 /* for i386 kernel 2.6 to get 1 ms */
1405 itv.it_interval.tv_usec = 999;
1406 itv.it_value.tv_sec = 0;
1407 itv.it_value.tv_usec = 10 * 1000;
1408
1409 err = setitimer(ITIMER_REAL, &itv, NULL);
1410 if (err)
1411 return -1;
1412
1413 return 0;
1414 }
1415
1416 static void unix_stop_timer(struct qemu_alarm_timer *t)
1417 {
1418 struct itimerval itv;
1419
1420 memset(&itv, 0, sizeof(itv));
1421 setitimer(ITIMER_REAL, &itv, NULL);
1422 }
1423
1424 #endif /* !defined(_WIN32) */
1425
1426
1427 #ifdef _WIN32
1428
1429 static int win32_start_timer(struct qemu_alarm_timer *t)
1430 {
1431 TIMECAPS tc;
1432 struct qemu_alarm_win32 *data = t->priv;
1433 UINT flags;
1434
1435 memset(&tc, 0, sizeof(tc));
1436 timeGetDevCaps(&tc, sizeof(tc));
1437
1438 if (data->period < tc.wPeriodMin)
1439 data->period = tc.wPeriodMin;
1440
1441 timeBeginPeriod(data->period);
1442
1443 flags = TIME_CALLBACK_FUNCTION;
1444 if (alarm_has_dynticks(t))
1445 flags |= TIME_ONESHOT;
1446 else
1447 flags |= TIME_PERIODIC;
1448
1449 data->timerId = timeSetEvent(1, // interval (ms)
1450 data->period, // resolution
1451 host_alarm_handler, // function
1452 (DWORD)t, // parameter
1453 flags);
1454
1455 if (!data->timerId) {
1456 perror("Failed to initialize win32 alarm timer");
1457 timeEndPeriod(data->period);
1458 return -1;
1459 }
1460
1461 return 0;
1462 }
1463
1464 static void win32_stop_timer(struct qemu_alarm_timer *t)
1465 {
1466 struct qemu_alarm_win32 *data = t->priv;
1467
1468 timeKillEvent(data->timerId);
1469 timeEndPeriod(data->period);
1470 }
1471
1472 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1473 {
1474 struct qemu_alarm_win32 *data = t->priv;
1475 uint64_t nearest_delta_us;
1476
1477 if (!active_timers[QEMU_TIMER_REALTIME] &&
1478 !active_timers[QEMU_TIMER_VIRTUAL])
1479 return;
1480
1481 nearest_delta_us = qemu_next_deadline_dyntick();
1482 nearest_delta_us /= 1000;
1483
1484 timeKillEvent(data->timerId);
1485
1486 data->timerId = timeSetEvent(1,
1487 data->period,
1488 host_alarm_handler,
1489 (DWORD)t,
1490 TIME_ONESHOT | TIME_PERIODIC);
1491
1492 if (!data->timerId) {
1493 perror("Failed to re-arm win32 alarm timer");
1494
1495 timeEndPeriod(data->period);
1496 exit(1);
1497 }
1498 }
1499
1500 #endif /* _WIN32 */
1501
1502 static int init_timer_alarm(void)
1503 {
1504 struct qemu_alarm_timer *t = NULL;
1505 int i, err = -1;
1506
1507 for (i = 0; alarm_timers[i].name; i++) {
1508 t = &alarm_timers[i];
1509
1510 err = t->start(t);
1511 if (!err)
1512 break;
1513 }
1514
1515 if (err) {
1516 err = -ENOENT;
1517 goto fail;
1518 }
1519
1520 alarm_timer = t;
1521
1522 return 0;
1523
1524 fail:
1525 return err;
1526 }
1527
1528 static void quit_timers(void)
1529 {
1530 alarm_timer->stop(alarm_timer);
1531 alarm_timer = NULL;
1532 }
1533
1534 /***********************************************************/
1535 /* host time/date access */
1536 void qemu_get_timedate(struct tm *tm, int offset)
1537 {
1538 time_t ti;
1539 struct tm *ret;
1540
1541 time(&ti);
1542 ti += offset;
1543 if (rtc_date_offset == -1) {
1544 if (rtc_utc)
1545 ret = gmtime(&ti);
1546 else
1547 ret = localtime(&ti);
1548 } else {
1549 ti -= rtc_date_offset;
1550 ret = gmtime(&ti);
1551 }
1552
1553 memcpy(tm, ret, sizeof(struct tm));
1554 }
1555
1556 int qemu_timedate_diff(struct tm *tm)
1557 {
1558 time_t seconds;
1559
1560 if (rtc_date_offset == -1)
1561 if (rtc_utc)
1562 seconds = mktimegm(tm);
1563 else
1564 seconds = mktime(tm);
1565 else
1566 seconds = mktimegm(tm) + rtc_date_offset;
1567
1568 return seconds - time(NULL);
1569 }
1570
1571 #ifdef _WIN32
1572 static void socket_cleanup(void)
1573 {
1574 WSACleanup();
1575 }
1576
1577 static int socket_init(void)
1578 {
1579 WSADATA Data;
1580 int ret, err;
1581
1582 ret = WSAStartup(MAKEWORD(2,2), &Data);
1583 if (ret != 0) {
1584 err = WSAGetLastError();
1585 fprintf(stderr, "WSAStartup: %d\n", err);
1586 return -1;
1587 }
1588 atexit(socket_cleanup);
1589 return 0;
1590 }
1591 #endif
1592
1593 /***********************************************************/
1594 /* Bluetooth support */
1595 static int nb_hcis;
1596 static int cur_hci;
1597 static struct HCIInfo *hci_table[MAX_NICS];
1598
1599 static struct bt_vlan_s {
1600 struct bt_scatternet_s net;
1601 int id;
1602 struct bt_vlan_s *next;
1603 } *first_bt_vlan;
1604
1605 /* find or alloc a new bluetooth "VLAN" */
1606 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1607 {
1608 struct bt_vlan_s **pvlan, *vlan;
1609 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1610 if (vlan->id == id)
1611 return &vlan->net;
1612 }
1613 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1614 vlan->id = id;
1615 pvlan = &first_bt_vlan;
1616 while (*pvlan != NULL)
1617 pvlan = &(*pvlan)->next;
1618 *pvlan = vlan;
1619 return &vlan->net;
1620 }
1621
1622 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1623 {
1624 }
1625
1626 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1627 {
1628 return -ENOTSUP;
1629 }
1630
1631 static struct HCIInfo null_hci = {
1632 .cmd_send = null_hci_send,
1633 .sco_send = null_hci_send,
1634 .acl_send = null_hci_send,
1635 .bdaddr_set = null_hci_addr_set,
1636 };
1637
1638 struct HCIInfo *qemu_next_hci(void)
1639 {
1640 if (cur_hci == nb_hcis)
1641 return &null_hci;
1642
1643 return hci_table[cur_hci++];
1644 }
1645
1646 static struct HCIInfo *hci_init(const char *str)
1647 {
1648 char *endp;
1649 struct bt_scatternet_s *vlan = 0;
1650
1651 if (!strcmp(str, "null"))
1652 /* null */
1653 return &null_hci;
1654 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1655 /* host[:hciN] */
1656 return bt_host_hci(str[4] ? str + 5 : "hci0");
1657 else if (!strncmp(str, "hci", 3)) {
1658 /* hci[,vlan=n] */
1659 if (str[3]) {
1660 if (!strncmp(str + 3, ",vlan=", 6)) {
1661 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1662 if (*endp)
1663 vlan = 0;
1664 }
1665 } else
1666 vlan = qemu_find_bt_vlan(0);
1667 if (vlan)
1668 return bt_new_hci(vlan);
1669 }
1670
1671 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1672
1673 return 0;
1674 }
1675
1676 static int bt_hci_parse(const char *str)
1677 {
1678 struct HCIInfo *hci;
1679 bdaddr_t bdaddr;
1680
1681 if (nb_hcis >= MAX_NICS) {
1682 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1683 return -1;
1684 }
1685
1686 hci = hci_init(str);
1687 if (!hci)
1688 return -1;
1689
1690 bdaddr.b[0] = 0x52;
1691 bdaddr.b[1] = 0x54;
1692 bdaddr.b[2] = 0x00;
1693 bdaddr.b[3] = 0x12;
1694 bdaddr.b[4] = 0x34;
1695 bdaddr.b[5] = 0x56 + nb_hcis;
1696 hci->bdaddr_set(hci, bdaddr.b);
1697
1698 hci_table[nb_hcis++] = hci;
1699
1700 return 0;
1701 }
1702
1703 static void bt_vhci_add(int vlan_id)
1704 {
1705 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1706
1707 if (!vlan->slave)
1708 fprintf(stderr, "qemu: warning: adding a VHCI to "
1709 "an empty scatternet %i\n", vlan_id);
1710
1711 bt_vhci_init(bt_new_hci(vlan));
1712 }
1713
1714 static struct bt_device_s *bt_device_add(const char *opt)
1715 {
1716 struct bt_scatternet_s *vlan;
1717 int vlan_id = 0;
1718 char *endp = strstr(opt, ",vlan=");
1719 int len = (endp ? endp - opt : strlen(opt)) + 1;
1720 char devname[10];
1721
1722 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1723
1724 if (endp) {
1725 vlan_id = strtol(endp + 6, &endp, 0);
1726 if (*endp) {
1727 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1728 return 0;
1729 }
1730 }
1731
1732 vlan = qemu_find_bt_vlan(vlan_id);
1733
1734 if (!vlan->slave)
1735 fprintf(stderr, "qemu: warning: adding a slave device to "
1736 "an empty scatternet %i\n", vlan_id);
1737
1738 if (!strcmp(devname, "keyboard"))
1739 return bt_keyboard_init(vlan);
1740
1741 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1742 return 0;
1743 }
1744
1745 static int bt_parse(const char *opt)
1746 {
1747 const char *endp, *p;
1748 int vlan;
1749
1750 if (strstart(opt, "hci", &endp)) {
1751 if (!*endp || *endp == ',') {
1752 if (*endp)
1753 if (!strstart(endp, ",vlan=", 0))
1754 opt = endp + 1;
1755
1756 return bt_hci_parse(opt);
1757 }
1758 } else if (strstart(opt, "vhci", &endp)) {
1759 if (!*endp || *endp == ',') {
1760 if (*endp) {
1761 if (strstart(endp, ",vlan=", &p)) {
1762 vlan = strtol(p, (char **) &endp, 0);
1763 if (*endp) {
1764 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1765 return 1;
1766 }
1767 } else {
1768 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1769 return 1;
1770 }
1771 } else
1772 vlan = 0;
1773
1774 bt_vhci_add(vlan);
1775 return 0;
1776 }
1777 } else if (strstart(opt, "device:", &endp))
1778 return !bt_device_add(endp);
1779
1780 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1781 return 1;
1782 }
1783
1784 /***********************************************************/
1785 /* QEMU Block devices */
1786
1787 #define HD_ALIAS "index=%d,media=disk"
1788 #define CDROM_ALIAS "index=2,media=cdrom"
1789 #define FD_ALIAS "index=%d,if=floppy"
1790 #define PFLASH_ALIAS "if=pflash"
1791 #define MTD_ALIAS "if=mtd"
1792 #define SD_ALIAS "index=0,if=sd"
1793
1794 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1795 {
1796 va_list ap;
1797 char optstr[1024];
1798 QemuOpts *opts;
1799
1800 va_start(ap, fmt);
1801 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1802 va_end(ap);
1803
1804 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1805 if (!opts) {
1806 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1807 __FUNCTION__, optstr);
1808 return NULL;
1809 }
1810 if (file)
1811 qemu_opt_set(opts, "file", file);
1812 return opts;
1813 }
1814
1815 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1816 {
1817 DriveInfo *dinfo;
1818
1819 /* seek interface, bus and unit */
1820
1821 TAILQ_FOREACH(dinfo, &drives, next) {
1822 if (dinfo->type == type &&
1823 dinfo->bus == bus &&
1824 dinfo->unit == unit)
1825 return dinfo;
1826 }
1827
1828 return NULL;
1829 }
1830
1831 DriveInfo *drive_get_by_id(const char *id)
1832 {
1833 DriveInfo *dinfo;
1834
1835 TAILQ_FOREACH(dinfo, &drives, next) {
1836 if (strcmp(id, dinfo->id))
1837 continue;
1838 return dinfo;
1839 }
1840 return NULL;
1841 }
1842
1843 int drive_get_max_bus(BlockInterfaceType type)
1844 {
1845 int max_bus;
1846 DriveInfo *dinfo;
1847
1848 max_bus = -1;
1849 TAILQ_FOREACH(dinfo, &drives, next) {
1850 if(dinfo->type == type &&
1851 dinfo->bus > max_bus)
1852 max_bus = dinfo->bus;
1853 }
1854 return max_bus;
1855 }
1856
1857 const char *drive_get_serial(BlockDriverState *bdrv)
1858 {
1859 DriveInfo *dinfo;
1860
1861 TAILQ_FOREACH(dinfo, &drives, next) {
1862 if (dinfo->bdrv == bdrv)
1863 return dinfo->serial;
1864 }
1865
1866 return "\0";
1867 }
1868
1869 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1870 {
1871 DriveInfo *dinfo;
1872
1873 TAILQ_FOREACH(dinfo, &drives, next) {
1874 if (dinfo->bdrv == bdrv)
1875 return dinfo->onerror;
1876 }
1877
1878 return BLOCK_ERR_STOP_ENOSPC;
1879 }
1880
1881 static void bdrv_format_print(void *opaque, const char *name)
1882 {
1883 fprintf(stderr, " %s", name);
1884 }
1885
1886 void drive_uninit(BlockDriverState *bdrv)
1887 {
1888 DriveInfo *dinfo;
1889
1890 TAILQ_FOREACH(dinfo, &drives, next) {
1891 if (dinfo->bdrv != bdrv)
1892 continue;
1893 qemu_opts_del(dinfo->opts);
1894 TAILQ_REMOVE(&drives, dinfo, next);
1895 qemu_free(dinfo);
1896 break;
1897 }
1898 }
1899
1900 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1901 int *fatal_error)
1902 {
1903 const char *buf;
1904 const char *file = NULL;
1905 char devname[128];
1906 const char *serial;
1907 const char *mediastr = "";
1908 BlockInterfaceType type;
1909 enum { MEDIA_DISK, MEDIA_CDROM } media;
1910 int bus_id, unit_id;
1911 int cyls, heads, secs, translation;
1912 BlockDriver *drv = NULL;
1913 QEMUMachine *machine = opaque;
1914 int max_devs;
1915 int index;
1916 int cache;
1917 int bdrv_flags, onerror;
1918 const char *devaddr;
1919 DriveInfo *dinfo;
1920 int snapshot = 0;
1921
1922 *fatal_error = 1;
1923
1924 translation = BIOS_ATA_TRANSLATION_AUTO;
1925 cache = 1;
1926
1927 if (machine->use_scsi) {
1928 type = IF_SCSI;
1929 max_devs = MAX_SCSI_DEVS;
1930 pstrcpy(devname, sizeof(devname), "scsi");
1931 } else {
1932 type = IF_IDE;
1933 max_devs = MAX_IDE_DEVS;
1934 pstrcpy(devname, sizeof(devname), "ide");
1935 }
1936 media = MEDIA_DISK;
1937
1938 /* extract parameters */
1939 bus_id = qemu_opt_get_number(opts, "bus", 0);
1940 unit_id = qemu_opt_get_number(opts, "unit", -1);
1941 index = qemu_opt_get_number(opts, "index", -1);
1942
1943 cyls = qemu_opt_get_number(opts, "cyls", 0);
1944 heads = qemu_opt_get_number(opts, "heads", 0);
1945 secs = qemu_opt_get_number(opts, "secs", 0);
1946
1947 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1948
1949 file = qemu_opt_get(opts, "file");
1950 serial = qemu_opt_get(opts, "serial");
1951
1952 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1953 pstrcpy(devname, sizeof(devname), buf);
1954 if (!strcmp(buf, "ide")) {
1955 type = IF_IDE;
1956 max_devs = MAX_IDE_DEVS;
1957 } else if (!strcmp(buf, "scsi")) {
1958 type = IF_SCSI;
1959 max_devs = MAX_SCSI_DEVS;
1960 } else if (!strcmp(buf, "floppy")) {
1961 type = IF_FLOPPY;
1962 max_devs = 0;
1963 } else if (!strcmp(buf, "pflash")) {
1964 type = IF_PFLASH;
1965 max_devs = 0;
1966 } else if (!strcmp(buf, "mtd")) {
1967 type = IF_MTD;
1968 max_devs = 0;
1969 } else if (!strcmp(buf, "sd")) {
1970 type = IF_SD;
1971 max_devs = 0;
1972 } else if (!strcmp(buf, "virtio")) {
1973 type = IF_VIRTIO;
1974 max_devs = 0;
1975 } else if (!strcmp(buf, "xen")) {
1976 type = IF_XEN;
1977 max_devs = 0;
1978 } else if (!strcmp(buf, "none")) {
1979 type = IF_NONE;
1980 max_devs = 0;
1981 } else {
1982 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1983 return NULL;
1984 }
1985 }
1986
1987 if (cyls || heads || secs) {
1988 if (cyls < 1 || cyls > 16383) {
1989 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1990 return NULL;
1991 }
1992 if (heads < 1 || heads > 16) {
1993 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1994 return NULL;
1995 }
1996 if (secs < 1 || secs > 63) {
1997 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
1998 return NULL;
1999 }
2000 }
2001
2002 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2003 if (!cyls) {
2004 fprintf(stderr,
2005 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2006 buf);
2007 return NULL;
2008 }
2009 if (!strcmp(buf, "none"))
2010 translation = BIOS_ATA_TRANSLATION_NONE;
2011 else if (!strcmp(buf, "lba"))
2012 translation = BIOS_ATA_TRANSLATION_LBA;
2013 else if (!strcmp(buf, "auto"))
2014 translation = BIOS_ATA_TRANSLATION_AUTO;
2015 else {
2016 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2017 return NULL;
2018 }
2019 }
2020
2021 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2022 if (!strcmp(buf, "disk")) {
2023 media = MEDIA_DISK;
2024 } else if (!strcmp(buf, "cdrom")) {
2025 if (cyls || secs || heads) {
2026 fprintf(stderr,
2027 "qemu: '%s' invalid physical CHS format\n", buf);
2028 return NULL;
2029 }
2030 media = MEDIA_CDROM;
2031 } else {
2032 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2033 return NULL;
2034 }
2035 }
2036
2037 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2038 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2039 cache = 0;
2040 else if (!strcmp(buf, "writethrough"))
2041 cache = 1;
2042 else if (!strcmp(buf, "writeback"))
2043 cache = 2;
2044 else {
2045 fprintf(stderr, "qemu: invalid cache option\n");
2046 return NULL;
2047 }
2048 }
2049
2050 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2051 if (strcmp(buf, "?") == 0) {
2052 fprintf(stderr, "qemu: Supported formats:");
2053 bdrv_iterate_format(bdrv_format_print, NULL);
2054 fprintf(stderr, "\n");
2055 return NULL;
2056 }
2057 drv = bdrv_find_format(buf);
2058 if (!drv) {
2059 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2060 return NULL;
2061 }
2062 }
2063
2064 onerror = BLOCK_ERR_STOP_ENOSPC;
2065 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2066 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2067 fprintf(stderr, "werror is no supported by this format\n");
2068 return NULL;
2069 }
2070 if (!strcmp(buf, "ignore"))
2071 onerror = BLOCK_ERR_IGNORE;
2072 else if (!strcmp(buf, "enospc"))
2073 onerror = BLOCK_ERR_STOP_ENOSPC;
2074 else if (!strcmp(buf, "stop"))
2075 onerror = BLOCK_ERR_STOP_ANY;
2076 else if (!strcmp(buf, "report"))
2077 onerror = BLOCK_ERR_REPORT;
2078 else {
2079 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2080 return NULL;
2081 }
2082 }
2083
2084 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2085 if (type != IF_VIRTIO) {
2086 fprintf(stderr, "addr is not supported\n");
2087 return NULL;
2088 }
2089 }
2090
2091 /* compute bus and unit according index */
2092
2093 if (index != -1) {
2094 if (bus_id != 0 || unit_id != -1) {
2095 fprintf(stderr,
2096 "qemu: index cannot be used with bus and unit\n");
2097 return NULL;
2098 }
2099 if (max_devs == 0)
2100 {
2101 unit_id = index;
2102 bus_id = 0;
2103 } else {
2104 unit_id = index % max_devs;
2105 bus_id = index / max_devs;
2106 }
2107 }
2108
2109 /* if user doesn't specify a unit_id,
2110 * try to find the first free
2111 */
2112
2113 if (unit_id == -1) {
2114 unit_id = 0;
2115 while (drive_get(type, bus_id, unit_id) != NULL) {
2116 unit_id++;
2117 if (max_devs && unit_id >= max_devs) {
2118 unit_id -= max_devs;
2119 bus_id++;
2120 }
2121 }
2122 }
2123
2124 /* check unit id */
2125
2126 if (max_devs && unit_id >= max_devs) {
2127 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2128 unit_id, max_devs - 1);
2129 return NULL;
2130 }
2131
2132 /*
2133 * ignore multiple definitions
2134 */
2135
2136 if (drive_get(type, bus_id, unit_id) != NULL) {
2137 *fatal_error = 0;
2138 return NULL;
2139 }
2140
2141 /* init */
2142
2143 dinfo = qemu_mallocz(sizeof(*dinfo));
2144 if ((buf = qemu_opts_id(opts)) != NULL) {
2145 dinfo->id = qemu_strdup(buf);
2146 } else {
2147 /* no id supplied -> create one */
2148 dinfo->id = qemu_mallocz(32);
2149 if (type == IF_IDE || type == IF_SCSI)
2150 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2151 if (max_devs)
2152 snprintf(dinfo->id, 32, "%s%i%s%i",
2153 devname, bus_id, mediastr, unit_id);
2154 else
2155 snprintf(dinfo->id, 32, "%s%s%i",
2156 devname, mediastr, unit_id);
2157 }
2158 dinfo->bdrv = bdrv_new(dinfo->id);
2159 dinfo->devaddr = devaddr;
2160 dinfo->type = type;
2161 dinfo->bus = bus_id;
2162 dinfo->unit = unit_id;
2163 dinfo->onerror = onerror;
2164 dinfo->opts = opts;
2165 if (serial)
2166 strncpy(dinfo->serial, serial, sizeof(serial));
2167 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2168
2169 switch(type) {
2170 case IF_IDE:
2171 case IF_SCSI:
2172 case IF_XEN:
2173 switch(media) {
2174 case MEDIA_DISK:
2175 if (cyls != 0) {
2176 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2177 bdrv_set_translation_hint(dinfo->bdrv, translation);
2178 }
2179 break;
2180 case MEDIA_CDROM:
2181 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2182 break;
2183 }
2184 break;
2185 case IF_SD:
2186 /* FIXME: This isn't really a floppy, but it's a reasonable
2187 approximation. */
2188 case IF_FLOPPY:
2189 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2190 break;
2191 case IF_PFLASH:
2192 case IF_MTD:
2193 case IF_NONE:
2194 break;
2195 case IF_VIRTIO:
2196 /* add virtio block device */
2197 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2198 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2199 qemu_opt_set(opts, "drive", dinfo->id);
2200 if (devaddr)
2201 qemu_opt_set(opts, "addr", devaddr);
2202 break;
2203 case IF_COUNT:
2204 abort();
2205 }
2206 if (!file) {
2207 *fatal_error = 0;
2208 return NULL;
2209 }
2210 bdrv_flags = 0;
2211 if (snapshot) {
2212 bdrv_flags |= BDRV_O_SNAPSHOT;
2213 cache = 2; /* always use write-back with snapshot */
2214 }
2215 if (cache == 0) /* no caching */
2216 bdrv_flags |= BDRV_O_NOCACHE;
2217 else if (cache == 2) /* write-back */
2218 bdrv_flags |= BDRV_O_CACHE_WB;
2219 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2220 fprintf(stderr, "qemu: could not open disk image %s\n",
2221 file);
2222 return NULL;
2223 }
2224 if (bdrv_key_required(dinfo->bdrv))
2225 autostart = 0;
2226 *fatal_error = 0;
2227 return dinfo;
2228 }
2229
2230 static int drive_init_func(QemuOpts *opts, void *opaque)
2231 {
2232 QEMUMachine *machine = opaque;
2233 int fatal_error = 0;
2234
2235 if (drive_init(opts, machine, &fatal_error) == NULL) {
2236 if (fatal_error)
2237 return 1;
2238 }
2239 return 0;
2240 }
2241
2242 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2243 {
2244 if (NULL == qemu_opt_get(opts, "snapshot")) {
2245 qemu_opt_set(opts, "snapshot", "on");
2246 }
2247 return 0;
2248 }
2249
2250 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2251 {
2252 boot_set_handler = func;
2253 boot_set_opaque = opaque;
2254 }
2255
2256 int qemu_boot_set(const char *boot_devices)
2257 {
2258 if (!boot_set_handler) {
2259 return -EINVAL;
2260 }
2261 return boot_set_handler(boot_set_opaque, boot_devices);
2262 }
2263
2264 static int parse_bootdevices(char *devices)
2265 {
2266 /* We just do some generic consistency checks */
2267 const char *p;
2268 int bitmap = 0;
2269
2270 for (p = devices; *p != '\0'; p++) {
2271 /* Allowed boot devices are:
2272 * a-b: floppy disk drives
2273 * c-f: IDE disk drives
2274 * g-m: machine implementation dependant drives
2275 * n-p: network devices
2276 * It's up to each machine implementation to check if the given boot
2277 * devices match the actual hardware implementation and firmware
2278 * features.
2279 */
2280 if (*p < 'a' || *p > 'p') {
2281 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2282 exit(1);
2283 }
2284 if (bitmap & (1 << (*p - 'a'))) {
2285 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2286 exit(1);
2287 }
2288 bitmap |= 1 << (*p - 'a');
2289 }
2290 return bitmap;
2291 }
2292
2293 static void restore_boot_devices(void *opaque)
2294 {
2295 char *standard_boot_devices = opaque;
2296
2297 qemu_boot_set(standard_boot_devices);
2298
2299 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2300 qemu_free(standard_boot_devices);
2301 }
2302
2303 static void numa_add(const char *optarg)
2304 {
2305 char option[128];
2306 char *endptr;
2307 unsigned long long value, endvalue;
2308 int nodenr;
2309
2310 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2311 if (!strcmp(option, "node")) {
2312 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2313 nodenr = nb_numa_nodes;
2314 } else {
2315 nodenr = strtoull(option, NULL, 10);
2316 }
2317
2318 if (get_param_value(option, 128, "mem", optarg) == 0) {
2319 node_mem[nodenr] = 0;
2320 } else {
2321 value = strtoull(option, &endptr, 0);
2322 switch (*endptr) {
2323 case 0: case 'M': case 'm':
2324 value <<= 20;
2325 break;
2326 case 'G': case 'g':
2327 value <<= 30;
2328 break;
2329 }
2330 node_mem[nodenr] = value;
2331 }
2332 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2333 node_cpumask[nodenr] = 0;
2334 } else {
2335 value = strtoull(option, &endptr, 10);
2336 if (value >= 64) {
2337 value = 63;
2338 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2339 } else {
2340 if (*endptr == '-') {
2341 endvalue = strtoull(endptr+1, &endptr, 10);
2342 if (endvalue >= 63) {
2343 endvalue = 62;
2344 fprintf(stderr,
2345 "only 63 CPUs in NUMA mode supported.\n");
2346 }
2347 value = (1 << (endvalue + 1)) - (1 << value);
2348 } else {
2349 value = 1 << value;
2350 }
2351 }
2352 node_cpumask[nodenr] = value;
2353 }
2354 nb_numa_nodes++;
2355 }
2356 return;
2357 }
2358
2359 /***********************************************************/
2360 /* USB devices */
2361
2362 static USBPort *used_usb_ports;
2363 static USBPort *free_usb_ports;
2364
2365 /* ??? Maybe change this to register a hub to keep track of the topology. */
2366 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2367 usb_attachfn attach)
2368 {
2369 port->opaque = opaque;
2370 port->index = index;
2371 port->attach = attach;
2372 port->next = free_usb_ports;
2373 free_usb_ports = port;
2374 }
2375
2376 int usb_device_add_dev(USBDevice *dev)
2377 {
2378 USBPort *port;
2379
2380 /* Find a USB port to add the device to. */
2381 port = free_usb_ports;
2382 if (!port->next) {
2383 USBDevice *hub;
2384
2385 /* Create a new hub and chain it on. */
2386 free_usb_ports = NULL;
2387 port->next = used_usb_ports;
2388 used_usb_ports = port;
2389
2390 hub = usb_hub_init(VM_USB_HUB_SIZE);
2391 usb_attach(port, hub);
2392 port = free_usb_ports;
2393 }
2394
2395 free_usb_ports = port->next;
2396 port->next = used_usb_ports;
2397 used_usb_ports = port;
2398 usb_attach(port, dev);
2399 return 0;
2400 }
2401
2402 static void usb_msd_password_cb(void *opaque, int err)
2403 {
2404 USBDevice *dev = opaque;
2405
2406 if (!err)
2407 usb_device_add_dev(dev);
2408 else
2409 dev->handle_destroy(dev);
2410 }
2411
2412 static int usb_device_add(const char *devname, int is_hotplug)
2413 {
2414 const char *p;
2415 USBDevice *dev;
2416
2417 if (!free_usb_ports)
2418 return -1;
2419
2420 if (strstart(devname, "host:", &p)) {
2421 dev = usb_host_device_open(p);
2422 } else if (!strcmp(devname, "mouse")) {
2423 dev = usb_mouse_init();
2424 } else if (!strcmp(devname, "tablet")) {
2425 dev = usb_tablet_init();
2426 } else if (!strcmp(devname, "keyboard")) {
2427 dev = usb_keyboard_init();
2428 } else if (strstart(devname, "disk:", &p)) {
2429 BlockDriverState *bs;
2430
2431 dev = usb_msd_init(p);
2432 if (!dev)
2433 return -1;
2434 bs = usb_msd_get_bdrv(dev);
2435 if (bdrv_key_required(bs)) {
2436 autostart = 0;
2437 if (is_hotplug) {
2438 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2439 dev);
2440 return 0;
2441 }
2442 }
2443 } else if (!strcmp(devname, "wacom-tablet")) {
2444 dev = usb_wacom_init();
2445 } else if (strstart(devname, "serial:", &p)) {
2446 dev = usb_serial_init(p);
2447 #ifdef CONFIG_BRLAPI
2448 } else if (!strcmp(devname, "braille")) {
2449 dev = usb_baum_init();
2450 #endif
2451 } else if (strstart(devname, "net:", &p)) {
2452 int nic = nb_nics;
2453
2454 if (net_client_init(NULL, "nic", p) < 0)
2455 return -1;
2456 nd_table[nic].model = "usb";
2457 dev = usb_net_init(&nd_table[nic]);
2458 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2459 dev = usb_bt_init(devname[2] ? hci_init(p) :
2460 bt_new_hci(qemu_find_bt_vlan(0)));
2461 } else {
2462 return -1;
2463 }
2464 if (!dev)
2465 return -1;
2466
2467 return usb_device_add_dev(dev);
2468 }
2469
2470 int usb_device_del_addr(int bus_num, int addr)
2471 {
2472 USBPort *port;
2473 USBPort **lastp;
2474 USBDevice *dev;
2475
2476 if (!used_usb_ports)
2477 return -1;
2478
2479 if (bus_num != 0)
2480 return -1;
2481
2482 lastp = &used_usb_ports;
2483 port = used_usb_ports;
2484 while (port && port->dev->addr != addr) {
2485 lastp = &port->next;
2486 port = port->next;
2487 }
2488
2489 if (!port)
2490 return -1;
2491
2492 dev = port->dev;
2493 *lastp = port->next;
2494 usb_attach(port, NULL);
2495 dev->handle_destroy(dev);
2496 port->next = free_usb_ports;
2497 free_usb_ports = port;
2498 return 0;
2499 }
2500
2501 static int usb_device_del(const char *devname)
2502 {
2503 int bus_num, addr;
2504 const char *p;
2505
2506 if (strstart(devname, "host:", &p))
2507 return usb_host_device_close(p);
2508
2509 if (!used_usb_ports)
2510 return -1;
2511
2512 p = strchr(devname, '.');
2513 if (!p)
2514 return -1;
2515 bus_num = strtoul(devname, NULL, 0);
2516 addr = strtoul(p + 1, NULL, 0);
2517
2518 return usb_device_del_addr(bus_num, addr);
2519 }
2520
2521 static int usb_parse(const char *cmdline)
2522 {
2523 return usb_device_add(cmdline, 0);
2524 }
2525
2526 void do_usb_add(Monitor *mon, const char *devname)
2527 {
2528 usb_device_add(devname, 1);
2529 }
2530
2531 void do_usb_del(Monitor *mon, const char *devname)
2532 {
2533 usb_device_del(devname);
2534 }
2535
2536 void usb_info(Monitor *mon)
2537 {
2538 USBDevice *dev;
2539 USBPort *port;
2540 const char *speed_str;
2541
2542 if (!usb_enabled) {
2543 monitor_printf(mon, "USB support not enabled\n");
2544 return;
2545 }
2546
2547 for (port = used_usb_ports; port; port = port->next) {
2548 dev = port->dev;
2549 if (!dev)
2550 continue;
2551 switch(dev->speed) {
2552 case USB_SPEED_LOW:
2553 speed_str = "1.5";
2554 break;
2555 case USB_SPEED_FULL:
2556 speed_str = "12";
2557 break;
2558 case USB_SPEED_HIGH:
2559 speed_str = "480";
2560 break;
2561 default:
2562 speed_str = "?";
2563 break;
2564 }
2565 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2566 0, dev->addr, speed_str, dev->devname);
2567 }
2568 }
2569
2570 /***********************************************************/
2571 /* PCMCIA/Cardbus */
2572
2573 static struct pcmcia_socket_entry_s {
2574 PCMCIASocket *socket;
2575 struct pcmcia_socket_entry_s *next;
2576 } *pcmcia_sockets = 0;
2577
2578 void pcmcia_socket_register(PCMCIASocket *socket)
2579 {
2580 struct pcmcia_socket_entry_s *entry;
2581
2582 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2583 entry->socket = socket;
2584 entry->next = pcmcia_sockets;
2585 pcmcia_sockets = entry;
2586 }
2587
2588 void pcmcia_socket_unregister(PCMCIASocket *socket)
2589 {
2590 struct pcmcia_socket_entry_s *entry, **ptr;
2591
2592 ptr = &pcmcia_sockets;
2593 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2594 if (entry->socket == socket) {
2595 *ptr = entry->next;
2596 qemu_free(entry);
2597 }
2598 }
2599
2600 void pcmcia_info(Monitor *mon)
2601 {
2602 struct pcmcia_socket_entry_s *iter;
2603
2604 if (!pcmcia_sockets)
2605 monitor_printf(mon, "No PCMCIA sockets\n");
2606
2607 for (iter = pcmcia_sockets; iter; iter = iter->next)
2608 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2609 iter->socket->attached ? iter->socket->card_string :
2610 "Empty");
2611 }
2612
2613 /***********************************************************/
2614 /* register display */
2615
2616 struct DisplayAllocator default_allocator = {
2617 defaultallocator_create_displaysurface,
2618 defaultallocator_resize_displaysurface,
2619 defaultallocator_free_displaysurface
2620 };
2621
2622 void register_displaystate(DisplayState *ds)
2623 {
2624 DisplayState **s;
2625 s = &display_state;
2626 while (*s != NULL)
2627 s = &(*s)->next;
2628 ds->next = NULL;
2629 *s = ds;
2630 }
2631
2632 DisplayState *get_displaystate(void)
2633 {
2634 return display_state;
2635 }
2636
2637 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2638 {
2639 if(ds->allocator == &default_allocator) ds->allocator = da;
2640 return ds->allocator;
2641 }
2642
2643 /* dumb display */
2644
2645 static void dumb_display_init(void)
2646 {
2647 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2648 ds->allocator = &default_allocator;
2649 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2650 register_displaystate(ds);
2651 }
2652
2653 /***********************************************************/
2654 /* I/O handling */
2655
2656 typedef struct IOHandlerRecord {
2657 int fd;
2658 IOCanRWHandler *fd_read_poll;
2659 IOHandler *fd_read;
2660 IOHandler *fd_write;
2661 int deleted;
2662 void *opaque;
2663 /* temporary data */
2664 struct pollfd *ufd;
2665 struct IOHandlerRecord *next;
2666 } IOHandlerRecord;
2667
2668 static IOHandlerRecord *first_io_handler;
2669
2670 /* XXX: fd_read_poll should be suppressed, but an API change is
2671 necessary in the character devices to suppress fd_can_read(). */
2672 int qemu_set_fd_handler2(int fd,
2673 IOCanRWHandler *fd_read_poll,
2674 IOHandler *fd_read,
2675 IOHandler *fd_write,
2676 void *opaque)
2677 {
2678 IOHandlerRecord **pioh, *ioh;
2679
2680 if (!fd_read && !fd_write) {
2681 pioh = &first_io_handler;
2682 for(;;) {
2683 ioh = *pioh;
2684 if (ioh == NULL)
2685 break;
2686 if (ioh->fd == fd) {
2687 ioh->deleted = 1;
2688 break;
2689 }
2690 pioh = &ioh->next;
2691 }
2692 } else {
2693 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2694 if (ioh->fd == fd)
2695 goto found;
2696 }
2697 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2698 ioh->next = first_io_handler;
2699 first_io_handler = ioh;
2700 found:
2701 ioh->fd = fd;
2702 ioh->fd_read_poll = fd_read_poll;
2703 ioh->fd_read = fd_read;
2704 ioh->fd_write = fd_write;
2705 ioh->opaque = opaque;
2706 ioh->deleted = 0;
2707 }
2708 return 0;
2709 }
2710
2711 int qemu_set_fd_handler(int fd,
2712 IOHandler *fd_read,
2713 IOHandler *fd_write,
2714 void *opaque)
2715 {
2716 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2717 }
2718
2719 #ifdef _WIN32
2720 /***********************************************************/
2721 /* Polling handling */
2722
2723 typedef struct PollingEntry {
2724 PollingFunc *func;
2725 void *opaque;
2726 struct PollingEntry *next;
2727 } PollingEntry;
2728
2729 static PollingEntry *first_polling_entry;
2730
2731 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2732 {
2733 PollingEntry **ppe, *pe;
2734 pe = qemu_mallocz(sizeof(PollingEntry));
2735 pe->func = func;
2736 pe->opaque = opaque;
2737 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2738 *ppe = pe;
2739 return 0;
2740 }
2741
2742 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2743 {
2744 PollingEntry **ppe, *pe;
2745 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2746 pe = *ppe;
2747 if (pe->func == func && pe->opaque == opaque) {
2748 *ppe = pe->next;
2749 qemu_free(pe);
2750 break;
2751 }
2752 }
2753 }
2754
2755 /***********************************************************/
2756 /* Wait objects support */
2757 typedef struct WaitObjects {
2758 int num;
2759 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2760 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2761 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2762 } WaitObjects;
2763
2764 static WaitObjects wait_objects = {0};
2765
2766 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2767 {
2768 WaitObjects *w = &wait_objects;
2769
2770 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2771 return -1;
2772 w->events[w->num] = handle;
2773 w->func[w->num] = func;
2774 w->opaque[w->num] = opaque;
2775 w->num++;
2776 return 0;
2777 }
2778
2779 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2780 {
2781 int i, found;
2782 WaitObjects *w = &wait_objects;
2783
2784 found = 0;
2785 for (i = 0; i < w->num; i++) {
2786 if (w->events[i] == handle)
2787 found = 1;
2788 if (found) {
2789 w->events[i] = w->events[i + 1];
2790 w->func[i] = w->func[i + 1];
2791 w->opaque[i] = w->opaque[i + 1];
2792 }
2793 }
2794 if (found)
2795 w->num--;
2796 }
2797 #endif
2798
2799 /***********************************************************/
2800 /* ram save/restore */
2801
2802 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2803 {
2804 int v;
2805
2806 v = qemu_get_byte(f);
2807 switch(v) {
2808 case 0:
2809 if (qemu_get_buffer(f, buf, len) != len)
2810 return -EIO;
2811 break;
2812 case 1:
2813 v = qemu_get_byte(f);
2814 memset(buf, v, len);
2815 break;
2816 default:
2817 return -EINVAL;
2818 }
2819
2820 if (qemu_file_has_error(f))
2821 return -EIO;
2822
2823 return 0;
2824 }
2825
2826 static int ram_load_v1(QEMUFile *f, void *opaque)
2827 {
2828 int ret;
2829 ram_addr_t i;
2830
2831 if (qemu_get_be32(f) != last_ram_offset)
2832 return -EINVAL;
2833 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2834 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2835 if (ret)
2836 return ret;
2837 }
2838 return 0;
2839 }
2840
2841 #define BDRV_HASH_BLOCK_SIZE 1024
2842 #define IOBUF_SIZE 4096
2843 #define RAM_CBLOCK_MAGIC 0xfabe
2844
2845 typedef struct RamDecompressState {
2846 z_stream zstream;
2847 QEMUFile *f;
2848 uint8_t buf[IOBUF_SIZE];
2849 } RamDecompressState;
2850
2851 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2852 {
2853 int ret;
2854 memset(s, 0, sizeof(*s));
2855 s->f = f;
2856 ret = inflateInit(&s->zstream);
2857 if (ret != Z_OK)
2858 return -1;
2859 return 0;
2860 }
2861
2862 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2863 {
2864 int ret, clen;
2865
2866 s->zstream.avail_out = len;
2867 s->zstream.next_out = buf;
2868 while (s->zstream.avail_out > 0) {
2869 if (s->zstream.avail_in == 0) {
2870 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2871 return -1;
2872 clen = qemu_get_be16(s->f);
2873 if (clen > IOBUF_SIZE)
2874 return -1;
2875 qemu_get_buffer(s->f, s->buf, clen);
2876 s->zstream.avail_in = clen;
2877 s->zstream.next_in = s->buf;
2878 }
2879 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2880 if (ret != Z_OK && ret != Z_STREAM_END) {
2881 return -1;
2882 }
2883 }
2884 return 0;
2885 }
2886
2887 static void ram_decompress_close(RamDecompressState *s)
2888 {
2889 inflateEnd(&s->zstream);
2890 }
2891
2892 #define RAM_SAVE_FLAG_FULL 0x01
2893 #define RAM_SAVE_FLAG_COMPRESS 0x02
2894 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2895 #define RAM_SAVE_FLAG_PAGE 0x08
2896 #define RAM_SAVE_FLAG_EOS 0x10
2897
2898 static int is_dup_page(uint8_t *page, uint8_t ch)
2899 {
2900 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2901 uint32_t *array = (uint32_t *)page;
2902 int i;
2903
2904 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2905 if (array[i] != val)
2906 return 0;
2907 }
2908
2909 return 1;
2910 }
2911
2912 static int ram_save_block(QEMUFile *f)
2913 {
2914 static ram_addr_t current_addr = 0;
2915 ram_addr_t saved_addr = current_addr;
2916 ram_addr_t addr = 0;
2917 int found = 0;
2918
2919 while (addr < last_ram_offset) {
2920 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2921 uint8_t *p;
2922
2923 cpu_physical_memory_reset_dirty(current_addr,
2924 current_addr + TARGET_PAGE_SIZE,
2925 MIGRATION_DIRTY_FLAG);
2926
2927 p = qemu_get_ram_ptr(current_addr);
2928
2929 if (is_dup_page(p, *p)) {
2930 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2931 qemu_put_byte(f, *p);
2932 } else {
2933 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2934 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2935 }
2936
2937 found = 1;
2938 break;
2939 }
2940 addr += TARGET_PAGE_SIZE;
2941 current_addr = (saved_addr + addr) % last_ram_offset;
2942 }
2943
2944 return found;
2945 }
2946
2947 static uint64_t bytes_transferred = 0;
2948
2949 static ram_addr_t ram_save_remaining(void)
2950 {
2951 ram_addr_t addr;
2952 ram_addr_t count = 0;
2953
2954 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2955 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2956 count++;
2957 }
2958
2959 return count;
2960 }
2961
2962 uint64_t ram_bytes_remaining(void)
2963 {
2964 return ram_save_remaining() * TARGET_PAGE_SIZE;
2965 }
2966
2967 uint64_t ram_bytes_transferred(void)
2968 {
2969 return bytes_transferred;
2970 }
2971
2972 uint64_t ram_bytes_total(void)
2973 {
2974 return last_ram_offset;
2975 }
2976
2977 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2978 {
2979 ram_addr_t addr;
2980 uint64_t bytes_transferred_last;
2981 double bwidth = 0;
2982 uint64_t expected_time = 0;
2983
2984 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2985 qemu_file_set_error(f);
2986 return 0;
2987 }
2988
2989 if (stage == 1) {
2990 /* Make sure all dirty bits are set */
2991 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2992 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2993 cpu_physical_memory_set_dirty(addr);
2994 }
2995
2996 /* Enable dirty memory tracking */
2997 cpu_physical_memory_set_dirty_tracking(1);
2998
2999 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3000 }
3001
3002 bytes_transferred_last = bytes_transferred;
3003 bwidth = get_clock();
3004
3005 while (!qemu_file_rate_limit(f)) {
3006 int ret;
3007
3008 ret = ram_save_block(f);
3009 bytes_transferred += ret * TARGET_PAGE_SIZE;
3010 if (ret == 0) /* no more blocks */
3011 break;
3012 }
3013
3014 bwidth = get_clock() - bwidth;
3015 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3016
3017 /* if we haven't transferred anything this round, force expected_time to a
3018 * a very high value, but without crashing */
3019 if (bwidth == 0)
3020 bwidth = 0.000001;
3021
3022 /* try transferring iterative blocks of memory */
3023
3024 if (stage == 3) {
3025
3026 /* flush all remaining blocks regardless of rate limiting */
3027 while (ram_save_block(f) != 0) {
3028 bytes_transferred += TARGET_PAGE_SIZE;
3029 }
3030 cpu_physical_memory_set_dirty_tracking(0);
3031 }
3032
3033 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3034
3035 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3036
3037 return (stage == 2) && (expected_time <= migrate_max_downtime());
3038 }
3039
3040 static int ram_load_dead(QEMUFile *f, void *opaque)
3041 {
3042 RamDecompressState s1, *s = &s1;
3043 uint8_t buf[10];
3044 ram_addr_t i;
3045
3046 if (ram_decompress_open(s, f) < 0)
3047 return -EINVAL;
3048 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3049 if (ram_decompress_buf(s, buf, 1) < 0) {
3050 fprintf(stderr, "Error while reading ram block header\n");
3051 goto error;
3052 }
3053 if (buf[0] == 0) {
3054 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3055 BDRV_HASH_BLOCK_SIZE) < 0) {
3056 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3057 goto error;
3058 }
3059 } else {
3060 error:
3061 printf("Error block header\n");
3062 return -EINVAL;
3063 }
3064 }
3065 ram_decompress_close(s);
3066
3067 return 0;
3068 }
3069
3070 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3071 {
3072 ram_addr_t addr;
3073 int flags;
3074
3075 if (version_id == 1)
3076 return ram_load_v1(f, opaque);
3077
3078 if (version_id == 2) {
3079 if (qemu_get_be32(f) != last_ram_offset)
3080 return -EINVAL;
3081 return ram_load_dead(f, opaque);
3082 }
3083
3084 if (version_id != 3)
3085 return -EINVAL;
3086
3087 do {
3088 addr = qemu_get_be64(f);
3089
3090 flags = addr & ~TARGET_PAGE_MASK;
3091 addr &= TARGET_PAGE_MASK;
3092
3093 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3094 if (addr != last_ram_offset)
3095 return -EINVAL;
3096 }
3097
3098 if (flags & RAM_SAVE_FLAG_FULL) {
3099 if (ram_load_dead(f, opaque) < 0)
3100 return -EINVAL;
3101 }
3102
3103 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3104 uint8_t ch = qemu_get_byte(f);
3105 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3106 #ifndef _WIN32
3107 if (ch == 0 &&
3108 (!kvm_enabled() || kvm_has_sync_mmu())) {
3109 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3110 }
3111 #endif
3112 } else if (flags & RAM_SAVE_FLAG_PAGE)
3113 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3114 } while (!(flags & RAM_SAVE_FLAG_EOS));
3115
3116 return 0;
3117 }
3118
3119 void qemu_service_io(void)
3120 {
3121 qemu_notify_event();
3122 }
3123
3124 /***********************************************************/
3125 /* bottom halves (can be seen as timers which expire ASAP) */
3126
3127 struct QEMUBH {
3128 QEMUBHFunc *cb;
3129 void *opaque;
3130 int scheduled;
3131 int idle;
3132 int deleted;
3133 QEMUBH *next;
3134 };
3135
3136 static QEMUBH *first_bh = NULL;
3137
3138 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3139 {
3140 QEMUBH *bh;
3141 bh = qemu_mallocz(sizeof(QEMUBH));
3142 bh->cb = cb;
3143 bh->opaque = opaque;
3144 bh->next = first_bh;
3145 first_bh = bh;
3146 return bh;
3147 }
3148
3149 int qemu_bh_poll(void)
3150 {
3151 QEMUBH *bh, **bhp;
3152 int ret;
3153
3154 ret = 0;
3155 for (bh = first_bh; bh; bh = bh->next) {
3156 if (!bh->deleted && bh->scheduled) {
3157 bh->scheduled = 0;
3158 if (!bh->idle)
3159 ret = 1;
3160 bh->idle = 0;
3161 bh->cb(bh->opaque);
3162 }
3163 }
3164
3165 /* remove deleted bhs */
3166 bhp = &first_bh;
3167 while (*bhp) {
3168 bh = *bhp;
3169 if (bh->deleted) {
3170 *bhp = bh->next;
3171 qemu_free(bh);
3172 } else
3173 bhp = &bh->next;
3174 }
3175
3176 return ret;
3177 }
3178
3179 void qemu_bh_schedule_idle(QEMUBH *bh)
3180 {
3181 if (bh->scheduled)
3182 return;
3183 bh->scheduled = 1;
3184 bh->idle = 1;
3185 }
3186
3187 void qemu_bh_schedule(QEMUBH *bh)
3188 {
3189 if (bh->scheduled)
3190 return;
3191 bh->scheduled = 1;
3192 bh->idle = 0;
3193 /* stop the currently executing CPU to execute the BH ASAP */
3194 qemu_notify_event();
3195 }
3196
3197 void qemu_bh_cancel(QEMUBH *bh)
3198 {
3199 bh->scheduled = 0;
3200 }
3201
3202 void qemu_bh_delete(QEMUBH *bh)
3203 {
3204 bh->scheduled = 0;
3205 bh->deleted = 1;
3206 }
3207
3208 static void qemu_bh_update_timeout(int *timeout)
3209 {
3210 QEMUBH *bh;
3211
3212 for (bh = first_bh; bh; bh = bh->next) {
3213 if (!bh->deleted && bh->scheduled) {
3214 if (bh->idle) {
3215 /* idle bottom halves will be polled at least
3216 * every 10ms */
3217 *timeout = MIN(10, *timeout);
3218 } else {
3219 /* non-idle bottom halves will be executed
3220 * immediately */
3221 *timeout = 0;
3222 break;
3223 }
3224 }
3225 }
3226 }
3227
3228 /***********************************************************/
3229 /* machine registration */
3230
3231 static QEMUMachine *first_machine = NULL;
3232 QEMUMachine *current_machine = NULL;
3233
3234 int qemu_register_machine(QEMUMachine *m)
3235 {
3236 QEMUMachine **pm;
3237 pm = &first_machine;
3238 while (*pm != NULL)
3239 pm = &(*pm)->next;
3240 m->next = NULL;
3241 *pm = m;
3242 return 0;
3243 }
3244
3245 static QEMUMachine *find_machine(const char *name)
3246 {
3247 QEMUMachine *m;
3248
3249 for(m = first_machine; m != NULL; m = m->next) {
3250 if (!strcmp(m->name, name))
3251 return m;
3252 if (m->alias && !strcmp(m->alias, name))
3253 return m;
3254 }
3255 return NULL;
3256 }
3257
3258 static QEMUMachine *find_default_machine(void)
3259 {
3260 QEMUMachine *m;
3261
3262 for(m = first_machine; m != NULL; m = m->next) {
3263 if (m->is_default) {
3264 return m;
3265 }
3266 }
3267 return NULL;
3268 }
3269
3270 /***********************************************************/
3271 /* main execution loop */
3272
3273 static void gui_update(void *opaque)
3274 {
3275 uint64_t interval = GUI_REFRESH_INTERVAL;
3276 DisplayState *ds = opaque;
3277 DisplayChangeListener *dcl = ds->listeners;
3278
3279 dpy_refresh(ds);
3280
3281 while (dcl != NULL) {
3282 if (dcl->gui_timer_interval &&
3283 dcl->gui_timer_interval < interval)
3284 interval = dcl->gui_timer_interval;
3285 dcl = dcl->next;
3286 }
3287 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3288 }
3289
3290 static void nographic_update(void *opaque)
3291 {
3292 uint64_t interval = GUI_REFRESH_INTERVAL;
3293
3294 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3295 }
3296
3297 struct vm_change_state_entry {
3298 VMChangeStateHandler *cb;
3299 void *opaque;
3300 LIST_ENTRY (vm_change_state_entry) entries;
3301 };
3302
3303 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3304
3305 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3306 void *opaque)
3307 {
3308 VMChangeStateEntry *e;
3309
3310 e = qemu_mallocz(sizeof (*e));
3311
3312 e->cb = cb;
3313 e->opaque = opaque;
3314 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3315 return e;
3316 }
3317
3318 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3319 {
3320 LIST_REMOVE (e, entries);
3321 qemu_free (e);
3322 }
3323
3324 static void vm_state_notify(int running, int reason)
3325 {
3326 VMChangeStateEntry *e;
3327
3328 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3329 e->cb(e->opaque, running, reason);
3330 }
3331 }
3332
3333 static void resume_all_vcpus(void);
3334 static void pause_all_vcpus(void);
3335
3336 void vm_start(void)
3337 {
3338 if (!vm_running) {
3339 cpu_enable_ticks();
3340 vm_running = 1;
3341 vm_state_notify(1, 0);
3342 qemu_rearm_alarm_timer(alarm_timer);
3343 resume_all_vcpus();
3344 }
3345 }
3346
3347 /* reset/shutdown handler */
3348
3349 typedef struct QEMUResetEntry {
3350 TAILQ_ENTRY(QEMUResetEntry) entry;
3351 QEMUResetHandler *func;
3352 void *opaque;
3353 } QEMUResetEntry;
3354
3355 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3356 TAILQ_HEAD_INITIALIZER(reset_handlers);
3357 static int reset_requested;
3358 static int shutdown_requested;
3359 static int powerdown_requested;
3360 static int debug_requested;
3361 static int vmstop_requested;
3362
3363 int qemu_shutdown_requested(void)
3364 {
3365 int r = shutdown_requested;
3366 shutdown_requested = 0;
3367 return r;
3368 }
3369
3370 int qemu_reset_requested(void)
3371 {
3372 int r = reset_requested;
3373 reset_requested = 0;
3374 return r;
3375 }
3376
3377 int qemu_powerdown_requested(void)
3378 {
3379 int r = powerdown_requested;
3380 powerdown_requested = 0;
3381 return r;
3382 }
3383
3384 static int qemu_debug_requested(void)
3385 {
3386 int r = debug_requested;
3387 debug_requested = 0;
3388 return r;
3389 }
3390
3391 static int qemu_vmstop_requested(void)
3392 {
3393 int r = vmstop_requested;
3394 vmstop_requested = 0;
3395 return r;
3396 }
3397
3398 static void do_vm_stop(int reason)
3399 {
3400 if (vm_running) {
3401 cpu_disable_ticks();
3402 vm_running = 0;
3403 pause_all_vcpus();
3404 vm_state_notify(0, reason);
3405 }
3406 }
3407
3408 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3409 {
3410 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3411
3412 re->func = func;
3413 re->opaque = opaque;
3414 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3415 }
3416
3417 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3418 {
3419 QEMUResetEntry *re;
3420
3421 TAILQ_FOREACH(re, &reset_handlers, entry) {
3422 if (re->func == func && re->opaque == opaque) {
3423 TAILQ_REMOVE(&reset_handlers, re, entry);
3424 qemu_free(re);
3425 return;
3426 }
3427 }
3428 }
3429
3430 void qemu_system_reset(void)
3431 {
3432 QEMUResetEntry *re, *nre;
3433
3434 /* reset all devices */
3435 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3436 re->func(re->opaque);
3437 }
3438 }
3439
3440 void qemu_system_reset_request(void)
3441 {
3442 if (no_reboot) {
3443 shutdown_requested = 1;
3444 } else {
3445 reset_requested = 1;
3446 }
3447 qemu_notify_event();
3448 }
3449
3450 void qemu_system_shutdown_request(void)
3451 {
3452 shutdown_requested = 1;
3453 qemu_notify_event();
3454 }
3455
3456 void qemu_system_powerdown_request(void)
3457 {
3458 powerdown_requested = 1;
3459 qemu_notify_event();
3460 }
3461
3462 #ifdef CONFIG_IOTHREAD
3463 static void qemu_system_vmstop_request(int reason)
3464 {
3465 vmstop_requested = reason;
3466 qemu_notify_event();
3467 }
3468 #endif
3469
3470 #ifndef _WIN32
3471 static int io_thread_fd = -1;
3472
3473 static void qemu_event_increment(void)
3474 {
3475 static const char byte = 0;
3476
3477 if (io_thread_fd == -1)
3478 return;
3479
3480 write(io_thread_fd, &byte, sizeof(byte));
3481 }
3482
3483 static void qemu_event_read(void *opaque)
3484 {
3485 int fd = (unsigned long)opaque;
3486 ssize_t len;
3487
3488 /* Drain the notify pipe */
3489 do {
3490 char buffer[512];
3491 len = read(fd, buffer, sizeof(buffer));
3492 } while ((len == -1 && errno == EINTR) || len > 0);
3493 }
3494
3495 static int qemu_event_init(void)
3496 {
3497 int err;
3498 int fds[2];
3499
3500 err = pipe(fds);
3501 if (err == -1)
3502 return -errno;
3503
3504 err = fcntl_setfl(fds[0], O_NONBLOCK);
3505 if (err < 0)
3506 goto fail;
3507
3508 err = fcntl_setfl(fds[1], O_NONBLOCK);
3509 if (err < 0)
3510 goto fail;
3511
3512 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3513 (void *)(unsigned long)fds[0]);
3514
3515 io_thread_fd = fds[1];
3516 return 0;
3517
3518 fail:
3519 close(fds[0]);
3520 close(fds[1]);
3521 return err;
3522 }
3523 #else
3524 HANDLE qemu_event_handle;
3525
3526 static void dummy_event_handler(void *opaque)
3527 {
3528 }
3529
3530 static int qemu_event_init(void)
3531 {
3532 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3533 if (!qemu_event_handle) {
3534 perror("Failed CreateEvent");
3535 return -1;
3536 }
3537 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3538 return 0;
3539 }
3540
3541 static void qemu_event_increment(void)
3542 {
3543 SetEvent(qemu_event_handle);
3544 }
3545 #endif
3546
3547 static int cpu_can_run(CPUState *env)
3548 {
3549 if (env->stop)
3550 return 0;
3551 if (env->stopped)
3552 return 0;
3553 return 1;
3554 }
3555
3556 #ifndef CONFIG_IOTHREAD
3557 static int qemu_init_main_loop(void)
3558 {
3559 return qemu_event_init();
3560 }
3561
3562 void qemu_init_vcpu(void *_env)
3563 {
3564 CPUState *env = _env;
3565
3566 if (kvm_enabled())
3567 kvm_init_vcpu(env);
3568 return;
3569 }
3570
3571 int qemu_cpu_self(void *env)
3572 {
3573 return 1;
3574 }
3575
3576 static void resume_all_vcpus(void)
3577 {
3578 }
3579
3580 static void pause_all_vcpus(void)
3581 {
3582 }
3583
3584 void qemu_cpu_kick(void *env)
3585 {
3586 return;
3587 }
3588
3589 void qemu_notify_event(void)
3590 {
3591 CPUState *env = cpu_single_env;
3592
3593 if (env) {
3594 cpu_exit(env);
3595 }
3596 }
3597
3598 #define qemu_mutex_lock_iothread() do { } while (0)
3599 #define qemu_mutex_unlock_iothread() do { } while (0)
3600
3601 void vm_stop(int reason)
3602 {
3603 do_vm_stop(reason);
3604 }
3605
3606 #else /* CONFIG_IOTHREAD */
3607
3608 #include "qemu-thread.h"
3609
3610 QemuMutex qemu_global_mutex;
3611 static QemuMutex qemu_fair_mutex;
3612
3613 static QemuThread io_thread;
3614
3615 static QemuThread *tcg_cpu_thread;
3616 static QemuCond *tcg_halt_cond;
3617
3618 static int qemu_system_ready;
3619 /* cpu creation */
3620 static QemuCond qemu_cpu_cond;
3621 /* system init */
3622 static QemuCond qemu_system_cond;
3623 static QemuCond qemu_pause_cond;
3624
3625 static void block_io_signals(void);
3626 static void unblock_io_signals(void);
3627 static int tcg_has_work(void);
3628
3629 static int qemu_init_main_loop(void)
3630 {
3631 int ret;
3632
3633 ret = qemu_event_init();
3634 if (ret)
3635 return ret;
3636
3637 qemu_cond_init(&qemu_pause_cond);
3638 qemu_mutex_init(&qemu_fair_mutex);
3639 qemu_mutex_init(&qemu_global_mutex);
3640 qemu_mutex_lock(&qemu_global_mutex);
3641
3642 unblock_io_signals();
3643 qemu_thread_self(&io_thread);
3644
3645 return 0;
3646 }
3647
3648 static void qemu_wait_io_event(CPUState *env)
3649 {
3650 while (!tcg_has_work())
3651 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3652
3653 qemu_mutex_unlock(&qemu_global_mutex);
3654
3655 /*
3656 * Users of qemu_global_mutex can be starved, having no chance
3657 * to acquire it since this path will get to it first.
3658 * So use another lock to provide fairness.
3659 */
3660 qemu_mutex_lock(&qemu_fair_mutex);
3661 qemu_mutex_unlock(&qemu_fair_mutex);
3662
3663 qemu_mutex_lock(&qemu_global_mutex);
3664 if (env->stop) {
3665 env->stop = 0;
3666 env->stopped = 1;
3667 qemu_cond_signal(&qemu_pause_cond);
3668 }
3669 }
3670
3671 static int qemu_cpu_exec(CPUState *env);
3672
3673 static void *kvm_cpu_thread_fn(void *arg)
3674 {
3675 CPUState *env = arg;
3676
3677 block_io_signals();
3678 qemu_thread_self(env->thread);
3679
3680 /* signal CPU creation */
3681 qemu_mutex_lock(&qemu_global_mutex);
3682 env->created = 1;
3683 qemu_cond_signal(&qemu_cpu_cond);
3684
3685 /* and wait for machine initialization */
3686 while (!qemu_system_ready)
3687 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3688
3689 while (1) {
3690 if (cpu_can_run(env))
3691 qemu_cpu_exec(env);
3692 qemu_wait_io_event(env);
3693 }
3694
3695 return NULL;
3696 }
3697
3698 static void tcg_cpu_exec(void);
3699
3700 static void *tcg_cpu_thread_fn(void *arg)
3701 {
3702 CPUState *env = arg;
3703
3704 block_io_signals();
3705 qemu_thread_self(env->thread);
3706
3707 /* signal CPU creation */
3708 qemu_mutex_lock(&qemu_global_mutex);
3709 for (env = first_cpu; env != NULL; env = env->next_cpu)
3710 env->created = 1;
3711 qemu_cond_signal(&qemu_cpu_cond);
3712
3713 /* and wait for machine initialization */
3714 while (!qemu_system_ready)
3715 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3716
3717 while (1) {
3718 tcg_cpu_exec();
3719 qemu_wait_io_event(cur_cpu);
3720 }
3721
3722 return NULL;
3723 }
3724
3725 void qemu_cpu_kick(void *_env)
3726 {
3727 CPUState *env = _env;
3728 qemu_cond_broadcast(env->halt_cond);
3729 if (kvm_enabled())
3730 qemu_thread_signal(env->thread, SIGUSR1);
3731 }
3732
3733 int qemu_cpu_self(void *env)
3734 {
3735 return (cpu_single_env != NULL);
3736 }
3737
3738 static void cpu_signal(int sig)
3739 {
3740 if (cpu_single_env)
3741 cpu_exit(cpu_single_env);
3742 }
3743
3744 static void block_io_signals(void)
3745 {
3746 sigset_t set;
3747 struct sigaction sigact;
3748
3749 sigemptyset(&set);
3750 sigaddset(&set, SIGUSR2);
3751 sigaddset(&set, SIGIO);
3752 sigaddset(&set, SIGALRM);
3753 pthread_sigmask(SIG_BLOCK, &set, NULL);
3754
3755 sigemptyset(&set);
3756 sigaddset(&set, SIGUSR1);
3757 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3758
3759 memset(&sigact, 0, sizeof(sigact));
3760 sigact.sa_handler = cpu_signal;
3761 sigaction(SIGUSR1, &sigact, NULL);
3762 }
3763
3764 static void unblock_io_signals(void)
3765 {
3766 sigset_t set;
3767
3768 sigemptyset(&set);
3769 sigaddset(&set, SIGUSR2);
3770 sigaddset(&set, SIGIO);
3771 sigaddset(&set, SIGALRM);
3772 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3773
3774 sigemptyset(&set);
3775 sigaddset(&set, SIGUSR1);
3776 pthread_sigmask(SIG_BLOCK, &set, NULL);
3777 }
3778
3779 static void qemu_signal_lock(unsigned int msecs)
3780 {
3781 qemu_mutex_lock(&qemu_fair_mutex);
3782
3783 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3784 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3785 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3786 break;
3787 }
3788 qemu_mutex_unlock(&qemu_fair_mutex);
3789 }
3790
3791 static void qemu_mutex_lock_iothread(void)
3792 {
3793 if (kvm_enabled()) {
3794 qemu_mutex_lock(&qemu_fair_mutex);
3795 qemu_mutex_lock(&qemu_global_mutex);
3796 qemu_mutex_unlock(&qemu_fair_mutex);
3797 } else
3798 qemu_signal_lock(100);
3799 }
3800
3801 static void qemu_mutex_unlock_iothread(void)
3802 {
3803 qemu_mutex_unlock(&qemu_global_mutex);
3804 }
3805
3806 static int all_vcpus_paused(void)
3807 {
3808 CPUState *penv = first_cpu;
3809
3810 while (penv) {
3811 if (!penv->stopped)
3812 return 0;
3813 penv = (CPUState *)penv->next_cpu;
3814 }
3815
3816 return 1;
3817 }
3818
3819 static void pause_all_vcpus(void)
3820 {
3821 CPUState *penv = first_cpu;
3822
3823 while (penv) {
3824 penv->stop = 1;
3825 qemu_thread_signal(penv->thread, SIGUSR1);
3826 qemu_cpu_kick(penv);
3827 penv = (CPUState *)penv->next_cpu;
3828 }
3829
3830 while (!all_vcpus_paused()) {
3831 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3832 penv = first_cpu;
3833 while (penv) {
3834 qemu_thread_signal(penv->thread, SIGUSR1);
3835 penv = (CPUState *)penv->next_cpu;
3836 }
3837 }
3838 }
3839
3840 static void resume_all_vcpus(void)
3841 {
3842 CPUState *penv = first_cpu;
3843
3844 while (penv) {
3845 penv->stop = 0;
3846 penv->stopped = 0;
3847 qemu_thread_signal(penv->thread, SIGUSR1);
3848 qemu_cpu_kick(penv);
3849 penv = (CPUState *)penv->next_cpu;
3850 }
3851 }
3852
3853 static void tcg_init_vcpu(void *_env)
3854 {
3855 CPUState *env = _env;
3856 /* share a single thread for all cpus with TCG */
3857 if (!tcg_cpu_thread) {
3858 env->thread = qemu_mallocz(sizeof(QemuThread));
3859 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3860 qemu_cond_init(env->halt_cond);
3861 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3862 while (env->created == 0)
3863 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3864 tcg_cpu_thread = env->thread;
3865 tcg_halt_cond = env->halt_cond;
3866 } else {
3867 env->thread = tcg_cpu_thread;
3868 env->halt_cond = tcg_halt_cond;
3869 }
3870 }
3871
3872 static void kvm_start_vcpu(CPUState *env)
3873 {
3874 kvm_init_vcpu(env);
3875 env->thread = qemu_mallocz(sizeof(QemuThread));
3876 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3877 qemu_cond_init(env->halt_cond);
3878 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3879 while (env->created == 0)
3880 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3881 }
3882
3883 void qemu_init_vcpu(void *_env)
3884 {
3885 CPUState *env = _env;
3886
3887 if (kvm_enabled())
3888 kvm_start_vcpu(env);
3889 else
3890 tcg_init_vcpu(env);
3891 }
3892
3893 void qemu_notify_event(void)
3894 {
3895 qemu_event_increment();
3896 }
3897
3898 void vm_stop(int reason)
3899 {
3900 QemuThread me;
3901 qemu_thread_self(&me);
3902
3903 if (!qemu_thread_equal(&me, &io_thread)) {
3904 qemu_system_vmstop_request(reason);
3905 /*
3906 * FIXME: should not return to device code in case
3907 * vm_stop() has been requested.
3908 */
3909 if (cpu_single_env) {
3910 cpu_exit(cpu_single_env);
3911 cpu_single_env->stop = 1;
3912 }
3913 return;
3914 }
3915 do_vm_stop(reason);
3916 }
3917
3918 #endif
3919
3920
3921 #ifdef _WIN32
3922 static void host_main_loop_wait(int *timeout)
3923 {
3924 int ret, ret2, i;
3925 PollingEntry *pe;
3926
3927
3928 /* XXX: need to suppress polling by better using win32 events */
3929 ret = 0;
3930 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3931 ret |= pe->func(pe->opaque);
3932 }
3933 if (ret == 0) {
3934 int err;
3935 WaitObjects *w = &wait_objects;
3936
3937 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3938 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3939 if (w->func[ret - WAIT_OBJECT_0])
3940 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3941
3942 /* Check for additional signaled events */
3943 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3944
3945 /* Check if event is signaled */
3946 ret2 = WaitForSingleObject(w->events[i], 0);
3947 if(ret2 == WAIT_OBJECT_0) {
3948 if (w->func[i])
3949 w->func[i](w->opaque[i]);
3950 } else if (ret2 == WAIT_TIMEOUT) {
3951 } else {
3952 err = GetLastError();
3953 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3954 }
3955 }
3956 } else if (ret == WAIT_TIMEOUT) {
3957 } else {
3958 err = GetLastError();
3959 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3960 }
3961 }
3962
3963 *timeout = 0;
3964 }
3965 #else
3966 static void host_main_loop_wait(int *timeout)
3967 {
3968 }
3969 #endif
3970
3971 void main_loop_wait(int timeout)
3972 {
3973 IOHandlerRecord *ioh;
3974 fd_set rfds, wfds, xfds;
3975 int ret, nfds;
3976 struct timeval tv;
3977
3978 qemu_bh_update_timeout(&timeout);
3979
3980 host_main_loop_wait(&timeout);
3981
3982 /* poll any events */
3983 /* XXX: separate device handlers from system ones */
3984 nfds = -1;
3985 FD_ZERO(&rfds);
3986 FD_ZERO(&wfds);
3987 FD_ZERO(&xfds);
3988 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3989 if (ioh->deleted)
3990 continue;
3991 if (ioh->fd_read &&
3992 (!ioh->fd_read_poll ||
3993 ioh->fd_read_poll(ioh->opaque) != 0)) {
3994 FD_SET(ioh->fd, &rfds);
3995 if (ioh->fd > nfds)
3996 nfds = ioh->fd;
3997 }
3998 if (ioh->fd_write) {
3999 FD_SET(ioh->fd, &wfds);
4000 if (ioh->fd > nfds)
4001 nfds = ioh->fd;
4002 }
4003 }
4004
4005 tv.tv_sec = timeout / 1000;
4006 tv.tv_usec = (timeout % 1000) * 1000;
4007
4008 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4009
4010 qemu_mutex_unlock_iothread();
4011 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4012 qemu_mutex_lock_iothread();
4013 if (ret > 0) {
4014 IOHandlerRecord **pioh;
4015
4016 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4017 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4018 ioh->fd_read(ioh->opaque);
4019 }
4020 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4021 ioh->fd_write(ioh->opaque);
4022 }
4023 }
4024
4025 /* remove deleted IO handlers */
4026 pioh = &first_io_handler;
4027 while (*pioh) {
4028 ioh = *pioh;
4029 if (ioh->deleted) {
4030 *pioh = ioh->next;
4031 qemu_free(ioh);
4032 } else
4033 pioh = &ioh->next;
4034 }
4035 }
4036
4037 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4038
4039 /* rearm timer, if not periodic */
4040 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4041 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4042 qemu_rearm_alarm_timer(alarm_timer);
4043 }
4044
4045 /* vm time timers */
4046 if (vm_running) {
4047 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4048 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4049 qemu_get_clock(vm_clock));
4050 }
4051
4052 /* real time timers */
4053 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4054 qemu_get_clock(rt_clock));
4055
4056 /* Check bottom-halves last in case any of the earlier events triggered
4057 them. */
4058 qemu_bh_poll();
4059
4060 }
4061
4062 static int qemu_cpu_exec(CPUState *env)
4063 {
4064 int ret;
4065 #ifdef CONFIG_PROFILER
4066 int64_t ti;
4067 #endif
4068
4069 #ifdef CONFIG_PROFILER
4070 ti = profile_getclock();
4071 #endif
4072 if (use_icount) {
4073 int64_t count;
4074 int decr;
4075 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4076 env->icount_decr.u16.low = 0;
4077 env->icount_extra = 0;
4078 count = qemu_next_deadline();
4079 count = (count + (1 << icount_time_shift) - 1)
4080 >> icount_time_shift;
4081 qemu_icount += count;
4082 decr = (count > 0xffff) ? 0xffff : count;
4083 count -= decr;
4084 env->icount_decr.u16.low = decr;
4085 env->icount_extra = count;
4086 }
4087 ret = cpu_exec(env);
4088 #ifdef CONFIG_PROFILER
4089 qemu_time += profile_getclock() - ti;
4090 #endif
4091 if (use_icount) {
4092 /* Fold pending instructions back into the
4093 instruction counter, and clear the interrupt flag. */
4094 qemu_icount -= (env->icount_decr.u16.low
4095 + env->icount_extra);
4096 env->icount_decr.u32 = 0;
4097 env->icount_extra = 0;
4098 }
4099 return ret;
4100 }
4101
4102 static void tcg_cpu_exec(void)
4103 {
4104 int ret = 0;
4105
4106 if (next_cpu == NULL)
4107 next_cpu = first_cpu;
4108 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4109 CPUState *env = cur_cpu = next_cpu;
4110
4111 if (!vm_running)
4112 break;
4113 if (timer_alarm_pending) {
4114 timer_alarm_pending = 0;
4115 break;
4116 }
4117 if (cpu_can_run(env))
4118 ret = qemu_cpu_exec(env);
4119 if (ret == EXCP_DEBUG) {
4120 gdb_set_stop_cpu(env);
4121 debug_requested = 1;
4122 break;
4123 }
4124 }
4125 }
4126
4127 static int cpu_has_work(CPUState *env)
4128 {
4129 if (env->stop)
4130 return 1;
4131 if (env->stopped)
4132 return 0;
4133 if (!env->halted)
4134 return 1;
4135 if (qemu_cpu_has_work(env))
4136 return 1;
4137 return 0;
4138 }
4139
4140 static int tcg_has_work(void)
4141 {
4142 CPUState *env;
4143
4144 for (env = first_cpu; env != NULL; env = env->next_cpu)
4145 if (cpu_has_work(env))
4146 return 1;
4147 return 0;
4148 }
4149
4150 static int qemu_calculate_timeout(void)
4151 {
4152 #ifndef CONFIG_IOTHREAD
4153 int timeout;
4154
4155 if (!vm_running)
4156 timeout = 5000;
4157 else if (tcg_has_work())
4158 timeout = 0;
4159 else if (!use_icount)
4160 timeout = 5000;
4161 else {
4162 /* XXX: use timeout computed from timers */
4163 int64_t add;
4164 int64_t delta;
4165 /* Advance virtual time to the next event. */
4166 if (use_icount == 1) {
4167 /* When not using an adaptive execution frequency
4168 we tend to get badly out of sync with real time,
4169 so just delay for a reasonable amount of time. */
4170 delta = 0;
4171 } else {
4172 delta = cpu_get_icount() - cpu_get_clock();
4173 }
4174 if (delta > 0) {
4175 /* If virtual time is ahead of real time then just
4176 wait for IO. */
4177 timeout = (delta / 1000000) + 1;
4178 } else {
4179 /* Wait for either IO to occur or the next
4180 timer event. */
4181 add = qemu_next_deadline();
4182 /* We advance the timer before checking for IO.
4183 Limit the amount we advance so that early IO
4184 activity won't get the guest too far ahead. */
4185 if (add > 10000000)
4186 add = 10000000;
4187 delta += add;
4188 add = (add + (1 << icount_time_shift) - 1)
4189 >> icount_time_shift;
4190 qemu_icount += add;
4191 timeout = delta / 1000000;
4192 if (timeout < 0)
4193 timeout = 0;
4194 }
4195 }
4196
4197 return timeout;
4198 #else /* CONFIG_IOTHREAD */
4199 return 1000;
4200 #endif
4201 }
4202
4203 static int vm_can_run(void)
4204 {
4205 if (powerdown_requested)
4206 return 0;
4207 if (reset_requested)
4208 return 0;
4209 if (shutdown_requested)
4210 return 0;
4211 if (debug_requested)
4212 return 0;
4213 return 1;
4214 }
4215
4216 qemu_irq qemu_system_powerdown;
4217
4218 static void main_loop(void)
4219 {
4220 int r;
4221
4222 #ifdef CONFIG_IOTHREAD
4223 qemu_system_ready = 1;
4224 qemu_cond_broadcast(&qemu_system_cond);
4225 #endif
4226
4227 for (;;) {
4228 do {
4229 #ifdef CONFIG_PROFILER
4230 int64_t ti;
4231 #endif
4232 #ifndef CONFIG_IOTHREAD
4233 tcg_cpu_exec();
4234 #endif
4235 #ifdef CONFIG_PROFILER
4236 ti = profile_getclock();
4237 #endif
4238 main_loop_wait(qemu_calculate_timeout());
4239 #ifdef CONFIG_PROFILER
4240 dev_time += profile_getclock() - ti;
4241 #endif
4242 } while (vm_can_run());
4243
4244 if (qemu_debug_requested())
4245 vm_stop(EXCP_DEBUG);
4246 if (qemu_shutdown_requested()) {
4247 if (no_shutdown) {
4248 vm_stop(0);
4249 no_shutdown = 0;
4250 } else
4251 break;
4252 }
4253 if (qemu_reset_requested()) {
4254 pause_all_vcpus();
4255 qemu_system_reset();
4256 resume_all_vcpus();
4257 }
4258 if (qemu_powerdown_requested()) {
4259 qemu_irq_raise(qemu_system_powerdown);
4260 }
4261 if ((r = qemu_vmstop_requested()))
4262 vm_stop(r);
4263 }
4264 pause_all_vcpus();
4265 }
4266
4267 static void version(void)
4268 {
4269 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4270 }
4271
4272 static void help(int exitcode)
4273 {
4274 version();
4275 printf("usage: %s [options] [disk_image]\n"
4276 "\n"
4277 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4278 "\n"
4279 #define DEF(option, opt_arg, opt_enum, opt_help) \
4280 opt_help
4281 #define DEFHEADING(text) stringify(text) "\n"
4282 #include "qemu-options.h"
4283 #undef DEF
4284 #undef DEFHEADING
4285 #undef GEN_DOCS
4286 "\n"
4287 "During emulation, the following keys are useful:\n"
4288 "ctrl-alt-f toggle full screen\n"
4289 "ctrl-alt-n switch to virtual console 'n'\n"
4290 "ctrl-alt toggle mouse and keyboard grab\n"
4291 "\n"
4292 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4293 ,
4294 "qemu",
4295 DEFAULT_RAM_SIZE,
4296 #ifndef _WIN32
4297 DEFAULT_NETWORK_SCRIPT,
4298 DEFAULT_NETWORK_DOWN_SCRIPT,
4299 #endif
4300 DEFAULT_GDBSTUB_PORT,
4301 "/tmp/qemu.log");
4302 exit(exitcode);
4303 }
4304
4305 #define HAS_ARG 0x0001
4306
4307 enum {
4308 #define DEF(option, opt_arg, opt_enum, opt_help) \
4309 opt_enum,
4310 #define DEFHEADING(text)
4311 #include "qemu-options.h"
4312 #undef DEF
4313 #undef DEFHEADING
4314 #undef GEN_DOCS
4315 };
4316
4317 typedef struct QEMUOption {
4318 const char *name;
4319 int flags;
4320 int index;
4321 } QEMUOption;
4322
4323 static const QEMUOption qemu_options[] = {
4324 { "h", 0, QEMU_OPTION_h },
4325 #define DEF(option, opt_arg, opt_enum, opt_help) \
4326 { option, opt_arg, opt_enum },
4327 #define DEFHEADING(text)
4328 #include "qemu-options.h"
4329 #undef DEF
4330 #undef DEFHEADING
4331 #undef GEN_DOCS
4332 { NULL },
4333 };
4334
4335 #ifdef HAS_AUDIO
4336 struct soundhw soundhw[] = {
4337 #ifdef HAS_AUDIO_CHOICE
4338 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4339 {
4340 "pcspk",
4341 "PC speaker",
4342 0,
4343 1,
4344 { .init_isa = pcspk_audio_init }
4345 },
4346 #endif
4347
4348 #ifdef CONFIG_SB16
4349 {
4350 "sb16",
4351 "Creative Sound Blaster 16",
4352 0,
4353 1,
4354 { .init_isa = SB16_init }
4355 },
4356 #endif
4357
4358 #ifdef CONFIG_CS4231A
4359 {
4360 "cs4231a",
4361 "CS4231A",
4362 0,
4363 1,
4364 { .init_isa = cs4231a_init }
4365 },
4366 #endif
4367
4368 #ifdef CONFIG_ADLIB
4369 {
4370 "adlib",
4371 #ifdef HAS_YMF262
4372 "Yamaha YMF262 (OPL3)",
4373 #else
4374 "Yamaha YM3812 (OPL2)",
4375 #endif
4376 0,
4377 1,
4378 { .init_isa = Adlib_init }
4379 },
4380 #endif
4381
4382 #ifdef CONFIG_GUS
4383 {
4384 "gus",
4385 "Gravis Ultrasound GF1",
4386 0,
4387 1,
4388 { .init_isa = GUS_init }
4389 },
4390 #endif
4391
4392 #ifdef CONFIG_AC97
4393 {
4394 "ac97",
4395 "Intel 82801AA AC97 Audio",
4396 0,
4397 0,
4398 { .init_pci = ac97_init }
4399 },
4400 #endif
4401
4402 #ifdef CONFIG_ES1370
4403 {
4404 "es1370",
4405 "ENSONIQ AudioPCI ES1370",
4406 0,
4407 0,
4408 { .init_pci = es1370_init }
4409 },
4410 #endif
4411
4412 #endif /* HAS_AUDIO_CHOICE */
4413
4414 { NULL, NULL, 0, 0, { NULL } }
4415 };
4416
4417 static void select_soundhw (const char *optarg)
4418 {
4419 struct soundhw *c;
4420
4421 if (*optarg == '?') {
4422 show_valid_cards:
4423
4424 printf ("Valid sound card names (comma separated):\n");
4425 for (c = soundhw; c->name; ++c) {
4426 printf ("%-11s %s\n", c->name, c->descr);
4427 }
4428 printf ("\n-soundhw all will enable all of the above\n");
4429 exit (*optarg != '?');
4430 }
4431 else {
4432 size_t l;
4433 const char *p;
4434 char *e;
4435 int bad_card = 0;
4436
4437 if (!strcmp (optarg, "all")) {
4438 for (c = soundhw; c->name; ++c) {
4439 c->enabled = 1;
4440 }
4441 return;
4442 }
4443
4444 p = optarg;
4445 while (*p) {
4446 e = strchr (p, ',');
4447 l = !e ? strlen (p) : (size_t) (e - p);
4448
4449 for (c = soundhw; c->name; ++c) {
4450 if (!strncmp (c->name, p, l)) {
4451 c->enabled = 1;
4452 break;
4453 }
4454 }
4455
4456 if (!c->name) {
4457 if (l > 80) {
4458 fprintf (stderr,
4459 "Unknown sound card name (too big to show)\n");
4460 }
4461 else {
4462 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4463 (int) l, p);
4464 }
4465 bad_card = 1;
4466 }
4467 p += l + (e != NULL);
4468 }
4469
4470 if (bad_card)
4471 goto show_valid_cards;
4472 }
4473 }
4474 #endif
4475
4476 static void select_vgahw (const char *p)
4477 {
4478 const char *opts;
4479
4480 vga_interface_type = VGA_NONE;
4481 if (strstart(p, "std", &opts)) {
4482 vga_interface_type = VGA_STD;
4483 } else if (strstart(p, "cirrus", &opts)) {
4484 vga_interface_type = VGA_CIRRUS;
4485 } else if (strstart(p, "vmware", &opts)) {
4486 vga_interface_type = VGA_VMWARE;
4487 } else if (strstart(p, "xenfb", &opts)) {
4488 vga_interface_type = VGA_XENFB;
4489 } else if (!strstart(p, "none", &opts)) {
4490 invalid_vga:
4491 fprintf(stderr, "Unknown vga type: %s\n", p);
4492 exit(1);
4493 }
4494 while (*opts) {
4495 const char *nextopt;
4496
4497 if (strstart(opts, ",retrace=", &nextopt)) {
4498 opts = nextopt;
4499 if (strstart(opts, "dumb", &nextopt))
4500 vga_retrace_method = VGA_RETRACE_DUMB;
4501 else if (strstart(opts, "precise", &nextopt))
4502 vga_retrace_method = VGA_RETRACE_PRECISE;
4503 else goto invalid_vga;
4504 } else goto invalid_vga;
4505 opts = nextopt;
4506 }
4507 }
4508
4509 #ifdef TARGET_I386
4510 static int balloon_parse(const char *arg)
4511 {
4512 char buf[128];
4513 const char *p;
4514
4515 if (!strcmp(arg, "none")) {
4516 virtio_balloon = 0;
4517 } else if (!strncmp(arg, "virtio", 6)) {
4518 virtio_balloon = 1;
4519 if (arg[6] == ',') {
4520 p = arg + 7;
4521 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4522 virtio_balloon_devaddr = strdup(buf);
4523 }
4524 }
4525 } else {
4526 return -1;
4527 }
4528 return 0;
4529 }
4530 #endif
4531
4532 #ifdef _WIN32
4533 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4534 {
4535 exit(STATUS_CONTROL_C_EXIT);
4536 return TRUE;
4537 }
4538 #endif
4539
4540 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4541 {
4542 int ret;
4543
4544 if(strlen(str) != 36)
4545 return -1;
4546
4547 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4548 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4549 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4550
4551 if(ret != 16)
4552 return -1;
4553
4554 #ifdef TARGET_I386
4555 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4556 #endif
4557
4558 return 0;
4559 }
4560
4561 #define MAX_NET_CLIENTS 32
4562
4563 #ifndef _WIN32
4564
4565 static void termsig_handler(int signal)
4566 {
4567 qemu_system_shutdown_request();
4568 }
4569
4570 static void sigchld_handler(int signal)
4571 {
4572 waitpid(-1, NULL, WNOHANG);
4573 }
4574
4575 static void sighandler_setup(void)
4576 {
4577 struct sigaction act;
4578
4579 memset(&act, 0, sizeof(act));
4580 act.sa_handler = termsig_handler;
4581 sigaction(SIGINT, &act, NULL);
4582 sigaction(SIGHUP, &act, NULL);
4583 sigaction(SIGTERM, &act, NULL);
4584
4585 act.sa_handler = sigchld_handler;
4586 act.sa_flags = SA_NOCLDSTOP;
4587 sigaction(SIGCHLD, &act, NULL);
4588 }
4589
4590 #endif
4591
4592 #ifdef _WIN32
4593 /* Look for support files in the same directory as the executable. */
4594 static char *find_datadir(const char *argv0)
4595 {
4596 char *p;
4597 char buf[MAX_PATH];
4598 DWORD len;
4599
4600 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4601 if (len == 0) {
4602 return NULL;
4603 }
4604
4605 buf[len] = 0;
4606 p = buf + len - 1;
4607 while (p != buf && *p != '\\')
4608 p--;
4609 *p = 0;
4610 if (access(buf, R_OK) == 0) {
4611 return qemu_strdup(buf);
4612 }
4613 return NULL;
4614 }
4615 #else /* !_WIN32 */
4616
4617 /* Find a likely location for support files using the location of the binary.
4618 For installed binaries this will be "$bindir/../share/qemu". When
4619 running from the build tree this will be "$bindir/../pc-bios". */
4620 #define SHARE_SUFFIX "/share/qemu"
4621 #define BUILD_SUFFIX "/pc-bios"
4622 static char *find_datadir(const char *argv0)
4623 {
4624 char *dir;
4625 char *p = NULL;
4626 char *res;
4627 #ifdef PATH_MAX
4628 char buf[PATH_MAX];
4629 #endif
4630 size_t max_len;
4631
4632 #if defined(__linux__)
4633 {
4634 int len;
4635 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4636 if (len > 0) {
4637 buf[len] = 0;
4638 p = buf;
4639 }
4640 }
4641 #elif defined(__FreeBSD__)
4642 {
4643 int len;
4644 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4645 if (len > 0) {
4646 buf[len] = 0;
4647 p = buf;
4648 }
4649 }
4650 #endif
4651 /* If we don't have any way of figuring out the actual executable
4652 location then try argv[0]. */
4653 if (!p) {
4654 #ifdef PATH_MAX
4655 p = buf;
4656 #endif
4657 p = realpath(argv0, p);
4658 if (!p) {
4659 return NULL;
4660 }
4661 }
4662 dir = dirname(p);
4663 dir = dirname(dir);
4664
4665 max_len = strlen(dir) +
4666 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4667 res = qemu_mallocz(max_len);
4668 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4669 if (access(res, R_OK)) {
4670 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4671 if (access(res, R_OK)) {
4672 qemu_free(res);
4673 res = NULL;
4674 }
4675 }
4676 #ifndef PATH_MAX
4677 free(p);
4678 #endif
4679 return res;
4680 }
4681 #undef SHARE_SUFFIX
4682 #undef BUILD_SUFFIX
4683 #endif
4684
4685 char *qemu_find_file(int type, const char *name)
4686 {
4687 int len;
4688 const char *subdir;
4689 char *buf;
4690
4691 /* If name contains path separators then try it as a straight path. */
4692 if ((strchr(name, '/') || strchr(name, '\\'))
4693 && access(name, R_OK) == 0) {
4694 return strdup(name);
4695 }
4696 switch (type) {
4697 case QEMU_FILE_TYPE_BIOS:
4698 subdir = "";
4699 break;
4700 case QEMU_FILE_TYPE_KEYMAP:
4701 subdir = "keymaps/";
4702 break;
4703 default:
4704 abort();
4705 }
4706 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4707 buf = qemu_mallocz(len);
4708 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4709 if (access(buf, R_OK)) {
4710 qemu_free(buf);
4711 return NULL;
4712 }
4713 return buf;
4714 }
4715
4716 static int device_init_func(QemuOpts *opts, void *opaque)
4717 {
4718 DeviceState *dev;
4719
4720 dev = qdev_device_add(opts);
4721 if (!dev)
4722 return -1;
4723 return 0;
4724 }
4725
4726 struct device_config {
4727 enum {
4728 DEV_USB, /* -usbdevice */
4729 DEV_BT, /* -bt */
4730 } type;
4731 const char *cmdline;
4732 TAILQ_ENTRY(device_config) next;
4733 };
4734 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4735
4736 static void add_device_config(int type, const char *cmdline)
4737 {
4738 struct device_config *conf;
4739
4740 conf = qemu_mallocz(sizeof(*conf));
4741 conf->type = type;
4742 conf->cmdline = cmdline;
4743 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4744 }
4745
4746 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4747 {
4748 struct device_config *conf;
4749 int rc;
4750
4751 TAILQ_FOREACH(conf, &device_configs, next) {
4752 if (conf->type != type)
4753 continue;
4754 rc = func(conf->cmdline);
4755 if (0 != rc)
4756 return rc;
4757 }
4758 return 0;
4759 }
4760
4761 int main(int argc, char **argv, char **envp)
4762 {
4763 const char *gdbstub_dev = NULL;
4764 uint32_t boot_devices_bitmap = 0;
4765 int i;
4766 int snapshot, linux_boot, net_boot;
4767 const char *initrd_filename;
4768 const char *kernel_filename, *kernel_cmdline;
4769 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4770 DisplayState *ds;
4771 DisplayChangeListener *dcl;
4772 int cyls, heads, secs, translation;
4773 const char *net_clients[MAX_NET_CLIENTS];
4774 int nb_net_clients;
4775 QemuOpts *hda_opts = NULL, *opts;
4776 int optind;
4777 const char *r, *optarg;
4778 CharDriverState *monitor_hd = NULL;
4779 const char *monitor_device;
4780 const char *serial_devices[MAX_SERIAL_PORTS];
4781 int serial_device_index;
4782 const char *parallel_devices[MAX_PARALLEL_PORTS];
4783 int parallel_device_index;
4784 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4785 int virtio_console_index;
4786 const char *loadvm = NULL;
4787 QEMUMachine *machine;
4788 const char *cpu_model;
4789 #ifndef _WIN32
4790 int fds[2];
4791 #endif
4792 int tb_size;
4793 const char *pid_file = NULL;
4794 const char *incoming = NULL;
4795 #ifndef _WIN32
4796 int fd = 0;
4797 struct passwd *pwd = NULL;
4798 const char *chroot_dir = NULL;
4799 const char *run_as = NULL;
4800 #endif
4801 CPUState *env;
4802 int show_vnc_port = 0;
4803
4804 qemu_cache_utils_init(envp);
4805
4806 LIST_INIT (&vm_change_state_head);
4807 #ifndef _WIN32
4808 {
4809 struct sigaction act;
4810 sigfillset(&act.sa_mask);
4811 act.sa_flags = 0;
4812 act.sa_handler = SIG_IGN;
4813 sigaction(SIGPIPE, &act, NULL);
4814 }
4815 #else
4816 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4817 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4818 QEMU to run on a single CPU */
4819 {
4820 HANDLE h;
4821 DWORD mask, smask;
4822 int i;
4823 h = GetCurrentProcess();
4824 if (GetProcessAffinityMask(h, &mask, &smask)) {
4825 for(i = 0; i < 32; i++) {
4826 if (mask & (1 << i))
4827 break;
4828 }
4829 if (i != 32) {
4830 mask = 1 << i;
4831 SetProcessAffinityMask(h, mask);
4832 }
4833 }
4834 }
4835 #endif
4836
4837 module_call_init(MODULE_INIT_MACHINE);
4838 machine = find_default_machine();
4839 cpu_model = NULL;
4840 initrd_filename = NULL;
4841 ram_size = 0;
4842 snapshot = 0;
4843 kernel_filename = NULL;
4844 kernel_cmdline = "";
4845 cyls = heads = secs = 0;
4846 translation = BIOS_ATA_TRANSLATION_AUTO;
4847 monitor_device = "vc:80Cx24C";
4848
4849 serial_devices[0] = "vc:80Cx24C";
4850 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4851 serial_devices[i] = NULL;
4852 serial_device_index = 0;
4853
4854 parallel_devices[0] = "vc:80Cx24C";
4855 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4856 parallel_devices[i] = NULL;
4857 parallel_device_index = 0;
4858
4859 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4860 virtio_consoles[i] = NULL;
4861 virtio_console_index = 0;
4862
4863 for (i = 0; i < MAX_NODES; i++) {
4864 node_mem[i] = 0;
4865 node_cpumask[i] = 0;
4866 }
4867
4868 nb_net_clients = 0;
4869 nb_numa_nodes = 0;
4870 nb_nics = 0;
4871
4872 tb_size = 0;
4873 autostart= 1;
4874
4875 register_watchdogs();
4876
4877 optind = 1;
4878 for(;;) {
4879 if (optind >= argc)
4880 break;
4881 r = argv[optind];
4882 if (r[0] != '-') {
4883 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4884 } else {
4885 const QEMUOption *popt;
4886
4887 optind++;
4888 /* Treat --foo the same as -foo. */
4889 if (r[1] == '-')
4890 r++;
4891 popt = qemu_options;
4892 for(;;) {
4893 if (!popt->name) {
4894 fprintf(stderr, "%s: invalid option -- '%s'\n",
4895 argv[0], r);
4896 exit(1);
4897 }
4898 if (!strcmp(popt->name, r + 1))
4899 break;
4900 popt++;
4901 }
4902 if (popt->flags & HAS_ARG) {
4903 if (optind >= argc) {
4904 fprintf(stderr, "%s: option '%s' requires an argument\n",
4905 argv[0], r);
4906 exit(1);
4907 }
4908 optarg = argv[optind++];
4909 } else {
4910 optarg = NULL;
4911 }
4912
4913 switch(popt->index) {
4914 case QEMU_OPTION_M:
4915 machine = find_machine(optarg);
4916 if (!machine) {
4917 QEMUMachine *m;
4918 printf("Supported machines are:\n");
4919 for(m = first_machine; m != NULL; m = m->next) {
4920 if (m->alias)
4921 printf("%-10s %s (alias of %s)\n",
4922 m->alias, m->desc, m->name);
4923 printf("%-10s %s%s\n",
4924 m->name, m->desc,
4925 m->is_default ? " (default)" : "");
4926 }
4927 exit(*optarg != '?');
4928 }
4929 break;
4930 case QEMU_OPTION_cpu:
4931 /* hw initialization will check this */
4932 if (*optarg == '?') {
4933 /* XXX: implement xxx_cpu_list for targets that still miss it */
4934 #if defined(cpu_list)
4935 cpu_list(stdout, &fprintf);
4936 #endif
4937 exit(0);
4938 } else {
4939 cpu_model = optarg;
4940 }
4941 break;
4942 case QEMU_OPTION_initrd:
4943 initrd_filename = optarg;
4944 break;
4945 case QEMU_OPTION_hda:
4946 if (cyls == 0)
4947 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4948 else
4949 hda_opts = drive_add(optarg, HD_ALIAS
4950 ",cyls=%d,heads=%d,secs=%d%s",
4951 0, cyls, heads, secs,
4952 translation == BIOS_ATA_TRANSLATION_LBA ?
4953 ",trans=lba" :
4954 translation == BIOS_ATA_TRANSLATION_NONE ?
4955 ",trans=none" : "");
4956 break;
4957 case QEMU_OPTION_hdb:
4958 case QEMU_OPTION_hdc:
4959 case QEMU_OPTION_hdd:
4960 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4961 break;
4962 case QEMU_OPTION_drive:
4963 drive_add(NULL, "%s", optarg);
4964 break;
4965 case QEMU_OPTION_set:
4966 if (qemu_set_option(optarg) != 0)
4967 exit(1);
4968 break;
4969 case QEMU_OPTION_mtdblock:
4970 drive_add(optarg, MTD_ALIAS);
4971 break;
4972 case QEMU_OPTION_sd:
4973 drive_add(optarg, SD_ALIAS);
4974 break;
4975 case QEMU_OPTION_pflash:
4976 drive_add(optarg, PFLASH_ALIAS);
4977 break;
4978 case QEMU_OPTION_snapshot:
4979 snapshot = 1;
4980 break;
4981 case QEMU_OPTION_hdachs:
4982 {
4983 const char *p;
4984 p = optarg;
4985 cyls = strtol(p, (char **)&p, 0);
4986 if (cyls < 1 || cyls > 16383)
4987 goto chs_fail;
4988 if (*p != ',')
4989 goto chs_fail;
4990 p++;
4991 heads = strtol(p, (char **)&p, 0);
4992 if (heads < 1 || heads > 16)
4993 goto chs_fail;
4994 if (*p != ',')
4995 goto chs_fail;
4996 p++;
4997 secs = strtol(p, (char **)&p, 0);
4998 if (secs < 1 || secs > 63)
4999 goto chs_fail;
5000 if (*p == ',') {
5001 p++;
5002 if (!strcmp(p, "none"))
5003 translation = BIOS_ATA_TRANSLATION_NONE;
5004 else if (!strcmp(p, "lba"))
5005 translation = BIOS_ATA_TRANSLATION_LBA;
5006 else if (!strcmp(p, "auto"))
5007 translation = BIOS_ATA_TRANSLATION_AUTO;
5008 else
5009 goto chs_fail;
5010 } else if (*p != '\0') {
5011 chs_fail:
5012 fprintf(stderr, "qemu: invalid physical CHS format\n");
5013 exit(1);
5014 }
5015 if (hda_opts != NULL) {
5016 char num[16];
5017 snprintf(num, sizeof(num), "%d", cyls);
5018 qemu_opt_set(hda_opts, "cyls", num);
5019 snprintf(num, sizeof(num), "%d", heads);
5020 qemu_opt_set(hda_opts, "heads", num);
5021 snprintf(num, sizeof(num), "%d", secs);
5022 qemu_opt_set(hda_opts, "secs", num);
5023 if (translation == BIOS_ATA_TRANSLATION_LBA)
5024 qemu_opt_set(hda_opts, "trans", "lba");
5025 if (translation == BIOS_ATA_TRANSLATION_NONE)
5026 qemu_opt_set(hda_opts, "trans", "none");
5027 }
5028 }
5029 break;
5030 case QEMU_OPTION_numa:
5031 if (nb_numa_nodes >= MAX_NODES) {
5032 fprintf(stderr, "qemu: too many NUMA nodes\n");
5033 exit(1);
5034 }
5035 numa_add(optarg);
5036 break;
5037 case QEMU_OPTION_nographic:
5038 display_type = DT_NOGRAPHIC;
5039 break;
5040 #ifdef CONFIG_CURSES
5041 case QEMU_OPTION_curses:
5042 display_type = DT_CURSES;
5043 break;
5044 #endif
5045 case QEMU_OPTION_portrait:
5046 graphic_rotate = 1;
5047 break;
5048 case QEMU_OPTION_kernel:
5049 kernel_filename = optarg;
5050 break;
5051 case QEMU_OPTION_append:
5052 kernel_cmdline = optarg;
5053 break;
5054 case QEMU_OPTION_cdrom:
5055 drive_add(optarg, CDROM_ALIAS);
5056 break;
5057 case QEMU_OPTION_boot:
5058 {
5059 static const char * const params[] = {
5060 "order", "once", "menu", NULL
5061 };
5062 char buf[sizeof(boot_devices)];
5063 char *standard_boot_devices;
5064 int legacy = 0;
5065
5066 if (!strchr(optarg, '=')) {
5067 legacy = 1;
5068 pstrcpy(buf, sizeof(buf), optarg);
5069 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5070 fprintf(stderr,
5071 "qemu: unknown boot parameter '%s' in '%s'\n",
5072 buf, optarg);
5073 exit(1);
5074 }
5075
5076 if (legacy ||
5077 get_param_value(buf, sizeof(buf), "order", optarg)) {
5078 boot_devices_bitmap = parse_bootdevices(buf);
5079 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5080 }
5081 if (!legacy) {
5082 if (get_param_value(buf, sizeof(buf),
5083 "once", optarg)) {
5084 boot_devices_bitmap |= parse_bootdevices(buf);
5085 standard_boot_devices = qemu_strdup(boot_devices);
5086 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5087 qemu_register_reset(restore_boot_devices,
5088 standard_boot_devices);
5089 }
5090 if (get_param_value(buf, sizeof(buf),
5091 "menu", optarg)) {
5092 if (!strcmp(buf, "on")) {
5093 boot_menu = 1;
5094 } else if (!strcmp(buf, "off")) {
5095 boot_menu = 0;
5096 } else {
5097 fprintf(stderr,
5098 "qemu: invalid option value '%s'\n",
5099 buf);
5100 exit(1);
5101 }
5102 }
5103 }
5104 }
5105 break;
5106 case QEMU_OPTION_fda:
5107 case QEMU_OPTION_fdb:
5108 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5109 break;
5110 #ifdef TARGET_I386
5111 case QEMU_OPTION_no_fd_bootchk:
5112 fd_bootchk = 0;
5113 break;
5114 #endif
5115 case QEMU_OPTION_net:
5116 if (nb_net_clients >= MAX_NET_CLIENTS) {
5117 fprintf(stderr, "qemu: too many network clients\n");
5118 exit(1);
5119 }
5120 net_clients[nb_net_clients] = optarg;
5121 nb_net_clients++;
5122 break;
5123 #ifdef CONFIG_SLIRP
5124 case QEMU_OPTION_tftp:
5125 legacy_tftp_prefix = optarg;
5126 break;
5127 case QEMU_OPTION_bootp:
5128 legacy_bootp_filename = optarg;
5129 break;
5130 #ifndef _WIN32
5131 case QEMU_OPTION_smb:
5132 net_slirp_smb(optarg);
5133 break;
5134 #endif
5135 case QEMU_OPTION_redir:
5136 net_slirp_redir(optarg);
5137 break;
5138 #endif
5139 case QEMU_OPTION_bt:
5140 add_device_config(DEV_BT, optarg);
5141 break;
5142 #ifdef HAS_AUDIO
5143 case QEMU_OPTION_audio_help:
5144 AUD_help ();
5145 exit (0);
5146 break;
5147 case QEMU_OPTION_soundhw:
5148 select_soundhw (optarg);
5149 break;
5150 #endif
5151 case QEMU_OPTION_h:
5152 help(0);
5153 break;
5154 case QEMU_OPTION_version:
5155 version();
5156 exit(0);
5157 break;
5158 case QEMU_OPTION_m: {
5159 uint64_t value;
5160 char *ptr;
5161
5162 value = strtoul(optarg, &ptr, 10);
5163 switch (*ptr) {
5164 case 0: case 'M': case 'm':
5165 value <<= 20;
5166 break;
5167 case 'G': case 'g':
5168 value <<= 30;
5169 break;
5170 default:
5171 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5172 exit(1);
5173 }
5174
5175 /* On 32-bit hosts, QEMU is limited by virtual address space */
5176 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5177 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5178 exit(1);
5179 }
5180 if (value != (uint64_t)(ram_addr_t)value) {
5181 fprintf(stderr, "qemu: ram size too large\n");
5182 exit(1);
5183 }
5184 ram_size = value;
5185 break;
5186 }
5187 case QEMU_OPTION_d:
5188 {
5189 int mask;
5190 const CPULogItem *item;
5191
5192 mask = cpu_str_to_log_mask(optarg);
5193 if (!mask) {
5194 printf("Log items (comma separated):\n");
5195 for(item = cpu_log_items; item->mask != 0; item++) {
5196 printf("%-10s %s\n", item->name, item->help);
5197 }
5198 exit(1);
5199 }
5200 cpu_set_log(mask);
5201 }
5202 break;
5203 case QEMU_OPTION_s:
5204 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5205 break;
5206 case QEMU_OPTION_gdb:
5207 gdbstub_dev = optarg;
5208 break;
5209 case QEMU_OPTION_L:
5210 data_dir = optarg;
5211 break;
5212 case QEMU_OPTION_bios:
5213 bios_name = optarg;
5214 break;
5215 case QEMU_OPTION_singlestep:
5216 singlestep = 1;
5217 break;
5218 case QEMU_OPTION_S:
5219 autostart = 0;
5220 break;
5221 #ifndef _WIN32
5222 case QEMU_OPTION_k:
5223 keyboard_layout = optarg;
5224 break;
5225 #endif
5226 case QEMU_OPTION_localtime:
5227 rtc_utc = 0;
5228 break;
5229 case QEMU_OPTION_vga:
5230 select_vgahw (optarg);
5231 break;
5232 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5233 case QEMU_OPTION_g:
5234 {
5235 const char *p;
5236 int w, h, depth;
5237 p = optarg;
5238 w = strtol(p, (char **)&p, 10);
5239 if (w <= 0) {
5240 graphic_error:
5241 fprintf(stderr, "qemu: invalid resolution or depth\n");
5242 exit(1);
5243 }
5244 if (*p != 'x')
5245 goto graphic_error;
5246 p++;
5247 h = strtol(p, (char **)&p, 10);
5248 if (h <= 0)
5249 goto graphic_error;
5250 if (*p == 'x') {
5251 p++;
5252 depth = strtol(p, (char **)&p, 10);
5253 if (depth != 8 && depth != 15 && depth != 16 &&
5254 depth != 24 && depth != 32)
5255 goto graphic_error;
5256 } else if (*p == '\0') {
5257 depth = graphic_depth;
5258 } else {
5259 goto graphic_error;
5260 }
5261
5262 graphic_width = w;
5263 graphic_height = h;
5264 graphic_depth = depth;
5265 }
5266 break;
5267 #endif
5268 case QEMU_OPTION_echr:
5269 {
5270 char *r;
5271 term_escape_char = strtol(optarg, &r, 0);
5272 if (r == optarg)
5273 printf("Bad argument to echr\n");
5274 break;
5275 }
5276 case QEMU_OPTION_monitor:
5277 monitor_device = optarg;
5278 break;
5279 case QEMU_OPTION_serial:
5280 if (serial_device_index >= MAX_SERIAL_PORTS) {
5281 fprintf(stderr, "qemu: too many serial ports\n");
5282 exit(1);
5283 }
5284 serial_devices[serial_device_index] = optarg;
5285 serial_device_index++;
5286 break;
5287 case QEMU_OPTION_watchdog:
5288 i = select_watchdog(optarg);
5289 if (i > 0)
5290 exit (i == 1 ? 1 : 0);
5291 break;
5292 case QEMU_OPTION_watchdog_action:
5293 if (select_watchdog_action(optarg) == -1) {
5294 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5295 exit(1);
5296 }
5297 break;
5298 case QEMU_OPTION_virtiocon:
5299 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5300 fprintf(stderr, "qemu: too many virtio consoles\n");
5301 exit(1);
5302 }
5303 virtio_consoles[virtio_console_index] = optarg;
5304 virtio_console_index++;
5305 break;
5306 case QEMU_OPTION_parallel:
5307 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5308 fprintf(stderr, "qemu: too many parallel ports\n");
5309 exit(1);
5310 }
5311 parallel_devices[parallel_device_index] = optarg;
5312 parallel_device_index++;
5313 break;
5314 case QEMU_OPTION_loadvm:
5315 loadvm = optarg;
5316 break;
5317 case QEMU_OPTION_full_screen:
5318 full_screen = 1;
5319 break;
5320 #ifdef CONFIG_SDL
5321 case QEMU_OPTION_no_frame:
5322 no_frame = 1;
5323 break;
5324 case QEMU_OPTION_alt_grab:
5325 alt_grab = 1;
5326 break;
5327 case QEMU_OPTION_no_quit:
5328 no_quit = 1;
5329 break;
5330 case QEMU_OPTION_sdl:
5331 display_type = DT_SDL;
5332 break;
5333 #endif
5334 case QEMU_OPTION_pidfile:
5335 pid_file = optarg;
5336 break;
5337 #ifdef TARGET_I386
5338 case QEMU_OPTION_win2k_hack:
5339 win2k_install_hack = 1;
5340 break;
5341 case QEMU_OPTION_rtc_td_hack:
5342 rtc_td_hack = 1;
5343 break;
5344 case QEMU_OPTION_acpitable:
5345 if(acpi_table_add(optarg) < 0) {
5346 fprintf(stderr, "Wrong acpi table provided\n");
5347 exit(1);
5348 }
5349 break;
5350 case QEMU_OPTION_smbios:
5351 if(smbios_entry_add(optarg) < 0) {
5352 fprintf(stderr, "Wrong smbios provided\n");
5353 exit(1);
5354 }
5355 break;
5356 #endif
5357 #ifdef CONFIG_KVM
5358 case QEMU_OPTION_enable_kvm:
5359 kvm_allowed = 1;
5360 break;
5361 #endif
5362 case QEMU_OPTION_usb:
5363 usb_enabled = 1;
5364 break;
5365 case QEMU_OPTION_usbdevice:
5366 usb_enabled = 1;
5367 add_device_config(DEV_USB, optarg);
5368 break;
5369 case QEMU_OPTION_device:
5370 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5371 if (!opts) {
5372 fprintf(stderr, "parse error: %s\n", optarg);
5373 exit(1);
5374 }
5375 break;
5376 case QEMU_OPTION_smp:
5377 {
5378 char *p;
5379 char option[128];
5380 smp_cpus = strtol(optarg, &p, 10);
5381 if (smp_cpus < 1) {
5382 fprintf(stderr, "Invalid number of CPUs\n");
5383 exit(1);
5384 }
5385 if (*p++ != ',')
5386 break;
5387 if (get_param_value(option, 128, "maxcpus", p))
5388 max_cpus = strtol(option, NULL, 0);
5389 if (max_cpus < smp_cpus) {
5390 fprintf(stderr, "maxcpus must be equal to or greater than "
5391 "smp\n");
5392 exit(1);
5393 }
5394 if (max_cpus > 255) {
5395 fprintf(stderr, "Unsupported number of maxcpus\n");
5396 exit(1);
5397 }
5398 break;
5399 }
5400 case QEMU_OPTION_vnc:
5401 display_type = DT_VNC;
5402 vnc_display = optarg;
5403 break;
5404 #ifdef TARGET_I386
5405 case QEMU_OPTION_no_acpi:
5406 acpi_enabled = 0;
5407 break;
5408 case QEMU_OPTION_no_hpet:
5409 no_hpet = 1;
5410 break;
5411 case QEMU_OPTION_balloon:
5412 if (balloon_parse(optarg) < 0) {
5413 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5414 exit(1);
5415 }
5416 break;
5417 #endif
5418 case QEMU_OPTION_no_reboot:
5419 no_reboot = 1;
5420 break;
5421 case QEMU_OPTION_no_shutdown:
5422 no_shutdown = 1;
5423 break;
5424 case QEMU_OPTION_show_cursor:
5425 cursor_hide = 0;
5426 break;
5427 case QEMU_OPTION_uuid:
5428 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5429 fprintf(stderr, "Fail to parse UUID string."
5430 " Wrong format.\n");
5431 exit(1);
5432 }
5433 break;
5434 #ifndef _WIN32
5435 case QEMU_OPTION_daemonize:
5436 daemonize = 1;
5437 break;
5438 #endif
5439 case QEMU_OPTION_option_rom:
5440 if (nb_option_roms >= MAX_OPTION_ROMS) {
5441 fprintf(stderr, "Too many option ROMs\n");
5442 exit(1);
5443 }
5444 option_rom[nb_option_roms] = optarg;
5445 nb_option_roms++;
5446 break;
5447 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5448 case QEMU_OPTION_semihosting:
5449 semihosting_enabled = 1;
5450 break;
5451 #endif
5452 case QEMU_OPTION_name:
5453 qemu_name = qemu_strdup(optarg);
5454 {
5455 char *p = strchr(qemu_name, ',');
5456 if (p != NULL) {
5457 *p++ = 0;
5458 if (strncmp(p, "process=", 8)) {
5459 fprintf(stderr, "Unknown subargument %s to -name", p);
5460 exit(1);
5461 }
5462 p += 8;
5463 set_proc_name(p);
5464 }
5465 }
5466 break;
5467 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5468 case QEMU_OPTION_prom_env:
5469 if (nb_prom_envs >= MAX_PROM_ENVS) {
5470 fprintf(stderr, "Too many prom variables\n");
5471 exit(1);
5472 }
5473 prom_envs[nb_prom_envs] = optarg;
5474 nb_prom_envs++;
5475 break;
5476 #endif
5477 #ifdef TARGET_ARM
5478 case QEMU_OPTION_old_param:
5479 old_param = 1;
5480 break;
5481 #endif
5482 case QEMU_OPTION_clock:
5483 configure_alarms(optarg);
5484 break;
5485 case QEMU_OPTION_startdate:
5486 {
5487 struct tm tm;
5488 time_t rtc_start_date;
5489 if (!strcmp(optarg, "now")) {
5490 rtc_date_offset = -1;
5491 } else {
5492 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5493 &tm.tm_year,
5494 &tm.tm_mon,
5495 &tm.tm_mday,
5496 &tm.tm_hour,
5497 &tm.tm_min,
5498 &tm.tm_sec) == 6) {
5499 /* OK */
5500 } else if (sscanf(optarg, "%d-%d-%d",
5501 &tm.tm_year,
5502 &tm.tm_mon,
5503 &tm.tm_mday) == 3) {
5504 tm.tm_hour = 0;
5505 tm.tm_min = 0;
5506 tm.tm_sec = 0;
5507 } else {
5508 goto date_fail;
5509 }
5510 tm.tm_year -= 1900;
5511 tm.tm_mon--;
5512 rtc_start_date = mktimegm(&tm);
5513 if (rtc_start_date == -1) {
5514 date_fail:
5515 fprintf(stderr, "Invalid date format. Valid format are:\n"
5516 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5517 exit(1);
5518 }
5519 rtc_date_offset = time(NULL) - rtc_start_date;
5520 }
5521 }
5522 break;
5523 case QEMU_OPTION_tb_size:
5524 tb_size = strtol(optarg, NULL, 0);
5525 if (tb_size < 0)
5526 tb_size = 0;
5527 break;
5528 case QEMU_OPTION_icount:
5529 use_icount = 1;
5530 if (strcmp(optarg, "auto") == 0) {
5531 icount_time_shift = -1;
5532 } else {
5533 icount_time_shift = strtol(optarg, NULL, 0);
5534 }
5535 break;
5536 case QEMU_OPTION_incoming:
5537 incoming = optarg;
5538 break;
5539 #ifndef _WIN32
5540 case QEMU_OPTION_chroot:
5541 chroot_dir = optarg;
5542 break;
5543 case QEMU_OPTION_runas:
5544 run_as = optarg;
5545 break;
5546 #endif
5547 #ifdef CONFIG_XEN
5548 case QEMU_OPTION_xen_domid:
5549 xen_domid = atoi(optarg);
5550 break;
5551 case QEMU_OPTION_xen_create:
5552 xen_mode = XEN_CREATE;
5553 break;
5554 case QEMU_OPTION_xen_attach:
5555 xen_mode = XEN_ATTACH;
5556 break;
5557 #endif
5558 }
5559 }
5560 }
5561
5562 /* If no data_dir is specified then try to find it relative to the
5563 executable path. */
5564 if (!data_dir) {
5565 data_dir = find_datadir(argv[0]);
5566 }
5567 /* If all else fails use the install patch specified when building. */
5568 if (!data_dir) {
5569 data_dir = CONFIG_QEMU_SHAREDIR;
5570 }
5571
5572 /*
5573 * Default to max_cpus = smp_cpus, in case the user doesn't
5574 * specify a max_cpus value.
5575 */
5576 if (!max_cpus)
5577 max_cpus = smp_cpus;
5578
5579 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5580 if (smp_cpus > machine->max_cpus) {
5581 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5582 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5583 machine->max_cpus);
5584 exit(1);
5585 }
5586
5587 if (display_type == DT_NOGRAPHIC) {
5588 if (serial_device_index == 0)
5589 serial_devices[0] = "stdio";
5590 if (parallel_device_index == 0)
5591 parallel_devices[0] = "null";
5592 if (strncmp(monitor_device, "vc", 2) == 0)
5593 monitor_device = "stdio";
5594 }
5595
5596 #ifndef _WIN32
5597 if (daemonize) {
5598 pid_t pid;
5599
5600 if (pipe(fds) == -1)
5601 exit(1);
5602
5603 pid = fork();
5604 if (pid > 0) {
5605 uint8_t status;
5606 ssize_t len;
5607
5608 close(fds[1]);
5609
5610 again:
5611 len = read(fds[0], &status, 1);
5612 if (len == -1 && (errno == EINTR))
5613 goto again;
5614
5615 if (len != 1)
5616 exit(1);
5617 else if (status == 1) {
5618 fprintf(stderr, "Could not acquire pidfile\n");
5619 exit(1);
5620 } else
5621 exit(0);
5622 } else if (pid < 0)
5623 exit(1);
5624
5625 setsid();
5626
5627 pid = fork();
5628 if (pid > 0)
5629 exit(0);
5630 else if (pid < 0)
5631 exit(1);
5632
5633 umask(027);
5634
5635 signal(SIGTSTP, SIG_IGN);
5636 signal(SIGTTOU, SIG_IGN);
5637 signal(SIGTTIN, SIG_IGN);
5638 }
5639
5640 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5641 if (daemonize) {
5642 uint8_t status = 1;
5643 write(fds[1], &status, 1);
5644 } else
5645 fprintf(stderr, "Could not acquire pid file\n");
5646 exit(1);
5647 }
5648 #endif
5649
5650 if (qemu_init_main_loop()) {
5651 fprintf(stderr, "qemu_init_main_loop failed\n");
5652 exit(1);
5653 }
5654 linux_boot = (kernel_filename != NULL);
5655
5656 if (!linux_boot && *kernel_cmdline != '\0') {
5657 fprintf(stderr, "-append only allowed with -kernel option\n");
5658 exit(1);
5659 }
5660
5661 if (!linux_boot && initrd_filename != NULL) {
5662 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5663 exit(1);
5664 }
5665
5666 #ifndef _WIN32
5667 /* Win32 doesn't support line-buffering and requires size >= 2 */
5668 setvbuf(stdout, NULL, _IOLBF, 0);
5669 #endif
5670
5671 init_timers();
5672 if (init_timer_alarm() < 0) {
5673 fprintf(stderr, "could not initialize alarm timer\n");
5674 exit(1);
5675 }
5676 if (use_icount && icount_time_shift < 0) {
5677 use_icount = 2;
5678 /* 125MIPS seems a reasonable initial guess at the guest speed.
5679 It will be corrected fairly quickly anyway. */
5680 icount_time_shift = 3;
5681 init_icount_adjust();
5682 }
5683
5684 #ifdef _WIN32
5685 socket_init();
5686 #endif
5687
5688 /* init network clients */
5689 if (nb_net_clients == 0) {
5690 /* if no clients, we use a default config */
5691 net_clients[nb_net_clients++] = "nic";
5692 #ifdef CONFIG_SLIRP
5693 net_clients[nb_net_clients++] = "user";
5694 #endif
5695 }
5696
5697 for(i = 0;i < nb_net_clients; i++) {
5698 if (net_client_parse(net_clients[i]) < 0)
5699 exit(1);
5700 }
5701
5702 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5703 net_set_boot_mask(net_boot);
5704
5705 net_client_check();
5706
5707 /* init the bluetooth world */
5708 if (foreach_device_config(DEV_BT, bt_parse))
5709 exit(1);
5710
5711 /* init the memory */
5712 if (ram_size == 0)
5713 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5714
5715 /* init the dynamic translator */
5716 cpu_exec_init_all(tb_size * 1024 * 1024);
5717
5718 bdrv_init();
5719
5720 /* we always create the cdrom drive, even if no disk is there */
5721 drive_add(NULL, CDROM_ALIAS);
5722
5723 /* we always create at least one floppy */
5724 drive_add(NULL, FD_ALIAS, 0);
5725
5726 /* we always create one sd slot, even if no card is in it */
5727 drive_add(NULL, SD_ALIAS);
5728
5729 /* open the virtual block devices */
5730 if (snapshot)
5731 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5732 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5733 exit(1);
5734
5735 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5736 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5737
5738 #ifndef _WIN32
5739 /* must be after terminal init, SDL library changes signal handlers */
5740 sighandler_setup();
5741 #endif
5742
5743 /* Maintain compatibility with multiple stdio monitors */
5744 if (!strcmp(monitor_device,"stdio")) {
5745 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5746 const char *devname = serial_devices[i];
5747 if (devname && !strcmp(devname,"mon:stdio")) {
5748 monitor_device = NULL;
5749 break;
5750 } else if (devname && !strcmp(devname,"stdio")) {
5751 monitor_device = NULL;
5752 serial_devices[i] = "mon:stdio";
5753 break;
5754 }
5755 }
5756 }
5757
5758 if (nb_numa_nodes > 0) {
5759 int i;
5760
5761 if (nb_numa_nodes > smp_cpus) {
5762 nb_numa_nodes = smp_cpus;
5763 }
5764
5765 /* If no memory size if given for any node, assume the default case
5766 * and distribute the available memory equally across all nodes
5767 */
5768 for (i = 0; i < nb_numa_nodes; i++) {
5769 if (node_mem[i] != 0)
5770 break;
5771 }
5772 if (i == nb_numa_nodes) {
5773 uint64_t usedmem = 0;
5774
5775 /* On Linux, the each node's border has to be 8MB aligned,
5776 * the final node gets the rest.
5777 */
5778 for (i = 0; i < nb_numa_nodes - 1; i++) {
5779 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5780 usedmem += node_mem[i];
5781 }
5782 node_mem[i] = ram_size - usedmem;
5783 }
5784
5785 for (i = 0; i < nb_numa_nodes; i++) {
5786 if (node_cpumask[i] != 0)
5787 break;
5788 }
5789 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5790 * must cope with this anyway, because there are BIOSes out there in
5791 * real machines which also use this scheme.
5792 */
5793 if (i == nb_numa_nodes) {
5794 for (i = 0; i < smp_cpus; i++) {
5795 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5796 }
5797 }
5798 }
5799
5800 if (kvm_enabled()) {
5801 int ret;
5802
5803 ret = kvm_init(smp_cpus);
5804 if (ret < 0) {
5805 fprintf(stderr, "failed to initialize KVM\n");
5806 exit(1);
5807 }
5808 }
5809
5810 if (monitor_device) {
5811 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5812 if (!monitor_hd) {
5813 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5814 exit(1);
5815 }
5816 }
5817
5818 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5819 const char *devname = serial_devices[i];
5820 if (devname && strcmp(devname, "none")) {
5821 char label[32];
5822 snprintf(label, sizeof(label), "serial%d", i);
5823 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5824 if (!serial_hds[i]) {
5825 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5826 devname);
5827 exit(1);
5828 }
5829 }
5830 }
5831
5832 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5833 const char *devname = parallel_devices[i];
5834 if (devname && strcmp(devname, "none")) {
5835 char label[32];
5836 snprintf(label, sizeof(label), "parallel%d", i);
5837 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5838 if (!parallel_hds[i]) {
5839 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5840 devname);
5841 exit(1);
5842 }
5843 }
5844 }
5845
5846 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5847 const char *devname = virtio_consoles[i];
5848 if (devname && strcmp(devname, "none")) {
5849 char label[32];
5850 snprintf(label, sizeof(label), "virtcon%d", i);
5851 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5852 if (!virtcon_hds[i]) {
5853 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5854 devname);
5855 exit(1);
5856 }
5857 }
5858 }
5859
5860 module_call_init(MODULE_INIT_DEVICE);
5861
5862 if (machine->compat_props) {
5863 qdev_prop_register_compat(machine->compat_props);
5864 }
5865 machine->init(ram_size, boot_devices,
5866 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5867
5868
5869 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5870 for (i = 0; i < nb_numa_nodes; i++) {
5871 if (node_cpumask[i] & (1 << env->cpu_index)) {
5872 env->numa_node = i;
5873 }
5874 }
5875 }
5876
5877 current_machine = machine;
5878
5879 /* init USB devices */
5880 if (usb_enabled) {
5881 foreach_device_config(DEV_USB, usb_parse);
5882 }
5883
5884 /* init generic devices */
5885 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5886 exit(1);
5887
5888 if (!display_state)
5889 dumb_display_init();
5890 /* just use the first displaystate for the moment */
5891 ds = display_state;
5892
5893 if (display_type == DT_DEFAULT) {
5894 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5895 display_type = DT_SDL;
5896 #else
5897 display_type = DT_VNC;
5898 vnc_display = "localhost:0,to=99";
5899 show_vnc_port = 1;
5900 #endif
5901 }
5902
5903
5904 switch (display_type) {
5905 case DT_NOGRAPHIC:
5906 break;
5907 #if defined(CONFIG_CURSES)
5908 case DT_CURSES:
5909 curses_display_init(ds, full_screen);
5910 break;
5911 #endif
5912 #if defined(CONFIG_SDL)
5913 case DT_SDL:
5914 sdl_display_init(ds, full_screen, no_frame);
5915 break;
5916 #elif defined(CONFIG_COCOA)
5917 case DT_SDL:
5918 cocoa_display_init(ds, full_screen);
5919 break;
5920 #endif
5921 case DT_VNC:
5922 vnc_display_init(ds);
5923 if (vnc_display_open(ds, vnc_display) < 0)
5924 exit(1);
5925
5926 if (show_vnc_port) {
5927 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5928 }
5929 break;
5930 default:
5931 break;
5932 }
5933 dpy_resize(ds);
5934
5935 dcl = ds->listeners;
5936 while (dcl != NULL) {
5937 if (dcl->dpy_refresh != NULL) {
5938 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5939 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5940 }
5941 dcl = dcl->next;
5942 }
5943
5944 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5945 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5946 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5947 }
5948
5949 text_consoles_set_display(display_state);
5950 qemu_chr_initial_reset();
5951
5952 if (monitor_device && monitor_hd)
5953 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5954
5955 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5956 const char *devname = serial_devices[i];
5957 if (devname && strcmp(devname, "none")) {
5958 if (strstart(devname, "vc", 0))
5959 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5960 }
5961 }
5962
5963 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5964 const char *devname = parallel_devices[i];
5965 if (devname && strcmp(devname, "none")) {
5966 if (strstart(devname, "vc", 0))
5967 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5968 }
5969 }
5970
5971 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5972 const char *devname = virtio_consoles[i];
5973 if (virtcon_hds[i] && devname) {
5974 if (strstart(devname, "vc", 0))
5975 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5976 }
5977 }
5978
5979 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5980 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5981 gdbstub_dev);
5982 exit(1);
5983 }
5984
5985 if (loadvm)
5986 do_loadvm(cur_mon, loadvm);
5987
5988 if (incoming) {
5989 qemu_start_incoming_migration(incoming);
5990 } else if (autostart) {
5991 vm_start();
5992 }
5993
5994 #ifndef _WIN32
5995 if (daemonize) {
5996 uint8_t status = 0;
5997 ssize_t len;
5998
5999 again1:
6000 len = write(fds[1], &status, 1);
6001 if (len == -1 && (errno == EINTR))
6002 goto again1;
6003
6004 if (len != 1)
6005 exit(1);
6006
6007 chdir("/");
6008 TFR(fd = open("/dev/null", O_RDWR));
6009 if (fd == -1)
6010 exit(1);
6011 }
6012
6013 if (run_as) {
6014 pwd = getpwnam(run_as);
6015 if (!pwd) {
6016 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6017 exit(1);
6018 }
6019 }
6020
6021 if (chroot_dir) {
6022 if (chroot(chroot_dir) < 0) {
6023 fprintf(stderr, "chroot failed\n");
6024 exit(1);
6025 }
6026 chdir("/");
6027 }
6028
6029 if (run_as) {
6030 if (setgid(pwd->pw_gid) < 0) {
6031 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6032 exit(1);
6033 }
6034 if (setuid(pwd->pw_uid) < 0) {
6035 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6036 exit(1);
6037 }
6038 if (setuid(0) != -1) {
6039 fprintf(stderr, "Dropping privileges failed\n");
6040 exit(1);
6041 }
6042 }
6043
6044 if (daemonize) {
6045 dup2(fd, 0);
6046 dup2(fd, 1);
6047 dup2(fd, 2);
6048
6049 close(fd);
6050 }
6051 #endif
6052
6053 main_loop();
6054 quit_timers();
6055 net_cleanup();
6056
6057 return 0;
6058 }