]> git.proxmox.com Git - qemu.git/blob - vl.c
Clean build: Add bt-host.h
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "bt-host.h"
142 #include "net.h"
143 #include "monitor.h"
144 #include "console.h"
145 #include "sysemu.h"
146 #include "gdbstub.h"
147 #include "qemu-timer.h"
148 #include "qemu-char.h"
149 #include "cache-utils.h"
150 #include "block.h"
151 #include "audio/audio.h"
152 #include "migration.h"
153 #include "kvm.h"
154 #include "balloon.h"
155
156 #include "disas.h"
157
158 #include "exec-all.h"
159
160 #include "qemu_socket.h"
161
162 #if defined(CONFIG_SLIRP)
163 #include "libslirp.h"
164 #endif
165
166 //#define DEBUG_UNUSED_IOPORT
167 //#define DEBUG_IOPORT
168 //#define DEBUG_NET
169 //#define DEBUG_SLIRP
170
171
172 #ifdef DEBUG_IOPORT
173 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
174 #else
175 # define LOG_IOPORT(...) do { } while (0)
176 #endif
177
178 #define DEFAULT_RAM_SIZE 128
179
180 /* Max number of USB devices that can be specified on the commandline. */
181 #define MAX_USB_CMDLINE 8
182
183 /* Max number of bluetooth switches on the commandline. */
184 #define MAX_BT_CMDLINE 10
185
186 /* XXX: use a two level table to limit memory usage */
187 #define MAX_IOPORTS 65536
188
189 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
190 const char *bios_name = NULL;
191 static void *ioport_opaque[MAX_IOPORTS];
192 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
193 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
194 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
195 to store the VM snapshots */
196 DriveInfo drives_table[MAX_DRIVES+1];
197 int nb_drives;
198 static int vga_ram_size;
199 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
200 static DisplayState *display_state;
201 int nographic;
202 static int curses;
203 static int sdl;
204 const char* keyboard_layout = NULL;
205 int64_t ticks_per_sec;
206 ram_addr_t ram_size;
207 int nb_nics;
208 NICInfo nd_table[MAX_NICS];
209 int vm_running;
210 static int autostart;
211 static int rtc_utc = 1;
212 static int rtc_date_offset = -1; /* -1 means no change */
213 int cirrus_vga_enabled = 1;
214 int std_vga_enabled = 0;
215 int vmsvga_enabled = 0;
216 #ifdef TARGET_SPARC
217 int graphic_width = 1024;
218 int graphic_height = 768;
219 int graphic_depth = 8;
220 #else
221 int graphic_width = 800;
222 int graphic_height = 600;
223 int graphic_depth = 15;
224 #endif
225 static int full_screen = 0;
226 #ifdef CONFIG_SDL
227 static int no_frame = 0;
228 #endif
229 int no_quit = 0;
230 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
231 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
232 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
233 #ifdef TARGET_I386
234 int win2k_install_hack = 0;
235 int rtc_td_hack = 0;
236 #endif
237 int usb_enabled = 0;
238 int smp_cpus = 1;
239 const char *vnc_display;
240 int acpi_enabled = 1;
241 int no_hpet = 0;
242 int fd_bootchk = 1;
243 int no_reboot = 0;
244 int no_shutdown = 0;
245 int cursor_hide = 1;
246 int graphic_rotate = 0;
247 int daemonize = 0;
248 const char *option_rom[MAX_OPTION_ROMS];
249 int nb_option_roms;
250 int semihosting_enabled = 0;
251 #ifdef TARGET_ARM
252 int old_param = 0;
253 #endif
254 const char *qemu_name;
255 int alt_grab = 0;
256 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
257 unsigned int nb_prom_envs = 0;
258 const char *prom_envs[MAX_PROM_ENVS];
259 #endif
260 int nb_drives_opt;
261 struct drive_opt drives_opt[MAX_DRIVES];
262
263 static CPUState *cur_cpu;
264 static CPUState *next_cpu;
265 static int event_pending = 1;
266 /* Conversion factor from emulated instructions to virtual clock ticks. */
267 static int icount_time_shift;
268 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
269 #define MAX_ICOUNT_SHIFT 10
270 /* Compensate for varying guest execution speed. */
271 static int64_t qemu_icount_bias;
272 static QEMUTimer *icount_rt_timer;
273 static QEMUTimer *icount_vm_timer;
274 static QEMUTimer *nographic_timer;
275
276 uint8_t qemu_uuid[16];
277
278 /***********************************************************/
279 /* x86 ISA bus support */
280
281 target_phys_addr_t isa_mem_base = 0;
282 PicState2 *isa_pic;
283
284 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
285 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
286
287 static uint32_t ioport_read(int index, uint32_t address)
288 {
289 static IOPortReadFunc *default_func[3] = {
290 default_ioport_readb,
291 default_ioport_readw,
292 default_ioport_readl
293 };
294 IOPortReadFunc *func = ioport_read_table[index][address];
295 if (!func)
296 func = default_func[index];
297 return func(ioport_opaque[address], address);
298 }
299
300 static void ioport_write(int index, uint32_t address, uint32_t data)
301 {
302 static IOPortWriteFunc *default_func[3] = {
303 default_ioport_writeb,
304 default_ioport_writew,
305 default_ioport_writel
306 };
307 IOPortWriteFunc *func = ioport_write_table[index][address];
308 if (!func)
309 func = default_func[index];
310 func(ioport_opaque[address], address, data);
311 }
312
313 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
314 {
315 #ifdef DEBUG_UNUSED_IOPORT
316 fprintf(stderr, "unused inb: port=0x%04x\n", address);
317 #endif
318 return 0xff;
319 }
320
321 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
322 {
323 #ifdef DEBUG_UNUSED_IOPORT
324 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
325 #endif
326 }
327
328 /* default is to make two byte accesses */
329 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
330 {
331 uint32_t data;
332 data = ioport_read(0, address);
333 address = (address + 1) & (MAX_IOPORTS - 1);
334 data |= ioport_read(0, address) << 8;
335 return data;
336 }
337
338 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
339 {
340 ioport_write(0, address, data & 0xff);
341 address = (address + 1) & (MAX_IOPORTS - 1);
342 ioport_write(0, address, (data >> 8) & 0xff);
343 }
344
345 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
346 {
347 #ifdef DEBUG_UNUSED_IOPORT
348 fprintf(stderr, "unused inl: port=0x%04x\n", address);
349 #endif
350 return 0xffffffff;
351 }
352
353 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
354 {
355 #ifdef DEBUG_UNUSED_IOPORT
356 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
357 #endif
358 }
359
360 /* size is the word size in byte */
361 int register_ioport_read(int start, int length, int size,
362 IOPortReadFunc *func, void *opaque)
363 {
364 int i, bsize;
365
366 if (size == 1) {
367 bsize = 0;
368 } else if (size == 2) {
369 bsize = 1;
370 } else if (size == 4) {
371 bsize = 2;
372 } else {
373 hw_error("register_ioport_read: invalid size");
374 return -1;
375 }
376 for(i = start; i < start + length; i += size) {
377 ioport_read_table[bsize][i] = func;
378 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
379 hw_error("register_ioport_read: invalid opaque");
380 ioport_opaque[i] = opaque;
381 }
382 return 0;
383 }
384
385 /* size is the word size in byte */
386 int register_ioport_write(int start, int length, int size,
387 IOPortWriteFunc *func, void *opaque)
388 {
389 int i, bsize;
390
391 if (size == 1) {
392 bsize = 0;
393 } else if (size == 2) {
394 bsize = 1;
395 } else if (size == 4) {
396 bsize = 2;
397 } else {
398 hw_error("register_ioport_write: invalid size");
399 return -1;
400 }
401 for(i = start; i < start + length; i += size) {
402 ioport_write_table[bsize][i] = func;
403 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
404 hw_error("register_ioport_write: invalid opaque");
405 ioport_opaque[i] = opaque;
406 }
407 return 0;
408 }
409
410 void isa_unassign_ioport(int start, int length)
411 {
412 int i;
413
414 for(i = start; i < start + length; i++) {
415 ioport_read_table[0][i] = default_ioport_readb;
416 ioport_read_table[1][i] = default_ioport_readw;
417 ioport_read_table[2][i] = default_ioport_readl;
418
419 ioport_write_table[0][i] = default_ioport_writeb;
420 ioport_write_table[1][i] = default_ioport_writew;
421 ioport_write_table[2][i] = default_ioport_writel;
422
423 ioport_opaque[i] = NULL;
424 }
425 }
426
427 /***********************************************************/
428
429 void cpu_outb(CPUState *env, int addr, int val)
430 {
431 LOG_IOPORT("outb: %04x %02x\n", addr, val);
432 ioport_write(0, addr, val);
433 #ifdef USE_KQEMU
434 if (env)
435 env->last_io_time = cpu_get_time_fast();
436 #endif
437 }
438
439 void cpu_outw(CPUState *env, int addr, int val)
440 {
441 LOG_IOPORT("outw: %04x %04x\n", addr, val);
442 ioport_write(1, addr, val);
443 #ifdef USE_KQEMU
444 if (env)
445 env->last_io_time = cpu_get_time_fast();
446 #endif
447 }
448
449 void cpu_outl(CPUState *env, int addr, int val)
450 {
451 LOG_IOPORT("outl: %04x %08x\n", addr, val);
452 ioport_write(2, addr, val);
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 }
458
459 int cpu_inb(CPUState *env, int addr)
460 {
461 int val;
462 val = ioport_read(0, addr);
463 LOG_IOPORT("inb : %04x %02x\n", addr, val);
464 #ifdef USE_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
468 return val;
469 }
470
471 int cpu_inw(CPUState *env, int addr)
472 {
473 int val;
474 val = ioport_read(1, addr);
475 LOG_IOPORT("inw : %04x %04x\n", addr, val);
476 #ifdef USE_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
481 }
482
483 int cpu_inl(CPUState *env, int addr)
484 {
485 int val;
486 val = ioport_read(2, addr);
487 LOG_IOPORT("inl : %04x %08x\n", addr, val);
488 #ifdef USE_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
493 }
494
495 /***********************************************************/
496 void hw_error(const char *fmt, ...)
497 {
498 va_list ap;
499 CPUState *env;
500
501 va_start(ap, fmt);
502 fprintf(stderr, "qemu: hardware error: ");
503 vfprintf(stderr, fmt, ap);
504 fprintf(stderr, "\n");
505 for(env = first_cpu; env != NULL; env = env->next_cpu) {
506 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
507 #ifdef TARGET_I386
508 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
509 #else
510 cpu_dump_state(env, stderr, fprintf, 0);
511 #endif
512 }
513 va_end(ap);
514 abort();
515 }
516
517 /***************/
518 /* ballooning */
519
520 static QEMUBalloonEvent *qemu_balloon_event;
521 void *qemu_balloon_event_opaque;
522
523 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
524 {
525 qemu_balloon_event = func;
526 qemu_balloon_event_opaque = opaque;
527 }
528
529 void qemu_balloon(ram_addr_t target)
530 {
531 if (qemu_balloon_event)
532 qemu_balloon_event(qemu_balloon_event_opaque, target);
533 }
534
535 ram_addr_t qemu_balloon_status(void)
536 {
537 if (qemu_balloon_event)
538 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
539 return 0;
540 }
541
542 /***********************************************************/
543 /* keyboard/mouse */
544
545 static QEMUPutKBDEvent *qemu_put_kbd_event;
546 static void *qemu_put_kbd_event_opaque;
547 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
548 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
549
550 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
551 {
552 qemu_put_kbd_event_opaque = opaque;
553 qemu_put_kbd_event = func;
554 }
555
556 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
557 void *opaque, int absolute,
558 const char *name)
559 {
560 QEMUPutMouseEntry *s, *cursor;
561
562 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
563
564 s->qemu_put_mouse_event = func;
565 s->qemu_put_mouse_event_opaque = opaque;
566 s->qemu_put_mouse_event_absolute = absolute;
567 s->qemu_put_mouse_event_name = qemu_strdup(name);
568 s->next = NULL;
569
570 if (!qemu_put_mouse_event_head) {
571 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
572 return s;
573 }
574
575 cursor = qemu_put_mouse_event_head;
576 while (cursor->next != NULL)
577 cursor = cursor->next;
578
579 cursor->next = s;
580 qemu_put_mouse_event_current = s;
581
582 return s;
583 }
584
585 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
586 {
587 QEMUPutMouseEntry *prev = NULL, *cursor;
588
589 if (!qemu_put_mouse_event_head || entry == NULL)
590 return;
591
592 cursor = qemu_put_mouse_event_head;
593 while (cursor != NULL && cursor != entry) {
594 prev = cursor;
595 cursor = cursor->next;
596 }
597
598 if (cursor == NULL) // does not exist or list empty
599 return;
600 else if (prev == NULL) { // entry is head
601 qemu_put_mouse_event_head = cursor->next;
602 if (qemu_put_mouse_event_current == entry)
603 qemu_put_mouse_event_current = cursor->next;
604 qemu_free(entry->qemu_put_mouse_event_name);
605 qemu_free(entry);
606 return;
607 }
608
609 prev->next = entry->next;
610
611 if (qemu_put_mouse_event_current == entry)
612 qemu_put_mouse_event_current = prev;
613
614 qemu_free(entry->qemu_put_mouse_event_name);
615 qemu_free(entry);
616 }
617
618 void kbd_put_keycode(int keycode)
619 {
620 if (qemu_put_kbd_event) {
621 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
622 }
623 }
624
625 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
626 {
627 QEMUPutMouseEvent *mouse_event;
628 void *mouse_event_opaque;
629 int width;
630
631 if (!qemu_put_mouse_event_current) {
632 return;
633 }
634
635 mouse_event =
636 qemu_put_mouse_event_current->qemu_put_mouse_event;
637 mouse_event_opaque =
638 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
639
640 if (mouse_event) {
641 if (graphic_rotate) {
642 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
643 width = 0x7fff;
644 else
645 width = graphic_width - 1;
646 mouse_event(mouse_event_opaque,
647 width - dy, dx, dz, buttons_state);
648 } else
649 mouse_event(mouse_event_opaque,
650 dx, dy, dz, buttons_state);
651 }
652 }
653
654 int kbd_mouse_is_absolute(void)
655 {
656 if (!qemu_put_mouse_event_current)
657 return 0;
658
659 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
660 }
661
662 void do_info_mice(Monitor *mon)
663 {
664 QEMUPutMouseEntry *cursor;
665 int index = 0;
666
667 if (!qemu_put_mouse_event_head) {
668 monitor_printf(mon, "No mouse devices connected\n");
669 return;
670 }
671
672 monitor_printf(mon, "Mouse devices available:\n");
673 cursor = qemu_put_mouse_event_head;
674 while (cursor != NULL) {
675 monitor_printf(mon, "%c Mouse #%d: %s\n",
676 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
677 index, cursor->qemu_put_mouse_event_name);
678 index++;
679 cursor = cursor->next;
680 }
681 }
682
683 void do_mouse_set(Monitor *mon, int index)
684 {
685 QEMUPutMouseEntry *cursor;
686 int i = 0;
687
688 if (!qemu_put_mouse_event_head) {
689 monitor_printf(mon, "No mouse devices connected\n");
690 return;
691 }
692
693 cursor = qemu_put_mouse_event_head;
694 while (cursor != NULL && index != i) {
695 i++;
696 cursor = cursor->next;
697 }
698
699 if (cursor != NULL)
700 qemu_put_mouse_event_current = cursor;
701 else
702 monitor_printf(mon, "Mouse at given index not found\n");
703 }
704
705 /* compute with 96 bit intermediate result: (a*b)/c */
706 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
707 {
708 union {
709 uint64_t ll;
710 struct {
711 #ifdef WORDS_BIGENDIAN
712 uint32_t high, low;
713 #else
714 uint32_t low, high;
715 #endif
716 } l;
717 } u, res;
718 uint64_t rl, rh;
719
720 u.ll = a;
721 rl = (uint64_t)u.l.low * (uint64_t)b;
722 rh = (uint64_t)u.l.high * (uint64_t)b;
723 rh += (rl >> 32);
724 res.l.high = rh / c;
725 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
726 return res.ll;
727 }
728
729 /***********************************************************/
730 /* real time host monotonic timer */
731
732 #define QEMU_TIMER_BASE 1000000000LL
733
734 #ifdef WIN32
735
736 static int64_t clock_freq;
737
738 static void init_get_clock(void)
739 {
740 LARGE_INTEGER freq;
741 int ret;
742 ret = QueryPerformanceFrequency(&freq);
743 if (ret == 0) {
744 fprintf(stderr, "Could not calibrate ticks\n");
745 exit(1);
746 }
747 clock_freq = freq.QuadPart;
748 }
749
750 static int64_t get_clock(void)
751 {
752 LARGE_INTEGER ti;
753 QueryPerformanceCounter(&ti);
754 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
755 }
756
757 #else
758
759 static int use_rt_clock;
760
761 static void init_get_clock(void)
762 {
763 use_rt_clock = 0;
764 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
765 || defined(__DragonFly__)
766 {
767 struct timespec ts;
768 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
769 use_rt_clock = 1;
770 }
771 }
772 #endif
773 }
774
775 static int64_t get_clock(void)
776 {
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
779 if (use_rt_clock) {
780 struct timespec ts;
781 clock_gettime(CLOCK_MONOTONIC, &ts);
782 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
783 } else
784 #endif
785 {
786 /* XXX: using gettimeofday leads to problems if the date
787 changes, so it should be avoided. */
788 struct timeval tv;
789 gettimeofday(&tv, NULL);
790 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
791 }
792 }
793 #endif
794
795 /* Return the virtual CPU time, based on the instruction counter. */
796 static int64_t cpu_get_icount(void)
797 {
798 int64_t icount;
799 CPUState *env = cpu_single_env;;
800 icount = qemu_icount;
801 if (env) {
802 if (!can_do_io(env))
803 fprintf(stderr, "Bad clock read\n");
804 icount -= (env->icount_decr.u16.low + env->icount_extra);
805 }
806 return qemu_icount_bias + (icount << icount_time_shift);
807 }
808
809 /***********************************************************/
810 /* guest cycle counter */
811
812 static int64_t cpu_ticks_prev;
813 static int64_t cpu_ticks_offset;
814 static int64_t cpu_clock_offset;
815 static int cpu_ticks_enabled;
816
817 /* return the host CPU cycle counter and handle stop/restart */
818 int64_t cpu_get_ticks(void)
819 {
820 if (use_icount) {
821 return cpu_get_icount();
822 }
823 if (!cpu_ticks_enabled) {
824 return cpu_ticks_offset;
825 } else {
826 int64_t ticks;
827 ticks = cpu_get_real_ticks();
828 if (cpu_ticks_prev > ticks) {
829 /* Note: non increasing ticks may happen if the host uses
830 software suspend */
831 cpu_ticks_offset += cpu_ticks_prev - ticks;
832 }
833 cpu_ticks_prev = ticks;
834 return ticks + cpu_ticks_offset;
835 }
836 }
837
838 /* return the host CPU monotonic timer and handle stop/restart */
839 static int64_t cpu_get_clock(void)
840 {
841 int64_t ti;
842 if (!cpu_ticks_enabled) {
843 return cpu_clock_offset;
844 } else {
845 ti = get_clock();
846 return ti + cpu_clock_offset;
847 }
848 }
849
850 /* enable cpu_get_ticks() */
851 void cpu_enable_ticks(void)
852 {
853 if (!cpu_ticks_enabled) {
854 cpu_ticks_offset -= cpu_get_real_ticks();
855 cpu_clock_offset -= get_clock();
856 cpu_ticks_enabled = 1;
857 }
858 }
859
860 /* disable cpu_get_ticks() : the clock is stopped. You must not call
861 cpu_get_ticks() after that. */
862 void cpu_disable_ticks(void)
863 {
864 if (cpu_ticks_enabled) {
865 cpu_ticks_offset = cpu_get_ticks();
866 cpu_clock_offset = cpu_get_clock();
867 cpu_ticks_enabled = 0;
868 }
869 }
870
871 /***********************************************************/
872 /* timers */
873
874 #define QEMU_TIMER_REALTIME 0
875 #define QEMU_TIMER_VIRTUAL 1
876
877 struct QEMUClock {
878 int type;
879 /* XXX: add frequency */
880 };
881
882 struct QEMUTimer {
883 QEMUClock *clock;
884 int64_t expire_time;
885 QEMUTimerCB *cb;
886 void *opaque;
887 struct QEMUTimer *next;
888 };
889
890 struct qemu_alarm_timer {
891 char const *name;
892 unsigned int flags;
893
894 int (*start)(struct qemu_alarm_timer *t);
895 void (*stop)(struct qemu_alarm_timer *t);
896 void (*rearm)(struct qemu_alarm_timer *t);
897 void *priv;
898 };
899
900 #define ALARM_FLAG_DYNTICKS 0x1
901 #define ALARM_FLAG_EXPIRED 0x2
902
903 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
904 {
905 return t->flags & ALARM_FLAG_DYNTICKS;
906 }
907
908 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
909 {
910 if (!alarm_has_dynticks(t))
911 return;
912
913 t->rearm(t);
914 }
915
916 /* TODO: MIN_TIMER_REARM_US should be optimized */
917 #define MIN_TIMER_REARM_US 250
918
919 static struct qemu_alarm_timer *alarm_timer;
920 #ifndef _WIN32
921 static int alarm_timer_rfd, alarm_timer_wfd;
922 #endif
923
924 #ifdef _WIN32
925
926 struct qemu_alarm_win32 {
927 MMRESULT timerId;
928 HANDLE host_alarm;
929 unsigned int period;
930 } alarm_win32_data = {0, NULL, -1};
931
932 static int win32_start_timer(struct qemu_alarm_timer *t);
933 static void win32_stop_timer(struct qemu_alarm_timer *t);
934 static void win32_rearm_timer(struct qemu_alarm_timer *t);
935
936 #else
937
938 static int unix_start_timer(struct qemu_alarm_timer *t);
939 static void unix_stop_timer(struct qemu_alarm_timer *t);
940
941 #ifdef __linux__
942
943 static int dynticks_start_timer(struct qemu_alarm_timer *t);
944 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
945 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
946
947 static int hpet_start_timer(struct qemu_alarm_timer *t);
948 static void hpet_stop_timer(struct qemu_alarm_timer *t);
949
950 static int rtc_start_timer(struct qemu_alarm_timer *t);
951 static void rtc_stop_timer(struct qemu_alarm_timer *t);
952
953 #endif /* __linux__ */
954
955 #endif /* _WIN32 */
956
957 /* Correlation between real and virtual time is always going to be
958 fairly approximate, so ignore small variation.
959 When the guest is idle real and virtual time will be aligned in
960 the IO wait loop. */
961 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
962
963 static void icount_adjust(void)
964 {
965 int64_t cur_time;
966 int64_t cur_icount;
967 int64_t delta;
968 static int64_t last_delta;
969 /* If the VM is not running, then do nothing. */
970 if (!vm_running)
971 return;
972
973 cur_time = cpu_get_clock();
974 cur_icount = qemu_get_clock(vm_clock);
975 delta = cur_icount - cur_time;
976 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
977 if (delta > 0
978 && last_delta + ICOUNT_WOBBLE < delta * 2
979 && icount_time_shift > 0) {
980 /* The guest is getting too far ahead. Slow time down. */
981 icount_time_shift--;
982 }
983 if (delta < 0
984 && last_delta - ICOUNT_WOBBLE > delta * 2
985 && icount_time_shift < MAX_ICOUNT_SHIFT) {
986 /* The guest is getting too far behind. Speed time up. */
987 icount_time_shift++;
988 }
989 last_delta = delta;
990 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
991 }
992
993 static void icount_adjust_rt(void * opaque)
994 {
995 qemu_mod_timer(icount_rt_timer,
996 qemu_get_clock(rt_clock) + 1000);
997 icount_adjust();
998 }
999
1000 static void icount_adjust_vm(void * opaque)
1001 {
1002 qemu_mod_timer(icount_vm_timer,
1003 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1004 icount_adjust();
1005 }
1006
1007 static void init_icount_adjust(void)
1008 {
1009 /* Have both realtime and virtual time triggers for speed adjustment.
1010 The realtime trigger catches emulated time passing too slowly,
1011 the virtual time trigger catches emulated time passing too fast.
1012 Realtime triggers occur even when idle, so use them less frequently
1013 than VM triggers. */
1014 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1015 qemu_mod_timer(icount_rt_timer,
1016 qemu_get_clock(rt_clock) + 1000);
1017 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1018 qemu_mod_timer(icount_vm_timer,
1019 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1020 }
1021
1022 static struct qemu_alarm_timer alarm_timers[] = {
1023 #ifndef _WIN32
1024 #ifdef __linux__
1025 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1026 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1027 /* HPET - if available - is preferred */
1028 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1029 /* ...otherwise try RTC */
1030 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1031 #endif
1032 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1033 #else
1034 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1035 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1036 {"win32", 0, win32_start_timer,
1037 win32_stop_timer, NULL, &alarm_win32_data},
1038 #endif
1039 {NULL, }
1040 };
1041
1042 static void show_available_alarms(void)
1043 {
1044 int i;
1045
1046 printf("Available alarm timers, in order of precedence:\n");
1047 for (i = 0; alarm_timers[i].name; i++)
1048 printf("%s\n", alarm_timers[i].name);
1049 }
1050
1051 static void configure_alarms(char const *opt)
1052 {
1053 int i;
1054 int cur = 0;
1055 int count = ARRAY_SIZE(alarm_timers) - 1;
1056 char *arg;
1057 char *name;
1058 struct qemu_alarm_timer tmp;
1059
1060 if (!strcmp(opt, "?")) {
1061 show_available_alarms();
1062 exit(0);
1063 }
1064
1065 arg = strdup(opt);
1066
1067 /* Reorder the array */
1068 name = strtok(arg, ",");
1069 while (name) {
1070 for (i = 0; i < count && alarm_timers[i].name; i++) {
1071 if (!strcmp(alarm_timers[i].name, name))
1072 break;
1073 }
1074
1075 if (i == count) {
1076 fprintf(stderr, "Unknown clock %s\n", name);
1077 goto next;
1078 }
1079
1080 if (i < cur)
1081 /* Ignore */
1082 goto next;
1083
1084 /* Swap */
1085 tmp = alarm_timers[i];
1086 alarm_timers[i] = alarm_timers[cur];
1087 alarm_timers[cur] = tmp;
1088
1089 cur++;
1090 next:
1091 name = strtok(NULL, ",");
1092 }
1093
1094 free(arg);
1095
1096 if (cur) {
1097 /* Disable remaining timers */
1098 for (i = cur; i < count; i++)
1099 alarm_timers[i].name = NULL;
1100 } else {
1101 show_available_alarms();
1102 exit(1);
1103 }
1104 }
1105
1106 QEMUClock *rt_clock;
1107 QEMUClock *vm_clock;
1108
1109 static QEMUTimer *active_timers[2];
1110
1111 static QEMUClock *qemu_new_clock(int type)
1112 {
1113 QEMUClock *clock;
1114 clock = qemu_mallocz(sizeof(QEMUClock));
1115 clock->type = type;
1116 return clock;
1117 }
1118
1119 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1120 {
1121 QEMUTimer *ts;
1122
1123 ts = qemu_mallocz(sizeof(QEMUTimer));
1124 ts->clock = clock;
1125 ts->cb = cb;
1126 ts->opaque = opaque;
1127 return ts;
1128 }
1129
1130 void qemu_free_timer(QEMUTimer *ts)
1131 {
1132 qemu_free(ts);
1133 }
1134
1135 /* stop a timer, but do not dealloc it */
1136 void qemu_del_timer(QEMUTimer *ts)
1137 {
1138 QEMUTimer **pt, *t;
1139
1140 /* NOTE: this code must be signal safe because
1141 qemu_timer_expired() can be called from a signal. */
1142 pt = &active_timers[ts->clock->type];
1143 for(;;) {
1144 t = *pt;
1145 if (!t)
1146 break;
1147 if (t == ts) {
1148 *pt = t->next;
1149 break;
1150 }
1151 pt = &t->next;
1152 }
1153 }
1154
1155 /* modify the current timer so that it will be fired when current_time
1156 >= expire_time. The corresponding callback will be called. */
1157 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1158 {
1159 QEMUTimer **pt, *t;
1160
1161 qemu_del_timer(ts);
1162
1163 /* add the timer in the sorted list */
1164 /* NOTE: this code must be signal safe because
1165 qemu_timer_expired() can be called from a signal. */
1166 pt = &active_timers[ts->clock->type];
1167 for(;;) {
1168 t = *pt;
1169 if (!t)
1170 break;
1171 if (t->expire_time > expire_time)
1172 break;
1173 pt = &t->next;
1174 }
1175 ts->expire_time = expire_time;
1176 ts->next = *pt;
1177 *pt = ts;
1178
1179 /* Rearm if necessary */
1180 if (pt == &active_timers[ts->clock->type]) {
1181 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1182 qemu_rearm_alarm_timer(alarm_timer);
1183 }
1184 /* Interrupt execution to force deadline recalculation. */
1185 if (use_icount && cpu_single_env) {
1186 cpu_exit(cpu_single_env);
1187 }
1188 }
1189 }
1190
1191 int qemu_timer_pending(QEMUTimer *ts)
1192 {
1193 QEMUTimer *t;
1194 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1195 if (t == ts)
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
1201 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1202 {
1203 if (!timer_head)
1204 return 0;
1205 return (timer_head->expire_time <= current_time);
1206 }
1207
1208 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1209 {
1210 QEMUTimer *ts;
1211
1212 for(;;) {
1213 ts = *ptimer_head;
1214 if (!ts || ts->expire_time > current_time)
1215 break;
1216 /* remove timer from the list before calling the callback */
1217 *ptimer_head = ts->next;
1218 ts->next = NULL;
1219
1220 /* run the callback (the timer list can be modified) */
1221 ts->cb(ts->opaque);
1222 }
1223 }
1224
1225 int64_t qemu_get_clock(QEMUClock *clock)
1226 {
1227 switch(clock->type) {
1228 case QEMU_TIMER_REALTIME:
1229 return get_clock() / 1000000;
1230 default:
1231 case QEMU_TIMER_VIRTUAL:
1232 if (use_icount) {
1233 return cpu_get_icount();
1234 } else {
1235 return cpu_get_clock();
1236 }
1237 }
1238 }
1239
1240 static void init_timers(void)
1241 {
1242 init_get_clock();
1243 ticks_per_sec = QEMU_TIMER_BASE;
1244 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1245 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1246 }
1247
1248 /* save a timer */
1249 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1250 {
1251 uint64_t expire_time;
1252
1253 if (qemu_timer_pending(ts)) {
1254 expire_time = ts->expire_time;
1255 } else {
1256 expire_time = -1;
1257 }
1258 qemu_put_be64(f, expire_time);
1259 }
1260
1261 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1262 {
1263 uint64_t expire_time;
1264
1265 expire_time = qemu_get_be64(f);
1266 if (expire_time != -1) {
1267 qemu_mod_timer(ts, expire_time);
1268 } else {
1269 qemu_del_timer(ts);
1270 }
1271 }
1272
1273 static void timer_save(QEMUFile *f, void *opaque)
1274 {
1275 if (cpu_ticks_enabled) {
1276 hw_error("cannot save state if virtual timers are running");
1277 }
1278 qemu_put_be64(f, cpu_ticks_offset);
1279 qemu_put_be64(f, ticks_per_sec);
1280 qemu_put_be64(f, cpu_clock_offset);
1281 }
1282
1283 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1284 {
1285 if (version_id != 1 && version_id != 2)
1286 return -EINVAL;
1287 if (cpu_ticks_enabled) {
1288 return -EINVAL;
1289 }
1290 cpu_ticks_offset=qemu_get_be64(f);
1291 ticks_per_sec=qemu_get_be64(f);
1292 if (version_id == 2) {
1293 cpu_clock_offset=qemu_get_be64(f);
1294 }
1295 return 0;
1296 }
1297
1298 #ifdef _WIN32
1299 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1300 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1301 #else
1302 static void host_alarm_handler(int host_signum)
1303 #endif
1304 {
1305 #if 0
1306 #define DISP_FREQ 1000
1307 {
1308 static int64_t delta_min = INT64_MAX;
1309 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1310 static int count;
1311 ti = qemu_get_clock(vm_clock);
1312 if (last_clock != 0) {
1313 delta = ti - last_clock;
1314 if (delta < delta_min)
1315 delta_min = delta;
1316 if (delta > delta_max)
1317 delta_max = delta;
1318 delta_cum += delta;
1319 if (++count == DISP_FREQ) {
1320 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1321 muldiv64(delta_min, 1000000, ticks_per_sec),
1322 muldiv64(delta_max, 1000000, ticks_per_sec),
1323 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1324 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1325 count = 0;
1326 delta_min = INT64_MAX;
1327 delta_max = 0;
1328 delta_cum = 0;
1329 }
1330 }
1331 last_clock = ti;
1332 }
1333 #endif
1334 if (alarm_has_dynticks(alarm_timer) ||
1335 (!use_icount &&
1336 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1337 qemu_get_clock(vm_clock))) ||
1338 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1339 qemu_get_clock(rt_clock))) {
1340 CPUState *env = next_cpu;
1341
1342 #ifdef _WIN32
1343 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1344 SetEvent(data->host_alarm);
1345 #else
1346 static const char byte = 0;
1347 write(alarm_timer_wfd, &byte, sizeof(byte));
1348 #endif
1349 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1350
1351 if (env) {
1352 /* stop the currently executing cpu because a timer occured */
1353 cpu_exit(env);
1354 #ifdef USE_KQEMU
1355 if (env->kqemu_enabled) {
1356 kqemu_cpu_interrupt(env);
1357 }
1358 #endif
1359 }
1360 event_pending = 1;
1361 }
1362 }
1363
1364 static int64_t qemu_next_deadline(void)
1365 {
1366 int64_t delta;
1367
1368 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1369 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1370 qemu_get_clock(vm_clock);
1371 } else {
1372 /* To avoid problems with overflow limit this to 2^32. */
1373 delta = INT32_MAX;
1374 }
1375
1376 if (delta < 0)
1377 delta = 0;
1378
1379 return delta;
1380 }
1381
1382 #if defined(__linux__) || defined(_WIN32)
1383 static uint64_t qemu_next_deadline_dyntick(void)
1384 {
1385 int64_t delta;
1386 int64_t rtdelta;
1387
1388 if (use_icount)
1389 delta = INT32_MAX;
1390 else
1391 delta = (qemu_next_deadline() + 999) / 1000;
1392
1393 if (active_timers[QEMU_TIMER_REALTIME]) {
1394 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1395 qemu_get_clock(rt_clock))*1000;
1396 if (rtdelta < delta)
1397 delta = rtdelta;
1398 }
1399
1400 if (delta < MIN_TIMER_REARM_US)
1401 delta = MIN_TIMER_REARM_US;
1402
1403 return delta;
1404 }
1405 #endif
1406
1407 #ifndef _WIN32
1408
1409 /* Sets a specific flag */
1410 static int fcntl_setfl(int fd, int flag)
1411 {
1412 int flags;
1413
1414 flags = fcntl(fd, F_GETFL);
1415 if (flags == -1)
1416 return -errno;
1417
1418 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1419 return -errno;
1420
1421 return 0;
1422 }
1423
1424 #if defined(__linux__)
1425
1426 #define RTC_FREQ 1024
1427
1428 static void enable_sigio_timer(int fd)
1429 {
1430 struct sigaction act;
1431
1432 /* timer signal */
1433 sigfillset(&act.sa_mask);
1434 act.sa_flags = 0;
1435 act.sa_handler = host_alarm_handler;
1436
1437 sigaction(SIGIO, &act, NULL);
1438 fcntl_setfl(fd, O_ASYNC);
1439 fcntl(fd, F_SETOWN, getpid());
1440 }
1441
1442 static int hpet_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 struct hpet_info info;
1445 int r, fd;
1446
1447 fd = open("/dev/hpet", O_RDONLY);
1448 if (fd < 0)
1449 return -1;
1450
1451 /* Set frequency */
1452 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1453 if (r < 0) {
1454 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1455 "error, but for better emulation accuracy type:\n"
1456 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1457 goto fail;
1458 }
1459
1460 /* Check capabilities */
1461 r = ioctl(fd, HPET_INFO, &info);
1462 if (r < 0)
1463 goto fail;
1464
1465 /* Enable periodic mode */
1466 r = ioctl(fd, HPET_EPI, 0);
1467 if (info.hi_flags && (r < 0))
1468 goto fail;
1469
1470 /* Enable interrupt */
1471 r = ioctl(fd, HPET_IE_ON, 0);
1472 if (r < 0)
1473 goto fail;
1474
1475 enable_sigio_timer(fd);
1476 t->priv = (void *)(long)fd;
1477
1478 return 0;
1479 fail:
1480 close(fd);
1481 return -1;
1482 }
1483
1484 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1485 {
1486 int fd = (long)t->priv;
1487
1488 close(fd);
1489 }
1490
1491 static int rtc_start_timer(struct qemu_alarm_timer *t)
1492 {
1493 int rtc_fd;
1494 unsigned long current_rtc_freq = 0;
1495
1496 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1497 if (rtc_fd < 0)
1498 return -1;
1499 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1500 if (current_rtc_freq != RTC_FREQ &&
1501 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1502 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1503 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1504 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1505 goto fail;
1506 }
1507 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1508 fail:
1509 close(rtc_fd);
1510 return -1;
1511 }
1512
1513 enable_sigio_timer(rtc_fd);
1514
1515 t->priv = (void *)(long)rtc_fd;
1516
1517 return 0;
1518 }
1519
1520 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1521 {
1522 int rtc_fd = (long)t->priv;
1523
1524 close(rtc_fd);
1525 }
1526
1527 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1528 {
1529 struct sigevent ev;
1530 timer_t host_timer;
1531 struct sigaction act;
1532
1533 sigfillset(&act.sa_mask);
1534 act.sa_flags = 0;
1535 act.sa_handler = host_alarm_handler;
1536
1537 sigaction(SIGALRM, &act, NULL);
1538
1539 ev.sigev_value.sival_int = 0;
1540 ev.sigev_notify = SIGEV_SIGNAL;
1541 ev.sigev_signo = SIGALRM;
1542
1543 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1544 perror("timer_create");
1545
1546 /* disable dynticks */
1547 fprintf(stderr, "Dynamic Ticks disabled\n");
1548
1549 return -1;
1550 }
1551
1552 t->priv = (void *)(long)host_timer;
1553
1554 return 0;
1555 }
1556
1557 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1558 {
1559 timer_t host_timer = (timer_t)(long)t->priv;
1560
1561 timer_delete(host_timer);
1562 }
1563
1564 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1565 {
1566 timer_t host_timer = (timer_t)(long)t->priv;
1567 struct itimerspec timeout;
1568 int64_t nearest_delta_us = INT64_MAX;
1569 int64_t current_us;
1570
1571 if (!active_timers[QEMU_TIMER_REALTIME] &&
1572 !active_timers[QEMU_TIMER_VIRTUAL])
1573 return;
1574
1575 nearest_delta_us = qemu_next_deadline_dyntick();
1576
1577 /* check whether a timer is already running */
1578 if (timer_gettime(host_timer, &timeout)) {
1579 perror("gettime");
1580 fprintf(stderr, "Internal timer error: aborting\n");
1581 exit(1);
1582 }
1583 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1584 if (current_us && current_us <= nearest_delta_us)
1585 return;
1586
1587 timeout.it_interval.tv_sec = 0;
1588 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1589 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1590 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1591 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1592 perror("settime");
1593 fprintf(stderr, "Internal timer error: aborting\n");
1594 exit(1);
1595 }
1596 }
1597
1598 #endif /* defined(__linux__) */
1599
1600 static int unix_start_timer(struct qemu_alarm_timer *t)
1601 {
1602 struct sigaction act;
1603 struct itimerval itv;
1604 int err;
1605
1606 /* timer signal */
1607 sigfillset(&act.sa_mask);
1608 act.sa_flags = 0;
1609 act.sa_handler = host_alarm_handler;
1610
1611 sigaction(SIGALRM, &act, NULL);
1612
1613 itv.it_interval.tv_sec = 0;
1614 /* for i386 kernel 2.6 to get 1 ms */
1615 itv.it_interval.tv_usec = 999;
1616 itv.it_value.tv_sec = 0;
1617 itv.it_value.tv_usec = 10 * 1000;
1618
1619 err = setitimer(ITIMER_REAL, &itv, NULL);
1620 if (err)
1621 return -1;
1622
1623 return 0;
1624 }
1625
1626 static void unix_stop_timer(struct qemu_alarm_timer *t)
1627 {
1628 struct itimerval itv;
1629
1630 memset(&itv, 0, sizeof(itv));
1631 setitimer(ITIMER_REAL, &itv, NULL);
1632 }
1633
1634 #endif /* !defined(_WIN32) */
1635
1636 static void try_to_rearm_timer(void *opaque)
1637 {
1638 struct qemu_alarm_timer *t = opaque;
1639 #ifndef _WIN32
1640 ssize_t len;
1641
1642 /* Drain the notify pipe */
1643 do {
1644 char buffer[512];
1645 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1646 } while ((len == -1 && errno == EINTR) || len > 0);
1647 #endif
1648
1649 if (t->flags & ALARM_FLAG_EXPIRED) {
1650 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1651 qemu_rearm_alarm_timer(alarm_timer);
1652 }
1653 }
1654
1655 #ifdef _WIN32
1656
1657 static int win32_start_timer(struct qemu_alarm_timer *t)
1658 {
1659 TIMECAPS tc;
1660 struct qemu_alarm_win32 *data = t->priv;
1661 UINT flags;
1662
1663 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1664 if (!data->host_alarm) {
1665 perror("Failed CreateEvent");
1666 return -1;
1667 }
1668
1669 memset(&tc, 0, sizeof(tc));
1670 timeGetDevCaps(&tc, sizeof(tc));
1671
1672 if (data->period < tc.wPeriodMin)
1673 data->period = tc.wPeriodMin;
1674
1675 timeBeginPeriod(data->period);
1676
1677 flags = TIME_CALLBACK_FUNCTION;
1678 if (alarm_has_dynticks(t))
1679 flags |= TIME_ONESHOT;
1680 else
1681 flags |= TIME_PERIODIC;
1682
1683 data->timerId = timeSetEvent(1, // interval (ms)
1684 data->period, // resolution
1685 host_alarm_handler, // function
1686 (DWORD)t, // parameter
1687 flags);
1688
1689 if (!data->timerId) {
1690 perror("Failed to initialize win32 alarm timer");
1691
1692 timeEndPeriod(data->period);
1693 CloseHandle(data->host_alarm);
1694 return -1;
1695 }
1696
1697 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1698
1699 return 0;
1700 }
1701
1702 static void win32_stop_timer(struct qemu_alarm_timer *t)
1703 {
1704 struct qemu_alarm_win32 *data = t->priv;
1705
1706 timeKillEvent(data->timerId);
1707 timeEndPeriod(data->period);
1708
1709 CloseHandle(data->host_alarm);
1710 }
1711
1712 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1713 {
1714 struct qemu_alarm_win32 *data = t->priv;
1715 uint64_t nearest_delta_us;
1716
1717 if (!active_timers[QEMU_TIMER_REALTIME] &&
1718 !active_timers[QEMU_TIMER_VIRTUAL])
1719 return;
1720
1721 nearest_delta_us = qemu_next_deadline_dyntick();
1722 nearest_delta_us /= 1000;
1723
1724 timeKillEvent(data->timerId);
1725
1726 data->timerId = timeSetEvent(1,
1727 data->period,
1728 host_alarm_handler,
1729 (DWORD)t,
1730 TIME_ONESHOT | TIME_PERIODIC);
1731
1732 if (!data->timerId) {
1733 perror("Failed to re-arm win32 alarm timer");
1734
1735 timeEndPeriod(data->period);
1736 CloseHandle(data->host_alarm);
1737 exit(1);
1738 }
1739 }
1740
1741 #endif /* _WIN32 */
1742
1743 static int init_timer_alarm(void)
1744 {
1745 struct qemu_alarm_timer *t = NULL;
1746 int i, err = -1;
1747
1748 #ifndef _WIN32
1749 int fds[2];
1750
1751 err = pipe(fds);
1752 if (err == -1)
1753 return -errno;
1754
1755 err = fcntl_setfl(fds[0], O_NONBLOCK);
1756 if (err < 0)
1757 goto fail;
1758
1759 err = fcntl_setfl(fds[1], O_NONBLOCK);
1760 if (err < 0)
1761 goto fail;
1762
1763 alarm_timer_rfd = fds[0];
1764 alarm_timer_wfd = fds[1];
1765 #endif
1766
1767 for (i = 0; alarm_timers[i].name; i++) {
1768 t = &alarm_timers[i];
1769
1770 err = t->start(t);
1771 if (!err)
1772 break;
1773 }
1774
1775 if (err) {
1776 err = -ENOENT;
1777 goto fail;
1778 }
1779
1780 #ifndef _WIN32
1781 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1782 try_to_rearm_timer, NULL, t);
1783 #endif
1784
1785 alarm_timer = t;
1786
1787 return 0;
1788
1789 fail:
1790 #ifndef _WIN32
1791 close(fds[0]);
1792 close(fds[1]);
1793 #endif
1794 return err;
1795 }
1796
1797 static void quit_timers(void)
1798 {
1799 alarm_timer->stop(alarm_timer);
1800 alarm_timer = NULL;
1801 }
1802
1803 /***********************************************************/
1804 /* host time/date access */
1805 void qemu_get_timedate(struct tm *tm, int offset)
1806 {
1807 time_t ti;
1808 struct tm *ret;
1809
1810 time(&ti);
1811 ti += offset;
1812 if (rtc_date_offset == -1) {
1813 if (rtc_utc)
1814 ret = gmtime(&ti);
1815 else
1816 ret = localtime(&ti);
1817 } else {
1818 ti -= rtc_date_offset;
1819 ret = gmtime(&ti);
1820 }
1821
1822 memcpy(tm, ret, sizeof(struct tm));
1823 }
1824
1825 int qemu_timedate_diff(struct tm *tm)
1826 {
1827 time_t seconds;
1828
1829 if (rtc_date_offset == -1)
1830 if (rtc_utc)
1831 seconds = mktimegm(tm);
1832 else
1833 seconds = mktime(tm);
1834 else
1835 seconds = mktimegm(tm) + rtc_date_offset;
1836
1837 return seconds - time(NULL);
1838 }
1839
1840 #ifdef _WIN32
1841 static void socket_cleanup(void)
1842 {
1843 WSACleanup();
1844 }
1845
1846 static int socket_init(void)
1847 {
1848 WSADATA Data;
1849 int ret, err;
1850
1851 ret = WSAStartup(MAKEWORD(2,2), &Data);
1852 if (ret != 0) {
1853 err = WSAGetLastError();
1854 fprintf(stderr, "WSAStartup: %d\n", err);
1855 return -1;
1856 }
1857 atexit(socket_cleanup);
1858 return 0;
1859 }
1860 #endif
1861
1862 const char *get_opt_name(char *buf, int buf_size, const char *p)
1863 {
1864 char *q;
1865
1866 q = buf;
1867 while (*p != '\0' && *p != '=') {
1868 if (q && (q - buf) < buf_size - 1)
1869 *q++ = *p;
1870 p++;
1871 }
1872 if (q)
1873 *q = '\0';
1874
1875 return p;
1876 }
1877
1878 const char *get_opt_value(char *buf, int buf_size, const char *p)
1879 {
1880 char *q;
1881
1882 q = buf;
1883 while (*p != '\0') {
1884 if (*p == ',') {
1885 if (*(p + 1) != ',')
1886 break;
1887 p++;
1888 }
1889 if (q && (q - buf) < buf_size - 1)
1890 *q++ = *p;
1891 p++;
1892 }
1893 if (q)
1894 *q = '\0';
1895
1896 return p;
1897 }
1898
1899 int get_param_value(char *buf, int buf_size,
1900 const char *tag, const char *str)
1901 {
1902 const char *p;
1903 char option[128];
1904
1905 p = str;
1906 for(;;) {
1907 p = get_opt_name(option, sizeof(option), p);
1908 if (*p != '=')
1909 break;
1910 p++;
1911 if (!strcmp(tag, option)) {
1912 (void)get_opt_value(buf, buf_size, p);
1913 return strlen(buf);
1914 } else {
1915 p = get_opt_value(NULL, 0, p);
1916 }
1917 if (*p != ',')
1918 break;
1919 p++;
1920 }
1921 return 0;
1922 }
1923
1924 int check_params(char *buf, int buf_size,
1925 const char * const *params, const char *str)
1926 {
1927 const char *p;
1928 int i;
1929
1930 p = str;
1931 for(;;) {
1932 p = get_opt_name(buf, buf_size, p);
1933 if (*p != '=')
1934 return -1;
1935 p++;
1936 for(i = 0; params[i] != NULL; i++)
1937 if (!strcmp(params[i], buf))
1938 break;
1939 if (params[i] == NULL)
1940 return -1;
1941 p = get_opt_value(NULL, 0, p);
1942 if (*p != ',')
1943 break;
1944 p++;
1945 }
1946 return 0;
1947 }
1948
1949 /***********************************************************/
1950 /* Bluetooth support */
1951 static int nb_hcis;
1952 static int cur_hci;
1953 static struct HCIInfo *hci_table[MAX_NICS];
1954
1955 static struct bt_vlan_s {
1956 struct bt_scatternet_s net;
1957 int id;
1958 struct bt_vlan_s *next;
1959 } *first_bt_vlan;
1960
1961 /* find or alloc a new bluetooth "VLAN" */
1962 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1963 {
1964 struct bt_vlan_s **pvlan, *vlan;
1965 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1966 if (vlan->id == id)
1967 return &vlan->net;
1968 }
1969 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1970 vlan->id = id;
1971 pvlan = &first_bt_vlan;
1972 while (*pvlan != NULL)
1973 pvlan = &(*pvlan)->next;
1974 *pvlan = vlan;
1975 return &vlan->net;
1976 }
1977
1978 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1979 {
1980 }
1981
1982 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1983 {
1984 return -ENOTSUP;
1985 }
1986
1987 static struct HCIInfo null_hci = {
1988 .cmd_send = null_hci_send,
1989 .sco_send = null_hci_send,
1990 .acl_send = null_hci_send,
1991 .bdaddr_set = null_hci_addr_set,
1992 };
1993
1994 struct HCIInfo *qemu_next_hci(void)
1995 {
1996 if (cur_hci == nb_hcis)
1997 return &null_hci;
1998
1999 return hci_table[cur_hci++];
2000 }
2001
2002 static struct HCIInfo *hci_init(const char *str)
2003 {
2004 char *endp;
2005 struct bt_scatternet_s *vlan = 0;
2006
2007 if (!strcmp(str, "null"))
2008 /* null */
2009 return &null_hci;
2010 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2011 /* host[:hciN] */
2012 return bt_host_hci(str[4] ? str + 5 : "hci0");
2013 else if (!strncmp(str, "hci", 3)) {
2014 /* hci[,vlan=n] */
2015 if (str[3]) {
2016 if (!strncmp(str + 3, ",vlan=", 6)) {
2017 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2018 if (*endp)
2019 vlan = 0;
2020 }
2021 } else
2022 vlan = qemu_find_bt_vlan(0);
2023 if (vlan)
2024 return bt_new_hci(vlan);
2025 }
2026
2027 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2028
2029 return 0;
2030 }
2031
2032 static int bt_hci_parse(const char *str)
2033 {
2034 struct HCIInfo *hci;
2035 bdaddr_t bdaddr;
2036
2037 if (nb_hcis >= MAX_NICS) {
2038 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2039 return -1;
2040 }
2041
2042 hci = hci_init(str);
2043 if (!hci)
2044 return -1;
2045
2046 bdaddr.b[0] = 0x52;
2047 bdaddr.b[1] = 0x54;
2048 bdaddr.b[2] = 0x00;
2049 bdaddr.b[3] = 0x12;
2050 bdaddr.b[4] = 0x34;
2051 bdaddr.b[5] = 0x56 + nb_hcis;
2052 hci->bdaddr_set(hci, bdaddr.b);
2053
2054 hci_table[nb_hcis++] = hci;
2055
2056 return 0;
2057 }
2058
2059 static void bt_vhci_add(int vlan_id)
2060 {
2061 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2062
2063 if (!vlan->slave)
2064 fprintf(stderr, "qemu: warning: adding a VHCI to "
2065 "an empty scatternet %i\n", vlan_id);
2066
2067 bt_vhci_init(bt_new_hci(vlan));
2068 }
2069
2070 static struct bt_device_s *bt_device_add(const char *opt)
2071 {
2072 struct bt_scatternet_s *vlan;
2073 int vlan_id = 0;
2074 char *endp = strstr(opt, ",vlan=");
2075 int len = (endp ? endp - opt : strlen(opt)) + 1;
2076 char devname[10];
2077
2078 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2079
2080 if (endp) {
2081 vlan_id = strtol(endp + 6, &endp, 0);
2082 if (*endp) {
2083 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2084 return 0;
2085 }
2086 }
2087
2088 vlan = qemu_find_bt_vlan(vlan_id);
2089
2090 if (!vlan->slave)
2091 fprintf(stderr, "qemu: warning: adding a slave device to "
2092 "an empty scatternet %i\n", vlan_id);
2093
2094 if (!strcmp(devname, "keyboard"))
2095 return bt_keyboard_init(vlan);
2096
2097 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2098 return 0;
2099 }
2100
2101 static int bt_parse(const char *opt)
2102 {
2103 const char *endp, *p;
2104 int vlan;
2105
2106 if (strstart(opt, "hci", &endp)) {
2107 if (!*endp || *endp == ',') {
2108 if (*endp)
2109 if (!strstart(endp, ",vlan=", 0))
2110 opt = endp + 1;
2111
2112 return bt_hci_parse(opt);
2113 }
2114 } else if (strstart(opt, "vhci", &endp)) {
2115 if (!*endp || *endp == ',') {
2116 if (*endp) {
2117 if (strstart(endp, ",vlan=", &p)) {
2118 vlan = strtol(p, (char **) &endp, 0);
2119 if (*endp) {
2120 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2121 return 1;
2122 }
2123 } else {
2124 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2125 return 1;
2126 }
2127 } else
2128 vlan = 0;
2129
2130 bt_vhci_add(vlan);
2131 return 0;
2132 }
2133 } else if (strstart(opt, "device:", &endp))
2134 return !bt_device_add(endp);
2135
2136 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2137 return 1;
2138 }
2139
2140 /***********************************************************/
2141 /* QEMU Block devices */
2142
2143 #define HD_ALIAS "index=%d,media=disk"
2144 #define CDROM_ALIAS "index=2,media=cdrom"
2145 #define FD_ALIAS "index=%d,if=floppy"
2146 #define PFLASH_ALIAS "if=pflash"
2147 #define MTD_ALIAS "if=mtd"
2148 #define SD_ALIAS "index=0,if=sd"
2149
2150 static int drive_opt_get_free_idx(void)
2151 {
2152 int index;
2153
2154 for (index = 0; index < MAX_DRIVES; index++)
2155 if (!drives_opt[index].used) {
2156 drives_opt[index].used = 1;
2157 return index;
2158 }
2159
2160 return -1;
2161 }
2162
2163 static int drive_get_free_idx(void)
2164 {
2165 int index;
2166
2167 for (index = 0; index < MAX_DRIVES; index++)
2168 if (!drives_table[index].used) {
2169 drives_table[index].used = 1;
2170 return index;
2171 }
2172
2173 return -1;
2174 }
2175
2176 int drive_add(const char *file, const char *fmt, ...)
2177 {
2178 va_list ap;
2179 int index = drive_opt_get_free_idx();
2180
2181 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2182 fprintf(stderr, "qemu: too many drives\n");
2183 return -1;
2184 }
2185
2186 drives_opt[index].file = file;
2187 va_start(ap, fmt);
2188 vsnprintf(drives_opt[index].opt,
2189 sizeof(drives_opt[0].opt), fmt, ap);
2190 va_end(ap);
2191
2192 nb_drives_opt++;
2193 return index;
2194 }
2195
2196 void drive_remove(int index)
2197 {
2198 drives_opt[index].used = 0;
2199 nb_drives_opt--;
2200 }
2201
2202 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2203 {
2204 int index;
2205
2206 /* seek interface, bus and unit */
2207
2208 for (index = 0; index < MAX_DRIVES; index++)
2209 if (drives_table[index].type == type &&
2210 drives_table[index].bus == bus &&
2211 drives_table[index].unit == unit &&
2212 drives_table[index].used)
2213 return index;
2214
2215 return -1;
2216 }
2217
2218 int drive_get_max_bus(BlockInterfaceType type)
2219 {
2220 int max_bus;
2221 int index;
2222
2223 max_bus = -1;
2224 for (index = 0; index < nb_drives; index++) {
2225 if(drives_table[index].type == type &&
2226 drives_table[index].bus > max_bus)
2227 max_bus = drives_table[index].bus;
2228 }
2229 return max_bus;
2230 }
2231
2232 const char *drive_get_serial(BlockDriverState *bdrv)
2233 {
2234 int index;
2235
2236 for (index = 0; index < nb_drives; index++)
2237 if (drives_table[index].bdrv == bdrv)
2238 return drives_table[index].serial;
2239
2240 return "\0";
2241 }
2242
2243 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2244 {
2245 int index;
2246
2247 for (index = 0; index < nb_drives; index++)
2248 if (drives_table[index].bdrv == bdrv)
2249 return drives_table[index].onerror;
2250
2251 return BLOCK_ERR_STOP_ENOSPC;
2252 }
2253
2254 static void bdrv_format_print(void *opaque, const char *name)
2255 {
2256 fprintf(stderr, " %s", name);
2257 }
2258
2259 void drive_uninit(BlockDriverState *bdrv)
2260 {
2261 int i;
2262
2263 for (i = 0; i < MAX_DRIVES; i++)
2264 if (drives_table[i].bdrv == bdrv) {
2265 drives_table[i].bdrv = NULL;
2266 drives_table[i].used = 0;
2267 drive_remove(drives_table[i].drive_opt_idx);
2268 nb_drives--;
2269 break;
2270 }
2271 }
2272
2273 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2274 {
2275 char buf[128];
2276 char file[1024];
2277 char devname[128];
2278 char serial[21];
2279 const char *mediastr = "";
2280 BlockInterfaceType type;
2281 enum { MEDIA_DISK, MEDIA_CDROM } media;
2282 int bus_id, unit_id;
2283 int cyls, heads, secs, translation;
2284 BlockDriverState *bdrv;
2285 BlockDriver *drv = NULL;
2286 QEMUMachine *machine = opaque;
2287 int max_devs;
2288 int index;
2289 int cache;
2290 int bdrv_flags, onerror;
2291 int drives_table_idx;
2292 char *str = arg->opt;
2293 static const char * const params[] = { "bus", "unit", "if", "index",
2294 "cyls", "heads", "secs", "trans",
2295 "media", "snapshot", "file",
2296 "cache", "format", "serial", "werror",
2297 NULL };
2298
2299 if (check_params(buf, sizeof(buf), params, str) < 0) {
2300 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2301 buf, str);
2302 return -1;
2303 }
2304
2305 file[0] = 0;
2306 cyls = heads = secs = 0;
2307 bus_id = 0;
2308 unit_id = -1;
2309 translation = BIOS_ATA_TRANSLATION_AUTO;
2310 index = -1;
2311 cache = 3;
2312
2313 if (machine->use_scsi) {
2314 type = IF_SCSI;
2315 max_devs = MAX_SCSI_DEVS;
2316 pstrcpy(devname, sizeof(devname), "scsi");
2317 } else {
2318 type = IF_IDE;
2319 max_devs = MAX_IDE_DEVS;
2320 pstrcpy(devname, sizeof(devname), "ide");
2321 }
2322 media = MEDIA_DISK;
2323
2324 /* extract parameters */
2325
2326 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2327 bus_id = strtol(buf, NULL, 0);
2328 if (bus_id < 0) {
2329 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2330 return -1;
2331 }
2332 }
2333
2334 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2335 unit_id = strtol(buf, NULL, 0);
2336 if (unit_id < 0) {
2337 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2338 return -1;
2339 }
2340 }
2341
2342 if (get_param_value(buf, sizeof(buf), "if", str)) {
2343 pstrcpy(devname, sizeof(devname), buf);
2344 if (!strcmp(buf, "ide")) {
2345 type = IF_IDE;
2346 max_devs = MAX_IDE_DEVS;
2347 } else if (!strcmp(buf, "scsi")) {
2348 type = IF_SCSI;
2349 max_devs = MAX_SCSI_DEVS;
2350 } else if (!strcmp(buf, "floppy")) {
2351 type = IF_FLOPPY;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "pflash")) {
2354 type = IF_PFLASH;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "mtd")) {
2357 type = IF_MTD;
2358 max_devs = 0;
2359 } else if (!strcmp(buf, "sd")) {
2360 type = IF_SD;
2361 max_devs = 0;
2362 } else if (!strcmp(buf, "virtio")) {
2363 type = IF_VIRTIO;
2364 max_devs = 0;
2365 } else {
2366 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2367 return -1;
2368 }
2369 }
2370
2371 if (get_param_value(buf, sizeof(buf), "index", str)) {
2372 index = strtol(buf, NULL, 0);
2373 if (index < 0) {
2374 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2375 return -1;
2376 }
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2380 cyls = strtol(buf, NULL, 0);
2381 }
2382
2383 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2384 heads = strtol(buf, NULL, 0);
2385 }
2386
2387 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2388 secs = strtol(buf, NULL, 0);
2389 }
2390
2391 if (cyls || heads || secs) {
2392 if (cyls < 1 || cyls > 16383) {
2393 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2394 return -1;
2395 }
2396 if (heads < 1 || heads > 16) {
2397 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2398 return -1;
2399 }
2400 if (secs < 1 || secs > 63) {
2401 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2402 return -1;
2403 }
2404 }
2405
2406 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2407 if (!cyls) {
2408 fprintf(stderr,
2409 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2410 str);
2411 return -1;
2412 }
2413 if (!strcmp(buf, "none"))
2414 translation = BIOS_ATA_TRANSLATION_NONE;
2415 else if (!strcmp(buf, "lba"))
2416 translation = BIOS_ATA_TRANSLATION_LBA;
2417 else if (!strcmp(buf, "auto"))
2418 translation = BIOS_ATA_TRANSLATION_AUTO;
2419 else {
2420 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2421 return -1;
2422 }
2423 }
2424
2425 if (get_param_value(buf, sizeof(buf), "media", str)) {
2426 if (!strcmp(buf, "disk")) {
2427 media = MEDIA_DISK;
2428 } else if (!strcmp(buf, "cdrom")) {
2429 if (cyls || secs || heads) {
2430 fprintf(stderr,
2431 "qemu: '%s' invalid physical CHS format\n", str);
2432 return -1;
2433 }
2434 media = MEDIA_CDROM;
2435 } else {
2436 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2437 return -1;
2438 }
2439 }
2440
2441 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2442 if (!strcmp(buf, "on"))
2443 snapshot = 1;
2444 else if (!strcmp(buf, "off"))
2445 snapshot = 0;
2446 else {
2447 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2448 return -1;
2449 }
2450 }
2451
2452 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2453 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2454 cache = 0;
2455 else if (!strcmp(buf, "writethrough"))
2456 cache = 1;
2457 else if (!strcmp(buf, "writeback"))
2458 cache = 2;
2459 else {
2460 fprintf(stderr, "qemu: invalid cache option\n");
2461 return -1;
2462 }
2463 }
2464
2465 if (get_param_value(buf, sizeof(buf), "format", str)) {
2466 if (strcmp(buf, "?") == 0) {
2467 fprintf(stderr, "qemu: Supported formats:");
2468 bdrv_iterate_format(bdrv_format_print, NULL);
2469 fprintf(stderr, "\n");
2470 return -1;
2471 }
2472 drv = bdrv_find_format(buf);
2473 if (!drv) {
2474 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2475 return -1;
2476 }
2477 }
2478
2479 if (arg->file == NULL)
2480 get_param_value(file, sizeof(file), "file", str);
2481 else
2482 pstrcpy(file, sizeof(file), arg->file);
2483
2484 if (!get_param_value(serial, sizeof(serial), "serial", str))
2485 memset(serial, 0, sizeof(serial));
2486
2487 onerror = BLOCK_ERR_STOP_ENOSPC;
2488 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2489 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2490 fprintf(stderr, "werror is no supported by this format\n");
2491 return -1;
2492 }
2493 if (!strcmp(buf, "ignore"))
2494 onerror = BLOCK_ERR_IGNORE;
2495 else if (!strcmp(buf, "enospc"))
2496 onerror = BLOCK_ERR_STOP_ENOSPC;
2497 else if (!strcmp(buf, "stop"))
2498 onerror = BLOCK_ERR_STOP_ANY;
2499 else if (!strcmp(buf, "report"))
2500 onerror = BLOCK_ERR_REPORT;
2501 else {
2502 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2503 return -1;
2504 }
2505 }
2506
2507 /* compute bus and unit according index */
2508
2509 if (index != -1) {
2510 if (bus_id != 0 || unit_id != -1) {
2511 fprintf(stderr,
2512 "qemu: '%s' index cannot be used with bus and unit\n", str);
2513 return -1;
2514 }
2515 if (max_devs == 0)
2516 {
2517 unit_id = index;
2518 bus_id = 0;
2519 } else {
2520 unit_id = index % max_devs;
2521 bus_id = index / max_devs;
2522 }
2523 }
2524
2525 /* if user doesn't specify a unit_id,
2526 * try to find the first free
2527 */
2528
2529 if (unit_id == -1) {
2530 unit_id = 0;
2531 while (drive_get_index(type, bus_id, unit_id) != -1) {
2532 unit_id++;
2533 if (max_devs && unit_id >= max_devs) {
2534 unit_id -= max_devs;
2535 bus_id++;
2536 }
2537 }
2538 }
2539
2540 /* check unit id */
2541
2542 if (max_devs && unit_id >= max_devs) {
2543 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2544 str, unit_id, max_devs - 1);
2545 return -1;
2546 }
2547
2548 /*
2549 * ignore multiple definitions
2550 */
2551
2552 if (drive_get_index(type, bus_id, unit_id) != -1)
2553 return -2;
2554
2555 /* init */
2556
2557 if (type == IF_IDE || type == IF_SCSI)
2558 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2559 if (max_devs)
2560 snprintf(buf, sizeof(buf), "%s%i%s%i",
2561 devname, bus_id, mediastr, unit_id);
2562 else
2563 snprintf(buf, sizeof(buf), "%s%s%i",
2564 devname, mediastr, unit_id);
2565 bdrv = bdrv_new(buf);
2566 drives_table_idx = drive_get_free_idx();
2567 drives_table[drives_table_idx].bdrv = bdrv;
2568 drives_table[drives_table_idx].type = type;
2569 drives_table[drives_table_idx].bus = bus_id;
2570 drives_table[drives_table_idx].unit = unit_id;
2571 drives_table[drives_table_idx].onerror = onerror;
2572 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2573 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2574 nb_drives++;
2575
2576 switch(type) {
2577 case IF_IDE:
2578 case IF_SCSI:
2579 switch(media) {
2580 case MEDIA_DISK:
2581 if (cyls != 0) {
2582 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2583 bdrv_set_translation_hint(bdrv, translation);
2584 }
2585 break;
2586 case MEDIA_CDROM:
2587 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2588 break;
2589 }
2590 break;
2591 case IF_SD:
2592 /* FIXME: This isn't really a floppy, but it's a reasonable
2593 approximation. */
2594 case IF_FLOPPY:
2595 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2596 break;
2597 case IF_PFLASH:
2598 case IF_MTD:
2599 case IF_VIRTIO:
2600 break;
2601 }
2602 if (!file[0])
2603 return -2;
2604 bdrv_flags = 0;
2605 if (snapshot) {
2606 bdrv_flags |= BDRV_O_SNAPSHOT;
2607 cache = 2; /* always use write-back with snapshot */
2608 }
2609 if (cache == 0) /* no caching */
2610 bdrv_flags |= BDRV_O_NOCACHE;
2611 else if (cache == 2) /* write-back */
2612 bdrv_flags |= BDRV_O_CACHE_WB;
2613 else if (cache == 3) /* not specified */
2614 bdrv_flags |= BDRV_O_CACHE_DEF;
2615 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2616 fprintf(stderr, "qemu: could not open disk image %s\n",
2617 file);
2618 return -1;
2619 }
2620 if (bdrv_key_required(bdrv))
2621 autostart = 0;
2622 return drives_table_idx;
2623 }
2624
2625 /***********************************************************/
2626 /* USB devices */
2627
2628 static USBPort *used_usb_ports;
2629 static USBPort *free_usb_ports;
2630
2631 /* ??? Maybe change this to register a hub to keep track of the topology. */
2632 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2633 usb_attachfn attach)
2634 {
2635 port->opaque = opaque;
2636 port->index = index;
2637 port->attach = attach;
2638 port->next = free_usb_ports;
2639 free_usb_ports = port;
2640 }
2641
2642 int usb_device_add_dev(USBDevice *dev)
2643 {
2644 USBPort *port;
2645
2646 /* Find a USB port to add the device to. */
2647 port = free_usb_ports;
2648 if (!port->next) {
2649 USBDevice *hub;
2650
2651 /* Create a new hub and chain it on. */
2652 free_usb_ports = NULL;
2653 port->next = used_usb_ports;
2654 used_usb_ports = port;
2655
2656 hub = usb_hub_init(VM_USB_HUB_SIZE);
2657 usb_attach(port, hub);
2658 port = free_usb_ports;
2659 }
2660
2661 free_usb_ports = port->next;
2662 port->next = used_usb_ports;
2663 used_usb_ports = port;
2664 usb_attach(port, dev);
2665 return 0;
2666 }
2667
2668 static void usb_msd_password_cb(void *opaque, int err)
2669 {
2670 USBDevice *dev = opaque;
2671
2672 if (!err)
2673 usb_device_add_dev(dev);
2674 else
2675 dev->handle_destroy(dev);
2676 }
2677
2678 static int usb_device_add(const char *devname, int is_hotplug)
2679 {
2680 const char *p;
2681 USBDevice *dev;
2682
2683 if (!free_usb_ports)
2684 return -1;
2685
2686 if (strstart(devname, "host:", &p)) {
2687 dev = usb_host_device_open(p);
2688 } else if (!strcmp(devname, "mouse")) {
2689 dev = usb_mouse_init();
2690 } else if (!strcmp(devname, "tablet")) {
2691 dev = usb_tablet_init();
2692 } else if (!strcmp(devname, "keyboard")) {
2693 dev = usb_keyboard_init();
2694 } else if (strstart(devname, "disk:", &p)) {
2695 BlockDriverState *bs;
2696
2697 dev = usb_msd_init(p);
2698 if (!dev)
2699 return -1;
2700 bs = usb_msd_get_bdrv(dev);
2701 if (bdrv_key_required(bs)) {
2702 autostart = 0;
2703 if (is_hotplug) {
2704 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2705 dev);
2706 return 0;
2707 }
2708 }
2709 } else if (!strcmp(devname, "wacom-tablet")) {
2710 dev = usb_wacom_init();
2711 } else if (strstart(devname, "serial:", &p)) {
2712 dev = usb_serial_init(p);
2713 #ifdef CONFIG_BRLAPI
2714 } else if (!strcmp(devname, "braille")) {
2715 dev = usb_baum_init();
2716 #endif
2717 } else if (strstart(devname, "net:", &p)) {
2718 int nic = nb_nics;
2719
2720 if (net_client_init("nic", p) < 0)
2721 return -1;
2722 nd_table[nic].model = "usb";
2723 dev = usb_net_init(&nd_table[nic]);
2724 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2725 dev = usb_bt_init(devname[2] ? hci_init(p) :
2726 bt_new_hci(qemu_find_bt_vlan(0)));
2727 } else {
2728 return -1;
2729 }
2730 if (!dev)
2731 return -1;
2732
2733 return usb_device_add_dev(dev);
2734 }
2735
2736 int usb_device_del_addr(int bus_num, int addr)
2737 {
2738 USBPort *port;
2739 USBPort **lastp;
2740 USBDevice *dev;
2741
2742 if (!used_usb_ports)
2743 return -1;
2744
2745 if (bus_num != 0)
2746 return -1;
2747
2748 lastp = &used_usb_ports;
2749 port = used_usb_ports;
2750 while (port && port->dev->addr != addr) {
2751 lastp = &port->next;
2752 port = port->next;
2753 }
2754
2755 if (!port)
2756 return -1;
2757
2758 dev = port->dev;
2759 *lastp = port->next;
2760 usb_attach(port, NULL);
2761 dev->handle_destroy(dev);
2762 port->next = free_usb_ports;
2763 free_usb_ports = port;
2764 return 0;
2765 }
2766
2767 static int usb_device_del(const char *devname)
2768 {
2769 int bus_num, addr;
2770 const char *p;
2771
2772 if (strstart(devname, "host:", &p))
2773 return usb_host_device_close(p);
2774
2775 if (!used_usb_ports)
2776 return -1;
2777
2778 p = strchr(devname, '.');
2779 if (!p)
2780 return -1;
2781 bus_num = strtoul(devname, NULL, 0);
2782 addr = strtoul(p + 1, NULL, 0);
2783
2784 return usb_device_del_addr(bus_num, addr);
2785 }
2786
2787 void do_usb_add(Monitor *mon, const char *devname)
2788 {
2789 usb_device_add(devname, 1);
2790 }
2791
2792 void do_usb_del(Monitor *mon, const char *devname)
2793 {
2794 usb_device_del(devname);
2795 }
2796
2797 void usb_info(Monitor *mon)
2798 {
2799 USBDevice *dev;
2800 USBPort *port;
2801 const char *speed_str;
2802
2803 if (!usb_enabled) {
2804 monitor_printf(mon, "USB support not enabled\n");
2805 return;
2806 }
2807
2808 for (port = used_usb_ports; port; port = port->next) {
2809 dev = port->dev;
2810 if (!dev)
2811 continue;
2812 switch(dev->speed) {
2813 case USB_SPEED_LOW:
2814 speed_str = "1.5";
2815 break;
2816 case USB_SPEED_FULL:
2817 speed_str = "12";
2818 break;
2819 case USB_SPEED_HIGH:
2820 speed_str = "480";
2821 break;
2822 default:
2823 speed_str = "?";
2824 break;
2825 }
2826 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2827 0, dev->addr, speed_str, dev->devname);
2828 }
2829 }
2830
2831 /***********************************************************/
2832 /* PCMCIA/Cardbus */
2833
2834 static struct pcmcia_socket_entry_s {
2835 struct pcmcia_socket_s *socket;
2836 struct pcmcia_socket_entry_s *next;
2837 } *pcmcia_sockets = 0;
2838
2839 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2840 {
2841 struct pcmcia_socket_entry_s *entry;
2842
2843 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2844 entry->socket = socket;
2845 entry->next = pcmcia_sockets;
2846 pcmcia_sockets = entry;
2847 }
2848
2849 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2850 {
2851 struct pcmcia_socket_entry_s *entry, **ptr;
2852
2853 ptr = &pcmcia_sockets;
2854 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2855 if (entry->socket == socket) {
2856 *ptr = entry->next;
2857 qemu_free(entry);
2858 }
2859 }
2860
2861 void pcmcia_info(Monitor *mon)
2862 {
2863 struct pcmcia_socket_entry_s *iter;
2864
2865 if (!pcmcia_sockets)
2866 monitor_printf(mon, "No PCMCIA sockets\n");
2867
2868 for (iter = pcmcia_sockets; iter; iter = iter->next)
2869 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2870 iter->socket->attached ? iter->socket->card_string :
2871 "Empty");
2872 }
2873
2874 /***********************************************************/
2875 /* register display */
2876
2877 void register_displaystate(DisplayState *ds)
2878 {
2879 DisplayState **s;
2880 s = &display_state;
2881 while (*s != NULL)
2882 s = &(*s)->next;
2883 ds->next = NULL;
2884 *s = ds;
2885 }
2886
2887 DisplayState *get_displaystate(void)
2888 {
2889 return display_state;
2890 }
2891
2892 /* dumb display */
2893
2894 static void dumb_display_init(void)
2895 {
2896 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2897 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2898 register_displaystate(ds);
2899 }
2900
2901 /***********************************************************/
2902 /* I/O handling */
2903
2904 #define MAX_IO_HANDLERS 64
2905
2906 typedef struct IOHandlerRecord {
2907 int fd;
2908 IOCanRWHandler *fd_read_poll;
2909 IOHandler *fd_read;
2910 IOHandler *fd_write;
2911 int deleted;
2912 void *opaque;
2913 /* temporary data */
2914 struct pollfd *ufd;
2915 struct IOHandlerRecord *next;
2916 } IOHandlerRecord;
2917
2918 static IOHandlerRecord *first_io_handler;
2919
2920 /* XXX: fd_read_poll should be suppressed, but an API change is
2921 necessary in the character devices to suppress fd_can_read(). */
2922 int qemu_set_fd_handler2(int fd,
2923 IOCanRWHandler *fd_read_poll,
2924 IOHandler *fd_read,
2925 IOHandler *fd_write,
2926 void *opaque)
2927 {
2928 IOHandlerRecord **pioh, *ioh;
2929
2930 if (!fd_read && !fd_write) {
2931 pioh = &first_io_handler;
2932 for(;;) {
2933 ioh = *pioh;
2934 if (ioh == NULL)
2935 break;
2936 if (ioh->fd == fd) {
2937 ioh->deleted = 1;
2938 break;
2939 }
2940 pioh = &ioh->next;
2941 }
2942 } else {
2943 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2944 if (ioh->fd == fd)
2945 goto found;
2946 }
2947 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2948 ioh->next = first_io_handler;
2949 first_io_handler = ioh;
2950 found:
2951 ioh->fd = fd;
2952 ioh->fd_read_poll = fd_read_poll;
2953 ioh->fd_read = fd_read;
2954 ioh->fd_write = fd_write;
2955 ioh->opaque = opaque;
2956 ioh->deleted = 0;
2957 }
2958 return 0;
2959 }
2960
2961 int qemu_set_fd_handler(int fd,
2962 IOHandler *fd_read,
2963 IOHandler *fd_write,
2964 void *opaque)
2965 {
2966 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2967 }
2968
2969 #ifdef _WIN32
2970 /***********************************************************/
2971 /* Polling handling */
2972
2973 typedef struct PollingEntry {
2974 PollingFunc *func;
2975 void *opaque;
2976 struct PollingEntry *next;
2977 } PollingEntry;
2978
2979 static PollingEntry *first_polling_entry;
2980
2981 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2982 {
2983 PollingEntry **ppe, *pe;
2984 pe = qemu_mallocz(sizeof(PollingEntry));
2985 pe->func = func;
2986 pe->opaque = opaque;
2987 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2988 *ppe = pe;
2989 return 0;
2990 }
2991
2992 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2993 {
2994 PollingEntry **ppe, *pe;
2995 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2996 pe = *ppe;
2997 if (pe->func == func && pe->opaque == opaque) {
2998 *ppe = pe->next;
2999 qemu_free(pe);
3000 break;
3001 }
3002 }
3003 }
3004
3005 /***********************************************************/
3006 /* Wait objects support */
3007 typedef struct WaitObjects {
3008 int num;
3009 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3010 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3011 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3012 } WaitObjects;
3013
3014 static WaitObjects wait_objects = {0};
3015
3016 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3017 {
3018 WaitObjects *w = &wait_objects;
3019
3020 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3021 return -1;
3022 w->events[w->num] = handle;
3023 w->func[w->num] = func;
3024 w->opaque[w->num] = opaque;
3025 w->num++;
3026 return 0;
3027 }
3028
3029 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3030 {
3031 int i, found;
3032 WaitObjects *w = &wait_objects;
3033
3034 found = 0;
3035 for (i = 0; i < w->num; i++) {
3036 if (w->events[i] == handle)
3037 found = 1;
3038 if (found) {
3039 w->events[i] = w->events[i + 1];
3040 w->func[i] = w->func[i + 1];
3041 w->opaque[i] = w->opaque[i + 1];
3042 }
3043 }
3044 if (found)
3045 w->num--;
3046 }
3047 #endif
3048
3049 /***********************************************************/
3050 /* ram save/restore */
3051
3052 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3053 {
3054 int v;
3055
3056 v = qemu_get_byte(f);
3057 switch(v) {
3058 case 0:
3059 if (qemu_get_buffer(f, buf, len) != len)
3060 return -EIO;
3061 break;
3062 case 1:
3063 v = qemu_get_byte(f);
3064 memset(buf, v, len);
3065 break;
3066 default:
3067 return -EINVAL;
3068 }
3069
3070 if (qemu_file_has_error(f))
3071 return -EIO;
3072
3073 return 0;
3074 }
3075
3076 static int ram_load_v1(QEMUFile *f, void *opaque)
3077 {
3078 int ret;
3079 ram_addr_t i;
3080
3081 if (qemu_get_be32(f) != phys_ram_size)
3082 return -EINVAL;
3083 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3084 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3085 if (ret)
3086 return ret;
3087 }
3088 return 0;
3089 }
3090
3091 #define BDRV_HASH_BLOCK_SIZE 1024
3092 #define IOBUF_SIZE 4096
3093 #define RAM_CBLOCK_MAGIC 0xfabe
3094
3095 typedef struct RamDecompressState {
3096 z_stream zstream;
3097 QEMUFile *f;
3098 uint8_t buf[IOBUF_SIZE];
3099 } RamDecompressState;
3100
3101 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3102 {
3103 int ret;
3104 memset(s, 0, sizeof(*s));
3105 s->f = f;
3106 ret = inflateInit(&s->zstream);
3107 if (ret != Z_OK)
3108 return -1;
3109 return 0;
3110 }
3111
3112 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3113 {
3114 int ret, clen;
3115
3116 s->zstream.avail_out = len;
3117 s->zstream.next_out = buf;
3118 while (s->zstream.avail_out > 0) {
3119 if (s->zstream.avail_in == 0) {
3120 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3121 return -1;
3122 clen = qemu_get_be16(s->f);
3123 if (clen > IOBUF_SIZE)
3124 return -1;
3125 qemu_get_buffer(s->f, s->buf, clen);
3126 s->zstream.avail_in = clen;
3127 s->zstream.next_in = s->buf;
3128 }
3129 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3130 if (ret != Z_OK && ret != Z_STREAM_END) {
3131 return -1;
3132 }
3133 }
3134 return 0;
3135 }
3136
3137 static void ram_decompress_close(RamDecompressState *s)
3138 {
3139 inflateEnd(&s->zstream);
3140 }
3141
3142 #define RAM_SAVE_FLAG_FULL 0x01
3143 #define RAM_SAVE_FLAG_COMPRESS 0x02
3144 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3145 #define RAM_SAVE_FLAG_PAGE 0x08
3146 #define RAM_SAVE_FLAG_EOS 0x10
3147
3148 static int is_dup_page(uint8_t *page, uint8_t ch)
3149 {
3150 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3151 uint32_t *array = (uint32_t *)page;
3152 int i;
3153
3154 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3155 if (array[i] != val)
3156 return 0;
3157 }
3158
3159 return 1;
3160 }
3161
3162 static int ram_save_block(QEMUFile *f)
3163 {
3164 static ram_addr_t current_addr = 0;
3165 ram_addr_t saved_addr = current_addr;
3166 ram_addr_t addr = 0;
3167 int found = 0;
3168
3169 while (addr < phys_ram_size) {
3170 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3171 uint8_t ch;
3172
3173 cpu_physical_memory_reset_dirty(current_addr,
3174 current_addr + TARGET_PAGE_SIZE,
3175 MIGRATION_DIRTY_FLAG);
3176
3177 ch = *(phys_ram_base + current_addr);
3178
3179 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3180 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3181 qemu_put_byte(f, ch);
3182 } else {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3184 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3185 }
3186
3187 found = 1;
3188 break;
3189 }
3190 addr += TARGET_PAGE_SIZE;
3191 current_addr = (saved_addr + addr) % phys_ram_size;
3192 }
3193
3194 return found;
3195 }
3196
3197 static ram_addr_t ram_save_threshold = 10;
3198
3199 static ram_addr_t ram_save_remaining(void)
3200 {
3201 ram_addr_t addr;
3202 ram_addr_t count = 0;
3203
3204 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3205 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3206 count++;
3207 }
3208
3209 return count;
3210 }
3211
3212 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3213 {
3214 ram_addr_t addr;
3215
3216 if (stage == 1) {
3217 /* Make sure all dirty bits are set */
3218 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3219 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3220 cpu_physical_memory_set_dirty(addr);
3221 }
3222
3223 /* Enable dirty memory tracking */
3224 cpu_physical_memory_set_dirty_tracking(1);
3225
3226 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3227 }
3228
3229 while (!qemu_file_rate_limit(f)) {
3230 int ret;
3231
3232 ret = ram_save_block(f);
3233 if (ret == 0) /* no more blocks */
3234 break;
3235 }
3236
3237 /* try transferring iterative blocks of memory */
3238
3239 if (stage == 3) {
3240 cpu_physical_memory_set_dirty_tracking(0);
3241
3242 /* flush all remaining blocks regardless of rate limiting */
3243 while (ram_save_block(f) != 0);
3244 }
3245
3246 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3247
3248 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3249 }
3250
3251 static int ram_load_dead(QEMUFile *f, void *opaque)
3252 {
3253 RamDecompressState s1, *s = &s1;
3254 uint8_t buf[10];
3255 ram_addr_t i;
3256
3257 if (ram_decompress_open(s, f) < 0)
3258 return -EINVAL;
3259 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3260 if (ram_decompress_buf(s, buf, 1) < 0) {
3261 fprintf(stderr, "Error while reading ram block header\n");
3262 goto error;
3263 }
3264 if (buf[0] == 0) {
3265 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3266 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3267 goto error;
3268 }
3269 } else {
3270 error:
3271 printf("Error block header\n");
3272 return -EINVAL;
3273 }
3274 }
3275 ram_decompress_close(s);
3276
3277 return 0;
3278 }
3279
3280 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3281 {
3282 ram_addr_t addr;
3283 int flags;
3284
3285 if (version_id == 1)
3286 return ram_load_v1(f, opaque);
3287
3288 if (version_id == 2) {
3289 if (qemu_get_be32(f) != phys_ram_size)
3290 return -EINVAL;
3291 return ram_load_dead(f, opaque);
3292 }
3293
3294 if (version_id != 3)
3295 return -EINVAL;
3296
3297 do {
3298 addr = qemu_get_be64(f);
3299
3300 flags = addr & ~TARGET_PAGE_MASK;
3301 addr &= TARGET_PAGE_MASK;
3302
3303 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3304 if (addr != phys_ram_size)
3305 return -EINVAL;
3306 }
3307
3308 if (flags & RAM_SAVE_FLAG_FULL) {
3309 if (ram_load_dead(f, opaque) < 0)
3310 return -EINVAL;
3311 }
3312
3313 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3314 uint8_t ch = qemu_get_byte(f);
3315 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3316 } else if (flags & RAM_SAVE_FLAG_PAGE)
3317 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3318 } while (!(flags & RAM_SAVE_FLAG_EOS));
3319
3320 return 0;
3321 }
3322
3323 void qemu_service_io(void)
3324 {
3325 CPUState *env = cpu_single_env;
3326 if (env) {
3327 cpu_exit(env);
3328 #ifdef USE_KQEMU
3329 if (env->kqemu_enabled) {
3330 kqemu_cpu_interrupt(env);
3331 }
3332 #endif
3333 }
3334 }
3335
3336 /***********************************************************/
3337 /* bottom halves (can be seen as timers which expire ASAP) */
3338
3339 struct QEMUBH {
3340 QEMUBHFunc *cb;
3341 void *opaque;
3342 int scheduled;
3343 int idle;
3344 int deleted;
3345 QEMUBH *next;
3346 };
3347
3348 static QEMUBH *first_bh = NULL;
3349
3350 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3351 {
3352 QEMUBH *bh;
3353 bh = qemu_mallocz(sizeof(QEMUBH));
3354 bh->cb = cb;
3355 bh->opaque = opaque;
3356 bh->next = first_bh;
3357 first_bh = bh;
3358 return bh;
3359 }
3360
3361 int qemu_bh_poll(void)
3362 {
3363 QEMUBH *bh, **bhp;
3364 int ret;
3365
3366 ret = 0;
3367 for (bh = first_bh; bh; bh = bh->next) {
3368 if (!bh->deleted && bh->scheduled) {
3369 bh->scheduled = 0;
3370 if (!bh->idle)
3371 ret = 1;
3372 bh->idle = 0;
3373 bh->cb(bh->opaque);
3374 }
3375 }
3376
3377 /* remove deleted bhs */
3378 bhp = &first_bh;
3379 while (*bhp) {
3380 bh = *bhp;
3381 if (bh->deleted) {
3382 *bhp = bh->next;
3383 qemu_free(bh);
3384 } else
3385 bhp = &bh->next;
3386 }
3387
3388 return ret;
3389 }
3390
3391 void qemu_bh_schedule_idle(QEMUBH *bh)
3392 {
3393 if (bh->scheduled)
3394 return;
3395 bh->scheduled = 1;
3396 bh->idle = 1;
3397 }
3398
3399 void qemu_bh_schedule(QEMUBH *bh)
3400 {
3401 CPUState *env = cpu_single_env;
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 0;
3406 /* stop the currently executing CPU to execute the BH ASAP */
3407 if (env) {
3408 cpu_exit(env);
3409 }
3410 }
3411
3412 void qemu_bh_cancel(QEMUBH *bh)
3413 {
3414 bh->scheduled = 0;
3415 }
3416
3417 void qemu_bh_delete(QEMUBH *bh)
3418 {
3419 bh->scheduled = 0;
3420 bh->deleted = 1;
3421 }
3422
3423 static void qemu_bh_update_timeout(int *timeout)
3424 {
3425 QEMUBH *bh;
3426
3427 for (bh = first_bh; bh; bh = bh->next) {
3428 if (!bh->deleted && bh->scheduled) {
3429 if (bh->idle) {
3430 /* idle bottom halves will be polled at least
3431 * every 10ms */
3432 *timeout = MIN(10, *timeout);
3433 } else {
3434 /* non-idle bottom halves will be executed
3435 * immediately */
3436 *timeout = 0;
3437 break;
3438 }
3439 }
3440 }
3441 }
3442
3443 /***********************************************************/
3444 /* machine registration */
3445
3446 static QEMUMachine *first_machine = NULL;
3447 QEMUMachine *current_machine = NULL;
3448
3449 int qemu_register_machine(QEMUMachine *m)
3450 {
3451 QEMUMachine **pm;
3452 pm = &first_machine;
3453 while (*pm != NULL)
3454 pm = &(*pm)->next;
3455 m->next = NULL;
3456 *pm = m;
3457 return 0;
3458 }
3459
3460 static QEMUMachine *find_machine(const char *name)
3461 {
3462 QEMUMachine *m;
3463
3464 for(m = first_machine; m != NULL; m = m->next) {
3465 if (!strcmp(m->name, name))
3466 return m;
3467 }
3468 return NULL;
3469 }
3470
3471 /***********************************************************/
3472 /* main execution loop */
3473
3474 static void gui_update(void *opaque)
3475 {
3476 uint64_t interval = GUI_REFRESH_INTERVAL;
3477 DisplayState *ds = opaque;
3478 DisplayChangeListener *dcl = ds->listeners;
3479
3480 dpy_refresh(ds);
3481
3482 while (dcl != NULL) {
3483 if (dcl->gui_timer_interval &&
3484 dcl->gui_timer_interval < interval)
3485 interval = dcl->gui_timer_interval;
3486 dcl = dcl->next;
3487 }
3488 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3489 }
3490
3491 static void nographic_update(void *opaque)
3492 {
3493 uint64_t interval = GUI_REFRESH_INTERVAL;
3494
3495 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3496 }
3497
3498 struct vm_change_state_entry {
3499 VMChangeStateHandler *cb;
3500 void *opaque;
3501 LIST_ENTRY (vm_change_state_entry) entries;
3502 };
3503
3504 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3505
3506 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3507 void *opaque)
3508 {
3509 VMChangeStateEntry *e;
3510
3511 e = qemu_mallocz(sizeof (*e));
3512
3513 e->cb = cb;
3514 e->opaque = opaque;
3515 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3516 return e;
3517 }
3518
3519 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3520 {
3521 LIST_REMOVE (e, entries);
3522 qemu_free (e);
3523 }
3524
3525 static void vm_state_notify(int running, int reason)
3526 {
3527 VMChangeStateEntry *e;
3528
3529 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3530 e->cb(e->opaque, running, reason);
3531 }
3532 }
3533
3534 void vm_start(void)
3535 {
3536 if (!vm_running) {
3537 cpu_enable_ticks();
3538 vm_running = 1;
3539 vm_state_notify(1, 0);
3540 qemu_rearm_alarm_timer(alarm_timer);
3541 }
3542 }
3543
3544 void vm_stop(int reason)
3545 {
3546 if (vm_running) {
3547 cpu_disable_ticks();
3548 vm_running = 0;
3549 vm_state_notify(0, reason);
3550 }
3551 }
3552
3553 /* reset/shutdown handler */
3554
3555 typedef struct QEMUResetEntry {
3556 QEMUResetHandler *func;
3557 void *opaque;
3558 struct QEMUResetEntry *next;
3559 } QEMUResetEntry;
3560
3561 static QEMUResetEntry *first_reset_entry;
3562 static int reset_requested;
3563 static int shutdown_requested;
3564 static int powerdown_requested;
3565
3566 int qemu_shutdown_requested(void)
3567 {
3568 int r = shutdown_requested;
3569 shutdown_requested = 0;
3570 return r;
3571 }
3572
3573 int qemu_reset_requested(void)
3574 {
3575 int r = reset_requested;
3576 reset_requested = 0;
3577 return r;
3578 }
3579
3580 int qemu_powerdown_requested(void)
3581 {
3582 int r = powerdown_requested;
3583 powerdown_requested = 0;
3584 return r;
3585 }
3586
3587 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3588 {
3589 QEMUResetEntry **pre, *re;
3590
3591 pre = &first_reset_entry;
3592 while (*pre != NULL)
3593 pre = &(*pre)->next;
3594 re = qemu_mallocz(sizeof(QEMUResetEntry));
3595 re->func = func;
3596 re->opaque = opaque;
3597 re->next = NULL;
3598 *pre = re;
3599 }
3600
3601 void qemu_system_reset(void)
3602 {
3603 QEMUResetEntry *re;
3604
3605 /* reset all devices */
3606 for(re = first_reset_entry; re != NULL; re = re->next) {
3607 re->func(re->opaque);
3608 }
3609 }
3610
3611 void qemu_system_reset_request(void)
3612 {
3613 if (no_reboot) {
3614 shutdown_requested = 1;
3615 } else {
3616 reset_requested = 1;
3617 }
3618 if (cpu_single_env)
3619 cpu_exit(cpu_single_env);
3620 }
3621
3622 void qemu_system_shutdown_request(void)
3623 {
3624 shutdown_requested = 1;
3625 if (cpu_single_env)
3626 cpu_exit(cpu_single_env);
3627 }
3628
3629 void qemu_system_powerdown_request(void)
3630 {
3631 powerdown_requested = 1;
3632 if (cpu_single_env)
3633 cpu_exit(cpu_single_env);
3634 }
3635
3636 #ifdef _WIN32
3637 static void host_main_loop_wait(int *timeout)
3638 {
3639 int ret, ret2, i;
3640 PollingEntry *pe;
3641
3642
3643 /* XXX: need to suppress polling by better using win32 events */
3644 ret = 0;
3645 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3646 ret |= pe->func(pe->opaque);
3647 }
3648 if (ret == 0) {
3649 int err;
3650 WaitObjects *w = &wait_objects;
3651
3652 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3653 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3654 if (w->func[ret - WAIT_OBJECT_0])
3655 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3656
3657 /* Check for additional signaled events */
3658 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3659
3660 /* Check if event is signaled */
3661 ret2 = WaitForSingleObject(w->events[i], 0);
3662 if(ret2 == WAIT_OBJECT_0) {
3663 if (w->func[i])
3664 w->func[i](w->opaque[i]);
3665 } else if (ret2 == WAIT_TIMEOUT) {
3666 } else {
3667 err = GetLastError();
3668 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3669 }
3670 }
3671 } else if (ret == WAIT_TIMEOUT) {
3672 } else {
3673 err = GetLastError();
3674 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3675 }
3676 }
3677
3678 *timeout = 0;
3679 }
3680 #else
3681 static void host_main_loop_wait(int *timeout)
3682 {
3683 }
3684 #endif
3685
3686 void main_loop_wait(int timeout)
3687 {
3688 IOHandlerRecord *ioh;
3689 fd_set rfds, wfds, xfds;
3690 int ret, nfds;
3691 struct timeval tv;
3692
3693 qemu_bh_update_timeout(&timeout);
3694
3695 host_main_loop_wait(&timeout);
3696
3697 /* poll any events */
3698 /* XXX: separate device handlers from system ones */
3699 nfds = -1;
3700 FD_ZERO(&rfds);
3701 FD_ZERO(&wfds);
3702 FD_ZERO(&xfds);
3703 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3704 if (ioh->deleted)
3705 continue;
3706 if (ioh->fd_read &&
3707 (!ioh->fd_read_poll ||
3708 ioh->fd_read_poll(ioh->opaque) != 0)) {
3709 FD_SET(ioh->fd, &rfds);
3710 if (ioh->fd > nfds)
3711 nfds = ioh->fd;
3712 }
3713 if (ioh->fd_write) {
3714 FD_SET(ioh->fd, &wfds);
3715 if (ioh->fd > nfds)
3716 nfds = ioh->fd;
3717 }
3718 }
3719
3720 tv.tv_sec = timeout / 1000;
3721 tv.tv_usec = (timeout % 1000) * 1000;
3722
3723 #if defined(CONFIG_SLIRP)
3724 if (slirp_is_inited()) {
3725 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3726 }
3727 #endif
3728 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3729 if (ret > 0) {
3730 IOHandlerRecord **pioh;
3731
3732 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3733 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3734 ioh->fd_read(ioh->opaque);
3735 }
3736 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3737 ioh->fd_write(ioh->opaque);
3738 }
3739 }
3740
3741 /* remove deleted IO handlers */
3742 pioh = &first_io_handler;
3743 while (*pioh) {
3744 ioh = *pioh;
3745 if (ioh->deleted) {
3746 *pioh = ioh->next;
3747 qemu_free(ioh);
3748 } else
3749 pioh = &ioh->next;
3750 }
3751 }
3752 #if defined(CONFIG_SLIRP)
3753 if (slirp_is_inited()) {
3754 if (ret < 0) {
3755 FD_ZERO(&rfds);
3756 FD_ZERO(&wfds);
3757 FD_ZERO(&xfds);
3758 }
3759 slirp_select_poll(&rfds, &wfds, &xfds);
3760 }
3761 #endif
3762
3763 /* vm time timers */
3764 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3765 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3766 qemu_get_clock(vm_clock));
3767
3768 /* real time timers */
3769 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3770 qemu_get_clock(rt_clock));
3771
3772 /* Check bottom-halves last in case any of the earlier events triggered
3773 them. */
3774 qemu_bh_poll();
3775
3776 }
3777
3778 static int main_loop(void)
3779 {
3780 int ret, timeout;
3781 #ifdef CONFIG_PROFILER
3782 int64_t ti;
3783 #endif
3784 CPUState *env;
3785
3786 cur_cpu = first_cpu;
3787 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3788 for(;;) {
3789 if (vm_running) {
3790
3791 for(;;) {
3792 /* get next cpu */
3793 env = next_cpu;
3794 #ifdef CONFIG_PROFILER
3795 ti = profile_getclock();
3796 #endif
3797 if (use_icount) {
3798 int64_t count;
3799 int decr;
3800 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3801 env->icount_decr.u16.low = 0;
3802 env->icount_extra = 0;
3803 count = qemu_next_deadline();
3804 count = (count + (1 << icount_time_shift) - 1)
3805 >> icount_time_shift;
3806 qemu_icount += count;
3807 decr = (count > 0xffff) ? 0xffff : count;
3808 count -= decr;
3809 env->icount_decr.u16.low = decr;
3810 env->icount_extra = count;
3811 }
3812 ret = cpu_exec(env);
3813 #ifdef CONFIG_PROFILER
3814 qemu_time += profile_getclock() - ti;
3815 #endif
3816 if (use_icount) {
3817 /* Fold pending instructions back into the
3818 instruction counter, and clear the interrupt flag. */
3819 qemu_icount -= (env->icount_decr.u16.low
3820 + env->icount_extra);
3821 env->icount_decr.u32 = 0;
3822 env->icount_extra = 0;
3823 }
3824 next_cpu = env->next_cpu ?: first_cpu;
3825 if (event_pending && likely(ret != EXCP_DEBUG)) {
3826 ret = EXCP_INTERRUPT;
3827 event_pending = 0;
3828 break;
3829 }
3830 if (ret == EXCP_HLT) {
3831 /* Give the next CPU a chance to run. */
3832 cur_cpu = env;
3833 continue;
3834 }
3835 if (ret != EXCP_HALTED)
3836 break;
3837 /* all CPUs are halted ? */
3838 if (env == cur_cpu)
3839 break;
3840 }
3841 cur_cpu = env;
3842
3843 if (shutdown_requested) {
3844 ret = EXCP_INTERRUPT;
3845 if (no_shutdown) {
3846 vm_stop(0);
3847 no_shutdown = 0;
3848 }
3849 else
3850 break;
3851 }
3852 if (reset_requested) {
3853 reset_requested = 0;
3854 qemu_system_reset();
3855 ret = EXCP_INTERRUPT;
3856 }
3857 if (powerdown_requested) {
3858 powerdown_requested = 0;
3859 qemu_system_powerdown();
3860 ret = EXCP_INTERRUPT;
3861 }
3862 if (unlikely(ret == EXCP_DEBUG)) {
3863 gdb_set_stop_cpu(cur_cpu);
3864 vm_stop(EXCP_DEBUG);
3865 }
3866 /* If all cpus are halted then wait until the next IRQ */
3867 /* XXX: use timeout computed from timers */
3868 if (ret == EXCP_HALTED) {
3869 if (use_icount) {
3870 int64_t add;
3871 int64_t delta;
3872 /* Advance virtual time to the next event. */
3873 if (use_icount == 1) {
3874 /* When not using an adaptive execution frequency
3875 we tend to get badly out of sync with real time,
3876 so just delay for a reasonable amount of time. */
3877 delta = 0;
3878 } else {
3879 delta = cpu_get_icount() - cpu_get_clock();
3880 }
3881 if (delta > 0) {
3882 /* If virtual time is ahead of real time then just
3883 wait for IO. */
3884 timeout = (delta / 1000000) + 1;
3885 } else {
3886 /* Wait for either IO to occur or the next
3887 timer event. */
3888 add = qemu_next_deadline();
3889 /* We advance the timer before checking for IO.
3890 Limit the amount we advance so that early IO
3891 activity won't get the guest too far ahead. */
3892 if (add > 10000000)
3893 add = 10000000;
3894 delta += add;
3895 add = (add + (1 << icount_time_shift) - 1)
3896 >> icount_time_shift;
3897 qemu_icount += add;
3898 timeout = delta / 1000000;
3899 if (timeout < 0)
3900 timeout = 0;
3901 }
3902 } else {
3903 timeout = 5000;
3904 }
3905 } else {
3906 timeout = 0;
3907 }
3908 } else {
3909 if (shutdown_requested) {
3910 ret = EXCP_INTERRUPT;
3911 break;
3912 }
3913 timeout = 5000;
3914 }
3915 #ifdef CONFIG_PROFILER
3916 ti = profile_getclock();
3917 #endif
3918 main_loop_wait(timeout);
3919 #ifdef CONFIG_PROFILER
3920 dev_time += profile_getclock() - ti;
3921 #endif
3922 }
3923 cpu_disable_ticks();
3924 return ret;
3925 }
3926
3927 static void help(int exitcode)
3928 {
3929 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3930 and qemu-doc.texi */
3931 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3932 "usage: %s [options] [disk_image]\n"
3933 "\n"
3934 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3935 "\n"
3936 "Standard options:\n"
3937 "-h or -help display this help and exit\n"
3938 "-M machine select emulated machine (-M ? for list)\n"
3939 "-cpu cpu select CPU (-cpu ? for list)\n"
3940 "-smp n set the number of CPUs to 'n' [default=1]\n"
3941 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3942 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3943 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3944 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3945 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3946 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3947 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3948 " use 'file' as a drive image\n"
3949 "-mtdblock file use 'file' as on-board Flash memory image\n"
3950 "-sd file use 'file' as SecureDigital card image\n"
3951 "-pflash file use 'file' as a parallel flash image\n"
3952 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3953 "-snapshot write to temporary files instead of disk image files\n"
3954 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3955 #ifndef _WIN32
3956 "-k language use keyboard layout (for example \"fr\" for French)\n"
3957 #endif
3958 #ifdef HAS_AUDIO
3959 "-audio-help print list of audio drivers and their options\n"
3960 "-soundhw c1,... enable audio support\n"
3961 " and only specified sound cards (comma separated list)\n"
3962 " use -soundhw ? to get the list of supported cards\n"
3963 " use -soundhw all to enable all of them\n"
3964 #endif
3965 "-usb enable the USB driver (will be the default soon)\n"
3966 "-usbdevice name add the host or guest USB device 'name'\n"
3967 "-name string set the name of the guest\n"
3968 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3969 " specify machine UUID\n"
3970 "\n"
3971 "Display options:\n"
3972 "-nographic disable graphical output and redirect serial I/Os to console\n"
3973 #ifdef CONFIG_CURSES
3974 "-curses use a curses/ncurses interface instead of SDL\n"
3975 #endif
3976 #ifdef CONFIG_SDL
3977 "-no-frame open SDL window without a frame and window decorations\n"
3978 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3979 "-no-quit disable SDL window close capability\n"
3980 "-sdl enable SDL\n"
3981 #endif
3982 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3983 "-vga [std|cirrus|vmware|none]\n"
3984 " select video card type\n"
3985 "-full-screen start in full screen\n"
3986 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3987 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3988 #endif
3989 "-vnc display start a VNC server on display\n"
3990 "\n"
3991 "Network options:\n"
3992 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3993 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3994 #ifdef CONFIG_SLIRP
3995 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3996 " connect the user mode network stack to VLAN 'n' and send\n"
3997 " hostname 'host' to DHCP clients\n"
3998 #endif
3999 #ifdef _WIN32
4000 "-net tap[,vlan=n][,name=str],ifname=name\n"
4001 " connect the host TAP network interface to VLAN 'n'\n"
4002 #else
4003 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
4004 " connect the host TAP network interface to VLAN 'n' and use the\n"
4005 " network scripts 'file' (default=%s)\n"
4006 " and 'dfile' (default=%s);\n"
4007 " use '[down]script=no' to disable script execution;\n"
4008 " use 'fd=h' to connect to an already opened TAP interface\n"
4009 #endif
4010 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
4011 " connect the vlan 'n' to another VLAN using a socket connection\n"
4012 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
4013 " connect the vlan 'n' to multicast maddr and port\n"
4014 #ifdef CONFIG_VDE
4015 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
4016 " connect the vlan 'n' to port 'n' of a vde switch running\n"
4017 " on host and listening for incoming connections on 'socketpath'.\n"
4018 " Use group 'groupname' and mode 'octalmode' to change default\n"
4019 " ownership and permissions for communication port.\n"
4020 #endif
4021 "-net none use it alone to have zero network devices; if no -net option\n"
4022 " is provided, the default is '-net nic -net user'\n"
4023 #ifdef CONFIG_SLIRP
4024 "-tftp dir allow tftp access to files in dir [-net user]\n"
4025 "-bootp file advertise file in BOOTP replies\n"
4026 #ifndef _WIN32
4027 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
4028 #endif
4029 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4030 " redirect TCP or UDP connections from host to guest [-net user]\n"
4031 #endif
4032 "\n"
4033 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4034 "-bt hci,host[:id]\n"
4035 " use host's HCI with the given name\n"
4036 "-bt hci[,vlan=n]\n"
4037 " emulate a standard HCI in virtual scatternet 'n'\n"
4038 "-bt vhci[,vlan=n]\n"
4039 " add host computer to virtual scatternet 'n' using VHCI\n"
4040 "-bt device:dev[,vlan=n]\n"
4041 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4042 "\n"
4043 #ifdef TARGET_I386
4044 "\n"
4045 "i386 target only:\n"
4046 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4047 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4048 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4049 "-no-acpi disable ACPI\n"
4050 "-no-hpet disable HPET\n"
4051 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4052 " ACPI table description\n"
4053 #endif
4054 "Linux boot specific:\n"
4055 "-kernel bzImage use 'bzImage' as kernel image\n"
4056 "-append cmdline use 'cmdline' as kernel command line\n"
4057 "-initrd file use 'file' as initial ram disk\n"
4058 "\n"
4059 "Debug/Expert options:\n"
4060 "-serial dev redirect the serial port to char device 'dev'\n"
4061 "-parallel dev redirect the parallel port to char device 'dev'\n"
4062 "-monitor dev redirect the monitor to char device 'dev'\n"
4063 "-pidfile file write PID to 'file'\n"
4064 "-S freeze CPU at startup (use 'c' to start execution)\n"
4065 "-s wait gdb connection to port\n"
4066 "-p port set gdb connection port [default=%s]\n"
4067 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4068 "-hdachs c,h,s[,t]\n"
4069 " force hard disk 0 physical geometry and the optional BIOS\n"
4070 " translation (t=none or lba) (usually qemu can guess them)\n"
4071 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4072 "-bios file set the filename for the BIOS\n"
4073 #ifdef USE_KQEMU
4074 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4075 "-no-kqemu disable KQEMU kernel module usage\n"
4076 #endif
4077 #ifdef CONFIG_KVM
4078 "-enable-kvm enable KVM full virtualization support\n"
4079 #endif
4080 "-no-reboot exit instead of rebooting\n"
4081 "-no-shutdown stop before shutdown\n"
4082 "-loadvm [tag|id]\n"
4083 " start right away with a saved state (loadvm in monitor)\n"
4084 #ifndef _WIN32
4085 "-daemonize daemonize QEMU after initializing\n"
4086 #endif
4087 "-option-rom rom load a file, rom, into the option ROM space\n"
4088 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4089 "-prom-env variable=value\n"
4090 " set OpenBIOS nvram variables\n"
4091 #endif
4092 "-clock force the use of the given methods for timer alarm.\n"
4093 " To see what timers are available use -clock ?\n"
4094 "-localtime set the real time clock to local time [default=utc]\n"
4095 "-startdate select initial date of the clock\n"
4096 "-icount [N|auto]\n"
4097 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4098 "-echr chr set terminal escape character instead of ctrl-a\n"
4099 "-virtioconsole c\n"
4100 " set virtio console\n"
4101 "-show-cursor show cursor\n"
4102 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4103 "-semihosting semihosting mode\n"
4104 #endif
4105 #if defined(TARGET_ARM)
4106 "-old-param old param mode\n"
4107 #endif
4108 "-tb-size n set TB size\n"
4109 "-incoming p prepare for incoming migration, listen on port p\n"
4110 #ifndef _WIN32
4111 "-chroot dir Chroot to dir just before starting the VM.\n"
4112 "-runas user Change to user id user just before starting the VM.\n"
4113 #endif
4114 "\n"
4115 "During emulation, the following keys are useful:\n"
4116 "ctrl-alt-f toggle full screen\n"
4117 "ctrl-alt-n switch to virtual console 'n'\n"
4118 "ctrl-alt toggle mouse and keyboard grab\n"
4119 "\n"
4120 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4121 ,
4122 "qemu",
4123 DEFAULT_RAM_SIZE,
4124 #ifndef _WIN32
4125 DEFAULT_NETWORK_SCRIPT,
4126 DEFAULT_NETWORK_DOWN_SCRIPT,
4127 #endif
4128 DEFAULT_GDBSTUB_PORT,
4129 "/tmp/qemu.log");
4130 exit(exitcode);
4131 }
4132
4133 #define HAS_ARG 0x0001
4134
4135 enum {
4136 /* Please keep in synch with help, qemu_options[] and
4137 qemu-doc.texi */
4138 /* Standard options: */
4139 QEMU_OPTION_h,
4140 QEMU_OPTION_M,
4141 QEMU_OPTION_cpu,
4142 QEMU_OPTION_smp,
4143 QEMU_OPTION_fda,
4144 QEMU_OPTION_fdb,
4145 QEMU_OPTION_hda,
4146 QEMU_OPTION_hdb,
4147 QEMU_OPTION_hdc,
4148 QEMU_OPTION_hdd,
4149 QEMU_OPTION_cdrom,
4150 QEMU_OPTION_drive,
4151 QEMU_OPTION_mtdblock,
4152 QEMU_OPTION_sd,
4153 QEMU_OPTION_pflash,
4154 QEMU_OPTION_boot,
4155 QEMU_OPTION_snapshot,
4156 QEMU_OPTION_m,
4157 QEMU_OPTION_k,
4158 QEMU_OPTION_audio_help,
4159 QEMU_OPTION_soundhw,
4160 QEMU_OPTION_usb,
4161 QEMU_OPTION_usbdevice,
4162 QEMU_OPTION_name,
4163 QEMU_OPTION_uuid,
4164
4165 /* Display options: */
4166 QEMU_OPTION_nographic,
4167 QEMU_OPTION_curses,
4168 QEMU_OPTION_no_frame,
4169 QEMU_OPTION_alt_grab,
4170 QEMU_OPTION_no_quit,
4171 QEMU_OPTION_sdl,
4172 QEMU_OPTION_portrait,
4173 QEMU_OPTION_vga,
4174 QEMU_OPTION_full_screen,
4175 QEMU_OPTION_g,
4176 QEMU_OPTION_vnc,
4177
4178 /* Network options: */
4179 QEMU_OPTION_net,
4180 QEMU_OPTION_tftp,
4181 QEMU_OPTION_bootp,
4182 QEMU_OPTION_smb,
4183 QEMU_OPTION_redir,
4184 QEMU_OPTION_bt,
4185
4186 /* i386 target only: */
4187 QEMU_OPTION_win2k_hack,
4188 QEMU_OPTION_rtc_td_hack,
4189 QEMU_OPTION_no_fd_bootchk,
4190 QEMU_OPTION_no_acpi,
4191 QEMU_OPTION_no_hpet,
4192 QEMU_OPTION_acpitable,
4193
4194 /* Linux boot specific: */
4195 QEMU_OPTION_kernel,
4196 QEMU_OPTION_append,
4197 QEMU_OPTION_initrd,
4198
4199 /* Debug/Expert options: */
4200 QEMU_OPTION_serial,
4201 QEMU_OPTION_parallel,
4202 QEMU_OPTION_monitor,
4203 QEMU_OPTION_pidfile,
4204 QEMU_OPTION_S,
4205 QEMU_OPTION_s,
4206 QEMU_OPTION_p,
4207 QEMU_OPTION_d,
4208 QEMU_OPTION_hdachs,
4209 QEMU_OPTION_L,
4210 QEMU_OPTION_bios,
4211 QEMU_OPTION_kernel_kqemu,
4212 QEMU_OPTION_no_kqemu,
4213 QEMU_OPTION_enable_kvm,
4214 QEMU_OPTION_no_reboot,
4215 QEMU_OPTION_no_shutdown,
4216 QEMU_OPTION_loadvm,
4217 QEMU_OPTION_daemonize,
4218 QEMU_OPTION_option_rom,
4219 QEMU_OPTION_prom_env,
4220 QEMU_OPTION_clock,
4221 QEMU_OPTION_localtime,
4222 QEMU_OPTION_startdate,
4223 QEMU_OPTION_icount,
4224 QEMU_OPTION_echr,
4225 QEMU_OPTION_virtiocon,
4226 QEMU_OPTION_show_cursor,
4227 QEMU_OPTION_semihosting,
4228 QEMU_OPTION_old_param,
4229 QEMU_OPTION_tb_size,
4230 QEMU_OPTION_incoming,
4231 QEMU_OPTION_chroot,
4232 QEMU_OPTION_runas,
4233 };
4234
4235 typedef struct QEMUOption {
4236 const char *name;
4237 int flags;
4238 int index;
4239 } QEMUOption;
4240
4241 static const QEMUOption qemu_options[] = {
4242 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4243 qemu-doc.texi */
4244 /* Standard options: */
4245 { "h", 0, QEMU_OPTION_h },
4246 { "help", 0, QEMU_OPTION_h },
4247 { "M", HAS_ARG, QEMU_OPTION_M },
4248 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4249 { "smp", HAS_ARG, QEMU_OPTION_smp },
4250 { "fda", HAS_ARG, QEMU_OPTION_fda },
4251 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4252 { "hda", HAS_ARG, QEMU_OPTION_hda },
4253 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4254 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4255 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4256 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4257 { "drive", HAS_ARG, QEMU_OPTION_drive },
4258 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4259 { "sd", HAS_ARG, QEMU_OPTION_sd },
4260 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4261 { "boot", HAS_ARG, QEMU_OPTION_boot },
4262 { "snapshot", 0, QEMU_OPTION_snapshot },
4263 { "m", HAS_ARG, QEMU_OPTION_m },
4264 #ifndef _WIN32
4265 { "k", HAS_ARG, QEMU_OPTION_k },
4266 #endif
4267 #ifdef HAS_AUDIO
4268 { "audio-help", 0, QEMU_OPTION_audio_help },
4269 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4270 #endif
4271 { "usb", 0, QEMU_OPTION_usb },
4272 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4273 { "name", HAS_ARG, QEMU_OPTION_name },
4274 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4275
4276 /* Display options: */
4277 { "nographic", 0, QEMU_OPTION_nographic },
4278 #ifdef CONFIG_CURSES
4279 { "curses", 0, QEMU_OPTION_curses },
4280 #endif
4281 #ifdef CONFIG_SDL
4282 { "no-frame", 0, QEMU_OPTION_no_frame },
4283 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4284 { "no-quit", 0, QEMU_OPTION_no_quit },
4285 { "sdl", 0, QEMU_OPTION_sdl },
4286 #endif
4287 { "portrait", 0, QEMU_OPTION_portrait },
4288 { "vga", HAS_ARG, QEMU_OPTION_vga },
4289 { "full-screen", 0, QEMU_OPTION_full_screen },
4290 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4291 { "g", 1, QEMU_OPTION_g },
4292 #endif
4293 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4294
4295 /* Network options: */
4296 { "net", HAS_ARG, QEMU_OPTION_net},
4297 #ifdef CONFIG_SLIRP
4298 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4299 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4300 #ifndef _WIN32
4301 { "smb", HAS_ARG, QEMU_OPTION_smb },
4302 #endif
4303 { "redir", HAS_ARG, QEMU_OPTION_redir },
4304 #endif
4305 { "bt", HAS_ARG, QEMU_OPTION_bt },
4306 #ifdef TARGET_I386
4307 /* i386 target only: */
4308 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4309 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4310 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4311 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4312 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4313 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4314 #endif
4315
4316 /* Linux boot specific: */
4317 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4318 { "append", HAS_ARG, QEMU_OPTION_append },
4319 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4320
4321 /* Debug/Expert options: */
4322 { "serial", HAS_ARG, QEMU_OPTION_serial },
4323 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4324 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4325 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4326 { "S", 0, QEMU_OPTION_S },
4327 { "s", 0, QEMU_OPTION_s },
4328 { "p", HAS_ARG, QEMU_OPTION_p },
4329 { "d", HAS_ARG, QEMU_OPTION_d },
4330 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4331 { "L", HAS_ARG, QEMU_OPTION_L },
4332 { "bios", HAS_ARG, QEMU_OPTION_bios },
4333 #ifdef USE_KQEMU
4334 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4335 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4336 #endif
4337 #ifdef CONFIG_KVM
4338 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4339 #endif
4340 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4341 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4342 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4343 { "daemonize", 0, QEMU_OPTION_daemonize },
4344 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4345 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4346 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4347 #endif
4348 { "clock", HAS_ARG, QEMU_OPTION_clock },
4349 { "localtime", 0, QEMU_OPTION_localtime },
4350 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4351 { "icount", HAS_ARG, QEMU_OPTION_icount },
4352 { "echr", HAS_ARG, QEMU_OPTION_echr },
4353 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4354 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4355 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4356 { "semihosting", 0, QEMU_OPTION_semihosting },
4357 #endif
4358 #if defined(TARGET_ARM)
4359 { "old-param", 0, QEMU_OPTION_old_param },
4360 #endif
4361 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4362 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4363 { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4364 { "runas", HAS_ARG, QEMU_OPTION_runas },
4365 { NULL },
4366 };
4367
4368 #ifdef HAS_AUDIO
4369 struct soundhw soundhw[] = {
4370 #ifdef HAS_AUDIO_CHOICE
4371 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4372 {
4373 "pcspk",
4374 "PC speaker",
4375 0,
4376 1,
4377 { .init_isa = pcspk_audio_init }
4378 },
4379 #endif
4380
4381 #ifdef CONFIG_SB16
4382 {
4383 "sb16",
4384 "Creative Sound Blaster 16",
4385 0,
4386 1,
4387 { .init_isa = SB16_init }
4388 },
4389 #endif
4390
4391 #ifdef CONFIG_CS4231A
4392 {
4393 "cs4231a",
4394 "CS4231A",
4395 0,
4396 1,
4397 { .init_isa = cs4231a_init }
4398 },
4399 #endif
4400
4401 #ifdef CONFIG_ADLIB
4402 {
4403 "adlib",
4404 #ifdef HAS_YMF262
4405 "Yamaha YMF262 (OPL3)",
4406 #else
4407 "Yamaha YM3812 (OPL2)",
4408 #endif
4409 0,
4410 1,
4411 { .init_isa = Adlib_init }
4412 },
4413 #endif
4414
4415 #ifdef CONFIG_GUS
4416 {
4417 "gus",
4418 "Gravis Ultrasound GF1",
4419 0,
4420 1,
4421 { .init_isa = GUS_init }
4422 },
4423 #endif
4424
4425 #ifdef CONFIG_AC97
4426 {
4427 "ac97",
4428 "Intel 82801AA AC97 Audio",
4429 0,
4430 0,
4431 { .init_pci = ac97_init }
4432 },
4433 #endif
4434
4435 #ifdef CONFIG_ES1370
4436 {
4437 "es1370",
4438 "ENSONIQ AudioPCI ES1370",
4439 0,
4440 0,
4441 { .init_pci = es1370_init }
4442 },
4443 #endif
4444
4445 #endif /* HAS_AUDIO_CHOICE */
4446
4447 { NULL, NULL, 0, 0, { NULL } }
4448 };
4449
4450 static void select_soundhw (const char *optarg)
4451 {
4452 struct soundhw *c;
4453
4454 if (*optarg == '?') {
4455 show_valid_cards:
4456
4457 printf ("Valid sound card names (comma separated):\n");
4458 for (c = soundhw; c->name; ++c) {
4459 printf ("%-11s %s\n", c->name, c->descr);
4460 }
4461 printf ("\n-soundhw all will enable all of the above\n");
4462 exit (*optarg != '?');
4463 }
4464 else {
4465 size_t l;
4466 const char *p;
4467 char *e;
4468 int bad_card = 0;
4469
4470 if (!strcmp (optarg, "all")) {
4471 for (c = soundhw; c->name; ++c) {
4472 c->enabled = 1;
4473 }
4474 return;
4475 }
4476
4477 p = optarg;
4478 while (*p) {
4479 e = strchr (p, ',');
4480 l = !e ? strlen (p) : (size_t) (e - p);
4481
4482 for (c = soundhw; c->name; ++c) {
4483 if (!strncmp (c->name, p, l)) {
4484 c->enabled = 1;
4485 break;
4486 }
4487 }
4488
4489 if (!c->name) {
4490 if (l > 80) {
4491 fprintf (stderr,
4492 "Unknown sound card name (too big to show)\n");
4493 }
4494 else {
4495 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4496 (int) l, p);
4497 }
4498 bad_card = 1;
4499 }
4500 p += l + (e != NULL);
4501 }
4502
4503 if (bad_card)
4504 goto show_valid_cards;
4505 }
4506 }
4507 #endif
4508
4509 static void select_vgahw (const char *p)
4510 {
4511 const char *opts;
4512
4513 if (strstart(p, "std", &opts)) {
4514 std_vga_enabled = 1;
4515 cirrus_vga_enabled = 0;
4516 vmsvga_enabled = 0;
4517 } else if (strstart(p, "cirrus", &opts)) {
4518 cirrus_vga_enabled = 1;
4519 std_vga_enabled = 0;
4520 vmsvga_enabled = 0;
4521 } else if (strstart(p, "vmware", &opts)) {
4522 cirrus_vga_enabled = 0;
4523 std_vga_enabled = 0;
4524 vmsvga_enabled = 1;
4525 } else if (strstart(p, "none", &opts)) {
4526 cirrus_vga_enabled = 0;
4527 std_vga_enabled = 0;
4528 vmsvga_enabled = 0;
4529 } else {
4530 invalid_vga:
4531 fprintf(stderr, "Unknown vga type: %s\n", p);
4532 exit(1);
4533 }
4534 while (*opts) {
4535 const char *nextopt;
4536
4537 if (strstart(opts, ",retrace=", &nextopt)) {
4538 opts = nextopt;
4539 if (strstart(opts, "dumb", &nextopt))
4540 vga_retrace_method = VGA_RETRACE_DUMB;
4541 else if (strstart(opts, "precise", &nextopt))
4542 vga_retrace_method = VGA_RETRACE_PRECISE;
4543 else goto invalid_vga;
4544 } else goto invalid_vga;
4545 opts = nextopt;
4546 }
4547 }
4548
4549 #ifdef _WIN32
4550 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4551 {
4552 exit(STATUS_CONTROL_C_EXIT);
4553 return TRUE;
4554 }
4555 #endif
4556
4557 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4558 {
4559 int ret;
4560
4561 if(strlen(str) != 36)
4562 return -1;
4563
4564 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4565 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4566 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4567
4568 if(ret != 16)
4569 return -1;
4570
4571 return 0;
4572 }
4573
4574 #define MAX_NET_CLIENTS 32
4575
4576 #ifndef _WIN32
4577
4578 static void termsig_handler(int signal)
4579 {
4580 qemu_system_shutdown_request();
4581 }
4582
4583 static void termsig_setup(void)
4584 {
4585 struct sigaction act;
4586
4587 memset(&act, 0, sizeof(act));
4588 act.sa_handler = termsig_handler;
4589 sigaction(SIGINT, &act, NULL);
4590 sigaction(SIGHUP, &act, NULL);
4591 sigaction(SIGTERM, &act, NULL);
4592 }
4593
4594 #endif
4595
4596 int main(int argc, char **argv, char **envp)
4597 {
4598 #ifdef CONFIG_GDBSTUB
4599 int use_gdbstub;
4600 const char *gdbstub_port;
4601 #endif
4602 uint32_t boot_devices_bitmap = 0;
4603 int i;
4604 int snapshot, linux_boot, net_boot;
4605 const char *initrd_filename;
4606 const char *kernel_filename, *kernel_cmdline;
4607 const char *boot_devices = "";
4608 DisplayState *ds;
4609 DisplayChangeListener *dcl;
4610 int cyls, heads, secs, translation;
4611 const char *net_clients[MAX_NET_CLIENTS];
4612 int nb_net_clients;
4613 const char *bt_opts[MAX_BT_CMDLINE];
4614 int nb_bt_opts;
4615 int hda_index;
4616 int optind;
4617 const char *r, *optarg;
4618 CharDriverState *monitor_hd = NULL;
4619 const char *monitor_device;
4620 const char *serial_devices[MAX_SERIAL_PORTS];
4621 int serial_device_index;
4622 const char *parallel_devices[MAX_PARALLEL_PORTS];
4623 int parallel_device_index;
4624 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4625 int virtio_console_index;
4626 const char *loadvm = NULL;
4627 QEMUMachine *machine;
4628 const char *cpu_model;
4629 const char *usb_devices[MAX_USB_CMDLINE];
4630 int usb_devices_index;
4631 int fds[2];
4632 int tb_size;
4633 const char *pid_file = NULL;
4634 const char *incoming = NULL;
4635 int fd = 0;
4636 struct passwd *pwd = NULL;
4637 const char *chroot_dir = NULL;
4638 const char *run_as = NULL;
4639
4640 qemu_cache_utils_init(envp);
4641
4642 LIST_INIT (&vm_change_state_head);
4643 #ifndef _WIN32
4644 {
4645 struct sigaction act;
4646 sigfillset(&act.sa_mask);
4647 act.sa_flags = 0;
4648 act.sa_handler = SIG_IGN;
4649 sigaction(SIGPIPE, &act, NULL);
4650 }
4651 #else
4652 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4653 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4654 QEMU to run on a single CPU */
4655 {
4656 HANDLE h;
4657 DWORD mask, smask;
4658 int i;
4659 h = GetCurrentProcess();
4660 if (GetProcessAffinityMask(h, &mask, &smask)) {
4661 for(i = 0; i < 32; i++) {
4662 if (mask & (1 << i))
4663 break;
4664 }
4665 if (i != 32) {
4666 mask = 1 << i;
4667 SetProcessAffinityMask(h, mask);
4668 }
4669 }
4670 }
4671 #endif
4672
4673 register_machines();
4674 machine = first_machine;
4675 cpu_model = NULL;
4676 initrd_filename = NULL;
4677 ram_size = 0;
4678 vga_ram_size = VGA_RAM_SIZE;
4679 #ifdef CONFIG_GDBSTUB
4680 use_gdbstub = 0;
4681 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4682 #endif
4683 snapshot = 0;
4684 nographic = 0;
4685 curses = 0;
4686 kernel_filename = NULL;
4687 kernel_cmdline = "";
4688 cyls = heads = secs = 0;
4689 translation = BIOS_ATA_TRANSLATION_AUTO;
4690 monitor_device = "vc:80Cx24C";
4691
4692 serial_devices[0] = "vc:80Cx24C";
4693 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4694 serial_devices[i] = NULL;
4695 serial_device_index = 0;
4696
4697 parallel_devices[0] = "vc:80Cx24C";
4698 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4699 parallel_devices[i] = NULL;
4700 parallel_device_index = 0;
4701
4702 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4703 virtio_consoles[i] = NULL;
4704 virtio_console_index = 0;
4705
4706 usb_devices_index = 0;
4707
4708 nb_net_clients = 0;
4709 nb_bt_opts = 0;
4710 nb_drives = 0;
4711 nb_drives_opt = 0;
4712 hda_index = -1;
4713
4714 nb_nics = 0;
4715
4716 tb_size = 0;
4717 autostart= 1;
4718
4719 optind = 1;
4720 for(;;) {
4721 if (optind >= argc)
4722 break;
4723 r = argv[optind];
4724 if (r[0] != '-') {
4725 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4726 } else {
4727 const QEMUOption *popt;
4728
4729 optind++;
4730 /* Treat --foo the same as -foo. */
4731 if (r[1] == '-')
4732 r++;
4733 popt = qemu_options;
4734 for(;;) {
4735 if (!popt->name) {
4736 fprintf(stderr, "%s: invalid option -- '%s'\n",
4737 argv[0], r);
4738 exit(1);
4739 }
4740 if (!strcmp(popt->name, r + 1))
4741 break;
4742 popt++;
4743 }
4744 if (popt->flags & HAS_ARG) {
4745 if (optind >= argc) {
4746 fprintf(stderr, "%s: option '%s' requires an argument\n",
4747 argv[0], r);
4748 exit(1);
4749 }
4750 optarg = argv[optind++];
4751 } else {
4752 optarg = NULL;
4753 }
4754
4755 switch(popt->index) {
4756 case QEMU_OPTION_M:
4757 machine = find_machine(optarg);
4758 if (!machine) {
4759 QEMUMachine *m;
4760 printf("Supported machines are:\n");
4761 for(m = first_machine; m != NULL; m = m->next) {
4762 printf("%-10s %s%s\n",
4763 m->name, m->desc,
4764 m == first_machine ? " (default)" : "");
4765 }
4766 exit(*optarg != '?');
4767 }
4768 break;
4769 case QEMU_OPTION_cpu:
4770 /* hw initialization will check this */
4771 if (*optarg == '?') {
4772 /* XXX: implement xxx_cpu_list for targets that still miss it */
4773 #if defined(cpu_list)
4774 cpu_list(stdout, &fprintf);
4775 #endif
4776 exit(0);
4777 } else {
4778 cpu_model = optarg;
4779 }
4780 break;
4781 case QEMU_OPTION_initrd:
4782 initrd_filename = optarg;
4783 break;
4784 case QEMU_OPTION_hda:
4785 if (cyls == 0)
4786 hda_index = drive_add(optarg, HD_ALIAS, 0);
4787 else
4788 hda_index = drive_add(optarg, HD_ALIAS
4789 ",cyls=%d,heads=%d,secs=%d%s",
4790 0, cyls, heads, secs,
4791 translation == BIOS_ATA_TRANSLATION_LBA ?
4792 ",trans=lba" :
4793 translation == BIOS_ATA_TRANSLATION_NONE ?
4794 ",trans=none" : "");
4795 break;
4796 case QEMU_OPTION_hdb:
4797 case QEMU_OPTION_hdc:
4798 case QEMU_OPTION_hdd:
4799 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4800 break;
4801 case QEMU_OPTION_drive:
4802 drive_add(NULL, "%s", optarg);
4803 break;
4804 case QEMU_OPTION_mtdblock:
4805 drive_add(optarg, MTD_ALIAS);
4806 break;
4807 case QEMU_OPTION_sd:
4808 drive_add(optarg, SD_ALIAS);
4809 break;
4810 case QEMU_OPTION_pflash:
4811 drive_add(optarg, PFLASH_ALIAS);
4812 break;
4813 case QEMU_OPTION_snapshot:
4814 snapshot = 1;
4815 break;
4816 case QEMU_OPTION_hdachs:
4817 {
4818 const char *p;
4819 p = optarg;
4820 cyls = strtol(p, (char **)&p, 0);
4821 if (cyls < 1 || cyls > 16383)
4822 goto chs_fail;
4823 if (*p != ',')
4824 goto chs_fail;
4825 p++;
4826 heads = strtol(p, (char **)&p, 0);
4827 if (heads < 1 || heads > 16)
4828 goto chs_fail;
4829 if (*p != ',')
4830 goto chs_fail;
4831 p++;
4832 secs = strtol(p, (char **)&p, 0);
4833 if (secs < 1 || secs > 63)
4834 goto chs_fail;
4835 if (*p == ',') {
4836 p++;
4837 if (!strcmp(p, "none"))
4838 translation = BIOS_ATA_TRANSLATION_NONE;
4839 else if (!strcmp(p, "lba"))
4840 translation = BIOS_ATA_TRANSLATION_LBA;
4841 else if (!strcmp(p, "auto"))
4842 translation = BIOS_ATA_TRANSLATION_AUTO;
4843 else
4844 goto chs_fail;
4845 } else if (*p != '\0') {
4846 chs_fail:
4847 fprintf(stderr, "qemu: invalid physical CHS format\n");
4848 exit(1);
4849 }
4850 if (hda_index != -1)
4851 snprintf(drives_opt[hda_index].opt,
4852 sizeof(drives_opt[hda_index].opt),
4853 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4854 0, cyls, heads, secs,
4855 translation == BIOS_ATA_TRANSLATION_LBA ?
4856 ",trans=lba" :
4857 translation == BIOS_ATA_TRANSLATION_NONE ?
4858 ",trans=none" : "");
4859 }
4860 break;
4861 case QEMU_OPTION_nographic:
4862 nographic = 1;
4863 break;
4864 #ifdef CONFIG_CURSES
4865 case QEMU_OPTION_curses:
4866 curses = 1;
4867 break;
4868 #endif
4869 case QEMU_OPTION_portrait:
4870 graphic_rotate = 1;
4871 break;
4872 case QEMU_OPTION_kernel:
4873 kernel_filename = optarg;
4874 break;
4875 case QEMU_OPTION_append:
4876 kernel_cmdline = optarg;
4877 break;
4878 case QEMU_OPTION_cdrom:
4879 drive_add(optarg, CDROM_ALIAS);
4880 break;
4881 case QEMU_OPTION_boot:
4882 boot_devices = optarg;
4883 /* We just do some generic consistency checks */
4884 {
4885 /* Could easily be extended to 64 devices if needed */
4886 const char *p;
4887
4888 boot_devices_bitmap = 0;
4889 for (p = boot_devices; *p != '\0'; p++) {
4890 /* Allowed boot devices are:
4891 * a b : floppy disk drives
4892 * c ... f : IDE disk drives
4893 * g ... m : machine implementation dependant drives
4894 * n ... p : network devices
4895 * It's up to each machine implementation to check
4896 * if the given boot devices match the actual hardware
4897 * implementation and firmware features.
4898 */
4899 if (*p < 'a' || *p > 'q') {
4900 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4901 exit(1);
4902 }
4903 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4904 fprintf(stderr,
4905 "Boot device '%c' was given twice\n",*p);
4906 exit(1);
4907 }
4908 boot_devices_bitmap |= 1 << (*p - 'a');
4909 }
4910 }
4911 break;
4912 case QEMU_OPTION_fda:
4913 case QEMU_OPTION_fdb:
4914 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4915 break;
4916 #ifdef TARGET_I386
4917 case QEMU_OPTION_no_fd_bootchk:
4918 fd_bootchk = 0;
4919 break;
4920 #endif
4921 case QEMU_OPTION_net:
4922 if (nb_net_clients >= MAX_NET_CLIENTS) {
4923 fprintf(stderr, "qemu: too many network clients\n");
4924 exit(1);
4925 }
4926 net_clients[nb_net_clients] = optarg;
4927 nb_net_clients++;
4928 break;
4929 #ifdef CONFIG_SLIRP
4930 case QEMU_OPTION_tftp:
4931 tftp_prefix = optarg;
4932 break;
4933 case QEMU_OPTION_bootp:
4934 bootp_filename = optarg;
4935 break;
4936 #ifndef _WIN32
4937 case QEMU_OPTION_smb:
4938 net_slirp_smb(optarg);
4939 break;
4940 #endif
4941 case QEMU_OPTION_redir:
4942 net_slirp_redir(optarg);
4943 break;
4944 #endif
4945 case QEMU_OPTION_bt:
4946 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4947 fprintf(stderr, "qemu: too many bluetooth options\n");
4948 exit(1);
4949 }
4950 bt_opts[nb_bt_opts++] = optarg;
4951 break;
4952 #ifdef HAS_AUDIO
4953 case QEMU_OPTION_audio_help:
4954 AUD_help ();
4955 exit (0);
4956 break;
4957 case QEMU_OPTION_soundhw:
4958 select_soundhw (optarg);
4959 break;
4960 #endif
4961 case QEMU_OPTION_h:
4962 help(0);
4963 break;
4964 case QEMU_OPTION_m: {
4965 uint64_t value;
4966 char *ptr;
4967
4968 value = strtoul(optarg, &ptr, 10);
4969 switch (*ptr) {
4970 case 0: case 'M': case 'm':
4971 value <<= 20;
4972 break;
4973 case 'G': case 'g':
4974 value <<= 30;
4975 break;
4976 default:
4977 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4978 exit(1);
4979 }
4980
4981 /* On 32-bit hosts, QEMU is limited by virtual address space */
4982 if (value > (2047 << 20)
4983 #ifndef USE_KQEMU
4984 && HOST_LONG_BITS == 32
4985 #endif
4986 ) {
4987 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4988 exit(1);
4989 }
4990 if (value != (uint64_t)(ram_addr_t)value) {
4991 fprintf(stderr, "qemu: ram size too large\n");
4992 exit(1);
4993 }
4994 ram_size = value;
4995 break;
4996 }
4997 case QEMU_OPTION_d:
4998 {
4999 int mask;
5000 const CPULogItem *item;
5001
5002 mask = cpu_str_to_log_mask(optarg);
5003 if (!mask) {
5004 printf("Log items (comma separated):\n");
5005 for(item = cpu_log_items; item->mask != 0; item++) {
5006 printf("%-10s %s\n", item->name, item->help);
5007 }
5008 exit(1);
5009 }
5010 cpu_set_log(mask);
5011 }
5012 break;
5013 #ifdef CONFIG_GDBSTUB
5014 case QEMU_OPTION_s:
5015 use_gdbstub = 1;
5016 break;
5017 case QEMU_OPTION_p:
5018 gdbstub_port = optarg;
5019 break;
5020 #endif
5021 case QEMU_OPTION_L:
5022 bios_dir = optarg;
5023 break;
5024 case QEMU_OPTION_bios:
5025 bios_name = optarg;
5026 break;
5027 case QEMU_OPTION_S:
5028 autostart = 0;
5029 break;
5030 case QEMU_OPTION_k:
5031 keyboard_layout = optarg;
5032 break;
5033 case QEMU_OPTION_localtime:
5034 rtc_utc = 0;
5035 break;
5036 case QEMU_OPTION_vga:
5037 select_vgahw (optarg);
5038 break;
5039 case QEMU_OPTION_g:
5040 {
5041 const char *p;
5042 int w, h, depth;
5043 p = optarg;
5044 w = strtol(p, (char **)&p, 10);
5045 if (w <= 0) {
5046 graphic_error:
5047 fprintf(stderr, "qemu: invalid resolution or depth\n");
5048 exit(1);
5049 }
5050 if (*p != 'x')
5051 goto graphic_error;
5052 p++;
5053 h = strtol(p, (char **)&p, 10);
5054 if (h <= 0)
5055 goto graphic_error;
5056 if (*p == 'x') {
5057 p++;
5058 depth = strtol(p, (char **)&p, 10);
5059 if (depth != 8 && depth != 15 && depth != 16 &&
5060 depth != 24 && depth != 32)
5061 goto graphic_error;
5062 } else if (*p == '\0') {
5063 depth = graphic_depth;
5064 } else {
5065 goto graphic_error;
5066 }
5067
5068 graphic_width = w;
5069 graphic_height = h;
5070 graphic_depth = depth;
5071 }
5072 break;
5073 case QEMU_OPTION_echr:
5074 {
5075 char *r;
5076 term_escape_char = strtol(optarg, &r, 0);
5077 if (r == optarg)
5078 printf("Bad argument to echr\n");
5079 break;
5080 }
5081 case QEMU_OPTION_monitor:
5082 monitor_device = optarg;
5083 break;
5084 case QEMU_OPTION_serial:
5085 if (serial_device_index >= MAX_SERIAL_PORTS) {
5086 fprintf(stderr, "qemu: too many serial ports\n");
5087 exit(1);
5088 }
5089 serial_devices[serial_device_index] = optarg;
5090 serial_device_index++;
5091 break;
5092 case QEMU_OPTION_virtiocon:
5093 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5094 fprintf(stderr, "qemu: too many virtio consoles\n");
5095 exit(1);
5096 }
5097 virtio_consoles[virtio_console_index] = optarg;
5098 virtio_console_index++;
5099 break;
5100 case QEMU_OPTION_parallel:
5101 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5102 fprintf(stderr, "qemu: too many parallel ports\n");
5103 exit(1);
5104 }
5105 parallel_devices[parallel_device_index] = optarg;
5106 parallel_device_index++;
5107 break;
5108 case QEMU_OPTION_loadvm:
5109 loadvm = optarg;
5110 break;
5111 case QEMU_OPTION_full_screen:
5112 full_screen = 1;
5113 break;
5114 #ifdef CONFIG_SDL
5115 case QEMU_OPTION_no_frame:
5116 no_frame = 1;
5117 break;
5118 case QEMU_OPTION_alt_grab:
5119 alt_grab = 1;
5120 break;
5121 case QEMU_OPTION_no_quit:
5122 no_quit = 1;
5123 break;
5124 case QEMU_OPTION_sdl:
5125 sdl = 1;
5126 break;
5127 #endif
5128 case QEMU_OPTION_pidfile:
5129 pid_file = optarg;
5130 break;
5131 #ifdef TARGET_I386
5132 case QEMU_OPTION_win2k_hack:
5133 win2k_install_hack = 1;
5134 break;
5135 case QEMU_OPTION_rtc_td_hack:
5136 rtc_td_hack = 1;
5137 break;
5138 case QEMU_OPTION_acpitable:
5139 if(acpi_table_add(optarg) < 0) {
5140 fprintf(stderr, "Wrong acpi table provided\n");
5141 exit(1);
5142 }
5143 break;
5144 #endif
5145 #ifdef USE_KQEMU
5146 case QEMU_OPTION_no_kqemu:
5147 kqemu_allowed = 0;
5148 break;
5149 case QEMU_OPTION_kernel_kqemu:
5150 kqemu_allowed = 2;
5151 break;
5152 #endif
5153 #ifdef CONFIG_KVM
5154 case QEMU_OPTION_enable_kvm:
5155 kvm_allowed = 1;
5156 #ifdef USE_KQEMU
5157 kqemu_allowed = 0;
5158 #endif
5159 break;
5160 #endif
5161 case QEMU_OPTION_usb:
5162 usb_enabled = 1;
5163 break;
5164 case QEMU_OPTION_usbdevice:
5165 usb_enabled = 1;
5166 if (usb_devices_index >= MAX_USB_CMDLINE) {
5167 fprintf(stderr, "Too many USB devices\n");
5168 exit(1);
5169 }
5170 usb_devices[usb_devices_index] = optarg;
5171 usb_devices_index++;
5172 break;
5173 case QEMU_OPTION_smp:
5174 smp_cpus = atoi(optarg);
5175 if (smp_cpus < 1) {
5176 fprintf(stderr, "Invalid number of CPUs\n");
5177 exit(1);
5178 }
5179 break;
5180 case QEMU_OPTION_vnc:
5181 vnc_display = optarg;
5182 break;
5183 case QEMU_OPTION_no_acpi:
5184 acpi_enabled = 0;
5185 break;
5186 case QEMU_OPTION_no_hpet:
5187 no_hpet = 1;
5188 break;
5189 case QEMU_OPTION_no_reboot:
5190 no_reboot = 1;
5191 break;
5192 case QEMU_OPTION_no_shutdown:
5193 no_shutdown = 1;
5194 break;
5195 case QEMU_OPTION_show_cursor:
5196 cursor_hide = 0;
5197 break;
5198 case QEMU_OPTION_uuid:
5199 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5200 fprintf(stderr, "Fail to parse UUID string."
5201 " Wrong format.\n");
5202 exit(1);
5203 }
5204 break;
5205 case QEMU_OPTION_daemonize:
5206 daemonize = 1;
5207 break;
5208 case QEMU_OPTION_option_rom:
5209 if (nb_option_roms >= MAX_OPTION_ROMS) {
5210 fprintf(stderr, "Too many option ROMs\n");
5211 exit(1);
5212 }
5213 option_rom[nb_option_roms] = optarg;
5214 nb_option_roms++;
5215 break;
5216 case QEMU_OPTION_semihosting:
5217 semihosting_enabled = 1;
5218 break;
5219 case QEMU_OPTION_name:
5220 qemu_name = optarg;
5221 break;
5222 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5223 case QEMU_OPTION_prom_env:
5224 if (nb_prom_envs >= MAX_PROM_ENVS) {
5225 fprintf(stderr, "Too many prom variables\n");
5226 exit(1);
5227 }
5228 prom_envs[nb_prom_envs] = optarg;
5229 nb_prom_envs++;
5230 break;
5231 #endif
5232 #ifdef TARGET_ARM
5233 case QEMU_OPTION_old_param:
5234 old_param = 1;
5235 break;
5236 #endif
5237 case QEMU_OPTION_clock:
5238 configure_alarms(optarg);
5239 break;
5240 case QEMU_OPTION_startdate:
5241 {
5242 struct tm tm;
5243 time_t rtc_start_date;
5244 if (!strcmp(optarg, "now")) {
5245 rtc_date_offset = -1;
5246 } else {
5247 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5248 &tm.tm_year,
5249 &tm.tm_mon,
5250 &tm.tm_mday,
5251 &tm.tm_hour,
5252 &tm.tm_min,
5253 &tm.tm_sec) == 6) {
5254 /* OK */
5255 } else if (sscanf(optarg, "%d-%d-%d",
5256 &tm.tm_year,
5257 &tm.tm_mon,
5258 &tm.tm_mday) == 3) {
5259 tm.tm_hour = 0;
5260 tm.tm_min = 0;
5261 tm.tm_sec = 0;
5262 } else {
5263 goto date_fail;
5264 }
5265 tm.tm_year -= 1900;
5266 tm.tm_mon--;
5267 rtc_start_date = mktimegm(&tm);
5268 if (rtc_start_date == -1) {
5269 date_fail:
5270 fprintf(stderr, "Invalid date format. Valid format are:\n"
5271 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5272 exit(1);
5273 }
5274 rtc_date_offset = time(NULL) - rtc_start_date;
5275 }
5276 }
5277 break;
5278 case QEMU_OPTION_tb_size:
5279 tb_size = strtol(optarg, NULL, 0);
5280 if (tb_size < 0)
5281 tb_size = 0;
5282 break;
5283 case QEMU_OPTION_icount:
5284 use_icount = 1;
5285 if (strcmp(optarg, "auto") == 0) {
5286 icount_time_shift = -1;
5287 } else {
5288 icount_time_shift = strtol(optarg, NULL, 0);
5289 }
5290 break;
5291 case QEMU_OPTION_incoming:
5292 incoming = optarg;
5293 break;
5294 case QEMU_OPTION_chroot:
5295 chroot_dir = optarg;
5296 break;
5297 case QEMU_OPTION_runas:
5298 run_as = optarg;
5299 break;
5300 }
5301 }
5302 }
5303
5304 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5305 if (kvm_allowed && kqemu_allowed) {
5306 fprintf(stderr,
5307 "You can not enable both KVM and kqemu at the same time\n");
5308 exit(1);
5309 }
5310 #endif
5311
5312 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5313 if (smp_cpus > machine->max_cpus) {
5314 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5315 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5316 machine->max_cpus);
5317 exit(1);
5318 }
5319
5320 if (nographic) {
5321 if (serial_device_index == 0)
5322 serial_devices[0] = "stdio";
5323 if (parallel_device_index == 0)
5324 parallel_devices[0] = "null";
5325 if (strncmp(monitor_device, "vc", 2) == 0)
5326 monitor_device = "stdio";
5327 }
5328
5329 #ifndef _WIN32
5330 if (daemonize) {
5331 pid_t pid;
5332
5333 if (pipe(fds) == -1)
5334 exit(1);
5335
5336 pid = fork();
5337 if (pid > 0) {
5338 uint8_t status;
5339 ssize_t len;
5340
5341 close(fds[1]);
5342
5343 again:
5344 len = read(fds[0], &status, 1);
5345 if (len == -1 && (errno == EINTR))
5346 goto again;
5347
5348 if (len != 1)
5349 exit(1);
5350 else if (status == 1) {
5351 fprintf(stderr, "Could not acquire pidfile\n");
5352 exit(1);
5353 } else
5354 exit(0);
5355 } else if (pid < 0)
5356 exit(1);
5357
5358 setsid();
5359
5360 pid = fork();
5361 if (pid > 0)
5362 exit(0);
5363 else if (pid < 0)
5364 exit(1);
5365
5366 umask(027);
5367
5368 signal(SIGTSTP, SIG_IGN);
5369 signal(SIGTTOU, SIG_IGN);
5370 signal(SIGTTIN, SIG_IGN);
5371 }
5372 #endif
5373
5374 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5375 if (daemonize) {
5376 uint8_t status = 1;
5377 write(fds[1], &status, 1);
5378 } else
5379 fprintf(stderr, "Could not acquire pid file\n");
5380 exit(1);
5381 }
5382
5383 #ifdef USE_KQEMU
5384 if (smp_cpus > 1)
5385 kqemu_allowed = 0;
5386 #endif
5387 linux_boot = (kernel_filename != NULL);
5388 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5389
5390 if (!linux_boot && net_boot == 0 &&
5391 !machine->nodisk_ok && nb_drives_opt == 0)
5392 help(1);
5393
5394 if (!linux_boot && *kernel_cmdline != '\0') {
5395 fprintf(stderr, "-append only allowed with -kernel option\n");
5396 exit(1);
5397 }
5398
5399 if (!linux_boot && initrd_filename != NULL) {
5400 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5401 exit(1);
5402 }
5403
5404 /* boot to floppy or the default cd if no hard disk defined yet */
5405 if (!boot_devices[0]) {
5406 boot_devices = "cad";
5407 }
5408 setvbuf(stdout, NULL, _IOLBF, 0);
5409
5410 init_timers();
5411 if (init_timer_alarm() < 0) {
5412 fprintf(stderr, "could not initialize alarm timer\n");
5413 exit(1);
5414 }
5415 if (use_icount && icount_time_shift < 0) {
5416 use_icount = 2;
5417 /* 125MIPS seems a reasonable initial guess at the guest speed.
5418 It will be corrected fairly quickly anyway. */
5419 icount_time_shift = 3;
5420 init_icount_adjust();
5421 }
5422
5423 #ifdef _WIN32
5424 socket_init();
5425 #endif
5426
5427 /* init network clients */
5428 if (nb_net_clients == 0) {
5429 /* if no clients, we use a default config */
5430 net_clients[nb_net_clients++] = "nic";
5431 #ifdef CONFIG_SLIRP
5432 net_clients[nb_net_clients++] = "user";
5433 #endif
5434 }
5435
5436 for(i = 0;i < nb_net_clients; i++) {
5437 if (net_client_parse(net_clients[i]) < 0)
5438 exit(1);
5439 }
5440 net_client_check();
5441
5442 #ifdef TARGET_I386
5443 /* XXX: this should be moved in the PC machine instantiation code */
5444 if (net_boot != 0) {
5445 int netroms = 0;
5446 for (i = 0; i < nb_nics && i < 4; i++) {
5447 const char *model = nd_table[i].model;
5448 char buf[1024];
5449 if (net_boot & (1 << i)) {
5450 if (model == NULL)
5451 model = "ne2k_pci";
5452 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5453 if (get_image_size(buf) > 0) {
5454 if (nb_option_roms >= MAX_OPTION_ROMS) {
5455 fprintf(stderr, "Too many option ROMs\n");
5456 exit(1);
5457 }
5458 option_rom[nb_option_roms] = strdup(buf);
5459 nb_option_roms++;
5460 netroms++;
5461 }
5462 }
5463 }
5464 if (netroms == 0) {
5465 fprintf(stderr, "No valid PXE rom found for network device\n");
5466 exit(1);
5467 }
5468 }
5469 #endif
5470
5471 /* init the bluetooth world */
5472 for (i = 0; i < nb_bt_opts; i++)
5473 if (bt_parse(bt_opts[i]))
5474 exit(1);
5475
5476 /* init the memory */
5477 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5478
5479 if (machine->ram_require & RAMSIZE_FIXED) {
5480 if (ram_size > 0) {
5481 if (ram_size < phys_ram_size) {
5482 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5483 machine->name, (unsigned long long) phys_ram_size);
5484 exit(-1);
5485 }
5486
5487 phys_ram_size = ram_size;
5488 } else
5489 ram_size = phys_ram_size;
5490 } else {
5491 if (ram_size == 0)
5492 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5493
5494 phys_ram_size += ram_size;
5495 }
5496
5497 phys_ram_base = qemu_vmalloc(phys_ram_size);
5498 if (!phys_ram_base) {
5499 fprintf(stderr, "Could not allocate physical memory\n");
5500 exit(1);
5501 }
5502
5503 /* init the dynamic translator */
5504 cpu_exec_init_all(tb_size * 1024 * 1024);
5505
5506 bdrv_init();
5507
5508 /* we always create the cdrom drive, even if no disk is there */
5509
5510 if (nb_drives_opt < MAX_DRIVES)
5511 drive_add(NULL, CDROM_ALIAS);
5512
5513 /* we always create at least one floppy */
5514
5515 if (nb_drives_opt < MAX_DRIVES)
5516 drive_add(NULL, FD_ALIAS, 0);
5517
5518 /* we always create one sd slot, even if no card is in it */
5519
5520 if (nb_drives_opt < MAX_DRIVES)
5521 drive_add(NULL, SD_ALIAS);
5522
5523 /* open the virtual block devices */
5524
5525 for(i = 0; i < nb_drives_opt; i++)
5526 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5527 exit(1);
5528
5529 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5530 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5531
5532 #ifndef _WIN32
5533 /* must be after terminal init, SDL library changes signal handlers */
5534 termsig_setup();
5535 #endif
5536
5537 /* Maintain compatibility with multiple stdio monitors */
5538 if (!strcmp(monitor_device,"stdio")) {
5539 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5540 const char *devname = serial_devices[i];
5541 if (devname && !strcmp(devname,"mon:stdio")) {
5542 monitor_device = NULL;
5543 break;
5544 } else if (devname && !strcmp(devname,"stdio")) {
5545 monitor_device = NULL;
5546 serial_devices[i] = "mon:stdio";
5547 break;
5548 }
5549 }
5550 }
5551
5552 if (kvm_enabled()) {
5553 int ret;
5554
5555 ret = kvm_init(smp_cpus);
5556 if (ret < 0) {
5557 fprintf(stderr, "failed to initialize KVM\n");
5558 exit(1);
5559 }
5560 }
5561
5562 if (monitor_device) {
5563 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5564 if (!monitor_hd) {
5565 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5566 exit(1);
5567 }
5568 }
5569
5570 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5571 const char *devname = serial_devices[i];
5572 if (devname && strcmp(devname, "none")) {
5573 char label[32];
5574 snprintf(label, sizeof(label), "serial%d", i);
5575 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5576 if (!serial_hds[i]) {
5577 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5578 devname);
5579 exit(1);
5580 }
5581 }
5582 }
5583
5584 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5585 const char *devname = parallel_devices[i];
5586 if (devname && strcmp(devname, "none")) {
5587 char label[32];
5588 snprintf(label, sizeof(label), "parallel%d", i);
5589 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5590 if (!parallel_hds[i]) {
5591 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5592 devname);
5593 exit(1);
5594 }
5595 }
5596 }
5597
5598 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5599 const char *devname = virtio_consoles[i];
5600 if (devname && strcmp(devname, "none")) {
5601 char label[32];
5602 snprintf(label, sizeof(label), "virtcon%d", i);
5603 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5604 if (!virtcon_hds[i]) {
5605 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5606 devname);
5607 exit(1);
5608 }
5609 }
5610 }
5611
5612 machine->init(ram_size, vga_ram_size, boot_devices,
5613 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5614
5615 current_machine = machine;
5616
5617 /* Set KVM's vcpu state to qemu's initial CPUState. */
5618 if (kvm_enabled()) {
5619 int ret;
5620
5621 ret = kvm_sync_vcpus();
5622 if (ret < 0) {
5623 fprintf(stderr, "failed to initialize vcpus\n");
5624 exit(1);
5625 }
5626 }
5627
5628 /* init USB devices */
5629 if (usb_enabled) {
5630 for(i = 0; i < usb_devices_index; i++) {
5631 if (usb_device_add(usb_devices[i], 0) < 0) {
5632 fprintf(stderr, "Warning: could not add USB device %s\n",
5633 usb_devices[i]);
5634 }
5635 }
5636 }
5637
5638 if (!display_state)
5639 dumb_display_init();
5640 /* just use the first displaystate for the moment */
5641 ds = display_state;
5642 /* terminal init */
5643 if (nographic) {
5644 if (curses) {
5645 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5646 exit(1);
5647 }
5648 } else {
5649 #if defined(CONFIG_CURSES)
5650 if (curses) {
5651 /* At the moment curses cannot be used with other displays */
5652 curses_display_init(ds, full_screen);
5653 } else
5654 #endif
5655 {
5656 if (vnc_display != NULL) {
5657 vnc_display_init(ds);
5658 if (vnc_display_open(ds, vnc_display) < 0)
5659 exit(1);
5660 }
5661 #if defined(CONFIG_SDL)
5662 if (sdl || !vnc_display)
5663 sdl_display_init(ds, full_screen, no_frame);
5664 #elif defined(CONFIG_COCOA)
5665 if (sdl || !vnc_display)
5666 cocoa_display_init(ds, full_screen);
5667 #endif
5668 }
5669 }
5670 dpy_resize(ds);
5671
5672 dcl = ds->listeners;
5673 while (dcl != NULL) {
5674 if (dcl->dpy_refresh != NULL) {
5675 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5676 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5677 }
5678 dcl = dcl->next;
5679 }
5680
5681 if (nographic || (vnc_display && !sdl)) {
5682 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5683 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5684 }
5685
5686 text_consoles_set_display(display_state);
5687 qemu_chr_initial_reset();
5688
5689 if (monitor_device && monitor_hd)
5690 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5691
5692 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5693 const char *devname = serial_devices[i];
5694 if (devname && strcmp(devname, "none")) {
5695 char label[32];
5696 snprintf(label, sizeof(label), "serial%d", i);
5697 if (strstart(devname, "vc", 0))
5698 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5699 }
5700 }
5701
5702 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5703 const char *devname = parallel_devices[i];
5704 if (devname && strcmp(devname, "none")) {
5705 char label[32];
5706 snprintf(label, sizeof(label), "parallel%d", i);
5707 if (strstart(devname, "vc", 0))
5708 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5709 }
5710 }
5711
5712 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5713 const char *devname = virtio_consoles[i];
5714 if (virtcon_hds[i] && devname) {
5715 char label[32];
5716 snprintf(label, sizeof(label), "virtcon%d", i);
5717 if (strstart(devname, "vc", 0))
5718 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5719 }
5720 }
5721
5722 #ifdef CONFIG_GDBSTUB
5723 if (use_gdbstub) {
5724 /* XXX: use standard host:port notation and modify options
5725 accordingly. */
5726 if (gdbserver_start(gdbstub_port) < 0) {
5727 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5728 gdbstub_port);
5729 exit(1);
5730 }
5731 }
5732 #endif
5733
5734 if (loadvm)
5735 do_loadvm(cur_mon, loadvm);
5736
5737 if (incoming) {
5738 autostart = 0; /* fixme how to deal with -daemonize */
5739 qemu_start_incoming_migration(incoming);
5740 }
5741
5742 if (autostart)
5743 vm_start();
5744
5745 if (daemonize) {
5746 uint8_t status = 0;
5747 ssize_t len;
5748
5749 again1:
5750 len = write(fds[1], &status, 1);
5751 if (len == -1 && (errno == EINTR))
5752 goto again1;
5753
5754 if (len != 1)
5755 exit(1);
5756
5757 chdir("/");
5758 TFR(fd = open("/dev/null", O_RDWR));
5759 if (fd == -1)
5760 exit(1);
5761 }
5762
5763 #ifndef _WIN32
5764 if (run_as) {
5765 pwd = getpwnam(run_as);
5766 if (!pwd) {
5767 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5768 exit(1);
5769 }
5770 }
5771
5772 if (chroot_dir) {
5773 if (chroot(chroot_dir) < 0) {
5774 fprintf(stderr, "chroot failed\n");
5775 exit(1);
5776 }
5777 chdir("/");
5778 }
5779
5780 if (run_as) {
5781 if (setgid(pwd->pw_gid) < 0) {
5782 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5783 exit(1);
5784 }
5785 if (setuid(pwd->pw_uid) < 0) {
5786 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5787 exit(1);
5788 }
5789 if (setuid(0) != -1) {
5790 fprintf(stderr, "Dropping privileges failed\n");
5791 exit(1);
5792 }
5793 }
5794 #endif
5795
5796 if (daemonize) {
5797 dup2(fd, 0);
5798 dup2(fd, 1);
5799 dup2(fd, 2);
5800
5801 close(fd);
5802 }
5803
5804 main_loop();
5805 quit_timers();
5806 net_cleanup();
5807
5808 return 0;
5809 }