]> git.proxmox.com Git - qemu.git/blob - vl.c
Use WIN32_LEAN_AND_MEAN, by Stefan Weil.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/fdc.h"
30 #include "hw/audiodev.h"
31 #include "hw/isa.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
48
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
76
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
81
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
104
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
108
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <mmsystem.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
116
117 #include "qemu_socket.h"
118
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
124
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
129
130 #include "disas.h"
131
132 #include "exec-all.h"
133
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
141
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
144
145 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146
147 #ifdef TARGET_PPC
148 #define DEFAULT_RAM_SIZE 144
149 #else
150 #define DEFAULT_RAM_SIZE 128
151 #endif
152 /* in ms */
153 #define GUI_REFRESH_INTERVAL 30
154
155 /* Max number of USB devices that can be specified on the commandline. */
156 #define MAX_USB_CMDLINE 8
157
158 /* XXX: use a two level table to limit memory usage */
159 #define MAX_IOPORTS 65536
160
161 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162 const char *bios_name = NULL;
163 void *ioport_opaque[MAX_IOPORTS];
164 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167 to store the VM snapshots */
168 DriveInfo drives_table[MAX_DRIVES+1];
169 int nb_drives;
170 /* point to the block driver where the snapshots are managed */
171 BlockDriverState *bs_snapshots;
172 int vga_ram_size;
173 static DisplayState display_state;
174 int nographic;
175 const char* keyboard_layout = NULL;
176 int64_t ticks_per_sec;
177 int ram_size;
178 int pit_min_timer_count = 0;
179 int nb_nics;
180 NICInfo nd_table[MAX_NICS];
181 int vm_running;
182 int rtc_utc = 1;
183 int rtc_start_date = -1; /* -1 means now */
184 int cirrus_vga_enabled = 1;
185 int vmsvga_enabled = 0;
186 #ifdef TARGET_SPARC
187 int graphic_width = 1024;
188 int graphic_height = 768;
189 int graphic_depth = 8;
190 #else
191 int graphic_width = 800;
192 int graphic_height = 600;
193 int graphic_depth = 15;
194 #endif
195 int full_screen = 0;
196 int no_frame = 0;
197 int no_quit = 0;
198 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
199 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
200 #ifdef TARGET_I386
201 int win2k_install_hack = 0;
202 #endif
203 int usb_enabled = 0;
204 static VLANState *first_vlan;
205 int smp_cpus = 1;
206 const char *vnc_display;
207 #if defined(TARGET_SPARC)
208 #define MAX_CPUS 16
209 #elif defined(TARGET_I386)
210 #define MAX_CPUS 255
211 #else
212 #define MAX_CPUS 1
213 #endif
214 int acpi_enabled = 1;
215 int fd_bootchk = 1;
216 int no_reboot = 0;
217 int cursor_hide = 1;
218 int graphic_rotate = 0;
219 int daemonize = 0;
220 const char *option_rom[MAX_OPTION_ROMS];
221 int nb_option_roms;
222 int semihosting_enabled = 0;
223 int autostart = 1;
224 #ifdef TARGET_ARM
225 int old_param = 0;
226 #endif
227 const char *qemu_name;
228 int alt_grab = 0;
229 #ifdef TARGET_SPARC
230 unsigned int nb_prom_envs = 0;
231 const char *prom_envs[MAX_PROM_ENVS];
232 #endif
233 int nb_drives_opt;
234 char drives_opt[MAX_DRIVES][1024];
235
236 static CPUState *cur_cpu;
237 static CPUState *next_cpu;
238 static int event_pending = 1;
239
240 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
241
242 /***********************************************************/
243 /* x86 ISA bus support */
244
245 target_phys_addr_t isa_mem_base = 0;
246 PicState2 *isa_pic;
247
248 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
249 {
250 #ifdef DEBUG_UNUSED_IOPORT
251 fprintf(stderr, "unused inb: port=0x%04x\n", address);
252 #endif
253 return 0xff;
254 }
255
256 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
257 {
258 #ifdef DEBUG_UNUSED_IOPORT
259 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
260 #endif
261 }
262
263 /* default is to make two byte accesses */
264 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
265 {
266 uint32_t data;
267 data = ioport_read_table[0][address](ioport_opaque[address], address);
268 address = (address + 1) & (MAX_IOPORTS - 1);
269 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
270 return data;
271 }
272
273 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
274 {
275 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
276 address = (address + 1) & (MAX_IOPORTS - 1);
277 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
278 }
279
280 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
281 {
282 #ifdef DEBUG_UNUSED_IOPORT
283 fprintf(stderr, "unused inl: port=0x%04x\n", address);
284 #endif
285 return 0xffffffff;
286 }
287
288 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
289 {
290 #ifdef DEBUG_UNUSED_IOPORT
291 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
292 #endif
293 }
294
295 static void init_ioports(void)
296 {
297 int i;
298
299 for(i = 0; i < MAX_IOPORTS; i++) {
300 ioport_read_table[0][i] = default_ioport_readb;
301 ioport_write_table[0][i] = default_ioport_writeb;
302 ioport_read_table[1][i] = default_ioport_readw;
303 ioport_write_table[1][i] = default_ioport_writew;
304 ioport_read_table[2][i] = default_ioport_readl;
305 ioport_write_table[2][i] = default_ioport_writel;
306 }
307 }
308
309 /* size is the word size in byte */
310 int register_ioport_read(int start, int length, int size,
311 IOPortReadFunc *func, void *opaque)
312 {
313 int i, bsize;
314
315 if (size == 1) {
316 bsize = 0;
317 } else if (size == 2) {
318 bsize = 1;
319 } else if (size == 4) {
320 bsize = 2;
321 } else {
322 hw_error("register_ioport_read: invalid size");
323 return -1;
324 }
325 for(i = start; i < start + length; i += size) {
326 ioport_read_table[bsize][i] = func;
327 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
328 hw_error("register_ioport_read: invalid opaque");
329 ioport_opaque[i] = opaque;
330 }
331 return 0;
332 }
333
334 /* size is the word size in byte */
335 int register_ioport_write(int start, int length, int size,
336 IOPortWriteFunc *func, void *opaque)
337 {
338 int i, bsize;
339
340 if (size == 1) {
341 bsize = 0;
342 } else if (size == 2) {
343 bsize = 1;
344 } else if (size == 4) {
345 bsize = 2;
346 } else {
347 hw_error("register_ioport_write: invalid size");
348 return -1;
349 }
350 for(i = start; i < start + length; i += size) {
351 ioport_write_table[bsize][i] = func;
352 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
353 hw_error("register_ioport_write: invalid opaque");
354 ioport_opaque[i] = opaque;
355 }
356 return 0;
357 }
358
359 void isa_unassign_ioport(int start, int length)
360 {
361 int i;
362
363 for(i = start; i < start + length; i++) {
364 ioport_read_table[0][i] = default_ioport_readb;
365 ioport_read_table[1][i] = default_ioport_readw;
366 ioport_read_table[2][i] = default_ioport_readl;
367
368 ioport_write_table[0][i] = default_ioport_writeb;
369 ioport_write_table[1][i] = default_ioport_writew;
370 ioport_write_table[2][i] = default_ioport_writel;
371 }
372 }
373
374 /***********************************************************/
375
376 void cpu_outb(CPUState *env, int addr, int val)
377 {
378 #ifdef DEBUG_IOPORT
379 if (loglevel & CPU_LOG_IOPORT)
380 fprintf(logfile, "outb: %04x %02x\n", addr, val);
381 #endif
382 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
383 #ifdef USE_KQEMU
384 if (env)
385 env->last_io_time = cpu_get_time_fast();
386 #endif
387 }
388
389 void cpu_outw(CPUState *env, int addr, int val)
390 {
391 #ifdef DEBUG_IOPORT
392 if (loglevel & CPU_LOG_IOPORT)
393 fprintf(logfile, "outw: %04x %04x\n", addr, val);
394 #endif
395 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
396 #ifdef USE_KQEMU
397 if (env)
398 env->last_io_time = cpu_get_time_fast();
399 #endif
400 }
401
402 void cpu_outl(CPUState *env, int addr, int val)
403 {
404 #ifdef DEBUG_IOPORT
405 if (loglevel & CPU_LOG_IOPORT)
406 fprintf(logfile, "outl: %04x %08x\n", addr, val);
407 #endif
408 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
409 #ifdef USE_KQEMU
410 if (env)
411 env->last_io_time = cpu_get_time_fast();
412 #endif
413 }
414
415 int cpu_inb(CPUState *env, int addr)
416 {
417 int val;
418 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
419 #ifdef DEBUG_IOPORT
420 if (loglevel & CPU_LOG_IOPORT)
421 fprintf(logfile, "inb : %04x %02x\n", addr, val);
422 #endif
423 #ifdef USE_KQEMU
424 if (env)
425 env->last_io_time = cpu_get_time_fast();
426 #endif
427 return val;
428 }
429
430 int cpu_inw(CPUState *env, int addr)
431 {
432 int val;
433 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
434 #ifdef DEBUG_IOPORT
435 if (loglevel & CPU_LOG_IOPORT)
436 fprintf(logfile, "inw : %04x %04x\n", addr, val);
437 #endif
438 #ifdef USE_KQEMU
439 if (env)
440 env->last_io_time = cpu_get_time_fast();
441 #endif
442 return val;
443 }
444
445 int cpu_inl(CPUState *env, int addr)
446 {
447 int val;
448 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
449 #ifdef DEBUG_IOPORT
450 if (loglevel & CPU_LOG_IOPORT)
451 fprintf(logfile, "inl : %04x %08x\n", addr, val);
452 #endif
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 return val;
458 }
459
460 /***********************************************************/
461 void hw_error(const char *fmt, ...)
462 {
463 va_list ap;
464 CPUState *env;
465
466 va_start(ap, fmt);
467 fprintf(stderr, "qemu: hardware error: ");
468 vfprintf(stderr, fmt, ap);
469 fprintf(stderr, "\n");
470 for(env = first_cpu; env != NULL; env = env->next_cpu) {
471 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
472 #ifdef TARGET_I386
473 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
474 #else
475 cpu_dump_state(env, stderr, fprintf, 0);
476 #endif
477 }
478 va_end(ap);
479 abort();
480 }
481
482 /***********************************************************/
483 /* keyboard/mouse */
484
485 static QEMUPutKBDEvent *qemu_put_kbd_event;
486 static void *qemu_put_kbd_event_opaque;
487 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
488 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
489
490 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
491 {
492 qemu_put_kbd_event_opaque = opaque;
493 qemu_put_kbd_event = func;
494 }
495
496 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
497 void *opaque, int absolute,
498 const char *name)
499 {
500 QEMUPutMouseEntry *s, *cursor;
501
502 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
503 if (!s)
504 return NULL;
505
506 s->qemu_put_mouse_event = func;
507 s->qemu_put_mouse_event_opaque = opaque;
508 s->qemu_put_mouse_event_absolute = absolute;
509 s->qemu_put_mouse_event_name = qemu_strdup(name);
510 s->next = NULL;
511
512 if (!qemu_put_mouse_event_head) {
513 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
514 return s;
515 }
516
517 cursor = qemu_put_mouse_event_head;
518 while (cursor->next != NULL)
519 cursor = cursor->next;
520
521 cursor->next = s;
522 qemu_put_mouse_event_current = s;
523
524 return s;
525 }
526
527 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
528 {
529 QEMUPutMouseEntry *prev = NULL, *cursor;
530
531 if (!qemu_put_mouse_event_head || entry == NULL)
532 return;
533
534 cursor = qemu_put_mouse_event_head;
535 while (cursor != NULL && cursor != entry) {
536 prev = cursor;
537 cursor = cursor->next;
538 }
539
540 if (cursor == NULL) // does not exist or list empty
541 return;
542 else if (prev == NULL) { // entry is head
543 qemu_put_mouse_event_head = cursor->next;
544 if (qemu_put_mouse_event_current == entry)
545 qemu_put_mouse_event_current = cursor->next;
546 qemu_free(entry->qemu_put_mouse_event_name);
547 qemu_free(entry);
548 return;
549 }
550
551 prev->next = entry->next;
552
553 if (qemu_put_mouse_event_current == entry)
554 qemu_put_mouse_event_current = prev;
555
556 qemu_free(entry->qemu_put_mouse_event_name);
557 qemu_free(entry);
558 }
559
560 void kbd_put_keycode(int keycode)
561 {
562 if (qemu_put_kbd_event) {
563 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
564 }
565 }
566
567 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
568 {
569 QEMUPutMouseEvent *mouse_event;
570 void *mouse_event_opaque;
571 int width;
572
573 if (!qemu_put_mouse_event_current) {
574 return;
575 }
576
577 mouse_event =
578 qemu_put_mouse_event_current->qemu_put_mouse_event;
579 mouse_event_opaque =
580 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
581
582 if (mouse_event) {
583 if (graphic_rotate) {
584 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
585 width = 0x7fff;
586 else
587 width = graphic_width;
588 mouse_event(mouse_event_opaque,
589 width - dy, dx, dz, buttons_state);
590 } else
591 mouse_event(mouse_event_opaque,
592 dx, dy, dz, buttons_state);
593 }
594 }
595
596 int kbd_mouse_is_absolute(void)
597 {
598 if (!qemu_put_mouse_event_current)
599 return 0;
600
601 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
602 }
603
604 void do_info_mice(void)
605 {
606 QEMUPutMouseEntry *cursor;
607 int index = 0;
608
609 if (!qemu_put_mouse_event_head) {
610 term_printf("No mouse devices connected\n");
611 return;
612 }
613
614 term_printf("Mouse devices available:\n");
615 cursor = qemu_put_mouse_event_head;
616 while (cursor != NULL) {
617 term_printf("%c Mouse #%d: %s\n",
618 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
619 index, cursor->qemu_put_mouse_event_name);
620 index++;
621 cursor = cursor->next;
622 }
623 }
624
625 void do_mouse_set(int index)
626 {
627 QEMUPutMouseEntry *cursor;
628 int i = 0;
629
630 if (!qemu_put_mouse_event_head) {
631 term_printf("No mouse devices connected\n");
632 return;
633 }
634
635 cursor = qemu_put_mouse_event_head;
636 while (cursor != NULL && index != i) {
637 i++;
638 cursor = cursor->next;
639 }
640
641 if (cursor != NULL)
642 qemu_put_mouse_event_current = cursor;
643 else
644 term_printf("Mouse at given index not found\n");
645 }
646
647 /* compute with 96 bit intermediate result: (a*b)/c */
648 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
649 {
650 union {
651 uint64_t ll;
652 struct {
653 #ifdef WORDS_BIGENDIAN
654 uint32_t high, low;
655 #else
656 uint32_t low, high;
657 #endif
658 } l;
659 } u, res;
660 uint64_t rl, rh;
661
662 u.ll = a;
663 rl = (uint64_t)u.l.low * (uint64_t)b;
664 rh = (uint64_t)u.l.high * (uint64_t)b;
665 rh += (rl >> 32);
666 res.l.high = rh / c;
667 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
668 return res.ll;
669 }
670
671 /***********************************************************/
672 /* real time host monotonic timer */
673
674 #define QEMU_TIMER_BASE 1000000000LL
675
676 #ifdef WIN32
677
678 static int64_t clock_freq;
679
680 static void init_get_clock(void)
681 {
682 LARGE_INTEGER freq;
683 int ret;
684 ret = QueryPerformanceFrequency(&freq);
685 if (ret == 0) {
686 fprintf(stderr, "Could not calibrate ticks\n");
687 exit(1);
688 }
689 clock_freq = freq.QuadPart;
690 }
691
692 static int64_t get_clock(void)
693 {
694 LARGE_INTEGER ti;
695 QueryPerformanceCounter(&ti);
696 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
697 }
698
699 #else
700
701 static int use_rt_clock;
702
703 static void init_get_clock(void)
704 {
705 use_rt_clock = 0;
706 #if defined(__linux__)
707 {
708 struct timespec ts;
709 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
710 use_rt_clock = 1;
711 }
712 }
713 #endif
714 }
715
716 static int64_t get_clock(void)
717 {
718 #if defined(__linux__)
719 if (use_rt_clock) {
720 struct timespec ts;
721 clock_gettime(CLOCK_MONOTONIC, &ts);
722 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
723 } else
724 #endif
725 {
726 /* XXX: using gettimeofday leads to problems if the date
727 changes, so it should be avoided. */
728 struct timeval tv;
729 gettimeofday(&tv, NULL);
730 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
731 }
732 }
733
734 #endif
735
736 /***********************************************************/
737 /* guest cycle counter */
738
739 static int64_t cpu_ticks_prev;
740 static int64_t cpu_ticks_offset;
741 static int64_t cpu_clock_offset;
742 static int cpu_ticks_enabled;
743
744 /* return the host CPU cycle counter and handle stop/restart */
745 int64_t cpu_get_ticks(void)
746 {
747 if (!cpu_ticks_enabled) {
748 return cpu_ticks_offset;
749 } else {
750 int64_t ticks;
751 ticks = cpu_get_real_ticks();
752 if (cpu_ticks_prev > ticks) {
753 /* Note: non increasing ticks may happen if the host uses
754 software suspend */
755 cpu_ticks_offset += cpu_ticks_prev - ticks;
756 }
757 cpu_ticks_prev = ticks;
758 return ticks + cpu_ticks_offset;
759 }
760 }
761
762 /* return the host CPU monotonic timer and handle stop/restart */
763 static int64_t cpu_get_clock(void)
764 {
765 int64_t ti;
766 if (!cpu_ticks_enabled) {
767 return cpu_clock_offset;
768 } else {
769 ti = get_clock();
770 return ti + cpu_clock_offset;
771 }
772 }
773
774 /* enable cpu_get_ticks() */
775 void cpu_enable_ticks(void)
776 {
777 if (!cpu_ticks_enabled) {
778 cpu_ticks_offset -= cpu_get_real_ticks();
779 cpu_clock_offset -= get_clock();
780 cpu_ticks_enabled = 1;
781 }
782 }
783
784 /* disable cpu_get_ticks() : the clock is stopped. You must not call
785 cpu_get_ticks() after that. */
786 void cpu_disable_ticks(void)
787 {
788 if (cpu_ticks_enabled) {
789 cpu_ticks_offset = cpu_get_ticks();
790 cpu_clock_offset = cpu_get_clock();
791 cpu_ticks_enabled = 0;
792 }
793 }
794
795 /***********************************************************/
796 /* timers */
797
798 #define QEMU_TIMER_REALTIME 0
799 #define QEMU_TIMER_VIRTUAL 1
800
801 struct QEMUClock {
802 int type;
803 /* XXX: add frequency */
804 };
805
806 struct QEMUTimer {
807 QEMUClock *clock;
808 int64_t expire_time;
809 QEMUTimerCB *cb;
810 void *opaque;
811 struct QEMUTimer *next;
812 };
813
814 struct qemu_alarm_timer {
815 char const *name;
816 unsigned int flags;
817
818 int (*start)(struct qemu_alarm_timer *t);
819 void (*stop)(struct qemu_alarm_timer *t);
820 void (*rearm)(struct qemu_alarm_timer *t);
821 void *priv;
822 };
823
824 #define ALARM_FLAG_DYNTICKS 0x1
825 #define ALARM_FLAG_MODIFIED 0x2
826
827 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
828 {
829 return t->flags & ALARM_FLAG_DYNTICKS;
830 }
831
832 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
833 {
834 if (!alarm_has_dynticks(t))
835 return;
836
837 if (!(t->flags & ALARM_FLAG_MODIFIED))
838 return;
839
840 t->flags &= ~(ALARM_FLAG_MODIFIED);
841
842 t->rearm(t);
843 }
844
845 /* TODO: MIN_TIMER_REARM_US should be optimized */
846 #define MIN_TIMER_REARM_US 250
847
848 static struct qemu_alarm_timer *alarm_timer;
849
850 #ifdef _WIN32
851
852 struct qemu_alarm_win32 {
853 MMRESULT timerId;
854 HANDLE host_alarm;
855 unsigned int period;
856 } alarm_win32_data = {0, NULL, -1};
857
858 static int win32_start_timer(struct qemu_alarm_timer *t);
859 static void win32_stop_timer(struct qemu_alarm_timer *t);
860 static void win32_rearm_timer(struct qemu_alarm_timer *t);
861
862 #else
863
864 static int unix_start_timer(struct qemu_alarm_timer *t);
865 static void unix_stop_timer(struct qemu_alarm_timer *t);
866
867 #ifdef __linux__
868
869 static int dynticks_start_timer(struct qemu_alarm_timer *t);
870 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
871 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
872
873 static int hpet_start_timer(struct qemu_alarm_timer *t);
874 static void hpet_stop_timer(struct qemu_alarm_timer *t);
875
876 static int rtc_start_timer(struct qemu_alarm_timer *t);
877 static void rtc_stop_timer(struct qemu_alarm_timer *t);
878
879 #endif /* __linux__ */
880
881 #endif /* _WIN32 */
882
883 static struct qemu_alarm_timer alarm_timers[] = {
884 #ifndef _WIN32
885 #ifdef __linux__
886 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
887 dynticks_stop_timer, dynticks_rearm_timer, NULL},
888 /* HPET - if available - is preferred */
889 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
890 /* ...otherwise try RTC */
891 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
892 #endif
893 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
894 #else
895 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
896 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
897 {"win32", 0, win32_start_timer,
898 win32_stop_timer, NULL, &alarm_win32_data},
899 #endif
900 {NULL, }
901 };
902
903 static void show_available_alarms()
904 {
905 int i;
906
907 printf("Available alarm timers, in order of precedence:\n");
908 for (i = 0; alarm_timers[i].name; i++)
909 printf("%s\n", alarm_timers[i].name);
910 }
911
912 static void configure_alarms(char const *opt)
913 {
914 int i;
915 int cur = 0;
916 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
917 char *arg;
918 char *name;
919
920 if (!strcmp(opt, "help")) {
921 show_available_alarms();
922 exit(0);
923 }
924
925 arg = strdup(opt);
926
927 /* Reorder the array */
928 name = strtok(arg, ",");
929 while (name) {
930 struct qemu_alarm_timer tmp;
931
932 for (i = 0; i < count && alarm_timers[i].name; i++) {
933 if (!strcmp(alarm_timers[i].name, name))
934 break;
935 }
936
937 if (i == count) {
938 fprintf(stderr, "Unknown clock %s\n", name);
939 goto next;
940 }
941
942 if (i < cur)
943 /* Ignore */
944 goto next;
945
946 /* Swap */
947 tmp = alarm_timers[i];
948 alarm_timers[i] = alarm_timers[cur];
949 alarm_timers[cur] = tmp;
950
951 cur++;
952 next:
953 name = strtok(NULL, ",");
954 }
955
956 free(arg);
957
958 if (cur) {
959 /* Disable remaining timers */
960 for (i = cur; i < count; i++)
961 alarm_timers[i].name = NULL;
962 }
963
964 /* debug */
965 show_available_alarms();
966 }
967
968 QEMUClock *rt_clock;
969 QEMUClock *vm_clock;
970
971 static QEMUTimer *active_timers[2];
972
973 static QEMUClock *qemu_new_clock(int type)
974 {
975 QEMUClock *clock;
976 clock = qemu_mallocz(sizeof(QEMUClock));
977 if (!clock)
978 return NULL;
979 clock->type = type;
980 return clock;
981 }
982
983 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
984 {
985 QEMUTimer *ts;
986
987 ts = qemu_mallocz(sizeof(QEMUTimer));
988 ts->clock = clock;
989 ts->cb = cb;
990 ts->opaque = opaque;
991 return ts;
992 }
993
994 void qemu_free_timer(QEMUTimer *ts)
995 {
996 qemu_free(ts);
997 }
998
999 /* stop a timer, but do not dealloc it */
1000 void qemu_del_timer(QEMUTimer *ts)
1001 {
1002 QEMUTimer **pt, *t;
1003
1004 alarm_timer->flags |= ALARM_FLAG_MODIFIED;
1005
1006 /* NOTE: this code must be signal safe because
1007 qemu_timer_expired() can be called from a signal. */
1008 pt = &active_timers[ts->clock->type];
1009 for(;;) {
1010 t = *pt;
1011 if (!t)
1012 break;
1013 if (t == ts) {
1014 *pt = t->next;
1015 break;
1016 }
1017 pt = &t->next;
1018 }
1019 }
1020
1021 /* modify the current timer so that it will be fired when current_time
1022 >= expire_time. The corresponding callback will be called. */
1023 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1024 {
1025 QEMUTimer **pt, *t;
1026
1027 qemu_del_timer(ts);
1028
1029 /* add the timer in the sorted list */
1030 /* NOTE: this code must be signal safe because
1031 qemu_timer_expired() can be called from a signal. */
1032 pt = &active_timers[ts->clock->type];
1033 for(;;) {
1034 t = *pt;
1035 if (!t)
1036 break;
1037 if (t->expire_time > expire_time)
1038 break;
1039 pt = &t->next;
1040 }
1041 ts->expire_time = expire_time;
1042 ts->next = *pt;
1043 *pt = ts;
1044 }
1045
1046 int qemu_timer_pending(QEMUTimer *ts)
1047 {
1048 QEMUTimer *t;
1049 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1050 if (t == ts)
1051 return 1;
1052 }
1053 return 0;
1054 }
1055
1056 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1057 {
1058 if (!timer_head)
1059 return 0;
1060 return (timer_head->expire_time <= current_time);
1061 }
1062
1063 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1064 {
1065 QEMUTimer *ts;
1066
1067 for(;;) {
1068 ts = *ptimer_head;
1069 if (!ts || ts->expire_time > current_time)
1070 break;
1071 /* remove timer from the list before calling the callback */
1072 *ptimer_head = ts->next;
1073 ts->next = NULL;
1074
1075 /* run the callback (the timer list can be modified) */
1076 ts->cb(ts->opaque);
1077 }
1078 }
1079
1080 int64_t qemu_get_clock(QEMUClock *clock)
1081 {
1082 switch(clock->type) {
1083 case QEMU_TIMER_REALTIME:
1084 return get_clock() / 1000000;
1085 default:
1086 case QEMU_TIMER_VIRTUAL:
1087 return cpu_get_clock();
1088 }
1089 }
1090
1091 static void init_timers(void)
1092 {
1093 init_get_clock();
1094 ticks_per_sec = QEMU_TIMER_BASE;
1095 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1096 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1097 }
1098
1099 /* save a timer */
1100 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1101 {
1102 uint64_t expire_time;
1103
1104 if (qemu_timer_pending(ts)) {
1105 expire_time = ts->expire_time;
1106 } else {
1107 expire_time = -1;
1108 }
1109 qemu_put_be64(f, expire_time);
1110 }
1111
1112 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1113 {
1114 uint64_t expire_time;
1115
1116 expire_time = qemu_get_be64(f);
1117 if (expire_time != -1) {
1118 qemu_mod_timer(ts, expire_time);
1119 } else {
1120 qemu_del_timer(ts);
1121 }
1122 }
1123
1124 static void timer_save(QEMUFile *f, void *opaque)
1125 {
1126 if (cpu_ticks_enabled) {
1127 hw_error("cannot save state if virtual timers are running");
1128 }
1129 qemu_put_be64(f, cpu_ticks_offset);
1130 qemu_put_be64(f, ticks_per_sec);
1131 qemu_put_be64(f, cpu_clock_offset);
1132 }
1133
1134 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1135 {
1136 if (version_id != 1 && version_id != 2)
1137 return -EINVAL;
1138 if (cpu_ticks_enabled) {
1139 return -EINVAL;
1140 }
1141 cpu_ticks_offset=qemu_get_be64(f);
1142 ticks_per_sec=qemu_get_be64(f);
1143 if (version_id == 2) {
1144 cpu_clock_offset=qemu_get_be64(f);
1145 }
1146 return 0;
1147 }
1148
1149 #ifdef _WIN32
1150 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1151 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1152 #else
1153 static void host_alarm_handler(int host_signum)
1154 #endif
1155 {
1156 #if 0
1157 #define DISP_FREQ 1000
1158 {
1159 static int64_t delta_min = INT64_MAX;
1160 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1161 static int count;
1162 ti = qemu_get_clock(vm_clock);
1163 if (last_clock != 0) {
1164 delta = ti - last_clock;
1165 if (delta < delta_min)
1166 delta_min = delta;
1167 if (delta > delta_max)
1168 delta_max = delta;
1169 delta_cum += delta;
1170 if (++count == DISP_FREQ) {
1171 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1172 muldiv64(delta_min, 1000000, ticks_per_sec),
1173 muldiv64(delta_max, 1000000, ticks_per_sec),
1174 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1175 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1176 count = 0;
1177 delta_min = INT64_MAX;
1178 delta_max = 0;
1179 delta_cum = 0;
1180 }
1181 }
1182 last_clock = ti;
1183 }
1184 #endif
1185 if (alarm_has_dynticks(alarm_timer) ||
1186 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1187 qemu_get_clock(vm_clock)) ||
1188 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1189 qemu_get_clock(rt_clock))) {
1190 #ifdef _WIN32
1191 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1192 SetEvent(data->host_alarm);
1193 #endif
1194 CPUState *env = next_cpu;
1195
1196 if (env) {
1197 alarm_timer->flags |= ALARM_FLAG_MODIFIED;
1198 /* stop the currently executing cpu because a timer occured */
1199 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1200 #ifdef USE_KQEMU
1201 if (env->kqemu_enabled) {
1202 kqemu_cpu_interrupt(env);
1203 }
1204 #endif
1205 }
1206 event_pending = 1;
1207 }
1208 }
1209
1210 static uint64_t qemu_next_deadline(void)
1211 {
1212 int64_t nearest_delta_us = INT64_MAX;
1213 int64_t vmdelta_us;
1214
1215 if (active_timers[QEMU_TIMER_REALTIME])
1216 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1217 qemu_get_clock(rt_clock))*1000;
1218
1219 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1220 /* round up */
1221 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1222 qemu_get_clock(vm_clock)+999)/1000;
1223 if (vmdelta_us < nearest_delta_us)
1224 nearest_delta_us = vmdelta_us;
1225 }
1226
1227 /* Avoid arming the timer to negative, zero, or too low values */
1228 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1229 nearest_delta_us = MIN_TIMER_REARM_US;
1230
1231 return nearest_delta_us;
1232 }
1233
1234 #ifndef _WIN32
1235
1236 #if defined(__linux__)
1237
1238 #define RTC_FREQ 1024
1239
1240 static void enable_sigio_timer(int fd)
1241 {
1242 struct sigaction act;
1243
1244 /* timer signal */
1245 sigfillset(&act.sa_mask);
1246 act.sa_flags = 0;
1247 act.sa_handler = host_alarm_handler;
1248
1249 sigaction(SIGIO, &act, NULL);
1250 fcntl(fd, F_SETFL, O_ASYNC);
1251 fcntl(fd, F_SETOWN, getpid());
1252 }
1253
1254 static int hpet_start_timer(struct qemu_alarm_timer *t)
1255 {
1256 struct hpet_info info;
1257 int r, fd;
1258
1259 fd = open("/dev/hpet", O_RDONLY);
1260 if (fd < 0)
1261 return -1;
1262
1263 /* Set frequency */
1264 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1265 if (r < 0) {
1266 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1267 "error, but for better emulation accuracy type:\n"
1268 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1269 goto fail;
1270 }
1271
1272 /* Check capabilities */
1273 r = ioctl(fd, HPET_INFO, &info);
1274 if (r < 0)
1275 goto fail;
1276
1277 /* Enable periodic mode */
1278 r = ioctl(fd, HPET_EPI, 0);
1279 if (info.hi_flags && (r < 0))
1280 goto fail;
1281
1282 /* Enable interrupt */
1283 r = ioctl(fd, HPET_IE_ON, 0);
1284 if (r < 0)
1285 goto fail;
1286
1287 enable_sigio_timer(fd);
1288 t->priv = (void *)(long)fd;
1289
1290 return 0;
1291 fail:
1292 close(fd);
1293 return -1;
1294 }
1295
1296 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1297 {
1298 int fd = (long)t->priv;
1299
1300 close(fd);
1301 }
1302
1303 static int rtc_start_timer(struct qemu_alarm_timer *t)
1304 {
1305 int rtc_fd;
1306
1307 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1308 if (rtc_fd < 0)
1309 return -1;
1310 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1311 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1312 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1313 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1314 goto fail;
1315 }
1316 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1317 fail:
1318 close(rtc_fd);
1319 return -1;
1320 }
1321
1322 enable_sigio_timer(rtc_fd);
1323
1324 t->priv = (void *)(long)rtc_fd;
1325
1326 return 0;
1327 }
1328
1329 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1330 {
1331 int rtc_fd = (long)t->priv;
1332
1333 close(rtc_fd);
1334 }
1335
1336 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1337 {
1338 struct sigevent ev;
1339 timer_t host_timer;
1340 struct sigaction act;
1341
1342 sigfillset(&act.sa_mask);
1343 act.sa_flags = 0;
1344 act.sa_handler = host_alarm_handler;
1345
1346 sigaction(SIGALRM, &act, NULL);
1347
1348 ev.sigev_value.sival_int = 0;
1349 ev.sigev_notify = SIGEV_SIGNAL;
1350 ev.sigev_signo = SIGALRM;
1351
1352 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1353 perror("timer_create");
1354
1355 /* disable dynticks */
1356 fprintf(stderr, "Dynamic Ticks disabled\n");
1357
1358 return -1;
1359 }
1360
1361 t->priv = (void *)host_timer;
1362
1363 return 0;
1364 }
1365
1366 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1367 {
1368 timer_t host_timer = (timer_t)t->priv;
1369
1370 timer_delete(host_timer);
1371 }
1372
1373 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1374 {
1375 timer_t host_timer = (timer_t)t->priv;
1376 struct itimerspec timeout;
1377 int64_t nearest_delta_us = INT64_MAX;
1378 int64_t current_us;
1379
1380 if (!active_timers[QEMU_TIMER_REALTIME] &&
1381 !active_timers[QEMU_TIMER_VIRTUAL])
1382 return;
1383
1384 nearest_delta_us = qemu_next_deadline();
1385
1386 /* check whether a timer is already running */
1387 if (timer_gettime(host_timer, &timeout)) {
1388 perror("gettime");
1389 fprintf(stderr, "Internal timer error: aborting\n");
1390 exit(1);
1391 }
1392 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1393 if (current_us && current_us <= nearest_delta_us)
1394 return;
1395
1396 timeout.it_interval.tv_sec = 0;
1397 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1398 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1399 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1400 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1401 perror("settime");
1402 fprintf(stderr, "Internal timer error: aborting\n");
1403 exit(1);
1404 }
1405 }
1406
1407 #endif /* defined(__linux__) */
1408
1409 static int unix_start_timer(struct qemu_alarm_timer *t)
1410 {
1411 struct sigaction act;
1412 struct itimerval itv;
1413 int err;
1414
1415 /* timer signal */
1416 sigfillset(&act.sa_mask);
1417 act.sa_flags = 0;
1418 act.sa_handler = host_alarm_handler;
1419
1420 sigaction(SIGALRM, &act, NULL);
1421
1422 itv.it_interval.tv_sec = 0;
1423 /* for i386 kernel 2.6 to get 1 ms */
1424 itv.it_interval.tv_usec = 999;
1425 itv.it_value.tv_sec = 0;
1426 itv.it_value.tv_usec = 10 * 1000;
1427
1428 err = setitimer(ITIMER_REAL, &itv, NULL);
1429 if (err)
1430 return -1;
1431
1432 return 0;
1433 }
1434
1435 static void unix_stop_timer(struct qemu_alarm_timer *t)
1436 {
1437 struct itimerval itv;
1438
1439 memset(&itv, 0, sizeof(itv));
1440 setitimer(ITIMER_REAL, &itv, NULL);
1441 }
1442
1443 #endif /* !defined(_WIN32) */
1444
1445 #ifdef _WIN32
1446
1447 static int win32_start_timer(struct qemu_alarm_timer *t)
1448 {
1449 TIMECAPS tc;
1450 struct qemu_alarm_win32 *data = t->priv;
1451 UINT flags;
1452
1453 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1454 if (!data->host_alarm) {
1455 perror("Failed CreateEvent");
1456 return -1;
1457 }
1458
1459 memset(&tc, 0, sizeof(tc));
1460 timeGetDevCaps(&tc, sizeof(tc));
1461
1462 if (data->period < tc.wPeriodMin)
1463 data->period = tc.wPeriodMin;
1464
1465 timeBeginPeriod(data->period);
1466
1467 flags = TIME_CALLBACK_FUNCTION;
1468 if (alarm_has_dynticks(t))
1469 flags |= TIME_ONESHOT;
1470 else
1471 flags |= TIME_PERIODIC;
1472
1473 data->timerId = timeSetEvent(1, // interval (ms)
1474 data->period, // resolution
1475 host_alarm_handler, // function
1476 (DWORD)t, // parameter
1477 flags);
1478
1479 if (!data->timerId) {
1480 perror("Failed to initialize win32 alarm timer");
1481
1482 timeEndPeriod(data->period);
1483 CloseHandle(data->host_alarm);
1484 return -1;
1485 }
1486
1487 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1488
1489 return 0;
1490 }
1491
1492 static void win32_stop_timer(struct qemu_alarm_timer *t)
1493 {
1494 struct qemu_alarm_win32 *data = t->priv;
1495
1496 timeKillEvent(data->timerId);
1497 timeEndPeriod(data->period);
1498
1499 CloseHandle(data->host_alarm);
1500 }
1501
1502 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1503 {
1504 struct qemu_alarm_win32 *data = t->priv;
1505 uint64_t nearest_delta_us;
1506
1507 if (!active_timers[QEMU_TIMER_REALTIME] &&
1508 !active_timers[QEMU_TIMER_VIRTUAL])
1509 return;
1510
1511 nearest_delta_us = qemu_next_deadline();
1512 nearest_delta_us /= 1000;
1513
1514 timeKillEvent(data->timerId);
1515
1516 data->timerId = timeSetEvent(1,
1517 data->period,
1518 host_alarm_handler,
1519 (DWORD)t,
1520 TIME_ONESHOT | TIME_PERIODIC);
1521
1522 if (!data->timerId) {
1523 perror("Failed to re-arm win32 alarm timer");
1524
1525 timeEndPeriod(data->period);
1526 CloseHandle(data->host_alarm);
1527 exit(1);
1528 }
1529 }
1530
1531 #endif /* _WIN32 */
1532
1533 static void init_timer_alarm(void)
1534 {
1535 struct qemu_alarm_timer *t;
1536 int i, err = -1;
1537
1538 for (i = 0; alarm_timers[i].name; i++) {
1539 t = &alarm_timers[i];
1540
1541 err = t->start(t);
1542 if (!err)
1543 break;
1544 }
1545
1546 if (err) {
1547 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1548 fprintf(stderr, "Terminating\n");
1549 exit(1);
1550 }
1551
1552 alarm_timer = t;
1553 }
1554
1555 static void quit_timers(void)
1556 {
1557 alarm_timer->stop(alarm_timer);
1558 alarm_timer = NULL;
1559 }
1560
1561 /***********************************************************/
1562 /* character device */
1563
1564 static void qemu_chr_event(CharDriverState *s, int event)
1565 {
1566 if (!s->chr_event)
1567 return;
1568 s->chr_event(s->handler_opaque, event);
1569 }
1570
1571 static void qemu_chr_reset_bh(void *opaque)
1572 {
1573 CharDriverState *s = opaque;
1574 qemu_chr_event(s, CHR_EVENT_RESET);
1575 qemu_bh_delete(s->bh);
1576 s->bh = NULL;
1577 }
1578
1579 void qemu_chr_reset(CharDriverState *s)
1580 {
1581 if (s->bh == NULL) {
1582 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1583 qemu_bh_schedule(s->bh);
1584 }
1585 }
1586
1587 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1588 {
1589 return s->chr_write(s, buf, len);
1590 }
1591
1592 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1593 {
1594 if (!s->chr_ioctl)
1595 return -ENOTSUP;
1596 return s->chr_ioctl(s, cmd, arg);
1597 }
1598
1599 int qemu_chr_can_read(CharDriverState *s)
1600 {
1601 if (!s->chr_can_read)
1602 return 0;
1603 return s->chr_can_read(s->handler_opaque);
1604 }
1605
1606 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1607 {
1608 s->chr_read(s->handler_opaque, buf, len);
1609 }
1610
1611 void qemu_chr_accept_input(CharDriverState *s)
1612 {
1613 if (s->chr_accept_input)
1614 s->chr_accept_input(s);
1615 }
1616
1617 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1618 {
1619 char buf[4096];
1620 va_list ap;
1621 va_start(ap, fmt);
1622 vsnprintf(buf, sizeof(buf), fmt, ap);
1623 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1624 va_end(ap);
1625 }
1626
1627 void qemu_chr_send_event(CharDriverState *s, int event)
1628 {
1629 if (s->chr_send_event)
1630 s->chr_send_event(s, event);
1631 }
1632
1633 void qemu_chr_add_handlers(CharDriverState *s,
1634 IOCanRWHandler *fd_can_read,
1635 IOReadHandler *fd_read,
1636 IOEventHandler *fd_event,
1637 void *opaque)
1638 {
1639 s->chr_can_read = fd_can_read;
1640 s->chr_read = fd_read;
1641 s->chr_event = fd_event;
1642 s->handler_opaque = opaque;
1643 if (s->chr_update_read_handler)
1644 s->chr_update_read_handler(s);
1645 }
1646
1647 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1648 {
1649 return len;
1650 }
1651
1652 static CharDriverState *qemu_chr_open_null(void)
1653 {
1654 CharDriverState *chr;
1655
1656 chr = qemu_mallocz(sizeof(CharDriverState));
1657 if (!chr)
1658 return NULL;
1659 chr->chr_write = null_chr_write;
1660 return chr;
1661 }
1662
1663 /* MUX driver for serial I/O splitting */
1664 static int term_timestamps;
1665 static int64_t term_timestamps_start;
1666 #define MAX_MUX 4
1667 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1668 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1669 typedef struct {
1670 IOCanRWHandler *chr_can_read[MAX_MUX];
1671 IOReadHandler *chr_read[MAX_MUX];
1672 IOEventHandler *chr_event[MAX_MUX];
1673 void *ext_opaque[MAX_MUX];
1674 CharDriverState *drv;
1675 unsigned char buffer[MUX_BUFFER_SIZE];
1676 int prod;
1677 int cons;
1678 int mux_cnt;
1679 int term_got_escape;
1680 int max_size;
1681 } MuxDriver;
1682
1683
1684 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1685 {
1686 MuxDriver *d = chr->opaque;
1687 int ret;
1688 if (!term_timestamps) {
1689 ret = d->drv->chr_write(d->drv, buf, len);
1690 } else {
1691 int i;
1692
1693 ret = 0;
1694 for(i = 0; i < len; i++) {
1695 ret += d->drv->chr_write(d->drv, buf+i, 1);
1696 if (buf[i] == '\n') {
1697 char buf1[64];
1698 int64_t ti;
1699 int secs;
1700
1701 ti = get_clock();
1702 if (term_timestamps_start == -1)
1703 term_timestamps_start = ti;
1704 ti -= term_timestamps_start;
1705 secs = ti / 1000000000;
1706 snprintf(buf1, sizeof(buf1),
1707 "[%02d:%02d:%02d.%03d] ",
1708 secs / 3600,
1709 (secs / 60) % 60,
1710 secs % 60,
1711 (int)((ti / 1000000) % 1000));
1712 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1713 }
1714 }
1715 }
1716 return ret;
1717 }
1718
1719 static char *mux_help[] = {
1720 "% h print this help\n\r",
1721 "% x exit emulator\n\r",
1722 "% s save disk data back to file (if -snapshot)\n\r",
1723 "% t toggle console timestamps\n\r"
1724 "% b send break (magic sysrq)\n\r",
1725 "% c switch between console and monitor\n\r",
1726 "% % sends %\n\r",
1727 NULL
1728 };
1729
1730 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1731 static void mux_print_help(CharDriverState *chr)
1732 {
1733 int i, j;
1734 char ebuf[15] = "Escape-Char";
1735 char cbuf[50] = "\n\r";
1736
1737 if (term_escape_char > 0 && term_escape_char < 26) {
1738 sprintf(cbuf,"\n\r");
1739 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1740 } else {
1741 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1742 term_escape_char);
1743 }
1744 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1745 for (i = 0; mux_help[i] != NULL; i++) {
1746 for (j=0; mux_help[i][j] != '\0'; j++) {
1747 if (mux_help[i][j] == '%')
1748 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1749 else
1750 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1751 }
1752 }
1753 }
1754
1755 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1756 {
1757 if (d->term_got_escape) {
1758 d->term_got_escape = 0;
1759 if (ch == term_escape_char)
1760 goto send_char;
1761 switch(ch) {
1762 case '?':
1763 case 'h':
1764 mux_print_help(chr);
1765 break;
1766 case 'x':
1767 {
1768 char *term = "QEMU: Terminated\n\r";
1769 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1770 exit(0);
1771 break;
1772 }
1773 case 's':
1774 {
1775 int i;
1776 for (i = 0; i < nb_drives; i++) {
1777 bdrv_commit(drives_table[i].bdrv);
1778 }
1779 }
1780 break;
1781 case 'b':
1782 qemu_chr_event(chr, CHR_EVENT_BREAK);
1783 break;
1784 case 'c':
1785 /* Switch to the next registered device */
1786 chr->focus++;
1787 if (chr->focus >= d->mux_cnt)
1788 chr->focus = 0;
1789 break;
1790 case 't':
1791 term_timestamps = !term_timestamps;
1792 term_timestamps_start = -1;
1793 break;
1794 }
1795 } else if (ch == term_escape_char) {
1796 d->term_got_escape = 1;
1797 } else {
1798 send_char:
1799 return 1;
1800 }
1801 return 0;
1802 }
1803
1804 static void mux_chr_accept_input(CharDriverState *chr)
1805 {
1806 int m = chr->focus;
1807 MuxDriver *d = chr->opaque;
1808
1809 while (d->prod != d->cons &&
1810 d->chr_can_read[m] &&
1811 d->chr_can_read[m](d->ext_opaque[m])) {
1812 d->chr_read[m](d->ext_opaque[m],
1813 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1814 }
1815 }
1816
1817 static int mux_chr_can_read(void *opaque)
1818 {
1819 CharDriverState *chr = opaque;
1820 MuxDriver *d = chr->opaque;
1821
1822 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1823 return 1;
1824 if (d->chr_can_read[chr->focus])
1825 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1826 return 0;
1827 }
1828
1829 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1830 {
1831 CharDriverState *chr = opaque;
1832 MuxDriver *d = chr->opaque;
1833 int m = chr->focus;
1834 int i;
1835
1836 mux_chr_accept_input (opaque);
1837
1838 for(i = 0; i < size; i++)
1839 if (mux_proc_byte(chr, d, buf[i])) {
1840 if (d->prod == d->cons &&
1841 d->chr_can_read[m] &&
1842 d->chr_can_read[m](d->ext_opaque[m]))
1843 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1844 else
1845 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1846 }
1847 }
1848
1849 static void mux_chr_event(void *opaque, int event)
1850 {
1851 CharDriverState *chr = opaque;
1852 MuxDriver *d = chr->opaque;
1853 int i;
1854
1855 /* Send the event to all registered listeners */
1856 for (i = 0; i < d->mux_cnt; i++)
1857 if (d->chr_event[i])
1858 d->chr_event[i](d->ext_opaque[i], event);
1859 }
1860
1861 static void mux_chr_update_read_handler(CharDriverState *chr)
1862 {
1863 MuxDriver *d = chr->opaque;
1864
1865 if (d->mux_cnt >= MAX_MUX) {
1866 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1867 return;
1868 }
1869 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1870 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1871 d->chr_read[d->mux_cnt] = chr->chr_read;
1872 d->chr_event[d->mux_cnt] = chr->chr_event;
1873 /* Fix up the real driver with mux routines */
1874 if (d->mux_cnt == 0) {
1875 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1876 mux_chr_event, chr);
1877 }
1878 chr->focus = d->mux_cnt;
1879 d->mux_cnt++;
1880 }
1881
1882 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1883 {
1884 CharDriverState *chr;
1885 MuxDriver *d;
1886
1887 chr = qemu_mallocz(sizeof(CharDriverState));
1888 if (!chr)
1889 return NULL;
1890 d = qemu_mallocz(sizeof(MuxDriver));
1891 if (!d) {
1892 free(chr);
1893 return NULL;
1894 }
1895
1896 chr->opaque = d;
1897 d->drv = drv;
1898 chr->focus = -1;
1899 chr->chr_write = mux_chr_write;
1900 chr->chr_update_read_handler = mux_chr_update_read_handler;
1901 chr->chr_accept_input = mux_chr_accept_input;
1902 return chr;
1903 }
1904
1905
1906 #ifdef _WIN32
1907
1908 static void socket_cleanup(void)
1909 {
1910 WSACleanup();
1911 }
1912
1913 static int socket_init(void)
1914 {
1915 WSADATA Data;
1916 int ret, err;
1917
1918 ret = WSAStartup(MAKEWORD(2,2), &Data);
1919 if (ret != 0) {
1920 err = WSAGetLastError();
1921 fprintf(stderr, "WSAStartup: %d\n", err);
1922 return -1;
1923 }
1924 atexit(socket_cleanup);
1925 return 0;
1926 }
1927
1928 static int send_all(int fd, const uint8_t *buf, int len1)
1929 {
1930 int ret, len;
1931
1932 len = len1;
1933 while (len > 0) {
1934 ret = send(fd, buf, len, 0);
1935 if (ret < 0) {
1936 int errno;
1937 errno = WSAGetLastError();
1938 if (errno != WSAEWOULDBLOCK) {
1939 return -1;
1940 }
1941 } else if (ret == 0) {
1942 break;
1943 } else {
1944 buf += ret;
1945 len -= ret;
1946 }
1947 }
1948 return len1 - len;
1949 }
1950
1951 void socket_set_nonblock(int fd)
1952 {
1953 unsigned long opt = 1;
1954 ioctlsocket(fd, FIONBIO, &opt);
1955 }
1956
1957 #else
1958
1959 static int unix_write(int fd, const uint8_t *buf, int len1)
1960 {
1961 int ret, len;
1962
1963 len = len1;
1964 while (len > 0) {
1965 ret = write(fd, buf, len);
1966 if (ret < 0) {
1967 if (errno != EINTR && errno != EAGAIN)
1968 return -1;
1969 } else if (ret == 0) {
1970 break;
1971 } else {
1972 buf += ret;
1973 len -= ret;
1974 }
1975 }
1976 return len1 - len;
1977 }
1978
1979 static inline int send_all(int fd, const uint8_t *buf, int len1)
1980 {
1981 return unix_write(fd, buf, len1);
1982 }
1983
1984 void socket_set_nonblock(int fd)
1985 {
1986 fcntl(fd, F_SETFL, O_NONBLOCK);
1987 }
1988 #endif /* !_WIN32 */
1989
1990 #ifndef _WIN32
1991
1992 typedef struct {
1993 int fd_in, fd_out;
1994 int max_size;
1995 } FDCharDriver;
1996
1997 #define STDIO_MAX_CLIENTS 1
1998 static int stdio_nb_clients = 0;
1999
2000 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2001 {
2002 FDCharDriver *s = chr->opaque;
2003 return unix_write(s->fd_out, buf, len);
2004 }
2005
2006 static int fd_chr_read_poll(void *opaque)
2007 {
2008 CharDriverState *chr = opaque;
2009 FDCharDriver *s = chr->opaque;
2010
2011 s->max_size = qemu_chr_can_read(chr);
2012 return s->max_size;
2013 }
2014
2015 static void fd_chr_read(void *opaque)
2016 {
2017 CharDriverState *chr = opaque;
2018 FDCharDriver *s = chr->opaque;
2019 int size, len;
2020 uint8_t buf[1024];
2021
2022 len = sizeof(buf);
2023 if (len > s->max_size)
2024 len = s->max_size;
2025 if (len == 0)
2026 return;
2027 size = read(s->fd_in, buf, len);
2028 if (size == 0) {
2029 /* FD has been closed. Remove it from the active list. */
2030 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2031 return;
2032 }
2033 if (size > 0) {
2034 qemu_chr_read(chr, buf, size);
2035 }
2036 }
2037
2038 static void fd_chr_update_read_handler(CharDriverState *chr)
2039 {
2040 FDCharDriver *s = chr->opaque;
2041
2042 if (s->fd_in >= 0) {
2043 if (nographic && s->fd_in == 0) {
2044 } else {
2045 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2046 fd_chr_read, NULL, chr);
2047 }
2048 }
2049 }
2050
2051 /* open a character device to a unix fd */
2052 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2053 {
2054 CharDriverState *chr;
2055 FDCharDriver *s;
2056
2057 chr = qemu_mallocz(sizeof(CharDriverState));
2058 if (!chr)
2059 return NULL;
2060 s = qemu_mallocz(sizeof(FDCharDriver));
2061 if (!s) {
2062 free(chr);
2063 return NULL;
2064 }
2065 s->fd_in = fd_in;
2066 s->fd_out = fd_out;
2067 chr->opaque = s;
2068 chr->chr_write = fd_chr_write;
2069 chr->chr_update_read_handler = fd_chr_update_read_handler;
2070
2071 qemu_chr_reset(chr);
2072
2073 return chr;
2074 }
2075
2076 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2077 {
2078 int fd_out;
2079
2080 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2081 if (fd_out < 0)
2082 return NULL;
2083 return qemu_chr_open_fd(-1, fd_out);
2084 }
2085
2086 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2087 {
2088 int fd_in, fd_out;
2089 char filename_in[256], filename_out[256];
2090
2091 snprintf(filename_in, 256, "%s.in", filename);
2092 snprintf(filename_out, 256, "%s.out", filename);
2093 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2094 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2095 if (fd_in < 0 || fd_out < 0) {
2096 if (fd_in >= 0)
2097 close(fd_in);
2098 if (fd_out >= 0)
2099 close(fd_out);
2100 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2101 if (fd_in < 0)
2102 return NULL;
2103 }
2104 return qemu_chr_open_fd(fd_in, fd_out);
2105 }
2106
2107
2108 /* for STDIO, we handle the case where several clients use it
2109 (nographic mode) */
2110
2111 #define TERM_FIFO_MAX_SIZE 1
2112
2113 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2114 static int term_fifo_size;
2115
2116 static int stdio_read_poll(void *opaque)
2117 {
2118 CharDriverState *chr = opaque;
2119
2120 /* try to flush the queue if needed */
2121 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2122 qemu_chr_read(chr, term_fifo, 1);
2123 term_fifo_size = 0;
2124 }
2125 /* see if we can absorb more chars */
2126 if (term_fifo_size == 0)
2127 return 1;
2128 else
2129 return 0;
2130 }
2131
2132 static void stdio_read(void *opaque)
2133 {
2134 int size;
2135 uint8_t buf[1];
2136 CharDriverState *chr = opaque;
2137
2138 size = read(0, buf, 1);
2139 if (size == 0) {
2140 /* stdin has been closed. Remove it from the active list. */
2141 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2142 return;
2143 }
2144 if (size > 0) {
2145 if (qemu_chr_can_read(chr) > 0) {
2146 qemu_chr_read(chr, buf, 1);
2147 } else if (term_fifo_size == 0) {
2148 term_fifo[term_fifo_size++] = buf[0];
2149 }
2150 }
2151 }
2152
2153 /* init terminal so that we can grab keys */
2154 static struct termios oldtty;
2155 static int old_fd0_flags;
2156
2157 static void term_exit(void)
2158 {
2159 tcsetattr (0, TCSANOW, &oldtty);
2160 fcntl(0, F_SETFL, old_fd0_flags);
2161 }
2162
2163 static void term_init(void)
2164 {
2165 struct termios tty;
2166
2167 tcgetattr (0, &tty);
2168 oldtty = tty;
2169 old_fd0_flags = fcntl(0, F_GETFL);
2170
2171 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2172 |INLCR|IGNCR|ICRNL|IXON);
2173 tty.c_oflag |= OPOST;
2174 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2175 /* if graphical mode, we allow Ctrl-C handling */
2176 if (nographic)
2177 tty.c_lflag &= ~ISIG;
2178 tty.c_cflag &= ~(CSIZE|PARENB);
2179 tty.c_cflag |= CS8;
2180 tty.c_cc[VMIN] = 1;
2181 tty.c_cc[VTIME] = 0;
2182
2183 tcsetattr (0, TCSANOW, &tty);
2184
2185 atexit(term_exit);
2186
2187 fcntl(0, F_SETFL, O_NONBLOCK);
2188 }
2189
2190 static CharDriverState *qemu_chr_open_stdio(void)
2191 {
2192 CharDriverState *chr;
2193
2194 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2195 return NULL;
2196 chr = qemu_chr_open_fd(0, 1);
2197 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2198 stdio_nb_clients++;
2199 term_init();
2200
2201 return chr;
2202 }
2203
2204 #if defined(__linux__) || defined(__sun__)
2205 static CharDriverState *qemu_chr_open_pty(void)
2206 {
2207 struct termios tty;
2208 char slave_name[1024];
2209 int master_fd, slave_fd;
2210
2211 #if defined(__linux__)
2212 /* Not satisfying */
2213 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2214 return NULL;
2215 }
2216 #endif
2217
2218 /* Disabling local echo and line-buffered output */
2219 tcgetattr (master_fd, &tty);
2220 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2221 tty.c_cc[VMIN] = 1;
2222 tty.c_cc[VTIME] = 0;
2223 tcsetattr (master_fd, TCSAFLUSH, &tty);
2224
2225 fprintf(stderr, "char device redirected to %s\n", slave_name);
2226 return qemu_chr_open_fd(master_fd, master_fd);
2227 }
2228
2229 static void tty_serial_init(int fd, int speed,
2230 int parity, int data_bits, int stop_bits)
2231 {
2232 struct termios tty;
2233 speed_t spd;
2234
2235 #if 0
2236 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2237 speed, parity, data_bits, stop_bits);
2238 #endif
2239 tcgetattr (fd, &tty);
2240
2241 switch(speed) {
2242 case 50:
2243 spd = B50;
2244 break;
2245 case 75:
2246 spd = B75;
2247 break;
2248 case 300:
2249 spd = B300;
2250 break;
2251 case 600:
2252 spd = B600;
2253 break;
2254 case 1200:
2255 spd = B1200;
2256 break;
2257 case 2400:
2258 spd = B2400;
2259 break;
2260 case 4800:
2261 spd = B4800;
2262 break;
2263 case 9600:
2264 spd = B9600;
2265 break;
2266 case 19200:
2267 spd = B19200;
2268 break;
2269 case 38400:
2270 spd = B38400;
2271 break;
2272 case 57600:
2273 spd = B57600;
2274 break;
2275 default:
2276 case 115200:
2277 spd = B115200;
2278 break;
2279 }
2280
2281 cfsetispeed(&tty, spd);
2282 cfsetospeed(&tty, spd);
2283
2284 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2285 |INLCR|IGNCR|ICRNL|IXON);
2286 tty.c_oflag |= OPOST;
2287 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2288 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2289 switch(data_bits) {
2290 default:
2291 case 8:
2292 tty.c_cflag |= CS8;
2293 break;
2294 case 7:
2295 tty.c_cflag |= CS7;
2296 break;
2297 case 6:
2298 tty.c_cflag |= CS6;
2299 break;
2300 case 5:
2301 tty.c_cflag |= CS5;
2302 break;
2303 }
2304 switch(parity) {
2305 default:
2306 case 'N':
2307 break;
2308 case 'E':
2309 tty.c_cflag |= PARENB;
2310 break;
2311 case 'O':
2312 tty.c_cflag |= PARENB | PARODD;
2313 break;
2314 }
2315 if (stop_bits == 2)
2316 tty.c_cflag |= CSTOPB;
2317
2318 tcsetattr (fd, TCSANOW, &tty);
2319 }
2320
2321 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2322 {
2323 FDCharDriver *s = chr->opaque;
2324
2325 switch(cmd) {
2326 case CHR_IOCTL_SERIAL_SET_PARAMS:
2327 {
2328 QEMUSerialSetParams *ssp = arg;
2329 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2330 ssp->data_bits, ssp->stop_bits);
2331 }
2332 break;
2333 case CHR_IOCTL_SERIAL_SET_BREAK:
2334 {
2335 int enable = *(int *)arg;
2336 if (enable)
2337 tcsendbreak(s->fd_in, 1);
2338 }
2339 break;
2340 default:
2341 return -ENOTSUP;
2342 }
2343 return 0;
2344 }
2345
2346 static CharDriverState *qemu_chr_open_tty(const char *filename)
2347 {
2348 CharDriverState *chr;
2349 int fd;
2350
2351 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2352 fcntl(fd, F_SETFL, O_NONBLOCK);
2353 tty_serial_init(fd, 115200, 'N', 8, 1);
2354 chr = qemu_chr_open_fd(fd, fd);
2355 if (!chr) {
2356 close(fd);
2357 return NULL;
2358 }
2359 chr->chr_ioctl = tty_serial_ioctl;
2360 qemu_chr_reset(chr);
2361 return chr;
2362 }
2363 #else /* ! __linux__ && ! __sun__ */
2364 static CharDriverState *qemu_chr_open_pty(void)
2365 {
2366 return NULL;
2367 }
2368 #endif /* __linux__ || __sun__ */
2369
2370 #if defined(__linux__)
2371 typedef struct {
2372 int fd;
2373 int mode;
2374 } ParallelCharDriver;
2375
2376 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2377 {
2378 if (s->mode != mode) {
2379 int m = mode;
2380 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2381 return 0;
2382 s->mode = mode;
2383 }
2384 return 1;
2385 }
2386
2387 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2388 {
2389 ParallelCharDriver *drv = chr->opaque;
2390 int fd = drv->fd;
2391 uint8_t b;
2392
2393 switch(cmd) {
2394 case CHR_IOCTL_PP_READ_DATA:
2395 if (ioctl(fd, PPRDATA, &b) < 0)
2396 return -ENOTSUP;
2397 *(uint8_t *)arg = b;
2398 break;
2399 case CHR_IOCTL_PP_WRITE_DATA:
2400 b = *(uint8_t *)arg;
2401 if (ioctl(fd, PPWDATA, &b) < 0)
2402 return -ENOTSUP;
2403 break;
2404 case CHR_IOCTL_PP_READ_CONTROL:
2405 if (ioctl(fd, PPRCONTROL, &b) < 0)
2406 return -ENOTSUP;
2407 /* Linux gives only the lowest bits, and no way to know data
2408 direction! For better compatibility set the fixed upper
2409 bits. */
2410 *(uint8_t *)arg = b | 0xc0;
2411 break;
2412 case CHR_IOCTL_PP_WRITE_CONTROL:
2413 b = *(uint8_t *)arg;
2414 if (ioctl(fd, PPWCONTROL, &b) < 0)
2415 return -ENOTSUP;
2416 break;
2417 case CHR_IOCTL_PP_READ_STATUS:
2418 if (ioctl(fd, PPRSTATUS, &b) < 0)
2419 return -ENOTSUP;
2420 *(uint8_t *)arg = b;
2421 break;
2422 case CHR_IOCTL_PP_EPP_READ_ADDR:
2423 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2424 struct ParallelIOArg *parg = arg;
2425 int n = read(fd, parg->buffer, parg->count);
2426 if (n != parg->count) {
2427 return -EIO;
2428 }
2429 }
2430 break;
2431 case CHR_IOCTL_PP_EPP_READ:
2432 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2433 struct ParallelIOArg *parg = arg;
2434 int n = read(fd, parg->buffer, parg->count);
2435 if (n != parg->count) {
2436 return -EIO;
2437 }
2438 }
2439 break;
2440 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2441 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2442 struct ParallelIOArg *parg = arg;
2443 int n = write(fd, parg->buffer, parg->count);
2444 if (n != parg->count) {
2445 return -EIO;
2446 }
2447 }
2448 break;
2449 case CHR_IOCTL_PP_EPP_WRITE:
2450 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2451 struct ParallelIOArg *parg = arg;
2452 int n = write(fd, parg->buffer, parg->count);
2453 if (n != parg->count) {
2454 return -EIO;
2455 }
2456 }
2457 break;
2458 default:
2459 return -ENOTSUP;
2460 }
2461 return 0;
2462 }
2463
2464 static void pp_close(CharDriverState *chr)
2465 {
2466 ParallelCharDriver *drv = chr->opaque;
2467 int fd = drv->fd;
2468
2469 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2470 ioctl(fd, PPRELEASE);
2471 close(fd);
2472 qemu_free(drv);
2473 }
2474
2475 static CharDriverState *qemu_chr_open_pp(const char *filename)
2476 {
2477 CharDriverState *chr;
2478 ParallelCharDriver *drv;
2479 int fd;
2480
2481 TFR(fd = open(filename, O_RDWR));
2482 if (fd < 0)
2483 return NULL;
2484
2485 if (ioctl(fd, PPCLAIM) < 0) {
2486 close(fd);
2487 return NULL;
2488 }
2489
2490 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2491 if (!drv) {
2492 close(fd);
2493 return NULL;
2494 }
2495 drv->fd = fd;
2496 drv->mode = IEEE1284_MODE_COMPAT;
2497
2498 chr = qemu_mallocz(sizeof(CharDriverState));
2499 if (!chr) {
2500 qemu_free(drv);
2501 close(fd);
2502 return NULL;
2503 }
2504 chr->chr_write = null_chr_write;
2505 chr->chr_ioctl = pp_ioctl;
2506 chr->chr_close = pp_close;
2507 chr->opaque = drv;
2508
2509 qemu_chr_reset(chr);
2510
2511 return chr;
2512 }
2513 #endif /* __linux__ */
2514
2515 #else /* _WIN32 */
2516
2517 typedef struct {
2518 int max_size;
2519 HANDLE hcom, hrecv, hsend;
2520 OVERLAPPED orecv, osend;
2521 BOOL fpipe;
2522 DWORD len;
2523 } WinCharState;
2524
2525 #define NSENDBUF 2048
2526 #define NRECVBUF 2048
2527 #define MAXCONNECT 1
2528 #define NTIMEOUT 5000
2529
2530 static int win_chr_poll(void *opaque);
2531 static int win_chr_pipe_poll(void *opaque);
2532
2533 static void win_chr_close(CharDriverState *chr)
2534 {
2535 WinCharState *s = chr->opaque;
2536
2537 if (s->hsend) {
2538 CloseHandle(s->hsend);
2539 s->hsend = NULL;
2540 }
2541 if (s->hrecv) {
2542 CloseHandle(s->hrecv);
2543 s->hrecv = NULL;
2544 }
2545 if (s->hcom) {
2546 CloseHandle(s->hcom);
2547 s->hcom = NULL;
2548 }
2549 if (s->fpipe)
2550 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2551 else
2552 qemu_del_polling_cb(win_chr_poll, chr);
2553 }
2554
2555 static int win_chr_init(CharDriverState *chr, const char *filename)
2556 {
2557 WinCharState *s = chr->opaque;
2558 COMMCONFIG comcfg;
2559 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2560 COMSTAT comstat;
2561 DWORD size;
2562 DWORD err;
2563
2564 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2565 if (!s->hsend) {
2566 fprintf(stderr, "Failed CreateEvent\n");
2567 goto fail;
2568 }
2569 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2570 if (!s->hrecv) {
2571 fprintf(stderr, "Failed CreateEvent\n");
2572 goto fail;
2573 }
2574
2575 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2576 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2577 if (s->hcom == INVALID_HANDLE_VALUE) {
2578 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2579 s->hcom = NULL;
2580 goto fail;
2581 }
2582
2583 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2584 fprintf(stderr, "Failed SetupComm\n");
2585 goto fail;
2586 }
2587
2588 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2589 size = sizeof(COMMCONFIG);
2590 GetDefaultCommConfig(filename, &comcfg, &size);
2591 comcfg.dcb.DCBlength = sizeof(DCB);
2592 CommConfigDialog(filename, NULL, &comcfg);
2593
2594 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2595 fprintf(stderr, "Failed SetCommState\n");
2596 goto fail;
2597 }
2598
2599 if (!SetCommMask(s->hcom, EV_ERR)) {
2600 fprintf(stderr, "Failed SetCommMask\n");
2601 goto fail;
2602 }
2603
2604 cto.ReadIntervalTimeout = MAXDWORD;
2605 if (!SetCommTimeouts(s->hcom, &cto)) {
2606 fprintf(stderr, "Failed SetCommTimeouts\n");
2607 goto fail;
2608 }
2609
2610 if (!ClearCommError(s->hcom, &err, &comstat)) {
2611 fprintf(stderr, "Failed ClearCommError\n");
2612 goto fail;
2613 }
2614 qemu_add_polling_cb(win_chr_poll, chr);
2615 return 0;
2616
2617 fail:
2618 win_chr_close(chr);
2619 return -1;
2620 }
2621
2622 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2623 {
2624 WinCharState *s = chr->opaque;
2625 DWORD len, ret, size, err;
2626
2627 len = len1;
2628 ZeroMemory(&s->osend, sizeof(s->osend));
2629 s->osend.hEvent = s->hsend;
2630 while (len > 0) {
2631 if (s->hsend)
2632 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2633 else
2634 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2635 if (!ret) {
2636 err = GetLastError();
2637 if (err == ERROR_IO_PENDING) {
2638 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2639 if (ret) {
2640 buf += size;
2641 len -= size;
2642 } else {
2643 break;
2644 }
2645 } else {
2646 break;
2647 }
2648 } else {
2649 buf += size;
2650 len -= size;
2651 }
2652 }
2653 return len1 - len;
2654 }
2655
2656 static int win_chr_read_poll(CharDriverState *chr)
2657 {
2658 WinCharState *s = chr->opaque;
2659
2660 s->max_size = qemu_chr_can_read(chr);
2661 return s->max_size;
2662 }
2663
2664 static void win_chr_readfile(CharDriverState *chr)
2665 {
2666 WinCharState *s = chr->opaque;
2667 int ret, err;
2668 uint8_t buf[1024];
2669 DWORD size;
2670
2671 ZeroMemory(&s->orecv, sizeof(s->orecv));
2672 s->orecv.hEvent = s->hrecv;
2673 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2674 if (!ret) {
2675 err = GetLastError();
2676 if (err == ERROR_IO_PENDING) {
2677 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2678 }
2679 }
2680
2681 if (size > 0) {
2682 qemu_chr_read(chr, buf, size);
2683 }
2684 }
2685
2686 static void win_chr_read(CharDriverState *chr)
2687 {
2688 WinCharState *s = chr->opaque;
2689
2690 if (s->len > s->max_size)
2691 s->len = s->max_size;
2692 if (s->len == 0)
2693 return;
2694
2695 win_chr_readfile(chr);
2696 }
2697
2698 static int win_chr_poll(void *opaque)
2699 {
2700 CharDriverState *chr = opaque;
2701 WinCharState *s = chr->opaque;
2702 COMSTAT status;
2703 DWORD comerr;
2704
2705 ClearCommError(s->hcom, &comerr, &status);
2706 if (status.cbInQue > 0) {
2707 s->len = status.cbInQue;
2708 win_chr_read_poll(chr);
2709 win_chr_read(chr);
2710 return 1;
2711 }
2712 return 0;
2713 }
2714
2715 static CharDriverState *qemu_chr_open_win(const char *filename)
2716 {
2717 CharDriverState *chr;
2718 WinCharState *s;
2719
2720 chr = qemu_mallocz(sizeof(CharDriverState));
2721 if (!chr)
2722 return NULL;
2723 s = qemu_mallocz(sizeof(WinCharState));
2724 if (!s) {
2725 free(chr);
2726 return NULL;
2727 }
2728 chr->opaque = s;
2729 chr->chr_write = win_chr_write;
2730 chr->chr_close = win_chr_close;
2731
2732 if (win_chr_init(chr, filename) < 0) {
2733 free(s);
2734 free(chr);
2735 return NULL;
2736 }
2737 qemu_chr_reset(chr);
2738 return chr;
2739 }
2740
2741 static int win_chr_pipe_poll(void *opaque)
2742 {
2743 CharDriverState *chr = opaque;
2744 WinCharState *s = chr->opaque;
2745 DWORD size;
2746
2747 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2748 if (size > 0) {
2749 s->len = size;
2750 win_chr_read_poll(chr);
2751 win_chr_read(chr);
2752 return 1;
2753 }
2754 return 0;
2755 }
2756
2757 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2758 {
2759 WinCharState *s = chr->opaque;
2760 OVERLAPPED ov;
2761 int ret;
2762 DWORD size;
2763 char openname[256];
2764
2765 s->fpipe = TRUE;
2766
2767 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2768 if (!s->hsend) {
2769 fprintf(stderr, "Failed CreateEvent\n");
2770 goto fail;
2771 }
2772 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2773 if (!s->hrecv) {
2774 fprintf(stderr, "Failed CreateEvent\n");
2775 goto fail;
2776 }
2777
2778 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2779 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2780 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2781 PIPE_WAIT,
2782 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2783 if (s->hcom == INVALID_HANDLE_VALUE) {
2784 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2785 s->hcom = NULL;
2786 goto fail;
2787 }
2788
2789 ZeroMemory(&ov, sizeof(ov));
2790 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2791 ret = ConnectNamedPipe(s->hcom, &ov);
2792 if (ret) {
2793 fprintf(stderr, "Failed ConnectNamedPipe\n");
2794 goto fail;
2795 }
2796
2797 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2798 if (!ret) {
2799 fprintf(stderr, "Failed GetOverlappedResult\n");
2800 if (ov.hEvent) {
2801 CloseHandle(ov.hEvent);
2802 ov.hEvent = NULL;
2803 }
2804 goto fail;
2805 }
2806
2807 if (ov.hEvent) {
2808 CloseHandle(ov.hEvent);
2809 ov.hEvent = NULL;
2810 }
2811 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2812 return 0;
2813
2814 fail:
2815 win_chr_close(chr);
2816 return -1;
2817 }
2818
2819
2820 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2821 {
2822 CharDriverState *chr;
2823 WinCharState *s;
2824
2825 chr = qemu_mallocz(sizeof(CharDriverState));
2826 if (!chr)
2827 return NULL;
2828 s = qemu_mallocz(sizeof(WinCharState));
2829 if (!s) {
2830 free(chr);
2831 return NULL;
2832 }
2833 chr->opaque = s;
2834 chr->chr_write = win_chr_write;
2835 chr->chr_close = win_chr_close;
2836
2837 if (win_chr_pipe_init(chr, filename) < 0) {
2838 free(s);
2839 free(chr);
2840 return NULL;
2841 }
2842 qemu_chr_reset(chr);
2843 return chr;
2844 }
2845
2846 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2847 {
2848 CharDriverState *chr;
2849 WinCharState *s;
2850
2851 chr = qemu_mallocz(sizeof(CharDriverState));
2852 if (!chr)
2853 return NULL;
2854 s = qemu_mallocz(sizeof(WinCharState));
2855 if (!s) {
2856 free(chr);
2857 return NULL;
2858 }
2859 s->hcom = fd_out;
2860 chr->opaque = s;
2861 chr->chr_write = win_chr_write;
2862 qemu_chr_reset(chr);
2863 return chr;
2864 }
2865
2866 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2867 {
2868 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2869 }
2870
2871 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2872 {
2873 HANDLE fd_out;
2874
2875 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2876 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2877 if (fd_out == INVALID_HANDLE_VALUE)
2878 return NULL;
2879
2880 return qemu_chr_open_win_file(fd_out);
2881 }
2882 #endif /* !_WIN32 */
2883
2884 /***********************************************************/
2885 /* UDP Net console */
2886
2887 typedef struct {
2888 int fd;
2889 struct sockaddr_in daddr;
2890 uint8_t buf[1024];
2891 int bufcnt;
2892 int bufptr;
2893 int max_size;
2894 } NetCharDriver;
2895
2896 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2897 {
2898 NetCharDriver *s = chr->opaque;
2899
2900 return sendto(s->fd, buf, len, 0,
2901 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2902 }
2903
2904 static int udp_chr_read_poll(void *opaque)
2905 {
2906 CharDriverState *chr = opaque;
2907 NetCharDriver *s = chr->opaque;
2908
2909 s->max_size = qemu_chr_can_read(chr);
2910
2911 /* If there were any stray characters in the queue process them
2912 * first
2913 */
2914 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2915 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2916 s->bufptr++;
2917 s->max_size = qemu_chr_can_read(chr);
2918 }
2919 return s->max_size;
2920 }
2921
2922 static void udp_chr_read(void *opaque)
2923 {
2924 CharDriverState *chr = opaque;
2925 NetCharDriver *s = chr->opaque;
2926
2927 if (s->max_size == 0)
2928 return;
2929 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2930 s->bufptr = s->bufcnt;
2931 if (s->bufcnt <= 0)
2932 return;
2933
2934 s->bufptr = 0;
2935 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2936 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2937 s->bufptr++;
2938 s->max_size = qemu_chr_can_read(chr);
2939 }
2940 }
2941
2942 static void udp_chr_update_read_handler(CharDriverState *chr)
2943 {
2944 NetCharDriver *s = chr->opaque;
2945
2946 if (s->fd >= 0) {
2947 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2948 udp_chr_read, NULL, chr);
2949 }
2950 }
2951
2952 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2953 #ifndef _WIN32
2954 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2955 #endif
2956 int parse_host_src_port(struct sockaddr_in *haddr,
2957 struct sockaddr_in *saddr,
2958 const char *str);
2959
2960 static CharDriverState *qemu_chr_open_udp(const char *def)
2961 {
2962 CharDriverState *chr = NULL;
2963 NetCharDriver *s = NULL;
2964 int fd = -1;
2965 struct sockaddr_in saddr;
2966
2967 chr = qemu_mallocz(sizeof(CharDriverState));
2968 if (!chr)
2969 goto return_err;
2970 s = qemu_mallocz(sizeof(NetCharDriver));
2971 if (!s)
2972 goto return_err;
2973
2974 fd = socket(PF_INET, SOCK_DGRAM, 0);
2975 if (fd < 0) {
2976 perror("socket(PF_INET, SOCK_DGRAM)");
2977 goto return_err;
2978 }
2979
2980 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2981 printf("Could not parse: %s\n", def);
2982 goto return_err;
2983 }
2984
2985 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2986 {
2987 perror("bind");
2988 goto return_err;
2989 }
2990
2991 s->fd = fd;
2992 s->bufcnt = 0;
2993 s->bufptr = 0;
2994 chr->opaque = s;
2995 chr->chr_write = udp_chr_write;
2996 chr->chr_update_read_handler = udp_chr_update_read_handler;
2997 return chr;
2998
2999 return_err:
3000 if (chr)
3001 free(chr);
3002 if (s)
3003 free(s);
3004 if (fd >= 0)
3005 closesocket(fd);
3006 return NULL;
3007 }
3008
3009 /***********************************************************/
3010 /* TCP Net console */
3011
3012 typedef struct {
3013 int fd, listen_fd;
3014 int connected;
3015 int max_size;
3016 int do_telnetopt;
3017 int do_nodelay;
3018 int is_unix;
3019 } TCPCharDriver;
3020
3021 static void tcp_chr_accept(void *opaque);
3022
3023 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3024 {
3025 TCPCharDriver *s = chr->opaque;
3026 if (s->connected) {
3027 return send_all(s->fd, buf, len);
3028 } else {
3029 /* XXX: indicate an error ? */
3030 return len;
3031 }
3032 }
3033
3034 static int tcp_chr_read_poll(void *opaque)
3035 {
3036 CharDriverState *chr = opaque;
3037 TCPCharDriver *s = chr->opaque;
3038 if (!s->connected)
3039 return 0;
3040 s->max_size = qemu_chr_can_read(chr);
3041 return s->max_size;
3042 }
3043
3044 #define IAC 255
3045 #define IAC_BREAK 243
3046 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3047 TCPCharDriver *s,
3048 uint8_t *buf, int *size)
3049 {
3050 /* Handle any telnet client's basic IAC options to satisfy char by
3051 * char mode with no echo. All IAC options will be removed from
3052 * the buf and the do_telnetopt variable will be used to track the
3053 * state of the width of the IAC information.
3054 *
3055 * IAC commands come in sets of 3 bytes with the exception of the
3056 * "IAC BREAK" command and the double IAC.
3057 */
3058
3059 int i;
3060 int j = 0;
3061
3062 for (i = 0; i < *size; i++) {
3063 if (s->do_telnetopt > 1) {
3064 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3065 /* Double IAC means send an IAC */
3066 if (j != i)
3067 buf[j] = buf[i];
3068 j++;
3069 s->do_telnetopt = 1;
3070 } else {
3071 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3072 /* Handle IAC break commands by sending a serial break */
3073 qemu_chr_event(chr, CHR_EVENT_BREAK);
3074 s->do_telnetopt++;
3075 }
3076 s->do_telnetopt++;
3077 }
3078 if (s->do_telnetopt >= 4) {
3079 s->do_telnetopt = 1;
3080 }
3081 } else {
3082 if ((unsigned char)buf[i] == IAC) {
3083 s->do_telnetopt = 2;
3084 } else {
3085 if (j != i)
3086 buf[j] = buf[i];
3087 j++;
3088 }
3089 }
3090 }
3091 *size = j;
3092 }
3093
3094 static void tcp_chr_read(void *opaque)
3095 {
3096 CharDriverState *chr = opaque;
3097 TCPCharDriver *s = chr->opaque;
3098 uint8_t buf[1024];
3099 int len, size;
3100
3101 if (!s->connected || s->max_size <= 0)
3102 return;
3103 len = sizeof(buf);
3104 if (len > s->max_size)
3105 len = s->max_size;
3106 size = recv(s->fd, buf, len, 0);
3107 if (size == 0) {
3108 /* connection closed */
3109 s->connected = 0;
3110 if (s->listen_fd >= 0) {
3111 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3112 }
3113 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3114 closesocket(s->fd);
3115 s->fd = -1;
3116 } else if (size > 0) {
3117 if (s->do_telnetopt)
3118 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3119 if (size > 0)
3120 qemu_chr_read(chr, buf, size);
3121 }
3122 }
3123
3124 static void tcp_chr_connect(void *opaque)
3125 {
3126 CharDriverState *chr = opaque;
3127 TCPCharDriver *s = chr->opaque;
3128
3129 s->connected = 1;
3130 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3131 tcp_chr_read, NULL, chr);
3132 qemu_chr_reset(chr);
3133 }
3134
3135 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3136 static void tcp_chr_telnet_init(int fd)
3137 {
3138 char buf[3];
3139 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3140 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3141 send(fd, (char *)buf, 3, 0);
3142 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3143 send(fd, (char *)buf, 3, 0);
3144 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3145 send(fd, (char *)buf, 3, 0);
3146 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3147 send(fd, (char *)buf, 3, 0);
3148 }
3149
3150 static void socket_set_nodelay(int fd)
3151 {
3152 int val = 1;
3153 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3154 }
3155
3156 static void tcp_chr_accept(void *opaque)
3157 {
3158 CharDriverState *chr = opaque;
3159 TCPCharDriver *s = chr->opaque;
3160 struct sockaddr_in saddr;
3161 #ifndef _WIN32
3162 struct sockaddr_un uaddr;
3163 #endif
3164 struct sockaddr *addr;
3165 socklen_t len;
3166 int fd;
3167
3168 for(;;) {
3169 #ifndef _WIN32
3170 if (s->is_unix) {
3171 len = sizeof(uaddr);
3172 addr = (struct sockaddr *)&uaddr;
3173 } else
3174 #endif
3175 {
3176 len = sizeof(saddr);
3177 addr = (struct sockaddr *)&saddr;
3178 }
3179 fd = accept(s->listen_fd, addr, &len);
3180 if (fd < 0 && errno != EINTR) {
3181 return;
3182 } else if (fd >= 0) {
3183 if (s->do_telnetopt)
3184 tcp_chr_telnet_init(fd);
3185 break;
3186 }
3187 }
3188 socket_set_nonblock(fd);
3189 if (s->do_nodelay)
3190 socket_set_nodelay(fd);
3191 s->fd = fd;
3192 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3193 tcp_chr_connect(chr);
3194 }
3195
3196 static void tcp_chr_close(CharDriverState *chr)
3197 {
3198 TCPCharDriver *s = chr->opaque;
3199 if (s->fd >= 0)
3200 closesocket(s->fd);
3201 if (s->listen_fd >= 0)
3202 closesocket(s->listen_fd);
3203 qemu_free(s);
3204 }
3205
3206 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3207 int is_telnet,
3208 int is_unix)
3209 {
3210 CharDriverState *chr = NULL;
3211 TCPCharDriver *s = NULL;
3212 int fd = -1, ret, err, val;
3213 int is_listen = 0;
3214 int is_waitconnect = 1;
3215 int do_nodelay = 0;
3216 const char *ptr;
3217 struct sockaddr_in saddr;
3218 #ifndef _WIN32
3219 struct sockaddr_un uaddr;
3220 #endif
3221 struct sockaddr *addr;
3222 socklen_t addrlen;
3223
3224 #ifndef _WIN32
3225 if (is_unix) {
3226 addr = (struct sockaddr *)&uaddr;
3227 addrlen = sizeof(uaddr);
3228 if (parse_unix_path(&uaddr, host_str) < 0)
3229 goto fail;
3230 } else
3231 #endif
3232 {
3233 addr = (struct sockaddr *)&saddr;
3234 addrlen = sizeof(saddr);
3235 if (parse_host_port(&saddr, host_str) < 0)
3236 goto fail;
3237 }
3238
3239 ptr = host_str;
3240 while((ptr = strchr(ptr,','))) {
3241 ptr++;
3242 if (!strncmp(ptr,"server",6)) {
3243 is_listen = 1;
3244 } else if (!strncmp(ptr,"nowait",6)) {
3245 is_waitconnect = 0;
3246 } else if (!strncmp(ptr,"nodelay",6)) {
3247 do_nodelay = 1;
3248 } else {
3249 printf("Unknown option: %s\n", ptr);
3250 goto fail;
3251 }
3252 }
3253 if (!is_listen)
3254 is_waitconnect = 0;
3255
3256 chr = qemu_mallocz(sizeof(CharDriverState));
3257 if (!chr)
3258 goto fail;
3259 s = qemu_mallocz(sizeof(TCPCharDriver));
3260 if (!s)
3261 goto fail;
3262
3263 #ifndef _WIN32
3264 if (is_unix)
3265 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3266 else
3267 #endif
3268 fd = socket(PF_INET, SOCK_STREAM, 0);
3269
3270 if (fd < 0)
3271 goto fail;
3272
3273 if (!is_waitconnect)
3274 socket_set_nonblock(fd);
3275
3276 s->connected = 0;
3277 s->fd = -1;
3278 s->listen_fd = -1;
3279 s->is_unix = is_unix;
3280 s->do_nodelay = do_nodelay && !is_unix;
3281
3282 chr->opaque = s;
3283 chr->chr_write = tcp_chr_write;
3284 chr->chr_close = tcp_chr_close;
3285
3286 if (is_listen) {
3287 /* allow fast reuse */
3288 #ifndef _WIN32
3289 if (is_unix) {
3290 char path[109];
3291 strncpy(path, uaddr.sun_path, 108);
3292 path[108] = 0;
3293 unlink(path);
3294 } else
3295 #endif
3296 {
3297 val = 1;
3298 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3299 }
3300
3301 ret = bind(fd, addr, addrlen);
3302 if (ret < 0)
3303 goto fail;
3304
3305 ret = listen(fd, 0);
3306 if (ret < 0)
3307 goto fail;
3308
3309 s->listen_fd = fd;
3310 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3311 if (is_telnet)
3312 s->do_telnetopt = 1;
3313 } else {
3314 for(;;) {
3315 ret = connect(fd, addr, addrlen);
3316 if (ret < 0) {
3317 err = socket_error();
3318 if (err == EINTR || err == EWOULDBLOCK) {
3319 } else if (err == EINPROGRESS) {
3320 break;
3321 #ifdef _WIN32
3322 } else if (err == WSAEALREADY) {
3323 break;
3324 #endif
3325 } else {
3326 goto fail;
3327 }
3328 } else {
3329 s->connected = 1;
3330 break;
3331 }
3332 }
3333 s->fd = fd;
3334 socket_set_nodelay(fd);
3335 if (s->connected)
3336 tcp_chr_connect(chr);
3337 else
3338 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3339 }
3340
3341 if (is_listen && is_waitconnect) {
3342 printf("QEMU waiting for connection on: %s\n", host_str);
3343 tcp_chr_accept(chr);
3344 socket_set_nonblock(s->listen_fd);
3345 }
3346
3347 return chr;
3348 fail:
3349 if (fd >= 0)
3350 closesocket(fd);
3351 qemu_free(s);
3352 qemu_free(chr);
3353 return NULL;
3354 }
3355
3356 CharDriverState *qemu_chr_open(const char *filename)
3357 {
3358 const char *p;
3359
3360 if (!strcmp(filename, "vc")) {
3361 return text_console_init(&display_state, 0);
3362 } else if (strstart(filename, "vc:", &p)) {
3363 return text_console_init(&display_state, p);
3364 } else if (!strcmp(filename, "null")) {
3365 return qemu_chr_open_null();
3366 } else
3367 if (strstart(filename, "tcp:", &p)) {
3368 return qemu_chr_open_tcp(p, 0, 0);
3369 } else
3370 if (strstart(filename, "telnet:", &p)) {
3371 return qemu_chr_open_tcp(p, 1, 0);
3372 } else
3373 if (strstart(filename, "udp:", &p)) {
3374 return qemu_chr_open_udp(p);
3375 } else
3376 if (strstart(filename, "mon:", &p)) {
3377 CharDriverState *drv = qemu_chr_open(p);
3378 if (drv) {
3379 drv = qemu_chr_open_mux(drv);
3380 monitor_init(drv, !nographic);
3381 return drv;
3382 }
3383 printf("Unable to open driver: %s\n", p);
3384 return 0;
3385 } else
3386 #ifndef _WIN32
3387 if (strstart(filename, "unix:", &p)) {
3388 return qemu_chr_open_tcp(p, 0, 1);
3389 } else if (strstart(filename, "file:", &p)) {
3390 return qemu_chr_open_file_out(p);
3391 } else if (strstart(filename, "pipe:", &p)) {
3392 return qemu_chr_open_pipe(p);
3393 } else if (!strcmp(filename, "pty")) {
3394 return qemu_chr_open_pty();
3395 } else if (!strcmp(filename, "stdio")) {
3396 return qemu_chr_open_stdio();
3397 } else
3398 #if defined(__linux__)
3399 if (strstart(filename, "/dev/parport", NULL)) {
3400 return qemu_chr_open_pp(filename);
3401 } else
3402 #endif
3403 #if defined(__linux__) || defined(__sun__)
3404 if (strstart(filename, "/dev/", NULL)) {
3405 return qemu_chr_open_tty(filename);
3406 } else
3407 #endif
3408 #else /* !_WIN32 */
3409 if (strstart(filename, "COM", NULL)) {
3410 return qemu_chr_open_win(filename);
3411 } else
3412 if (strstart(filename, "pipe:", &p)) {
3413 return qemu_chr_open_win_pipe(p);
3414 } else
3415 if (strstart(filename, "con:", NULL)) {
3416 return qemu_chr_open_win_con(filename);
3417 } else
3418 if (strstart(filename, "file:", &p)) {
3419 return qemu_chr_open_win_file_out(p);
3420 }
3421 #endif
3422 {
3423 return NULL;
3424 }
3425 }
3426
3427 void qemu_chr_close(CharDriverState *chr)
3428 {
3429 if (chr->chr_close)
3430 chr->chr_close(chr);
3431 }
3432
3433 /***********************************************************/
3434 /* network device redirectors */
3435
3436 __attribute__ (( unused ))
3437 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3438 {
3439 int len, i, j, c;
3440
3441 for(i=0;i<size;i+=16) {
3442 len = size - i;
3443 if (len > 16)
3444 len = 16;
3445 fprintf(f, "%08x ", i);
3446 for(j=0;j<16;j++) {
3447 if (j < len)
3448 fprintf(f, " %02x", buf[i+j]);
3449 else
3450 fprintf(f, " ");
3451 }
3452 fprintf(f, " ");
3453 for(j=0;j<len;j++) {
3454 c = buf[i+j];
3455 if (c < ' ' || c > '~')
3456 c = '.';
3457 fprintf(f, "%c", c);
3458 }
3459 fprintf(f, "\n");
3460 }
3461 }
3462
3463 static int parse_macaddr(uint8_t *macaddr, const char *p)
3464 {
3465 int i;
3466 char *last_char;
3467 long int offset;
3468
3469 errno = 0;
3470 offset = strtol(p, &last_char, 0);
3471 if (0 == errno && '\0' == *last_char &&
3472 offset >= 0 && offset <= 0xFFFFFF) {
3473 macaddr[3] = (offset & 0xFF0000) >> 16;
3474 macaddr[4] = (offset & 0xFF00) >> 8;
3475 macaddr[5] = offset & 0xFF;
3476 return 0;
3477 } else {
3478 for(i = 0; i < 6; i++) {
3479 macaddr[i] = strtol(p, (char **)&p, 16);
3480 if (i == 5) {
3481 if (*p != '\0')
3482 return -1;
3483 } else {
3484 if (*p != ':' && *p != '-')
3485 return -1;
3486 p++;
3487 }
3488 }
3489 return 0;
3490 }
3491
3492 return -1;
3493 }
3494
3495 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3496 {
3497 const char *p, *p1;
3498 int len;
3499 p = *pp;
3500 p1 = strchr(p, sep);
3501 if (!p1)
3502 return -1;
3503 len = p1 - p;
3504 p1++;
3505 if (buf_size > 0) {
3506 if (len > buf_size - 1)
3507 len = buf_size - 1;
3508 memcpy(buf, p, len);
3509 buf[len] = '\0';
3510 }
3511 *pp = p1;
3512 return 0;
3513 }
3514
3515 int parse_host_src_port(struct sockaddr_in *haddr,
3516 struct sockaddr_in *saddr,
3517 const char *input_str)
3518 {
3519 char *str = strdup(input_str);
3520 char *host_str = str;
3521 char *src_str;
3522 char *ptr;
3523
3524 /*
3525 * Chop off any extra arguments at the end of the string which
3526 * would start with a comma, then fill in the src port information
3527 * if it was provided else use the "any address" and "any port".
3528 */
3529 if ((ptr = strchr(str,',')))
3530 *ptr = '\0';
3531
3532 if ((src_str = strchr(input_str,'@'))) {
3533 *src_str = '\0';
3534 src_str++;
3535 }
3536
3537 if (parse_host_port(haddr, host_str) < 0)
3538 goto fail;
3539
3540 if (!src_str || *src_str == '\0')
3541 src_str = ":0";
3542
3543 if (parse_host_port(saddr, src_str) < 0)
3544 goto fail;
3545
3546 free(str);
3547 return(0);
3548
3549 fail:
3550 free(str);
3551 return -1;
3552 }
3553
3554 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3555 {
3556 char buf[512];
3557 struct hostent *he;
3558 const char *p, *r;
3559 int port;
3560
3561 p = str;
3562 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3563 return -1;
3564 saddr->sin_family = AF_INET;
3565 if (buf[0] == '\0') {
3566 saddr->sin_addr.s_addr = 0;
3567 } else {
3568 if (isdigit(buf[0])) {
3569 if (!inet_aton(buf, &saddr->sin_addr))
3570 return -1;
3571 } else {
3572 if ((he = gethostbyname(buf)) == NULL)
3573 return - 1;
3574 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3575 }
3576 }
3577 port = strtol(p, (char **)&r, 0);
3578 if (r == p)
3579 return -1;
3580 saddr->sin_port = htons(port);
3581 return 0;
3582 }
3583
3584 #ifndef _WIN32
3585 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3586 {
3587 const char *p;
3588 int len;
3589
3590 len = MIN(108, strlen(str));
3591 p = strchr(str, ',');
3592 if (p)
3593 len = MIN(len, p - str);
3594
3595 memset(uaddr, 0, sizeof(*uaddr));
3596
3597 uaddr->sun_family = AF_UNIX;
3598 memcpy(uaddr->sun_path, str, len);
3599
3600 return 0;
3601 }
3602 #endif
3603
3604 /* find or alloc a new VLAN */
3605 VLANState *qemu_find_vlan(int id)
3606 {
3607 VLANState **pvlan, *vlan;
3608 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3609 if (vlan->id == id)
3610 return vlan;
3611 }
3612 vlan = qemu_mallocz(sizeof(VLANState));
3613 if (!vlan)
3614 return NULL;
3615 vlan->id = id;
3616 vlan->next = NULL;
3617 pvlan = &first_vlan;
3618 while (*pvlan != NULL)
3619 pvlan = &(*pvlan)->next;
3620 *pvlan = vlan;
3621 return vlan;
3622 }
3623
3624 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3625 IOReadHandler *fd_read,
3626 IOCanRWHandler *fd_can_read,
3627 void *opaque)
3628 {
3629 VLANClientState *vc, **pvc;
3630 vc = qemu_mallocz(sizeof(VLANClientState));
3631 if (!vc)
3632 return NULL;
3633 vc->fd_read = fd_read;
3634 vc->fd_can_read = fd_can_read;
3635 vc->opaque = opaque;
3636 vc->vlan = vlan;
3637
3638 vc->next = NULL;
3639 pvc = &vlan->first_client;
3640 while (*pvc != NULL)
3641 pvc = &(*pvc)->next;
3642 *pvc = vc;
3643 return vc;
3644 }
3645
3646 int qemu_can_send_packet(VLANClientState *vc1)
3647 {
3648 VLANState *vlan = vc1->vlan;
3649 VLANClientState *vc;
3650
3651 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3652 if (vc != vc1) {
3653 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3654 return 1;
3655 }
3656 }
3657 return 0;
3658 }
3659
3660 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3661 {
3662 VLANState *vlan = vc1->vlan;
3663 VLANClientState *vc;
3664
3665 #if 0
3666 printf("vlan %d send:\n", vlan->id);
3667 hex_dump(stdout, buf, size);
3668 #endif
3669 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3670 if (vc != vc1) {
3671 vc->fd_read(vc->opaque, buf, size);
3672 }
3673 }
3674 }
3675
3676 #if defined(CONFIG_SLIRP)
3677
3678 /* slirp network adapter */
3679
3680 static int slirp_inited;
3681 static VLANClientState *slirp_vc;
3682
3683 int slirp_can_output(void)
3684 {
3685 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3686 }
3687
3688 void slirp_output(const uint8_t *pkt, int pkt_len)
3689 {
3690 #if 0
3691 printf("slirp output:\n");
3692 hex_dump(stdout, pkt, pkt_len);
3693 #endif
3694 if (!slirp_vc)
3695 return;
3696 qemu_send_packet(slirp_vc, pkt, pkt_len);
3697 }
3698
3699 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3700 {
3701 #if 0
3702 printf("slirp input:\n");
3703 hex_dump(stdout, buf, size);
3704 #endif
3705 slirp_input(buf, size);
3706 }
3707
3708 static int net_slirp_init(VLANState *vlan)
3709 {
3710 if (!slirp_inited) {
3711 slirp_inited = 1;
3712 slirp_init();
3713 }
3714 slirp_vc = qemu_new_vlan_client(vlan,
3715 slirp_receive, NULL, NULL);
3716 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3717 return 0;
3718 }
3719
3720 static void net_slirp_redir(const char *redir_str)
3721 {
3722 int is_udp;
3723 char buf[256], *r;
3724 const char *p;
3725 struct in_addr guest_addr;
3726 int host_port, guest_port;
3727
3728 if (!slirp_inited) {
3729 slirp_inited = 1;
3730 slirp_init();
3731 }
3732
3733 p = redir_str;
3734 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3735 goto fail;
3736 if (!strcmp(buf, "tcp")) {
3737 is_udp = 0;
3738 } else if (!strcmp(buf, "udp")) {
3739 is_udp = 1;
3740 } else {
3741 goto fail;
3742 }
3743
3744 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3745 goto fail;
3746 host_port = strtol(buf, &r, 0);
3747 if (r == buf)
3748 goto fail;
3749
3750 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3751 goto fail;
3752 if (buf[0] == '\0') {
3753 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3754 }
3755 if (!inet_aton(buf, &guest_addr))
3756 goto fail;
3757
3758 guest_port = strtol(p, &r, 0);
3759 if (r == p)
3760 goto fail;
3761
3762 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3763 fprintf(stderr, "qemu: could not set up redirection\n");
3764 exit(1);
3765 }
3766 return;
3767 fail:
3768 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3769 exit(1);
3770 }
3771
3772 #ifndef _WIN32
3773
3774 char smb_dir[1024];
3775
3776 static void smb_exit(void)
3777 {
3778 DIR *d;
3779 struct dirent *de;
3780 char filename[1024];
3781
3782 /* erase all the files in the directory */
3783 d = opendir(smb_dir);
3784 for(;;) {
3785 de = readdir(d);
3786 if (!de)
3787 break;
3788 if (strcmp(de->d_name, ".") != 0 &&
3789 strcmp(de->d_name, "..") != 0) {
3790 snprintf(filename, sizeof(filename), "%s/%s",
3791 smb_dir, de->d_name);
3792 unlink(filename);
3793 }
3794 }
3795 closedir(d);
3796 rmdir(smb_dir);
3797 }
3798
3799 /* automatic user mode samba server configuration */
3800 static void net_slirp_smb(const char *exported_dir)
3801 {
3802 char smb_conf[1024];
3803 char smb_cmdline[1024];
3804 FILE *f;
3805
3806 if (!slirp_inited) {
3807 slirp_inited = 1;
3808 slirp_init();
3809 }
3810
3811 /* XXX: better tmp dir construction */
3812 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3813 if (mkdir(smb_dir, 0700) < 0) {
3814 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3815 exit(1);
3816 }
3817 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3818
3819 f = fopen(smb_conf, "w");
3820 if (!f) {
3821 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3822 exit(1);
3823 }
3824 fprintf(f,
3825 "[global]\n"
3826 "private dir=%s\n"
3827 "smb ports=0\n"
3828 "socket address=127.0.0.1\n"
3829 "pid directory=%s\n"
3830 "lock directory=%s\n"
3831 "log file=%s/log.smbd\n"
3832 "smb passwd file=%s/smbpasswd\n"
3833 "security = share\n"
3834 "[qemu]\n"
3835 "path=%s\n"
3836 "read only=no\n"
3837 "guest ok=yes\n",
3838 smb_dir,
3839 smb_dir,
3840 smb_dir,
3841 smb_dir,
3842 smb_dir,
3843 exported_dir
3844 );
3845 fclose(f);
3846 atexit(smb_exit);
3847
3848 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3849 SMBD_COMMAND, smb_conf);
3850
3851 slirp_add_exec(0, smb_cmdline, 4, 139);
3852 }
3853
3854 #endif /* !defined(_WIN32) */
3855 void do_info_slirp(void)
3856 {
3857 slirp_stats();
3858 }
3859
3860 #endif /* CONFIG_SLIRP */
3861
3862 #if !defined(_WIN32)
3863
3864 typedef struct TAPState {
3865 VLANClientState *vc;
3866 int fd;
3867 char down_script[1024];
3868 } TAPState;
3869
3870 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3871 {
3872 TAPState *s = opaque;
3873 int ret;
3874 for(;;) {
3875 ret = write(s->fd, buf, size);
3876 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3877 } else {
3878 break;
3879 }
3880 }
3881 }
3882
3883 static void tap_send(void *opaque)
3884 {
3885 TAPState *s = opaque;
3886 uint8_t buf[4096];
3887 int size;
3888
3889 #ifdef __sun__
3890 struct strbuf sbuf;
3891 int f = 0;
3892 sbuf.maxlen = sizeof(buf);
3893 sbuf.buf = buf;
3894 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3895 #else
3896 size = read(s->fd, buf, sizeof(buf));
3897 #endif
3898 if (size > 0) {
3899 qemu_send_packet(s->vc, buf, size);
3900 }
3901 }
3902
3903 /* fd support */
3904
3905 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3906 {
3907 TAPState *s;
3908
3909 s = qemu_mallocz(sizeof(TAPState));
3910 if (!s)
3911 return NULL;
3912 s->fd = fd;
3913 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3914 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3915 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3916 return s;
3917 }
3918
3919 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3920 static int tap_open(char *ifname, int ifname_size)
3921 {
3922 int fd;
3923 char *dev;
3924 struct stat s;
3925
3926 TFR(fd = open("/dev/tap", O_RDWR));
3927 if (fd < 0) {
3928 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3929 return -1;
3930 }
3931
3932 fstat(fd, &s);
3933 dev = devname(s.st_rdev, S_IFCHR);
3934 pstrcpy(ifname, ifname_size, dev);
3935
3936 fcntl(fd, F_SETFL, O_NONBLOCK);
3937 return fd;
3938 }
3939 #elif defined(__sun__)
3940 #define TUNNEWPPA (('T'<<16) | 0x0001)
3941 /*
3942 * Allocate TAP device, returns opened fd.
3943 * Stores dev name in the first arg(must be large enough).
3944 */
3945 int tap_alloc(char *dev)
3946 {
3947 int tap_fd, if_fd, ppa = -1;
3948 static int ip_fd = 0;
3949 char *ptr;
3950
3951 static int arp_fd = 0;
3952 int ip_muxid, arp_muxid;
3953 struct strioctl strioc_if, strioc_ppa;
3954 int link_type = I_PLINK;;
3955 struct lifreq ifr;
3956 char actual_name[32] = "";
3957
3958 memset(&ifr, 0x0, sizeof(ifr));
3959
3960 if( *dev ){
3961 ptr = dev;
3962 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3963 ppa = atoi(ptr);
3964 }
3965
3966 /* Check if IP device was opened */
3967 if( ip_fd )
3968 close(ip_fd);
3969
3970 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3971 if (ip_fd < 0) {
3972 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3973 return -1;
3974 }
3975
3976 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3977 if (tap_fd < 0) {
3978 syslog(LOG_ERR, "Can't open /dev/tap");
3979 return -1;
3980 }
3981
3982 /* Assign a new PPA and get its unit number. */
3983 strioc_ppa.ic_cmd = TUNNEWPPA;
3984 strioc_ppa.ic_timout = 0;
3985 strioc_ppa.ic_len = sizeof(ppa);
3986 strioc_ppa.ic_dp = (char *)&ppa;
3987 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3988 syslog (LOG_ERR, "Can't assign new interface");
3989
3990 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3991 if (if_fd < 0) {
3992 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3993 return -1;
3994 }
3995 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3996 syslog(LOG_ERR, "Can't push IP module");
3997 return -1;
3998 }
3999
4000 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4001 syslog(LOG_ERR, "Can't get flags\n");
4002
4003 snprintf (actual_name, 32, "tap%d", ppa);
4004 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4005
4006 ifr.lifr_ppa = ppa;
4007 /* Assign ppa according to the unit number returned by tun device */
4008
4009 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4010 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4011 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4012 syslog (LOG_ERR, "Can't get flags\n");
4013 /* Push arp module to if_fd */
4014 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4015 syslog (LOG_ERR, "Can't push ARP module (2)");
4016
4017 /* Push arp module to ip_fd */
4018 if (ioctl (ip_fd, I_POP, NULL) < 0)
4019 syslog (LOG_ERR, "I_POP failed\n");
4020 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4021 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4022 /* Open arp_fd */
4023 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4024 if (arp_fd < 0)
4025 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4026
4027 /* Set ifname to arp */
4028 strioc_if.ic_cmd = SIOCSLIFNAME;
4029 strioc_if.ic_timout = 0;
4030 strioc_if.ic_len = sizeof(ifr);
4031 strioc_if.ic_dp = (char *)&ifr;
4032 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4033 syslog (LOG_ERR, "Can't set ifname to arp\n");
4034 }
4035
4036 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4037 syslog(LOG_ERR, "Can't link TAP device to IP");
4038 return -1;
4039 }
4040
4041 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4042 syslog (LOG_ERR, "Can't link TAP device to ARP");
4043
4044 close (if_fd);
4045
4046 memset(&ifr, 0x0, sizeof(ifr));
4047 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4048 ifr.lifr_ip_muxid = ip_muxid;
4049 ifr.lifr_arp_muxid = arp_muxid;
4050
4051 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4052 {
4053 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4054 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4055 syslog (LOG_ERR, "Can't set multiplexor id");
4056 }
4057
4058 sprintf(dev, "tap%d", ppa);
4059 return tap_fd;
4060 }
4061
4062 static int tap_open(char *ifname, int ifname_size)
4063 {
4064 char dev[10]="";
4065 int fd;
4066 if( (fd = tap_alloc(dev)) < 0 ){
4067 fprintf(stderr, "Cannot allocate TAP device\n");
4068 return -1;
4069 }
4070 pstrcpy(ifname, ifname_size, dev);
4071 fcntl(fd, F_SETFL, O_NONBLOCK);
4072 return fd;
4073 }
4074 #else
4075 static int tap_open(char *ifname, int ifname_size)
4076 {
4077 struct ifreq ifr;
4078 int fd, ret;
4079
4080 TFR(fd = open("/dev/net/tun", O_RDWR));
4081 if (fd < 0) {
4082 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4083 return -1;
4084 }
4085 memset(&ifr, 0, sizeof(ifr));
4086 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4087 if (ifname[0] != '\0')
4088 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4089 else
4090 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4091 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4092 if (ret != 0) {
4093 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4094 close(fd);
4095 return -1;
4096 }
4097 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4098 fcntl(fd, F_SETFL, O_NONBLOCK);
4099 return fd;
4100 }
4101 #endif
4102
4103 static int launch_script(const char *setup_script, const char *ifname, int fd)
4104 {
4105 int pid, status;
4106 char *args[3];
4107 char **parg;
4108
4109 /* try to launch network script */
4110 pid = fork();
4111 if (pid >= 0) {
4112 if (pid == 0) {
4113 int open_max = sysconf (_SC_OPEN_MAX), i;
4114 for (i = 0; i < open_max; i++)
4115 if (i != STDIN_FILENO &&
4116 i != STDOUT_FILENO &&
4117 i != STDERR_FILENO &&
4118 i != fd)
4119 close(i);
4120
4121 parg = args;
4122 *parg++ = (char *)setup_script;
4123 *parg++ = (char *)ifname;
4124 *parg++ = NULL;
4125 execv(setup_script, args);
4126 _exit(1);
4127 }
4128 while (waitpid(pid, &status, 0) != pid);
4129 if (!WIFEXITED(status) ||
4130 WEXITSTATUS(status) != 0) {
4131 fprintf(stderr, "%s: could not launch network script\n",
4132 setup_script);
4133 return -1;
4134 }
4135 }
4136 return 0;
4137 }
4138
4139 static int net_tap_init(VLANState *vlan, const char *ifname1,
4140 const char *setup_script, const char *down_script)
4141 {
4142 TAPState *s;
4143 int fd;
4144 char ifname[128];
4145
4146 if (ifname1 != NULL)
4147 pstrcpy(ifname, sizeof(ifname), ifname1);
4148 else
4149 ifname[0] = '\0';
4150 TFR(fd = tap_open(ifname, sizeof(ifname)));
4151 if (fd < 0)
4152 return -1;
4153
4154 if (!setup_script || !strcmp(setup_script, "no"))
4155 setup_script = "";
4156 if (setup_script[0] != '\0') {
4157 if (launch_script(setup_script, ifname, fd))
4158 return -1;
4159 }
4160 s = net_tap_fd_init(vlan, fd);
4161 if (!s)
4162 return -1;
4163 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4164 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4165 if (down_script && strcmp(down_script, "no"))
4166 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4167 return 0;
4168 }
4169
4170 #endif /* !_WIN32 */
4171
4172 /* network connection */
4173 typedef struct NetSocketState {
4174 VLANClientState *vc;
4175 int fd;
4176 int state; /* 0 = getting length, 1 = getting data */
4177 int index;
4178 int packet_len;
4179 uint8_t buf[4096];
4180 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4181 } NetSocketState;
4182
4183 typedef struct NetSocketListenState {
4184 VLANState *vlan;
4185 int fd;
4186 } NetSocketListenState;
4187
4188 /* XXX: we consider we can send the whole packet without blocking */
4189 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4190 {
4191 NetSocketState *s = opaque;
4192 uint32_t len;
4193 len = htonl(size);
4194
4195 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4196 send_all(s->fd, buf, size);
4197 }
4198
4199 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4200 {
4201 NetSocketState *s = opaque;
4202 sendto(s->fd, buf, size, 0,
4203 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4204 }
4205
4206 static void net_socket_send(void *opaque)
4207 {
4208 NetSocketState *s = opaque;
4209 int l, size, err;
4210 uint8_t buf1[4096];
4211 const uint8_t *buf;
4212
4213 size = recv(s->fd, buf1, sizeof(buf1), 0);
4214 if (size < 0) {
4215 err = socket_error();
4216 if (err != EWOULDBLOCK)
4217 goto eoc;
4218 } else if (size == 0) {
4219 /* end of connection */
4220 eoc:
4221 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4222 closesocket(s->fd);
4223 return;
4224 }
4225 buf = buf1;
4226 while (size > 0) {
4227 /* reassemble a packet from the network */
4228 switch(s->state) {
4229 case 0:
4230 l = 4 - s->index;
4231 if (l > size)
4232 l = size;
4233 memcpy(s->buf + s->index, buf, l);
4234 buf += l;
4235 size -= l;
4236 s->index += l;
4237 if (s->index == 4) {
4238 /* got length */
4239 s->packet_len = ntohl(*(uint32_t *)s->buf);
4240 s->index = 0;
4241 s->state = 1;
4242 }
4243 break;
4244 case 1:
4245 l = s->packet_len - s->index;
4246 if (l > size)
4247 l = size;
4248 memcpy(s->buf + s->index, buf, l);
4249 s->index += l;
4250 buf += l;
4251 size -= l;
4252 if (s->index >= s->packet_len) {
4253 qemu_send_packet(s->vc, s->buf, s->packet_len);
4254 s->index = 0;
4255 s->state = 0;
4256 }
4257 break;
4258 }
4259 }
4260 }
4261
4262 static void net_socket_send_dgram(void *opaque)
4263 {
4264 NetSocketState *s = opaque;
4265 int size;
4266
4267 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4268 if (size < 0)
4269 return;
4270 if (size == 0) {
4271 /* end of connection */
4272 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4273 return;
4274 }
4275 qemu_send_packet(s->vc, s->buf, size);
4276 }
4277
4278 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4279 {
4280 struct ip_mreq imr;
4281 int fd;
4282 int val, ret;
4283 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4284 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4285 inet_ntoa(mcastaddr->sin_addr),
4286 (int)ntohl(mcastaddr->sin_addr.s_addr));
4287 return -1;
4288
4289 }
4290 fd = socket(PF_INET, SOCK_DGRAM, 0);
4291 if (fd < 0) {
4292 perror("socket(PF_INET, SOCK_DGRAM)");
4293 return -1;
4294 }
4295
4296 val = 1;
4297 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4298 (const char *)&val, sizeof(val));
4299 if (ret < 0) {
4300 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4301 goto fail;
4302 }
4303
4304 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4305 if (ret < 0) {
4306 perror("bind");
4307 goto fail;
4308 }
4309
4310 /* Add host to multicast group */
4311 imr.imr_multiaddr = mcastaddr->sin_addr;
4312 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4313
4314 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4315 (const char *)&imr, sizeof(struct ip_mreq));
4316 if (ret < 0) {
4317 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4318 goto fail;
4319 }
4320
4321 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4322 val = 1;
4323 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4324 (const char *)&val, sizeof(val));
4325 if (ret < 0) {
4326 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4327 goto fail;
4328 }
4329
4330 socket_set_nonblock(fd);
4331 return fd;
4332 fail:
4333 if (fd >= 0)
4334 closesocket(fd);
4335 return -1;
4336 }
4337
4338 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4339 int is_connected)
4340 {
4341 struct sockaddr_in saddr;
4342 int newfd;
4343 socklen_t saddr_len;
4344 NetSocketState *s;
4345
4346 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4347 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4348 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4349 */
4350
4351 if (is_connected) {
4352 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4353 /* must be bound */
4354 if (saddr.sin_addr.s_addr==0) {
4355 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4356 fd);
4357 return NULL;
4358 }
4359 /* clone dgram socket */
4360 newfd = net_socket_mcast_create(&saddr);
4361 if (newfd < 0) {
4362 /* error already reported by net_socket_mcast_create() */
4363 close(fd);
4364 return NULL;
4365 }
4366 /* clone newfd to fd, close newfd */
4367 dup2(newfd, fd);
4368 close(newfd);
4369
4370 } else {
4371 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4372 fd, strerror(errno));
4373 return NULL;
4374 }
4375 }
4376
4377 s = qemu_mallocz(sizeof(NetSocketState));
4378 if (!s)
4379 return NULL;
4380 s->fd = fd;
4381
4382 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4383 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4384
4385 /* mcast: save bound address as dst */
4386 if (is_connected) s->dgram_dst=saddr;
4387
4388 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4389 "socket: fd=%d (%s mcast=%s:%d)",
4390 fd, is_connected? "cloned" : "",
4391 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4392 return s;
4393 }
4394
4395 static void net_socket_connect(void *opaque)
4396 {
4397 NetSocketState *s = opaque;
4398 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4399 }
4400
4401 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4402 int is_connected)
4403 {
4404 NetSocketState *s;
4405 s = qemu_mallocz(sizeof(NetSocketState));
4406 if (!s)
4407 return NULL;
4408 s->fd = fd;
4409 s->vc = qemu_new_vlan_client(vlan,
4410 net_socket_receive, NULL, s);
4411 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4412 "socket: fd=%d", fd);
4413 if (is_connected) {
4414 net_socket_connect(s);
4415 } else {
4416 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4417 }
4418 return s;
4419 }
4420
4421 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4422 int is_connected)
4423 {
4424 int so_type=-1, optlen=sizeof(so_type);
4425
4426 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4427 (socklen_t *)&optlen)< 0) {
4428 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4429 return NULL;
4430 }
4431 switch(so_type) {
4432 case SOCK_DGRAM:
4433 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4434 case SOCK_STREAM:
4435 return net_socket_fd_init_stream(vlan, fd, is_connected);
4436 default:
4437 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4438 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4439 return net_socket_fd_init_stream(vlan, fd, is_connected);
4440 }
4441 return NULL;
4442 }
4443
4444 static void net_socket_accept(void *opaque)
4445 {
4446 NetSocketListenState *s = opaque;
4447 NetSocketState *s1;
4448 struct sockaddr_in saddr;
4449 socklen_t len;
4450 int fd;
4451
4452 for(;;) {
4453 len = sizeof(saddr);
4454 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4455 if (fd < 0 && errno != EINTR) {
4456 return;
4457 } else if (fd >= 0) {
4458 break;
4459 }
4460 }
4461 s1 = net_socket_fd_init(s->vlan, fd, 1);
4462 if (!s1) {
4463 closesocket(fd);
4464 } else {
4465 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4466 "socket: connection from %s:%d",
4467 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4468 }
4469 }
4470
4471 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4472 {
4473 NetSocketListenState *s;
4474 int fd, val, ret;
4475 struct sockaddr_in saddr;
4476
4477 if (parse_host_port(&saddr, host_str) < 0)
4478 return -1;
4479
4480 s = qemu_mallocz(sizeof(NetSocketListenState));
4481 if (!s)
4482 return -1;
4483
4484 fd = socket(PF_INET, SOCK_STREAM, 0);
4485 if (fd < 0) {
4486 perror("socket");
4487 return -1;
4488 }
4489 socket_set_nonblock(fd);
4490
4491 /* allow fast reuse */
4492 val = 1;
4493 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4494
4495 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4496 if (ret < 0) {
4497 perror("bind");
4498 return -1;
4499 }
4500 ret = listen(fd, 0);
4501 if (ret < 0) {
4502 perror("listen");
4503 return -1;
4504 }
4505 s->vlan = vlan;
4506 s->fd = fd;
4507 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4508 return 0;
4509 }
4510
4511 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4512 {
4513 NetSocketState *s;
4514 int fd, connected, ret, err;
4515 struct sockaddr_in saddr;
4516
4517 if (parse_host_port(&saddr, host_str) < 0)
4518 return -1;
4519
4520 fd = socket(PF_INET, SOCK_STREAM, 0);
4521 if (fd < 0) {
4522 perror("socket");
4523 return -1;
4524 }
4525 socket_set_nonblock(fd);
4526
4527 connected = 0;
4528 for(;;) {
4529 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4530 if (ret < 0) {
4531 err = socket_error();
4532 if (err == EINTR || err == EWOULDBLOCK) {
4533 } else if (err == EINPROGRESS) {
4534 break;
4535 #ifdef _WIN32
4536 } else if (err == WSAEALREADY) {
4537 break;
4538 #endif
4539 } else {
4540 perror("connect");
4541 closesocket(fd);
4542 return -1;
4543 }
4544 } else {
4545 connected = 1;
4546 break;
4547 }
4548 }
4549 s = net_socket_fd_init(vlan, fd, connected);
4550 if (!s)
4551 return -1;
4552 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4553 "socket: connect to %s:%d",
4554 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4555 return 0;
4556 }
4557
4558 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4559 {
4560 NetSocketState *s;
4561 int fd;
4562 struct sockaddr_in saddr;
4563
4564 if (parse_host_port(&saddr, host_str) < 0)
4565 return -1;
4566
4567
4568 fd = net_socket_mcast_create(&saddr);
4569 if (fd < 0)
4570 return -1;
4571
4572 s = net_socket_fd_init(vlan, fd, 0);
4573 if (!s)
4574 return -1;
4575
4576 s->dgram_dst = saddr;
4577
4578 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4579 "socket: mcast=%s:%d",
4580 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4581 return 0;
4582
4583 }
4584
4585 static const char *get_word(char *buf, int buf_size, const char *p)
4586 {
4587 char *q;
4588 int substring;
4589
4590 substring = 0;
4591 q = buf;
4592 while (*p != '\0') {
4593 if (*p == '\\') {
4594 p++;
4595 if (*p == '\0')
4596 break;
4597 } else if (*p == '\"') {
4598 substring = !substring;
4599 p++;
4600 continue;
4601 } else if (!substring && (*p == ',' || *p == '='))
4602 break;
4603 if (q && (q - buf) < buf_size - 1)
4604 *q++ = *p;
4605 p++;
4606 }
4607 if (q)
4608 *q = '\0';
4609
4610 return p;
4611 }
4612
4613 static int get_param_value(char *buf, int buf_size,
4614 const char *tag, const char *str)
4615 {
4616 const char *p;
4617 char option[128];
4618
4619 p = str;
4620 for(;;) {
4621 p = get_word(option, sizeof(option), p);
4622 if (*p != '=')
4623 break;
4624 p++;
4625 if (!strcmp(tag, option)) {
4626 (void)get_word(buf, buf_size, p);
4627 return strlen(buf);
4628 } else {
4629 p = get_word(NULL, 0, p);
4630 }
4631 if (*p != ',')
4632 break;
4633 p++;
4634 }
4635 return 0;
4636 }
4637
4638 static int check_params(char *buf, int buf_size,
4639 char **params, const char *str)
4640 {
4641 const char *p;
4642 int i;
4643
4644 p = str;
4645 for(;;) {
4646 p = get_word(buf, buf_size, p);
4647 if (*p != '=')
4648 return -1;
4649 p++;
4650 for(i = 0; params[i] != NULL; i++)
4651 if (!strcmp(params[i], buf))
4652 break;
4653 if (params[i] == NULL)
4654 return -1;
4655 p = get_word(NULL, 0, p);
4656 if (*p != ',')
4657 break;
4658 p++;
4659 }
4660 return 0;
4661 }
4662
4663
4664 static int net_client_init(const char *str)
4665 {
4666 const char *p;
4667 char *q;
4668 char device[64];
4669 char buf[1024];
4670 int vlan_id, ret;
4671 VLANState *vlan;
4672
4673 p = str;
4674 q = device;
4675 while (*p != '\0' && *p != ',') {
4676 if ((q - device) < sizeof(device) - 1)
4677 *q++ = *p;
4678 p++;
4679 }
4680 *q = '\0';
4681 if (*p == ',')
4682 p++;
4683 vlan_id = 0;
4684 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4685 vlan_id = strtol(buf, NULL, 0);
4686 }
4687 vlan = qemu_find_vlan(vlan_id);
4688 if (!vlan) {
4689 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4690 return -1;
4691 }
4692 if (!strcmp(device, "nic")) {
4693 NICInfo *nd;
4694 uint8_t *macaddr;
4695
4696 if (nb_nics >= MAX_NICS) {
4697 fprintf(stderr, "Too Many NICs\n");
4698 return -1;
4699 }
4700 nd = &nd_table[nb_nics];
4701 macaddr = nd->macaddr;
4702 macaddr[0] = 0x52;
4703 macaddr[1] = 0x54;
4704 macaddr[2] = 0x00;
4705 macaddr[3] = 0x12;
4706 macaddr[4] = 0x34;
4707 macaddr[5] = 0x56 + nb_nics;
4708
4709 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4710 if (parse_macaddr(macaddr, buf) < 0) {
4711 fprintf(stderr, "invalid syntax for ethernet address\n");
4712 return -1;
4713 }
4714 }
4715 if (get_param_value(buf, sizeof(buf), "model", p)) {
4716 nd->model = strdup(buf);
4717 }
4718 nd->vlan = vlan;
4719 nb_nics++;
4720 vlan->nb_guest_devs++;
4721 ret = 0;
4722 } else
4723 if (!strcmp(device, "none")) {
4724 /* does nothing. It is needed to signal that no network cards
4725 are wanted */
4726 ret = 0;
4727 } else
4728 #ifdef CONFIG_SLIRP
4729 if (!strcmp(device, "user")) {
4730 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4731 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4732 }
4733 vlan->nb_host_devs++;
4734 ret = net_slirp_init(vlan);
4735 } else
4736 #endif
4737 #ifdef _WIN32
4738 if (!strcmp(device, "tap")) {
4739 char ifname[64];
4740 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4741 fprintf(stderr, "tap: no interface name\n");
4742 return -1;
4743 }
4744 vlan->nb_host_devs++;
4745 ret = tap_win32_init(vlan, ifname);
4746 } else
4747 #else
4748 if (!strcmp(device, "tap")) {
4749 char ifname[64];
4750 char setup_script[1024], down_script[1024];
4751 int fd;
4752 vlan->nb_host_devs++;
4753 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4754 fd = strtol(buf, NULL, 0);
4755 ret = -1;
4756 if (net_tap_fd_init(vlan, fd))
4757 ret = 0;
4758 } else {
4759 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4760 ifname[0] = '\0';
4761 }
4762 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4763 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4764 }
4765 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4766 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4767 }
4768 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4769 }
4770 } else
4771 #endif
4772 if (!strcmp(device, "socket")) {
4773 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4774 int fd;
4775 fd = strtol(buf, NULL, 0);
4776 ret = -1;
4777 if (net_socket_fd_init(vlan, fd, 1))
4778 ret = 0;
4779 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4780 ret = net_socket_listen_init(vlan, buf);
4781 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4782 ret = net_socket_connect_init(vlan, buf);
4783 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4784 ret = net_socket_mcast_init(vlan, buf);
4785 } else {
4786 fprintf(stderr, "Unknown socket options: %s\n", p);
4787 return -1;
4788 }
4789 vlan->nb_host_devs++;
4790 } else
4791 {
4792 fprintf(stderr, "Unknown network device: %s\n", device);
4793 return -1;
4794 }
4795 if (ret < 0) {
4796 fprintf(stderr, "Could not initialize device '%s'\n", device);
4797 }
4798
4799 return ret;
4800 }
4801
4802 void do_info_network(void)
4803 {
4804 VLANState *vlan;
4805 VLANClientState *vc;
4806
4807 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4808 term_printf("VLAN %d devices:\n", vlan->id);
4809 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4810 term_printf(" %s\n", vc->info_str);
4811 }
4812 }
4813
4814 #define HD_ALIAS "file=\"%s\",index=%d,media=disk"
4815 #ifdef TARGET_PPC
4816 #define CDROM_ALIAS "index=1,media=cdrom"
4817 #else
4818 #define CDROM_ALIAS "index=2,media=cdrom"
4819 #endif
4820 #define FD_ALIAS "index=%d,if=floppy"
4821 #define PFLASH_ALIAS "file=\"%s\",if=pflash"
4822 #define MTD_ALIAS "file=\"%s\",if=mtd"
4823 #define SD_ALIAS "index=0,if=sd"
4824
4825 static int drive_add(const char *fmt, ...)
4826 {
4827 va_list ap;
4828
4829 if (nb_drives_opt >= MAX_DRIVES) {
4830 fprintf(stderr, "qemu: too many drives\n");
4831 exit(1);
4832 }
4833
4834 va_start(ap, fmt);
4835 vsnprintf(drives_opt[nb_drives_opt], sizeof(drives_opt[0]), fmt, ap);
4836 va_end(ap);
4837
4838 return nb_drives_opt++;
4839 }
4840
4841 int drive_get_index(BlockInterfaceType type, int bus, int unit)
4842 {
4843 int index;
4844
4845 /* seek interface, bus and unit */
4846
4847 for (index = 0; index < nb_drives; index++)
4848 if (drives_table[index].type == type &&
4849 drives_table[index].bus == bus &&
4850 drives_table[index].unit == unit)
4851 return index;
4852
4853 return -1;
4854 }
4855
4856 int drive_get_max_bus(BlockInterfaceType type)
4857 {
4858 int max_bus;
4859 int index;
4860
4861 max_bus = -1;
4862 for (index = 0; index < nb_drives; index++) {
4863 if(drives_table[index].type == type &&
4864 drives_table[index].bus > max_bus)
4865 max_bus = drives_table[index].bus;
4866 }
4867 return max_bus;
4868 }
4869
4870 static int drive_init(const char *str, int snapshot, QEMUMachine *machine)
4871 {
4872 char buf[128];
4873 char file[1024];
4874 char devname[128];
4875 const char *mediastr = "";
4876 BlockInterfaceType type;
4877 enum { MEDIA_DISK, MEDIA_CDROM } media;
4878 int bus_id, unit_id;
4879 int cyls, heads, secs, translation;
4880 BlockDriverState *bdrv;
4881 int max_devs;
4882 int index;
4883 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4884 "secs", "trans", "media", "snapshot", "file", NULL };
4885
4886 if (check_params(buf, sizeof(buf), params, str) < 0) {
4887 fprintf(stderr, "qemu: unknowm parameter '%s' in '%s'\n",
4888 buf, str);
4889 return -1;
4890 }
4891
4892 file[0] = 0;
4893 cyls = heads = secs = 0;
4894 bus_id = 0;
4895 unit_id = -1;
4896 translation = BIOS_ATA_TRANSLATION_AUTO;
4897 index = -1;
4898
4899 if (!strcmp(machine->name, "realview") ||
4900 !strcmp(machine->name, "SS-5") ||
4901 !strcmp(machine->name, "SS-10") ||
4902 !strcmp(machine->name, "SS-600MP") ||
4903 !strcmp(machine->name, "versatilepb") ||
4904 !strcmp(machine->name, "versatileab")) {
4905 type = IF_SCSI;
4906 max_devs = MAX_SCSI_DEVS;
4907 strcpy(devname, "scsi");
4908 } else {
4909 type = IF_IDE;
4910 max_devs = MAX_IDE_DEVS;
4911 strcpy(devname, "ide");
4912 }
4913 media = MEDIA_DISK;
4914
4915 /* extract parameters */
4916
4917 if (get_param_value(buf, sizeof(buf), "bus", str)) {
4918 bus_id = strtol(buf, NULL, 0);
4919 if (bus_id < 0) {
4920 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
4921 return -1;
4922 }
4923 }
4924
4925 if (get_param_value(buf, sizeof(buf), "unit", str)) {
4926 unit_id = strtol(buf, NULL, 0);
4927 if (unit_id < 0) {
4928 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
4929 return -1;
4930 }
4931 }
4932
4933 if (get_param_value(buf, sizeof(buf), "if", str)) {
4934 strncpy(devname, buf, sizeof(devname));
4935 if (!strcmp(buf, "ide")) {
4936 type = IF_IDE;
4937 max_devs = MAX_IDE_DEVS;
4938 } else if (!strcmp(buf, "scsi")) {
4939 type = IF_SCSI;
4940 max_devs = MAX_SCSI_DEVS;
4941 } else if (!strcmp(buf, "floppy")) {
4942 type = IF_FLOPPY;
4943 max_devs = 0;
4944 } else if (!strcmp(buf, "pflash")) {
4945 type = IF_PFLASH;
4946 max_devs = 0;
4947 } else if (!strcmp(buf, "mtd")) {
4948 type = IF_MTD;
4949 max_devs = 0;
4950 } else if (!strcmp(buf, "sd")) {
4951 type = IF_SD;
4952 max_devs = 0;
4953 } else {
4954 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
4955 return -1;
4956 }
4957 }
4958
4959 if (get_param_value(buf, sizeof(buf), "index", str)) {
4960 index = strtol(buf, NULL, 0);
4961 if (index < 0) {
4962 fprintf(stderr, "qemu: '%s' invalid index\n", str);
4963 return -1;
4964 }
4965 }
4966
4967 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
4968 cyls = strtol(buf, NULL, 0);
4969 }
4970
4971 if (get_param_value(buf, sizeof(buf), "heads", str)) {
4972 heads = strtol(buf, NULL, 0);
4973 }
4974
4975 if (get_param_value(buf, sizeof(buf), "secs", str)) {
4976 secs = strtol(buf, NULL, 0);
4977 }
4978
4979 if (cyls || heads || secs) {
4980 if (cyls < 1 || cyls > 16383) {
4981 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
4982 return -1;
4983 }
4984 if (heads < 1 || heads > 16) {
4985 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
4986 return -1;
4987 }
4988 if (secs < 1 || secs > 63) {
4989 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
4990 return -1;
4991 }
4992 }
4993
4994 if (get_param_value(buf, sizeof(buf), "trans", str)) {
4995 if (!cyls) {
4996 fprintf(stderr,
4997 "qemu: '%s' trans must be used with cyls,heads and secs\n",
4998 str);
4999 return -1;
5000 }
5001 if (!strcmp(buf, "none"))
5002 translation = BIOS_ATA_TRANSLATION_NONE;
5003 else if (!strcmp(buf, "lba"))
5004 translation = BIOS_ATA_TRANSLATION_LBA;
5005 else if (!strcmp(buf, "auto"))
5006 translation = BIOS_ATA_TRANSLATION_AUTO;
5007 else {
5008 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5009 return -1;
5010 }
5011 }
5012
5013 if (get_param_value(buf, sizeof(buf), "media", str)) {
5014 if (!strcmp(buf, "disk")) {
5015 media = MEDIA_DISK;
5016 } else if (!strcmp(buf, "cdrom")) {
5017 if (cyls || secs || heads) {
5018 fprintf(stderr,
5019 "qemu: '%s' invalid physical CHS format\n", str);
5020 return -1;
5021 }
5022 media = MEDIA_CDROM;
5023 } else {
5024 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5025 return -1;
5026 }
5027 }
5028
5029 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5030 if (!strcmp(buf, "on"))
5031 snapshot = 1;
5032 else if (!strcmp(buf, "off"))
5033 snapshot = 0;
5034 else {
5035 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5036 return -1;
5037 }
5038 }
5039
5040 get_param_value(file, sizeof(file), "file", str);
5041
5042 /* compute bus and unit according index */
5043
5044 if (index != -1) {
5045 if (bus_id != 0 || unit_id != -1) {
5046 fprintf(stderr,
5047 "qemu: '%s' index cannot be used with bus and unit\n", str);
5048 return -1;
5049 }
5050 if (max_devs == 0)
5051 {
5052 unit_id = index;
5053 bus_id = 0;
5054 } else {
5055 unit_id = index % max_devs;
5056 bus_id = index / max_devs;
5057 }
5058 }
5059
5060 /* if user doesn't specify a unit_id,
5061 * try to find the first free
5062 */
5063
5064 if (unit_id == -1) {
5065 unit_id = 0;
5066 while (drive_get_index(type, bus_id, unit_id) != -1) {
5067 unit_id++;
5068 if (max_devs && unit_id >= max_devs) {
5069 unit_id -= max_devs;
5070 bus_id++;
5071 }
5072 }
5073 }
5074
5075 /* check unit id */
5076
5077 if (max_devs && unit_id >= max_devs) {
5078 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5079 str, unit_id, max_devs - 1);
5080 return -1;
5081 }
5082
5083 /*
5084 * ignore multiple definitions
5085 */
5086
5087 if (drive_get_index(type, bus_id, unit_id) != -1)
5088 return 0;
5089
5090 /* init */
5091
5092 if (type == IF_IDE || type == IF_SCSI)
5093 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5094 snprintf(buf, sizeof(buf), max_devs ? "%1$s%4$i%2$s%3$i" : "%s%s%i",
5095 devname, mediastr, unit_id, bus_id);
5096 bdrv = bdrv_new(buf);
5097 drives_table[nb_drives].bdrv = bdrv;
5098 drives_table[nb_drives].type = type;
5099 drives_table[nb_drives].bus = bus_id;
5100 drives_table[nb_drives].unit = unit_id;
5101 nb_drives++;
5102
5103 switch(type) {
5104 case IF_IDE:
5105 case IF_SCSI:
5106 switch(media) {
5107 case MEDIA_DISK:
5108 if (cyls != 0) {
5109 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5110 bdrv_set_translation_hint(bdrv, translation);
5111 }
5112 break;
5113 case MEDIA_CDROM:
5114 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5115 break;
5116 }
5117 break;
5118 case IF_SD:
5119 /* FIXME: This isn't really a floppy, but it's a reasonable
5120 approximation. */
5121 case IF_FLOPPY:
5122 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5123 break;
5124 case IF_PFLASH:
5125 case IF_MTD:
5126 break;
5127 }
5128 if (!file[0])
5129 return 0;
5130 if (bdrv_open(bdrv, file, snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
5131 qemu_key_check(bdrv, file)) {
5132 fprintf(stderr, "qemu: could not open disk image %s\n",
5133 file);
5134 return -1;
5135 }
5136 return 0;
5137 }
5138
5139 /***********************************************************/
5140 /* USB devices */
5141
5142 static USBPort *used_usb_ports;
5143 static USBPort *free_usb_ports;
5144
5145 /* ??? Maybe change this to register a hub to keep track of the topology. */
5146 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5147 usb_attachfn attach)
5148 {
5149 port->opaque = opaque;
5150 port->index = index;
5151 port->attach = attach;
5152 port->next = free_usb_ports;
5153 free_usb_ports = port;
5154 }
5155
5156 static int usb_device_add(const char *devname)
5157 {
5158 const char *p;
5159 USBDevice *dev;
5160 USBPort *port;
5161
5162 if (!free_usb_ports)
5163 return -1;
5164
5165 if (strstart(devname, "host:", &p)) {
5166 dev = usb_host_device_open(p);
5167 } else if (!strcmp(devname, "mouse")) {
5168 dev = usb_mouse_init();
5169 } else if (!strcmp(devname, "tablet")) {
5170 dev = usb_tablet_init();
5171 } else if (!strcmp(devname, "keyboard")) {
5172 dev = usb_keyboard_init();
5173 } else if (strstart(devname, "disk:", &p)) {
5174 dev = usb_msd_init(p);
5175 } else if (!strcmp(devname, "wacom-tablet")) {
5176 dev = usb_wacom_init();
5177 } else {
5178 return -1;
5179 }
5180 if (!dev)
5181 return -1;
5182
5183 /* Find a USB port to add the device to. */
5184 port = free_usb_ports;
5185 if (!port->next) {
5186 USBDevice *hub;
5187
5188 /* Create a new hub and chain it on. */
5189 free_usb_ports = NULL;
5190 port->next = used_usb_ports;
5191 used_usb_ports = port;
5192
5193 hub = usb_hub_init(VM_USB_HUB_SIZE);
5194 usb_attach(port, hub);
5195 port = free_usb_ports;
5196 }
5197
5198 free_usb_ports = port->next;
5199 port->next = used_usb_ports;
5200 used_usb_ports = port;
5201 usb_attach(port, dev);
5202 return 0;
5203 }
5204
5205 static int usb_device_del(const char *devname)
5206 {
5207 USBPort *port;
5208 USBPort **lastp;
5209 USBDevice *dev;
5210 int bus_num, addr;
5211 const char *p;
5212
5213 if (!used_usb_ports)
5214 return -1;
5215
5216 p = strchr(devname, '.');
5217 if (!p)
5218 return -1;
5219 bus_num = strtoul(devname, NULL, 0);
5220 addr = strtoul(p + 1, NULL, 0);
5221 if (bus_num != 0)
5222 return -1;
5223
5224 lastp = &used_usb_ports;
5225 port = used_usb_ports;
5226 while (port && port->dev->addr != addr) {
5227 lastp = &port->next;
5228 port = port->next;
5229 }
5230
5231 if (!port)
5232 return -1;
5233
5234 dev = port->dev;
5235 *lastp = port->next;
5236 usb_attach(port, NULL);
5237 dev->handle_destroy(dev);
5238 port->next = free_usb_ports;
5239 free_usb_ports = port;
5240 return 0;
5241 }
5242
5243 void do_usb_add(const char *devname)
5244 {
5245 int ret;
5246 ret = usb_device_add(devname);
5247 if (ret < 0)
5248 term_printf("Could not add USB device '%s'\n", devname);
5249 }
5250
5251 void do_usb_del(const char *devname)
5252 {
5253 int ret;
5254 ret = usb_device_del(devname);
5255 if (ret < 0)
5256 term_printf("Could not remove USB device '%s'\n", devname);
5257 }
5258
5259 void usb_info(void)
5260 {
5261 USBDevice *dev;
5262 USBPort *port;
5263 const char *speed_str;
5264
5265 if (!usb_enabled) {
5266 term_printf("USB support not enabled\n");
5267 return;
5268 }
5269
5270 for (port = used_usb_ports; port; port = port->next) {
5271 dev = port->dev;
5272 if (!dev)
5273 continue;
5274 switch(dev->speed) {
5275 case USB_SPEED_LOW:
5276 speed_str = "1.5";
5277 break;
5278 case USB_SPEED_FULL:
5279 speed_str = "12";
5280 break;
5281 case USB_SPEED_HIGH:
5282 speed_str = "480";
5283 break;
5284 default:
5285 speed_str = "?";
5286 break;
5287 }
5288 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5289 0, dev->addr, speed_str, dev->devname);
5290 }
5291 }
5292
5293 /***********************************************************/
5294 /* PCMCIA/Cardbus */
5295
5296 static struct pcmcia_socket_entry_s {
5297 struct pcmcia_socket_s *socket;
5298 struct pcmcia_socket_entry_s *next;
5299 } *pcmcia_sockets = 0;
5300
5301 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5302 {
5303 struct pcmcia_socket_entry_s *entry;
5304
5305 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5306 entry->socket = socket;
5307 entry->next = pcmcia_sockets;
5308 pcmcia_sockets = entry;
5309 }
5310
5311 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5312 {
5313 struct pcmcia_socket_entry_s *entry, **ptr;
5314
5315 ptr = &pcmcia_sockets;
5316 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5317 if (entry->socket == socket) {
5318 *ptr = entry->next;
5319 qemu_free(entry);
5320 }
5321 }
5322
5323 void pcmcia_info(void)
5324 {
5325 struct pcmcia_socket_entry_s *iter;
5326 if (!pcmcia_sockets)
5327 term_printf("No PCMCIA sockets\n");
5328
5329 for (iter = pcmcia_sockets; iter; iter = iter->next)
5330 term_printf("%s: %s\n", iter->socket->slot_string,
5331 iter->socket->attached ? iter->socket->card_string :
5332 "Empty");
5333 }
5334
5335 /***********************************************************/
5336 /* dumb display */
5337
5338 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5339 {
5340 }
5341
5342 static void dumb_resize(DisplayState *ds, int w, int h)
5343 {
5344 }
5345
5346 static void dumb_refresh(DisplayState *ds)
5347 {
5348 #if defined(CONFIG_SDL)
5349 vga_hw_update();
5350 #endif
5351 }
5352
5353 static void dumb_display_init(DisplayState *ds)
5354 {
5355 ds->data = NULL;
5356 ds->linesize = 0;
5357 ds->depth = 0;
5358 ds->dpy_update = dumb_update;
5359 ds->dpy_resize = dumb_resize;
5360 ds->dpy_refresh = dumb_refresh;
5361 }
5362
5363 /***********************************************************/
5364 /* I/O handling */
5365
5366 #define MAX_IO_HANDLERS 64
5367
5368 typedef struct IOHandlerRecord {
5369 int fd;
5370 IOCanRWHandler *fd_read_poll;
5371 IOHandler *fd_read;
5372 IOHandler *fd_write;
5373 int deleted;
5374 void *opaque;
5375 /* temporary data */
5376 struct pollfd *ufd;
5377 struct IOHandlerRecord *next;
5378 } IOHandlerRecord;
5379
5380 static IOHandlerRecord *first_io_handler;
5381
5382 /* XXX: fd_read_poll should be suppressed, but an API change is
5383 necessary in the character devices to suppress fd_can_read(). */
5384 int qemu_set_fd_handler2(int fd,
5385 IOCanRWHandler *fd_read_poll,
5386 IOHandler *fd_read,
5387 IOHandler *fd_write,
5388 void *opaque)
5389 {
5390 IOHandlerRecord **pioh, *ioh;
5391
5392 if (!fd_read && !fd_write) {
5393 pioh = &first_io_handler;
5394 for(;;) {
5395 ioh = *pioh;
5396 if (ioh == NULL)
5397 break;
5398 if (ioh->fd == fd) {
5399 ioh->deleted = 1;
5400 break;
5401 }
5402 pioh = &ioh->next;
5403 }
5404 } else {
5405 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5406 if (ioh->fd == fd)
5407 goto found;
5408 }
5409 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5410 if (!ioh)
5411 return -1;
5412 ioh->next = first_io_handler;
5413 first_io_handler = ioh;
5414 found:
5415 ioh->fd = fd;
5416 ioh->fd_read_poll = fd_read_poll;
5417 ioh->fd_read = fd_read;
5418 ioh->fd_write = fd_write;
5419 ioh->opaque = opaque;
5420 ioh->deleted = 0;
5421 }
5422 return 0;
5423 }
5424
5425 int qemu_set_fd_handler(int fd,
5426 IOHandler *fd_read,
5427 IOHandler *fd_write,
5428 void *opaque)
5429 {
5430 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5431 }
5432
5433 /***********************************************************/
5434 /* Polling handling */
5435
5436 typedef struct PollingEntry {
5437 PollingFunc *func;
5438 void *opaque;
5439 struct PollingEntry *next;
5440 } PollingEntry;
5441
5442 static PollingEntry *first_polling_entry;
5443
5444 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5445 {
5446 PollingEntry **ppe, *pe;
5447 pe = qemu_mallocz(sizeof(PollingEntry));
5448 if (!pe)
5449 return -1;
5450 pe->func = func;
5451 pe->opaque = opaque;
5452 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5453 *ppe = pe;
5454 return 0;
5455 }
5456
5457 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5458 {
5459 PollingEntry **ppe, *pe;
5460 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5461 pe = *ppe;
5462 if (pe->func == func && pe->opaque == opaque) {
5463 *ppe = pe->next;
5464 qemu_free(pe);
5465 break;
5466 }
5467 }
5468 }
5469
5470 #ifdef _WIN32
5471 /***********************************************************/
5472 /* Wait objects support */
5473 typedef struct WaitObjects {
5474 int num;
5475 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5476 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5477 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5478 } WaitObjects;
5479
5480 static WaitObjects wait_objects = {0};
5481
5482 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5483 {
5484 WaitObjects *w = &wait_objects;
5485
5486 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5487 return -1;
5488 w->events[w->num] = handle;
5489 w->func[w->num] = func;
5490 w->opaque[w->num] = opaque;
5491 w->num++;
5492 return 0;
5493 }
5494
5495 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5496 {
5497 int i, found;
5498 WaitObjects *w = &wait_objects;
5499
5500 found = 0;
5501 for (i = 0; i < w->num; i++) {
5502 if (w->events[i] == handle)
5503 found = 1;
5504 if (found) {
5505 w->events[i] = w->events[i + 1];
5506 w->func[i] = w->func[i + 1];
5507 w->opaque[i] = w->opaque[i + 1];
5508 }
5509 }
5510 if (found)
5511 w->num--;
5512 }
5513 #endif
5514
5515 /***********************************************************/
5516 /* savevm/loadvm support */
5517
5518 #define IO_BUF_SIZE 32768
5519
5520 struct QEMUFile {
5521 FILE *outfile;
5522 BlockDriverState *bs;
5523 int is_file;
5524 int is_writable;
5525 int64_t base_offset;
5526 int64_t buf_offset; /* start of buffer when writing, end of buffer
5527 when reading */
5528 int buf_index;
5529 int buf_size; /* 0 when writing */
5530 uint8_t buf[IO_BUF_SIZE];
5531 };
5532
5533 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5534 {
5535 QEMUFile *f;
5536
5537 f = qemu_mallocz(sizeof(QEMUFile));
5538 if (!f)
5539 return NULL;
5540 if (!strcmp(mode, "wb")) {
5541 f->is_writable = 1;
5542 } else if (!strcmp(mode, "rb")) {
5543 f->is_writable = 0;
5544 } else {
5545 goto fail;
5546 }
5547 f->outfile = fopen(filename, mode);
5548 if (!f->outfile)
5549 goto fail;
5550 f->is_file = 1;
5551 return f;
5552 fail:
5553 if (f->outfile)
5554 fclose(f->outfile);
5555 qemu_free(f);
5556 return NULL;
5557 }
5558
5559 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5560 {
5561 QEMUFile *f;
5562
5563 f = qemu_mallocz(sizeof(QEMUFile));
5564 if (!f)
5565 return NULL;
5566 f->is_file = 0;
5567 f->bs = bs;
5568 f->is_writable = is_writable;
5569 f->base_offset = offset;
5570 return f;
5571 }
5572
5573 void qemu_fflush(QEMUFile *f)
5574 {
5575 if (!f->is_writable)
5576 return;
5577 if (f->buf_index > 0) {
5578 if (f->is_file) {
5579 fseek(f->outfile, f->buf_offset, SEEK_SET);
5580 fwrite(f->buf, 1, f->buf_index, f->outfile);
5581 } else {
5582 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5583 f->buf, f->buf_index);
5584 }
5585 f->buf_offset += f->buf_index;
5586 f->buf_index = 0;
5587 }
5588 }
5589
5590 static void qemu_fill_buffer(QEMUFile *f)
5591 {
5592 int len;
5593
5594 if (f->is_writable)
5595 return;
5596 if (f->is_file) {
5597 fseek(f->outfile, f->buf_offset, SEEK_SET);
5598 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5599 if (len < 0)
5600 len = 0;
5601 } else {
5602 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5603 f->buf, IO_BUF_SIZE);
5604 if (len < 0)
5605 len = 0;
5606 }
5607 f->buf_index = 0;
5608 f->buf_size = len;
5609 f->buf_offset += len;
5610 }
5611
5612 void qemu_fclose(QEMUFile *f)
5613 {
5614 if (f->is_writable)
5615 qemu_fflush(f);
5616 if (f->is_file) {
5617 fclose(f->outfile);
5618 }
5619 qemu_free(f);
5620 }
5621
5622 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5623 {
5624 int l;
5625 while (size > 0) {
5626 l = IO_BUF_SIZE - f->buf_index;
5627 if (l > size)
5628 l = size;
5629 memcpy(f->buf + f->buf_index, buf, l);
5630 f->buf_index += l;
5631 buf += l;
5632 size -= l;
5633 if (f->buf_index >= IO_BUF_SIZE)
5634 qemu_fflush(f);
5635 }
5636 }
5637
5638 void qemu_put_byte(QEMUFile *f, int v)
5639 {
5640 f->buf[f->buf_index++] = v;
5641 if (f->buf_index >= IO_BUF_SIZE)
5642 qemu_fflush(f);
5643 }
5644
5645 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5646 {
5647 int size, l;
5648
5649 size = size1;
5650 while (size > 0) {
5651 l = f->buf_size - f->buf_index;
5652 if (l == 0) {
5653 qemu_fill_buffer(f);
5654 l = f->buf_size - f->buf_index;
5655 if (l == 0)
5656 break;
5657 }
5658 if (l > size)
5659 l = size;
5660 memcpy(buf, f->buf + f->buf_index, l);
5661 f->buf_index += l;
5662 buf += l;
5663 size -= l;
5664 }
5665 return size1 - size;
5666 }
5667
5668 int qemu_get_byte(QEMUFile *f)
5669 {
5670 if (f->buf_index >= f->buf_size) {
5671 qemu_fill_buffer(f);
5672 if (f->buf_index >= f->buf_size)
5673 return 0;
5674 }
5675 return f->buf[f->buf_index++];
5676 }
5677
5678 int64_t qemu_ftell(QEMUFile *f)
5679 {
5680 return f->buf_offset - f->buf_size + f->buf_index;
5681 }
5682
5683 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5684 {
5685 if (whence == SEEK_SET) {
5686 /* nothing to do */
5687 } else if (whence == SEEK_CUR) {
5688 pos += qemu_ftell(f);
5689 } else {
5690 /* SEEK_END not supported */
5691 return -1;
5692 }
5693 if (f->is_writable) {
5694 qemu_fflush(f);
5695 f->buf_offset = pos;
5696 } else {
5697 f->buf_offset = pos;
5698 f->buf_index = 0;
5699 f->buf_size = 0;
5700 }
5701 return pos;
5702 }
5703
5704 void qemu_put_be16(QEMUFile *f, unsigned int v)
5705 {
5706 qemu_put_byte(f, v >> 8);
5707 qemu_put_byte(f, v);
5708 }
5709
5710 void qemu_put_be32(QEMUFile *f, unsigned int v)
5711 {
5712 qemu_put_byte(f, v >> 24);
5713 qemu_put_byte(f, v >> 16);
5714 qemu_put_byte(f, v >> 8);
5715 qemu_put_byte(f, v);
5716 }
5717
5718 void qemu_put_be64(QEMUFile *f, uint64_t v)
5719 {
5720 qemu_put_be32(f, v >> 32);
5721 qemu_put_be32(f, v);
5722 }
5723
5724 unsigned int qemu_get_be16(QEMUFile *f)
5725 {
5726 unsigned int v;
5727 v = qemu_get_byte(f) << 8;
5728 v |= qemu_get_byte(f);
5729 return v;
5730 }
5731
5732 unsigned int qemu_get_be32(QEMUFile *f)
5733 {
5734 unsigned int v;
5735 v = qemu_get_byte(f) << 24;
5736 v |= qemu_get_byte(f) << 16;
5737 v |= qemu_get_byte(f) << 8;
5738 v |= qemu_get_byte(f);
5739 return v;
5740 }
5741
5742 uint64_t qemu_get_be64(QEMUFile *f)
5743 {
5744 uint64_t v;
5745 v = (uint64_t)qemu_get_be32(f) << 32;
5746 v |= qemu_get_be32(f);
5747 return v;
5748 }
5749
5750 typedef struct SaveStateEntry {
5751 char idstr[256];
5752 int instance_id;
5753 int version_id;
5754 SaveStateHandler *save_state;
5755 LoadStateHandler *load_state;
5756 void *opaque;
5757 struct SaveStateEntry *next;
5758 } SaveStateEntry;
5759
5760 static SaveStateEntry *first_se;
5761
5762 int register_savevm(const char *idstr,
5763 int instance_id,
5764 int version_id,
5765 SaveStateHandler *save_state,
5766 LoadStateHandler *load_state,
5767 void *opaque)
5768 {
5769 SaveStateEntry *se, **pse;
5770
5771 se = qemu_malloc(sizeof(SaveStateEntry));
5772 if (!se)
5773 return -1;
5774 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5775 se->instance_id = instance_id;
5776 se->version_id = version_id;
5777 se->save_state = save_state;
5778 se->load_state = load_state;
5779 se->opaque = opaque;
5780 se->next = NULL;
5781
5782 /* add at the end of list */
5783 pse = &first_se;
5784 while (*pse != NULL)
5785 pse = &(*pse)->next;
5786 *pse = se;
5787 return 0;
5788 }
5789
5790 #define QEMU_VM_FILE_MAGIC 0x5145564d
5791 #define QEMU_VM_FILE_VERSION 0x00000002
5792
5793 static int qemu_savevm_state(QEMUFile *f)
5794 {
5795 SaveStateEntry *se;
5796 int len, ret;
5797 int64_t cur_pos, len_pos, total_len_pos;
5798
5799 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5800 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5801 total_len_pos = qemu_ftell(f);
5802 qemu_put_be64(f, 0); /* total size */
5803
5804 for(se = first_se; se != NULL; se = se->next) {
5805 /* ID string */
5806 len = strlen(se->idstr);
5807 qemu_put_byte(f, len);
5808 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5809
5810 qemu_put_be32(f, se->instance_id);
5811 qemu_put_be32(f, se->version_id);
5812
5813 /* record size: filled later */
5814 len_pos = qemu_ftell(f);
5815 qemu_put_be32(f, 0);
5816 se->save_state(f, se->opaque);
5817
5818 /* fill record size */
5819 cur_pos = qemu_ftell(f);
5820 len = cur_pos - len_pos - 4;
5821 qemu_fseek(f, len_pos, SEEK_SET);
5822 qemu_put_be32(f, len);
5823 qemu_fseek(f, cur_pos, SEEK_SET);
5824 }
5825 cur_pos = qemu_ftell(f);
5826 qemu_fseek(f, total_len_pos, SEEK_SET);
5827 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5828 qemu_fseek(f, cur_pos, SEEK_SET);
5829
5830 ret = 0;
5831 return ret;
5832 }
5833
5834 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5835 {
5836 SaveStateEntry *se;
5837
5838 for(se = first_se; se != NULL; se = se->next) {
5839 if (!strcmp(se->idstr, idstr) &&
5840 instance_id == se->instance_id)
5841 return se;
5842 }
5843 return NULL;
5844 }
5845
5846 static int qemu_loadvm_state(QEMUFile *f)
5847 {
5848 SaveStateEntry *se;
5849 int len, ret, instance_id, record_len, version_id;
5850 int64_t total_len, end_pos, cur_pos;
5851 unsigned int v;
5852 char idstr[256];
5853
5854 v = qemu_get_be32(f);
5855 if (v != QEMU_VM_FILE_MAGIC)
5856 goto fail;
5857 v = qemu_get_be32(f);
5858 if (v != QEMU_VM_FILE_VERSION) {
5859 fail:
5860 ret = -1;
5861 goto the_end;
5862 }
5863 total_len = qemu_get_be64(f);
5864 end_pos = total_len + qemu_ftell(f);
5865 for(;;) {
5866 if (qemu_ftell(f) >= end_pos)
5867 break;
5868 len = qemu_get_byte(f);
5869 qemu_get_buffer(f, (uint8_t *)idstr, len);
5870 idstr[len] = '\0';
5871 instance_id = qemu_get_be32(f);
5872 version_id = qemu_get_be32(f);
5873 record_len = qemu_get_be32(f);
5874 #if 0
5875 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5876 idstr, instance_id, version_id, record_len);
5877 #endif
5878 cur_pos = qemu_ftell(f);
5879 se = find_se(idstr, instance_id);
5880 if (!se) {
5881 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5882 instance_id, idstr);
5883 } else {
5884 ret = se->load_state(f, se->opaque, version_id);
5885 if (ret < 0) {
5886 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5887 instance_id, idstr);
5888 }
5889 }
5890 /* always seek to exact end of record */
5891 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5892 }
5893 ret = 0;
5894 the_end:
5895 return ret;
5896 }
5897
5898 /* device can contain snapshots */
5899 static int bdrv_can_snapshot(BlockDriverState *bs)
5900 {
5901 return (bs &&
5902 !bdrv_is_removable(bs) &&
5903 !bdrv_is_read_only(bs));
5904 }
5905
5906 /* device must be snapshots in order to have a reliable snapshot */
5907 static int bdrv_has_snapshot(BlockDriverState *bs)
5908 {
5909 return (bs &&
5910 !bdrv_is_removable(bs) &&
5911 !bdrv_is_read_only(bs));
5912 }
5913
5914 static BlockDriverState *get_bs_snapshots(void)
5915 {
5916 BlockDriverState *bs;
5917 int i;
5918
5919 if (bs_snapshots)
5920 return bs_snapshots;
5921 for(i = 0; i <= nb_drives; i++) {
5922 bs = drives_table[i].bdrv;
5923 if (bdrv_can_snapshot(bs))
5924 goto ok;
5925 }
5926 return NULL;
5927 ok:
5928 bs_snapshots = bs;
5929 return bs;
5930 }
5931
5932 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5933 const char *name)
5934 {
5935 QEMUSnapshotInfo *sn_tab, *sn;
5936 int nb_sns, i, ret;
5937
5938 ret = -ENOENT;
5939 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5940 if (nb_sns < 0)
5941 return ret;
5942 for(i = 0; i < nb_sns; i++) {
5943 sn = &sn_tab[i];
5944 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5945 *sn_info = *sn;
5946 ret = 0;
5947 break;
5948 }
5949 }
5950 qemu_free(sn_tab);
5951 return ret;
5952 }
5953
5954 void do_savevm(const char *name)
5955 {
5956 BlockDriverState *bs, *bs1;
5957 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5958 int must_delete, ret, i;
5959 BlockDriverInfo bdi1, *bdi = &bdi1;
5960 QEMUFile *f;
5961 int saved_vm_running;
5962 #ifdef _WIN32
5963 struct _timeb tb;
5964 #else
5965 struct timeval tv;
5966 #endif
5967
5968 bs = get_bs_snapshots();
5969 if (!bs) {
5970 term_printf("No block device can accept snapshots\n");
5971 return;
5972 }
5973
5974 /* ??? Should this occur after vm_stop? */
5975 qemu_aio_flush();
5976
5977 saved_vm_running = vm_running;
5978 vm_stop(0);
5979
5980 must_delete = 0;
5981 if (name) {
5982 ret = bdrv_snapshot_find(bs, old_sn, name);
5983 if (ret >= 0) {
5984 must_delete = 1;
5985 }
5986 }
5987 memset(sn, 0, sizeof(*sn));
5988 if (must_delete) {
5989 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5990 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5991 } else {
5992 if (name)
5993 pstrcpy(sn->name, sizeof(sn->name), name);
5994 }
5995
5996 /* fill auxiliary fields */
5997 #ifdef _WIN32
5998 _ftime(&tb);
5999 sn->date_sec = tb.time;
6000 sn->date_nsec = tb.millitm * 1000000;
6001 #else
6002 gettimeofday(&tv, NULL);
6003 sn->date_sec = tv.tv_sec;
6004 sn->date_nsec = tv.tv_usec * 1000;
6005 #endif
6006 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6007
6008 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6009 term_printf("Device %s does not support VM state snapshots\n",
6010 bdrv_get_device_name(bs));
6011 goto the_end;
6012 }
6013
6014 /* save the VM state */
6015 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6016 if (!f) {
6017 term_printf("Could not open VM state file\n");
6018 goto the_end;
6019 }
6020 ret = qemu_savevm_state(f);
6021 sn->vm_state_size = qemu_ftell(f);
6022 qemu_fclose(f);
6023 if (ret < 0) {
6024 term_printf("Error %d while writing VM\n", ret);
6025 goto the_end;
6026 }
6027
6028 /* create the snapshots */
6029
6030 for(i = 0; i < nb_drives; i++) {
6031 bs1 = drives_table[i].bdrv;
6032 if (bdrv_has_snapshot(bs1)) {
6033 if (must_delete) {
6034 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6035 if (ret < 0) {
6036 term_printf("Error while deleting snapshot on '%s'\n",
6037 bdrv_get_device_name(bs1));
6038 }
6039 }
6040 ret = bdrv_snapshot_create(bs1, sn);
6041 if (ret < 0) {
6042 term_printf("Error while creating snapshot on '%s'\n",
6043 bdrv_get_device_name(bs1));
6044 }
6045 }
6046 }
6047
6048 the_end:
6049 if (saved_vm_running)
6050 vm_start();
6051 }
6052
6053 void do_loadvm(const char *name)
6054 {
6055 BlockDriverState *bs, *bs1;
6056 BlockDriverInfo bdi1, *bdi = &bdi1;
6057 QEMUFile *f;
6058 int i, ret;
6059 int saved_vm_running;
6060
6061 bs = get_bs_snapshots();
6062 if (!bs) {
6063 term_printf("No block device supports snapshots\n");
6064 return;
6065 }
6066
6067 /* Flush all IO requests so they don't interfere with the new state. */
6068 qemu_aio_flush();
6069
6070 saved_vm_running = vm_running;
6071 vm_stop(0);
6072
6073 for(i = 0; i <= nb_drives; i++) {
6074 bs1 = drives_table[i].bdrv;
6075 if (bdrv_has_snapshot(bs1)) {
6076 ret = bdrv_snapshot_goto(bs1, name);
6077 if (ret < 0) {
6078 if (bs != bs1)
6079 term_printf("Warning: ");
6080 switch(ret) {
6081 case -ENOTSUP:
6082 term_printf("Snapshots not supported on device '%s'\n",
6083 bdrv_get_device_name(bs1));
6084 break;
6085 case -ENOENT:
6086 term_printf("Could not find snapshot '%s' on device '%s'\n",
6087 name, bdrv_get_device_name(bs1));
6088 break;
6089 default:
6090 term_printf("Error %d while activating snapshot on '%s'\n",
6091 ret, bdrv_get_device_name(bs1));
6092 break;
6093 }
6094 /* fatal on snapshot block device */
6095 if (bs == bs1)
6096 goto the_end;
6097 }
6098 }
6099 }
6100
6101 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6102 term_printf("Device %s does not support VM state snapshots\n",
6103 bdrv_get_device_name(bs));
6104 return;
6105 }
6106
6107 /* restore the VM state */
6108 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6109 if (!f) {
6110 term_printf("Could not open VM state file\n");
6111 goto the_end;
6112 }
6113 ret = qemu_loadvm_state(f);
6114 qemu_fclose(f);
6115 if (ret < 0) {
6116 term_printf("Error %d while loading VM state\n", ret);
6117 }
6118 the_end:
6119 if (saved_vm_running)
6120 vm_start();
6121 }
6122
6123 void do_delvm(const char *name)
6124 {
6125 BlockDriverState *bs, *bs1;
6126 int i, ret;
6127
6128 bs = get_bs_snapshots();
6129 if (!bs) {
6130 term_printf("No block device supports snapshots\n");
6131 return;
6132 }
6133
6134 for(i = 0; i <= nb_drives; i++) {
6135 bs1 = drives_table[i].bdrv;
6136 if (bdrv_has_snapshot(bs1)) {
6137 ret = bdrv_snapshot_delete(bs1, name);
6138 if (ret < 0) {
6139 if (ret == -ENOTSUP)
6140 term_printf("Snapshots not supported on device '%s'\n",
6141 bdrv_get_device_name(bs1));
6142 else
6143 term_printf("Error %d while deleting snapshot on '%s'\n",
6144 ret, bdrv_get_device_name(bs1));
6145 }
6146 }
6147 }
6148 }
6149
6150 void do_info_snapshots(void)
6151 {
6152 BlockDriverState *bs, *bs1;
6153 QEMUSnapshotInfo *sn_tab, *sn;
6154 int nb_sns, i;
6155 char buf[256];
6156
6157 bs = get_bs_snapshots();
6158 if (!bs) {
6159 term_printf("No available block device supports snapshots\n");
6160 return;
6161 }
6162 term_printf("Snapshot devices:");
6163 for(i = 0; i <= nb_drives; i++) {
6164 bs1 = drives_table[i].bdrv;
6165 if (bdrv_has_snapshot(bs1)) {
6166 if (bs == bs1)
6167 term_printf(" %s", bdrv_get_device_name(bs1));
6168 }
6169 }
6170 term_printf("\n");
6171
6172 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6173 if (nb_sns < 0) {
6174 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6175 return;
6176 }
6177 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6178 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6179 for(i = 0; i < nb_sns; i++) {
6180 sn = &sn_tab[i];
6181 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6182 }
6183 qemu_free(sn_tab);
6184 }
6185
6186 /***********************************************************/
6187 /* cpu save/restore */
6188
6189 #if defined(TARGET_I386)
6190
6191 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6192 {
6193 qemu_put_be32(f, dt->selector);
6194 qemu_put_betl(f, dt->base);
6195 qemu_put_be32(f, dt->limit);
6196 qemu_put_be32(f, dt->flags);
6197 }
6198
6199 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6200 {
6201 dt->selector = qemu_get_be32(f);
6202 dt->base = qemu_get_betl(f);
6203 dt->limit = qemu_get_be32(f);
6204 dt->flags = qemu_get_be32(f);
6205 }
6206
6207 void cpu_save(QEMUFile *f, void *opaque)
6208 {
6209 CPUState *env = opaque;
6210 uint16_t fptag, fpus, fpuc, fpregs_format;
6211 uint32_t hflags;
6212 int i;
6213
6214 for(i = 0; i < CPU_NB_REGS; i++)
6215 qemu_put_betls(f, &env->regs[i]);
6216 qemu_put_betls(f, &env->eip);
6217 qemu_put_betls(f, &env->eflags);
6218 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6219 qemu_put_be32s(f, &hflags);
6220
6221 /* FPU */
6222 fpuc = env->fpuc;
6223 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6224 fptag = 0;
6225 for(i = 0; i < 8; i++) {
6226 fptag |= ((!env->fptags[i]) << i);
6227 }
6228
6229 qemu_put_be16s(f, &fpuc);
6230 qemu_put_be16s(f, &fpus);
6231 qemu_put_be16s(f, &fptag);
6232
6233 #ifdef USE_X86LDOUBLE
6234 fpregs_format = 0;
6235 #else
6236 fpregs_format = 1;
6237 #endif
6238 qemu_put_be16s(f, &fpregs_format);
6239
6240 for(i = 0; i < 8; i++) {
6241 #ifdef USE_X86LDOUBLE
6242 {
6243 uint64_t mant;
6244 uint16_t exp;
6245 /* we save the real CPU data (in case of MMX usage only 'mant'
6246 contains the MMX register */
6247 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6248 qemu_put_be64(f, mant);
6249 qemu_put_be16(f, exp);
6250 }
6251 #else
6252 /* if we use doubles for float emulation, we save the doubles to
6253 avoid losing information in case of MMX usage. It can give
6254 problems if the image is restored on a CPU where long
6255 doubles are used instead. */
6256 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6257 #endif
6258 }
6259
6260 for(i = 0; i < 6; i++)
6261 cpu_put_seg(f, &env->segs[i]);
6262 cpu_put_seg(f, &env->ldt);
6263 cpu_put_seg(f, &env->tr);
6264 cpu_put_seg(f, &env->gdt);
6265 cpu_put_seg(f, &env->idt);
6266
6267 qemu_put_be32s(f, &env->sysenter_cs);
6268 qemu_put_be32s(f, &env->sysenter_esp);
6269 qemu_put_be32s(f, &env->sysenter_eip);
6270
6271 qemu_put_betls(f, &env->cr[0]);
6272 qemu_put_betls(f, &env->cr[2]);
6273 qemu_put_betls(f, &env->cr[3]);
6274 qemu_put_betls(f, &env->cr[4]);
6275
6276 for(i = 0; i < 8; i++)
6277 qemu_put_betls(f, &env->dr[i]);
6278
6279 /* MMU */
6280 qemu_put_be32s(f, &env->a20_mask);
6281
6282 /* XMM */
6283 qemu_put_be32s(f, &env->mxcsr);
6284 for(i = 0; i < CPU_NB_REGS; i++) {
6285 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6286 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6287 }
6288
6289 #ifdef TARGET_X86_64
6290 qemu_put_be64s(f, &env->efer);
6291 qemu_put_be64s(f, &env->star);
6292 qemu_put_be64s(f, &env->lstar);
6293 qemu_put_be64s(f, &env->cstar);
6294 qemu_put_be64s(f, &env->fmask);
6295 qemu_put_be64s(f, &env->kernelgsbase);
6296 #endif
6297 qemu_put_be32s(f, &env->smbase);
6298 }
6299
6300 #ifdef USE_X86LDOUBLE
6301 /* XXX: add that in a FPU generic layer */
6302 union x86_longdouble {
6303 uint64_t mant;
6304 uint16_t exp;
6305 };
6306
6307 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
6308 #define EXPBIAS1 1023
6309 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
6310 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
6311
6312 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6313 {
6314 int e;
6315 /* mantissa */
6316 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6317 /* exponent + sign */
6318 e = EXPD1(temp) - EXPBIAS1 + 16383;
6319 e |= SIGND1(temp) >> 16;
6320 p->exp = e;
6321 }
6322 #endif
6323
6324 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6325 {
6326 CPUState *env = opaque;
6327 int i, guess_mmx;
6328 uint32_t hflags;
6329 uint16_t fpus, fpuc, fptag, fpregs_format;
6330
6331 if (version_id != 3 && version_id != 4)
6332 return -EINVAL;
6333 for(i = 0; i < CPU_NB_REGS; i++)
6334 qemu_get_betls(f, &env->regs[i]);
6335 qemu_get_betls(f, &env->eip);
6336 qemu_get_betls(f, &env->eflags);
6337 qemu_get_be32s(f, &hflags);
6338
6339 qemu_get_be16s(f, &fpuc);
6340 qemu_get_be16s(f, &fpus);
6341 qemu_get_be16s(f, &fptag);
6342 qemu_get_be16s(f, &fpregs_format);
6343
6344 /* NOTE: we cannot always restore the FPU state if the image come
6345 from a host with a different 'USE_X86LDOUBLE' define. We guess
6346 if we are in an MMX state to restore correctly in that case. */
6347 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6348 for(i = 0; i < 8; i++) {
6349 uint64_t mant;
6350 uint16_t exp;
6351
6352 switch(fpregs_format) {
6353 case 0:
6354 mant = qemu_get_be64(f);
6355 exp = qemu_get_be16(f);
6356 #ifdef USE_X86LDOUBLE
6357 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6358 #else
6359 /* difficult case */
6360 if (guess_mmx)
6361 env->fpregs[i].mmx.MMX_Q(0) = mant;
6362 else
6363 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6364 #endif
6365 break;
6366 case 1:
6367 mant = qemu_get_be64(f);
6368 #ifdef USE_X86LDOUBLE
6369 {
6370 union x86_longdouble *p;
6371 /* difficult case */
6372 p = (void *)&env->fpregs[i];
6373 if (guess_mmx) {
6374 p->mant = mant;
6375 p->exp = 0xffff;
6376 } else {
6377 fp64_to_fp80(p, mant);
6378 }
6379 }
6380 #else
6381 env->fpregs[i].mmx.MMX_Q(0) = mant;
6382 #endif
6383 break;
6384 default:
6385 return -EINVAL;
6386 }
6387 }
6388
6389 env->fpuc = fpuc;
6390 /* XXX: restore FPU round state */
6391 env->fpstt = (fpus >> 11) & 7;
6392 env->fpus = fpus & ~0x3800;
6393 fptag ^= 0xff;
6394 for(i = 0; i < 8; i++) {
6395 env->fptags[i] = (fptag >> i) & 1;
6396 }
6397
6398 for(i = 0; i < 6; i++)
6399 cpu_get_seg(f, &env->segs[i]);
6400 cpu_get_seg(f, &env->ldt);
6401 cpu_get_seg(f, &env->tr);
6402 cpu_get_seg(f, &env->gdt);
6403 cpu_get_seg(f, &env->idt);
6404
6405 qemu_get_be32s(f, &env->sysenter_cs);
6406 qemu_get_be32s(f, &env->sysenter_esp);
6407 qemu_get_be32s(f, &env->sysenter_eip);
6408
6409 qemu_get_betls(f, &env->cr[0]);
6410 qemu_get_betls(f, &env->cr[2]);
6411 qemu_get_betls(f, &env->cr[3]);
6412 qemu_get_betls(f, &env->cr[4]);
6413
6414 for(i = 0; i < 8; i++)
6415 qemu_get_betls(f, &env->dr[i]);
6416
6417 /* MMU */
6418 qemu_get_be32s(f, &env->a20_mask);
6419
6420 qemu_get_be32s(f, &env->mxcsr);
6421 for(i = 0; i < CPU_NB_REGS; i++) {
6422 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6423 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6424 }
6425
6426 #ifdef TARGET_X86_64
6427 qemu_get_be64s(f, &env->efer);
6428 qemu_get_be64s(f, &env->star);
6429 qemu_get_be64s(f, &env->lstar);
6430 qemu_get_be64s(f, &env->cstar);
6431 qemu_get_be64s(f, &env->fmask);
6432 qemu_get_be64s(f, &env->kernelgsbase);
6433 #endif
6434 if (version_id >= 4)
6435 qemu_get_be32s(f, &env->smbase);
6436
6437 /* XXX: compute hflags from scratch, except for CPL and IIF */
6438 env->hflags = hflags;
6439 tlb_flush(env, 1);
6440 return 0;
6441 }
6442
6443 #elif defined(TARGET_PPC)
6444 void cpu_save(QEMUFile *f, void *opaque)
6445 {
6446 }
6447
6448 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6449 {
6450 return 0;
6451 }
6452
6453 #elif defined(TARGET_MIPS)
6454 void cpu_save(QEMUFile *f, void *opaque)
6455 {
6456 }
6457
6458 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6459 {
6460 return 0;
6461 }
6462
6463 #elif defined(TARGET_SPARC)
6464 void cpu_save(QEMUFile *f, void *opaque)
6465 {
6466 CPUState *env = opaque;
6467 int i;
6468 uint32_t tmp;
6469
6470 for(i = 0; i < 8; i++)
6471 qemu_put_betls(f, &env->gregs[i]);
6472 for(i = 0; i < NWINDOWS * 16; i++)
6473 qemu_put_betls(f, &env->regbase[i]);
6474
6475 /* FPU */
6476 for(i = 0; i < TARGET_FPREGS; i++) {
6477 union {
6478 float32 f;
6479 uint32_t i;
6480 } u;
6481 u.f = env->fpr[i];
6482 qemu_put_be32(f, u.i);
6483 }
6484
6485 qemu_put_betls(f, &env->pc);
6486 qemu_put_betls(f, &env->npc);
6487 qemu_put_betls(f, &env->y);
6488 tmp = GET_PSR(env);
6489 qemu_put_be32(f, tmp);
6490 qemu_put_betls(f, &env->fsr);
6491 qemu_put_betls(f, &env->tbr);
6492 #ifndef TARGET_SPARC64
6493 qemu_put_be32s(f, &env->wim);
6494 /* MMU */
6495 for(i = 0; i < 16; i++)
6496 qemu_put_be32s(f, &env->mmuregs[i]);
6497 #endif
6498 }
6499
6500 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6501 {
6502 CPUState *env = opaque;
6503 int i;
6504 uint32_t tmp;
6505
6506 for(i = 0; i < 8; i++)
6507 qemu_get_betls(f, &env->gregs[i]);
6508 for(i = 0; i < NWINDOWS * 16; i++)
6509 qemu_get_betls(f, &env->regbase[i]);
6510
6511 /* FPU */
6512 for(i = 0; i < TARGET_FPREGS; i++) {
6513 union {
6514 float32 f;
6515 uint32_t i;
6516 } u;
6517 u.i = qemu_get_be32(f);
6518 env->fpr[i] = u.f;
6519 }
6520
6521 qemu_get_betls(f, &env->pc);
6522 qemu_get_betls(f, &env->npc);
6523 qemu_get_betls(f, &env->y);
6524 tmp = qemu_get_be32(f);
6525 env->cwp = 0; /* needed to ensure that the wrapping registers are
6526 correctly updated */
6527 PUT_PSR(env, tmp);
6528 qemu_get_betls(f, &env->fsr);
6529 qemu_get_betls(f, &env->tbr);
6530 #ifndef TARGET_SPARC64
6531 qemu_get_be32s(f, &env->wim);
6532 /* MMU */
6533 for(i = 0; i < 16; i++)
6534 qemu_get_be32s(f, &env->mmuregs[i]);
6535 #endif
6536 tlb_flush(env, 1);
6537 return 0;
6538 }
6539
6540 #elif defined(TARGET_ARM)
6541
6542 void cpu_save(QEMUFile *f, void *opaque)
6543 {
6544 int i;
6545 CPUARMState *env = (CPUARMState *)opaque;
6546
6547 for (i = 0; i < 16; i++) {
6548 qemu_put_be32(f, env->regs[i]);
6549 }
6550 qemu_put_be32(f, cpsr_read(env));
6551 qemu_put_be32(f, env->spsr);
6552 for (i = 0; i < 6; i++) {
6553 qemu_put_be32(f, env->banked_spsr[i]);
6554 qemu_put_be32(f, env->banked_r13[i]);
6555 qemu_put_be32(f, env->banked_r14[i]);
6556 }
6557 for (i = 0; i < 5; i++) {
6558 qemu_put_be32(f, env->usr_regs[i]);
6559 qemu_put_be32(f, env->fiq_regs[i]);
6560 }
6561 qemu_put_be32(f, env->cp15.c0_cpuid);
6562 qemu_put_be32(f, env->cp15.c0_cachetype);
6563 qemu_put_be32(f, env->cp15.c1_sys);
6564 qemu_put_be32(f, env->cp15.c1_coproc);
6565 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6566 qemu_put_be32(f, env->cp15.c2_base0);
6567 qemu_put_be32(f, env->cp15.c2_base1);
6568 qemu_put_be32(f, env->cp15.c2_mask);
6569 qemu_put_be32(f, env->cp15.c2_data);
6570 qemu_put_be32(f, env->cp15.c2_insn);
6571 qemu_put_be32(f, env->cp15.c3);
6572 qemu_put_be32(f, env->cp15.c5_insn);
6573 qemu_put_be32(f, env->cp15.c5_data);
6574 for (i = 0; i < 8; i++) {
6575 qemu_put_be32(f, env->cp15.c6_region[i]);
6576 }
6577 qemu_put_be32(f, env->cp15.c6_insn);
6578 qemu_put_be32(f, env->cp15.c6_data);
6579 qemu_put_be32(f, env->cp15.c9_insn);
6580 qemu_put_be32(f, env->cp15.c9_data);
6581 qemu_put_be32(f, env->cp15.c13_fcse);
6582 qemu_put_be32(f, env->cp15.c13_context);
6583 qemu_put_be32(f, env->cp15.c13_tls1);
6584 qemu_put_be32(f, env->cp15.c13_tls2);
6585 qemu_put_be32(f, env->cp15.c13_tls3);
6586 qemu_put_be32(f, env->cp15.c15_cpar);
6587
6588 qemu_put_be32(f, env->features);
6589
6590 if (arm_feature(env, ARM_FEATURE_VFP)) {
6591 for (i = 0; i < 16; i++) {
6592 CPU_DoubleU u;
6593 u.d = env->vfp.regs[i];
6594 qemu_put_be32(f, u.l.upper);
6595 qemu_put_be32(f, u.l.lower);
6596 }
6597 for (i = 0; i < 16; i++) {
6598 qemu_put_be32(f, env->vfp.xregs[i]);
6599 }
6600
6601 /* TODO: Should use proper FPSCR access functions. */
6602 qemu_put_be32(f, env->vfp.vec_len);
6603 qemu_put_be32(f, env->vfp.vec_stride);
6604
6605 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6606 for (i = 16; i < 32; i++) {
6607 CPU_DoubleU u;
6608 u.d = env->vfp.regs[i];
6609 qemu_put_be32(f, u.l.upper);
6610 qemu_put_be32(f, u.l.lower);
6611 }
6612 }
6613 }
6614
6615 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6616 for (i = 0; i < 16; i++) {
6617 qemu_put_be64(f, env->iwmmxt.regs[i]);
6618 }
6619 for (i = 0; i < 16; i++) {
6620 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6621 }
6622 }
6623
6624 if (arm_feature(env, ARM_FEATURE_M)) {
6625 qemu_put_be32(f, env->v7m.other_sp);
6626 qemu_put_be32(f, env->v7m.vecbase);
6627 qemu_put_be32(f, env->v7m.basepri);
6628 qemu_put_be32(f, env->v7m.control);
6629 qemu_put_be32(f, env->v7m.current_sp);
6630 qemu_put_be32(f, env->v7m.exception);
6631 }
6632 }
6633
6634 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6635 {
6636 CPUARMState *env = (CPUARMState *)opaque;
6637 int i;
6638
6639 if (version_id != ARM_CPU_SAVE_VERSION)
6640 return -EINVAL;
6641
6642 for (i = 0; i < 16; i++) {
6643 env->regs[i] = qemu_get_be32(f);
6644 }
6645 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6646 env->spsr = qemu_get_be32(f);
6647 for (i = 0; i < 6; i++) {
6648 env->banked_spsr[i] = qemu_get_be32(f);
6649 env->banked_r13[i] = qemu_get_be32(f);
6650 env->banked_r14[i] = qemu_get_be32(f);
6651 }
6652 for (i = 0; i < 5; i++) {
6653 env->usr_regs[i] = qemu_get_be32(f);
6654 env->fiq_regs[i] = qemu_get_be32(f);
6655 }
6656 env->cp15.c0_cpuid = qemu_get_be32(f);
6657 env->cp15.c0_cachetype = qemu_get_be32(f);
6658 env->cp15.c1_sys = qemu_get_be32(f);
6659 env->cp15.c1_coproc = qemu_get_be32(f);
6660 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6661 env->cp15.c2_base0 = qemu_get_be32(f);
6662 env->cp15.c2_base1 = qemu_get_be32(f);
6663 env->cp15.c2_mask = qemu_get_be32(f);
6664 env->cp15.c2_data = qemu_get_be32(f);
6665 env->cp15.c2_insn = qemu_get_be32(f);
6666 env->cp15.c3 = qemu_get_be32(f);
6667 env->cp15.c5_insn = qemu_get_be32(f);
6668 env->cp15.c5_data = qemu_get_be32(f);
6669 for (i = 0; i < 8; i++) {
6670 env->cp15.c6_region[i] = qemu_get_be32(f);
6671 }
6672 env->cp15.c6_insn = qemu_get_be32(f);
6673 env->cp15.c6_data = qemu_get_be32(f);
6674 env->cp15.c9_insn = qemu_get_be32(f);
6675 env->cp15.c9_data = qemu_get_be32(f);
6676 env->cp15.c13_fcse = qemu_get_be32(f);
6677 env->cp15.c13_context = qemu_get_be32(f);
6678 env->cp15.c13_tls1 = qemu_get_be32(f);
6679 env->cp15.c13_tls2 = qemu_get_be32(f);
6680 env->cp15.c13_tls3 = qemu_get_be32(f);
6681 env->cp15.c15_cpar = qemu_get_be32(f);
6682
6683 env->features = qemu_get_be32(f);
6684
6685 if (arm_feature(env, ARM_FEATURE_VFP)) {
6686 for (i = 0; i < 16; i++) {
6687 CPU_DoubleU u;
6688 u.l.upper = qemu_get_be32(f);
6689 u.l.lower = qemu_get_be32(f);
6690 env->vfp.regs[i] = u.d;
6691 }
6692 for (i = 0; i < 16; i++) {
6693 env->vfp.xregs[i] = qemu_get_be32(f);
6694 }
6695
6696 /* TODO: Should use proper FPSCR access functions. */
6697 env->vfp.vec_len = qemu_get_be32(f);
6698 env->vfp.vec_stride = qemu_get_be32(f);
6699
6700 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6701 for (i = 0; i < 16; i++) {
6702 CPU_DoubleU u;
6703 u.l.upper = qemu_get_be32(f);
6704 u.l.lower = qemu_get_be32(f);
6705 env->vfp.regs[i] = u.d;
6706 }
6707 }
6708 }
6709
6710 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6711 for (i = 0; i < 16; i++) {
6712 env->iwmmxt.regs[i] = qemu_get_be64(f);
6713 }
6714 for (i = 0; i < 16; i++) {
6715 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6716 }
6717 }
6718
6719 if (arm_feature(env, ARM_FEATURE_M)) {
6720 env->v7m.other_sp = qemu_get_be32(f);
6721 env->v7m.vecbase = qemu_get_be32(f);
6722 env->v7m.basepri = qemu_get_be32(f);
6723 env->v7m.control = qemu_get_be32(f);
6724 env->v7m.current_sp = qemu_get_be32(f);
6725 env->v7m.exception = qemu_get_be32(f);
6726 }
6727
6728 return 0;
6729 }
6730
6731 #else
6732
6733 //#warning No CPU save/restore functions
6734
6735 #endif
6736
6737 /***********************************************************/
6738 /* ram save/restore */
6739
6740 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6741 {
6742 int v;
6743
6744 v = qemu_get_byte(f);
6745 switch(v) {
6746 case 0:
6747 if (qemu_get_buffer(f, buf, len) != len)
6748 return -EIO;
6749 break;
6750 case 1:
6751 v = qemu_get_byte(f);
6752 memset(buf, v, len);
6753 break;
6754 default:
6755 return -EINVAL;
6756 }
6757 return 0;
6758 }
6759
6760 static int ram_load_v1(QEMUFile *f, void *opaque)
6761 {
6762 int i, ret;
6763
6764 if (qemu_get_be32(f) != phys_ram_size)
6765 return -EINVAL;
6766 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6767 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6768 if (ret)
6769 return ret;
6770 }
6771 return 0;
6772 }
6773
6774 #define BDRV_HASH_BLOCK_SIZE 1024
6775 #define IOBUF_SIZE 4096
6776 #define RAM_CBLOCK_MAGIC 0xfabe
6777
6778 typedef struct RamCompressState {
6779 z_stream zstream;
6780 QEMUFile *f;
6781 uint8_t buf[IOBUF_SIZE];
6782 } RamCompressState;
6783
6784 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6785 {
6786 int ret;
6787 memset(s, 0, sizeof(*s));
6788 s->f = f;
6789 ret = deflateInit2(&s->zstream, 1,
6790 Z_DEFLATED, 15,
6791 9, Z_DEFAULT_STRATEGY);
6792 if (ret != Z_OK)
6793 return -1;
6794 s->zstream.avail_out = IOBUF_SIZE;
6795 s->zstream.next_out = s->buf;
6796 return 0;
6797 }
6798
6799 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6800 {
6801 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6802 qemu_put_be16(s->f, len);
6803 qemu_put_buffer(s->f, buf, len);
6804 }
6805
6806 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6807 {
6808 int ret;
6809
6810 s->zstream.avail_in = len;
6811 s->zstream.next_in = (uint8_t *)buf;
6812 while (s->zstream.avail_in > 0) {
6813 ret = deflate(&s->zstream, Z_NO_FLUSH);
6814 if (ret != Z_OK)
6815 return -1;
6816 if (s->zstream.avail_out == 0) {
6817 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6818 s->zstream.avail_out = IOBUF_SIZE;
6819 s->zstream.next_out = s->buf;
6820 }
6821 }
6822 return 0;
6823 }
6824
6825 static void ram_compress_close(RamCompressState *s)
6826 {
6827 int len, ret;
6828
6829 /* compress last bytes */
6830 for(;;) {
6831 ret = deflate(&s->zstream, Z_FINISH);
6832 if (ret == Z_OK || ret == Z_STREAM_END) {
6833 len = IOBUF_SIZE - s->zstream.avail_out;
6834 if (len > 0) {
6835 ram_put_cblock(s, s->buf, len);
6836 }
6837 s->zstream.avail_out = IOBUF_SIZE;
6838 s->zstream.next_out = s->buf;
6839 if (ret == Z_STREAM_END)
6840 break;
6841 } else {
6842 goto fail;
6843 }
6844 }
6845 fail:
6846 deflateEnd(&s->zstream);
6847 }
6848
6849 typedef struct RamDecompressState {
6850 z_stream zstream;
6851 QEMUFile *f;
6852 uint8_t buf[IOBUF_SIZE];
6853 } RamDecompressState;
6854
6855 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6856 {
6857 int ret;
6858 memset(s, 0, sizeof(*s));
6859 s->f = f;
6860 ret = inflateInit(&s->zstream);
6861 if (ret != Z_OK)
6862 return -1;
6863 return 0;
6864 }
6865
6866 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6867 {
6868 int ret, clen;
6869
6870 s->zstream.avail_out = len;
6871 s->zstream.next_out = buf;
6872 while (s->zstream.avail_out > 0) {
6873 if (s->zstream.avail_in == 0) {
6874 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6875 return -1;
6876 clen = qemu_get_be16(s->f);
6877 if (clen > IOBUF_SIZE)
6878 return -1;
6879 qemu_get_buffer(s->f, s->buf, clen);
6880 s->zstream.avail_in = clen;
6881 s->zstream.next_in = s->buf;
6882 }
6883 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6884 if (ret != Z_OK && ret != Z_STREAM_END) {
6885 return -1;
6886 }
6887 }
6888 return 0;
6889 }
6890
6891 static void ram_decompress_close(RamDecompressState *s)
6892 {
6893 inflateEnd(&s->zstream);
6894 }
6895
6896 static void ram_save(QEMUFile *f, void *opaque)
6897 {
6898 int i;
6899 RamCompressState s1, *s = &s1;
6900 uint8_t buf[10];
6901
6902 qemu_put_be32(f, phys_ram_size);
6903 if (ram_compress_open(s, f) < 0)
6904 return;
6905 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6906 #if 0
6907 if (tight_savevm_enabled) {
6908 int64_t sector_num;
6909 int j;
6910
6911 /* find if the memory block is available on a virtual
6912 block device */
6913 sector_num = -1;
6914 for(j = 0; j < nb_drives; j++) {
6915 sector_num = bdrv_hash_find(drives_table[j].bdrv,
6916 phys_ram_base + i,
6917 BDRV_HASH_BLOCK_SIZE);
6918 if (sector_num >= 0)
6919 break;
6920 }
6921 if (j == nb_drives)
6922 goto normal_compress;
6923 buf[0] = 1;
6924 buf[1] = j;
6925 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6926 ram_compress_buf(s, buf, 10);
6927 } else
6928 #endif
6929 {
6930 // normal_compress:
6931 buf[0] = 0;
6932 ram_compress_buf(s, buf, 1);
6933 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6934 }
6935 }
6936 ram_compress_close(s);
6937 }
6938
6939 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6940 {
6941 RamDecompressState s1, *s = &s1;
6942 uint8_t buf[10];
6943 int i;
6944
6945 if (version_id == 1)
6946 return ram_load_v1(f, opaque);
6947 if (version_id != 2)
6948 return -EINVAL;
6949 if (qemu_get_be32(f) != phys_ram_size)
6950 return -EINVAL;
6951 if (ram_decompress_open(s, f) < 0)
6952 return -EINVAL;
6953 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6954 if (ram_decompress_buf(s, buf, 1) < 0) {
6955 fprintf(stderr, "Error while reading ram block header\n");
6956 goto error;
6957 }
6958 if (buf[0] == 0) {
6959 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6960 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6961 goto error;
6962 }
6963 } else
6964 #if 0
6965 if (buf[0] == 1) {
6966 int bs_index;
6967 int64_t sector_num;
6968
6969 ram_decompress_buf(s, buf + 1, 9);
6970 bs_index = buf[1];
6971 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6972 if (bs_index >= nb_drives) {
6973 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6974 goto error;
6975 }
6976 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
6977 phys_ram_base + i,
6978 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6979 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6980 bs_index, sector_num);
6981 goto error;
6982 }
6983 } else
6984 #endif
6985 {
6986 error:
6987 printf("Error block header\n");
6988 return -EINVAL;
6989 }
6990 }
6991 ram_decompress_close(s);
6992 return 0;
6993 }
6994
6995 /***********************************************************/
6996 /* bottom halves (can be seen as timers which expire ASAP) */
6997
6998 struct QEMUBH {
6999 QEMUBHFunc *cb;
7000 void *opaque;
7001 int scheduled;
7002 QEMUBH *next;
7003 };
7004
7005 static QEMUBH *first_bh = NULL;
7006
7007 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7008 {
7009 QEMUBH *bh;
7010 bh = qemu_mallocz(sizeof(QEMUBH));
7011 if (!bh)
7012 return NULL;
7013 bh->cb = cb;
7014 bh->opaque = opaque;
7015 return bh;
7016 }
7017
7018 int qemu_bh_poll(void)
7019 {
7020 QEMUBH *bh, **pbh;
7021 int ret;
7022
7023 ret = 0;
7024 for(;;) {
7025 pbh = &first_bh;
7026 bh = *pbh;
7027 if (!bh)
7028 break;
7029 ret = 1;
7030 *pbh = bh->next;
7031 bh->scheduled = 0;
7032 bh->cb(bh->opaque);
7033 }
7034 return ret;
7035 }
7036
7037 void qemu_bh_schedule(QEMUBH *bh)
7038 {
7039 CPUState *env = cpu_single_env;
7040 if (bh->scheduled)
7041 return;
7042 bh->scheduled = 1;
7043 bh->next = first_bh;
7044 first_bh = bh;
7045
7046 /* stop the currently executing CPU to execute the BH ASAP */
7047 if (env) {
7048 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7049 }
7050 }
7051
7052 void qemu_bh_cancel(QEMUBH *bh)
7053 {
7054 QEMUBH **pbh;
7055 if (bh->scheduled) {
7056 pbh = &first_bh;
7057 while (*pbh != bh)
7058 pbh = &(*pbh)->next;
7059 *pbh = bh->next;
7060 bh->scheduled = 0;
7061 }
7062 }
7063
7064 void qemu_bh_delete(QEMUBH *bh)
7065 {
7066 qemu_bh_cancel(bh);
7067 qemu_free(bh);
7068 }
7069
7070 /***********************************************************/
7071 /* machine registration */
7072
7073 QEMUMachine *first_machine = NULL;
7074
7075 int qemu_register_machine(QEMUMachine *m)
7076 {
7077 QEMUMachine **pm;
7078 pm = &first_machine;
7079 while (*pm != NULL)
7080 pm = &(*pm)->next;
7081 m->next = NULL;
7082 *pm = m;
7083 return 0;
7084 }
7085
7086 static QEMUMachine *find_machine(const char *name)
7087 {
7088 QEMUMachine *m;
7089
7090 for(m = first_machine; m != NULL; m = m->next) {
7091 if (!strcmp(m->name, name))
7092 return m;
7093 }
7094 return NULL;
7095 }
7096
7097 /***********************************************************/
7098 /* main execution loop */
7099
7100 static void gui_update(void *opaque)
7101 {
7102 DisplayState *ds = opaque;
7103 ds->dpy_refresh(ds);
7104 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
7105 }
7106
7107 struct vm_change_state_entry {
7108 VMChangeStateHandler *cb;
7109 void *opaque;
7110 LIST_ENTRY (vm_change_state_entry) entries;
7111 };
7112
7113 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7114
7115 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7116 void *opaque)
7117 {
7118 VMChangeStateEntry *e;
7119
7120 e = qemu_mallocz(sizeof (*e));
7121 if (!e)
7122 return NULL;
7123
7124 e->cb = cb;
7125 e->opaque = opaque;
7126 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7127 return e;
7128 }
7129
7130 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7131 {
7132 LIST_REMOVE (e, entries);
7133 qemu_free (e);
7134 }
7135
7136 static void vm_state_notify(int running)
7137 {
7138 VMChangeStateEntry *e;
7139
7140 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7141 e->cb(e->opaque, running);
7142 }
7143 }
7144
7145 /* XXX: support several handlers */
7146 static VMStopHandler *vm_stop_cb;
7147 static void *vm_stop_opaque;
7148
7149 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7150 {
7151 vm_stop_cb = cb;
7152 vm_stop_opaque = opaque;
7153 return 0;
7154 }
7155
7156 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7157 {
7158 vm_stop_cb = NULL;
7159 }
7160
7161 void vm_start(void)
7162 {
7163 if (!vm_running) {
7164 cpu_enable_ticks();
7165 vm_running = 1;
7166 vm_state_notify(1);
7167 qemu_rearm_alarm_timer(alarm_timer);
7168 }
7169 }
7170
7171 void vm_stop(int reason)
7172 {
7173 if (vm_running) {
7174 cpu_disable_ticks();
7175 vm_running = 0;
7176 if (reason != 0) {
7177 if (vm_stop_cb) {
7178 vm_stop_cb(vm_stop_opaque, reason);
7179 }
7180 }
7181 vm_state_notify(0);
7182 }
7183 }
7184
7185 /* reset/shutdown handler */
7186
7187 typedef struct QEMUResetEntry {
7188 QEMUResetHandler *func;
7189 void *opaque;
7190 struct QEMUResetEntry *next;
7191 } QEMUResetEntry;
7192
7193 static QEMUResetEntry *first_reset_entry;
7194 static int reset_requested;
7195 static int shutdown_requested;
7196 static int powerdown_requested;
7197
7198 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7199 {
7200 QEMUResetEntry **pre, *re;
7201
7202 pre = &first_reset_entry;
7203 while (*pre != NULL)
7204 pre = &(*pre)->next;
7205 re = qemu_mallocz(sizeof(QEMUResetEntry));
7206 re->func = func;
7207 re->opaque = opaque;
7208 re->next = NULL;
7209 *pre = re;
7210 }
7211
7212 static void qemu_system_reset(void)
7213 {
7214 QEMUResetEntry *re;
7215
7216 /* reset all devices */
7217 for(re = first_reset_entry; re != NULL; re = re->next) {
7218 re->func(re->opaque);
7219 }
7220 }
7221
7222 void qemu_system_reset_request(void)
7223 {
7224 if (no_reboot) {
7225 shutdown_requested = 1;
7226 } else {
7227 reset_requested = 1;
7228 }
7229 if (cpu_single_env)
7230 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7231 }
7232
7233 void qemu_system_shutdown_request(void)
7234 {
7235 shutdown_requested = 1;
7236 if (cpu_single_env)
7237 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7238 }
7239
7240 void qemu_system_powerdown_request(void)
7241 {
7242 powerdown_requested = 1;
7243 if (cpu_single_env)
7244 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7245 }
7246
7247 void main_loop_wait(int timeout)
7248 {
7249 IOHandlerRecord *ioh;
7250 fd_set rfds, wfds, xfds;
7251 int ret, nfds;
7252 #ifdef _WIN32
7253 int ret2, i;
7254 #endif
7255 struct timeval tv;
7256 PollingEntry *pe;
7257
7258
7259 /* XXX: need to suppress polling by better using win32 events */
7260 ret = 0;
7261 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7262 ret |= pe->func(pe->opaque);
7263 }
7264 #ifdef _WIN32
7265 if (ret == 0) {
7266 int err;
7267 WaitObjects *w = &wait_objects;
7268
7269 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7270 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7271 if (w->func[ret - WAIT_OBJECT_0])
7272 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7273
7274 /* Check for additional signaled events */
7275 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7276
7277 /* Check if event is signaled */
7278 ret2 = WaitForSingleObject(w->events[i], 0);
7279 if(ret2 == WAIT_OBJECT_0) {
7280 if (w->func[i])
7281 w->func[i](w->opaque[i]);
7282 } else if (ret2 == WAIT_TIMEOUT) {
7283 } else {
7284 err = GetLastError();
7285 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7286 }
7287 }
7288 } else if (ret == WAIT_TIMEOUT) {
7289 } else {
7290 err = GetLastError();
7291 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7292 }
7293 }
7294 #endif
7295 /* poll any events */
7296 /* XXX: separate device handlers from system ones */
7297 nfds = -1;
7298 FD_ZERO(&rfds);
7299 FD_ZERO(&wfds);
7300 FD_ZERO(&xfds);
7301 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7302 if (ioh->deleted)
7303 continue;
7304 if (ioh->fd_read &&
7305 (!ioh->fd_read_poll ||
7306 ioh->fd_read_poll(ioh->opaque) != 0)) {
7307 FD_SET(ioh->fd, &rfds);
7308 if (ioh->fd > nfds)
7309 nfds = ioh->fd;
7310 }
7311 if (ioh->fd_write) {
7312 FD_SET(ioh->fd, &wfds);
7313 if (ioh->fd > nfds)
7314 nfds = ioh->fd;
7315 }
7316 }
7317
7318 tv.tv_sec = 0;
7319 #ifdef _WIN32
7320 tv.tv_usec = 0;
7321 #else
7322 tv.tv_usec = timeout * 1000;
7323 #endif
7324 #if defined(CONFIG_SLIRP)
7325 if (slirp_inited) {
7326 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7327 }
7328 #endif
7329 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7330 if (ret > 0) {
7331 IOHandlerRecord **pioh;
7332
7333 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7334 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7335 ioh->fd_read(ioh->opaque);
7336 }
7337 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7338 ioh->fd_write(ioh->opaque);
7339 }
7340 }
7341
7342 /* remove deleted IO handlers */
7343 pioh = &first_io_handler;
7344 while (*pioh) {
7345 ioh = *pioh;
7346 if (ioh->deleted) {
7347 *pioh = ioh->next;
7348 qemu_free(ioh);
7349 } else
7350 pioh = &ioh->next;
7351 }
7352 }
7353 #if defined(CONFIG_SLIRP)
7354 if (slirp_inited) {
7355 if (ret < 0) {
7356 FD_ZERO(&rfds);
7357 FD_ZERO(&wfds);
7358 FD_ZERO(&xfds);
7359 }
7360 slirp_select_poll(&rfds, &wfds, &xfds);
7361 }
7362 #endif
7363 qemu_aio_poll();
7364
7365 if (vm_running) {
7366 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7367 qemu_get_clock(vm_clock));
7368 /* run dma transfers, if any */
7369 DMA_run();
7370 }
7371
7372 /* real time timers */
7373 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7374 qemu_get_clock(rt_clock));
7375
7376 qemu_rearm_alarm_timer(alarm_timer);
7377
7378 /* Check bottom-halves last in case any of the earlier events triggered
7379 them. */
7380 qemu_bh_poll();
7381
7382 }
7383
7384 static int main_loop(void)
7385 {
7386 int ret, timeout;
7387 #ifdef CONFIG_PROFILER
7388 int64_t ti;
7389 #endif
7390 CPUState *env;
7391
7392 cur_cpu = first_cpu;
7393 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7394 for(;;) {
7395 if (vm_running) {
7396
7397 for(;;) {
7398 /* get next cpu */
7399 env = next_cpu;
7400 #ifdef CONFIG_PROFILER
7401 ti = profile_getclock();
7402 #endif
7403 ret = cpu_exec(env);
7404 #ifdef CONFIG_PROFILER
7405 qemu_time += profile_getclock() - ti;
7406 #endif
7407 next_cpu = env->next_cpu ?: first_cpu;
7408 if (event_pending) {
7409 ret = EXCP_INTERRUPT;
7410 event_pending = 0;
7411 break;
7412 }
7413 if (ret == EXCP_HLT) {
7414 /* Give the next CPU a chance to run. */
7415 cur_cpu = env;
7416 continue;
7417 }
7418 if (ret != EXCP_HALTED)
7419 break;
7420 /* all CPUs are halted ? */
7421 if (env == cur_cpu)
7422 break;
7423 }
7424 cur_cpu = env;
7425
7426 if (shutdown_requested) {
7427 ret = EXCP_INTERRUPT;
7428 break;
7429 }
7430 if (reset_requested) {
7431 reset_requested = 0;
7432 qemu_system_reset();
7433 ret = EXCP_INTERRUPT;
7434 }
7435 if (powerdown_requested) {
7436 powerdown_requested = 0;
7437 qemu_system_powerdown();
7438 ret = EXCP_INTERRUPT;
7439 }
7440 if (ret == EXCP_DEBUG) {
7441 vm_stop(EXCP_DEBUG);
7442 }
7443 /* If all cpus are halted then wait until the next IRQ */
7444 /* XXX: use timeout computed from timers */
7445 if (ret == EXCP_HALTED)
7446 timeout = 10;
7447 else
7448 timeout = 0;
7449 } else {
7450 timeout = 10;
7451 }
7452 #ifdef CONFIG_PROFILER
7453 ti = profile_getclock();
7454 #endif
7455 main_loop_wait(timeout);
7456 #ifdef CONFIG_PROFILER
7457 dev_time += profile_getclock() - ti;
7458 #endif
7459 }
7460 cpu_disable_ticks();
7461 return ret;
7462 }
7463
7464 static void help(int exitcode)
7465 {
7466 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7467 "usage: %s [options] [disk_image]\n"
7468 "\n"
7469 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7470 "\n"
7471 "Standard options:\n"
7472 "-M machine select emulated machine (-M ? for list)\n"
7473 "-cpu cpu select CPU (-cpu ? for list)\n"
7474 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7475 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7476 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7477 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7478 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7479 " [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]\n"
7480 " use 'file' as a drive image\n"
7481 "-mtdblock file use 'file' as on-board Flash memory image\n"
7482 "-sd file use 'file' as SecureDigital card image\n"
7483 "-pflash file use 'file' as a parallel flash image\n"
7484 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7485 "-snapshot write to temporary files instead of disk image files\n"
7486 #ifdef CONFIG_SDL
7487 "-no-frame open SDL window without a frame and window decorations\n"
7488 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7489 "-no-quit disable SDL window close capability\n"
7490 #endif
7491 #ifdef TARGET_I386
7492 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7493 #endif
7494 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7495 "-smp n set the number of CPUs to 'n' [default=1]\n"
7496 "-nographic disable graphical output and redirect serial I/Os to console\n"
7497 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7498 #ifndef _WIN32
7499 "-k language use keyboard layout (for example \"fr\" for French)\n"
7500 #endif
7501 #ifdef HAS_AUDIO
7502 "-audio-help print list of audio drivers and their options\n"
7503 "-soundhw c1,... enable audio support\n"
7504 " and only specified sound cards (comma separated list)\n"
7505 " use -soundhw ? to get the list of supported cards\n"
7506 " use -soundhw all to enable all of them\n"
7507 #endif
7508 "-localtime set the real time clock to local time [default=utc]\n"
7509 "-full-screen start in full screen\n"
7510 #ifdef TARGET_I386
7511 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7512 #endif
7513 "-usb enable the USB driver (will be the default soon)\n"
7514 "-usbdevice name add the host or guest USB device 'name'\n"
7515 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7516 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7517 #endif
7518 "-name string set the name of the guest\n"
7519 "\n"
7520 "Network options:\n"
7521 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7522 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7523 #ifdef CONFIG_SLIRP
7524 "-net user[,vlan=n][,hostname=host]\n"
7525 " connect the user mode network stack to VLAN 'n' and send\n"
7526 " hostname 'host' to DHCP clients\n"
7527 #endif
7528 #ifdef _WIN32
7529 "-net tap[,vlan=n],ifname=name\n"
7530 " connect the host TAP network interface to VLAN 'n'\n"
7531 #else
7532 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7533 " connect the host TAP network interface to VLAN 'n' and use the\n"
7534 " network scripts 'file' (default=%s)\n"
7535 " and 'dfile' (default=%s);\n"
7536 " use '[down]script=no' to disable script execution;\n"
7537 " use 'fd=h' to connect to an already opened TAP interface\n"
7538 #endif
7539 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7540 " connect the vlan 'n' to another VLAN using a socket connection\n"
7541 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7542 " connect the vlan 'n' to multicast maddr and port\n"
7543 "-net none use it alone to have zero network devices; if no -net option\n"
7544 " is provided, the default is '-net nic -net user'\n"
7545 "\n"
7546 #ifdef CONFIG_SLIRP
7547 "-tftp dir allow tftp access to files in dir [-net user]\n"
7548 "-bootp file advertise file in BOOTP replies\n"
7549 #ifndef _WIN32
7550 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7551 #endif
7552 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7553 " redirect TCP or UDP connections from host to guest [-net user]\n"
7554 #endif
7555 "\n"
7556 "Linux boot specific:\n"
7557 "-kernel bzImage use 'bzImage' as kernel image\n"
7558 "-append cmdline use 'cmdline' as kernel command line\n"
7559 "-initrd file use 'file' as initial ram disk\n"
7560 "\n"
7561 "Debug/Expert options:\n"
7562 "-monitor dev redirect the monitor to char device 'dev'\n"
7563 "-serial dev redirect the serial port to char device 'dev'\n"
7564 "-parallel dev redirect the parallel port to char device 'dev'\n"
7565 "-pidfile file Write PID to 'file'\n"
7566 "-S freeze CPU at startup (use 'c' to start execution)\n"
7567 "-s wait gdb connection to port\n"
7568 "-p port set gdb connection port [default=%s]\n"
7569 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7570 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7571 " translation (t=none or lba) (usually qemu can guess them)\n"
7572 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7573 #ifdef USE_KQEMU
7574 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7575 "-no-kqemu disable KQEMU kernel module usage\n"
7576 #endif
7577 #ifdef TARGET_I386
7578 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7579 " (default is CL-GD5446 PCI VGA)\n"
7580 "-no-acpi disable ACPI\n"
7581 #endif
7582 "-no-reboot exit instead of rebooting\n"
7583 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7584 "-vnc display start a VNC server on display\n"
7585 #ifndef _WIN32
7586 "-daemonize daemonize QEMU after initializing\n"
7587 #endif
7588 "-option-rom rom load a file, rom, into the option ROM space\n"
7589 #ifdef TARGET_SPARC
7590 "-prom-env variable=value set OpenBIOS nvram variables\n"
7591 #endif
7592 "-clock force the use of the given methods for timer alarm.\n"
7593 " To see what timers are available use -clock help\n"
7594 "\n"
7595 "During emulation, the following keys are useful:\n"
7596 "ctrl-alt-f toggle full screen\n"
7597 "ctrl-alt-n switch to virtual console 'n'\n"
7598 "ctrl-alt toggle mouse and keyboard grab\n"
7599 "\n"
7600 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7601 ,
7602 "qemu",
7603 DEFAULT_RAM_SIZE,
7604 #ifndef _WIN32
7605 DEFAULT_NETWORK_SCRIPT,
7606 DEFAULT_NETWORK_DOWN_SCRIPT,
7607 #endif
7608 DEFAULT_GDBSTUB_PORT,
7609 "/tmp/qemu.log");
7610 exit(exitcode);
7611 }
7612
7613 #define HAS_ARG 0x0001
7614
7615 enum {
7616 QEMU_OPTION_h,
7617
7618 QEMU_OPTION_M,
7619 QEMU_OPTION_cpu,
7620 QEMU_OPTION_fda,
7621 QEMU_OPTION_fdb,
7622 QEMU_OPTION_hda,
7623 QEMU_OPTION_hdb,
7624 QEMU_OPTION_hdc,
7625 QEMU_OPTION_hdd,
7626 QEMU_OPTION_drive,
7627 QEMU_OPTION_cdrom,
7628 QEMU_OPTION_mtdblock,
7629 QEMU_OPTION_sd,
7630 QEMU_OPTION_pflash,
7631 QEMU_OPTION_boot,
7632 QEMU_OPTION_snapshot,
7633 #ifdef TARGET_I386
7634 QEMU_OPTION_no_fd_bootchk,
7635 #endif
7636 QEMU_OPTION_m,
7637 QEMU_OPTION_nographic,
7638 QEMU_OPTION_portrait,
7639 #ifdef HAS_AUDIO
7640 QEMU_OPTION_audio_help,
7641 QEMU_OPTION_soundhw,
7642 #endif
7643
7644 QEMU_OPTION_net,
7645 QEMU_OPTION_tftp,
7646 QEMU_OPTION_bootp,
7647 QEMU_OPTION_smb,
7648 QEMU_OPTION_redir,
7649
7650 QEMU_OPTION_kernel,
7651 QEMU_OPTION_append,
7652 QEMU_OPTION_initrd,
7653
7654 QEMU_OPTION_S,
7655 QEMU_OPTION_s,
7656 QEMU_OPTION_p,
7657 QEMU_OPTION_d,
7658 QEMU_OPTION_hdachs,
7659 QEMU_OPTION_L,
7660 QEMU_OPTION_bios,
7661 QEMU_OPTION_no_code_copy,
7662 QEMU_OPTION_k,
7663 QEMU_OPTION_localtime,
7664 QEMU_OPTION_cirrusvga,
7665 QEMU_OPTION_vmsvga,
7666 QEMU_OPTION_g,
7667 QEMU_OPTION_std_vga,
7668 QEMU_OPTION_echr,
7669 QEMU_OPTION_monitor,
7670 QEMU_OPTION_serial,
7671 QEMU_OPTION_parallel,
7672 QEMU_OPTION_loadvm,
7673 QEMU_OPTION_full_screen,
7674 QEMU_OPTION_no_frame,
7675 QEMU_OPTION_alt_grab,
7676 QEMU_OPTION_no_quit,
7677 QEMU_OPTION_pidfile,
7678 QEMU_OPTION_no_kqemu,
7679 QEMU_OPTION_kernel_kqemu,
7680 QEMU_OPTION_win2k_hack,
7681 QEMU_OPTION_usb,
7682 QEMU_OPTION_usbdevice,
7683 QEMU_OPTION_smp,
7684 QEMU_OPTION_vnc,
7685 QEMU_OPTION_no_acpi,
7686 QEMU_OPTION_no_reboot,
7687 QEMU_OPTION_show_cursor,
7688 QEMU_OPTION_daemonize,
7689 QEMU_OPTION_option_rom,
7690 QEMU_OPTION_semihosting,
7691 QEMU_OPTION_name,
7692 QEMU_OPTION_prom_env,
7693 QEMU_OPTION_old_param,
7694 QEMU_OPTION_clock,
7695 QEMU_OPTION_startdate,
7696 };
7697
7698 typedef struct QEMUOption {
7699 const char *name;
7700 int flags;
7701 int index;
7702 } QEMUOption;
7703
7704 const QEMUOption qemu_options[] = {
7705 { "h", 0, QEMU_OPTION_h },
7706 { "help", 0, QEMU_OPTION_h },
7707
7708 { "M", HAS_ARG, QEMU_OPTION_M },
7709 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7710 { "fda", HAS_ARG, QEMU_OPTION_fda },
7711 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7712 { "hda", HAS_ARG, QEMU_OPTION_hda },
7713 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7714 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7715 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7716 { "drive", HAS_ARG, QEMU_OPTION_drive },
7717 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7718 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7719 { "sd", HAS_ARG, QEMU_OPTION_sd },
7720 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7721 { "boot", HAS_ARG, QEMU_OPTION_boot },
7722 { "snapshot", 0, QEMU_OPTION_snapshot },
7723 #ifdef TARGET_I386
7724 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7725 #endif
7726 { "m", HAS_ARG, QEMU_OPTION_m },
7727 { "nographic", 0, QEMU_OPTION_nographic },
7728 { "portrait", 0, QEMU_OPTION_portrait },
7729 { "k", HAS_ARG, QEMU_OPTION_k },
7730 #ifdef HAS_AUDIO
7731 { "audio-help", 0, QEMU_OPTION_audio_help },
7732 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7733 #endif
7734
7735 { "net", HAS_ARG, QEMU_OPTION_net},
7736 #ifdef CONFIG_SLIRP
7737 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7738 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7739 #ifndef _WIN32
7740 { "smb", HAS_ARG, QEMU_OPTION_smb },
7741 #endif
7742 { "redir", HAS_ARG, QEMU_OPTION_redir },
7743 #endif
7744
7745 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7746 { "append", HAS_ARG, QEMU_OPTION_append },
7747 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7748
7749 { "S", 0, QEMU_OPTION_S },
7750 { "s", 0, QEMU_OPTION_s },
7751 { "p", HAS_ARG, QEMU_OPTION_p },
7752 { "d", HAS_ARG, QEMU_OPTION_d },
7753 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7754 { "L", HAS_ARG, QEMU_OPTION_L },
7755 { "bios", HAS_ARG, QEMU_OPTION_bios },
7756 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7757 #ifdef USE_KQEMU
7758 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7759 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7760 #endif
7761 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7762 { "g", 1, QEMU_OPTION_g },
7763 #endif
7764 { "localtime", 0, QEMU_OPTION_localtime },
7765 { "std-vga", 0, QEMU_OPTION_std_vga },
7766 { "echr", HAS_ARG, QEMU_OPTION_echr },
7767 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7768 { "serial", HAS_ARG, QEMU_OPTION_serial },
7769 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7770 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7771 { "full-screen", 0, QEMU_OPTION_full_screen },
7772 #ifdef CONFIG_SDL
7773 { "no-frame", 0, QEMU_OPTION_no_frame },
7774 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7775 { "no-quit", 0, QEMU_OPTION_no_quit },
7776 #endif
7777 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7778 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7779 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7780 { "smp", HAS_ARG, QEMU_OPTION_smp },
7781 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7782
7783 /* temporary options */
7784 { "usb", 0, QEMU_OPTION_usb },
7785 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7786 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7787 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7788 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7789 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7790 { "daemonize", 0, QEMU_OPTION_daemonize },
7791 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7792 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7793 { "semihosting", 0, QEMU_OPTION_semihosting },
7794 #endif
7795 { "name", HAS_ARG, QEMU_OPTION_name },
7796 #if defined(TARGET_SPARC)
7797 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7798 #endif
7799 #if defined(TARGET_ARM)
7800 { "old-param", 0, QEMU_OPTION_old_param },
7801 #endif
7802 { "clock", HAS_ARG, QEMU_OPTION_clock },
7803 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7804 { NULL },
7805 };
7806
7807 /* password input */
7808
7809 int qemu_key_check(BlockDriverState *bs, const char *name)
7810 {
7811 char password[256];
7812 int i;
7813
7814 if (!bdrv_is_encrypted(bs))
7815 return 0;
7816
7817 term_printf("%s is encrypted.\n", name);
7818 for(i = 0; i < 3; i++) {
7819 monitor_readline("Password: ", 1, password, sizeof(password));
7820 if (bdrv_set_key(bs, password) == 0)
7821 return 0;
7822 term_printf("invalid password\n");
7823 }
7824 return -EPERM;
7825 }
7826
7827 static BlockDriverState *get_bdrv(int index)
7828 {
7829 if (index > nb_drives)
7830 return NULL;
7831 return drives_table[index].bdrv;
7832 }
7833
7834 static void read_passwords(void)
7835 {
7836 BlockDriverState *bs;
7837 int i;
7838
7839 for(i = 0; i < 6; i++) {
7840 bs = get_bdrv(i);
7841 if (bs)
7842 qemu_key_check(bs, bdrv_get_device_name(bs));
7843 }
7844 }
7845
7846 /* XXX: currently we cannot use simultaneously different CPUs */
7847 static void register_machines(void)
7848 {
7849 #if defined(TARGET_I386)
7850 qemu_register_machine(&pc_machine);
7851 qemu_register_machine(&isapc_machine);
7852 #elif defined(TARGET_PPC)
7853 qemu_register_machine(&heathrow_machine);
7854 qemu_register_machine(&core99_machine);
7855 qemu_register_machine(&prep_machine);
7856 qemu_register_machine(&ref405ep_machine);
7857 qemu_register_machine(&taihu_machine);
7858 #elif defined(TARGET_MIPS)
7859 qemu_register_machine(&mips_machine);
7860 qemu_register_machine(&mips_malta_machine);
7861 qemu_register_machine(&mips_pica61_machine);
7862 qemu_register_machine(&mips_mipssim_machine);
7863 #elif defined(TARGET_SPARC)
7864 #ifdef TARGET_SPARC64
7865 qemu_register_machine(&sun4u_machine);
7866 #else
7867 qemu_register_machine(&ss5_machine);
7868 qemu_register_machine(&ss10_machine);
7869 qemu_register_machine(&ss600mp_machine);
7870 qemu_register_machine(&ss20_machine);
7871 #endif
7872 #elif defined(TARGET_ARM)
7873 qemu_register_machine(&integratorcp_machine);
7874 qemu_register_machine(&versatilepb_machine);
7875 qemu_register_machine(&versatileab_machine);
7876 qemu_register_machine(&realview_machine);
7877 qemu_register_machine(&akitapda_machine);
7878 qemu_register_machine(&spitzpda_machine);
7879 qemu_register_machine(&borzoipda_machine);
7880 qemu_register_machine(&terrierpda_machine);
7881 qemu_register_machine(&palmte_machine);
7882 qemu_register_machine(&lm3s811evb_machine);
7883 qemu_register_machine(&lm3s6965evb_machine);
7884 qemu_register_machine(&connex_machine);
7885 qemu_register_machine(&verdex_machine);
7886 qemu_register_machine(&mainstone2_machine);
7887 #elif defined(TARGET_SH4)
7888 qemu_register_machine(&shix_machine);
7889 qemu_register_machine(&r2d_machine);
7890 #elif defined(TARGET_ALPHA)
7891 /* XXX: TODO */
7892 #elif defined(TARGET_M68K)
7893 qemu_register_machine(&mcf5208evb_machine);
7894 qemu_register_machine(&an5206_machine);
7895 qemu_register_machine(&dummy_m68k_machine);
7896 #elif defined(TARGET_CRIS)
7897 qemu_register_machine(&bareetraxfs_machine);
7898 #else
7899 #error unsupported CPU
7900 #endif
7901 }
7902
7903 #ifdef HAS_AUDIO
7904 struct soundhw soundhw[] = {
7905 #ifdef HAS_AUDIO_CHOICE
7906 #ifdef TARGET_I386
7907 {
7908 "pcspk",
7909 "PC speaker",
7910 0,
7911 1,
7912 { .init_isa = pcspk_audio_init }
7913 },
7914 #endif
7915 {
7916 "sb16",
7917 "Creative Sound Blaster 16",
7918 0,
7919 1,
7920 { .init_isa = SB16_init }
7921 },
7922
7923 #ifdef CONFIG_ADLIB
7924 {
7925 "adlib",
7926 #ifdef HAS_YMF262
7927 "Yamaha YMF262 (OPL3)",
7928 #else
7929 "Yamaha YM3812 (OPL2)",
7930 #endif
7931 0,
7932 1,
7933 { .init_isa = Adlib_init }
7934 },
7935 #endif
7936
7937 #ifdef CONFIG_GUS
7938 {
7939 "gus",
7940 "Gravis Ultrasound GF1",
7941 0,
7942 1,
7943 { .init_isa = GUS_init }
7944 },
7945 #endif
7946
7947 {
7948 "es1370",
7949 "ENSONIQ AudioPCI ES1370",
7950 0,
7951 0,
7952 { .init_pci = es1370_init }
7953 },
7954 #endif
7955
7956 { NULL, NULL, 0, 0, { NULL } }
7957 };
7958
7959 static void select_soundhw (const char *optarg)
7960 {
7961 struct soundhw *c;
7962
7963 if (*optarg == '?') {
7964 show_valid_cards:
7965
7966 printf ("Valid sound card names (comma separated):\n");
7967 for (c = soundhw; c->name; ++c) {
7968 printf ("%-11s %s\n", c->name, c->descr);
7969 }
7970 printf ("\n-soundhw all will enable all of the above\n");
7971 exit (*optarg != '?');
7972 }
7973 else {
7974 size_t l;
7975 const char *p;
7976 char *e;
7977 int bad_card = 0;
7978
7979 if (!strcmp (optarg, "all")) {
7980 for (c = soundhw; c->name; ++c) {
7981 c->enabled = 1;
7982 }
7983 return;
7984 }
7985
7986 p = optarg;
7987 while (*p) {
7988 e = strchr (p, ',');
7989 l = !e ? strlen (p) : (size_t) (e - p);
7990
7991 for (c = soundhw; c->name; ++c) {
7992 if (!strncmp (c->name, p, l)) {
7993 c->enabled = 1;
7994 break;
7995 }
7996 }
7997
7998 if (!c->name) {
7999 if (l > 80) {
8000 fprintf (stderr,
8001 "Unknown sound card name (too big to show)\n");
8002 }
8003 else {
8004 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8005 (int) l, p);
8006 }
8007 bad_card = 1;
8008 }
8009 p += l + (e != NULL);
8010 }
8011
8012 if (bad_card)
8013 goto show_valid_cards;
8014 }
8015 }
8016 #endif
8017
8018 #ifdef _WIN32
8019 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8020 {
8021 exit(STATUS_CONTROL_C_EXIT);
8022 return TRUE;
8023 }
8024 #endif
8025
8026 #define MAX_NET_CLIENTS 32
8027
8028 int main(int argc, char **argv)
8029 {
8030 #ifdef CONFIG_GDBSTUB
8031 int use_gdbstub;
8032 const char *gdbstub_port;
8033 #endif
8034 uint32_t boot_devices_bitmap = 0;
8035 int i;
8036 int snapshot, linux_boot, net_boot;
8037 const char *initrd_filename;
8038 const char *kernel_filename, *kernel_cmdline;
8039 const char *boot_devices = "";
8040 DisplayState *ds = &display_state;
8041 int cyls, heads, secs, translation;
8042 char net_clients[MAX_NET_CLIENTS][256];
8043 int nb_net_clients;
8044 int hda_index;
8045 int optind;
8046 const char *r, *optarg;
8047 CharDriverState *monitor_hd;
8048 char monitor_device[128];
8049 char serial_devices[MAX_SERIAL_PORTS][128];
8050 int serial_device_index;
8051 char parallel_devices[MAX_PARALLEL_PORTS][128];
8052 int parallel_device_index;
8053 const char *loadvm = NULL;
8054 QEMUMachine *machine;
8055 const char *cpu_model;
8056 char usb_devices[MAX_USB_CMDLINE][128];
8057 int usb_devices_index;
8058 int fds[2];
8059 const char *pid_file = NULL;
8060 VLANState *vlan;
8061
8062 LIST_INIT (&vm_change_state_head);
8063 #ifndef _WIN32
8064 {
8065 struct sigaction act;
8066 sigfillset(&act.sa_mask);
8067 act.sa_flags = 0;
8068 act.sa_handler = SIG_IGN;
8069 sigaction(SIGPIPE, &act, NULL);
8070 }
8071 #else
8072 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8073 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8074 QEMU to run on a single CPU */
8075 {
8076 HANDLE h;
8077 DWORD mask, smask;
8078 int i;
8079 h = GetCurrentProcess();
8080 if (GetProcessAffinityMask(h, &mask, &smask)) {
8081 for(i = 0; i < 32; i++) {
8082 if (mask & (1 << i))
8083 break;
8084 }
8085 if (i != 32) {
8086 mask = 1 << i;
8087 SetProcessAffinityMask(h, mask);
8088 }
8089 }
8090 }
8091 #endif
8092
8093 register_machines();
8094 machine = first_machine;
8095 cpu_model = NULL;
8096 initrd_filename = NULL;
8097 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8098 vga_ram_size = VGA_RAM_SIZE;
8099 #ifdef CONFIG_GDBSTUB
8100 use_gdbstub = 0;
8101 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8102 #endif
8103 snapshot = 0;
8104 nographic = 0;
8105 kernel_filename = NULL;
8106 kernel_cmdline = "";
8107 cyls = heads = secs = 0;
8108 translation = BIOS_ATA_TRANSLATION_AUTO;
8109 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
8110
8111 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
8112 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8113 serial_devices[i][0] = '\0';
8114 serial_device_index = 0;
8115
8116 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
8117 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8118 parallel_devices[i][0] = '\0';
8119 parallel_device_index = 0;
8120
8121 usb_devices_index = 0;
8122
8123 nb_net_clients = 0;
8124 nb_drives = 0;
8125 nb_drives_opt = 0;
8126 hda_index = -1;
8127
8128 nb_nics = 0;
8129 /* default mac address of the first network interface */
8130
8131 optind = 1;
8132 for(;;) {
8133 if (optind >= argc)
8134 break;
8135 r = argv[optind];
8136 if (r[0] != '-') {
8137 hda_index = drive_add(HD_ALIAS, argv[optind++], 0);
8138 } else {
8139 const QEMUOption *popt;
8140
8141 optind++;
8142 /* Treat --foo the same as -foo. */
8143 if (r[1] == '-')
8144 r++;
8145 popt = qemu_options;
8146 for(;;) {
8147 if (!popt->name) {
8148 fprintf(stderr, "%s: invalid option -- '%s'\n",
8149 argv[0], r);
8150 exit(1);
8151 }
8152 if (!strcmp(popt->name, r + 1))
8153 break;
8154 popt++;
8155 }
8156 if (popt->flags & HAS_ARG) {
8157 if (optind >= argc) {
8158 fprintf(stderr, "%s: option '%s' requires an argument\n",
8159 argv[0], r);
8160 exit(1);
8161 }
8162 optarg = argv[optind++];
8163 } else {
8164 optarg = NULL;
8165 }
8166
8167 switch(popt->index) {
8168 case QEMU_OPTION_M:
8169 machine = find_machine(optarg);
8170 if (!machine) {
8171 QEMUMachine *m;
8172 printf("Supported machines are:\n");
8173 for(m = first_machine; m != NULL; m = m->next) {
8174 printf("%-10s %s%s\n",
8175 m->name, m->desc,
8176 m == first_machine ? " (default)" : "");
8177 }
8178 exit(*optarg != '?');
8179 }
8180 break;
8181 case QEMU_OPTION_cpu:
8182 /* hw initialization will check this */
8183 if (*optarg == '?') {
8184 /* XXX: implement xxx_cpu_list for targets that still miss it */
8185 #if defined(cpu_list)
8186 cpu_list(stdout, &fprintf);
8187 #endif
8188 exit(0);
8189 } else {
8190 cpu_model = optarg;
8191 }
8192 break;
8193 case QEMU_OPTION_initrd:
8194 initrd_filename = optarg;
8195 break;
8196 case QEMU_OPTION_hda:
8197 if (cyls == 0)
8198 hda_index = drive_add(HD_ALIAS, optarg, 0);
8199 else
8200 hda_index = drive_add(HD_ALIAS
8201 ",cyls=%d,heads=%d,secs=%d%s",
8202 optarg, 0, cyls, heads, secs,
8203 translation == BIOS_ATA_TRANSLATION_LBA ?
8204 ",trans=lba" :
8205 translation == BIOS_ATA_TRANSLATION_NONE ?
8206 ",trans=none" : "");
8207 break;
8208 case QEMU_OPTION_hdb:
8209 case QEMU_OPTION_hdc:
8210 case QEMU_OPTION_hdd:
8211 drive_add(HD_ALIAS, optarg, popt->index - QEMU_OPTION_hda);
8212 break;
8213 case QEMU_OPTION_drive:
8214 drive_add("%s", optarg);
8215 break;
8216 case QEMU_OPTION_mtdblock:
8217 drive_add(MTD_ALIAS, optarg);
8218 break;
8219 case QEMU_OPTION_sd:
8220 drive_add("file=\"%s\"," SD_ALIAS, optarg);
8221 break;
8222 case QEMU_OPTION_pflash:
8223 drive_add(PFLASH_ALIAS, optarg);
8224 break;
8225 case QEMU_OPTION_snapshot:
8226 snapshot = 1;
8227 break;
8228 case QEMU_OPTION_hdachs:
8229 {
8230 const char *p;
8231 p = optarg;
8232 cyls = strtol(p, (char **)&p, 0);
8233 if (cyls < 1 || cyls > 16383)
8234 goto chs_fail;
8235 if (*p != ',')
8236 goto chs_fail;
8237 p++;
8238 heads = strtol(p, (char **)&p, 0);
8239 if (heads < 1 || heads > 16)
8240 goto chs_fail;
8241 if (*p != ',')
8242 goto chs_fail;
8243 p++;
8244 secs = strtol(p, (char **)&p, 0);
8245 if (secs < 1 || secs > 63)
8246 goto chs_fail;
8247 if (*p == ',') {
8248 p++;
8249 if (!strcmp(p, "none"))
8250 translation = BIOS_ATA_TRANSLATION_NONE;
8251 else if (!strcmp(p, "lba"))
8252 translation = BIOS_ATA_TRANSLATION_LBA;
8253 else if (!strcmp(p, "auto"))
8254 translation = BIOS_ATA_TRANSLATION_AUTO;
8255 else
8256 goto chs_fail;
8257 } else if (*p != '\0') {
8258 chs_fail:
8259 fprintf(stderr, "qemu: invalid physical CHS format\n");
8260 exit(1);
8261 }
8262 if (hda_index != -1)
8263 snprintf(drives_opt[hda_index] +
8264 strlen(drives_opt[hda_index]),
8265 sizeof(drives_opt[0]) -
8266 strlen(drives_opt[hda_index]),
8267 ",cyls=%d,heads=%d,secs=%d%s",
8268 cyls, heads, secs,
8269 translation == BIOS_ATA_TRANSLATION_LBA ?
8270 ",trans=lba" :
8271 translation == BIOS_ATA_TRANSLATION_NONE ?
8272 ",trans=none" : "");
8273 }
8274 break;
8275 case QEMU_OPTION_nographic:
8276 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
8277 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
8278 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
8279 nographic = 1;
8280 break;
8281 case QEMU_OPTION_portrait:
8282 graphic_rotate = 1;
8283 break;
8284 case QEMU_OPTION_kernel:
8285 kernel_filename = optarg;
8286 break;
8287 case QEMU_OPTION_append:
8288 kernel_cmdline = optarg;
8289 break;
8290 case QEMU_OPTION_cdrom:
8291 drive_add("file=\"%s\"," CDROM_ALIAS, optarg);
8292 break;
8293 case QEMU_OPTION_boot:
8294 boot_devices = optarg;
8295 /* We just do some generic consistency checks */
8296 {
8297 /* Could easily be extended to 64 devices if needed */
8298 const char *p;
8299
8300 boot_devices_bitmap = 0;
8301 for (p = boot_devices; *p != '\0'; p++) {
8302 /* Allowed boot devices are:
8303 * a b : floppy disk drives
8304 * c ... f : IDE disk drives
8305 * g ... m : machine implementation dependant drives
8306 * n ... p : network devices
8307 * It's up to each machine implementation to check
8308 * if the given boot devices match the actual hardware
8309 * implementation and firmware features.
8310 */
8311 if (*p < 'a' || *p > 'q') {
8312 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8313 exit(1);
8314 }
8315 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8316 fprintf(stderr,
8317 "Boot device '%c' was given twice\n",*p);
8318 exit(1);
8319 }
8320 boot_devices_bitmap |= 1 << (*p - 'a');
8321 }
8322 }
8323 break;
8324 case QEMU_OPTION_fda:
8325 case QEMU_OPTION_fdb:
8326 drive_add("file=\"%s\"," FD_ALIAS, optarg,
8327 popt->index - QEMU_OPTION_fda);
8328 break;
8329 #ifdef TARGET_I386
8330 case QEMU_OPTION_no_fd_bootchk:
8331 fd_bootchk = 0;
8332 break;
8333 #endif
8334 case QEMU_OPTION_no_code_copy:
8335 code_copy_enabled = 0;
8336 break;
8337 case QEMU_OPTION_net:
8338 if (nb_net_clients >= MAX_NET_CLIENTS) {
8339 fprintf(stderr, "qemu: too many network clients\n");
8340 exit(1);
8341 }
8342 pstrcpy(net_clients[nb_net_clients],
8343 sizeof(net_clients[0]),
8344 optarg);
8345 nb_net_clients++;
8346 break;
8347 #ifdef CONFIG_SLIRP
8348 case QEMU_OPTION_tftp:
8349 tftp_prefix = optarg;
8350 break;
8351 case QEMU_OPTION_bootp:
8352 bootp_filename = optarg;
8353 break;
8354 #ifndef _WIN32
8355 case QEMU_OPTION_smb:
8356 net_slirp_smb(optarg);
8357 break;
8358 #endif
8359 case QEMU_OPTION_redir:
8360 net_slirp_redir(optarg);
8361 break;
8362 #endif
8363 #ifdef HAS_AUDIO
8364 case QEMU_OPTION_audio_help:
8365 AUD_help ();
8366 exit (0);
8367 break;
8368 case QEMU_OPTION_soundhw:
8369 select_soundhw (optarg);
8370 break;
8371 #endif
8372 case QEMU_OPTION_h:
8373 help(0);
8374 break;
8375 case QEMU_OPTION_m:
8376 ram_size = atoi(optarg) * 1024 * 1024;
8377 if (ram_size <= 0)
8378 help(1);
8379 if (ram_size > PHYS_RAM_MAX_SIZE) {
8380 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8381 PHYS_RAM_MAX_SIZE / (1024 * 1024));
8382 exit(1);
8383 }
8384 break;
8385 case QEMU_OPTION_d:
8386 {
8387 int mask;
8388 CPULogItem *item;
8389
8390 mask = cpu_str_to_log_mask(optarg);
8391 if (!mask) {
8392 printf("Log items (comma separated):\n");
8393 for(item = cpu_log_items; item->mask != 0; item++) {
8394 printf("%-10s %s\n", item->name, item->help);
8395 }
8396 exit(1);
8397 }
8398 cpu_set_log(mask);
8399 }
8400 break;
8401 #ifdef CONFIG_GDBSTUB
8402 case QEMU_OPTION_s:
8403 use_gdbstub = 1;
8404 break;
8405 case QEMU_OPTION_p:
8406 gdbstub_port = optarg;
8407 break;
8408 #endif
8409 case QEMU_OPTION_L:
8410 bios_dir = optarg;
8411 break;
8412 case QEMU_OPTION_bios:
8413 bios_name = optarg;
8414 break;
8415 case QEMU_OPTION_S:
8416 autostart = 0;
8417 break;
8418 case QEMU_OPTION_k:
8419 keyboard_layout = optarg;
8420 break;
8421 case QEMU_OPTION_localtime:
8422 rtc_utc = 0;
8423 break;
8424 case QEMU_OPTION_cirrusvga:
8425 cirrus_vga_enabled = 1;
8426 vmsvga_enabled = 0;
8427 break;
8428 case QEMU_OPTION_vmsvga:
8429 cirrus_vga_enabled = 0;
8430 vmsvga_enabled = 1;
8431 break;
8432 case QEMU_OPTION_std_vga:
8433 cirrus_vga_enabled = 0;
8434 vmsvga_enabled = 0;
8435 break;
8436 case QEMU_OPTION_g:
8437 {
8438 const char *p;
8439 int w, h, depth;
8440 p = optarg;
8441 w = strtol(p, (char **)&p, 10);
8442 if (w <= 0) {
8443 graphic_error:
8444 fprintf(stderr, "qemu: invalid resolution or depth\n");
8445 exit(1);
8446 }
8447 if (*p != 'x')
8448 goto graphic_error;
8449 p++;
8450 h = strtol(p, (char **)&p, 10);
8451 if (h <= 0)
8452 goto graphic_error;
8453 if (*p == 'x') {
8454 p++;
8455 depth = strtol(p, (char **)&p, 10);
8456 if (depth != 8 && depth != 15 && depth != 16 &&
8457 depth != 24 && depth != 32)
8458 goto graphic_error;
8459 } else if (*p == '\0') {
8460 depth = graphic_depth;
8461 } else {
8462 goto graphic_error;
8463 }
8464
8465 graphic_width = w;
8466 graphic_height = h;
8467 graphic_depth = depth;
8468 }
8469 break;
8470 case QEMU_OPTION_echr:
8471 {
8472 char *r;
8473 term_escape_char = strtol(optarg, &r, 0);
8474 if (r == optarg)
8475 printf("Bad argument to echr\n");
8476 break;
8477 }
8478 case QEMU_OPTION_monitor:
8479 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8480 break;
8481 case QEMU_OPTION_serial:
8482 if (serial_device_index >= MAX_SERIAL_PORTS) {
8483 fprintf(stderr, "qemu: too many serial ports\n");
8484 exit(1);
8485 }
8486 pstrcpy(serial_devices[serial_device_index],
8487 sizeof(serial_devices[0]), optarg);
8488 serial_device_index++;
8489 break;
8490 case QEMU_OPTION_parallel:
8491 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8492 fprintf(stderr, "qemu: too many parallel ports\n");
8493 exit(1);
8494 }
8495 pstrcpy(parallel_devices[parallel_device_index],
8496 sizeof(parallel_devices[0]), optarg);
8497 parallel_device_index++;
8498 break;
8499 case QEMU_OPTION_loadvm:
8500 loadvm = optarg;
8501 break;
8502 case QEMU_OPTION_full_screen:
8503 full_screen = 1;
8504 break;
8505 #ifdef CONFIG_SDL
8506 case QEMU_OPTION_no_frame:
8507 no_frame = 1;
8508 break;
8509 case QEMU_OPTION_alt_grab:
8510 alt_grab = 1;
8511 break;
8512 case QEMU_OPTION_no_quit:
8513 no_quit = 1;
8514 break;
8515 #endif
8516 case QEMU_OPTION_pidfile:
8517 pid_file = optarg;
8518 break;
8519 #ifdef TARGET_I386
8520 case QEMU_OPTION_win2k_hack:
8521 win2k_install_hack = 1;
8522 break;
8523 #endif
8524 #ifdef USE_KQEMU
8525 case QEMU_OPTION_no_kqemu:
8526 kqemu_allowed = 0;
8527 break;
8528 case QEMU_OPTION_kernel_kqemu:
8529 kqemu_allowed = 2;
8530 break;
8531 #endif
8532 case QEMU_OPTION_usb:
8533 usb_enabled = 1;
8534 break;
8535 case QEMU_OPTION_usbdevice:
8536 usb_enabled = 1;
8537 if (usb_devices_index >= MAX_USB_CMDLINE) {
8538 fprintf(stderr, "Too many USB devices\n");
8539 exit(1);
8540 }
8541 pstrcpy(usb_devices[usb_devices_index],
8542 sizeof(usb_devices[usb_devices_index]),
8543 optarg);
8544 usb_devices_index++;
8545 break;
8546 case QEMU_OPTION_smp:
8547 smp_cpus = atoi(optarg);
8548 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8549 fprintf(stderr, "Invalid number of CPUs\n");
8550 exit(1);
8551 }
8552 break;
8553 case QEMU_OPTION_vnc:
8554 vnc_display = optarg;
8555 break;
8556 case QEMU_OPTION_no_acpi:
8557 acpi_enabled = 0;
8558 break;
8559 case QEMU_OPTION_no_reboot:
8560 no_reboot = 1;
8561 break;
8562 case QEMU_OPTION_show_cursor:
8563 cursor_hide = 0;
8564 break;
8565 case QEMU_OPTION_daemonize:
8566 daemonize = 1;
8567 break;
8568 case QEMU_OPTION_option_rom:
8569 if (nb_option_roms >= MAX_OPTION_ROMS) {
8570 fprintf(stderr, "Too many option ROMs\n");
8571 exit(1);
8572 }
8573 option_rom[nb_option_roms] = optarg;
8574 nb_option_roms++;
8575 break;
8576 case QEMU_OPTION_semihosting:
8577 semihosting_enabled = 1;
8578 break;
8579 case QEMU_OPTION_name:
8580 qemu_name = optarg;
8581 break;
8582 #ifdef TARGET_SPARC
8583 case QEMU_OPTION_prom_env:
8584 if (nb_prom_envs >= MAX_PROM_ENVS) {
8585 fprintf(stderr, "Too many prom variables\n");
8586 exit(1);
8587 }
8588 prom_envs[nb_prom_envs] = optarg;
8589 nb_prom_envs++;
8590 break;
8591 #endif
8592 #ifdef TARGET_ARM
8593 case QEMU_OPTION_old_param:
8594 old_param = 1;
8595 #endif
8596 case QEMU_OPTION_clock:
8597 configure_alarms(optarg);
8598 break;
8599 case QEMU_OPTION_startdate:
8600 {
8601 struct tm tm;
8602 if (!strcmp(optarg, "now")) {
8603 rtc_start_date = -1;
8604 } else {
8605 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8606 &tm.tm_year,
8607 &tm.tm_mon,
8608 &tm.tm_mday,
8609 &tm.tm_hour,
8610 &tm.tm_min,
8611 &tm.tm_sec) == 6) {
8612 /* OK */
8613 } else if (sscanf(optarg, "%d-%d-%d",
8614 &tm.tm_year,
8615 &tm.tm_mon,
8616 &tm.tm_mday) == 3) {
8617 tm.tm_hour = 0;
8618 tm.tm_min = 0;
8619 tm.tm_sec = 0;
8620 } else {
8621 goto date_fail;
8622 }
8623 tm.tm_year -= 1900;
8624 tm.tm_mon--;
8625 rtc_start_date = mktimegm(&tm);
8626 if (rtc_start_date == -1) {
8627 date_fail:
8628 fprintf(stderr, "Invalid date format. Valid format are:\n"
8629 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8630 exit(1);
8631 }
8632 }
8633 }
8634 break;
8635 }
8636 }
8637 }
8638
8639 #ifndef _WIN32
8640 if (daemonize && !nographic && vnc_display == NULL) {
8641 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8642 daemonize = 0;
8643 }
8644
8645 if (daemonize) {
8646 pid_t pid;
8647
8648 if (pipe(fds) == -1)
8649 exit(1);
8650
8651 pid = fork();
8652 if (pid > 0) {
8653 uint8_t status;
8654 ssize_t len;
8655
8656 close(fds[1]);
8657
8658 again:
8659 len = read(fds[0], &status, 1);
8660 if (len == -1 && (errno == EINTR))
8661 goto again;
8662
8663 if (len != 1)
8664 exit(1);
8665 else if (status == 1) {
8666 fprintf(stderr, "Could not acquire pidfile\n");
8667 exit(1);
8668 } else
8669 exit(0);
8670 } else if (pid < 0)
8671 exit(1);
8672
8673 setsid();
8674
8675 pid = fork();
8676 if (pid > 0)
8677 exit(0);
8678 else if (pid < 0)
8679 exit(1);
8680
8681 umask(027);
8682 chdir("/");
8683
8684 signal(SIGTSTP, SIG_IGN);
8685 signal(SIGTTOU, SIG_IGN);
8686 signal(SIGTTIN, SIG_IGN);
8687 }
8688 #endif
8689
8690 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8691 if (daemonize) {
8692 uint8_t status = 1;
8693 write(fds[1], &status, 1);
8694 } else
8695 fprintf(stderr, "Could not acquire pid file\n");
8696 exit(1);
8697 }
8698
8699 #ifdef USE_KQEMU
8700 if (smp_cpus > 1)
8701 kqemu_allowed = 0;
8702 #endif
8703 linux_boot = (kernel_filename != NULL);
8704 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8705
8706 /* XXX: this should not be: some embedded targets just have flash */
8707 if (!linux_boot && net_boot == 0 &&
8708 nb_drives_opt == 0)
8709 help(1);
8710
8711 /* boot to floppy or the default cd if no hard disk defined yet */
8712 if (!boot_devices[0]) {
8713 boot_devices = "cad";
8714 }
8715 setvbuf(stdout, NULL, _IOLBF, 0);
8716
8717 init_timers();
8718 init_timer_alarm();
8719 qemu_aio_init();
8720
8721 #ifdef _WIN32
8722 socket_init();
8723 #endif
8724
8725 /* init network clients */
8726 if (nb_net_clients == 0) {
8727 /* if no clients, we use a default config */
8728 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8729 "nic");
8730 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8731 "user");
8732 nb_net_clients = 2;
8733 }
8734
8735 for(i = 0;i < nb_net_clients; i++) {
8736 if (net_client_init(net_clients[i]) < 0)
8737 exit(1);
8738 }
8739 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8740 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8741 continue;
8742 if (vlan->nb_guest_devs == 0) {
8743 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8744 exit(1);
8745 }
8746 if (vlan->nb_host_devs == 0)
8747 fprintf(stderr,
8748 "Warning: vlan %d is not connected to host network\n",
8749 vlan->id);
8750 }
8751
8752 #ifdef TARGET_I386
8753 /* XXX: this should be moved in the PC machine instantiation code */
8754 if (net_boot != 0) {
8755 int netroms = 0;
8756 for (i = 0; i < nb_nics && i < 4; i++) {
8757 const char *model = nd_table[i].model;
8758 char buf[1024];
8759 if (net_boot & (1 << i)) {
8760 if (model == NULL)
8761 model = "ne2k_pci";
8762 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8763 if (get_image_size(buf) > 0) {
8764 if (nb_option_roms >= MAX_OPTION_ROMS) {
8765 fprintf(stderr, "Too many option ROMs\n");
8766 exit(1);
8767 }
8768 option_rom[nb_option_roms] = strdup(buf);
8769 nb_option_roms++;
8770 netroms++;
8771 }
8772 }
8773 }
8774 if (netroms == 0) {
8775 fprintf(stderr, "No valid PXE rom found for network device\n");
8776 exit(1);
8777 }
8778 }
8779 #endif
8780
8781 /* init the memory */
8782 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8783
8784 phys_ram_base = qemu_vmalloc(phys_ram_size);
8785 if (!phys_ram_base) {
8786 fprintf(stderr, "Could not allocate physical memory\n");
8787 exit(1);
8788 }
8789
8790 bdrv_init();
8791
8792 /* we always create the cdrom drive, even if no disk is there */
8793
8794 if (nb_drives_opt < MAX_DRIVES)
8795 drive_add(CDROM_ALIAS);
8796
8797 /* we always create at least one floppy */
8798
8799 if (nb_drives_opt < MAX_DRIVES)
8800 drive_add(FD_ALIAS, 0);
8801
8802 /* we always create one sd slot, even if no card is in it */
8803
8804 if (nb_drives_opt < MAX_DRIVES)
8805 drive_add(SD_ALIAS);
8806
8807 /* open the virtual block devices */
8808
8809 for(i = 0; i < nb_drives_opt; i++)
8810 if (drive_init(drives_opt[i], snapshot, machine) == -1)
8811 exit(1);
8812
8813 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8814 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8815
8816 init_ioports();
8817
8818 /* terminal init */
8819 memset(&display_state, 0, sizeof(display_state));
8820 if (nographic) {
8821 /* nearly nothing to do */
8822 dumb_display_init(ds);
8823 } else if (vnc_display != NULL) {
8824 vnc_display_init(ds);
8825 if (vnc_display_open(ds, vnc_display) < 0)
8826 exit(1);
8827 } else {
8828 #if defined(CONFIG_SDL)
8829 sdl_display_init(ds, full_screen, no_frame);
8830 #elif defined(CONFIG_COCOA)
8831 cocoa_display_init(ds, full_screen);
8832 #else
8833 dumb_display_init(ds);
8834 #endif
8835 }
8836
8837 /* Maintain compatibility with multiple stdio monitors */
8838 if (!strcmp(monitor_device,"stdio")) {
8839 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8840 if (!strcmp(serial_devices[i],"mon:stdio")) {
8841 monitor_device[0] = '\0';
8842 break;
8843 } else if (!strcmp(serial_devices[i],"stdio")) {
8844 monitor_device[0] = '\0';
8845 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8846 break;
8847 }
8848 }
8849 }
8850 if (monitor_device[0] != '\0') {
8851 monitor_hd = qemu_chr_open(monitor_device);
8852 if (!monitor_hd) {
8853 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8854 exit(1);
8855 }
8856 monitor_init(monitor_hd, !nographic);
8857 }
8858
8859 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8860 const char *devname = serial_devices[i];
8861 if (devname[0] != '\0' && strcmp(devname, "none")) {
8862 serial_hds[i] = qemu_chr_open(devname);
8863 if (!serial_hds[i]) {
8864 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8865 devname);
8866 exit(1);
8867 }
8868 if (strstart(devname, "vc", 0))
8869 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8870 }
8871 }
8872
8873 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8874 const char *devname = parallel_devices[i];
8875 if (devname[0] != '\0' && strcmp(devname, "none")) {
8876 parallel_hds[i] = qemu_chr_open(devname);
8877 if (!parallel_hds[i]) {
8878 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8879 devname);
8880 exit(1);
8881 }
8882 if (strstart(devname, "vc", 0))
8883 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8884 }
8885 }
8886
8887 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8888 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8889
8890 /* init USB devices */
8891 if (usb_enabled) {
8892 for(i = 0; i < usb_devices_index; i++) {
8893 if (usb_device_add(usb_devices[i]) < 0) {
8894 fprintf(stderr, "Warning: could not add USB device %s\n",
8895 usb_devices[i]);
8896 }
8897 }
8898 }
8899
8900 if (display_state.dpy_refresh) {
8901 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8902 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8903 }
8904
8905 #ifdef CONFIG_GDBSTUB
8906 if (use_gdbstub) {
8907 /* XXX: use standard host:port notation and modify options
8908 accordingly. */
8909 if (gdbserver_start(gdbstub_port) < 0) {
8910 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8911 gdbstub_port);
8912 exit(1);
8913 }
8914 }
8915 #endif
8916
8917 if (loadvm)
8918 do_loadvm(loadvm);
8919
8920 {
8921 /* XXX: simplify init */
8922 read_passwords();
8923 if (autostart) {
8924 vm_start();
8925 }
8926 }
8927
8928 if (daemonize) {
8929 uint8_t status = 0;
8930 ssize_t len;
8931 int fd;
8932
8933 again1:
8934 len = write(fds[1], &status, 1);
8935 if (len == -1 && (errno == EINTR))
8936 goto again1;
8937
8938 if (len != 1)
8939 exit(1);
8940
8941 TFR(fd = open("/dev/null", O_RDWR));
8942 if (fd == -1)
8943 exit(1);
8944
8945 dup2(fd, 0);
8946 dup2(fd, 1);
8947 dup2(fd, 2);
8948
8949 close(fd);
8950 }
8951
8952 main_loop();
8953 quit_timers();
8954
8955 #if !defined(_WIN32)
8956 /* close network clients */
8957 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8958 VLANClientState *vc;
8959
8960 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8961 if (vc->fd_read == tap_receive) {
8962 char ifname[64];
8963 TAPState *s = vc->opaque;
8964
8965 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8966 s->down_script[0])
8967 launch_script(s->down_script, ifname, s->fd);
8968 }
8969 }
8970 }
8971 #endif
8972 return 0;
8973 }