]> git.proxmox.com Git - qemu.git/blob - vl.c
Introduce QString
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
113
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 return qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
178
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 /***********************************************************/
275 /* x86 ISA bus support */
276
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
279
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
282 {
283 va_list ap;
284 CPUState *env;
285
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
297 }
298 va_end(ap);
299 abort();
300 }
301
302 static void set_proc_name(const char *s)
303 {
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
314 }
315
316 /***************/
317 /* ballooning */
318
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
321
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 {
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
326 }
327
328 void qemu_balloon(ram_addr_t target)
329 {
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
332 }
333
334 ram_addr_t qemu_balloon_status(void)
335 {
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
339 }
340
341 /***********************************************************/
342 /* keyboard/mouse */
343
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 {
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
353 }
354
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
358 {
359 QEMUPutMouseEntry *s, *cursor;
360
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
368
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
372 }
373
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
377
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
380
381 return s;
382 }
383
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 {
386 QEMUPutMouseEntry *prev = NULL, *cursor;
387
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
390
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
395 }
396
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
406 }
407
408 prev->next = entry->next;
409
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
412
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
415 }
416
417 void kbd_put_keycode(int keycode)
418 {
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
421 }
422 }
423
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 {
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
429
430 if (!qemu_put_mouse_event_current) {
431 return;
432 }
433
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
450 }
451 }
452
453 int kbd_mouse_is_absolute(void)
454 {
455 if (!qemu_put_mouse_event_current)
456 return 0;
457
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
459 }
460
461 void do_info_mice(Monitor *mon)
462 {
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
465
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
469 }
470
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
479 }
480 }
481
482 void do_mouse_set(Monitor *mon, int index)
483 {
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486
487 if (!qemu_put_mouse_event_head) {
488 monitor_printf(mon, "No mouse devices connected\n");
489 return;
490 }
491
492 cursor = qemu_put_mouse_event_head;
493 while (cursor != NULL && index != i) {
494 i++;
495 cursor = cursor->next;
496 }
497
498 if (cursor != NULL)
499 qemu_put_mouse_event_current = cursor;
500 else
501 monitor_printf(mon, "Mouse at given index not found\n");
502 }
503
504 /* compute with 96 bit intermediate result: (a*b)/c */
505 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
506 {
507 union {
508 uint64_t ll;
509 struct {
510 #ifdef HOST_WORDS_BIGENDIAN
511 uint32_t high, low;
512 #else
513 uint32_t low, high;
514 #endif
515 } l;
516 } u, res;
517 uint64_t rl, rh;
518
519 u.ll = a;
520 rl = (uint64_t)u.l.low * (uint64_t)b;
521 rh = (uint64_t)u.l.high * (uint64_t)b;
522 rh += (rl >> 32);
523 res.l.high = rh / c;
524 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
525 return res.ll;
526 }
527
528 /***********************************************************/
529 /* real time host monotonic timer */
530
531 #define QEMU_TIMER_BASE 1000000000LL
532
533 #ifdef WIN32
534
535 static int64_t clock_freq;
536
537 static void init_get_clock(void)
538 {
539 LARGE_INTEGER freq;
540 int ret;
541 ret = QueryPerformanceFrequency(&freq);
542 if (ret == 0) {
543 fprintf(stderr, "Could not calibrate ticks\n");
544 exit(1);
545 }
546 clock_freq = freq.QuadPart;
547 }
548
549 static int64_t get_clock(void)
550 {
551 LARGE_INTEGER ti;
552 QueryPerformanceCounter(&ti);
553 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
554 }
555
556 #else
557
558 static int use_rt_clock;
559
560 static void init_get_clock(void)
561 {
562 use_rt_clock = 0;
563 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
564 || defined(__DragonFly__)
565 {
566 struct timespec ts;
567 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
568 use_rt_clock = 1;
569 }
570 }
571 #endif
572 }
573
574 static int64_t get_clock(void)
575 {
576 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
577 || defined(__DragonFly__)
578 if (use_rt_clock) {
579 struct timespec ts;
580 clock_gettime(CLOCK_MONOTONIC, &ts);
581 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
582 } else
583 #endif
584 {
585 /* XXX: using gettimeofday leads to problems if the date
586 changes, so it should be avoided. */
587 struct timeval tv;
588 gettimeofday(&tv, NULL);
589 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
590 }
591 }
592 #endif
593
594 /* Return the virtual CPU time, based on the instruction counter. */
595 static int64_t cpu_get_icount(void)
596 {
597 int64_t icount;
598 CPUState *env = cpu_single_env;;
599 icount = qemu_icount;
600 if (env) {
601 if (!can_do_io(env))
602 fprintf(stderr, "Bad clock read\n");
603 icount -= (env->icount_decr.u16.low + env->icount_extra);
604 }
605 return qemu_icount_bias + (icount << icount_time_shift);
606 }
607
608 /***********************************************************/
609 /* guest cycle counter */
610
611 static int64_t cpu_ticks_prev;
612 static int64_t cpu_ticks_offset;
613 static int64_t cpu_clock_offset;
614 static int cpu_ticks_enabled;
615
616 /* return the host CPU cycle counter and handle stop/restart */
617 int64_t cpu_get_ticks(void)
618 {
619 if (use_icount) {
620 return cpu_get_icount();
621 }
622 if (!cpu_ticks_enabled) {
623 return cpu_ticks_offset;
624 } else {
625 int64_t ticks;
626 ticks = cpu_get_real_ticks();
627 if (cpu_ticks_prev > ticks) {
628 /* Note: non increasing ticks may happen if the host uses
629 software suspend */
630 cpu_ticks_offset += cpu_ticks_prev - ticks;
631 }
632 cpu_ticks_prev = ticks;
633 return ticks + cpu_ticks_offset;
634 }
635 }
636
637 /* return the host CPU monotonic timer and handle stop/restart */
638 static int64_t cpu_get_clock(void)
639 {
640 int64_t ti;
641 if (!cpu_ticks_enabled) {
642 return cpu_clock_offset;
643 } else {
644 ti = get_clock();
645 return ti + cpu_clock_offset;
646 }
647 }
648
649 /* enable cpu_get_ticks() */
650 void cpu_enable_ticks(void)
651 {
652 if (!cpu_ticks_enabled) {
653 cpu_ticks_offset -= cpu_get_real_ticks();
654 cpu_clock_offset -= get_clock();
655 cpu_ticks_enabled = 1;
656 }
657 }
658
659 /* disable cpu_get_ticks() : the clock is stopped. You must not call
660 cpu_get_ticks() after that. */
661 void cpu_disable_ticks(void)
662 {
663 if (cpu_ticks_enabled) {
664 cpu_ticks_offset = cpu_get_ticks();
665 cpu_clock_offset = cpu_get_clock();
666 cpu_ticks_enabled = 0;
667 }
668 }
669
670 /***********************************************************/
671 /* timers */
672
673 #define QEMU_TIMER_REALTIME 0
674 #define QEMU_TIMER_VIRTUAL 1
675
676 struct QEMUClock {
677 int type;
678 /* XXX: add frequency */
679 };
680
681 struct QEMUTimer {
682 QEMUClock *clock;
683 int64_t expire_time;
684 QEMUTimerCB *cb;
685 void *opaque;
686 struct QEMUTimer *next;
687 };
688
689 struct qemu_alarm_timer {
690 char const *name;
691 unsigned int flags;
692
693 int (*start)(struct qemu_alarm_timer *t);
694 void (*stop)(struct qemu_alarm_timer *t);
695 void (*rearm)(struct qemu_alarm_timer *t);
696 void *priv;
697 };
698
699 #define ALARM_FLAG_DYNTICKS 0x1
700 #define ALARM_FLAG_EXPIRED 0x2
701
702 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
703 {
704 return t && (t->flags & ALARM_FLAG_DYNTICKS);
705 }
706
707 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
708 {
709 if (!alarm_has_dynticks(t))
710 return;
711
712 t->rearm(t);
713 }
714
715 /* TODO: MIN_TIMER_REARM_US should be optimized */
716 #define MIN_TIMER_REARM_US 250
717
718 static struct qemu_alarm_timer *alarm_timer;
719
720 #ifdef _WIN32
721
722 struct qemu_alarm_win32 {
723 MMRESULT timerId;
724 unsigned int period;
725 } alarm_win32_data = {0, -1};
726
727 static int win32_start_timer(struct qemu_alarm_timer *t);
728 static void win32_stop_timer(struct qemu_alarm_timer *t);
729 static void win32_rearm_timer(struct qemu_alarm_timer *t);
730
731 #else
732
733 static int unix_start_timer(struct qemu_alarm_timer *t);
734 static void unix_stop_timer(struct qemu_alarm_timer *t);
735
736 #ifdef __linux__
737
738 static int dynticks_start_timer(struct qemu_alarm_timer *t);
739 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
740 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
741
742 static int hpet_start_timer(struct qemu_alarm_timer *t);
743 static void hpet_stop_timer(struct qemu_alarm_timer *t);
744
745 static int rtc_start_timer(struct qemu_alarm_timer *t);
746 static void rtc_stop_timer(struct qemu_alarm_timer *t);
747
748 #endif /* __linux__ */
749
750 #endif /* _WIN32 */
751
752 /* Correlation between real and virtual time is always going to be
753 fairly approximate, so ignore small variation.
754 When the guest is idle real and virtual time will be aligned in
755 the IO wait loop. */
756 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
757
758 static void icount_adjust(void)
759 {
760 int64_t cur_time;
761 int64_t cur_icount;
762 int64_t delta;
763 static int64_t last_delta;
764 /* If the VM is not running, then do nothing. */
765 if (!vm_running)
766 return;
767
768 cur_time = cpu_get_clock();
769 cur_icount = qemu_get_clock(vm_clock);
770 delta = cur_icount - cur_time;
771 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
772 if (delta > 0
773 && last_delta + ICOUNT_WOBBLE < delta * 2
774 && icount_time_shift > 0) {
775 /* The guest is getting too far ahead. Slow time down. */
776 icount_time_shift--;
777 }
778 if (delta < 0
779 && last_delta - ICOUNT_WOBBLE > delta * 2
780 && icount_time_shift < MAX_ICOUNT_SHIFT) {
781 /* The guest is getting too far behind. Speed time up. */
782 icount_time_shift++;
783 }
784 last_delta = delta;
785 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
786 }
787
788 static void icount_adjust_rt(void * opaque)
789 {
790 qemu_mod_timer(icount_rt_timer,
791 qemu_get_clock(rt_clock) + 1000);
792 icount_adjust();
793 }
794
795 static void icount_adjust_vm(void * opaque)
796 {
797 qemu_mod_timer(icount_vm_timer,
798 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
799 icount_adjust();
800 }
801
802 static void init_icount_adjust(void)
803 {
804 /* Have both realtime and virtual time triggers for speed adjustment.
805 The realtime trigger catches emulated time passing too slowly,
806 the virtual time trigger catches emulated time passing too fast.
807 Realtime triggers occur even when idle, so use them less frequently
808 than VM triggers. */
809 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
810 qemu_mod_timer(icount_rt_timer,
811 qemu_get_clock(rt_clock) + 1000);
812 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
813 qemu_mod_timer(icount_vm_timer,
814 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
815 }
816
817 static struct qemu_alarm_timer alarm_timers[] = {
818 #ifndef _WIN32
819 #ifdef __linux__
820 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
821 dynticks_stop_timer, dynticks_rearm_timer, NULL},
822 /* HPET - if available - is preferred */
823 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
824 /* ...otherwise try RTC */
825 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
826 #endif
827 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
828 #else
829 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
830 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
831 {"win32", 0, win32_start_timer,
832 win32_stop_timer, NULL, &alarm_win32_data},
833 #endif
834 {NULL, }
835 };
836
837 static void show_available_alarms(void)
838 {
839 int i;
840
841 printf("Available alarm timers, in order of precedence:\n");
842 for (i = 0; alarm_timers[i].name; i++)
843 printf("%s\n", alarm_timers[i].name);
844 }
845
846 static void configure_alarms(char const *opt)
847 {
848 int i;
849 int cur = 0;
850 int count = ARRAY_SIZE(alarm_timers) - 1;
851 char *arg;
852 char *name;
853 struct qemu_alarm_timer tmp;
854
855 if (!strcmp(opt, "?")) {
856 show_available_alarms();
857 exit(0);
858 }
859
860 arg = strdup(opt);
861
862 /* Reorder the array */
863 name = strtok(arg, ",");
864 while (name) {
865 for (i = 0; i < count && alarm_timers[i].name; i++) {
866 if (!strcmp(alarm_timers[i].name, name))
867 break;
868 }
869
870 if (i == count) {
871 fprintf(stderr, "Unknown clock %s\n", name);
872 goto next;
873 }
874
875 if (i < cur)
876 /* Ignore */
877 goto next;
878
879 /* Swap */
880 tmp = alarm_timers[i];
881 alarm_timers[i] = alarm_timers[cur];
882 alarm_timers[cur] = tmp;
883
884 cur++;
885 next:
886 name = strtok(NULL, ",");
887 }
888
889 free(arg);
890
891 if (cur) {
892 /* Disable remaining timers */
893 for (i = cur; i < count; i++)
894 alarm_timers[i].name = NULL;
895 } else {
896 show_available_alarms();
897 exit(1);
898 }
899 }
900
901 QEMUClock *rt_clock;
902 QEMUClock *vm_clock;
903
904 static QEMUTimer *active_timers[2];
905
906 static QEMUClock *qemu_new_clock(int type)
907 {
908 QEMUClock *clock;
909 clock = qemu_mallocz(sizeof(QEMUClock));
910 clock->type = type;
911 return clock;
912 }
913
914 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
915 {
916 QEMUTimer *ts;
917
918 ts = qemu_mallocz(sizeof(QEMUTimer));
919 ts->clock = clock;
920 ts->cb = cb;
921 ts->opaque = opaque;
922 return ts;
923 }
924
925 void qemu_free_timer(QEMUTimer *ts)
926 {
927 qemu_free(ts);
928 }
929
930 /* stop a timer, but do not dealloc it */
931 void qemu_del_timer(QEMUTimer *ts)
932 {
933 QEMUTimer **pt, *t;
934
935 /* NOTE: this code must be signal safe because
936 qemu_timer_expired() can be called from a signal. */
937 pt = &active_timers[ts->clock->type];
938 for(;;) {
939 t = *pt;
940 if (!t)
941 break;
942 if (t == ts) {
943 *pt = t->next;
944 break;
945 }
946 pt = &t->next;
947 }
948 }
949
950 /* modify the current timer so that it will be fired when current_time
951 >= expire_time. The corresponding callback will be called. */
952 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
953 {
954 QEMUTimer **pt, *t;
955
956 qemu_del_timer(ts);
957
958 /* add the timer in the sorted list */
959 /* NOTE: this code must be signal safe because
960 qemu_timer_expired() can be called from a signal. */
961 pt = &active_timers[ts->clock->type];
962 for(;;) {
963 t = *pt;
964 if (!t)
965 break;
966 if (t->expire_time > expire_time)
967 break;
968 pt = &t->next;
969 }
970 ts->expire_time = expire_time;
971 ts->next = *pt;
972 *pt = ts;
973
974 /* Rearm if necessary */
975 if (pt == &active_timers[ts->clock->type]) {
976 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
977 qemu_rearm_alarm_timer(alarm_timer);
978 }
979 /* Interrupt execution to force deadline recalculation. */
980 if (use_icount)
981 qemu_notify_event();
982 }
983 }
984
985 int qemu_timer_pending(QEMUTimer *ts)
986 {
987 QEMUTimer *t;
988 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
989 if (t == ts)
990 return 1;
991 }
992 return 0;
993 }
994
995 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
996 {
997 if (!timer_head)
998 return 0;
999 return (timer_head->expire_time <= current_time);
1000 }
1001
1002 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1003 {
1004 QEMUTimer *ts;
1005
1006 for(;;) {
1007 ts = *ptimer_head;
1008 if (!ts || ts->expire_time > current_time)
1009 break;
1010 /* remove timer from the list before calling the callback */
1011 *ptimer_head = ts->next;
1012 ts->next = NULL;
1013
1014 /* run the callback (the timer list can be modified) */
1015 ts->cb(ts->opaque);
1016 }
1017 }
1018
1019 int64_t qemu_get_clock(QEMUClock *clock)
1020 {
1021 switch(clock->type) {
1022 case QEMU_TIMER_REALTIME:
1023 return get_clock() / 1000000;
1024 default:
1025 case QEMU_TIMER_VIRTUAL:
1026 if (use_icount) {
1027 return cpu_get_icount();
1028 } else {
1029 return cpu_get_clock();
1030 }
1031 }
1032 }
1033
1034 static void init_timers(void)
1035 {
1036 init_get_clock();
1037 ticks_per_sec = QEMU_TIMER_BASE;
1038 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1039 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1040 }
1041
1042 /* save a timer */
1043 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1044 {
1045 uint64_t expire_time;
1046
1047 if (qemu_timer_pending(ts)) {
1048 expire_time = ts->expire_time;
1049 } else {
1050 expire_time = -1;
1051 }
1052 qemu_put_be64(f, expire_time);
1053 }
1054
1055 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1056 {
1057 uint64_t expire_time;
1058
1059 expire_time = qemu_get_be64(f);
1060 if (expire_time != -1) {
1061 qemu_mod_timer(ts, expire_time);
1062 } else {
1063 qemu_del_timer(ts);
1064 }
1065 }
1066
1067 static void timer_save(QEMUFile *f, void *opaque)
1068 {
1069 if (cpu_ticks_enabled) {
1070 hw_error("cannot save state if virtual timers are running");
1071 }
1072 qemu_put_be64(f, cpu_ticks_offset);
1073 qemu_put_be64(f, ticks_per_sec);
1074 qemu_put_be64(f, cpu_clock_offset);
1075 }
1076
1077 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1078 {
1079 if (version_id != 1 && version_id != 2)
1080 return -EINVAL;
1081 if (cpu_ticks_enabled) {
1082 return -EINVAL;
1083 }
1084 cpu_ticks_offset=qemu_get_be64(f);
1085 ticks_per_sec=qemu_get_be64(f);
1086 if (version_id == 2) {
1087 cpu_clock_offset=qemu_get_be64(f);
1088 }
1089 return 0;
1090 }
1091
1092 static void qemu_event_increment(void);
1093
1094 #ifdef _WIN32
1095 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1096 DWORD_PTR dwUser, DWORD_PTR dw1,
1097 DWORD_PTR dw2)
1098 #else
1099 static void host_alarm_handler(int host_signum)
1100 #endif
1101 {
1102 #if 0
1103 #define DISP_FREQ 1000
1104 {
1105 static int64_t delta_min = INT64_MAX;
1106 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1107 static int count;
1108 ti = qemu_get_clock(vm_clock);
1109 if (last_clock != 0) {
1110 delta = ti - last_clock;
1111 if (delta < delta_min)
1112 delta_min = delta;
1113 if (delta > delta_max)
1114 delta_max = delta;
1115 delta_cum += delta;
1116 if (++count == DISP_FREQ) {
1117 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1118 muldiv64(delta_min, 1000000, ticks_per_sec),
1119 muldiv64(delta_max, 1000000, ticks_per_sec),
1120 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1121 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1122 count = 0;
1123 delta_min = INT64_MAX;
1124 delta_max = 0;
1125 delta_cum = 0;
1126 }
1127 }
1128 last_clock = ti;
1129 }
1130 #endif
1131 if (alarm_has_dynticks(alarm_timer) ||
1132 (!use_icount &&
1133 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1134 qemu_get_clock(vm_clock))) ||
1135 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1136 qemu_get_clock(rt_clock))) {
1137 qemu_event_increment();
1138 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1139
1140 #ifndef CONFIG_IOTHREAD
1141 if (next_cpu) {
1142 /* stop the currently executing cpu because a timer occured */
1143 cpu_exit(next_cpu);
1144 }
1145 #endif
1146 timer_alarm_pending = 1;
1147 qemu_notify_event();
1148 }
1149 }
1150
1151 static int64_t qemu_next_deadline(void)
1152 {
1153 int64_t delta;
1154
1155 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1156 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1157 qemu_get_clock(vm_clock);
1158 } else {
1159 /* To avoid problems with overflow limit this to 2^32. */
1160 delta = INT32_MAX;
1161 }
1162
1163 if (delta < 0)
1164 delta = 0;
1165
1166 return delta;
1167 }
1168
1169 #if defined(__linux__) || defined(_WIN32)
1170 static uint64_t qemu_next_deadline_dyntick(void)
1171 {
1172 int64_t delta;
1173 int64_t rtdelta;
1174
1175 if (use_icount)
1176 delta = INT32_MAX;
1177 else
1178 delta = (qemu_next_deadline() + 999) / 1000;
1179
1180 if (active_timers[QEMU_TIMER_REALTIME]) {
1181 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1182 qemu_get_clock(rt_clock))*1000;
1183 if (rtdelta < delta)
1184 delta = rtdelta;
1185 }
1186
1187 if (delta < MIN_TIMER_REARM_US)
1188 delta = MIN_TIMER_REARM_US;
1189
1190 return delta;
1191 }
1192 #endif
1193
1194 #ifndef _WIN32
1195
1196 /* Sets a specific flag */
1197 static int fcntl_setfl(int fd, int flag)
1198 {
1199 int flags;
1200
1201 flags = fcntl(fd, F_GETFL);
1202 if (flags == -1)
1203 return -errno;
1204
1205 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1206 return -errno;
1207
1208 return 0;
1209 }
1210
1211 #if defined(__linux__)
1212
1213 #define RTC_FREQ 1024
1214
1215 static void enable_sigio_timer(int fd)
1216 {
1217 struct sigaction act;
1218
1219 /* timer signal */
1220 sigfillset(&act.sa_mask);
1221 act.sa_flags = 0;
1222 act.sa_handler = host_alarm_handler;
1223
1224 sigaction(SIGIO, &act, NULL);
1225 fcntl_setfl(fd, O_ASYNC);
1226 fcntl(fd, F_SETOWN, getpid());
1227 }
1228
1229 static int hpet_start_timer(struct qemu_alarm_timer *t)
1230 {
1231 struct hpet_info info;
1232 int r, fd;
1233
1234 fd = open("/dev/hpet", O_RDONLY);
1235 if (fd < 0)
1236 return -1;
1237
1238 /* Set frequency */
1239 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240 if (r < 0) {
1241 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242 "error, but for better emulation accuracy type:\n"
1243 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244 goto fail;
1245 }
1246
1247 /* Check capabilities */
1248 r = ioctl(fd, HPET_INFO, &info);
1249 if (r < 0)
1250 goto fail;
1251
1252 /* Enable periodic mode */
1253 r = ioctl(fd, HPET_EPI, 0);
1254 if (info.hi_flags && (r < 0))
1255 goto fail;
1256
1257 /* Enable interrupt */
1258 r = ioctl(fd, HPET_IE_ON, 0);
1259 if (r < 0)
1260 goto fail;
1261
1262 enable_sigio_timer(fd);
1263 t->priv = (void *)(long)fd;
1264
1265 return 0;
1266 fail:
1267 close(fd);
1268 return -1;
1269 }
1270
1271 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1272 {
1273 int fd = (long)t->priv;
1274
1275 close(fd);
1276 }
1277
1278 static int rtc_start_timer(struct qemu_alarm_timer *t)
1279 {
1280 int rtc_fd;
1281 unsigned long current_rtc_freq = 0;
1282
1283 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1284 if (rtc_fd < 0)
1285 return -1;
1286 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1287 if (current_rtc_freq != RTC_FREQ &&
1288 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1289 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1290 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1291 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1292 goto fail;
1293 }
1294 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1295 fail:
1296 close(rtc_fd);
1297 return -1;
1298 }
1299
1300 enable_sigio_timer(rtc_fd);
1301
1302 t->priv = (void *)(long)rtc_fd;
1303
1304 return 0;
1305 }
1306
1307 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1308 {
1309 int rtc_fd = (long)t->priv;
1310
1311 close(rtc_fd);
1312 }
1313
1314 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1315 {
1316 struct sigevent ev;
1317 timer_t host_timer;
1318 struct sigaction act;
1319
1320 sigfillset(&act.sa_mask);
1321 act.sa_flags = 0;
1322 act.sa_handler = host_alarm_handler;
1323
1324 sigaction(SIGALRM, &act, NULL);
1325
1326 /*
1327 * Initialize ev struct to 0 to avoid valgrind complaining
1328 * about uninitialized data in timer_create call
1329 */
1330 memset(&ev, 0, sizeof(ev));
1331 ev.sigev_value.sival_int = 0;
1332 ev.sigev_notify = SIGEV_SIGNAL;
1333 ev.sigev_signo = SIGALRM;
1334
1335 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1336 perror("timer_create");
1337
1338 /* disable dynticks */
1339 fprintf(stderr, "Dynamic Ticks disabled\n");
1340
1341 return -1;
1342 }
1343
1344 t->priv = (void *)(long)host_timer;
1345
1346 return 0;
1347 }
1348
1349 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1350 {
1351 timer_t host_timer = (timer_t)(long)t->priv;
1352
1353 timer_delete(host_timer);
1354 }
1355
1356 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1357 {
1358 timer_t host_timer = (timer_t)(long)t->priv;
1359 struct itimerspec timeout;
1360 int64_t nearest_delta_us = INT64_MAX;
1361 int64_t current_us;
1362
1363 if (!active_timers[QEMU_TIMER_REALTIME] &&
1364 !active_timers[QEMU_TIMER_VIRTUAL])
1365 return;
1366
1367 nearest_delta_us = qemu_next_deadline_dyntick();
1368
1369 /* check whether a timer is already running */
1370 if (timer_gettime(host_timer, &timeout)) {
1371 perror("gettime");
1372 fprintf(stderr, "Internal timer error: aborting\n");
1373 exit(1);
1374 }
1375 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1376 if (current_us && current_us <= nearest_delta_us)
1377 return;
1378
1379 timeout.it_interval.tv_sec = 0;
1380 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1381 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1382 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1383 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1384 perror("settime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1387 }
1388 }
1389
1390 #endif /* defined(__linux__) */
1391
1392 static int unix_start_timer(struct qemu_alarm_timer *t)
1393 {
1394 struct sigaction act;
1395 struct itimerval itv;
1396 int err;
1397
1398 /* timer signal */
1399 sigfillset(&act.sa_mask);
1400 act.sa_flags = 0;
1401 act.sa_handler = host_alarm_handler;
1402
1403 sigaction(SIGALRM, &act, NULL);
1404
1405 itv.it_interval.tv_sec = 0;
1406 /* for i386 kernel 2.6 to get 1 ms */
1407 itv.it_interval.tv_usec = 999;
1408 itv.it_value.tv_sec = 0;
1409 itv.it_value.tv_usec = 10 * 1000;
1410
1411 err = setitimer(ITIMER_REAL, &itv, NULL);
1412 if (err)
1413 return -1;
1414
1415 return 0;
1416 }
1417
1418 static void unix_stop_timer(struct qemu_alarm_timer *t)
1419 {
1420 struct itimerval itv;
1421
1422 memset(&itv, 0, sizeof(itv));
1423 setitimer(ITIMER_REAL, &itv, NULL);
1424 }
1425
1426 #endif /* !defined(_WIN32) */
1427
1428
1429 #ifdef _WIN32
1430
1431 static int win32_start_timer(struct qemu_alarm_timer *t)
1432 {
1433 TIMECAPS tc;
1434 struct qemu_alarm_win32 *data = t->priv;
1435 UINT flags;
1436
1437 memset(&tc, 0, sizeof(tc));
1438 timeGetDevCaps(&tc, sizeof(tc));
1439
1440 if (data->period < tc.wPeriodMin)
1441 data->period = tc.wPeriodMin;
1442
1443 timeBeginPeriod(data->period);
1444
1445 flags = TIME_CALLBACK_FUNCTION;
1446 if (alarm_has_dynticks(t))
1447 flags |= TIME_ONESHOT;
1448 else
1449 flags |= TIME_PERIODIC;
1450
1451 data->timerId = timeSetEvent(1, // interval (ms)
1452 data->period, // resolution
1453 host_alarm_handler, // function
1454 (DWORD)t, // parameter
1455 flags);
1456
1457 if (!data->timerId) {
1458 perror("Failed to initialize win32 alarm timer");
1459 timeEndPeriod(data->period);
1460 return -1;
1461 }
1462
1463 return 0;
1464 }
1465
1466 static void win32_stop_timer(struct qemu_alarm_timer *t)
1467 {
1468 struct qemu_alarm_win32 *data = t->priv;
1469
1470 timeKillEvent(data->timerId);
1471 timeEndPeriod(data->period);
1472 }
1473
1474 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1475 {
1476 struct qemu_alarm_win32 *data = t->priv;
1477 uint64_t nearest_delta_us;
1478
1479 if (!active_timers[QEMU_TIMER_REALTIME] &&
1480 !active_timers[QEMU_TIMER_VIRTUAL])
1481 return;
1482
1483 nearest_delta_us = qemu_next_deadline_dyntick();
1484 nearest_delta_us /= 1000;
1485
1486 timeKillEvent(data->timerId);
1487
1488 data->timerId = timeSetEvent(1,
1489 data->period,
1490 host_alarm_handler,
1491 (DWORD)t,
1492 TIME_ONESHOT | TIME_PERIODIC);
1493
1494 if (!data->timerId) {
1495 perror("Failed to re-arm win32 alarm timer");
1496
1497 timeEndPeriod(data->period);
1498 exit(1);
1499 }
1500 }
1501
1502 #endif /* _WIN32 */
1503
1504 static int init_timer_alarm(void)
1505 {
1506 struct qemu_alarm_timer *t = NULL;
1507 int i, err = -1;
1508
1509 for (i = 0; alarm_timers[i].name; i++) {
1510 t = &alarm_timers[i];
1511
1512 err = t->start(t);
1513 if (!err)
1514 break;
1515 }
1516
1517 if (err) {
1518 err = -ENOENT;
1519 goto fail;
1520 }
1521
1522 alarm_timer = t;
1523
1524 return 0;
1525
1526 fail:
1527 return err;
1528 }
1529
1530 static void quit_timers(void)
1531 {
1532 alarm_timer->stop(alarm_timer);
1533 alarm_timer = NULL;
1534 }
1535
1536 /***********************************************************/
1537 /* host time/date access */
1538 void qemu_get_timedate(struct tm *tm, int offset)
1539 {
1540 time_t ti;
1541 struct tm *ret;
1542
1543 time(&ti);
1544 ti += offset;
1545 if (rtc_date_offset == -1) {
1546 if (rtc_utc)
1547 ret = gmtime(&ti);
1548 else
1549 ret = localtime(&ti);
1550 } else {
1551 ti -= rtc_date_offset;
1552 ret = gmtime(&ti);
1553 }
1554
1555 memcpy(tm, ret, sizeof(struct tm));
1556 }
1557
1558 int qemu_timedate_diff(struct tm *tm)
1559 {
1560 time_t seconds;
1561
1562 if (rtc_date_offset == -1)
1563 if (rtc_utc)
1564 seconds = mktimegm(tm);
1565 else
1566 seconds = mktime(tm);
1567 else
1568 seconds = mktimegm(tm) + rtc_date_offset;
1569
1570 return seconds - time(NULL);
1571 }
1572
1573 #ifdef _WIN32
1574 static void socket_cleanup(void)
1575 {
1576 WSACleanup();
1577 }
1578
1579 static int socket_init(void)
1580 {
1581 WSADATA Data;
1582 int ret, err;
1583
1584 ret = WSAStartup(MAKEWORD(2,2), &Data);
1585 if (ret != 0) {
1586 err = WSAGetLastError();
1587 fprintf(stderr, "WSAStartup: %d\n", err);
1588 return -1;
1589 }
1590 atexit(socket_cleanup);
1591 return 0;
1592 }
1593 #endif
1594
1595 /***********************************************************/
1596 /* Bluetooth support */
1597 static int nb_hcis;
1598 static int cur_hci;
1599 static struct HCIInfo *hci_table[MAX_NICS];
1600
1601 static struct bt_vlan_s {
1602 struct bt_scatternet_s net;
1603 int id;
1604 struct bt_vlan_s *next;
1605 } *first_bt_vlan;
1606
1607 /* find or alloc a new bluetooth "VLAN" */
1608 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1609 {
1610 struct bt_vlan_s **pvlan, *vlan;
1611 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1612 if (vlan->id == id)
1613 return &vlan->net;
1614 }
1615 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1616 vlan->id = id;
1617 pvlan = &first_bt_vlan;
1618 while (*pvlan != NULL)
1619 pvlan = &(*pvlan)->next;
1620 *pvlan = vlan;
1621 return &vlan->net;
1622 }
1623
1624 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1625 {
1626 }
1627
1628 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1629 {
1630 return -ENOTSUP;
1631 }
1632
1633 static struct HCIInfo null_hci = {
1634 .cmd_send = null_hci_send,
1635 .sco_send = null_hci_send,
1636 .acl_send = null_hci_send,
1637 .bdaddr_set = null_hci_addr_set,
1638 };
1639
1640 struct HCIInfo *qemu_next_hci(void)
1641 {
1642 if (cur_hci == nb_hcis)
1643 return &null_hci;
1644
1645 return hci_table[cur_hci++];
1646 }
1647
1648 static struct HCIInfo *hci_init(const char *str)
1649 {
1650 char *endp;
1651 struct bt_scatternet_s *vlan = 0;
1652
1653 if (!strcmp(str, "null"))
1654 /* null */
1655 return &null_hci;
1656 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1657 /* host[:hciN] */
1658 return bt_host_hci(str[4] ? str + 5 : "hci0");
1659 else if (!strncmp(str, "hci", 3)) {
1660 /* hci[,vlan=n] */
1661 if (str[3]) {
1662 if (!strncmp(str + 3, ",vlan=", 6)) {
1663 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1664 if (*endp)
1665 vlan = 0;
1666 }
1667 } else
1668 vlan = qemu_find_bt_vlan(0);
1669 if (vlan)
1670 return bt_new_hci(vlan);
1671 }
1672
1673 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1674
1675 return 0;
1676 }
1677
1678 static int bt_hci_parse(const char *str)
1679 {
1680 struct HCIInfo *hci;
1681 bdaddr_t bdaddr;
1682
1683 if (nb_hcis >= MAX_NICS) {
1684 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1685 return -1;
1686 }
1687
1688 hci = hci_init(str);
1689 if (!hci)
1690 return -1;
1691
1692 bdaddr.b[0] = 0x52;
1693 bdaddr.b[1] = 0x54;
1694 bdaddr.b[2] = 0x00;
1695 bdaddr.b[3] = 0x12;
1696 bdaddr.b[4] = 0x34;
1697 bdaddr.b[5] = 0x56 + nb_hcis;
1698 hci->bdaddr_set(hci, bdaddr.b);
1699
1700 hci_table[nb_hcis++] = hci;
1701
1702 return 0;
1703 }
1704
1705 static void bt_vhci_add(int vlan_id)
1706 {
1707 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1708
1709 if (!vlan->slave)
1710 fprintf(stderr, "qemu: warning: adding a VHCI to "
1711 "an empty scatternet %i\n", vlan_id);
1712
1713 bt_vhci_init(bt_new_hci(vlan));
1714 }
1715
1716 static struct bt_device_s *bt_device_add(const char *opt)
1717 {
1718 struct bt_scatternet_s *vlan;
1719 int vlan_id = 0;
1720 char *endp = strstr(opt, ",vlan=");
1721 int len = (endp ? endp - opt : strlen(opt)) + 1;
1722 char devname[10];
1723
1724 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1725
1726 if (endp) {
1727 vlan_id = strtol(endp + 6, &endp, 0);
1728 if (*endp) {
1729 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1730 return 0;
1731 }
1732 }
1733
1734 vlan = qemu_find_bt_vlan(vlan_id);
1735
1736 if (!vlan->slave)
1737 fprintf(stderr, "qemu: warning: adding a slave device to "
1738 "an empty scatternet %i\n", vlan_id);
1739
1740 if (!strcmp(devname, "keyboard"))
1741 return bt_keyboard_init(vlan);
1742
1743 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1744 return 0;
1745 }
1746
1747 static int bt_parse(const char *opt)
1748 {
1749 const char *endp, *p;
1750 int vlan;
1751
1752 if (strstart(opt, "hci", &endp)) {
1753 if (!*endp || *endp == ',') {
1754 if (*endp)
1755 if (!strstart(endp, ",vlan=", 0))
1756 opt = endp + 1;
1757
1758 return bt_hci_parse(opt);
1759 }
1760 } else if (strstart(opt, "vhci", &endp)) {
1761 if (!*endp || *endp == ',') {
1762 if (*endp) {
1763 if (strstart(endp, ",vlan=", &p)) {
1764 vlan = strtol(p, (char **) &endp, 0);
1765 if (*endp) {
1766 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1767 return 1;
1768 }
1769 } else {
1770 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1771 return 1;
1772 }
1773 } else
1774 vlan = 0;
1775
1776 bt_vhci_add(vlan);
1777 return 0;
1778 }
1779 } else if (strstart(opt, "device:", &endp))
1780 return !bt_device_add(endp);
1781
1782 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1783 return 1;
1784 }
1785
1786 /***********************************************************/
1787 /* QEMU Block devices */
1788
1789 #define HD_ALIAS "index=%d,media=disk"
1790 #define CDROM_ALIAS "index=2,media=cdrom"
1791 #define FD_ALIAS "index=%d,if=floppy"
1792 #define PFLASH_ALIAS "if=pflash"
1793 #define MTD_ALIAS "if=mtd"
1794 #define SD_ALIAS "index=0,if=sd"
1795
1796 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1797 {
1798 va_list ap;
1799 char optstr[1024];
1800 QemuOpts *opts;
1801
1802 va_start(ap, fmt);
1803 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1804 va_end(ap);
1805
1806 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1807 if (!opts) {
1808 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1809 __FUNCTION__, optstr);
1810 return NULL;
1811 }
1812 if (file)
1813 qemu_opt_set(opts, "file", file);
1814 return opts;
1815 }
1816
1817 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1818 {
1819 DriveInfo *dinfo;
1820
1821 /* seek interface, bus and unit */
1822
1823 TAILQ_FOREACH(dinfo, &drives, next) {
1824 if (dinfo->type == type &&
1825 dinfo->bus == bus &&
1826 dinfo->unit == unit)
1827 return dinfo;
1828 }
1829
1830 return NULL;
1831 }
1832
1833 DriveInfo *drive_get_by_id(const char *id)
1834 {
1835 DriveInfo *dinfo;
1836
1837 TAILQ_FOREACH(dinfo, &drives, next) {
1838 if (strcmp(id, dinfo->id))
1839 continue;
1840 return dinfo;
1841 }
1842 return NULL;
1843 }
1844
1845 int drive_get_max_bus(BlockInterfaceType type)
1846 {
1847 int max_bus;
1848 DriveInfo *dinfo;
1849
1850 max_bus = -1;
1851 TAILQ_FOREACH(dinfo, &drives, next) {
1852 if(dinfo->type == type &&
1853 dinfo->bus > max_bus)
1854 max_bus = dinfo->bus;
1855 }
1856 return max_bus;
1857 }
1858
1859 const char *drive_get_serial(BlockDriverState *bdrv)
1860 {
1861 DriveInfo *dinfo;
1862
1863 TAILQ_FOREACH(dinfo, &drives, next) {
1864 if (dinfo->bdrv == bdrv)
1865 return dinfo->serial;
1866 }
1867
1868 return "\0";
1869 }
1870
1871 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1872 {
1873 DriveInfo *dinfo;
1874
1875 TAILQ_FOREACH(dinfo, &drives, next) {
1876 if (dinfo->bdrv == bdrv)
1877 return dinfo->onerror;
1878 }
1879
1880 return BLOCK_ERR_STOP_ENOSPC;
1881 }
1882
1883 static void bdrv_format_print(void *opaque, const char *name)
1884 {
1885 fprintf(stderr, " %s", name);
1886 }
1887
1888 void drive_uninit(BlockDriverState *bdrv)
1889 {
1890 DriveInfo *dinfo;
1891
1892 TAILQ_FOREACH(dinfo, &drives, next) {
1893 if (dinfo->bdrv != bdrv)
1894 continue;
1895 qemu_opts_del(dinfo->opts);
1896 TAILQ_REMOVE(&drives, dinfo, next);
1897 qemu_free(dinfo);
1898 break;
1899 }
1900 }
1901
1902 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1903 int *fatal_error)
1904 {
1905 const char *buf;
1906 const char *file = NULL;
1907 char devname[128];
1908 const char *serial;
1909 const char *mediastr = "";
1910 BlockInterfaceType type;
1911 enum { MEDIA_DISK, MEDIA_CDROM } media;
1912 int bus_id, unit_id;
1913 int cyls, heads, secs, translation;
1914 BlockDriver *drv = NULL;
1915 QEMUMachine *machine = opaque;
1916 int max_devs;
1917 int index;
1918 int cache;
1919 int aio = 0;
1920 int bdrv_flags, onerror;
1921 const char *devaddr;
1922 DriveInfo *dinfo;
1923 int snapshot = 0;
1924
1925 *fatal_error = 1;
1926
1927 translation = BIOS_ATA_TRANSLATION_AUTO;
1928 cache = 1;
1929
1930 if (machine->use_scsi) {
1931 type = IF_SCSI;
1932 max_devs = MAX_SCSI_DEVS;
1933 pstrcpy(devname, sizeof(devname), "scsi");
1934 } else {
1935 type = IF_IDE;
1936 max_devs = MAX_IDE_DEVS;
1937 pstrcpy(devname, sizeof(devname), "ide");
1938 }
1939 media = MEDIA_DISK;
1940
1941 /* extract parameters */
1942 bus_id = qemu_opt_get_number(opts, "bus", 0);
1943 unit_id = qemu_opt_get_number(opts, "unit", -1);
1944 index = qemu_opt_get_number(opts, "index", -1);
1945
1946 cyls = qemu_opt_get_number(opts, "cyls", 0);
1947 heads = qemu_opt_get_number(opts, "heads", 0);
1948 secs = qemu_opt_get_number(opts, "secs", 0);
1949
1950 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1951
1952 file = qemu_opt_get(opts, "file");
1953 serial = qemu_opt_get(opts, "serial");
1954
1955 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1956 pstrcpy(devname, sizeof(devname), buf);
1957 if (!strcmp(buf, "ide")) {
1958 type = IF_IDE;
1959 max_devs = MAX_IDE_DEVS;
1960 } else if (!strcmp(buf, "scsi")) {
1961 type = IF_SCSI;
1962 max_devs = MAX_SCSI_DEVS;
1963 } else if (!strcmp(buf, "floppy")) {
1964 type = IF_FLOPPY;
1965 max_devs = 0;
1966 } else if (!strcmp(buf, "pflash")) {
1967 type = IF_PFLASH;
1968 max_devs = 0;
1969 } else if (!strcmp(buf, "mtd")) {
1970 type = IF_MTD;
1971 max_devs = 0;
1972 } else if (!strcmp(buf, "sd")) {
1973 type = IF_SD;
1974 max_devs = 0;
1975 } else if (!strcmp(buf, "virtio")) {
1976 type = IF_VIRTIO;
1977 max_devs = 0;
1978 } else if (!strcmp(buf, "xen")) {
1979 type = IF_XEN;
1980 max_devs = 0;
1981 } else if (!strcmp(buf, "none")) {
1982 type = IF_NONE;
1983 max_devs = 0;
1984 } else {
1985 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1986 return NULL;
1987 }
1988 }
1989
1990 if (cyls || heads || secs) {
1991 if (cyls < 1 || cyls > 16383) {
1992 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1993 return NULL;
1994 }
1995 if (heads < 1 || heads > 16) {
1996 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1997 return NULL;
1998 }
1999 if (secs < 1 || secs > 63) {
2000 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2001 return NULL;
2002 }
2003 }
2004
2005 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2006 if (!cyls) {
2007 fprintf(stderr,
2008 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2009 buf);
2010 return NULL;
2011 }
2012 if (!strcmp(buf, "none"))
2013 translation = BIOS_ATA_TRANSLATION_NONE;
2014 else if (!strcmp(buf, "lba"))
2015 translation = BIOS_ATA_TRANSLATION_LBA;
2016 else if (!strcmp(buf, "auto"))
2017 translation = BIOS_ATA_TRANSLATION_AUTO;
2018 else {
2019 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2020 return NULL;
2021 }
2022 }
2023
2024 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2025 if (!strcmp(buf, "disk")) {
2026 media = MEDIA_DISK;
2027 } else if (!strcmp(buf, "cdrom")) {
2028 if (cyls || secs || heads) {
2029 fprintf(stderr,
2030 "qemu: '%s' invalid physical CHS format\n", buf);
2031 return NULL;
2032 }
2033 media = MEDIA_CDROM;
2034 } else {
2035 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2036 return NULL;
2037 }
2038 }
2039
2040 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2041 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2042 cache = 0;
2043 else if (!strcmp(buf, "writethrough"))
2044 cache = 1;
2045 else if (!strcmp(buf, "writeback"))
2046 cache = 2;
2047 else {
2048 fprintf(stderr, "qemu: invalid cache option\n");
2049 return NULL;
2050 }
2051 }
2052
2053 #ifdef CONFIG_LINUX_AIO
2054 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2055 if (!strcmp(buf, "threads"))
2056 aio = 0;
2057 else if (!strcmp(buf, "native"))
2058 aio = 1;
2059 else {
2060 fprintf(stderr, "qemu: invalid aio option\n");
2061 return NULL;
2062 }
2063 }
2064 #endif
2065
2066 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2067 if (strcmp(buf, "?") == 0) {
2068 fprintf(stderr, "qemu: Supported formats:");
2069 bdrv_iterate_format(bdrv_format_print, NULL);
2070 fprintf(stderr, "\n");
2071 return NULL;
2072 }
2073 drv = bdrv_find_format(buf);
2074 if (!drv) {
2075 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2076 return NULL;
2077 }
2078 }
2079
2080 onerror = BLOCK_ERR_STOP_ENOSPC;
2081 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2082 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2083 fprintf(stderr, "werror is no supported by this format\n");
2084 return NULL;
2085 }
2086 if (!strcmp(buf, "ignore"))
2087 onerror = BLOCK_ERR_IGNORE;
2088 else if (!strcmp(buf, "enospc"))
2089 onerror = BLOCK_ERR_STOP_ENOSPC;
2090 else if (!strcmp(buf, "stop"))
2091 onerror = BLOCK_ERR_STOP_ANY;
2092 else if (!strcmp(buf, "report"))
2093 onerror = BLOCK_ERR_REPORT;
2094 else {
2095 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2096 return NULL;
2097 }
2098 }
2099
2100 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2101 if (type != IF_VIRTIO) {
2102 fprintf(stderr, "addr is not supported\n");
2103 return NULL;
2104 }
2105 }
2106
2107 /* compute bus and unit according index */
2108
2109 if (index != -1) {
2110 if (bus_id != 0 || unit_id != -1) {
2111 fprintf(stderr,
2112 "qemu: index cannot be used with bus and unit\n");
2113 return NULL;
2114 }
2115 if (max_devs == 0)
2116 {
2117 unit_id = index;
2118 bus_id = 0;
2119 } else {
2120 unit_id = index % max_devs;
2121 bus_id = index / max_devs;
2122 }
2123 }
2124
2125 /* if user doesn't specify a unit_id,
2126 * try to find the first free
2127 */
2128
2129 if (unit_id == -1) {
2130 unit_id = 0;
2131 while (drive_get(type, bus_id, unit_id) != NULL) {
2132 unit_id++;
2133 if (max_devs && unit_id >= max_devs) {
2134 unit_id -= max_devs;
2135 bus_id++;
2136 }
2137 }
2138 }
2139
2140 /* check unit id */
2141
2142 if (max_devs && unit_id >= max_devs) {
2143 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2144 unit_id, max_devs - 1);
2145 return NULL;
2146 }
2147
2148 /*
2149 * ignore multiple definitions
2150 */
2151
2152 if (drive_get(type, bus_id, unit_id) != NULL) {
2153 *fatal_error = 0;
2154 return NULL;
2155 }
2156
2157 /* init */
2158
2159 dinfo = qemu_mallocz(sizeof(*dinfo));
2160 if ((buf = qemu_opts_id(opts)) != NULL) {
2161 dinfo->id = qemu_strdup(buf);
2162 } else {
2163 /* no id supplied -> create one */
2164 dinfo->id = qemu_mallocz(32);
2165 if (type == IF_IDE || type == IF_SCSI)
2166 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2167 if (max_devs)
2168 snprintf(dinfo->id, 32, "%s%i%s%i",
2169 devname, bus_id, mediastr, unit_id);
2170 else
2171 snprintf(dinfo->id, 32, "%s%s%i",
2172 devname, mediastr, unit_id);
2173 }
2174 dinfo->bdrv = bdrv_new(dinfo->id);
2175 dinfo->devaddr = devaddr;
2176 dinfo->type = type;
2177 dinfo->bus = bus_id;
2178 dinfo->unit = unit_id;
2179 dinfo->onerror = onerror;
2180 dinfo->opts = opts;
2181 if (serial)
2182 strncpy(dinfo->serial, serial, sizeof(serial));
2183 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2184
2185 switch(type) {
2186 case IF_IDE:
2187 case IF_SCSI:
2188 case IF_XEN:
2189 switch(media) {
2190 case MEDIA_DISK:
2191 if (cyls != 0) {
2192 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2193 bdrv_set_translation_hint(dinfo->bdrv, translation);
2194 }
2195 break;
2196 case MEDIA_CDROM:
2197 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2198 break;
2199 }
2200 break;
2201 case IF_SD:
2202 /* FIXME: This isn't really a floppy, but it's a reasonable
2203 approximation. */
2204 case IF_FLOPPY:
2205 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2206 break;
2207 case IF_PFLASH:
2208 case IF_MTD:
2209 case IF_NONE:
2210 break;
2211 case IF_VIRTIO:
2212 /* add virtio block device */
2213 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2214 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2215 qemu_opt_set(opts, "drive", dinfo->id);
2216 if (devaddr)
2217 qemu_opt_set(opts, "addr", devaddr);
2218 break;
2219 case IF_COUNT:
2220 abort();
2221 }
2222 if (!file) {
2223 *fatal_error = 0;
2224 return NULL;
2225 }
2226 bdrv_flags = 0;
2227 if (snapshot) {
2228 bdrv_flags |= BDRV_O_SNAPSHOT;
2229 cache = 2; /* always use write-back with snapshot */
2230 }
2231 if (cache == 0) /* no caching */
2232 bdrv_flags |= BDRV_O_NOCACHE;
2233 else if (cache == 2) /* write-back */
2234 bdrv_flags |= BDRV_O_CACHE_WB;
2235
2236 if (aio == 1) {
2237 bdrv_flags |= BDRV_O_NATIVE_AIO;
2238 } else {
2239 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2240 }
2241
2242 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2243 fprintf(stderr, "qemu: could not open disk image %s\n",
2244 file);
2245 return NULL;
2246 }
2247
2248 if (bdrv_key_required(dinfo->bdrv))
2249 autostart = 0;
2250 *fatal_error = 0;
2251 return dinfo;
2252 }
2253
2254 static int drive_init_func(QemuOpts *opts, void *opaque)
2255 {
2256 QEMUMachine *machine = opaque;
2257 int fatal_error = 0;
2258
2259 if (drive_init(opts, machine, &fatal_error) == NULL) {
2260 if (fatal_error)
2261 return 1;
2262 }
2263 return 0;
2264 }
2265
2266 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2267 {
2268 if (NULL == qemu_opt_get(opts, "snapshot")) {
2269 qemu_opt_set(opts, "snapshot", "on");
2270 }
2271 return 0;
2272 }
2273
2274 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2275 {
2276 boot_set_handler = func;
2277 boot_set_opaque = opaque;
2278 }
2279
2280 int qemu_boot_set(const char *boot_devices)
2281 {
2282 if (!boot_set_handler) {
2283 return -EINVAL;
2284 }
2285 return boot_set_handler(boot_set_opaque, boot_devices);
2286 }
2287
2288 static int parse_bootdevices(char *devices)
2289 {
2290 /* We just do some generic consistency checks */
2291 const char *p;
2292 int bitmap = 0;
2293
2294 for (p = devices; *p != '\0'; p++) {
2295 /* Allowed boot devices are:
2296 * a-b: floppy disk drives
2297 * c-f: IDE disk drives
2298 * g-m: machine implementation dependant drives
2299 * n-p: network devices
2300 * It's up to each machine implementation to check if the given boot
2301 * devices match the actual hardware implementation and firmware
2302 * features.
2303 */
2304 if (*p < 'a' || *p > 'p') {
2305 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2306 exit(1);
2307 }
2308 if (bitmap & (1 << (*p - 'a'))) {
2309 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2310 exit(1);
2311 }
2312 bitmap |= 1 << (*p - 'a');
2313 }
2314 return bitmap;
2315 }
2316
2317 static void restore_boot_devices(void *opaque)
2318 {
2319 char *standard_boot_devices = opaque;
2320
2321 qemu_boot_set(standard_boot_devices);
2322
2323 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2324 qemu_free(standard_boot_devices);
2325 }
2326
2327 static void numa_add(const char *optarg)
2328 {
2329 char option[128];
2330 char *endptr;
2331 unsigned long long value, endvalue;
2332 int nodenr;
2333
2334 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2335 if (!strcmp(option, "node")) {
2336 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2337 nodenr = nb_numa_nodes;
2338 } else {
2339 nodenr = strtoull(option, NULL, 10);
2340 }
2341
2342 if (get_param_value(option, 128, "mem", optarg) == 0) {
2343 node_mem[nodenr] = 0;
2344 } else {
2345 value = strtoull(option, &endptr, 0);
2346 switch (*endptr) {
2347 case 0: case 'M': case 'm':
2348 value <<= 20;
2349 break;
2350 case 'G': case 'g':
2351 value <<= 30;
2352 break;
2353 }
2354 node_mem[nodenr] = value;
2355 }
2356 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2357 node_cpumask[nodenr] = 0;
2358 } else {
2359 value = strtoull(option, &endptr, 10);
2360 if (value >= 64) {
2361 value = 63;
2362 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2363 } else {
2364 if (*endptr == '-') {
2365 endvalue = strtoull(endptr+1, &endptr, 10);
2366 if (endvalue >= 63) {
2367 endvalue = 62;
2368 fprintf(stderr,
2369 "only 63 CPUs in NUMA mode supported.\n");
2370 }
2371 value = (1 << (endvalue + 1)) - (1 << value);
2372 } else {
2373 value = 1 << value;
2374 }
2375 }
2376 node_cpumask[nodenr] = value;
2377 }
2378 nb_numa_nodes++;
2379 }
2380 return;
2381 }
2382
2383 static void smp_parse(const char *optarg)
2384 {
2385 int smp, sockets = 0, threads = 0, cores = 0;
2386 char *endptr;
2387 char option[128];
2388
2389 smp = strtoul(optarg, &endptr, 10);
2390 if (endptr != optarg) {
2391 if (*endptr == ',') {
2392 endptr++;
2393 }
2394 }
2395 if (get_param_value(option, 128, "sockets", endptr) != 0)
2396 sockets = strtoull(option, NULL, 10);
2397 if (get_param_value(option, 128, "cores", endptr) != 0)
2398 cores = strtoull(option, NULL, 10);
2399 if (get_param_value(option, 128, "threads", endptr) != 0)
2400 threads = strtoull(option, NULL, 10);
2401 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2402 max_cpus = strtoull(option, NULL, 10);
2403
2404 /* compute missing values, prefer sockets over cores over threads */
2405 if (smp == 0 || sockets == 0) {
2406 sockets = sockets > 0 ? sockets : 1;
2407 cores = cores > 0 ? cores : 1;
2408 threads = threads > 0 ? threads : 1;
2409 if (smp == 0) {
2410 smp = cores * threads * sockets;
2411 } else {
2412 sockets = smp / (cores * threads);
2413 }
2414 } else {
2415 if (cores == 0) {
2416 threads = threads > 0 ? threads : 1;
2417 cores = smp / (sockets * threads);
2418 } else {
2419 if (sockets == 0) {
2420 sockets = smp / (cores * threads);
2421 } else {
2422 threads = smp / (cores * sockets);
2423 }
2424 }
2425 }
2426 smp_cpus = smp;
2427 smp_cores = cores > 0 ? cores : 1;
2428 smp_threads = threads > 0 ? threads : 1;
2429 if (max_cpus == 0)
2430 max_cpus = smp_cpus;
2431 }
2432
2433 /***********************************************************/
2434 /* USB devices */
2435
2436 static USBPort *used_usb_ports;
2437 static USBPort *free_usb_ports;
2438
2439 /* ??? Maybe change this to register a hub to keep track of the topology. */
2440 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2441 usb_attachfn attach)
2442 {
2443 port->opaque = opaque;
2444 port->index = index;
2445 port->attach = attach;
2446 port->next = free_usb_ports;
2447 free_usb_ports = port;
2448 }
2449
2450 int usb_device_add_dev(USBDevice *dev)
2451 {
2452 USBPort *port;
2453
2454 /* Find a USB port to add the device to. */
2455 port = free_usb_ports;
2456 if (!port->next) {
2457 USBDevice *hub;
2458
2459 /* Create a new hub and chain it on. */
2460 free_usb_ports = NULL;
2461 port->next = used_usb_ports;
2462 used_usb_ports = port;
2463
2464 hub = usb_hub_init(VM_USB_HUB_SIZE);
2465 usb_attach(port, hub);
2466 port = free_usb_ports;
2467 }
2468
2469 free_usb_ports = port->next;
2470 port->next = used_usb_ports;
2471 used_usb_ports = port;
2472 usb_attach(port, dev);
2473 return 0;
2474 }
2475
2476 static void usb_msd_password_cb(void *opaque, int err)
2477 {
2478 USBDevice *dev = opaque;
2479
2480 if (!err)
2481 usb_device_add_dev(dev);
2482 else
2483 dev->handle_destroy(dev);
2484 }
2485
2486 static int usb_device_add(const char *devname, int is_hotplug)
2487 {
2488 const char *p;
2489 USBDevice *dev;
2490
2491 if (!free_usb_ports)
2492 return -1;
2493
2494 if (strstart(devname, "host:", &p)) {
2495 dev = usb_host_device_open(p);
2496 } else if (!strcmp(devname, "mouse")) {
2497 dev = usb_mouse_init();
2498 } else if (!strcmp(devname, "tablet")) {
2499 dev = usb_tablet_init();
2500 } else if (!strcmp(devname, "keyboard")) {
2501 dev = usb_keyboard_init();
2502 } else if (strstart(devname, "disk:", &p)) {
2503 BlockDriverState *bs;
2504
2505 dev = usb_msd_init(p);
2506 if (!dev)
2507 return -1;
2508 bs = usb_msd_get_bdrv(dev);
2509 if (bdrv_key_required(bs)) {
2510 autostart = 0;
2511 if (is_hotplug) {
2512 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2513 dev);
2514 return 0;
2515 }
2516 }
2517 } else if (!strcmp(devname, "wacom-tablet")) {
2518 dev = usb_wacom_init();
2519 } else if (strstart(devname, "serial:", &p)) {
2520 dev = usb_serial_init(p);
2521 #ifdef CONFIG_BRLAPI
2522 } else if (!strcmp(devname, "braille")) {
2523 dev = usb_baum_init();
2524 #endif
2525 } else if (strstart(devname, "net:", &p)) {
2526 int nic = nb_nics;
2527
2528 if (net_client_init(NULL, "nic", p) < 0)
2529 return -1;
2530 nd_table[nic].model = "usb";
2531 dev = usb_net_init(&nd_table[nic]);
2532 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2533 dev = usb_bt_init(devname[2] ? hci_init(p) :
2534 bt_new_hci(qemu_find_bt_vlan(0)));
2535 } else {
2536 return -1;
2537 }
2538 if (!dev)
2539 return -1;
2540
2541 return usb_device_add_dev(dev);
2542 }
2543
2544 int usb_device_del_addr(int bus_num, int addr)
2545 {
2546 USBPort *port;
2547 USBPort **lastp;
2548 USBDevice *dev;
2549
2550 if (!used_usb_ports)
2551 return -1;
2552
2553 if (bus_num != 0)
2554 return -1;
2555
2556 lastp = &used_usb_ports;
2557 port = used_usb_ports;
2558 while (port && port->dev->addr != addr) {
2559 lastp = &port->next;
2560 port = port->next;
2561 }
2562
2563 if (!port)
2564 return -1;
2565
2566 dev = port->dev;
2567 *lastp = port->next;
2568 usb_attach(port, NULL);
2569 dev->handle_destroy(dev);
2570 port->next = free_usb_ports;
2571 free_usb_ports = port;
2572 return 0;
2573 }
2574
2575 static int usb_device_del(const char *devname)
2576 {
2577 int bus_num, addr;
2578 const char *p;
2579
2580 if (strstart(devname, "host:", &p))
2581 return usb_host_device_close(p);
2582
2583 if (!used_usb_ports)
2584 return -1;
2585
2586 p = strchr(devname, '.');
2587 if (!p)
2588 return -1;
2589 bus_num = strtoul(devname, NULL, 0);
2590 addr = strtoul(p + 1, NULL, 0);
2591
2592 return usb_device_del_addr(bus_num, addr);
2593 }
2594
2595 static int usb_parse(const char *cmdline)
2596 {
2597 return usb_device_add(cmdline, 0);
2598 }
2599
2600 void do_usb_add(Monitor *mon, const char *devname)
2601 {
2602 usb_device_add(devname, 1);
2603 }
2604
2605 void do_usb_del(Monitor *mon, const char *devname)
2606 {
2607 usb_device_del(devname);
2608 }
2609
2610 void usb_info(Monitor *mon)
2611 {
2612 USBDevice *dev;
2613 USBPort *port;
2614 const char *speed_str;
2615
2616 if (!usb_enabled) {
2617 monitor_printf(mon, "USB support not enabled\n");
2618 return;
2619 }
2620
2621 for (port = used_usb_ports; port; port = port->next) {
2622 dev = port->dev;
2623 if (!dev)
2624 continue;
2625 switch(dev->speed) {
2626 case USB_SPEED_LOW:
2627 speed_str = "1.5";
2628 break;
2629 case USB_SPEED_FULL:
2630 speed_str = "12";
2631 break;
2632 case USB_SPEED_HIGH:
2633 speed_str = "480";
2634 break;
2635 default:
2636 speed_str = "?";
2637 break;
2638 }
2639 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2640 0, dev->addr, speed_str, dev->devname);
2641 }
2642 }
2643
2644 /***********************************************************/
2645 /* PCMCIA/Cardbus */
2646
2647 static struct pcmcia_socket_entry_s {
2648 PCMCIASocket *socket;
2649 struct pcmcia_socket_entry_s *next;
2650 } *pcmcia_sockets = 0;
2651
2652 void pcmcia_socket_register(PCMCIASocket *socket)
2653 {
2654 struct pcmcia_socket_entry_s *entry;
2655
2656 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2657 entry->socket = socket;
2658 entry->next = pcmcia_sockets;
2659 pcmcia_sockets = entry;
2660 }
2661
2662 void pcmcia_socket_unregister(PCMCIASocket *socket)
2663 {
2664 struct pcmcia_socket_entry_s *entry, **ptr;
2665
2666 ptr = &pcmcia_sockets;
2667 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2668 if (entry->socket == socket) {
2669 *ptr = entry->next;
2670 qemu_free(entry);
2671 }
2672 }
2673
2674 void pcmcia_info(Monitor *mon)
2675 {
2676 struct pcmcia_socket_entry_s *iter;
2677
2678 if (!pcmcia_sockets)
2679 monitor_printf(mon, "No PCMCIA sockets\n");
2680
2681 for (iter = pcmcia_sockets; iter; iter = iter->next)
2682 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2683 iter->socket->attached ? iter->socket->card_string :
2684 "Empty");
2685 }
2686
2687 /***********************************************************/
2688 /* register display */
2689
2690 struct DisplayAllocator default_allocator = {
2691 defaultallocator_create_displaysurface,
2692 defaultallocator_resize_displaysurface,
2693 defaultallocator_free_displaysurface
2694 };
2695
2696 void register_displaystate(DisplayState *ds)
2697 {
2698 DisplayState **s;
2699 s = &display_state;
2700 while (*s != NULL)
2701 s = &(*s)->next;
2702 ds->next = NULL;
2703 *s = ds;
2704 }
2705
2706 DisplayState *get_displaystate(void)
2707 {
2708 return display_state;
2709 }
2710
2711 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2712 {
2713 if(ds->allocator == &default_allocator) ds->allocator = da;
2714 return ds->allocator;
2715 }
2716
2717 /* dumb display */
2718
2719 static void dumb_display_init(void)
2720 {
2721 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2722 ds->allocator = &default_allocator;
2723 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2724 register_displaystate(ds);
2725 }
2726
2727 /***********************************************************/
2728 /* I/O handling */
2729
2730 typedef struct IOHandlerRecord {
2731 int fd;
2732 IOCanRWHandler *fd_read_poll;
2733 IOHandler *fd_read;
2734 IOHandler *fd_write;
2735 int deleted;
2736 void *opaque;
2737 /* temporary data */
2738 struct pollfd *ufd;
2739 struct IOHandlerRecord *next;
2740 } IOHandlerRecord;
2741
2742 static IOHandlerRecord *first_io_handler;
2743
2744 /* XXX: fd_read_poll should be suppressed, but an API change is
2745 necessary in the character devices to suppress fd_can_read(). */
2746 int qemu_set_fd_handler2(int fd,
2747 IOCanRWHandler *fd_read_poll,
2748 IOHandler *fd_read,
2749 IOHandler *fd_write,
2750 void *opaque)
2751 {
2752 IOHandlerRecord **pioh, *ioh;
2753
2754 if (!fd_read && !fd_write) {
2755 pioh = &first_io_handler;
2756 for(;;) {
2757 ioh = *pioh;
2758 if (ioh == NULL)
2759 break;
2760 if (ioh->fd == fd) {
2761 ioh->deleted = 1;
2762 break;
2763 }
2764 pioh = &ioh->next;
2765 }
2766 } else {
2767 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2768 if (ioh->fd == fd)
2769 goto found;
2770 }
2771 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2772 ioh->next = first_io_handler;
2773 first_io_handler = ioh;
2774 found:
2775 ioh->fd = fd;
2776 ioh->fd_read_poll = fd_read_poll;
2777 ioh->fd_read = fd_read;
2778 ioh->fd_write = fd_write;
2779 ioh->opaque = opaque;
2780 ioh->deleted = 0;
2781 }
2782 return 0;
2783 }
2784
2785 int qemu_set_fd_handler(int fd,
2786 IOHandler *fd_read,
2787 IOHandler *fd_write,
2788 void *opaque)
2789 {
2790 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2791 }
2792
2793 #ifdef _WIN32
2794 /***********************************************************/
2795 /* Polling handling */
2796
2797 typedef struct PollingEntry {
2798 PollingFunc *func;
2799 void *opaque;
2800 struct PollingEntry *next;
2801 } PollingEntry;
2802
2803 static PollingEntry *first_polling_entry;
2804
2805 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2806 {
2807 PollingEntry **ppe, *pe;
2808 pe = qemu_mallocz(sizeof(PollingEntry));
2809 pe->func = func;
2810 pe->opaque = opaque;
2811 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2812 *ppe = pe;
2813 return 0;
2814 }
2815
2816 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2817 {
2818 PollingEntry **ppe, *pe;
2819 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2820 pe = *ppe;
2821 if (pe->func == func && pe->opaque == opaque) {
2822 *ppe = pe->next;
2823 qemu_free(pe);
2824 break;
2825 }
2826 }
2827 }
2828
2829 /***********************************************************/
2830 /* Wait objects support */
2831 typedef struct WaitObjects {
2832 int num;
2833 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2834 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2835 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2836 } WaitObjects;
2837
2838 static WaitObjects wait_objects = {0};
2839
2840 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2841 {
2842 WaitObjects *w = &wait_objects;
2843
2844 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2845 return -1;
2846 w->events[w->num] = handle;
2847 w->func[w->num] = func;
2848 w->opaque[w->num] = opaque;
2849 w->num++;
2850 return 0;
2851 }
2852
2853 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2854 {
2855 int i, found;
2856 WaitObjects *w = &wait_objects;
2857
2858 found = 0;
2859 for (i = 0; i < w->num; i++) {
2860 if (w->events[i] == handle)
2861 found = 1;
2862 if (found) {
2863 w->events[i] = w->events[i + 1];
2864 w->func[i] = w->func[i + 1];
2865 w->opaque[i] = w->opaque[i + 1];
2866 }
2867 }
2868 if (found)
2869 w->num--;
2870 }
2871 #endif
2872
2873 /***********************************************************/
2874 /* ram save/restore */
2875
2876 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2877 {
2878 int v;
2879
2880 v = qemu_get_byte(f);
2881 switch(v) {
2882 case 0:
2883 if (qemu_get_buffer(f, buf, len) != len)
2884 return -EIO;
2885 break;
2886 case 1:
2887 v = qemu_get_byte(f);
2888 memset(buf, v, len);
2889 break;
2890 default:
2891 return -EINVAL;
2892 }
2893
2894 if (qemu_file_has_error(f))
2895 return -EIO;
2896
2897 return 0;
2898 }
2899
2900 static int ram_load_v1(QEMUFile *f, void *opaque)
2901 {
2902 int ret;
2903 ram_addr_t i;
2904
2905 if (qemu_get_be32(f) != last_ram_offset)
2906 return -EINVAL;
2907 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2908 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2909 if (ret)
2910 return ret;
2911 }
2912 return 0;
2913 }
2914
2915 #define BDRV_HASH_BLOCK_SIZE 1024
2916 #define IOBUF_SIZE 4096
2917 #define RAM_CBLOCK_MAGIC 0xfabe
2918
2919 typedef struct RamDecompressState {
2920 z_stream zstream;
2921 QEMUFile *f;
2922 uint8_t buf[IOBUF_SIZE];
2923 } RamDecompressState;
2924
2925 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2926 {
2927 int ret;
2928 memset(s, 0, sizeof(*s));
2929 s->f = f;
2930 ret = inflateInit(&s->zstream);
2931 if (ret != Z_OK)
2932 return -1;
2933 return 0;
2934 }
2935
2936 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2937 {
2938 int ret, clen;
2939
2940 s->zstream.avail_out = len;
2941 s->zstream.next_out = buf;
2942 while (s->zstream.avail_out > 0) {
2943 if (s->zstream.avail_in == 0) {
2944 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2945 return -1;
2946 clen = qemu_get_be16(s->f);
2947 if (clen > IOBUF_SIZE)
2948 return -1;
2949 qemu_get_buffer(s->f, s->buf, clen);
2950 s->zstream.avail_in = clen;
2951 s->zstream.next_in = s->buf;
2952 }
2953 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2954 if (ret != Z_OK && ret != Z_STREAM_END) {
2955 return -1;
2956 }
2957 }
2958 return 0;
2959 }
2960
2961 static void ram_decompress_close(RamDecompressState *s)
2962 {
2963 inflateEnd(&s->zstream);
2964 }
2965
2966 #define RAM_SAVE_FLAG_FULL 0x01
2967 #define RAM_SAVE_FLAG_COMPRESS 0x02
2968 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2969 #define RAM_SAVE_FLAG_PAGE 0x08
2970 #define RAM_SAVE_FLAG_EOS 0x10
2971
2972 static int is_dup_page(uint8_t *page, uint8_t ch)
2973 {
2974 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2975 uint32_t *array = (uint32_t *)page;
2976 int i;
2977
2978 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2979 if (array[i] != val)
2980 return 0;
2981 }
2982
2983 return 1;
2984 }
2985
2986 static int ram_save_block(QEMUFile *f)
2987 {
2988 static ram_addr_t current_addr = 0;
2989 ram_addr_t saved_addr = current_addr;
2990 ram_addr_t addr = 0;
2991 int found = 0;
2992
2993 while (addr < last_ram_offset) {
2994 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2995 uint8_t *p;
2996
2997 cpu_physical_memory_reset_dirty(current_addr,
2998 current_addr + TARGET_PAGE_SIZE,
2999 MIGRATION_DIRTY_FLAG);
3000
3001 p = qemu_get_ram_ptr(current_addr);
3002
3003 if (is_dup_page(p, *p)) {
3004 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3005 qemu_put_byte(f, *p);
3006 } else {
3007 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3008 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3009 }
3010
3011 found = 1;
3012 break;
3013 }
3014 addr += TARGET_PAGE_SIZE;
3015 current_addr = (saved_addr + addr) % last_ram_offset;
3016 }
3017
3018 return found;
3019 }
3020
3021 static uint64_t bytes_transferred = 0;
3022
3023 static ram_addr_t ram_save_remaining(void)
3024 {
3025 ram_addr_t addr;
3026 ram_addr_t count = 0;
3027
3028 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3029 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3030 count++;
3031 }
3032
3033 return count;
3034 }
3035
3036 uint64_t ram_bytes_remaining(void)
3037 {
3038 return ram_save_remaining() * TARGET_PAGE_SIZE;
3039 }
3040
3041 uint64_t ram_bytes_transferred(void)
3042 {
3043 return bytes_transferred;
3044 }
3045
3046 uint64_t ram_bytes_total(void)
3047 {
3048 return last_ram_offset;
3049 }
3050
3051 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3052 {
3053 ram_addr_t addr;
3054 uint64_t bytes_transferred_last;
3055 double bwidth = 0;
3056 uint64_t expected_time = 0;
3057
3058 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3059 qemu_file_set_error(f);
3060 return 0;
3061 }
3062
3063 if (stage == 1) {
3064 /* Make sure all dirty bits are set */
3065 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3066 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3067 cpu_physical_memory_set_dirty(addr);
3068 }
3069
3070 /* Enable dirty memory tracking */
3071 cpu_physical_memory_set_dirty_tracking(1);
3072
3073 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3074 }
3075
3076 bytes_transferred_last = bytes_transferred;
3077 bwidth = get_clock();
3078
3079 while (!qemu_file_rate_limit(f)) {
3080 int ret;
3081
3082 ret = ram_save_block(f);
3083 bytes_transferred += ret * TARGET_PAGE_SIZE;
3084 if (ret == 0) /* no more blocks */
3085 break;
3086 }
3087
3088 bwidth = get_clock() - bwidth;
3089 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3090
3091 /* if we haven't transferred anything this round, force expected_time to a
3092 * a very high value, but without crashing */
3093 if (bwidth == 0)
3094 bwidth = 0.000001;
3095
3096 /* try transferring iterative blocks of memory */
3097
3098 if (stage == 3) {
3099
3100 /* flush all remaining blocks regardless of rate limiting */
3101 while (ram_save_block(f) != 0) {
3102 bytes_transferred += TARGET_PAGE_SIZE;
3103 }
3104 cpu_physical_memory_set_dirty_tracking(0);
3105 }
3106
3107 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3108
3109 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3110
3111 return (stage == 2) && (expected_time <= migrate_max_downtime());
3112 }
3113
3114 static int ram_load_dead(QEMUFile *f, void *opaque)
3115 {
3116 RamDecompressState s1, *s = &s1;
3117 uint8_t buf[10];
3118 ram_addr_t i;
3119
3120 if (ram_decompress_open(s, f) < 0)
3121 return -EINVAL;
3122 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3123 if (ram_decompress_buf(s, buf, 1) < 0) {
3124 fprintf(stderr, "Error while reading ram block header\n");
3125 goto error;
3126 }
3127 if (buf[0] == 0) {
3128 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3129 BDRV_HASH_BLOCK_SIZE) < 0) {
3130 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3131 goto error;
3132 }
3133 } else {
3134 error:
3135 printf("Error block header\n");
3136 return -EINVAL;
3137 }
3138 }
3139 ram_decompress_close(s);
3140
3141 return 0;
3142 }
3143
3144 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3145 {
3146 ram_addr_t addr;
3147 int flags;
3148
3149 if (version_id == 1)
3150 return ram_load_v1(f, opaque);
3151
3152 if (version_id == 2) {
3153 if (qemu_get_be32(f) != last_ram_offset)
3154 return -EINVAL;
3155 return ram_load_dead(f, opaque);
3156 }
3157
3158 if (version_id != 3)
3159 return -EINVAL;
3160
3161 do {
3162 addr = qemu_get_be64(f);
3163
3164 flags = addr & ~TARGET_PAGE_MASK;
3165 addr &= TARGET_PAGE_MASK;
3166
3167 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3168 if (addr != last_ram_offset)
3169 return -EINVAL;
3170 }
3171
3172 if (flags & RAM_SAVE_FLAG_FULL) {
3173 if (ram_load_dead(f, opaque) < 0)
3174 return -EINVAL;
3175 }
3176
3177 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3178 uint8_t ch = qemu_get_byte(f);
3179 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3180 #ifndef _WIN32
3181 if (ch == 0 &&
3182 (!kvm_enabled() || kvm_has_sync_mmu())) {
3183 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3184 }
3185 #endif
3186 } else if (flags & RAM_SAVE_FLAG_PAGE)
3187 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3188 } while (!(flags & RAM_SAVE_FLAG_EOS));
3189
3190 return 0;
3191 }
3192
3193 void qemu_service_io(void)
3194 {
3195 qemu_notify_event();
3196 }
3197
3198 /***********************************************************/
3199 /* bottom halves (can be seen as timers which expire ASAP) */
3200
3201 struct QEMUBH {
3202 QEMUBHFunc *cb;
3203 void *opaque;
3204 int scheduled;
3205 int idle;
3206 int deleted;
3207 QEMUBH *next;
3208 };
3209
3210 static QEMUBH *first_bh = NULL;
3211
3212 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3213 {
3214 QEMUBH *bh;
3215 bh = qemu_mallocz(sizeof(QEMUBH));
3216 bh->cb = cb;
3217 bh->opaque = opaque;
3218 bh->next = first_bh;
3219 first_bh = bh;
3220 return bh;
3221 }
3222
3223 int qemu_bh_poll(void)
3224 {
3225 QEMUBH *bh, **bhp;
3226 int ret;
3227
3228 ret = 0;
3229 for (bh = first_bh; bh; bh = bh->next) {
3230 if (!bh->deleted && bh->scheduled) {
3231 bh->scheduled = 0;
3232 if (!bh->idle)
3233 ret = 1;
3234 bh->idle = 0;
3235 bh->cb(bh->opaque);
3236 }
3237 }
3238
3239 /* remove deleted bhs */
3240 bhp = &first_bh;
3241 while (*bhp) {
3242 bh = *bhp;
3243 if (bh->deleted) {
3244 *bhp = bh->next;
3245 qemu_free(bh);
3246 } else
3247 bhp = &bh->next;
3248 }
3249
3250 return ret;
3251 }
3252
3253 void qemu_bh_schedule_idle(QEMUBH *bh)
3254 {
3255 if (bh->scheduled)
3256 return;
3257 bh->scheduled = 1;
3258 bh->idle = 1;
3259 }
3260
3261 void qemu_bh_schedule(QEMUBH *bh)
3262 {
3263 if (bh->scheduled)
3264 return;
3265 bh->scheduled = 1;
3266 bh->idle = 0;
3267 /* stop the currently executing CPU to execute the BH ASAP */
3268 qemu_notify_event();
3269 }
3270
3271 void qemu_bh_cancel(QEMUBH *bh)
3272 {
3273 bh->scheduled = 0;
3274 }
3275
3276 void qemu_bh_delete(QEMUBH *bh)
3277 {
3278 bh->scheduled = 0;
3279 bh->deleted = 1;
3280 }
3281
3282 static void qemu_bh_update_timeout(int *timeout)
3283 {
3284 QEMUBH *bh;
3285
3286 for (bh = first_bh; bh; bh = bh->next) {
3287 if (!bh->deleted && bh->scheduled) {
3288 if (bh->idle) {
3289 /* idle bottom halves will be polled at least
3290 * every 10ms */
3291 *timeout = MIN(10, *timeout);
3292 } else {
3293 /* non-idle bottom halves will be executed
3294 * immediately */
3295 *timeout = 0;
3296 break;
3297 }
3298 }
3299 }
3300 }
3301
3302 /***********************************************************/
3303 /* machine registration */
3304
3305 static QEMUMachine *first_machine = NULL;
3306 QEMUMachine *current_machine = NULL;
3307
3308 int qemu_register_machine(QEMUMachine *m)
3309 {
3310 QEMUMachine **pm;
3311 pm = &first_machine;
3312 while (*pm != NULL)
3313 pm = &(*pm)->next;
3314 m->next = NULL;
3315 *pm = m;
3316 return 0;
3317 }
3318
3319 static QEMUMachine *find_machine(const char *name)
3320 {
3321 QEMUMachine *m;
3322
3323 for(m = first_machine; m != NULL; m = m->next) {
3324 if (!strcmp(m->name, name))
3325 return m;
3326 if (m->alias && !strcmp(m->alias, name))
3327 return m;
3328 }
3329 return NULL;
3330 }
3331
3332 static QEMUMachine *find_default_machine(void)
3333 {
3334 QEMUMachine *m;
3335
3336 for(m = first_machine; m != NULL; m = m->next) {
3337 if (m->is_default) {
3338 return m;
3339 }
3340 }
3341 return NULL;
3342 }
3343
3344 /***********************************************************/
3345 /* main execution loop */
3346
3347 static void gui_update(void *opaque)
3348 {
3349 uint64_t interval = GUI_REFRESH_INTERVAL;
3350 DisplayState *ds = opaque;
3351 DisplayChangeListener *dcl = ds->listeners;
3352
3353 dpy_refresh(ds);
3354
3355 while (dcl != NULL) {
3356 if (dcl->gui_timer_interval &&
3357 dcl->gui_timer_interval < interval)
3358 interval = dcl->gui_timer_interval;
3359 dcl = dcl->next;
3360 }
3361 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3362 }
3363
3364 static void nographic_update(void *opaque)
3365 {
3366 uint64_t interval = GUI_REFRESH_INTERVAL;
3367
3368 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3369 }
3370
3371 struct vm_change_state_entry {
3372 VMChangeStateHandler *cb;
3373 void *opaque;
3374 LIST_ENTRY (vm_change_state_entry) entries;
3375 };
3376
3377 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3378
3379 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3380 void *opaque)
3381 {
3382 VMChangeStateEntry *e;
3383
3384 e = qemu_mallocz(sizeof (*e));
3385
3386 e->cb = cb;
3387 e->opaque = opaque;
3388 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3389 return e;
3390 }
3391
3392 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3393 {
3394 LIST_REMOVE (e, entries);
3395 qemu_free (e);
3396 }
3397
3398 static void vm_state_notify(int running, int reason)
3399 {
3400 VMChangeStateEntry *e;
3401
3402 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3403 e->cb(e->opaque, running, reason);
3404 }
3405 }
3406
3407 static void resume_all_vcpus(void);
3408 static void pause_all_vcpus(void);
3409
3410 void vm_start(void)
3411 {
3412 if (!vm_running) {
3413 cpu_enable_ticks();
3414 vm_running = 1;
3415 vm_state_notify(1, 0);
3416 qemu_rearm_alarm_timer(alarm_timer);
3417 resume_all_vcpus();
3418 }
3419 }
3420
3421 /* reset/shutdown handler */
3422
3423 typedef struct QEMUResetEntry {
3424 TAILQ_ENTRY(QEMUResetEntry) entry;
3425 QEMUResetHandler *func;
3426 void *opaque;
3427 } QEMUResetEntry;
3428
3429 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3430 TAILQ_HEAD_INITIALIZER(reset_handlers);
3431 static int reset_requested;
3432 static int shutdown_requested;
3433 static int powerdown_requested;
3434 static int debug_requested;
3435 static int vmstop_requested;
3436
3437 int qemu_shutdown_requested(void)
3438 {
3439 int r = shutdown_requested;
3440 shutdown_requested = 0;
3441 return r;
3442 }
3443
3444 int qemu_reset_requested(void)
3445 {
3446 int r = reset_requested;
3447 reset_requested = 0;
3448 return r;
3449 }
3450
3451 int qemu_powerdown_requested(void)
3452 {
3453 int r = powerdown_requested;
3454 powerdown_requested = 0;
3455 return r;
3456 }
3457
3458 static int qemu_debug_requested(void)
3459 {
3460 int r = debug_requested;
3461 debug_requested = 0;
3462 return r;
3463 }
3464
3465 static int qemu_vmstop_requested(void)
3466 {
3467 int r = vmstop_requested;
3468 vmstop_requested = 0;
3469 return r;
3470 }
3471
3472 static void do_vm_stop(int reason)
3473 {
3474 if (vm_running) {
3475 cpu_disable_ticks();
3476 vm_running = 0;
3477 pause_all_vcpus();
3478 vm_state_notify(0, reason);
3479 }
3480 }
3481
3482 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3483 {
3484 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3485
3486 re->func = func;
3487 re->opaque = opaque;
3488 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3489 }
3490
3491 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3492 {
3493 QEMUResetEntry *re;
3494
3495 TAILQ_FOREACH(re, &reset_handlers, entry) {
3496 if (re->func == func && re->opaque == opaque) {
3497 TAILQ_REMOVE(&reset_handlers, re, entry);
3498 qemu_free(re);
3499 return;
3500 }
3501 }
3502 }
3503
3504 void qemu_system_reset(void)
3505 {
3506 QEMUResetEntry *re, *nre;
3507
3508 /* reset all devices */
3509 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3510 re->func(re->opaque);
3511 }
3512 }
3513
3514 void qemu_system_reset_request(void)
3515 {
3516 if (no_reboot) {
3517 shutdown_requested = 1;
3518 } else {
3519 reset_requested = 1;
3520 }
3521 qemu_notify_event();
3522 }
3523
3524 void qemu_system_shutdown_request(void)
3525 {
3526 shutdown_requested = 1;
3527 qemu_notify_event();
3528 }
3529
3530 void qemu_system_powerdown_request(void)
3531 {
3532 powerdown_requested = 1;
3533 qemu_notify_event();
3534 }
3535
3536 #ifdef CONFIG_IOTHREAD
3537 static void qemu_system_vmstop_request(int reason)
3538 {
3539 vmstop_requested = reason;
3540 qemu_notify_event();
3541 }
3542 #endif
3543
3544 #ifndef _WIN32
3545 static int io_thread_fd = -1;
3546
3547 static void qemu_event_increment(void)
3548 {
3549 static const char byte = 0;
3550
3551 if (io_thread_fd == -1)
3552 return;
3553
3554 write(io_thread_fd, &byte, sizeof(byte));
3555 }
3556
3557 static void qemu_event_read(void *opaque)
3558 {
3559 int fd = (unsigned long)opaque;
3560 ssize_t len;
3561
3562 /* Drain the notify pipe */
3563 do {
3564 char buffer[512];
3565 len = read(fd, buffer, sizeof(buffer));
3566 } while ((len == -1 && errno == EINTR) || len > 0);
3567 }
3568
3569 static int qemu_event_init(void)
3570 {
3571 int err;
3572 int fds[2];
3573
3574 err = pipe(fds);
3575 if (err == -1)
3576 return -errno;
3577
3578 err = fcntl_setfl(fds[0], O_NONBLOCK);
3579 if (err < 0)
3580 goto fail;
3581
3582 err = fcntl_setfl(fds[1], O_NONBLOCK);
3583 if (err < 0)
3584 goto fail;
3585
3586 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3587 (void *)(unsigned long)fds[0]);
3588
3589 io_thread_fd = fds[1];
3590 return 0;
3591
3592 fail:
3593 close(fds[0]);
3594 close(fds[1]);
3595 return err;
3596 }
3597 #else
3598 HANDLE qemu_event_handle;
3599
3600 static void dummy_event_handler(void *opaque)
3601 {
3602 }
3603
3604 static int qemu_event_init(void)
3605 {
3606 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3607 if (!qemu_event_handle) {
3608 perror("Failed CreateEvent");
3609 return -1;
3610 }
3611 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3612 return 0;
3613 }
3614
3615 static void qemu_event_increment(void)
3616 {
3617 SetEvent(qemu_event_handle);
3618 }
3619 #endif
3620
3621 static int cpu_can_run(CPUState *env)
3622 {
3623 if (env->stop)
3624 return 0;
3625 if (env->stopped)
3626 return 0;
3627 return 1;
3628 }
3629
3630 #ifndef CONFIG_IOTHREAD
3631 static int qemu_init_main_loop(void)
3632 {
3633 return qemu_event_init();
3634 }
3635
3636 void qemu_init_vcpu(void *_env)
3637 {
3638 CPUState *env = _env;
3639
3640 if (kvm_enabled())
3641 kvm_init_vcpu(env);
3642 env->nr_cores = smp_cores;
3643 env->nr_threads = smp_threads;
3644 return;
3645 }
3646
3647 int qemu_cpu_self(void *env)
3648 {
3649 return 1;
3650 }
3651
3652 static void resume_all_vcpus(void)
3653 {
3654 }
3655
3656 static void pause_all_vcpus(void)
3657 {
3658 }
3659
3660 void qemu_cpu_kick(void *env)
3661 {
3662 return;
3663 }
3664
3665 void qemu_notify_event(void)
3666 {
3667 CPUState *env = cpu_single_env;
3668
3669 if (env) {
3670 cpu_exit(env);
3671 }
3672 }
3673
3674 #define qemu_mutex_lock_iothread() do { } while (0)
3675 #define qemu_mutex_unlock_iothread() do { } while (0)
3676
3677 void vm_stop(int reason)
3678 {
3679 do_vm_stop(reason);
3680 }
3681
3682 #else /* CONFIG_IOTHREAD */
3683
3684 #include "qemu-thread.h"
3685
3686 QemuMutex qemu_global_mutex;
3687 static QemuMutex qemu_fair_mutex;
3688
3689 static QemuThread io_thread;
3690
3691 static QemuThread *tcg_cpu_thread;
3692 static QemuCond *tcg_halt_cond;
3693
3694 static int qemu_system_ready;
3695 /* cpu creation */
3696 static QemuCond qemu_cpu_cond;
3697 /* system init */
3698 static QemuCond qemu_system_cond;
3699 static QemuCond qemu_pause_cond;
3700
3701 static void block_io_signals(void);
3702 static void unblock_io_signals(void);
3703 static int tcg_has_work(void);
3704
3705 static int qemu_init_main_loop(void)
3706 {
3707 int ret;
3708
3709 ret = qemu_event_init();
3710 if (ret)
3711 return ret;
3712
3713 qemu_cond_init(&qemu_pause_cond);
3714 qemu_mutex_init(&qemu_fair_mutex);
3715 qemu_mutex_init(&qemu_global_mutex);
3716 qemu_mutex_lock(&qemu_global_mutex);
3717
3718 unblock_io_signals();
3719 qemu_thread_self(&io_thread);
3720
3721 return 0;
3722 }
3723
3724 static void qemu_wait_io_event(CPUState *env)
3725 {
3726 while (!tcg_has_work())
3727 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3728
3729 qemu_mutex_unlock(&qemu_global_mutex);
3730
3731 /*
3732 * Users of qemu_global_mutex can be starved, having no chance
3733 * to acquire it since this path will get to it first.
3734 * So use another lock to provide fairness.
3735 */
3736 qemu_mutex_lock(&qemu_fair_mutex);
3737 qemu_mutex_unlock(&qemu_fair_mutex);
3738
3739 qemu_mutex_lock(&qemu_global_mutex);
3740 if (env->stop) {
3741 env->stop = 0;
3742 env->stopped = 1;
3743 qemu_cond_signal(&qemu_pause_cond);
3744 }
3745 }
3746
3747 static int qemu_cpu_exec(CPUState *env);
3748
3749 static void *kvm_cpu_thread_fn(void *arg)
3750 {
3751 CPUState *env = arg;
3752
3753 block_io_signals();
3754 qemu_thread_self(env->thread);
3755 kvm_init_vcpu(env);
3756
3757 /* signal CPU creation */
3758 qemu_mutex_lock(&qemu_global_mutex);
3759 env->created = 1;
3760 qemu_cond_signal(&qemu_cpu_cond);
3761
3762 /* and wait for machine initialization */
3763 while (!qemu_system_ready)
3764 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3765
3766 while (1) {
3767 if (cpu_can_run(env))
3768 qemu_cpu_exec(env);
3769 qemu_wait_io_event(env);
3770 }
3771
3772 return NULL;
3773 }
3774
3775 static void tcg_cpu_exec(void);
3776
3777 static void *tcg_cpu_thread_fn(void *arg)
3778 {
3779 CPUState *env = arg;
3780
3781 block_io_signals();
3782 qemu_thread_self(env->thread);
3783
3784 /* signal CPU creation */
3785 qemu_mutex_lock(&qemu_global_mutex);
3786 for (env = first_cpu; env != NULL; env = env->next_cpu)
3787 env->created = 1;
3788 qemu_cond_signal(&qemu_cpu_cond);
3789
3790 /* and wait for machine initialization */
3791 while (!qemu_system_ready)
3792 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3793
3794 while (1) {
3795 tcg_cpu_exec();
3796 qemu_wait_io_event(cur_cpu);
3797 }
3798
3799 return NULL;
3800 }
3801
3802 void qemu_cpu_kick(void *_env)
3803 {
3804 CPUState *env = _env;
3805 qemu_cond_broadcast(env->halt_cond);
3806 if (kvm_enabled())
3807 qemu_thread_signal(env->thread, SIGUSR1);
3808 }
3809
3810 int qemu_cpu_self(void *env)
3811 {
3812 return (cpu_single_env != NULL);
3813 }
3814
3815 static void cpu_signal(int sig)
3816 {
3817 if (cpu_single_env)
3818 cpu_exit(cpu_single_env);
3819 }
3820
3821 static void block_io_signals(void)
3822 {
3823 sigset_t set;
3824 struct sigaction sigact;
3825
3826 sigemptyset(&set);
3827 sigaddset(&set, SIGUSR2);
3828 sigaddset(&set, SIGIO);
3829 sigaddset(&set, SIGALRM);
3830 pthread_sigmask(SIG_BLOCK, &set, NULL);
3831
3832 sigemptyset(&set);
3833 sigaddset(&set, SIGUSR1);
3834 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3835
3836 memset(&sigact, 0, sizeof(sigact));
3837 sigact.sa_handler = cpu_signal;
3838 sigaction(SIGUSR1, &sigact, NULL);
3839 }
3840
3841 static void unblock_io_signals(void)
3842 {
3843 sigset_t set;
3844
3845 sigemptyset(&set);
3846 sigaddset(&set, SIGUSR2);
3847 sigaddset(&set, SIGIO);
3848 sigaddset(&set, SIGALRM);
3849 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3850
3851 sigemptyset(&set);
3852 sigaddset(&set, SIGUSR1);
3853 pthread_sigmask(SIG_BLOCK, &set, NULL);
3854 }
3855
3856 static void qemu_signal_lock(unsigned int msecs)
3857 {
3858 qemu_mutex_lock(&qemu_fair_mutex);
3859
3860 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3861 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3862 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3863 break;
3864 }
3865 qemu_mutex_unlock(&qemu_fair_mutex);
3866 }
3867
3868 static void qemu_mutex_lock_iothread(void)
3869 {
3870 if (kvm_enabled()) {
3871 qemu_mutex_lock(&qemu_fair_mutex);
3872 qemu_mutex_lock(&qemu_global_mutex);
3873 qemu_mutex_unlock(&qemu_fair_mutex);
3874 } else
3875 qemu_signal_lock(100);
3876 }
3877
3878 static void qemu_mutex_unlock_iothread(void)
3879 {
3880 qemu_mutex_unlock(&qemu_global_mutex);
3881 }
3882
3883 static int all_vcpus_paused(void)
3884 {
3885 CPUState *penv = first_cpu;
3886
3887 while (penv) {
3888 if (!penv->stopped)
3889 return 0;
3890 penv = (CPUState *)penv->next_cpu;
3891 }
3892
3893 return 1;
3894 }
3895
3896 static void pause_all_vcpus(void)
3897 {
3898 CPUState *penv = first_cpu;
3899
3900 while (penv) {
3901 penv->stop = 1;
3902 qemu_thread_signal(penv->thread, SIGUSR1);
3903 qemu_cpu_kick(penv);
3904 penv = (CPUState *)penv->next_cpu;
3905 }
3906
3907 while (!all_vcpus_paused()) {
3908 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3909 penv = first_cpu;
3910 while (penv) {
3911 qemu_thread_signal(penv->thread, SIGUSR1);
3912 penv = (CPUState *)penv->next_cpu;
3913 }
3914 }
3915 }
3916
3917 static void resume_all_vcpus(void)
3918 {
3919 CPUState *penv = first_cpu;
3920
3921 while (penv) {
3922 penv->stop = 0;
3923 penv->stopped = 0;
3924 qemu_thread_signal(penv->thread, SIGUSR1);
3925 qemu_cpu_kick(penv);
3926 penv = (CPUState *)penv->next_cpu;
3927 }
3928 }
3929
3930 static void tcg_init_vcpu(void *_env)
3931 {
3932 CPUState *env = _env;
3933 /* share a single thread for all cpus with TCG */
3934 if (!tcg_cpu_thread) {
3935 env->thread = qemu_mallocz(sizeof(QemuThread));
3936 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3937 qemu_cond_init(env->halt_cond);
3938 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3939 while (env->created == 0)
3940 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3941 tcg_cpu_thread = env->thread;
3942 tcg_halt_cond = env->halt_cond;
3943 } else {
3944 env->thread = tcg_cpu_thread;
3945 env->halt_cond = tcg_halt_cond;
3946 }
3947 }
3948
3949 static void kvm_start_vcpu(CPUState *env)
3950 {
3951 env->thread = qemu_mallocz(sizeof(QemuThread));
3952 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3953 qemu_cond_init(env->halt_cond);
3954 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3955 while (env->created == 0)
3956 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3957 }
3958
3959 void qemu_init_vcpu(void *_env)
3960 {
3961 CPUState *env = _env;
3962
3963 if (kvm_enabled())
3964 kvm_start_vcpu(env);
3965 else
3966 tcg_init_vcpu(env);
3967 env->nr_cores = smp_cores;
3968 env->nr_threads = smp_threads;
3969 }
3970
3971 void qemu_notify_event(void)
3972 {
3973 qemu_event_increment();
3974 }
3975
3976 void vm_stop(int reason)
3977 {
3978 QemuThread me;
3979 qemu_thread_self(&me);
3980
3981 if (!qemu_thread_equal(&me, &io_thread)) {
3982 qemu_system_vmstop_request(reason);
3983 /*
3984 * FIXME: should not return to device code in case
3985 * vm_stop() has been requested.
3986 */
3987 if (cpu_single_env) {
3988 cpu_exit(cpu_single_env);
3989 cpu_single_env->stop = 1;
3990 }
3991 return;
3992 }
3993 do_vm_stop(reason);
3994 }
3995
3996 #endif
3997
3998
3999 #ifdef _WIN32
4000 static void host_main_loop_wait(int *timeout)
4001 {
4002 int ret, ret2, i;
4003 PollingEntry *pe;
4004
4005
4006 /* XXX: need to suppress polling by better using win32 events */
4007 ret = 0;
4008 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4009 ret |= pe->func(pe->opaque);
4010 }
4011 if (ret == 0) {
4012 int err;
4013 WaitObjects *w = &wait_objects;
4014
4015 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4016 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4017 if (w->func[ret - WAIT_OBJECT_0])
4018 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4019
4020 /* Check for additional signaled events */
4021 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4022
4023 /* Check if event is signaled */
4024 ret2 = WaitForSingleObject(w->events[i], 0);
4025 if(ret2 == WAIT_OBJECT_0) {
4026 if (w->func[i])
4027 w->func[i](w->opaque[i]);
4028 } else if (ret2 == WAIT_TIMEOUT) {
4029 } else {
4030 err = GetLastError();
4031 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4032 }
4033 }
4034 } else if (ret == WAIT_TIMEOUT) {
4035 } else {
4036 err = GetLastError();
4037 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4038 }
4039 }
4040
4041 *timeout = 0;
4042 }
4043 #else
4044 static void host_main_loop_wait(int *timeout)
4045 {
4046 }
4047 #endif
4048
4049 void main_loop_wait(int timeout)
4050 {
4051 IOHandlerRecord *ioh;
4052 fd_set rfds, wfds, xfds;
4053 int ret, nfds;
4054 struct timeval tv;
4055
4056 qemu_bh_update_timeout(&timeout);
4057
4058 host_main_loop_wait(&timeout);
4059
4060 /* poll any events */
4061 /* XXX: separate device handlers from system ones */
4062 nfds = -1;
4063 FD_ZERO(&rfds);
4064 FD_ZERO(&wfds);
4065 FD_ZERO(&xfds);
4066 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4067 if (ioh->deleted)
4068 continue;
4069 if (ioh->fd_read &&
4070 (!ioh->fd_read_poll ||
4071 ioh->fd_read_poll(ioh->opaque) != 0)) {
4072 FD_SET(ioh->fd, &rfds);
4073 if (ioh->fd > nfds)
4074 nfds = ioh->fd;
4075 }
4076 if (ioh->fd_write) {
4077 FD_SET(ioh->fd, &wfds);
4078 if (ioh->fd > nfds)
4079 nfds = ioh->fd;
4080 }
4081 }
4082
4083 tv.tv_sec = timeout / 1000;
4084 tv.tv_usec = (timeout % 1000) * 1000;
4085
4086 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4087
4088 qemu_mutex_unlock_iothread();
4089 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4090 qemu_mutex_lock_iothread();
4091 if (ret > 0) {
4092 IOHandlerRecord **pioh;
4093
4094 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4095 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4096 ioh->fd_read(ioh->opaque);
4097 }
4098 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4099 ioh->fd_write(ioh->opaque);
4100 }
4101 }
4102
4103 /* remove deleted IO handlers */
4104 pioh = &first_io_handler;
4105 while (*pioh) {
4106 ioh = *pioh;
4107 if (ioh->deleted) {
4108 *pioh = ioh->next;
4109 qemu_free(ioh);
4110 } else
4111 pioh = &ioh->next;
4112 }
4113 }
4114
4115 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4116
4117 /* rearm timer, if not periodic */
4118 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4119 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4120 qemu_rearm_alarm_timer(alarm_timer);
4121 }
4122
4123 /* vm time timers */
4124 if (vm_running) {
4125 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4126 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4127 qemu_get_clock(vm_clock));
4128 }
4129
4130 /* real time timers */
4131 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4132 qemu_get_clock(rt_clock));
4133
4134 /* Check bottom-halves last in case any of the earlier events triggered
4135 them. */
4136 qemu_bh_poll();
4137
4138 }
4139
4140 static int qemu_cpu_exec(CPUState *env)
4141 {
4142 int ret;
4143 #ifdef CONFIG_PROFILER
4144 int64_t ti;
4145 #endif
4146
4147 #ifdef CONFIG_PROFILER
4148 ti = profile_getclock();
4149 #endif
4150 if (use_icount) {
4151 int64_t count;
4152 int decr;
4153 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4154 env->icount_decr.u16.low = 0;
4155 env->icount_extra = 0;
4156 count = qemu_next_deadline();
4157 count = (count + (1 << icount_time_shift) - 1)
4158 >> icount_time_shift;
4159 qemu_icount += count;
4160 decr = (count > 0xffff) ? 0xffff : count;
4161 count -= decr;
4162 env->icount_decr.u16.low = decr;
4163 env->icount_extra = count;
4164 }
4165 ret = cpu_exec(env);
4166 #ifdef CONFIG_PROFILER
4167 qemu_time += profile_getclock() - ti;
4168 #endif
4169 if (use_icount) {
4170 /* Fold pending instructions back into the
4171 instruction counter, and clear the interrupt flag. */
4172 qemu_icount -= (env->icount_decr.u16.low
4173 + env->icount_extra);
4174 env->icount_decr.u32 = 0;
4175 env->icount_extra = 0;
4176 }
4177 return ret;
4178 }
4179
4180 static void tcg_cpu_exec(void)
4181 {
4182 int ret = 0;
4183
4184 if (next_cpu == NULL)
4185 next_cpu = first_cpu;
4186 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4187 CPUState *env = cur_cpu = next_cpu;
4188
4189 if (!vm_running)
4190 break;
4191 if (timer_alarm_pending) {
4192 timer_alarm_pending = 0;
4193 break;
4194 }
4195 if (cpu_can_run(env))
4196 ret = qemu_cpu_exec(env);
4197 if (ret == EXCP_DEBUG) {
4198 gdb_set_stop_cpu(env);
4199 debug_requested = 1;
4200 break;
4201 }
4202 }
4203 }
4204
4205 static int cpu_has_work(CPUState *env)
4206 {
4207 if (env->stop)
4208 return 1;
4209 if (env->stopped)
4210 return 0;
4211 if (!env->halted)
4212 return 1;
4213 if (qemu_cpu_has_work(env))
4214 return 1;
4215 return 0;
4216 }
4217
4218 static int tcg_has_work(void)
4219 {
4220 CPUState *env;
4221
4222 for (env = first_cpu; env != NULL; env = env->next_cpu)
4223 if (cpu_has_work(env))
4224 return 1;
4225 return 0;
4226 }
4227
4228 static int qemu_calculate_timeout(void)
4229 {
4230 #ifndef CONFIG_IOTHREAD
4231 int timeout;
4232
4233 if (!vm_running)
4234 timeout = 5000;
4235 else if (tcg_has_work())
4236 timeout = 0;
4237 else if (!use_icount)
4238 timeout = 5000;
4239 else {
4240 /* XXX: use timeout computed from timers */
4241 int64_t add;
4242 int64_t delta;
4243 /* Advance virtual time to the next event. */
4244 if (use_icount == 1) {
4245 /* When not using an adaptive execution frequency
4246 we tend to get badly out of sync with real time,
4247 so just delay for a reasonable amount of time. */
4248 delta = 0;
4249 } else {
4250 delta = cpu_get_icount() - cpu_get_clock();
4251 }
4252 if (delta > 0) {
4253 /* If virtual time is ahead of real time then just
4254 wait for IO. */
4255 timeout = (delta / 1000000) + 1;
4256 } else {
4257 /* Wait for either IO to occur or the next
4258 timer event. */
4259 add = qemu_next_deadline();
4260 /* We advance the timer before checking for IO.
4261 Limit the amount we advance so that early IO
4262 activity won't get the guest too far ahead. */
4263 if (add > 10000000)
4264 add = 10000000;
4265 delta += add;
4266 add = (add + (1 << icount_time_shift) - 1)
4267 >> icount_time_shift;
4268 qemu_icount += add;
4269 timeout = delta / 1000000;
4270 if (timeout < 0)
4271 timeout = 0;
4272 }
4273 }
4274
4275 return timeout;
4276 #else /* CONFIG_IOTHREAD */
4277 return 1000;
4278 #endif
4279 }
4280
4281 static int vm_can_run(void)
4282 {
4283 if (powerdown_requested)
4284 return 0;
4285 if (reset_requested)
4286 return 0;
4287 if (shutdown_requested)
4288 return 0;
4289 if (debug_requested)
4290 return 0;
4291 return 1;
4292 }
4293
4294 qemu_irq qemu_system_powerdown;
4295
4296 static void main_loop(void)
4297 {
4298 int r;
4299
4300 #ifdef CONFIG_IOTHREAD
4301 qemu_system_ready = 1;
4302 qemu_cond_broadcast(&qemu_system_cond);
4303 #endif
4304
4305 for (;;) {
4306 do {
4307 #ifdef CONFIG_PROFILER
4308 int64_t ti;
4309 #endif
4310 #ifndef CONFIG_IOTHREAD
4311 tcg_cpu_exec();
4312 #endif
4313 #ifdef CONFIG_PROFILER
4314 ti = profile_getclock();
4315 #endif
4316 main_loop_wait(qemu_calculate_timeout());
4317 #ifdef CONFIG_PROFILER
4318 dev_time += profile_getclock() - ti;
4319 #endif
4320 } while (vm_can_run());
4321
4322 if (qemu_debug_requested())
4323 vm_stop(EXCP_DEBUG);
4324 if (qemu_shutdown_requested()) {
4325 if (no_shutdown) {
4326 vm_stop(0);
4327 no_shutdown = 0;
4328 } else
4329 break;
4330 }
4331 if (qemu_reset_requested()) {
4332 pause_all_vcpus();
4333 qemu_system_reset();
4334 resume_all_vcpus();
4335 }
4336 if (qemu_powerdown_requested()) {
4337 qemu_irq_raise(qemu_system_powerdown);
4338 }
4339 if ((r = qemu_vmstop_requested()))
4340 vm_stop(r);
4341 }
4342 pause_all_vcpus();
4343 }
4344
4345 static void version(void)
4346 {
4347 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4348 }
4349
4350 static void help(int exitcode)
4351 {
4352 version();
4353 printf("usage: %s [options] [disk_image]\n"
4354 "\n"
4355 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4356 "\n"
4357 #define DEF(option, opt_arg, opt_enum, opt_help) \
4358 opt_help
4359 #define DEFHEADING(text) stringify(text) "\n"
4360 #include "qemu-options.h"
4361 #undef DEF
4362 #undef DEFHEADING
4363 #undef GEN_DOCS
4364 "\n"
4365 "During emulation, the following keys are useful:\n"
4366 "ctrl-alt-f toggle full screen\n"
4367 "ctrl-alt-n switch to virtual console 'n'\n"
4368 "ctrl-alt toggle mouse and keyboard grab\n"
4369 "\n"
4370 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4371 ,
4372 "qemu",
4373 DEFAULT_RAM_SIZE,
4374 #ifndef _WIN32
4375 DEFAULT_NETWORK_SCRIPT,
4376 DEFAULT_NETWORK_DOWN_SCRIPT,
4377 #endif
4378 DEFAULT_GDBSTUB_PORT,
4379 "/tmp/qemu.log");
4380 exit(exitcode);
4381 }
4382
4383 #define HAS_ARG 0x0001
4384
4385 enum {
4386 #define DEF(option, opt_arg, opt_enum, opt_help) \
4387 opt_enum,
4388 #define DEFHEADING(text)
4389 #include "qemu-options.h"
4390 #undef DEF
4391 #undef DEFHEADING
4392 #undef GEN_DOCS
4393 };
4394
4395 typedef struct QEMUOption {
4396 const char *name;
4397 int flags;
4398 int index;
4399 } QEMUOption;
4400
4401 static const QEMUOption qemu_options[] = {
4402 { "h", 0, QEMU_OPTION_h },
4403 #define DEF(option, opt_arg, opt_enum, opt_help) \
4404 { option, opt_arg, opt_enum },
4405 #define DEFHEADING(text)
4406 #include "qemu-options.h"
4407 #undef DEF
4408 #undef DEFHEADING
4409 #undef GEN_DOCS
4410 { NULL },
4411 };
4412
4413 #ifdef HAS_AUDIO
4414 struct soundhw soundhw[] = {
4415 #ifdef HAS_AUDIO_CHOICE
4416 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4417 {
4418 "pcspk",
4419 "PC speaker",
4420 0,
4421 1,
4422 { .init_isa = pcspk_audio_init }
4423 },
4424 #endif
4425
4426 #ifdef CONFIG_SB16
4427 {
4428 "sb16",
4429 "Creative Sound Blaster 16",
4430 0,
4431 1,
4432 { .init_isa = SB16_init }
4433 },
4434 #endif
4435
4436 #ifdef CONFIG_CS4231A
4437 {
4438 "cs4231a",
4439 "CS4231A",
4440 0,
4441 1,
4442 { .init_isa = cs4231a_init }
4443 },
4444 #endif
4445
4446 #ifdef CONFIG_ADLIB
4447 {
4448 "adlib",
4449 #ifdef HAS_YMF262
4450 "Yamaha YMF262 (OPL3)",
4451 #else
4452 "Yamaha YM3812 (OPL2)",
4453 #endif
4454 0,
4455 1,
4456 { .init_isa = Adlib_init }
4457 },
4458 #endif
4459
4460 #ifdef CONFIG_GUS
4461 {
4462 "gus",
4463 "Gravis Ultrasound GF1",
4464 0,
4465 1,
4466 { .init_isa = GUS_init }
4467 },
4468 #endif
4469
4470 #ifdef CONFIG_AC97
4471 {
4472 "ac97",
4473 "Intel 82801AA AC97 Audio",
4474 0,
4475 0,
4476 { .init_pci = ac97_init }
4477 },
4478 #endif
4479
4480 #ifdef CONFIG_ES1370
4481 {
4482 "es1370",
4483 "ENSONIQ AudioPCI ES1370",
4484 0,
4485 0,
4486 { .init_pci = es1370_init }
4487 },
4488 #endif
4489
4490 #endif /* HAS_AUDIO_CHOICE */
4491
4492 { NULL, NULL, 0, 0, { NULL } }
4493 };
4494
4495 static void select_soundhw (const char *optarg)
4496 {
4497 struct soundhw *c;
4498
4499 if (*optarg == '?') {
4500 show_valid_cards:
4501
4502 printf ("Valid sound card names (comma separated):\n");
4503 for (c = soundhw; c->name; ++c) {
4504 printf ("%-11s %s\n", c->name, c->descr);
4505 }
4506 printf ("\n-soundhw all will enable all of the above\n");
4507 exit (*optarg != '?');
4508 }
4509 else {
4510 size_t l;
4511 const char *p;
4512 char *e;
4513 int bad_card = 0;
4514
4515 if (!strcmp (optarg, "all")) {
4516 for (c = soundhw; c->name; ++c) {
4517 c->enabled = 1;
4518 }
4519 return;
4520 }
4521
4522 p = optarg;
4523 while (*p) {
4524 e = strchr (p, ',');
4525 l = !e ? strlen (p) : (size_t) (e - p);
4526
4527 for (c = soundhw; c->name; ++c) {
4528 if (!strncmp (c->name, p, l)) {
4529 c->enabled = 1;
4530 break;
4531 }
4532 }
4533
4534 if (!c->name) {
4535 if (l > 80) {
4536 fprintf (stderr,
4537 "Unknown sound card name (too big to show)\n");
4538 }
4539 else {
4540 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4541 (int) l, p);
4542 }
4543 bad_card = 1;
4544 }
4545 p += l + (e != NULL);
4546 }
4547
4548 if (bad_card)
4549 goto show_valid_cards;
4550 }
4551 }
4552 #endif
4553
4554 static void select_vgahw (const char *p)
4555 {
4556 const char *opts;
4557
4558 vga_interface_type = VGA_NONE;
4559 if (strstart(p, "std", &opts)) {
4560 vga_interface_type = VGA_STD;
4561 } else if (strstart(p, "cirrus", &opts)) {
4562 vga_interface_type = VGA_CIRRUS;
4563 } else if (strstart(p, "vmware", &opts)) {
4564 vga_interface_type = VGA_VMWARE;
4565 } else if (strstart(p, "xenfb", &opts)) {
4566 vga_interface_type = VGA_XENFB;
4567 } else if (!strstart(p, "none", &opts)) {
4568 invalid_vga:
4569 fprintf(stderr, "Unknown vga type: %s\n", p);
4570 exit(1);
4571 }
4572 while (*opts) {
4573 const char *nextopt;
4574
4575 if (strstart(opts, ",retrace=", &nextopt)) {
4576 opts = nextopt;
4577 if (strstart(opts, "dumb", &nextopt))
4578 vga_retrace_method = VGA_RETRACE_DUMB;
4579 else if (strstart(opts, "precise", &nextopt))
4580 vga_retrace_method = VGA_RETRACE_PRECISE;
4581 else goto invalid_vga;
4582 } else goto invalid_vga;
4583 opts = nextopt;
4584 }
4585 }
4586
4587 #ifdef TARGET_I386
4588 static int balloon_parse(const char *arg)
4589 {
4590 QemuOpts *opts;
4591
4592 if (strcmp(arg, "none") == 0) {
4593 return 0;
4594 }
4595
4596 if (!strncmp(arg, "virtio", 6)) {
4597 if (arg[6] == ',') {
4598 /* have params -> parse them */
4599 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4600 if (!opts)
4601 return -1;
4602 } else {
4603 /* create empty opts */
4604 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4605 }
4606 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4607 return 0;
4608 }
4609
4610 return -1;
4611 }
4612 #endif
4613
4614 #ifdef _WIN32
4615 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4616 {
4617 exit(STATUS_CONTROL_C_EXIT);
4618 return TRUE;
4619 }
4620 #endif
4621
4622 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4623 {
4624 int ret;
4625
4626 if(strlen(str) != 36)
4627 return -1;
4628
4629 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4630 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4631 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4632
4633 if(ret != 16)
4634 return -1;
4635
4636 #ifdef TARGET_I386
4637 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4638 #endif
4639
4640 return 0;
4641 }
4642
4643 #define MAX_NET_CLIENTS 32
4644
4645 #ifndef _WIN32
4646
4647 static void termsig_handler(int signal)
4648 {
4649 qemu_system_shutdown_request();
4650 }
4651
4652 static void sigchld_handler(int signal)
4653 {
4654 waitpid(-1, NULL, WNOHANG);
4655 }
4656
4657 static void sighandler_setup(void)
4658 {
4659 struct sigaction act;
4660
4661 memset(&act, 0, sizeof(act));
4662 act.sa_handler = termsig_handler;
4663 sigaction(SIGINT, &act, NULL);
4664 sigaction(SIGHUP, &act, NULL);
4665 sigaction(SIGTERM, &act, NULL);
4666
4667 act.sa_handler = sigchld_handler;
4668 act.sa_flags = SA_NOCLDSTOP;
4669 sigaction(SIGCHLD, &act, NULL);
4670 }
4671
4672 #endif
4673
4674 #ifdef _WIN32
4675 /* Look for support files in the same directory as the executable. */
4676 static char *find_datadir(const char *argv0)
4677 {
4678 char *p;
4679 char buf[MAX_PATH];
4680 DWORD len;
4681
4682 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4683 if (len == 0) {
4684 return NULL;
4685 }
4686
4687 buf[len] = 0;
4688 p = buf + len - 1;
4689 while (p != buf && *p != '\\')
4690 p--;
4691 *p = 0;
4692 if (access(buf, R_OK) == 0) {
4693 return qemu_strdup(buf);
4694 }
4695 return NULL;
4696 }
4697 #else /* !_WIN32 */
4698
4699 /* Find a likely location for support files using the location of the binary.
4700 For installed binaries this will be "$bindir/../share/qemu". When
4701 running from the build tree this will be "$bindir/../pc-bios". */
4702 #define SHARE_SUFFIX "/share/qemu"
4703 #define BUILD_SUFFIX "/pc-bios"
4704 static char *find_datadir(const char *argv0)
4705 {
4706 char *dir;
4707 char *p = NULL;
4708 char *res;
4709 #ifdef PATH_MAX
4710 char buf[PATH_MAX];
4711 #endif
4712 size_t max_len;
4713
4714 #if defined(__linux__)
4715 {
4716 int len;
4717 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4718 if (len > 0) {
4719 buf[len] = 0;
4720 p = buf;
4721 }
4722 }
4723 #elif defined(__FreeBSD__)
4724 {
4725 int len;
4726 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4727 if (len > 0) {
4728 buf[len] = 0;
4729 p = buf;
4730 }
4731 }
4732 #endif
4733 /* If we don't have any way of figuring out the actual executable
4734 location then try argv[0]. */
4735 if (!p) {
4736 #ifdef PATH_MAX
4737 p = buf;
4738 #endif
4739 p = realpath(argv0, p);
4740 if (!p) {
4741 return NULL;
4742 }
4743 }
4744 dir = dirname(p);
4745 dir = dirname(dir);
4746
4747 max_len = strlen(dir) +
4748 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4749 res = qemu_mallocz(max_len);
4750 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4751 if (access(res, R_OK)) {
4752 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4753 if (access(res, R_OK)) {
4754 qemu_free(res);
4755 res = NULL;
4756 }
4757 }
4758 #ifndef PATH_MAX
4759 free(p);
4760 #endif
4761 return res;
4762 }
4763 #undef SHARE_SUFFIX
4764 #undef BUILD_SUFFIX
4765 #endif
4766
4767 char *qemu_find_file(int type, const char *name)
4768 {
4769 int len;
4770 const char *subdir;
4771 char *buf;
4772
4773 /* If name contains path separators then try it as a straight path. */
4774 if ((strchr(name, '/') || strchr(name, '\\'))
4775 && access(name, R_OK) == 0) {
4776 return strdup(name);
4777 }
4778 switch (type) {
4779 case QEMU_FILE_TYPE_BIOS:
4780 subdir = "";
4781 break;
4782 case QEMU_FILE_TYPE_KEYMAP:
4783 subdir = "keymaps/";
4784 break;
4785 default:
4786 abort();
4787 }
4788 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4789 buf = qemu_mallocz(len);
4790 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4791 if (access(buf, R_OK)) {
4792 qemu_free(buf);
4793 return NULL;
4794 }
4795 return buf;
4796 }
4797
4798 static int device_init_func(QemuOpts *opts, void *opaque)
4799 {
4800 DeviceState *dev;
4801
4802 dev = qdev_device_add(opts);
4803 if (!dev)
4804 return -1;
4805 return 0;
4806 }
4807
4808 struct device_config {
4809 enum {
4810 DEV_USB, /* -usbdevice */
4811 DEV_BT, /* -bt */
4812 } type;
4813 const char *cmdline;
4814 TAILQ_ENTRY(device_config) next;
4815 };
4816 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4817
4818 static void add_device_config(int type, const char *cmdline)
4819 {
4820 struct device_config *conf;
4821
4822 conf = qemu_mallocz(sizeof(*conf));
4823 conf->type = type;
4824 conf->cmdline = cmdline;
4825 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4826 }
4827
4828 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4829 {
4830 struct device_config *conf;
4831 int rc;
4832
4833 TAILQ_FOREACH(conf, &device_configs, next) {
4834 if (conf->type != type)
4835 continue;
4836 rc = func(conf->cmdline);
4837 if (0 != rc)
4838 return rc;
4839 }
4840 return 0;
4841 }
4842
4843 int main(int argc, char **argv, char **envp)
4844 {
4845 const char *gdbstub_dev = NULL;
4846 uint32_t boot_devices_bitmap = 0;
4847 int i;
4848 int snapshot, linux_boot, net_boot;
4849 const char *initrd_filename;
4850 const char *kernel_filename, *kernel_cmdline;
4851 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4852 DisplayState *ds;
4853 DisplayChangeListener *dcl;
4854 int cyls, heads, secs, translation;
4855 const char *net_clients[MAX_NET_CLIENTS];
4856 int nb_net_clients;
4857 QemuOpts *hda_opts = NULL, *opts;
4858 int optind;
4859 const char *r, *optarg;
4860 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4861 const char *monitor_devices[MAX_MONITOR_DEVICES];
4862 int monitor_device_index;
4863 const char *serial_devices[MAX_SERIAL_PORTS];
4864 int serial_device_index;
4865 const char *parallel_devices[MAX_PARALLEL_PORTS];
4866 int parallel_device_index;
4867 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4868 int virtio_console_index;
4869 const char *loadvm = NULL;
4870 QEMUMachine *machine;
4871 const char *cpu_model;
4872 #ifndef _WIN32
4873 int fds[2];
4874 #endif
4875 int tb_size;
4876 const char *pid_file = NULL;
4877 const char *incoming = NULL;
4878 #ifndef _WIN32
4879 int fd = 0;
4880 struct passwd *pwd = NULL;
4881 const char *chroot_dir = NULL;
4882 const char *run_as = NULL;
4883 #endif
4884 CPUState *env;
4885 int show_vnc_port = 0;
4886
4887 qemu_errors_to_file(stderr);
4888 qemu_cache_utils_init(envp);
4889
4890 LIST_INIT (&vm_change_state_head);
4891 #ifndef _WIN32
4892 {
4893 struct sigaction act;
4894 sigfillset(&act.sa_mask);
4895 act.sa_flags = 0;
4896 act.sa_handler = SIG_IGN;
4897 sigaction(SIGPIPE, &act, NULL);
4898 }
4899 #else
4900 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4901 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4902 QEMU to run on a single CPU */
4903 {
4904 HANDLE h;
4905 DWORD mask, smask;
4906 int i;
4907 h = GetCurrentProcess();
4908 if (GetProcessAffinityMask(h, &mask, &smask)) {
4909 for(i = 0; i < 32; i++) {
4910 if (mask & (1 << i))
4911 break;
4912 }
4913 if (i != 32) {
4914 mask = 1 << i;
4915 SetProcessAffinityMask(h, mask);
4916 }
4917 }
4918 }
4919 #endif
4920
4921 module_call_init(MODULE_INIT_MACHINE);
4922 machine = find_default_machine();
4923 cpu_model = NULL;
4924 initrd_filename = NULL;
4925 ram_size = 0;
4926 snapshot = 0;
4927 kernel_filename = NULL;
4928 kernel_cmdline = "";
4929 cyls = heads = secs = 0;
4930 translation = BIOS_ATA_TRANSLATION_AUTO;
4931
4932 serial_devices[0] = "vc:80Cx24C";
4933 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4934 serial_devices[i] = NULL;
4935 serial_device_index = 0;
4936
4937 parallel_devices[0] = "vc:80Cx24C";
4938 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4939 parallel_devices[i] = NULL;
4940 parallel_device_index = 0;
4941
4942 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4943 virtio_consoles[i] = NULL;
4944 virtio_console_index = 0;
4945
4946 monitor_devices[0] = "vc:80Cx24C";
4947 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4948 monitor_devices[i] = NULL;
4949 }
4950 monitor_device_index = 0;
4951
4952 for (i = 0; i < MAX_NODES; i++) {
4953 node_mem[i] = 0;
4954 node_cpumask[i] = 0;
4955 }
4956
4957 nb_net_clients = 0;
4958 nb_numa_nodes = 0;
4959 nb_nics = 0;
4960
4961 tb_size = 0;
4962 autostart= 1;
4963
4964 optind = 1;
4965 for(;;) {
4966 if (optind >= argc)
4967 break;
4968 r = argv[optind];
4969 if (r[0] != '-') {
4970 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4971 } else {
4972 const QEMUOption *popt;
4973
4974 optind++;
4975 /* Treat --foo the same as -foo. */
4976 if (r[1] == '-')
4977 r++;
4978 popt = qemu_options;
4979 for(;;) {
4980 if (!popt->name) {
4981 fprintf(stderr, "%s: invalid option -- '%s'\n",
4982 argv[0], r);
4983 exit(1);
4984 }
4985 if (!strcmp(popt->name, r + 1))
4986 break;
4987 popt++;
4988 }
4989 if (popt->flags & HAS_ARG) {
4990 if (optind >= argc) {
4991 fprintf(stderr, "%s: option '%s' requires an argument\n",
4992 argv[0], r);
4993 exit(1);
4994 }
4995 optarg = argv[optind++];
4996 } else {
4997 optarg = NULL;
4998 }
4999
5000 switch(popt->index) {
5001 case QEMU_OPTION_M:
5002 machine = find_machine(optarg);
5003 if (!machine) {
5004 QEMUMachine *m;
5005 printf("Supported machines are:\n");
5006 for(m = first_machine; m != NULL; m = m->next) {
5007 if (m->alias)
5008 printf("%-10s %s (alias of %s)\n",
5009 m->alias, m->desc, m->name);
5010 printf("%-10s %s%s\n",
5011 m->name, m->desc,
5012 m->is_default ? " (default)" : "");
5013 }
5014 exit(*optarg != '?');
5015 }
5016 break;
5017 case QEMU_OPTION_cpu:
5018 /* hw initialization will check this */
5019 if (*optarg == '?') {
5020 /* XXX: implement xxx_cpu_list for targets that still miss it */
5021 #if defined(cpu_list)
5022 cpu_list(stdout, &fprintf);
5023 #endif
5024 exit(0);
5025 } else {
5026 cpu_model = optarg;
5027 }
5028 break;
5029 case QEMU_OPTION_initrd:
5030 initrd_filename = optarg;
5031 break;
5032 case QEMU_OPTION_hda:
5033 if (cyls == 0)
5034 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5035 else
5036 hda_opts = drive_add(optarg, HD_ALIAS
5037 ",cyls=%d,heads=%d,secs=%d%s",
5038 0, cyls, heads, secs,
5039 translation == BIOS_ATA_TRANSLATION_LBA ?
5040 ",trans=lba" :
5041 translation == BIOS_ATA_TRANSLATION_NONE ?
5042 ",trans=none" : "");
5043 break;
5044 case QEMU_OPTION_hdb:
5045 case QEMU_OPTION_hdc:
5046 case QEMU_OPTION_hdd:
5047 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5048 break;
5049 case QEMU_OPTION_drive:
5050 drive_add(NULL, "%s", optarg);
5051 break;
5052 case QEMU_OPTION_set:
5053 if (qemu_set_option(optarg) != 0)
5054 exit(1);
5055 break;
5056 case QEMU_OPTION_mtdblock:
5057 drive_add(optarg, MTD_ALIAS);
5058 break;
5059 case QEMU_OPTION_sd:
5060 drive_add(optarg, SD_ALIAS);
5061 break;
5062 case QEMU_OPTION_pflash:
5063 drive_add(optarg, PFLASH_ALIAS);
5064 break;
5065 case QEMU_OPTION_snapshot:
5066 snapshot = 1;
5067 break;
5068 case QEMU_OPTION_hdachs:
5069 {
5070 const char *p;
5071 p = optarg;
5072 cyls = strtol(p, (char **)&p, 0);
5073 if (cyls < 1 || cyls > 16383)
5074 goto chs_fail;
5075 if (*p != ',')
5076 goto chs_fail;
5077 p++;
5078 heads = strtol(p, (char **)&p, 0);
5079 if (heads < 1 || heads > 16)
5080 goto chs_fail;
5081 if (*p != ',')
5082 goto chs_fail;
5083 p++;
5084 secs = strtol(p, (char **)&p, 0);
5085 if (secs < 1 || secs > 63)
5086 goto chs_fail;
5087 if (*p == ',') {
5088 p++;
5089 if (!strcmp(p, "none"))
5090 translation = BIOS_ATA_TRANSLATION_NONE;
5091 else if (!strcmp(p, "lba"))
5092 translation = BIOS_ATA_TRANSLATION_LBA;
5093 else if (!strcmp(p, "auto"))
5094 translation = BIOS_ATA_TRANSLATION_AUTO;
5095 else
5096 goto chs_fail;
5097 } else if (*p != '\0') {
5098 chs_fail:
5099 fprintf(stderr, "qemu: invalid physical CHS format\n");
5100 exit(1);
5101 }
5102 if (hda_opts != NULL) {
5103 char num[16];
5104 snprintf(num, sizeof(num), "%d", cyls);
5105 qemu_opt_set(hda_opts, "cyls", num);
5106 snprintf(num, sizeof(num), "%d", heads);
5107 qemu_opt_set(hda_opts, "heads", num);
5108 snprintf(num, sizeof(num), "%d", secs);
5109 qemu_opt_set(hda_opts, "secs", num);
5110 if (translation == BIOS_ATA_TRANSLATION_LBA)
5111 qemu_opt_set(hda_opts, "trans", "lba");
5112 if (translation == BIOS_ATA_TRANSLATION_NONE)
5113 qemu_opt_set(hda_opts, "trans", "none");
5114 }
5115 }
5116 break;
5117 case QEMU_OPTION_numa:
5118 if (nb_numa_nodes >= MAX_NODES) {
5119 fprintf(stderr, "qemu: too many NUMA nodes\n");
5120 exit(1);
5121 }
5122 numa_add(optarg);
5123 break;
5124 case QEMU_OPTION_nographic:
5125 display_type = DT_NOGRAPHIC;
5126 break;
5127 #ifdef CONFIG_CURSES
5128 case QEMU_OPTION_curses:
5129 display_type = DT_CURSES;
5130 break;
5131 #endif
5132 case QEMU_OPTION_portrait:
5133 graphic_rotate = 1;
5134 break;
5135 case QEMU_OPTION_kernel:
5136 kernel_filename = optarg;
5137 break;
5138 case QEMU_OPTION_append:
5139 kernel_cmdline = optarg;
5140 break;
5141 case QEMU_OPTION_cdrom:
5142 drive_add(optarg, CDROM_ALIAS);
5143 break;
5144 case QEMU_OPTION_boot:
5145 {
5146 static const char * const params[] = {
5147 "order", "once", "menu", NULL
5148 };
5149 char buf[sizeof(boot_devices)];
5150 char *standard_boot_devices;
5151 int legacy = 0;
5152
5153 if (!strchr(optarg, '=')) {
5154 legacy = 1;
5155 pstrcpy(buf, sizeof(buf), optarg);
5156 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5157 fprintf(stderr,
5158 "qemu: unknown boot parameter '%s' in '%s'\n",
5159 buf, optarg);
5160 exit(1);
5161 }
5162
5163 if (legacy ||
5164 get_param_value(buf, sizeof(buf), "order", optarg)) {
5165 boot_devices_bitmap = parse_bootdevices(buf);
5166 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5167 }
5168 if (!legacy) {
5169 if (get_param_value(buf, sizeof(buf),
5170 "once", optarg)) {
5171 boot_devices_bitmap |= parse_bootdevices(buf);
5172 standard_boot_devices = qemu_strdup(boot_devices);
5173 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5174 qemu_register_reset(restore_boot_devices,
5175 standard_boot_devices);
5176 }
5177 if (get_param_value(buf, sizeof(buf),
5178 "menu", optarg)) {
5179 if (!strcmp(buf, "on")) {
5180 boot_menu = 1;
5181 } else if (!strcmp(buf, "off")) {
5182 boot_menu = 0;
5183 } else {
5184 fprintf(stderr,
5185 "qemu: invalid option value '%s'\n",
5186 buf);
5187 exit(1);
5188 }
5189 }
5190 }
5191 }
5192 break;
5193 case QEMU_OPTION_fda:
5194 case QEMU_OPTION_fdb:
5195 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5196 break;
5197 #ifdef TARGET_I386
5198 case QEMU_OPTION_no_fd_bootchk:
5199 fd_bootchk = 0;
5200 break;
5201 #endif
5202 case QEMU_OPTION_net:
5203 if (nb_net_clients >= MAX_NET_CLIENTS) {
5204 fprintf(stderr, "qemu: too many network clients\n");
5205 exit(1);
5206 }
5207 net_clients[nb_net_clients] = optarg;
5208 nb_net_clients++;
5209 break;
5210 #ifdef CONFIG_SLIRP
5211 case QEMU_OPTION_tftp:
5212 legacy_tftp_prefix = optarg;
5213 break;
5214 case QEMU_OPTION_bootp:
5215 legacy_bootp_filename = optarg;
5216 break;
5217 #ifndef _WIN32
5218 case QEMU_OPTION_smb:
5219 net_slirp_smb(optarg);
5220 break;
5221 #endif
5222 case QEMU_OPTION_redir:
5223 net_slirp_redir(optarg);
5224 break;
5225 #endif
5226 case QEMU_OPTION_bt:
5227 add_device_config(DEV_BT, optarg);
5228 break;
5229 #ifdef HAS_AUDIO
5230 case QEMU_OPTION_audio_help:
5231 AUD_help ();
5232 exit (0);
5233 break;
5234 case QEMU_OPTION_soundhw:
5235 select_soundhw (optarg);
5236 break;
5237 #endif
5238 case QEMU_OPTION_h:
5239 help(0);
5240 break;
5241 case QEMU_OPTION_version:
5242 version();
5243 exit(0);
5244 break;
5245 case QEMU_OPTION_m: {
5246 uint64_t value;
5247 char *ptr;
5248
5249 value = strtoul(optarg, &ptr, 10);
5250 switch (*ptr) {
5251 case 0: case 'M': case 'm':
5252 value <<= 20;
5253 break;
5254 case 'G': case 'g':
5255 value <<= 30;
5256 break;
5257 default:
5258 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5259 exit(1);
5260 }
5261
5262 /* On 32-bit hosts, QEMU is limited by virtual address space */
5263 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5264 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5265 exit(1);
5266 }
5267 if (value != (uint64_t)(ram_addr_t)value) {
5268 fprintf(stderr, "qemu: ram size too large\n");
5269 exit(1);
5270 }
5271 ram_size = value;
5272 break;
5273 }
5274 case QEMU_OPTION_d:
5275 {
5276 int mask;
5277 const CPULogItem *item;
5278
5279 mask = cpu_str_to_log_mask(optarg);
5280 if (!mask) {
5281 printf("Log items (comma separated):\n");
5282 for(item = cpu_log_items; item->mask != 0; item++) {
5283 printf("%-10s %s\n", item->name, item->help);
5284 }
5285 exit(1);
5286 }
5287 cpu_set_log(mask);
5288 }
5289 break;
5290 case QEMU_OPTION_s:
5291 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5292 break;
5293 case QEMU_OPTION_gdb:
5294 gdbstub_dev = optarg;
5295 break;
5296 case QEMU_OPTION_L:
5297 data_dir = optarg;
5298 break;
5299 case QEMU_OPTION_bios:
5300 bios_name = optarg;
5301 break;
5302 case QEMU_OPTION_singlestep:
5303 singlestep = 1;
5304 break;
5305 case QEMU_OPTION_S:
5306 autostart = 0;
5307 break;
5308 #ifndef _WIN32
5309 case QEMU_OPTION_k:
5310 keyboard_layout = optarg;
5311 break;
5312 #endif
5313 case QEMU_OPTION_localtime:
5314 rtc_utc = 0;
5315 break;
5316 case QEMU_OPTION_vga:
5317 select_vgahw (optarg);
5318 break;
5319 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5320 case QEMU_OPTION_g:
5321 {
5322 const char *p;
5323 int w, h, depth;
5324 p = optarg;
5325 w = strtol(p, (char **)&p, 10);
5326 if (w <= 0) {
5327 graphic_error:
5328 fprintf(stderr, "qemu: invalid resolution or depth\n");
5329 exit(1);
5330 }
5331 if (*p != 'x')
5332 goto graphic_error;
5333 p++;
5334 h = strtol(p, (char **)&p, 10);
5335 if (h <= 0)
5336 goto graphic_error;
5337 if (*p == 'x') {
5338 p++;
5339 depth = strtol(p, (char **)&p, 10);
5340 if (depth != 8 && depth != 15 && depth != 16 &&
5341 depth != 24 && depth != 32)
5342 goto graphic_error;
5343 } else if (*p == '\0') {
5344 depth = graphic_depth;
5345 } else {
5346 goto graphic_error;
5347 }
5348
5349 graphic_width = w;
5350 graphic_height = h;
5351 graphic_depth = depth;
5352 }
5353 break;
5354 #endif
5355 case QEMU_OPTION_echr:
5356 {
5357 char *r;
5358 term_escape_char = strtol(optarg, &r, 0);
5359 if (r == optarg)
5360 printf("Bad argument to echr\n");
5361 break;
5362 }
5363 case QEMU_OPTION_monitor:
5364 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5365 fprintf(stderr, "qemu: too many monitor devices\n");
5366 exit(1);
5367 }
5368 monitor_devices[monitor_device_index] = optarg;
5369 monitor_device_index++;
5370 break;
5371 case QEMU_OPTION_serial:
5372 if (serial_device_index >= MAX_SERIAL_PORTS) {
5373 fprintf(stderr, "qemu: too many serial ports\n");
5374 exit(1);
5375 }
5376 serial_devices[serial_device_index] = optarg;
5377 serial_device_index++;
5378 break;
5379 case QEMU_OPTION_watchdog:
5380 if (watchdog) {
5381 fprintf(stderr,
5382 "qemu: only one watchdog option may be given\n");
5383 return 1;
5384 }
5385 watchdog = optarg;
5386 break;
5387 case QEMU_OPTION_watchdog_action:
5388 if (select_watchdog_action(optarg) == -1) {
5389 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5390 exit(1);
5391 }
5392 break;
5393 case QEMU_OPTION_virtiocon:
5394 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5395 fprintf(stderr, "qemu: too many virtio consoles\n");
5396 exit(1);
5397 }
5398 virtio_consoles[virtio_console_index] = optarg;
5399 virtio_console_index++;
5400 break;
5401 case QEMU_OPTION_parallel:
5402 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5403 fprintf(stderr, "qemu: too many parallel ports\n");
5404 exit(1);
5405 }
5406 parallel_devices[parallel_device_index] = optarg;
5407 parallel_device_index++;
5408 break;
5409 case QEMU_OPTION_loadvm:
5410 loadvm = optarg;
5411 break;
5412 case QEMU_OPTION_full_screen:
5413 full_screen = 1;
5414 break;
5415 #ifdef CONFIG_SDL
5416 case QEMU_OPTION_no_frame:
5417 no_frame = 1;
5418 break;
5419 case QEMU_OPTION_alt_grab:
5420 alt_grab = 1;
5421 break;
5422 case QEMU_OPTION_no_quit:
5423 no_quit = 1;
5424 break;
5425 case QEMU_OPTION_sdl:
5426 display_type = DT_SDL;
5427 break;
5428 #endif
5429 case QEMU_OPTION_pidfile:
5430 pid_file = optarg;
5431 break;
5432 #ifdef TARGET_I386
5433 case QEMU_OPTION_win2k_hack:
5434 win2k_install_hack = 1;
5435 break;
5436 case QEMU_OPTION_rtc_td_hack:
5437 rtc_td_hack = 1;
5438 break;
5439 case QEMU_OPTION_acpitable:
5440 if(acpi_table_add(optarg) < 0) {
5441 fprintf(stderr, "Wrong acpi table provided\n");
5442 exit(1);
5443 }
5444 break;
5445 case QEMU_OPTION_smbios:
5446 if(smbios_entry_add(optarg) < 0) {
5447 fprintf(stderr, "Wrong smbios provided\n");
5448 exit(1);
5449 }
5450 break;
5451 #endif
5452 #ifdef CONFIG_KVM
5453 case QEMU_OPTION_enable_kvm:
5454 kvm_allowed = 1;
5455 break;
5456 #endif
5457 case QEMU_OPTION_usb:
5458 usb_enabled = 1;
5459 break;
5460 case QEMU_OPTION_usbdevice:
5461 usb_enabled = 1;
5462 add_device_config(DEV_USB, optarg);
5463 break;
5464 case QEMU_OPTION_device:
5465 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5466 if (!opts) {
5467 fprintf(stderr, "parse error: %s\n", optarg);
5468 exit(1);
5469 }
5470 break;
5471 case QEMU_OPTION_smp:
5472 smp_parse(optarg);
5473 if (smp_cpus < 1) {
5474 fprintf(stderr, "Invalid number of CPUs\n");
5475 exit(1);
5476 }
5477 if (max_cpus < smp_cpus) {
5478 fprintf(stderr, "maxcpus must be equal to or greater than "
5479 "smp\n");
5480 exit(1);
5481 }
5482 if (max_cpus > 255) {
5483 fprintf(stderr, "Unsupported number of maxcpus\n");
5484 exit(1);
5485 }
5486 break;
5487 case QEMU_OPTION_vnc:
5488 display_type = DT_VNC;
5489 vnc_display = optarg;
5490 break;
5491 #ifdef TARGET_I386
5492 case QEMU_OPTION_no_acpi:
5493 acpi_enabled = 0;
5494 break;
5495 case QEMU_OPTION_no_hpet:
5496 no_hpet = 1;
5497 break;
5498 case QEMU_OPTION_balloon:
5499 if (balloon_parse(optarg) < 0) {
5500 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5501 exit(1);
5502 }
5503 break;
5504 #endif
5505 case QEMU_OPTION_no_reboot:
5506 no_reboot = 1;
5507 break;
5508 case QEMU_OPTION_no_shutdown:
5509 no_shutdown = 1;
5510 break;
5511 case QEMU_OPTION_show_cursor:
5512 cursor_hide = 0;
5513 break;
5514 case QEMU_OPTION_uuid:
5515 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5516 fprintf(stderr, "Fail to parse UUID string."
5517 " Wrong format.\n");
5518 exit(1);
5519 }
5520 break;
5521 #ifndef _WIN32
5522 case QEMU_OPTION_daemonize:
5523 daemonize = 1;
5524 break;
5525 #endif
5526 case QEMU_OPTION_option_rom:
5527 if (nb_option_roms >= MAX_OPTION_ROMS) {
5528 fprintf(stderr, "Too many option ROMs\n");
5529 exit(1);
5530 }
5531 option_rom[nb_option_roms] = optarg;
5532 nb_option_roms++;
5533 break;
5534 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5535 case QEMU_OPTION_semihosting:
5536 semihosting_enabled = 1;
5537 break;
5538 #endif
5539 case QEMU_OPTION_name:
5540 qemu_name = qemu_strdup(optarg);
5541 {
5542 char *p = strchr(qemu_name, ',');
5543 if (p != NULL) {
5544 *p++ = 0;
5545 if (strncmp(p, "process=", 8)) {
5546 fprintf(stderr, "Unknown subargument %s to -name", p);
5547 exit(1);
5548 }
5549 p += 8;
5550 set_proc_name(p);
5551 }
5552 }
5553 break;
5554 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5555 case QEMU_OPTION_prom_env:
5556 if (nb_prom_envs >= MAX_PROM_ENVS) {
5557 fprintf(stderr, "Too many prom variables\n");
5558 exit(1);
5559 }
5560 prom_envs[nb_prom_envs] = optarg;
5561 nb_prom_envs++;
5562 break;
5563 #endif
5564 #ifdef TARGET_ARM
5565 case QEMU_OPTION_old_param:
5566 old_param = 1;
5567 break;
5568 #endif
5569 case QEMU_OPTION_clock:
5570 configure_alarms(optarg);
5571 break;
5572 case QEMU_OPTION_startdate:
5573 {
5574 struct tm tm;
5575 time_t rtc_start_date;
5576 if (!strcmp(optarg, "now")) {
5577 rtc_date_offset = -1;
5578 } else {
5579 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5580 &tm.tm_year,
5581 &tm.tm_mon,
5582 &tm.tm_mday,
5583 &tm.tm_hour,
5584 &tm.tm_min,
5585 &tm.tm_sec) == 6) {
5586 /* OK */
5587 } else if (sscanf(optarg, "%d-%d-%d",
5588 &tm.tm_year,
5589 &tm.tm_mon,
5590 &tm.tm_mday) == 3) {
5591 tm.tm_hour = 0;
5592 tm.tm_min = 0;
5593 tm.tm_sec = 0;
5594 } else {
5595 goto date_fail;
5596 }
5597 tm.tm_year -= 1900;
5598 tm.tm_mon--;
5599 rtc_start_date = mktimegm(&tm);
5600 if (rtc_start_date == -1) {
5601 date_fail:
5602 fprintf(stderr, "Invalid date format. Valid format are:\n"
5603 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5604 exit(1);
5605 }
5606 rtc_date_offset = time(NULL) - rtc_start_date;
5607 }
5608 }
5609 break;
5610 case QEMU_OPTION_tb_size:
5611 tb_size = strtol(optarg, NULL, 0);
5612 if (tb_size < 0)
5613 tb_size = 0;
5614 break;
5615 case QEMU_OPTION_icount:
5616 use_icount = 1;
5617 if (strcmp(optarg, "auto") == 0) {
5618 icount_time_shift = -1;
5619 } else {
5620 icount_time_shift = strtol(optarg, NULL, 0);
5621 }
5622 break;
5623 case QEMU_OPTION_incoming:
5624 incoming = optarg;
5625 break;
5626 #ifndef _WIN32
5627 case QEMU_OPTION_chroot:
5628 chroot_dir = optarg;
5629 break;
5630 case QEMU_OPTION_runas:
5631 run_as = optarg;
5632 break;
5633 #endif
5634 #ifdef CONFIG_XEN
5635 case QEMU_OPTION_xen_domid:
5636 xen_domid = atoi(optarg);
5637 break;
5638 case QEMU_OPTION_xen_create:
5639 xen_mode = XEN_CREATE;
5640 break;
5641 case QEMU_OPTION_xen_attach:
5642 xen_mode = XEN_ATTACH;
5643 break;
5644 #endif
5645 }
5646 }
5647 }
5648
5649 /* If no data_dir is specified then try to find it relative to the
5650 executable path. */
5651 if (!data_dir) {
5652 data_dir = find_datadir(argv[0]);
5653 }
5654 /* If all else fails use the install patch specified when building. */
5655 if (!data_dir) {
5656 data_dir = CONFIG_QEMU_SHAREDIR;
5657 }
5658
5659 /*
5660 * Default to max_cpus = smp_cpus, in case the user doesn't
5661 * specify a max_cpus value.
5662 */
5663 if (!max_cpus)
5664 max_cpus = smp_cpus;
5665
5666 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5667 if (smp_cpus > machine->max_cpus) {
5668 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5669 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5670 machine->max_cpus);
5671 exit(1);
5672 }
5673
5674 if (display_type == DT_NOGRAPHIC) {
5675 if (serial_device_index == 0)
5676 serial_devices[0] = "stdio";
5677 if (parallel_device_index == 0)
5678 parallel_devices[0] = "null";
5679 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5680 monitor_devices[0] = "stdio";
5681 }
5682 }
5683
5684 #ifndef _WIN32
5685 if (daemonize) {
5686 pid_t pid;
5687
5688 if (pipe(fds) == -1)
5689 exit(1);
5690
5691 pid = fork();
5692 if (pid > 0) {
5693 uint8_t status;
5694 ssize_t len;
5695
5696 close(fds[1]);
5697
5698 again:
5699 len = read(fds[0], &status, 1);
5700 if (len == -1 && (errno == EINTR))
5701 goto again;
5702
5703 if (len != 1)
5704 exit(1);
5705 else if (status == 1) {
5706 fprintf(stderr, "Could not acquire pidfile\n");
5707 exit(1);
5708 } else
5709 exit(0);
5710 } else if (pid < 0)
5711 exit(1);
5712
5713 setsid();
5714
5715 pid = fork();
5716 if (pid > 0)
5717 exit(0);
5718 else if (pid < 0)
5719 exit(1);
5720
5721 umask(027);
5722
5723 signal(SIGTSTP, SIG_IGN);
5724 signal(SIGTTOU, SIG_IGN);
5725 signal(SIGTTIN, SIG_IGN);
5726 }
5727
5728 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5729 if (daemonize) {
5730 uint8_t status = 1;
5731 write(fds[1], &status, 1);
5732 } else
5733 fprintf(stderr, "Could not acquire pid file\n");
5734 exit(1);
5735 }
5736 #endif
5737
5738 if (qemu_init_main_loop()) {
5739 fprintf(stderr, "qemu_init_main_loop failed\n");
5740 exit(1);
5741 }
5742 linux_boot = (kernel_filename != NULL);
5743
5744 if (!linux_boot && *kernel_cmdline != '\0') {
5745 fprintf(stderr, "-append only allowed with -kernel option\n");
5746 exit(1);
5747 }
5748
5749 if (!linux_boot && initrd_filename != NULL) {
5750 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5751 exit(1);
5752 }
5753
5754 #ifndef _WIN32
5755 /* Win32 doesn't support line-buffering and requires size >= 2 */
5756 setvbuf(stdout, NULL, _IOLBF, 0);
5757 #endif
5758
5759 init_timers();
5760 if (init_timer_alarm() < 0) {
5761 fprintf(stderr, "could not initialize alarm timer\n");
5762 exit(1);
5763 }
5764 if (use_icount && icount_time_shift < 0) {
5765 use_icount = 2;
5766 /* 125MIPS seems a reasonable initial guess at the guest speed.
5767 It will be corrected fairly quickly anyway. */
5768 icount_time_shift = 3;
5769 init_icount_adjust();
5770 }
5771
5772 #ifdef _WIN32
5773 socket_init();
5774 #endif
5775
5776 /* init network clients */
5777 if (nb_net_clients == 0) {
5778 /* if no clients, we use a default config */
5779 net_clients[nb_net_clients++] = "nic";
5780 #ifdef CONFIG_SLIRP
5781 net_clients[nb_net_clients++] = "user";
5782 #endif
5783 }
5784
5785 for(i = 0;i < nb_net_clients; i++) {
5786 if (net_client_parse(net_clients[i]) < 0)
5787 exit(1);
5788 }
5789
5790 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5791 net_set_boot_mask(net_boot);
5792
5793 net_client_check();
5794
5795 /* init the bluetooth world */
5796 if (foreach_device_config(DEV_BT, bt_parse))
5797 exit(1);
5798
5799 /* init the memory */
5800 if (ram_size == 0)
5801 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5802
5803 /* init the dynamic translator */
5804 cpu_exec_init_all(tb_size * 1024 * 1024);
5805
5806 bdrv_init();
5807
5808 /* we always create the cdrom drive, even if no disk is there */
5809 drive_add(NULL, CDROM_ALIAS);
5810
5811 /* we always create at least one floppy */
5812 drive_add(NULL, FD_ALIAS, 0);
5813
5814 /* we always create one sd slot, even if no card is in it */
5815 drive_add(NULL, SD_ALIAS);
5816
5817 /* open the virtual block devices */
5818 if (snapshot)
5819 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5820 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5821 exit(1);
5822
5823 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5824 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5825
5826 /* Maintain compatibility with multiple stdio monitors */
5827 if (!strcmp(monitor_devices[0],"stdio")) {
5828 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5829 const char *devname = serial_devices[i];
5830 if (devname && !strcmp(devname,"mon:stdio")) {
5831 monitor_devices[0] = NULL;
5832 break;
5833 } else if (devname && !strcmp(devname,"stdio")) {
5834 monitor_devices[0] = NULL;
5835 serial_devices[i] = "mon:stdio";
5836 break;
5837 }
5838 }
5839 }
5840
5841 if (nb_numa_nodes > 0) {
5842 int i;
5843
5844 if (nb_numa_nodes > smp_cpus) {
5845 nb_numa_nodes = smp_cpus;
5846 }
5847
5848 /* If no memory size if given for any node, assume the default case
5849 * and distribute the available memory equally across all nodes
5850 */
5851 for (i = 0; i < nb_numa_nodes; i++) {
5852 if (node_mem[i] != 0)
5853 break;
5854 }
5855 if (i == nb_numa_nodes) {
5856 uint64_t usedmem = 0;
5857
5858 /* On Linux, the each node's border has to be 8MB aligned,
5859 * the final node gets the rest.
5860 */
5861 for (i = 0; i < nb_numa_nodes - 1; i++) {
5862 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5863 usedmem += node_mem[i];
5864 }
5865 node_mem[i] = ram_size - usedmem;
5866 }
5867
5868 for (i = 0; i < nb_numa_nodes; i++) {
5869 if (node_cpumask[i] != 0)
5870 break;
5871 }
5872 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5873 * must cope with this anyway, because there are BIOSes out there in
5874 * real machines which also use this scheme.
5875 */
5876 if (i == nb_numa_nodes) {
5877 for (i = 0; i < smp_cpus; i++) {
5878 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5879 }
5880 }
5881 }
5882
5883 if (kvm_enabled()) {
5884 int ret;
5885
5886 ret = kvm_init(smp_cpus);
5887 if (ret < 0) {
5888 fprintf(stderr, "failed to initialize KVM\n");
5889 exit(1);
5890 }
5891 }
5892
5893 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5894 const char *devname = monitor_devices[i];
5895 if (devname && strcmp(devname, "none")) {
5896 char label[32];
5897 if (i == 0) {
5898 snprintf(label, sizeof(label), "monitor");
5899 } else {
5900 snprintf(label, sizeof(label), "monitor%d", i);
5901 }
5902 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5903 if (!monitor_hds[i]) {
5904 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5905 devname);
5906 exit(1);
5907 }
5908 }
5909 }
5910
5911 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5912 const char *devname = serial_devices[i];
5913 if (devname && strcmp(devname, "none")) {
5914 char label[32];
5915 snprintf(label, sizeof(label), "serial%d", i);
5916 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5917 if (!serial_hds[i]) {
5918 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5919 devname);
5920 exit(1);
5921 }
5922 }
5923 }
5924
5925 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5926 const char *devname = parallel_devices[i];
5927 if (devname && strcmp(devname, "none")) {
5928 char label[32];
5929 snprintf(label, sizeof(label), "parallel%d", i);
5930 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5931 if (!parallel_hds[i]) {
5932 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5933 devname);
5934 exit(1);
5935 }
5936 }
5937 }
5938
5939 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5940 const char *devname = virtio_consoles[i];
5941 if (devname && strcmp(devname, "none")) {
5942 char label[32];
5943 snprintf(label, sizeof(label), "virtcon%d", i);
5944 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5945 if (!virtcon_hds[i]) {
5946 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5947 devname);
5948 exit(1);
5949 }
5950 }
5951 }
5952
5953 module_call_init(MODULE_INIT_DEVICE);
5954
5955 if (watchdog) {
5956 i = select_watchdog(watchdog);
5957 if (i > 0)
5958 exit (i == 1 ? 1 : 0);
5959 }
5960
5961 if (machine->compat_props) {
5962 qdev_prop_register_compat(machine->compat_props);
5963 }
5964 machine->init(ram_size, boot_devices,
5965 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5966
5967
5968 #ifndef _WIN32
5969 /* must be after terminal init, SDL library changes signal handlers */
5970 sighandler_setup();
5971 #endif
5972
5973 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5974 for (i = 0; i < nb_numa_nodes; i++) {
5975 if (node_cpumask[i] & (1 << env->cpu_index)) {
5976 env->numa_node = i;
5977 }
5978 }
5979 }
5980
5981 current_machine = machine;
5982
5983 /* init USB devices */
5984 if (usb_enabled) {
5985 foreach_device_config(DEV_USB, usb_parse);
5986 }
5987
5988 /* init generic devices */
5989 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5990 exit(1);
5991
5992 if (!display_state)
5993 dumb_display_init();
5994 /* just use the first displaystate for the moment */
5995 ds = display_state;
5996
5997 if (display_type == DT_DEFAULT) {
5998 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5999 display_type = DT_SDL;
6000 #else
6001 display_type = DT_VNC;
6002 vnc_display = "localhost:0,to=99";
6003 show_vnc_port = 1;
6004 #endif
6005 }
6006
6007
6008 switch (display_type) {
6009 case DT_NOGRAPHIC:
6010 break;
6011 #if defined(CONFIG_CURSES)
6012 case DT_CURSES:
6013 curses_display_init(ds, full_screen);
6014 break;
6015 #endif
6016 #if defined(CONFIG_SDL)
6017 case DT_SDL:
6018 sdl_display_init(ds, full_screen, no_frame);
6019 break;
6020 #elif defined(CONFIG_COCOA)
6021 case DT_SDL:
6022 cocoa_display_init(ds, full_screen);
6023 break;
6024 #endif
6025 case DT_VNC:
6026 vnc_display_init(ds);
6027 if (vnc_display_open(ds, vnc_display) < 0)
6028 exit(1);
6029
6030 if (show_vnc_port) {
6031 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6032 }
6033 break;
6034 default:
6035 break;
6036 }
6037 dpy_resize(ds);
6038
6039 dcl = ds->listeners;
6040 while (dcl != NULL) {
6041 if (dcl->dpy_refresh != NULL) {
6042 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6043 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6044 }
6045 dcl = dcl->next;
6046 }
6047
6048 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6049 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6050 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6051 }
6052
6053 text_consoles_set_display(display_state);
6054 qemu_chr_initial_reset();
6055
6056 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
6057 if (monitor_devices[i] && monitor_hds[i]) {
6058 monitor_init(monitor_hds[i],
6059 MONITOR_USE_READLINE |
6060 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
6061 }
6062 }
6063
6064 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6065 const char *devname = serial_devices[i];
6066 if (devname && strcmp(devname, "none")) {
6067 if (strstart(devname, "vc", 0))
6068 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6069 }
6070 }
6071
6072 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6073 const char *devname = parallel_devices[i];
6074 if (devname && strcmp(devname, "none")) {
6075 if (strstart(devname, "vc", 0))
6076 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6077 }
6078 }
6079
6080 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6081 const char *devname = virtio_consoles[i];
6082 if (virtcon_hds[i] && devname) {
6083 if (strstart(devname, "vc", 0))
6084 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6085 }
6086 }
6087
6088 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6089 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6090 gdbstub_dev);
6091 exit(1);
6092 }
6093
6094 if (loadvm) {
6095 if (load_vmstate(cur_mon, loadvm) < 0) {
6096 autostart = 0;
6097 }
6098 }
6099
6100 if (incoming) {
6101 qemu_start_incoming_migration(incoming);
6102 } else if (autostart) {
6103 vm_start();
6104 }
6105
6106 #ifndef _WIN32
6107 if (daemonize) {
6108 uint8_t status = 0;
6109 ssize_t len;
6110
6111 again1:
6112 len = write(fds[1], &status, 1);
6113 if (len == -1 && (errno == EINTR))
6114 goto again1;
6115
6116 if (len != 1)
6117 exit(1);
6118
6119 chdir("/");
6120 TFR(fd = open("/dev/null", O_RDWR));
6121 if (fd == -1)
6122 exit(1);
6123 }
6124
6125 if (run_as) {
6126 pwd = getpwnam(run_as);
6127 if (!pwd) {
6128 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6129 exit(1);
6130 }
6131 }
6132
6133 if (chroot_dir) {
6134 if (chroot(chroot_dir) < 0) {
6135 fprintf(stderr, "chroot failed\n");
6136 exit(1);
6137 }
6138 chdir("/");
6139 }
6140
6141 if (run_as) {
6142 if (setgid(pwd->pw_gid) < 0) {
6143 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6144 exit(1);
6145 }
6146 if (setuid(pwd->pw_uid) < 0) {
6147 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6148 exit(1);
6149 }
6150 if (setuid(0) != -1) {
6151 fprintf(stderr, "Dropping privileges failed\n");
6152 exit(1);
6153 }
6154 }
6155
6156 if (daemonize) {
6157 dup2(fd, 0);
6158 dup2(fd, 1);
6159 dup2(fd, 2);
6160
6161 close(fd);
6162 }
6163 #endif
6164
6165 main_loop();
6166 quit_timers();
6167 net_cleanup();
6168
6169 return 0;
6170 }