]> git.proxmox.com Git - qemu.git/blob - vl.c
disable keyboard interrupts if keyboard clock disabled (may not be fully correct...
[qemu.git] / vl.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <stdarg.h>
27 #include <string.h>
28 #include <getopt.h>
29 #include <inttypes.h>
30 #include <unistd.h>
31 #include <sys/mman.h>
32 #include <fcntl.h>
33 #include <signal.h>
34 #include <time.h>
35 #include <sys/time.h>
36 #include <malloc.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <errno.h>
40 #include <sys/wait.h>
41
42 #include <sys/ioctl.h>
43 #include <sys/socket.h>
44 #include <linux/if.h>
45 #include <linux/if_tun.h>
46
47 #include "cpu.h"
48 #include "disas.h"
49 #include "thunk.h"
50
51 #include "vl.h"
52
53 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
54 #define BIOS_FILENAME "bios.bin"
55 #define VGABIOS_FILENAME "vgabios.bin"
56
57 //#define DEBUG_UNUSED_IOPORT
58
59 //#define DEBUG_IRQ_LATENCY
60
61 /* output Bochs bios info messages */
62 //#define DEBUG_BIOS
63
64 //#define DEBUG_CMOS
65
66 /* debug PIC */
67 //#define DEBUG_PIC
68
69 /* debug NE2000 card */
70 //#define DEBUG_NE2000
71
72 /* debug PC keyboard */
73 //#define DEBUG_KBD
74
75 /* debug PC keyboard : only mouse */
76 //#define DEBUG_MOUSE
77
78 //#define DEBUG_SERIAL
79
80 #define PHYS_RAM_BASE 0xac000000
81 #define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
82
83 #define KERNEL_LOAD_ADDR 0x00100000
84 #define INITRD_LOAD_ADDR 0x00400000
85 #define KERNEL_PARAMS_ADDR 0x00090000
86
87 #define GUI_REFRESH_INTERVAL 30
88
89 /* from plex86 (BSD license) */
90 struct __attribute__ ((packed)) linux_params {
91 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
92 // I just padded out the VESA parts, rather than define them.
93
94 /* 0x000 */ uint8_t orig_x;
95 /* 0x001 */ uint8_t orig_y;
96 /* 0x002 */ uint16_t ext_mem_k;
97 /* 0x004 */ uint16_t orig_video_page;
98 /* 0x006 */ uint8_t orig_video_mode;
99 /* 0x007 */ uint8_t orig_video_cols;
100 /* 0x008 */ uint16_t unused1;
101 /* 0x00a */ uint16_t orig_video_ega_bx;
102 /* 0x00c */ uint16_t unused2;
103 /* 0x00e */ uint8_t orig_video_lines;
104 /* 0x00f */ uint8_t orig_video_isVGA;
105 /* 0x010 */ uint16_t orig_video_points;
106 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
107 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
108 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
109 // is calculated as 0x90000 + cl_offset, bu
110 // only if cl_magic == 0xA33F.
111 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
112
113 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
114 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
115
116 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
117 // Might be truncated?
118 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
119 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
120
121 // System description table truncated to 16 bytes
122 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
123 /* 0x0a0 */ uint16_t sys_description_len;
124 /* 0x0a2 */ uint8_t sys_description_table[14];
125 // [0] machine id
126 // [1] machine submodel id
127 // [2] BIOS revision
128 // [3] bit1: MCA bus
129
130 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
131 /* 0x1e0 */ uint32_t alt_mem_k;
132 /* 0x1e4 */ uint8_t pad4[4];
133 /* 0x1e8 */ uint8_t e820map_entries;
134 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
135 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
136 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
137 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
138 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
139 // (b)zImage-file (in 16 byte units, rounded up)
140 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
141 /* 0x1f8 */ uint16_t ramdisk_flags;
142 /* 0x1fa */ uint16_t vga_mode; // (old one)
143 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
144 /* 0x1fe */ uint8_t pad6[1];
145 /* 0x1ff */ uint8_t aux_device_info;
146 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
147 // aka "reserved" field.
148 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
149 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
150 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
151 // boot loaders, look there.
152 /* 0x210 */ uint8_t loader_type;
153 // 0 for old one.
154 // else 0xTV:
155 // T=0: LILO
156 // T=1: Loadlin
157 // T=2: bootsect-loader
158 // T=3: SYSLINUX
159 // T=4: ETHERBOOT
160 // V=version
161 /* 0x211 */ uint8_t loadflags;
162 // bit0 = 1: kernel is loaded high (bzImage)
163 // bit7 = 1: Heap and pointer (see below) set by boot
164 // loader.
165 /* 0x212 */ uint16_t setup_S_temp1;
166 /* 0x214 */ uint32_t kernel_start;
167 /* 0x218 */ uint32_t initrd_start;
168 /* 0x21c */ uint32_t initrd_size;
169 /* 0x220 */ uint8_t setup_S_temp2[4];
170 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
171 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
172
173 /* 0x2d0 : Int 15, ax=e820 memory map. */
174 // (linux/include/asm-i386/e820.h, 'struct e820entry')
175 #define E820MAX 32
176 #define E820_RAM 1
177 #define E820_RESERVED 2
178 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
179 #define E820_NVS 4
180 struct {
181 uint64_t addr;
182 uint64_t size;
183 uint32_t type;
184 } e820map[E820MAX];
185
186 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
187
188 // BIOS Enhanced Disk Drive Services.
189 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
190 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
191 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
192
193 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
194 /* 0x800 */ uint8_t commandline[0x800];
195
196 /* 0x1000 */
197 uint64_t gdt_table[256];
198 uint64_t idt_table[48];
199 };
200
201 #define KERNEL_CS 0x10
202 #define KERNEL_DS 0x18
203
204 /* XXX: use a two level table to limit memory usage */
205 #define MAX_IOPORTS 65536
206
207 static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
208 char phys_ram_file[1024];
209 CPUX86State *global_env;
210 CPUX86State *cpu_single_env;
211 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
212 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
213 BlockDriverState *bs_table[MAX_DISKS];
214 int vga_ram_size;
215 static DisplayState display_state;
216 int nographic;
217 int term_inited;
218 int64_t ticks_per_sec;
219 int boot_device = 'c';
220
221 /***********************************************************/
222 /* x86 io ports */
223
224 uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
225 {
226 #ifdef DEBUG_UNUSED_IOPORT
227 fprintf(stderr, "inb: port=0x%04x\n", address);
228 #endif
229 return 0xff;
230 }
231
232 void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
233 {
234 #ifdef DEBUG_UNUSED_IOPORT
235 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
236 #endif
237 }
238
239 /* default is to make two byte accesses */
240 uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
241 {
242 uint32_t data;
243 data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
244 data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
245 return data;
246 }
247
248 void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
249 {
250 ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
251 ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
252 }
253
254 uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
255 {
256 #ifdef DEBUG_UNUSED_IOPORT
257 fprintf(stderr, "inl: port=0x%04x\n", address);
258 #endif
259 return 0xffffffff;
260 }
261
262 void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
263 {
264 #ifdef DEBUG_UNUSED_IOPORT
265 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
266 #endif
267 }
268
269 void init_ioports(void)
270 {
271 int i;
272
273 for(i = 0; i < MAX_IOPORTS; i++) {
274 ioport_read_table[0][i] = default_ioport_readb;
275 ioport_write_table[0][i] = default_ioport_writeb;
276 ioport_read_table[1][i] = default_ioport_readw;
277 ioport_write_table[1][i] = default_ioport_writew;
278 ioport_read_table[2][i] = default_ioport_readl;
279 ioport_write_table[2][i] = default_ioport_writel;
280 }
281 }
282
283 /* size is the word size in byte */
284 int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
285 {
286 int i, bsize;
287
288 if (size == 1)
289 bsize = 0;
290 else if (size == 2)
291 bsize = 1;
292 else if (size == 4)
293 bsize = 2;
294 else
295 return -1;
296 for(i = start; i < start + length; i += size)
297 ioport_read_table[bsize][i] = func;
298 return 0;
299 }
300
301 /* size is the word size in byte */
302 int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
303 {
304 int i, bsize;
305
306 if (size == 1)
307 bsize = 0;
308 else if (size == 2)
309 bsize = 1;
310 else if (size == 4)
311 bsize = 2;
312 else
313 return -1;
314 for(i = start; i < start + length; i += size)
315 ioport_write_table[bsize][i] = func;
316 return 0;
317 }
318
319 void pstrcpy(char *buf, int buf_size, const char *str)
320 {
321 int c;
322 char *q = buf;
323
324 if (buf_size <= 0)
325 return;
326
327 for(;;) {
328 c = *str++;
329 if (c == 0 || q >= buf + buf_size - 1)
330 break;
331 *q++ = c;
332 }
333 *q = '\0';
334 }
335
336 /* strcat and truncate. */
337 char *pstrcat(char *buf, int buf_size, const char *s)
338 {
339 int len;
340 len = strlen(buf);
341 if (len < buf_size)
342 pstrcpy(buf + len, buf_size - len, s);
343 return buf;
344 }
345
346 int load_kernel(const char *filename, uint8_t *addr)
347 {
348 int fd, size, setup_sects;
349 uint8_t bootsect[512];
350
351 fd = open(filename, O_RDONLY);
352 if (fd < 0)
353 return -1;
354 if (read(fd, bootsect, 512) != 512)
355 goto fail;
356 setup_sects = bootsect[0x1F1];
357 if (!setup_sects)
358 setup_sects = 4;
359 /* skip 16 bit setup code */
360 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
361 size = read(fd, addr, 16 * 1024 * 1024);
362 if (size < 0)
363 goto fail;
364 close(fd);
365 return size;
366 fail:
367 close(fd);
368 return -1;
369 }
370
371 /* return the size or -1 if error */
372 int load_image(const char *filename, uint8_t *addr)
373 {
374 int fd, size;
375 fd = open(filename, O_RDONLY);
376 if (fd < 0)
377 return -1;
378 size = lseek(fd, 0, SEEK_END);
379 lseek(fd, 0, SEEK_SET);
380 if (read(fd, addr, size) != size) {
381 close(fd);
382 return -1;
383 }
384 close(fd);
385 return size;
386 }
387
388 void cpu_x86_outb(CPUX86State *env, int addr, int val)
389 {
390 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
391 }
392
393 void cpu_x86_outw(CPUX86State *env, int addr, int val)
394 {
395 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
396 }
397
398 void cpu_x86_outl(CPUX86State *env, int addr, int val)
399 {
400 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
401 }
402
403 int cpu_x86_inb(CPUX86State *env, int addr)
404 {
405 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
406 }
407
408 int cpu_x86_inw(CPUX86State *env, int addr)
409 {
410 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
411 }
412
413 int cpu_x86_inl(CPUX86State *env, int addr)
414 {
415 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
416 }
417
418 /***********************************************************/
419 void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
420 {
421 }
422
423 void hw_error(const char *fmt, ...)
424 {
425 va_list ap;
426
427 va_start(ap, fmt);
428 fprintf(stderr, "qemu: hardware error: ");
429 vfprintf(stderr, fmt, ap);
430 fprintf(stderr, "\n");
431 #ifdef TARGET_I386
432 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
433 #endif
434 va_end(ap);
435 abort();
436 }
437
438 /***********************************************************/
439 /* cmos emulation */
440
441 #define RTC_SECONDS 0
442 #define RTC_SECONDS_ALARM 1
443 #define RTC_MINUTES 2
444 #define RTC_MINUTES_ALARM 3
445 #define RTC_HOURS 4
446 #define RTC_HOURS_ALARM 5
447 #define RTC_ALARM_DONT_CARE 0xC0
448
449 #define RTC_DAY_OF_WEEK 6
450 #define RTC_DAY_OF_MONTH 7
451 #define RTC_MONTH 8
452 #define RTC_YEAR 9
453
454 #define RTC_REG_A 10
455 #define RTC_REG_B 11
456 #define RTC_REG_C 12
457 #define RTC_REG_D 13
458
459 /* PC cmos mappings */
460 #define REG_EQUIPMENT_BYTE 0x14
461
462 uint8_t cmos_data[128];
463 uint8_t cmos_index;
464
465 void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
466 {
467 if (addr == 0x70) {
468 cmos_index = data & 0x7f;
469 } else {
470 #ifdef DEBUG_CMOS
471 printf("cmos: write index=0x%02x val=0x%02x\n",
472 cmos_index, data);
473 #endif
474 switch(addr) {
475 case RTC_SECONDS_ALARM:
476 case RTC_MINUTES_ALARM:
477 case RTC_HOURS_ALARM:
478 /* XXX: not supported */
479 cmos_data[cmos_index] = data;
480 break;
481 case RTC_SECONDS:
482 case RTC_MINUTES:
483 case RTC_HOURS:
484 case RTC_DAY_OF_WEEK:
485 case RTC_DAY_OF_MONTH:
486 case RTC_MONTH:
487 case RTC_YEAR:
488 cmos_data[cmos_index] = data;
489 break;
490 case RTC_REG_A:
491 case RTC_REG_B:
492 cmos_data[cmos_index] = data;
493 break;
494 case RTC_REG_C:
495 case RTC_REG_D:
496 /* cannot write to them */
497 break;
498 default:
499 cmos_data[cmos_index] = data;
500 break;
501 }
502 }
503 }
504
505 uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
506 {
507 int ret;
508
509 if (addr == 0x70) {
510 return 0xff;
511 } else {
512 ret = cmos_data[cmos_index];
513 switch(cmos_index) {
514 case RTC_REG_A:
515 /* toggle update-in-progress bit for Linux (same hack as
516 plex86) */
517 cmos_data[RTC_REG_A] ^= 0x80;
518 break;
519 case RTC_REG_C:
520 pic_set_irq(8, 0);
521 cmos_data[RTC_REG_C] = 0x00;
522 break;
523 }
524 #ifdef DEBUG_CMOS
525 printf("cmos: read index=0x%02x val=0x%02x\n",
526 cmos_index, ret);
527 #endif
528 return ret;
529 }
530 }
531
532
533 static inline int to_bcd(int a)
534 {
535 return ((a / 10) << 4) | (a % 10);
536 }
537
538 void cmos_init(void)
539 {
540 struct tm *tm;
541 time_t ti;
542 int val;
543
544 ti = time(NULL);
545 tm = gmtime(&ti);
546 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
547 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
548 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
549 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
550 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
551 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
552 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
553
554 cmos_data[RTC_REG_A] = 0x26;
555 cmos_data[RTC_REG_B] = 0x02;
556 cmos_data[RTC_REG_C] = 0x00;
557 cmos_data[RTC_REG_D] = 0x80;
558
559 /* various important CMOS locations needed by PC/Bochs bios */
560
561 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
562 cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
563
564 /* memory size */
565 val = (phys_ram_size / 1024) - 1024;
566 if (val > 65535)
567 val = 65535;
568 cmos_data[0x17] = val;
569 cmos_data[0x18] = val >> 8;
570 cmos_data[0x30] = val;
571 cmos_data[0x31] = val >> 8;
572
573 val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
574 if (val > 65535)
575 val = 65535;
576 cmos_data[0x34] = val;
577 cmos_data[0x35] = val >> 8;
578
579 switch(boot_device) {
580 case 'a':
581 cmos_data[0x3d] = 0x01; /* floppy boot */
582 break;
583 default:
584 case 'c':
585 cmos_data[0x3d] = 0x02; /* hard drive boot */
586 break;
587 case 'd':
588 cmos_data[0x3d] = 0x03; /* CD-ROM boot */
589 break;
590 }
591
592 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
593 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
594 }
595
596 /***********************************************************/
597 /* 8259 pic emulation */
598
599 typedef struct PicState {
600 uint8_t last_irr; /* edge detection */
601 uint8_t irr; /* interrupt request register */
602 uint8_t imr; /* interrupt mask register */
603 uint8_t isr; /* interrupt service register */
604 uint8_t priority_add; /* used to compute irq priority */
605 uint8_t irq_base;
606 uint8_t read_reg_select;
607 uint8_t special_mask;
608 uint8_t init_state;
609 uint8_t auto_eoi;
610 uint8_t rotate_on_autoeoi;
611 uint8_t init4; /* true if 4 byte init */
612 } PicState;
613
614 /* 0 is master pic, 1 is slave pic */
615 PicState pics[2];
616 int pic_irq_requested;
617
618 /* set irq level. If an edge is detected, then the IRR is set to 1 */
619 static inline void pic_set_irq1(PicState *s, int irq, int level)
620 {
621 int mask;
622 mask = 1 << irq;
623 if (level) {
624 if ((s->last_irr & mask) == 0)
625 s->irr |= mask;
626 s->last_irr |= mask;
627 } else {
628 s->last_irr &= ~mask;
629 }
630 }
631
632 static inline int get_priority(PicState *s, int mask)
633 {
634 int priority;
635 if (mask == 0)
636 return -1;
637 priority = 7;
638 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
639 priority--;
640 return priority;
641 }
642
643 /* return the pic wanted interrupt. return -1 if none */
644 static int pic_get_irq(PicState *s)
645 {
646 int mask, cur_priority, priority;
647
648 mask = s->irr & ~s->imr;
649 priority = get_priority(s, mask);
650 if (priority < 0)
651 return -1;
652 /* compute current priority */
653 cur_priority = get_priority(s, s->isr);
654 if (priority > cur_priority) {
655 /* higher priority found: an irq should be generated */
656 return priority;
657 } else {
658 return -1;
659 }
660 }
661
662 /* raise irq to CPU if necessary. must be called every time the active
663 irq may change */
664 static void pic_update_irq(void)
665 {
666 int irq2, irq;
667
668 /* first look at slave pic */
669 irq2 = pic_get_irq(&pics[1]);
670 if (irq2 >= 0) {
671 /* if irq request by slave pic, signal master PIC */
672 pic_set_irq1(&pics[0], 2, 1);
673 pic_set_irq1(&pics[0], 2, 0);
674 }
675 /* look at requested irq */
676 irq = pic_get_irq(&pics[0]);
677 if (irq >= 0) {
678 if (irq == 2) {
679 /* from slave pic */
680 pic_irq_requested = 8 + irq2;
681 } else {
682 /* from master pic */
683 pic_irq_requested = irq;
684 }
685 cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
686 }
687 }
688
689 #ifdef DEBUG_IRQ_LATENCY
690 int64_t irq_time[16];
691 int64_t cpu_get_ticks(void);
692 #endif
693 #if defined(DEBUG_PIC)
694 int irq_level[16];
695 #endif
696
697 void pic_set_irq(int irq, int level)
698 {
699 #if defined(DEBUG_PIC)
700 if (level != irq_level[irq]) {
701 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
702 irq_level[irq] = level;
703 }
704 #endif
705 #ifdef DEBUG_IRQ_LATENCY
706 if (level) {
707 irq_time[irq] = cpu_get_ticks();
708 }
709 #endif
710 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
711 pic_update_irq();
712 }
713
714 int cpu_x86_get_pic_interrupt(CPUX86State *env)
715 {
716 int irq, irq2, intno;
717
718 /* signal the pic that the irq was acked by the CPU */
719 irq = pic_irq_requested;
720 #ifdef DEBUG_IRQ_LATENCY
721 printf("IRQ%d latency=%0.3fus\n",
722 irq,
723 (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
724 #endif
725 #if defined(DEBUG_PIC)
726 printf("pic_interrupt: irq=%d\n", irq);
727 #endif
728
729 if (irq >= 8) {
730 irq2 = irq & 7;
731 pics[1].isr |= (1 << irq2);
732 pics[1].irr &= ~(1 << irq2);
733 irq = 2;
734 intno = pics[1].irq_base + irq2;
735 } else {
736 intno = pics[0].irq_base + irq;
737 }
738 pics[0].isr |= (1 << irq);
739 pics[0].irr &= ~(1 << irq);
740 return intno;
741 }
742
743 void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
744 {
745 PicState *s;
746 int priority;
747
748 #ifdef DEBUG_PIC
749 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
750 #endif
751 s = &pics[addr >> 7];
752 addr &= 1;
753 if (addr == 0) {
754 if (val & 0x10) {
755 /* init */
756 memset(s, 0, sizeof(PicState));
757 s->init_state = 1;
758 s->init4 = val & 1;
759 if (val & 0x02)
760 hw_error("single mode not supported");
761 if (val & 0x08)
762 hw_error("level sensitive irq not supported");
763 } else if (val & 0x08) {
764 if (val & 0x02)
765 s->read_reg_select = val & 1;
766 if (val & 0x40)
767 s->special_mask = (val >> 5) & 1;
768 } else {
769 switch(val) {
770 case 0x00:
771 case 0x80:
772 s->rotate_on_autoeoi = val >> 7;
773 break;
774 case 0x20: /* end of interrupt */
775 case 0xa0:
776 priority = get_priority(s, s->isr);
777 if (priority >= 0) {
778 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
779 }
780 if (val == 0xa0)
781 s->priority_add = (s->priority_add + 1) & 7;
782 pic_update_irq();
783 break;
784 case 0x60 ... 0x67:
785 priority = val & 7;
786 s->isr &= ~(1 << priority);
787 pic_update_irq();
788 break;
789 case 0xc0 ... 0xc7:
790 s->priority_add = (val + 1) & 7;
791 pic_update_irq();
792 break;
793 case 0xe0 ... 0xe7:
794 priority = val & 7;
795 s->isr &= ~(1 << priority);
796 s->priority_add = (priority + 1) & 7;
797 pic_update_irq();
798 break;
799 }
800 }
801 } else {
802 switch(s->init_state) {
803 case 0:
804 /* normal mode */
805 s->imr = val;
806 pic_update_irq();
807 break;
808 case 1:
809 s->irq_base = val & 0xf8;
810 s->init_state = 2;
811 break;
812 case 2:
813 if (s->init4) {
814 s->init_state = 3;
815 } else {
816 s->init_state = 0;
817 }
818 break;
819 case 3:
820 s->auto_eoi = (val >> 1) & 1;
821 s->init_state = 0;
822 break;
823 }
824 }
825 }
826
827 uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
828 {
829 PicState *s;
830 unsigned int addr;
831 int ret;
832
833 addr = addr1;
834 s = &pics[addr >> 7];
835 addr &= 1;
836 if (addr == 0) {
837 if (s->read_reg_select)
838 ret = s->isr;
839 else
840 ret = s->irr;
841 } else {
842 ret = s->imr;
843 }
844 #ifdef DEBUG_PIC
845 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
846 #endif
847 return ret;
848 }
849
850 void pic_init(void)
851 {
852 register_ioport_write(0x20, 2, pic_ioport_write, 1);
853 register_ioport_read(0x20, 2, pic_ioport_read, 1);
854 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
855 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
856 }
857
858 /***********************************************************/
859 /* 8253 PIT emulation */
860
861 #define PIT_FREQ 1193182
862
863 #define RW_STATE_LSB 0
864 #define RW_STATE_MSB 1
865 #define RW_STATE_WORD0 2
866 #define RW_STATE_WORD1 3
867 #define RW_STATE_LATCHED_WORD0 4
868 #define RW_STATE_LATCHED_WORD1 5
869
870 typedef struct PITChannelState {
871 int count; /* can be 65536 */
872 uint16_t latched_count;
873 uint8_t rw_state;
874 uint8_t mode;
875 uint8_t bcd; /* not supported */
876 uint8_t gate; /* timer start */
877 int64_t count_load_time;
878 int64_t count_last_edge_check_time;
879 } PITChannelState;
880
881 PITChannelState pit_channels[3];
882 int speaker_data_on;
883 int dummy_refresh_clock;
884 int pit_min_timer_count = 0;
885
886
887 #if defined(__powerpc__)
888
889 static inline uint32_t get_tbl(void)
890 {
891 uint32_t tbl;
892 asm volatile("mftb %0" : "=r" (tbl));
893 return tbl;
894 }
895
896 static inline uint32_t get_tbu(void)
897 {
898 uint32_t tbl;
899 asm volatile("mftbu %0" : "=r" (tbl));
900 return tbl;
901 }
902
903 int64_t cpu_get_real_ticks(void)
904 {
905 uint32_t l, h, h1;
906 /* NOTE: we test if wrapping has occurred */
907 do {
908 h = get_tbu();
909 l = get_tbl();
910 h1 = get_tbu();
911 } while (h != h1);
912 return ((int64_t)h << 32) | l;
913 }
914
915 #elif defined(__i386__)
916
917 int64_t cpu_get_real_ticks(void)
918 {
919 int64_t val;
920 asm("rdtsc" : "=A" (val));
921 return val;
922 }
923
924 #else
925 #error unsupported CPU
926 #endif
927
928 static int64_t cpu_ticks_offset;
929 static int64_t cpu_ticks_last;
930
931 int64_t cpu_get_ticks(void)
932 {
933 return cpu_get_real_ticks() + cpu_ticks_offset;
934 }
935
936 /* enable cpu_get_ticks() */
937 void cpu_enable_ticks(void)
938 {
939 cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
940 }
941
942 /* disable cpu_get_ticks() : the clock is stopped. You must not call
943 cpu_get_ticks() after that. */
944 void cpu_disable_ticks(void)
945 {
946 cpu_ticks_last = cpu_get_ticks();
947 }
948
949 int64_t get_clock(void)
950 {
951 struct timeval tv;
952 gettimeofday(&tv, NULL);
953 return tv.tv_sec * 1000000LL + tv.tv_usec;
954 }
955
956 void cpu_calibrate_ticks(void)
957 {
958 int64_t usec, ticks;
959
960 usec = get_clock();
961 ticks = cpu_get_ticks();
962 usleep(50 * 1000);
963 usec = get_clock() - usec;
964 ticks = cpu_get_ticks() - ticks;
965 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
966 }
967
968 /* compute with 96 bit intermediate result: (a*b)/c */
969 static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
970 {
971 union {
972 uint64_t ll;
973 struct {
974 #ifdef WORDS_BIGENDIAN
975 uint32_t high, low;
976 #else
977 uint32_t low, high;
978 #endif
979 } l;
980 } u, res;
981 uint64_t rl, rh;
982
983 u.ll = a;
984 rl = (uint64_t)u.l.low * (uint64_t)b;
985 rh = (uint64_t)u.l.high * (uint64_t)b;
986 rh += (rl >> 32);
987 res.l.high = rh / c;
988 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
989 return res.ll;
990 }
991
992 static int pit_get_count(PITChannelState *s)
993 {
994 uint64_t d;
995 int counter;
996
997 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
998 switch(s->mode) {
999 case 0:
1000 case 1:
1001 case 4:
1002 case 5:
1003 counter = (s->count - d) & 0xffff;
1004 break;
1005 default:
1006 counter = s->count - (d % s->count);
1007 break;
1008 }
1009 return counter;
1010 }
1011
1012 /* get pit output bit */
1013 static int pit_get_out(PITChannelState *s)
1014 {
1015 uint64_t d;
1016 int out;
1017
1018 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1019 switch(s->mode) {
1020 default:
1021 case 0:
1022 out = (d >= s->count);
1023 break;
1024 case 1:
1025 out = (d < s->count);
1026 break;
1027 case 2:
1028 if ((d % s->count) == 0 && d != 0)
1029 out = 1;
1030 else
1031 out = 0;
1032 break;
1033 case 3:
1034 out = (d % s->count) < (s->count >> 1);
1035 break;
1036 case 4:
1037 case 5:
1038 out = (d == s->count);
1039 break;
1040 }
1041 return out;
1042 }
1043
1044 /* get the number of 0 to 1 transitions we had since we call this
1045 function */
1046 /* XXX: maybe better to use ticks precision to avoid getting edges
1047 twice if checks are done at very small intervals */
1048 static int pit_get_out_edges(PITChannelState *s)
1049 {
1050 uint64_t d1, d2;
1051 int64_t ticks;
1052 int ret, v;
1053
1054 ticks = cpu_get_ticks();
1055 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
1056 PIT_FREQ, ticks_per_sec);
1057 d2 = muldiv64(ticks - s->count_load_time,
1058 PIT_FREQ, ticks_per_sec);
1059 s->count_last_edge_check_time = ticks;
1060 switch(s->mode) {
1061 default:
1062 case 0:
1063 if (d1 < s->count && d2 >= s->count)
1064 ret = 1;
1065 else
1066 ret = 0;
1067 break;
1068 case 1:
1069 ret = 0;
1070 break;
1071 case 2:
1072 d1 /= s->count;
1073 d2 /= s->count;
1074 ret = d2 - d1;
1075 break;
1076 case 3:
1077 v = s->count - (s->count >> 1);
1078 d1 = (d1 + v) / s->count;
1079 d2 = (d2 + v) / s->count;
1080 ret = d2 - d1;
1081 break;
1082 case 4:
1083 case 5:
1084 if (d1 < s->count && d2 >= s->count)
1085 ret = 1;
1086 else
1087 ret = 0;
1088 break;
1089 }
1090 return ret;
1091 }
1092
1093 static inline void pit_load_count(PITChannelState *s, int val)
1094 {
1095 if (val == 0)
1096 val = 0x10000;
1097 s->count_load_time = cpu_get_ticks();
1098 s->count_last_edge_check_time = s->count_load_time;
1099 s->count = val;
1100 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1101 fprintf(stderr,
1102 "\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
1103 PIT_FREQ / pit_min_timer_count);
1104 }
1105 }
1106
1107 void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1108 {
1109 int channel, access;
1110 PITChannelState *s;
1111
1112 addr &= 3;
1113 if (addr == 3) {
1114 channel = val >> 6;
1115 if (channel == 3)
1116 return;
1117 s = &pit_channels[channel];
1118 access = (val >> 4) & 3;
1119 switch(access) {
1120 case 0:
1121 s->latched_count = pit_get_count(s);
1122 s->rw_state = RW_STATE_LATCHED_WORD0;
1123 break;
1124 default:
1125 s->mode = (val >> 1) & 7;
1126 s->bcd = val & 1;
1127 s->rw_state = access - 1 + RW_STATE_LSB;
1128 break;
1129 }
1130 } else {
1131 s = &pit_channels[addr];
1132 switch(s->rw_state) {
1133 case RW_STATE_LSB:
1134 pit_load_count(s, val);
1135 break;
1136 case RW_STATE_MSB:
1137 pit_load_count(s, val << 8);
1138 break;
1139 case RW_STATE_WORD0:
1140 case RW_STATE_WORD1:
1141 if (s->rw_state & 1) {
1142 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1143 } else {
1144 s->latched_count = val;
1145 }
1146 s->rw_state ^= 1;
1147 break;
1148 }
1149 }
1150 }
1151
1152 uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1153 {
1154 int ret, count;
1155 PITChannelState *s;
1156
1157 addr &= 3;
1158 s = &pit_channels[addr];
1159 switch(s->rw_state) {
1160 case RW_STATE_LSB:
1161 case RW_STATE_MSB:
1162 case RW_STATE_WORD0:
1163 case RW_STATE_WORD1:
1164 count = pit_get_count(s);
1165 if (s->rw_state & 1)
1166 ret = (count >> 8) & 0xff;
1167 else
1168 ret = count & 0xff;
1169 if (s->rw_state & 2)
1170 s->rw_state ^= 1;
1171 break;
1172 default:
1173 case RW_STATE_LATCHED_WORD0:
1174 case RW_STATE_LATCHED_WORD1:
1175 if (s->rw_state & 1)
1176 ret = s->latched_count >> 8;
1177 else
1178 ret = s->latched_count & 0xff;
1179 s->rw_state ^= 1;
1180 break;
1181 }
1182 return ret;
1183 }
1184
1185 void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1186 {
1187 speaker_data_on = (val >> 1) & 1;
1188 pit_channels[2].gate = val & 1;
1189 }
1190
1191 uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1192 {
1193 int out;
1194 out = pit_get_out(&pit_channels[2]);
1195 dummy_refresh_clock ^= 1;
1196 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1197 (dummy_refresh_clock << 4);
1198 }
1199
1200 void pit_init(void)
1201 {
1202 PITChannelState *s;
1203 int i;
1204
1205 cpu_calibrate_ticks();
1206
1207 for(i = 0;i < 3; i++) {
1208 s = &pit_channels[i];
1209 s->mode = 3;
1210 s->gate = (i != 2);
1211 pit_load_count(s, 0);
1212 }
1213
1214 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1215 register_ioport_read(0x40, 3, pit_ioport_read, 1);
1216
1217 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1218 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1219 }
1220
1221 /***********************************************************/
1222 /* serial port emulation */
1223
1224 #define UART_IRQ 4
1225
1226 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1227
1228 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1229 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1230 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1231 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1232
1233 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1234 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1235
1236 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
1237 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1238 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1239 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1240
1241 /*
1242 * These are the definitions for the Modem Control Register
1243 */
1244 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
1245 #define UART_MCR_OUT2 0x08 /* Out2 complement */
1246 #define UART_MCR_OUT1 0x04 /* Out1 complement */
1247 #define UART_MCR_RTS 0x02 /* RTS complement */
1248 #define UART_MCR_DTR 0x01 /* DTR complement */
1249
1250 /*
1251 * These are the definitions for the Modem Status Register
1252 */
1253 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
1254 #define UART_MSR_RI 0x40 /* Ring Indicator */
1255 #define UART_MSR_DSR 0x20 /* Data Set Ready */
1256 #define UART_MSR_CTS 0x10 /* Clear to Send */
1257 #define UART_MSR_DDCD 0x08 /* Delta DCD */
1258 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
1259 #define UART_MSR_DDSR 0x02 /* Delta DSR */
1260 #define UART_MSR_DCTS 0x01 /* Delta CTS */
1261 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
1262
1263 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
1264 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1265 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
1266 #define UART_LSR_FE 0x08 /* Frame error indicator */
1267 #define UART_LSR_PE 0x04 /* Parity error indicator */
1268 #define UART_LSR_OE 0x02 /* Overrun error indicator */
1269 #define UART_LSR_DR 0x01 /* Receiver data ready */
1270
1271 typedef struct SerialState {
1272 uint8_t divider;
1273 uint8_t rbr; /* receive register */
1274 uint8_t ier;
1275 uint8_t iir; /* read only */
1276 uint8_t lcr;
1277 uint8_t mcr;
1278 uint8_t lsr; /* read only */
1279 uint8_t msr;
1280 uint8_t scr;
1281 /* NOTE: this hidden state is necessary for tx irq generation as
1282 it can be reset while reading iir */
1283 int thr_ipending;
1284 } SerialState;
1285
1286 SerialState serial_ports[1];
1287
1288 void serial_update_irq(void)
1289 {
1290 SerialState *s = &serial_ports[0];
1291
1292 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1293 s->iir = UART_IIR_RDI;
1294 } else if (s->thr_ipending && (s->ier & UART_IER_THRI)) {
1295 s->iir = UART_IIR_THRI;
1296 } else {
1297 s->iir = UART_IIR_NO_INT;
1298 }
1299 if (s->iir != UART_IIR_NO_INT) {
1300 pic_set_irq(UART_IRQ, 1);
1301 } else {
1302 pic_set_irq(UART_IRQ, 0);
1303 }
1304 }
1305
1306 void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1307 {
1308 SerialState *s = &serial_ports[0];
1309 unsigned char ch;
1310 int ret;
1311
1312 addr &= 7;
1313 #ifdef DEBUG_SERIAL
1314 printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
1315 #endif
1316 switch(addr) {
1317 default:
1318 case 0:
1319 if (s->lcr & UART_LCR_DLAB) {
1320 s->divider = (s->divider & 0xff00) | val;
1321 } else {
1322 s->thr_ipending = 0;
1323 s->lsr &= ~UART_LSR_THRE;
1324 serial_update_irq();
1325
1326 ch = val;
1327 do {
1328 ret = write(1, &ch, 1);
1329 } while (ret != 1);
1330 s->thr_ipending = 1;
1331 s->lsr |= UART_LSR_THRE;
1332 s->lsr |= UART_LSR_TEMT;
1333 serial_update_irq();
1334 }
1335 break;
1336 case 1:
1337 if (s->lcr & UART_LCR_DLAB) {
1338 s->divider = (s->divider & 0x00ff) | (val << 8);
1339 } else {
1340 s->ier = val;
1341 serial_update_irq();
1342 }
1343 break;
1344 case 2:
1345 break;
1346 case 3:
1347 s->lcr = val;
1348 break;
1349 case 4:
1350 s->mcr = val;
1351 break;
1352 case 5:
1353 break;
1354 case 6:
1355 s->msr = val;
1356 break;
1357 case 7:
1358 s->scr = val;
1359 break;
1360 }
1361 }
1362
1363 uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1364 {
1365 SerialState *s = &serial_ports[0];
1366 uint32_t ret;
1367
1368 addr &= 7;
1369 switch(addr) {
1370 default:
1371 case 0:
1372 if (s->lcr & UART_LCR_DLAB) {
1373 ret = s->divider & 0xff;
1374 } else {
1375 ret = s->rbr;
1376 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1377 serial_update_irq();
1378 }
1379 break;
1380 case 1:
1381 if (s->lcr & UART_LCR_DLAB) {
1382 ret = (s->divider >> 8) & 0xff;
1383 } else {
1384 ret = s->ier;
1385 }
1386 break;
1387 case 2:
1388 ret = s->iir;
1389 /* reset THR pending bit */
1390 if ((ret & 0x7) == UART_IIR_THRI)
1391 s->thr_ipending = 0;
1392 serial_update_irq();
1393 break;
1394 case 3:
1395 ret = s->lcr;
1396 break;
1397 case 4:
1398 ret = s->mcr;
1399 break;
1400 case 5:
1401 ret = s->lsr;
1402 break;
1403 case 6:
1404 if (s->mcr & UART_MCR_LOOP) {
1405 /* in loopback, the modem output pins are connected to the
1406 inputs */
1407 ret = (s->mcr & 0x0c) << 4;
1408 ret |= (s->mcr & 0x02) << 3;
1409 ret |= (s->mcr & 0x01) << 5;
1410 } else {
1411 ret = s->msr;
1412 }
1413 break;
1414 case 7:
1415 ret = s->scr;
1416 break;
1417 }
1418 #ifdef DEBUG_SERIAL
1419 printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
1420 #endif
1421 return ret;
1422 }
1423
1424 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1425 static int term_got_escape;
1426
1427 void term_print_help(void)
1428 {
1429 printf("\n"
1430 "C-a h print this help\n"
1431 "C-a x exit emulatior\n"
1432 "C-a s save disk data back to file (if -snapshot)\n"
1433 "C-a b send break (magic sysrq)\n"
1434 "C-a C-a send C-a\n"
1435 );
1436 }
1437
1438 /* called when a char is received */
1439 void serial_received_byte(SerialState *s, int ch)
1440 {
1441 if (term_got_escape) {
1442 term_got_escape = 0;
1443 switch(ch) {
1444 case 'h':
1445 term_print_help();
1446 break;
1447 case 'x':
1448 exit(0);
1449 break;
1450 case 's':
1451 {
1452 int i;
1453 for (i = 0; i < MAX_DISKS; i++) {
1454 if (bs_table[i])
1455 bdrv_commit(bs_table[i]);
1456 }
1457 }
1458 break;
1459 case 'b':
1460 /* send break */
1461 s->rbr = 0;
1462 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1463 serial_update_irq();
1464 break;
1465 case 'd':
1466 // tb_flush();
1467 cpu_set_log(CPU_LOG_ALL);
1468 break;
1469 case TERM_ESCAPE:
1470 goto send_char;
1471 }
1472 } else if (ch == TERM_ESCAPE) {
1473 term_got_escape = 1;
1474 } else {
1475 send_char:
1476 s->rbr = ch;
1477 s->lsr |= UART_LSR_DR;
1478 serial_update_irq();
1479 }
1480 }
1481
1482 void serial_init(void)
1483 {
1484 SerialState *s = &serial_ports[0];
1485
1486 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1487 s->iir = UART_IIR_NO_INT;
1488
1489 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1490 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1491 }
1492
1493 /***********************************************************/
1494 /* ne2000 emulation */
1495
1496 #define NE2000_IOPORT 0x300
1497 #define NE2000_IRQ 9
1498
1499 #define MAX_ETH_FRAME_SIZE 1514
1500
1501 #define E8390_CMD 0x00 /* The command register (for all pages) */
1502 /* Page 0 register offsets. */
1503 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1504 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1505 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1506 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1507 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1508 #define EN0_TSR 0x04 /* Transmit status reg RD */
1509 #define EN0_TPSR 0x04 /* Transmit starting page WR */
1510 #define EN0_NCR 0x05 /* Number of collision reg RD */
1511 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1512 #define EN0_FIFO 0x06 /* FIFO RD */
1513 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1514 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1515 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1516 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1517 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1518 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1519 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1520 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1521 #define EN0_RSR 0x0c /* rx status reg RD */
1522 #define EN0_RXCR 0x0c /* RX configuration reg WR */
1523 #define EN0_TXCR 0x0d /* TX configuration reg WR */
1524 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1525 #define EN0_DCFG 0x0e /* Data configuration reg WR */
1526 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1527 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
1528 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1529
1530 #define EN1_PHYS 0x11
1531 #define EN1_CURPAG 0x17
1532 #define EN1_MULT 0x18
1533
1534 /* Register accessed at EN_CMD, the 8390 base addr. */
1535 #define E8390_STOP 0x01 /* Stop and reset the chip */
1536 #define E8390_START 0x02 /* Start the chip, clear reset */
1537 #define E8390_TRANS 0x04 /* Transmit a frame */
1538 #define E8390_RREAD 0x08 /* Remote read */
1539 #define E8390_RWRITE 0x10 /* Remote write */
1540 #define E8390_NODMA 0x20 /* Remote DMA */
1541 #define E8390_PAGE0 0x00 /* Select page chip registers */
1542 #define E8390_PAGE1 0x40 /* using the two high-order bits */
1543 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1544
1545 /* Bits in EN0_ISR - Interrupt status register */
1546 #define ENISR_RX 0x01 /* Receiver, no error */
1547 #define ENISR_TX 0x02 /* Transmitter, no error */
1548 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
1549 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1550 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1551 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
1552 #define ENISR_RDC 0x40 /* remote dma complete */
1553 #define ENISR_RESET 0x80 /* Reset completed */
1554 #define ENISR_ALL 0x3f /* Interrupts we will enable */
1555
1556 /* Bits in received packet status byte and EN0_RSR*/
1557 #define ENRSR_RXOK 0x01 /* Received a good packet */
1558 #define ENRSR_CRC 0x02 /* CRC error */
1559 #define ENRSR_FAE 0x04 /* frame alignment error */
1560 #define ENRSR_FO 0x08 /* FIFO overrun */
1561 #define ENRSR_MPA 0x10 /* missed pkt */
1562 #define ENRSR_PHY 0x20 /* physical/multicast address */
1563 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1564 #define ENRSR_DEF 0x80 /* deferring */
1565
1566 /* Transmitted packet status, EN0_TSR. */
1567 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
1568 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1569 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
1570 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1571 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1572 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1573 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1574 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1575
1576 #define NE2000_MEM_SIZE 32768
1577
1578 typedef struct NE2000State {
1579 uint8_t cmd;
1580 uint32_t start;
1581 uint32_t stop;
1582 uint8_t boundary;
1583 uint8_t tsr;
1584 uint8_t tpsr;
1585 uint16_t tcnt;
1586 uint16_t rcnt;
1587 uint32_t rsar;
1588 uint8_t isr;
1589 uint8_t dcfg;
1590 uint8_t imr;
1591 uint8_t phys[6]; /* mac address */
1592 uint8_t curpag;
1593 uint8_t mult[8]; /* multicast mask array */
1594 uint8_t mem[NE2000_MEM_SIZE];
1595 } NE2000State;
1596
1597 NE2000State ne2000_state;
1598 int net_fd = -1;
1599 char network_script[1024];
1600
1601 void ne2000_reset(void)
1602 {
1603 NE2000State *s = &ne2000_state;
1604 int i;
1605
1606 s->isr = ENISR_RESET;
1607 s->mem[0] = 0x52;
1608 s->mem[1] = 0x54;
1609 s->mem[2] = 0x00;
1610 s->mem[3] = 0x12;
1611 s->mem[4] = 0x34;
1612 s->mem[5] = 0x56;
1613 s->mem[14] = 0x57;
1614 s->mem[15] = 0x57;
1615
1616 /* duplicate prom data */
1617 for(i = 15;i >= 0; i--) {
1618 s->mem[2 * i] = s->mem[i];
1619 s->mem[2 * i + 1] = s->mem[i];
1620 }
1621 }
1622
1623 void ne2000_update_irq(NE2000State *s)
1624 {
1625 int isr;
1626 isr = s->isr & s->imr;
1627 if (isr)
1628 pic_set_irq(NE2000_IRQ, 1);
1629 else
1630 pic_set_irq(NE2000_IRQ, 0);
1631 }
1632
1633 int net_init(void)
1634 {
1635 struct ifreq ifr;
1636 int fd, ret, pid, status;
1637
1638 fd = open("/dev/net/tun", O_RDWR);
1639 if (fd < 0) {
1640 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1641 return -1;
1642 }
1643 memset(&ifr, 0, sizeof(ifr));
1644 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1645 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1646 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1647 if (ret != 0) {
1648 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1649 close(fd);
1650 return -1;
1651 }
1652 printf("Connected to host network interface: %s\n", ifr.ifr_name);
1653 fcntl(fd, F_SETFL, O_NONBLOCK);
1654 net_fd = fd;
1655
1656 /* try to launch network init script */
1657 pid = fork();
1658 if (pid >= 0) {
1659 if (pid == 0) {
1660 execl(network_script, network_script, ifr.ifr_name, NULL);
1661 exit(1);
1662 }
1663 while (waitpid(pid, &status, 0) != pid);
1664 if (!WIFEXITED(status) ||
1665 WEXITSTATUS(status) != 0) {
1666 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1667 network_script, ifr.ifr_name);
1668 }
1669 }
1670 return 0;
1671 }
1672
1673 void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1674 {
1675 #ifdef DEBUG_NE2000
1676 printf("NE2000: sending packet size=%d\n", size);
1677 #endif
1678 write(net_fd, buf, size);
1679 }
1680
1681 /* return true if the NE2000 can receive more data */
1682 int ne2000_can_receive(NE2000State *s)
1683 {
1684 int avail, index, boundary;
1685
1686 if (s->cmd & E8390_STOP)
1687 return 0;
1688 index = s->curpag << 8;
1689 boundary = s->boundary << 8;
1690 if (index < boundary)
1691 avail = boundary - index;
1692 else
1693 avail = (s->stop - s->start) - (index - boundary);
1694 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1695 return 0;
1696 return 1;
1697 }
1698
1699 void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1700 {
1701 uint8_t *p;
1702 int total_len, next, avail, len, index;
1703
1704 #if defined(DEBUG_NE2000)
1705 printf("NE2000: received len=%d\n", size);
1706 #endif
1707
1708 index = s->curpag << 8;
1709 /* 4 bytes for header */
1710 total_len = size + 4;
1711 /* address for next packet (4 bytes for CRC) */
1712 next = index + ((total_len + 4 + 255) & ~0xff);
1713 if (next >= s->stop)
1714 next -= (s->stop - s->start);
1715 /* prepare packet header */
1716 p = s->mem + index;
1717 p[0] = ENRSR_RXOK; /* receive status */
1718 p[1] = next >> 8;
1719 p[2] = total_len;
1720 p[3] = total_len >> 8;
1721 index += 4;
1722
1723 /* write packet data */
1724 while (size > 0) {
1725 avail = s->stop - index;
1726 len = size;
1727 if (len > avail)
1728 len = avail;
1729 memcpy(s->mem + index, buf, len);
1730 buf += len;
1731 index += len;
1732 if (index == s->stop)
1733 index = s->start;
1734 size -= len;
1735 }
1736 s->curpag = next >> 8;
1737
1738 /* now we can signal we have receive something */
1739 s->isr |= ENISR_RX;
1740 ne2000_update_irq(s);
1741 }
1742
1743 void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1744 {
1745 NE2000State *s = &ne2000_state;
1746 int offset, page;
1747
1748 addr &= 0xf;
1749 #ifdef DEBUG_NE2000
1750 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1751 #endif
1752 if (addr == E8390_CMD) {
1753 /* control register */
1754 s->cmd = val;
1755 if (val & E8390_START) {
1756 /* test specific case: zero length transfert */
1757 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1758 s->rcnt == 0) {
1759 s->isr |= ENISR_RDC;
1760 ne2000_update_irq(s);
1761 }
1762 if (val & E8390_TRANS) {
1763 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1764 /* signal end of transfert */
1765 s->tsr = ENTSR_PTX;
1766 s->isr |= ENISR_TX;
1767 ne2000_update_irq(s);
1768 }
1769 }
1770 } else {
1771 page = s->cmd >> 6;
1772 offset = addr | (page << 4);
1773 switch(offset) {
1774 case EN0_STARTPG:
1775 s->start = val << 8;
1776 break;
1777 case EN0_STOPPG:
1778 s->stop = val << 8;
1779 break;
1780 case EN0_BOUNDARY:
1781 s->boundary = val;
1782 break;
1783 case EN0_IMR:
1784 s->imr = val;
1785 ne2000_update_irq(s);
1786 break;
1787 case EN0_TPSR:
1788 s->tpsr = val;
1789 break;
1790 case EN0_TCNTLO:
1791 s->tcnt = (s->tcnt & 0xff00) | val;
1792 break;
1793 case EN0_TCNTHI:
1794 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1795 break;
1796 case EN0_RSARLO:
1797 s->rsar = (s->rsar & 0xff00) | val;
1798 break;
1799 case EN0_RSARHI:
1800 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1801 break;
1802 case EN0_RCNTLO:
1803 s->rcnt = (s->rcnt & 0xff00) | val;
1804 break;
1805 case EN0_RCNTHI:
1806 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1807 break;
1808 case EN0_DCFG:
1809 s->dcfg = val;
1810 break;
1811 case EN0_ISR:
1812 s->isr &= ~val;
1813 ne2000_update_irq(s);
1814 break;
1815 case EN1_PHYS ... EN1_PHYS + 5:
1816 s->phys[offset - EN1_PHYS] = val;
1817 break;
1818 case EN1_CURPAG:
1819 s->curpag = val;
1820 break;
1821 case EN1_MULT ... EN1_MULT + 7:
1822 s->mult[offset - EN1_MULT] = val;
1823 break;
1824 }
1825 }
1826 }
1827
1828 uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1829 {
1830 NE2000State *s = &ne2000_state;
1831 int offset, page, ret;
1832
1833 addr &= 0xf;
1834 if (addr == E8390_CMD) {
1835 ret = s->cmd;
1836 } else {
1837 page = s->cmd >> 6;
1838 offset = addr | (page << 4);
1839 switch(offset) {
1840 case EN0_TSR:
1841 ret = s->tsr;
1842 break;
1843 case EN0_BOUNDARY:
1844 ret = s->boundary;
1845 break;
1846 case EN0_ISR:
1847 ret = s->isr;
1848 break;
1849 case EN1_PHYS ... EN1_PHYS + 5:
1850 ret = s->phys[offset - EN1_PHYS];
1851 break;
1852 case EN1_CURPAG:
1853 ret = s->curpag;
1854 break;
1855 case EN1_MULT ... EN1_MULT + 7:
1856 ret = s->mult[offset - EN1_MULT];
1857 break;
1858 default:
1859 ret = 0x00;
1860 break;
1861 }
1862 }
1863 #ifdef DEBUG_NE2000
1864 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1865 #endif
1866 return ret;
1867 }
1868
1869 void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1870 {
1871 NE2000State *s = &ne2000_state;
1872 uint8_t *p;
1873
1874 #ifdef DEBUG_NE2000
1875 printf("NE2000: asic write val=0x%04x\n", val);
1876 #endif
1877 p = s->mem + s->rsar;
1878 if (s->dcfg & 0x01) {
1879 /* 16 bit access */
1880 p[0] = val;
1881 p[1] = val >> 8;
1882 s->rsar += 2;
1883 s->rcnt -= 2;
1884 } else {
1885 /* 8 bit access */
1886 p[0] = val;
1887 s->rsar++;
1888 s->rcnt--;
1889 }
1890 /* wrap */
1891 if (s->rsar == s->stop)
1892 s->rsar = s->start;
1893 if (s->rcnt == 0) {
1894 /* signal end of transfert */
1895 s->isr |= ENISR_RDC;
1896 ne2000_update_irq(s);
1897 }
1898 }
1899
1900 uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1901 {
1902 NE2000State *s = &ne2000_state;
1903 uint8_t *p;
1904 int ret;
1905
1906 p = s->mem + s->rsar;
1907 if (s->dcfg & 0x01) {
1908 /* 16 bit access */
1909 ret = p[0] | (p[1] << 8);
1910 s->rsar += 2;
1911 s->rcnt -= 2;
1912 } else {
1913 /* 8 bit access */
1914 ret = p[0];
1915 s->rsar++;
1916 s->rcnt--;
1917 }
1918 /* wrap */
1919 if (s->rsar == s->stop)
1920 s->rsar = s->start;
1921 if (s->rcnt == 0) {
1922 /* signal end of transfert */
1923 s->isr |= ENISR_RDC;
1924 ne2000_update_irq(s);
1925 }
1926 #ifdef DEBUG_NE2000
1927 printf("NE2000: asic read val=0x%04x\n", ret);
1928 #endif
1929 return ret;
1930 }
1931
1932 void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1933 {
1934 /* nothing to do (end of reset pulse) */
1935 }
1936
1937 uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1938 {
1939 ne2000_reset();
1940 return 0;
1941 }
1942
1943 void ne2000_init(void)
1944 {
1945 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1946 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1947
1948 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1949 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1950 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1951 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1952
1953 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1954 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1955 ne2000_reset();
1956 }
1957
1958 /***********************************************************/
1959 /* keyboard emulation */
1960
1961 /* Keyboard Controller Commands */
1962 #define KBD_CCMD_READ_MODE 0x20 /* Read mode bits */
1963 #define KBD_CCMD_WRITE_MODE 0x60 /* Write mode bits */
1964 #define KBD_CCMD_GET_VERSION 0xA1 /* Get controller version */
1965 #define KBD_CCMD_MOUSE_DISABLE 0xA7 /* Disable mouse interface */
1966 #define KBD_CCMD_MOUSE_ENABLE 0xA8 /* Enable mouse interface */
1967 #define KBD_CCMD_TEST_MOUSE 0xA9 /* Mouse interface test */
1968 #define KBD_CCMD_SELF_TEST 0xAA /* Controller self test */
1969 #define KBD_CCMD_KBD_TEST 0xAB /* Keyboard interface test */
1970 #define KBD_CCMD_KBD_DISABLE 0xAD /* Keyboard interface disable */
1971 #define KBD_CCMD_KBD_ENABLE 0xAE /* Keyboard interface enable */
1972 #define KBD_CCMD_READ_INPORT 0xC0 /* read input port */
1973 #define KBD_CCMD_READ_OUTPORT 0xD0 /* read output port */
1974 #define KBD_CCMD_WRITE_OUTPORT 0xD1 /* write output port */
1975 #define KBD_CCMD_WRITE_OBUF 0xD2
1976 #define KBD_CCMD_WRITE_AUX_OBUF 0xD3 /* Write to output buffer as if
1977 initiated by the auxiliary device */
1978 #define KBD_CCMD_WRITE_MOUSE 0xD4 /* Write the following byte to the mouse */
1979 #define KBD_CCMD_DISABLE_A20 0xDD /* HP vectra only ? */
1980 #define KBD_CCMD_ENABLE_A20 0xDF /* HP vectra only ? */
1981 #define KBD_CCMD_RESET 0xFE
1982
1983 /* Keyboard Commands */
1984 #define KBD_CMD_SET_LEDS 0xED /* Set keyboard leds */
1985 #define KBD_CMD_ECHO 0xEE
1986 #define KBD_CMD_GET_ID 0xF2 /* get keyboard ID */
1987 #define KBD_CMD_SET_RATE 0xF3 /* Set typematic rate */
1988 #define KBD_CMD_ENABLE 0xF4 /* Enable scanning */
1989 #define KBD_CMD_RESET_DISABLE 0xF5 /* reset and disable scanning */
1990 #define KBD_CMD_RESET_ENABLE 0xF6 /* reset and enable scanning */
1991 #define KBD_CMD_RESET 0xFF /* Reset */
1992
1993 /* Keyboard Replies */
1994 #define KBD_REPLY_POR 0xAA /* Power on reset */
1995 #define KBD_REPLY_ACK 0xFA /* Command ACK */
1996 #define KBD_REPLY_RESEND 0xFE /* Command NACK, send the cmd again */
1997
1998 /* Status Register Bits */
1999 #define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */
2000 #define KBD_STAT_IBF 0x02 /* Keyboard input buffer full */
2001 #define KBD_STAT_SELFTEST 0x04 /* Self test successful */
2002 #define KBD_STAT_CMD 0x08 /* Last write was a command write (0=data) */
2003 #define KBD_STAT_UNLOCKED 0x10 /* Zero if keyboard locked */
2004 #define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */
2005 #define KBD_STAT_GTO 0x40 /* General receive/xmit timeout */
2006 #define KBD_STAT_PERR 0x80 /* Parity error */
2007
2008 /* Controller Mode Register Bits */
2009 #define KBD_MODE_KBD_INT 0x01 /* Keyboard data generate IRQ1 */
2010 #define KBD_MODE_MOUSE_INT 0x02 /* Mouse data generate IRQ12 */
2011 #define KBD_MODE_SYS 0x04 /* The system flag (?) */
2012 #define KBD_MODE_NO_KEYLOCK 0x08 /* The keylock doesn't affect the keyboard if set */
2013 #define KBD_MODE_DISABLE_KBD 0x10 /* Disable keyboard interface */
2014 #define KBD_MODE_DISABLE_MOUSE 0x20 /* Disable mouse interface */
2015 #define KBD_MODE_KCC 0x40 /* Scan code conversion to PC format */
2016 #define KBD_MODE_RFU 0x80
2017
2018 /* Mouse Commands */
2019 #define AUX_SET_SCALE11 0xE6 /* Set 1:1 scaling */
2020 #define AUX_SET_SCALE21 0xE7 /* Set 2:1 scaling */
2021 #define AUX_SET_RES 0xE8 /* Set resolution */
2022 #define AUX_GET_SCALE 0xE9 /* Get scaling factor */
2023 #define AUX_SET_STREAM 0xEA /* Set stream mode */
2024 #define AUX_POLL 0xEB /* Poll */
2025 #define AUX_RESET_WRAP 0xEC /* Reset wrap mode */
2026 #define AUX_SET_WRAP 0xEE /* Set wrap mode */
2027 #define AUX_SET_REMOTE 0xF0 /* Set remote mode */
2028 #define AUX_GET_TYPE 0xF2 /* Get type */
2029 #define AUX_SET_SAMPLE 0xF3 /* Set sample rate */
2030 #define AUX_ENABLE_DEV 0xF4 /* Enable aux device */
2031 #define AUX_DISABLE_DEV 0xF5 /* Disable aux device */
2032 #define AUX_SET_DEFAULT 0xF6
2033 #define AUX_RESET 0xFF /* Reset aux device */
2034 #define AUX_ACK 0xFA /* Command byte ACK. */
2035
2036 #define MOUSE_STATUS_REMOTE 0x40
2037 #define MOUSE_STATUS_ENABLED 0x20
2038 #define MOUSE_STATUS_SCALE21 0x10
2039
2040 #define KBD_QUEUE_SIZE 256
2041
2042 typedef struct {
2043 uint8_t data[KBD_QUEUE_SIZE];
2044 int rptr, wptr, count;
2045 } KBDQueue;
2046
2047 typedef struct KBDState {
2048 KBDQueue queues[2];
2049 uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2050 uint8_t status;
2051 uint8_t mode;
2052 /* keyboard state */
2053 int kbd_write_cmd;
2054 int scan_enabled;
2055 /* mouse state */
2056 int mouse_write_cmd;
2057 uint8_t mouse_status;
2058 uint8_t mouse_resolution;
2059 uint8_t mouse_sample_rate;
2060 uint8_t mouse_wrap;
2061 uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
2062 uint8_t mouse_detect_state;
2063 int mouse_dx; /* current values, needed for 'poll' mode */
2064 int mouse_dy;
2065 int mouse_dz;
2066 uint8_t mouse_buttons;
2067 } KBDState;
2068
2069 KBDState kbd_state;
2070 int reset_requested;
2071
2072 /* update irq and KBD_STAT_[MOUSE_]OBF */
2073 /* XXX: not generating the irqs if KBD_MODE_DISABLE_KBD is set may be
2074 incorrect, but it avoids having to simulate exact delays */
2075 static void kbd_update_irq(KBDState *s)
2076 {
2077 int irq12_level, irq1_level;
2078
2079 irq1_level = 0;
2080 irq12_level = 0;
2081 s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
2082 if (s->queues[0].count != 0 ||
2083 s->queues[1].count != 0) {
2084 s->status |= KBD_STAT_OBF;
2085 if (s->queues[1].count != 0) {
2086 s->status |= KBD_STAT_MOUSE_OBF;
2087 if (s->mode & KBD_MODE_MOUSE_INT)
2088 irq12_level = 1;
2089 } else {
2090 if ((s->mode & KBD_MODE_KBD_INT) &&
2091 !(s->mode & KBD_MODE_DISABLE_KBD))
2092 irq1_level = 1;
2093 }
2094 }
2095 pic_set_irq(1, irq1_level);
2096 pic_set_irq(12, irq12_level);
2097 }
2098
2099 static void kbd_queue(KBDState *s, int b, int aux)
2100 {
2101 KBDQueue *q = &kbd_state.queues[aux];
2102
2103 #if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
2104 if (aux)
2105 printf("mouse event: 0x%02x\n", b);
2106 #ifdef DEBUG_KBD
2107 else
2108 printf("kbd event: 0x%02x\n", b);
2109 #endif
2110 #endif
2111 if (q->count >= KBD_QUEUE_SIZE)
2112 return;
2113 q->data[q->wptr] = b;
2114 if (++q->wptr == KBD_QUEUE_SIZE)
2115 q->wptr = 0;
2116 q->count++;
2117 kbd_update_irq(s);
2118 }
2119
2120 void kbd_put_keycode(int keycode)
2121 {
2122 KBDState *s = &kbd_state;
2123 kbd_queue(s, keycode, 0);
2124 }
2125
2126 uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2127 {
2128 KBDState *s = &kbd_state;
2129 int val;
2130 val = s->status;
2131 #if defined(DEBUG_KBD)
2132 printf("kbd: read status=0x%02x\n", val);
2133 #endif
2134 return val;
2135 }
2136
2137 void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2138 {
2139 KBDState *s = &kbd_state;
2140
2141 #ifdef DEBUG_KBD
2142 printf("kbd: write cmd=0x%02x\n", val);
2143 #endif
2144 switch(val) {
2145 case KBD_CCMD_READ_MODE:
2146 kbd_queue(s, s->mode, 0);
2147 break;
2148 case KBD_CCMD_WRITE_MODE:
2149 case KBD_CCMD_WRITE_OBUF:
2150 case KBD_CCMD_WRITE_AUX_OBUF:
2151 case KBD_CCMD_WRITE_MOUSE:
2152 case KBD_CCMD_WRITE_OUTPORT:
2153 s->write_cmd = val;
2154 break;
2155 case KBD_CCMD_MOUSE_DISABLE:
2156 s->mode |= KBD_MODE_DISABLE_MOUSE;
2157 break;
2158 case KBD_CCMD_MOUSE_ENABLE:
2159 s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2160 break;
2161 case KBD_CCMD_TEST_MOUSE:
2162 kbd_queue(s, 0x00, 0);
2163 break;
2164 case KBD_CCMD_SELF_TEST:
2165 s->status |= KBD_STAT_SELFTEST;
2166 kbd_queue(s, 0x55, 0);
2167 break;
2168 case KBD_CCMD_KBD_TEST:
2169 kbd_queue(s, 0x00, 0);
2170 break;
2171 case KBD_CCMD_KBD_DISABLE:
2172 s->mode |= KBD_MODE_DISABLE_KBD;
2173 kbd_update_irq(s);
2174 break;
2175 case KBD_CCMD_KBD_ENABLE:
2176 s->mode &= ~KBD_MODE_DISABLE_KBD;
2177 kbd_update_irq(s);
2178 break;
2179 case KBD_CCMD_READ_INPORT:
2180 kbd_queue(s, 0x00, 0);
2181 break;
2182 case KBD_CCMD_READ_OUTPORT:
2183 /* XXX: check that */
2184 val = 0x01 | (a20_enabled << 1);
2185 if (s->status & KBD_STAT_OBF)
2186 val |= 0x10;
2187 if (s->status & KBD_STAT_MOUSE_OBF)
2188 val |= 0x20;
2189 kbd_queue(s, val, 0);
2190 break;
2191 case KBD_CCMD_ENABLE_A20:
2192 cpu_x86_set_a20(env, 1);
2193 break;
2194 case KBD_CCMD_DISABLE_A20:
2195 cpu_x86_set_a20(env, 0);
2196 break;
2197 case KBD_CCMD_RESET:
2198 reset_requested = 1;
2199 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2200 break;
2201 case 0xff:
2202 /* ignore that - I don't know what is its use */
2203 break;
2204 default:
2205 fprintf(stderr, "qemu: unsupported keyboard cmd=0x%02x\n", val);
2206 break;
2207 }
2208 }
2209
2210 uint32_t kbd_read_data(CPUX86State *env, uint32_t addr)
2211 {
2212 KBDState *s = &kbd_state;
2213 KBDQueue *q;
2214 int val, index;
2215
2216 q = &s->queues[0]; /* first check KBD data */
2217 if (q->count == 0)
2218 q = &s->queues[1]; /* then check AUX data */
2219 if (q->count == 0) {
2220 /* NOTE: if no data left, we return the last keyboard one
2221 (needed for EMM386) */
2222 /* XXX: need a timer to do things correctly */
2223 q = &s->queues[0];
2224 index = q->rptr - 1;
2225 if (index < 0)
2226 index = KBD_QUEUE_SIZE - 1;
2227 val = q->data[index];
2228 } else {
2229 val = q->data[q->rptr];
2230 if (++q->rptr == KBD_QUEUE_SIZE)
2231 q->rptr = 0;
2232 q->count--;
2233 /* reading deasserts IRQ */
2234 if (q == &s->queues[0])
2235 pic_set_irq(1, 0);
2236 else
2237 pic_set_irq(12, 0);
2238 }
2239 /* reassert IRQs if data left */
2240 kbd_update_irq(s);
2241 #ifdef DEBUG_KBD
2242 printf("kbd: read data=0x%02x\n", val);
2243 #endif
2244 return val;
2245 }
2246
2247 static void kbd_reset_keyboard(KBDState *s)
2248 {
2249 s->scan_enabled = 1;
2250 }
2251
2252 static void kbd_write_keyboard(KBDState *s, int val)
2253 {
2254 switch(s->kbd_write_cmd) {
2255 default:
2256 case -1:
2257 switch(val) {
2258 case 0x00:
2259 kbd_queue(s, KBD_REPLY_ACK, 0);
2260 break;
2261 case 0x05:
2262 kbd_queue(s, KBD_REPLY_RESEND, 0);
2263 break;
2264 case KBD_CMD_GET_ID:
2265 kbd_queue(s, KBD_REPLY_ACK, 0);
2266 kbd_queue(s, 0xab, 0);
2267 kbd_queue(s, 0x83, 0);
2268 break;
2269 case KBD_CMD_ECHO:
2270 kbd_queue(s, KBD_CMD_ECHO, 0);
2271 break;
2272 case KBD_CMD_ENABLE:
2273 s->scan_enabled = 1;
2274 kbd_queue(s, KBD_REPLY_ACK, 0);
2275 break;
2276 case KBD_CMD_SET_LEDS:
2277 case KBD_CMD_SET_RATE:
2278 s->kbd_write_cmd = val;
2279 kbd_queue(s, KBD_REPLY_ACK, 0);
2280 break;
2281 case KBD_CMD_RESET_DISABLE:
2282 kbd_reset_keyboard(s);
2283 s->scan_enabled = 0;
2284 kbd_queue(s, KBD_REPLY_ACK, 0);
2285 break;
2286 case KBD_CMD_RESET_ENABLE:
2287 kbd_reset_keyboard(s);
2288 s->scan_enabled = 1;
2289 kbd_queue(s, KBD_REPLY_ACK, 0);
2290 break;
2291 case KBD_CMD_RESET:
2292 kbd_reset_keyboard(s);
2293 kbd_queue(s, KBD_REPLY_ACK, 0);
2294 kbd_queue(s, KBD_REPLY_POR, 0);
2295 break;
2296 default:
2297 kbd_queue(s, KBD_REPLY_ACK, 0);
2298 break;
2299 }
2300 break;
2301 case KBD_CMD_SET_LEDS:
2302 kbd_queue(s, KBD_REPLY_ACK, 0);
2303 s->kbd_write_cmd = -1;
2304 break;
2305 case KBD_CMD_SET_RATE:
2306 kbd_queue(s, KBD_REPLY_ACK, 0);
2307 s->kbd_write_cmd = -1;
2308 break;
2309 }
2310 }
2311
2312 static void kbd_mouse_send_packet(KBDState *s)
2313 {
2314 unsigned int b;
2315 int dx1, dy1, dz1;
2316
2317 dx1 = s->mouse_dx;
2318 dy1 = s->mouse_dy;
2319 dz1 = s->mouse_dz;
2320 /* XXX: increase range to 8 bits ? */
2321 if (dx1 > 127)
2322 dx1 = 127;
2323 else if (dx1 < -127)
2324 dx1 = -127;
2325 if (dy1 > 127)
2326 dy1 = 127;
2327 else if (dy1 < -127)
2328 dy1 = -127;
2329 b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
2330 kbd_queue(s, b, 1);
2331 kbd_queue(s, dx1 & 0xff, 1);
2332 kbd_queue(s, dy1 & 0xff, 1);
2333 /* extra byte for IMPS/2 or IMEX */
2334 switch(s->mouse_type) {
2335 default:
2336 break;
2337 case 3:
2338 if (dz1 > 127)
2339 dz1 = 127;
2340 else if (dz1 < -127)
2341 dz1 = -127;
2342 kbd_queue(s, dz1 & 0xff, 1);
2343 break;
2344 case 4:
2345 if (dz1 > 7)
2346 dz1 = 7;
2347 else if (dz1 < -7)
2348 dz1 = -7;
2349 b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
2350 kbd_queue(s, b, 1);
2351 break;
2352 }
2353
2354 /* update deltas */
2355 s->mouse_dx -= dx1;
2356 s->mouse_dy -= dy1;
2357 s->mouse_dz -= dz1;
2358 }
2359
2360 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
2361 {
2362 KBDState *s = &kbd_state;
2363
2364 /* check if deltas are recorded when disabled */
2365 if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
2366 return;
2367
2368 s->mouse_dx += dx;
2369 s->mouse_dy -= dy;
2370 s->mouse_dz += dz;
2371 s->mouse_buttons = buttons_state;
2372
2373 if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
2374 (s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
2375 for(;;) {
2376 /* if not remote, send event. Multiple events are sent if
2377 too big deltas */
2378 kbd_mouse_send_packet(s);
2379 if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
2380 break;
2381 }
2382 }
2383 }
2384
2385 static void kbd_write_mouse(KBDState *s, int val)
2386 {
2387 #ifdef DEBUG_MOUSE
2388 printf("kbd: write mouse 0x%02x\n", val);
2389 #endif
2390 switch(s->mouse_write_cmd) {
2391 default:
2392 case -1:
2393 /* mouse command */
2394 if (s->mouse_wrap) {
2395 if (val == AUX_RESET_WRAP) {
2396 s->mouse_wrap = 0;
2397 kbd_queue(s, AUX_ACK, 1);
2398 return;
2399 } else if (val != AUX_RESET) {
2400 kbd_queue(s, val, 1);
2401 return;
2402 }
2403 }
2404 switch(val) {
2405 case AUX_SET_SCALE11:
2406 s->mouse_status &= ~MOUSE_STATUS_SCALE21;
2407 kbd_queue(s, AUX_ACK, 1);
2408 break;
2409 case AUX_SET_SCALE21:
2410 s->mouse_status |= MOUSE_STATUS_SCALE21;
2411 kbd_queue(s, AUX_ACK, 1);
2412 break;
2413 case AUX_SET_STREAM:
2414 s->mouse_status &= ~MOUSE_STATUS_REMOTE;
2415 kbd_queue(s, AUX_ACK, 1);
2416 break;
2417 case AUX_SET_WRAP:
2418 s->mouse_wrap = 1;
2419 kbd_queue(s, AUX_ACK, 1);
2420 break;
2421 case AUX_SET_REMOTE:
2422 s->mouse_status |= MOUSE_STATUS_REMOTE;
2423 kbd_queue(s, AUX_ACK, 1);
2424 break;
2425 case AUX_GET_TYPE:
2426 kbd_queue(s, AUX_ACK, 1);
2427 kbd_queue(s, s->mouse_type, 1);
2428 break;
2429 case AUX_SET_RES:
2430 case AUX_SET_SAMPLE:
2431 s->mouse_write_cmd = val;
2432 kbd_queue(s, AUX_ACK, 1);
2433 break;
2434 case AUX_GET_SCALE:
2435 kbd_queue(s, AUX_ACK, 1);
2436 kbd_queue(s, s->mouse_status, 1);
2437 kbd_queue(s, s->mouse_resolution, 1);
2438 kbd_queue(s, s->mouse_sample_rate, 1);
2439 break;
2440 case AUX_POLL:
2441 kbd_queue(s, AUX_ACK, 1);
2442 kbd_mouse_send_packet(s);
2443 break;
2444 case AUX_ENABLE_DEV:
2445 s->mouse_status |= MOUSE_STATUS_ENABLED;
2446 kbd_queue(s, AUX_ACK, 1);
2447 break;
2448 case AUX_DISABLE_DEV:
2449 s->mouse_status &= ~MOUSE_STATUS_ENABLED;
2450 kbd_queue(s, AUX_ACK, 1);
2451 break;
2452 case AUX_SET_DEFAULT:
2453 s->mouse_sample_rate = 100;
2454 s->mouse_resolution = 2;
2455 s->mouse_status = 0;
2456 kbd_queue(s, AUX_ACK, 1);
2457 break;
2458 case AUX_RESET:
2459 s->mouse_sample_rate = 100;
2460 s->mouse_resolution = 2;
2461 s->mouse_status = 0;
2462 kbd_queue(s, AUX_ACK, 1);
2463 kbd_queue(s, 0xaa, 1);
2464 kbd_queue(s, s->mouse_type, 1);
2465 break;
2466 default:
2467 break;
2468 }
2469 break;
2470 case AUX_SET_SAMPLE:
2471 s->mouse_sample_rate = val;
2472 #if 0
2473 /* detect IMPS/2 or IMEX */
2474 switch(s->mouse_detect_state) {
2475 default:
2476 case 0:
2477 if (val == 200)
2478 s->mouse_detect_state = 1;
2479 break;
2480 case 1:
2481 if (val == 100)
2482 s->mouse_detect_state = 2;
2483 else if (val == 200)
2484 s->mouse_detect_state = 3;
2485 else
2486 s->mouse_detect_state = 0;
2487 break;
2488 case 2:
2489 if (val == 80)
2490 s->mouse_type = 3; /* IMPS/2 */
2491 s->mouse_detect_state = 0;
2492 break;
2493 case 3:
2494 if (val == 80)
2495 s->mouse_type = 4; /* IMEX */
2496 s->mouse_detect_state = 0;
2497 break;
2498 }
2499 #endif
2500 kbd_queue(s, AUX_ACK, 1);
2501 s->mouse_write_cmd = -1;
2502 break;
2503 case AUX_SET_RES:
2504 s->mouse_resolution = val;
2505 kbd_queue(s, AUX_ACK, 1);
2506 s->mouse_write_cmd = -1;
2507 break;
2508 }
2509 }
2510
2511 void kbd_write_data(CPUX86State *env, uint32_t addr, uint32_t val)
2512 {
2513 KBDState *s = &kbd_state;
2514
2515 #ifdef DEBUG_KBD
2516 printf("kbd: write data=0x%02x\n", val);
2517 #endif
2518
2519 switch(s->write_cmd) {
2520 case 0:
2521 kbd_write_keyboard(s, val);
2522 break;
2523 case KBD_CCMD_WRITE_MODE:
2524 s->mode = val;
2525 kbd_update_irq(s);
2526 break;
2527 case KBD_CCMD_WRITE_OBUF:
2528 kbd_queue(s, val, 0);
2529 break;
2530 case KBD_CCMD_WRITE_AUX_OBUF:
2531 kbd_queue(s, val, 1);
2532 break;
2533 case KBD_CCMD_WRITE_OUTPORT:
2534 cpu_x86_set_a20(env, (val >> 1) & 1);
2535 if (!(val & 1)) {
2536 reset_requested = 1;
2537 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2538 }
2539 break;
2540 case KBD_CCMD_WRITE_MOUSE:
2541 kbd_write_mouse(s, val);
2542 break;
2543 default:
2544 break;
2545 }
2546 s->write_cmd = 0;
2547 }
2548
2549 void kbd_reset(KBDState *s)
2550 {
2551 KBDQueue *q;
2552 int i;
2553
2554 s->kbd_write_cmd = -1;
2555 s->mouse_write_cmd = -1;
2556 s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2557 s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
2558 for(i = 0; i < 2; i++) {
2559 q = &s->queues[i];
2560 q->rptr = 0;
2561 q->wptr = 0;
2562 q->count = 0;
2563 }
2564 }
2565
2566 void kbd_init(void)
2567 {
2568 kbd_reset(&kbd_state);
2569 register_ioport_read(0x60, 1, kbd_read_data, 1);
2570 register_ioport_write(0x60, 1, kbd_write_data, 1);
2571 register_ioport_read(0x64, 1, kbd_read_status, 1);
2572 register_ioport_write(0x64, 1, kbd_write_command, 1);
2573 }
2574
2575 /***********************************************************/
2576 /* Bochs BIOS debug ports */
2577
2578 void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2579 {
2580 switch(addr) {
2581 /* Bochs BIOS messages */
2582 case 0x400:
2583 case 0x401:
2584 fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2585 exit(1);
2586 case 0x402:
2587 case 0x403:
2588 #ifdef DEBUG_BIOS
2589 fprintf(stderr, "%c", val);
2590 #endif
2591 break;
2592
2593 /* LGPL'ed VGA BIOS messages */
2594 case 0x501:
2595 case 0x502:
2596 fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2597 exit(1);
2598 case 0x500:
2599 case 0x503:
2600 #ifdef DEBUG_BIOS
2601 fprintf(stderr, "%c", val);
2602 #endif
2603 break;
2604 }
2605 }
2606
2607 void bochs_bios_init(void)
2608 {
2609 register_ioport_write(0x400, 1, bochs_bios_write, 2);
2610 register_ioport_write(0x401, 1, bochs_bios_write, 2);
2611 register_ioport_write(0x402, 1, bochs_bios_write, 1);
2612 register_ioport_write(0x403, 1, bochs_bios_write, 1);
2613
2614 register_ioport_write(0x501, 1, bochs_bios_write, 2);
2615 register_ioport_write(0x502, 1, bochs_bios_write, 2);
2616 register_ioport_write(0x500, 1, bochs_bios_write, 1);
2617 register_ioport_write(0x503, 1, bochs_bios_write, 1);
2618 }
2619
2620 /***********************************************************/
2621 /* dumb display */
2622
2623 /* init terminal so that we can grab keys */
2624 static struct termios oldtty;
2625
2626 static void term_exit(void)
2627 {
2628 tcsetattr (0, TCSANOW, &oldtty);
2629 }
2630
2631 static void term_init(void)
2632 {
2633 struct termios tty;
2634
2635 tcgetattr (0, &tty);
2636 oldtty = tty;
2637
2638 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2639 |INLCR|IGNCR|ICRNL|IXON);
2640 tty.c_oflag |= OPOST;
2641 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2642 /* if graphical mode, we allow Ctrl-C handling */
2643 if (nographic)
2644 tty.c_lflag &= ~ISIG;
2645 tty.c_cflag &= ~(CSIZE|PARENB);
2646 tty.c_cflag |= CS8;
2647 tty.c_cc[VMIN] = 1;
2648 tty.c_cc[VTIME] = 0;
2649
2650 tcsetattr (0, TCSANOW, &tty);
2651
2652 atexit(term_exit);
2653
2654 fcntl(0, F_SETFL, O_NONBLOCK);
2655 }
2656
2657 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2658 {
2659 }
2660
2661 static void dumb_resize(DisplayState *ds, int w, int h)
2662 {
2663 }
2664
2665 static void dumb_refresh(DisplayState *ds)
2666 {
2667 vga_update_display();
2668 }
2669
2670 void dumb_display_init(DisplayState *ds)
2671 {
2672 ds->data = NULL;
2673 ds->linesize = 0;
2674 ds->depth = 0;
2675 ds->dpy_update = dumb_update;
2676 ds->dpy_resize = dumb_resize;
2677 ds->dpy_refresh = dumb_refresh;
2678 }
2679
2680 #if !defined(CONFIG_SOFTMMU)
2681 /***********************************************************/
2682 /* cpu signal handler */
2683 static void host_segv_handler(int host_signum, siginfo_t *info,
2684 void *puc)
2685 {
2686 if (cpu_signal_handler(host_signum, info, puc))
2687 return;
2688 term_exit();
2689 abort();
2690 }
2691 #endif
2692
2693 static int timer_irq_pending;
2694 static int timer_irq_count;
2695
2696 static int timer_ms;
2697 static int gui_refresh_pending, gui_refresh_count;
2698
2699 static void host_alarm_handler(int host_signum, siginfo_t *info,
2700 void *puc)
2701 {
2702 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2703 some drift between cpu_get_ticks() and the interrupt time. So
2704 we queue some interrupts to avoid missing some */
2705 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2706 if (timer_irq_count) {
2707 if (timer_irq_count > 2)
2708 timer_irq_count = 2;
2709 timer_irq_count--;
2710 timer_irq_pending = 1;
2711 }
2712 gui_refresh_count += timer_ms;
2713 if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
2714 gui_refresh_count = 0;
2715 gui_refresh_pending = 1;
2716 }
2717
2718 /* XXX: seems dangerous to run that here. */
2719 DMA_run();
2720 SB16_run();
2721
2722 if (gui_refresh_pending || timer_irq_pending) {
2723 /* just exit from the cpu to have a chance to handle timers */
2724 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2725 }
2726 }
2727
2728 #ifdef CONFIG_SOFTMMU
2729 void *get_mmap_addr(unsigned long size)
2730 {
2731 return NULL;
2732 }
2733 #else
2734 unsigned long mmap_addr = PHYS_RAM_BASE;
2735
2736 void *get_mmap_addr(unsigned long size)
2737 {
2738 unsigned long addr;
2739 addr = mmap_addr;
2740 mmap_addr += ((size + 4095) & ~4095) + 4096;
2741 return (void *)addr;
2742 }
2743 #endif
2744
2745 /* main execution loop */
2746
2747 CPUState *cpu_gdbstub_get_env(void *opaque)
2748 {
2749 return global_env;
2750 }
2751
2752 int main_loop(void *opaque)
2753 {
2754 struct pollfd ufds[3], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2755 int ret, n, timeout, serial_ok;
2756 uint8_t ch;
2757 CPUState *env = global_env;
2758
2759 if (!term_inited) {
2760 /* initialize terminal only there so that the user has a
2761 chance to stop QEMU with Ctrl-C before the gdb connection
2762 is launched */
2763 term_inited = 1;
2764 term_init();
2765 }
2766
2767 serial_ok = 1;
2768 cpu_enable_ticks();
2769 for(;;) {
2770 ret = cpu_x86_exec(env);
2771 if (reset_requested) {
2772 ret = EXCP_INTERRUPT;
2773 break;
2774 }
2775 if (ret == EXCP_DEBUG) {
2776 ret = EXCP_DEBUG;
2777 break;
2778 }
2779 /* if hlt instruction, we wait until the next IRQ */
2780 if (ret == EXCP_HLT)
2781 timeout = 10;
2782 else
2783 timeout = 0;
2784 /* poll any events */
2785 serial_ufd = NULL;
2786 pf = ufds;
2787 if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
2788 serial_ufd = pf;
2789 pf->fd = 0;
2790 pf->events = POLLIN;
2791 pf++;
2792 }
2793 net_ufd = NULL;
2794 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2795 net_ufd = pf;
2796 pf->fd = net_fd;
2797 pf->events = POLLIN;
2798 pf++;
2799 }
2800 gdb_ufd = NULL;
2801 if (gdbstub_fd > 0) {
2802 gdb_ufd = pf;
2803 pf->fd = gdbstub_fd;
2804 pf->events = POLLIN;
2805 pf++;
2806 }
2807
2808 ret = poll(ufds, pf - ufds, timeout);
2809 if (ret > 0) {
2810 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2811 n = read(0, &ch, 1);
2812 if (n == 1) {
2813 serial_received_byte(&serial_ports[0], ch);
2814 } else {
2815 /* Closed, stop polling. */
2816 serial_ok = 0;
2817 }
2818 }
2819 if (net_ufd && (net_ufd->revents & POLLIN)) {
2820 uint8_t buf[MAX_ETH_FRAME_SIZE];
2821
2822 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2823 if (n > 0) {
2824 if (n < 60) {
2825 memset(buf + n, 0, 60 - n);
2826 n = 60;
2827 }
2828 ne2000_receive(&ne2000_state, buf, n);
2829 }
2830 }
2831 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2832 uint8_t buf[1];
2833 /* stop emulation if requested by gdb */
2834 n = read(gdbstub_fd, buf, 1);
2835 if (n == 1) {
2836 ret = EXCP_INTERRUPT;
2837 break;
2838 }
2839 }
2840 }
2841
2842 /* timer IRQ */
2843 if (timer_irq_pending) {
2844 pic_set_irq(0, 1);
2845 pic_set_irq(0, 0);
2846 timer_irq_pending = 0;
2847 /* XXX: RTC test */
2848 if (cmos_data[RTC_REG_B] & 0x50) {
2849 pic_set_irq(8, 1);
2850 }
2851 }
2852
2853 /* VGA */
2854 if (gui_refresh_pending) {
2855 display_state.dpy_refresh(&display_state);
2856 gui_refresh_pending = 0;
2857 }
2858 }
2859 cpu_disable_ticks();
2860 return ret;
2861 }
2862
2863 void help(void)
2864 {
2865 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2866 "usage: %s [options] [disk_image]\n"
2867 "\n"
2868 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
2869 "\n"
2870 "Standard options:\n"
2871 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
2872 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
2873 "-cdrom file use 'file' as IDE cdrom 2 image\n"
2874 "-boot [c|d] boot on hard disk (c) or CD-ROM (d)\n"
2875 "-snapshot write to temporary files instead of disk image files\n"
2876 "-m megs set virtual RAM size to megs MB\n"
2877 "-n script set network init script [default=%s]\n"
2878 "-tun-fd fd this fd talks to tap/tun, use it.\n"
2879 "-nographic disable graphical output\n"
2880 "\n"
2881 "Linux boot specific (does not require PC BIOS):\n"
2882 "-kernel bzImage use 'bzImage' as kernel image\n"
2883 "-append cmdline use 'cmdline' as kernel command line\n"
2884 "-initrd file use 'file' as initial ram disk\n"
2885 "\n"
2886 "Debug/Expert options:\n"
2887 "-s wait gdb connection to port %d\n"
2888 "-p port change gdb connection port\n"
2889 "-d output log in /tmp/vl.log\n"
2890 "-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
2891 "-L path set the directory for the BIOS and VGA BIOS\n"
2892 "\n"
2893 "During emulation, use C-a h to get terminal commands:\n",
2894 #ifdef CONFIG_SOFTMMU
2895 "qemu",
2896 #else
2897 "qemu-fast",
2898 #endif
2899 DEFAULT_NETWORK_SCRIPT,
2900 DEFAULT_GDBSTUB_PORT);
2901 term_print_help();
2902 #ifndef CONFIG_SOFTMMU
2903 printf("\n"
2904 "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
2905 "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
2906 "PC emulation.\n");
2907 #endif
2908 exit(1);
2909 }
2910
2911 struct option long_options[] = {
2912 { "initrd", 1, NULL, 0, },
2913 { "hda", 1, NULL, 0, },
2914 { "hdb", 1, NULL, 0, },
2915 { "snapshot", 0, NULL, 0, },
2916 { "hdachs", 1, NULL, 0, },
2917 { "nographic", 0, NULL, 0, },
2918 { "kernel", 1, NULL, 0, },
2919 { "append", 1, NULL, 0, },
2920 { "tun-fd", 1, NULL, 0, },
2921 { "hdc", 1, NULL, 0, },
2922 { "hdd", 1, NULL, 0, },
2923 { "cdrom", 1, NULL, 0, },
2924 { "boot", 1, NULL, 0, },
2925 { NULL, 0, NULL, 0 },
2926 };
2927
2928 #ifdef CONFIG_SDL
2929 /* SDL use the pthreads and they modify sigaction. We don't
2930 want that. */
2931 #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
2932 extern void __libc_sigaction();
2933 #define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
2934 #else
2935 extern void __sigaction();
2936 #define sigaction(sig, act, oact) __sigaction(sig, act, oact)
2937 #endif
2938 #endif /* CONFIG_SDL */
2939
2940 int main(int argc, char **argv)
2941 {
2942 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2943 int snapshot, linux_boot, total_ram_size;
2944 struct linux_params *params;
2945 struct sigaction act;
2946 struct itimerval itv;
2947 CPUX86State *env;
2948 const char *initrd_filename;
2949 const char *hd_filename[MAX_DISKS];
2950 const char *kernel_filename, *kernel_cmdline;
2951 DisplayState *ds = &display_state;
2952
2953 /* we never want that malloc() uses mmap() */
2954 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2955 initrd_filename = NULL;
2956 for(i = 0; i < MAX_DISKS; i++)
2957 hd_filename[i] = NULL;
2958 phys_ram_size = 32 * 1024 * 1024;
2959 vga_ram_size = VGA_RAM_SIZE;
2960 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2961 use_gdbstub = 0;
2962 gdbstub_port = DEFAULT_GDBSTUB_PORT;
2963 snapshot = 0;
2964 nographic = 0;
2965 kernel_filename = NULL;
2966 kernel_cmdline = "";
2967 for(;;) {
2968 c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
2969 if (c == -1)
2970 break;
2971 switch(c) {
2972 case 0:
2973 switch(long_index) {
2974 case 0:
2975 initrd_filename = optarg;
2976 break;
2977 case 1:
2978 hd_filename[0] = optarg;
2979 break;
2980 case 2:
2981 hd_filename[1] = optarg;
2982 break;
2983 case 3:
2984 snapshot = 1;
2985 break;
2986 case 4:
2987 {
2988 int cyls, heads, secs;
2989 const char *p;
2990 p = optarg;
2991 cyls = strtol(p, (char **)&p, 0);
2992 if (*p != ',')
2993 goto chs_fail;
2994 p++;
2995 heads = strtol(p, (char **)&p, 0);
2996 if (*p != ',')
2997 goto chs_fail;
2998 p++;
2999 secs = strtol(p, (char **)&p, 0);
3000 if (*p != '\0')
3001 goto chs_fail;
3002 ide_set_geometry(0, cyls, heads, secs);
3003 chs_fail: ;
3004 }
3005 break;
3006 case 5:
3007 nographic = 1;
3008 break;
3009 case 6:
3010 kernel_filename = optarg;
3011 break;
3012 case 7:
3013 kernel_cmdline = optarg;
3014 break;
3015 case 8:
3016 net_fd = atoi(optarg);
3017 break;
3018 case 9:
3019 hd_filename[2] = optarg;
3020 break;
3021 case 10:
3022 hd_filename[3] = optarg;
3023 break;
3024 case 11:
3025 hd_filename[2] = optarg;
3026 ide_set_cdrom(2, 1);
3027 break;
3028 case 12:
3029 boot_device = optarg[0];
3030 if (boot_device != 'c' && boot_device != 'd') {
3031 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
3032 exit(1);
3033 }
3034 break;
3035 }
3036 break;
3037 case 'h':
3038 help();
3039 break;
3040 case 'm':
3041 phys_ram_size = atoi(optarg) * 1024 * 1024;
3042 if (phys_ram_size <= 0)
3043 help();
3044 if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
3045 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
3046 PHYS_RAM_MAX_SIZE / (1024 * 1024));
3047 exit(1);
3048 }
3049 break;
3050 case 'd':
3051 cpu_set_log(CPU_LOG_ALL);
3052 break;
3053 case 'n':
3054 pstrcpy(network_script, sizeof(network_script), optarg);
3055 break;
3056 case 's':
3057 use_gdbstub = 1;
3058 break;
3059 case 'p':
3060 gdbstub_port = atoi(optarg);
3061 break;
3062 case 'L':
3063 bios_dir = optarg;
3064 break;
3065 }
3066 }
3067
3068 if (optind < argc) {
3069 hd_filename[0] = argv[optind++];
3070 }
3071
3072 linux_boot = (kernel_filename != NULL);
3073
3074 if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0')
3075 help();
3076
3077 /* boot to cd by default if no hard disk */
3078 if (hd_filename[0] == '\0' && boot_device == 'c')
3079 boot_device = 'd';
3080
3081 /* init debug */
3082 setvbuf(stdout, NULL, _IOLBF, 0);
3083
3084 /* init network tun interface */
3085 if (net_fd < 0)
3086 net_init();
3087
3088 /* init the memory */
3089 total_ram_size = phys_ram_size + vga_ram_size;
3090
3091 #ifdef CONFIG_SOFTMMU
3092 phys_ram_base = malloc(total_ram_size);
3093 if (!phys_ram_base) {
3094 fprintf(stderr, "Could not allocate physical memory\n");
3095 exit(1);
3096 }
3097 #else
3098 /* as we must map the same page at several addresses, we must use
3099 a fd */
3100 {
3101 const char *tmpdir;
3102
3103 tmpdir = getenv("QEMU_TMPDIR");
3104 if (!tmpdir)
3105 tmpdir = "/tmp";
3106 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3107 if (mkstemp(phys_ram_file) < 0) {
3108 fprintf(stderr, "Could not create temporary memory file '%s'\n",
3109 phys_ram_file);
3110 exit(1);
3111 }
3112 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3113 if (phys_ram_fd < 0) {
3114 fprintf(stderr, "Could not open temporary memory file '%s'\n",
3115 phys_ram_file);
3116 exit(1);
3117 }
3118 ftruncate(phys_ram_fd, total_ram_size);
3119 unlink(phys_ram_file);
3120 phys_ram_base = mmap(get_mmap_addr(total_ram_size),
3121 total_ram_size,
3122 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
3123 phys_ram_fd, 0);
3124 if (phys_ram_base == MAP_FAILED) {
3125 fprintf(stderr, "Could not map physical memory\n");
3126 exit(1);
3127 }
3128 }
3129 #endif
3130
3131 /* open the virtual block devices */
3132 for(i = 0; i < MAX_DISKS; i++) {
3133 if (hd_filename[i]) {
3134 bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3135 if (!bs_table[i]) {
3136 fprintf(stderr, "qemu: could not open hard disk image '%s\n",
3137 hd_filename[i]);
3138 exit(1);
3139 }
3140 }
3141 }
3142
3143 /* init CPU state */
3144 env = cpu_init();
3145 global_env = env;
3146 cpu_single_env = env;
3147
3148 init_ioports();
3149
3150 /* allocate RAM */
3151 cpu_register_physical_memory(0, phys_ram_size, 0);
3152
3153 if (linux_boot) {
3154 /* now we can load the kernel */
3155 ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
3156 if (ret < 0) {
3157 fprintf(stderr, "qemu: could not load kernel '%s'\n",
3158 kernel_filename);
3159 exit(1);
3160 }
3161
3162 /* load initrd */
3163 initrd_size = 0;
3164 if (initrd_filename) {
3165 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3166 if (initrd_size < 0) {
3167 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
3168 initrd_filename);
3169 exit(1);
3170 }
3171 }
3172
3173 /* init kernel params */
3174 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3175 memset(params, 0, sizeof(struct linux_params));
3176 params->mount_root_rdonly = 0;
3177 stw_raw(&params->cl_magic, 0xA33F);
3178 stw_raw(&params->cl_offset, params->commandline - (uint8_t *)params);
3179 stl_raw(&params->alt_mem_k, (phys_ram_size / 1024) - 1024);
3180 pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
3181 params->loader_type = 0x01;
3182 if (initrd_size > 0) {
3183 stl_raw(&params->initrd_start, INITRD_LOAD_ADDR);
3184 stl_raw(&params->initrd_size, initrd_size);
3185 }
3186 params->orig_video_lines = 25;
3187 params->orig_video_cols = 80;
3188
3189 /* setup basic memory access */
3190 env->cr[0] = 0x00000033;
3191 cpu_x86_init_mmu(env);
3192
3193 memset(params->idt_table, 0, sizeof(params->idt_table));
3194
3195 stq_raw(&params->gdt_table[2], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3196 stq_raw(&params->gdt_table[3], 0x00cf92000000ffffLL); /* KERNEL_DS */
3197 /* for newer kernels (2.6.0) CS/DS are at different addresses */
3198 stq_raw(&params->gdt_table[12], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3199 stq_raw(&params->gdt_table[13], 0x00cf92000000ffffLL); /* KERNEL_DS */
3200
3201 env->idt.base = (void *)((uint8_t *)params->idt_table - phys_ram_base);
3202 env->idt.limit = sizeof(params->idt_table) - 1;
3203 env->gdt.base = (void *)((uint8_t *)params->gdt_table - phys_ram_base);
3204 env->gdt.limit = sizeof(params->gdt_table) - 1;
3205
3206 cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
3207 cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3208 cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3209 cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3210 cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3211 cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3212
3213 env->eip = KERNEL_LOAD_ADDR;
3214 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3215 env->eflags = 0x2;
3216
3217 } else {
3218 char buf[1024];
3219
3220 /* RAW PC boot */
3221
3222 /* BIOS load */
3223 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3224 ret = load_image(buf, phys_ram_base + 0x000f0000);
3225 if (ret != 0x10000) {
3226 fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf);
3227 exit(1);
3228 }
3229
3230 /* VGA BIOS load */
3231 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
3232 ret = load_image(buf, phys_ram_base + 0x000c0000);
3233
3234 /* setup basic memory access */
3235 env->cr[0] = 0x60000010;
3236 cpu_x86_init_mmu(env);
3237
3238 env->idt.limit = 0xffff;
3239 env->gdt.limit = 0xffff;
3240 env->ldt.limit = 0xffff;
3241 env->ldt.flags = DESC_P_MASK;
3242 env->tr.limit = 0xffff;
3243 env->tr.flags = DESC_P_MASK;
3244
3245 /* not correct (CS base=0xffff0000) */
3246 cpu_x86_load_seg_cache(env, R_CS, 0xf000, (uint8_t *)0x000f0000, 0xffff, 0);
3247 cpu_x86_load_seg_cache(env, R_DS, 0, NULL, 0xffff, 0);
3248 cpu_x86_load_seg_cache(env, R_ES, 0, NULL, 0xffff, 0);
3249 cpu_x86_load_seg_cache(env, R_SS, 0, NULL, 0xffff, 0);
3250 cpu_x86_load_seg_cache(env, R_FS, 0, NULL, 0xffff, 0);
3251 cpu_x86_load_seg_cache(env, R_GS, 0, NULL, 0xffff, 0);
3252
3253 env->eip = 0xfff0;
3254 env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3255
3256 env->eflags = 0x2;
3257
3258 bochs_bios_init();
3259 }
3260
3261 /* terminal init */
3262 if (nographic) {
3263 dumb_display_init(ds);
3264 } else {
3265 #ifdef CONFIG_SDL
3266 sdl_display_init(ds);
3267 #else
3268 dumb_display_init(ds);
3269 #endif
3270 }
3271 /* init basic PC hardware */
3272 register_ioport_write(0x80, 1, ioport80_write, 1);
3273
3274 vga_init(ds, phys_ram_base + phys_ram_size, phys_ram_size,
3275 vga_ram_size);
3276 cmos_init();
3277 pic_init();
3278 pit_init();
3279 serial_init();
3280 ne2000_init();
3281 ide_init();
3282 kbd_init();
3283 AUD_init();
3284 DMA_init();
3285 SB16_init();
3286
3287 /* setup cpu signal handlers for MMU / self modifying code handling */
3288 sigfillset(&act.sa_mask);
3289 act.sa_flags = SA_SIGINFO;
3290 #if !defined(CONFIG_SOFTMMU)
3291 act.sa_sigaction = host_segv_handler;
3292 sigaction(SIGSEGV, &act, NULL);
3293 sigaction(SIGBUS, &act, NULL);
3294 #endif
3295
3296 act.sa_sigaction = host_alarm_handler;
3297 sigaction(SIGALRM, &act, NULL);
3298
3299 itv.it_interval.tv_sec = 0;
3300 itv.it_interval.tv_usec = 1000;
3301 itv.it_value.tv_sec = 0;
3302 itv.it_value.tv_usec = 10 * 1000;
3303 setitimer(ITIMER_REAL, &itv, NULL);
3304 /* we probe the tick duration of the kernel to inform the user if
3305 the emulated kernel requested a too high timer frequency */
3306 getitimer(ITIMER_REAL, &itv);
3307 timer_ms = itv.it_interval.tv_usec / 1000;
3308 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
3309 1000000;
3310
3311 if (use_gdbstub) {
3312 cpu_gdbstub(NULL, main_loop, gdbstub_port);
3313 } else {
3314 main_loop(NULL);
3315 }
3316 return 0;
3317 }