]> git.proxmox.com Git - qemu.git/blob - vl.c
cmos return current date - current irq priority in PIC (L4 Pistachio support) - help...
[qemu.git] / vl.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <stdarg.h>
27 #include <string.h>
28 #include <ctype.h>
29 #include <getopt.h>
30 #include <inttypes.h>
31 #include <unistd.h>
32 #include <sys/mman.h>
33 #include <fcntl.h>
34 #include <signal.h>
35 #include <time.h>
36 #include <sys/time.h>
37 #include <malloc.h>
38 #include <termios.h>
39 #include <sys/poll.h>
40 #include <errno.h>
41 #include <sys/wait.h>
42
43 #include <sys/ioctl.h>
44 #include <sys/socket.h>
45 #include <linux/if.h>
46 #include <linux/if_tun.h>
47
48 #include "cpu.h"
49 #include "disas.h"
50 #include "thunk.h"
51
52 #include "vl.h"
53
54 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
55 #define BIOS_FILENAME "bios.bin"
56 #define VGABIOS_FILENAME "vgabios.bin"
57
58 //#define DEBUG_UNUSED_IOPORT
59
60 //#define DEBUG_IRQ_LATENCY
61
62 /* output Bochs bios info messages */
63 //#define DEBUG_BIOS
64
65 //#define DEBUG_CMOS
66
67 /* debug PIC */
68 //#define DEBUG_PIC
69
70 /* debug NE2000 card */
71 //#define DEBUG_NE2000
72
73 /* debug PC keyboard */
74 //#define DEBUG_KBD
75
76 /* debug PC keyboard : only mouse */
77 //#define DEBUG_MOUSE
78
79 //#define DEBUG_SERIAL
80
81 #define PHYS_RAM_BASE 0xac000000
82 #define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
83
84 #if defined (TARGET_I386)
85 #define KERNEL_LOAD_ADDR 0x00100000
86 #elif defined (TARGET_PPC)
87 //#define USE_OPEN_FIRMWARE
88 #if defined (USE_OPEN_FIRMWARE)
89 #define KERNEL_LOAD_ADDR 0x01000000
90 #define KERNEL_STACK_ADDR 0x01200000
91 #else
92 #define KERNEL_LOAD_ADDR 0x00000000
93 #define KERNEL_STACK_ADDR 0x00400000
94 #endif
95 #endif
96 #define INITRD_LOAD_ADDR 0x00400000
97 #define KERNEL_PARAMS_ADDR 0x00090000
98
99 #define GUI_REFRESH_INTERVAL 30
100
101 /* from plex86 (BSD license) */
102 struct __attribute__ ((packed)) linux_params {
103 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
104 // I just padded out the VESA parts, rather than define them.
105
106 /* 0x000 */ uint8_t orig_x;
107 /* 0x001 */ uint8_t orig_y;
108 /* 0x002 */ uint16_t ext_mem_k;
109 /* 0x004 */ uint16_t orig_video_page;
110 /* 0x006 */ uint8_t orig_video_mode;
111 /* 0x007 */ uint8_t orig_video_cols;
112 /* 0x008 */ uint16_t unused1;
113 /* 0x00a */ uint16_t orig_video_ega_bx;
114 /* 0x00c */ uint16_t unused2;
115 /* 0x00e */ uint8_t orig_video_lines;
116 /* 0x00f */ uint8_t orig_video_isVGA;
117 /* 0x010 */ uint16_t orig_video_points;
118 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
119 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
120 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
121 // is calculated as 0x90000 + cl_offset, bu
122 // only if cl_magic == 0xA33F.
123 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
124
125 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
126 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
127
128 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
129 // Might be truncated?
130 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
131 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
132
133 // System description table truncated to 16 bytes
134 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
135 /* 0x0a0 */ uint16_t sys_description_len;
136 /* 0x0a2 */ uint8_t sys_description_table[14];
137 // [0] machine id
138 // [1] machine submodel id
139 // [2] BIOS revision
140 // [3] bit1: MCA bus
141
142 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
143 /* 0x1e0 */ uint32_t alt_mem_k;
144 /* 0x1e4 */ uint8_t pad4[4];
145 /* 0x1e8 */ uint8_t e820map_entries;
146 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
147 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
148 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
149 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
150 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
151 // (b)zImage-file (in 16 byte units, rounded up)
152 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
153 /* 0x1f8 */ uint16_t ramdisk_flags;
154 /* 0x1fa */ uint16_t vga_mode; // (old one)
155 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
156 /* 0x1fe */ uint8_t pad6[1];
157 /* 0x1ff */ uint8_t aux_device_info;
158 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
159 // aka "reserved" field.
160 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
161 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
162 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
163 // boot loaders, look there.
164 /* 0x210 */ uint8_t loader_type;
165 // 0 for old one.
166 // else 0xTV:
167 // T=0: LILO
168 // T=1: Loadlin
169 // T=2: bootsect-loader
170 // T=3: SYSLINUX
171 // T=4: ETHERBOOT
172 // V=version
173 /* 0x211 */ uint8_t loadflags;
174 // bit0 = 1: kernel is loaded high (bzImage)
175 // bit7 = 1: Heap and pointer (see below) set by boot
176 // loader.
177 /* 0x212 */ uint16_t setup_S_temp1;
178 /* 0x214 */ uint32_t kernel_start;
179 /* 0x218 */ uint32_t initrd_start;
180 /* 0x21c */ uint32_t initrd_size;
181 /* 0x220 */ uint8_t setup_S_temp2[4];
182 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
183 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
184
185 /* 0x2d0 : Int 15, ax=e820 memory map. */
186 // (linux/include/asm-i386/e820.h, 'struct e820entry')
187 #define E820MAX 32
188 #define E820_RAM 1
189 #define E820_RESERVED 2
190 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
191 #define E820_NVS 4
192 struct {
193 uint64_t addr;
194 uint64_t size;
195 uint32_t type;
196 } e820map[E820MAX];
197
198 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
199
200 // BIOS Enhanced Disk Drive Services.
201 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
202 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
203 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
204
205 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
206 /* 0x800 */ uint8_t commandline[0x800];
207
208 /* 0x1000 */
209 uint64_t gdt_table[256];
210 uint64_t idt_table[48];
211 };
212
213 #define KERNEL_CS 0x10
214 #define KERNEL_DS 0x18
215
216 /* XXX: use a two level table to limit memory usage */
217 #define MAX_IOPORTS 65536
218
219 static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
220 char phys_ram_file[1024];
221 CPUState *global_env;
222 CPUState *cpu_single_env;
223 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
224 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
225 BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
226 int vga_ram_size;
227 static DisplayState display_state;
228 int nographic;
229 int term_inited;
230 int64_t ticks_per_sec;
231 int boot_device = 'c';
232
233 /***********************************************************/
234 /* x86 io ports */
235
236 uint32_t default_ioport_readb(CPUState *env, uint32_t address)
237 {
238 #ifdef DEBUG_UNUSED_IOPORT
239 fprintf(stderr, "inb: port=0x%04x\n", address);
240 #endif
241 return 0xff;
242 }
243
244 void default_ioport_writeb(CPUState *env, uint32_t address, uint32_t data)
245 {
246 #ifdef DEBUG_UNUSED_IOPORT
247 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
248 #endif
249 }
250
251 /* default is to make two byte accesses */
252 uint32_t default_ioport_readw(CPUState *env, uint32_t address)
253 {
254 uint32_t data;
255 data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
256 data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
257 return data;
258 }
259
260 void default_ioport_writew(CPUState *env, uint32_t address, uint32_t data)
261 {
262 ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
263 ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
264 }
265
266 uint32_t default_ioport_readl(CPUState *env, uint32_t address)
267 {
268 #ifdef DEBUG_UNUSED_IOPORT
269 fprintf(stderr, "inl: port=0x%04x\n", address);
270 #endif
271 return 0xffffffff;
272 }
273
274 void default_ioport_writel(CPUState *env, uint32_t address, uint32_t data)
275 {
276 #ifdef DEBUG_UNUSED_IOPORT
277 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
278 #endif
279 }
280
281 void init_ioports(void)
282 {
283 int i;
284
285 for(i = 0; i < MAX_IOPORTS; i++) {
286 ioport_read_table[0][i] = default_ioport_readb;
287 ioport_write_table[0][i] = default_ioport_writeb;
288 ioport_read_table[1][i] = default_ioport_readw;
289 ioport_write_table[1][i] = default_ioport_writew;
290 ioport_read_table[2][i] = default_ioport_readl;
291 ioport_write_table[2][i] = default_ioport_writel;
292 }
293 }
294
295 /* size is the word size in byte */
296 int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
297 {
298 int i, bsize;
299
300 if (size == 1)
301 bsize = 0;
302 else if (size == 2)
303 bsize = 1;
304 else if (size == 4)
305 bsize = 2;
306 else
307 return -1;
308 for(i = start; i < start + length; i += size)
309 ioport_read_table[bsize][i] = func;
310 return 0;
311 }
312
313 /* size is the word size in byte */
314 int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
315 {
316 int i, bsize;
317
318 if (size == 1)
319 bsize = 0;
320 else if (size == 2)
321 bsize = 1;
322 else if (size == 4)
323 bsize = 2;
324 else
325 return -1;
326 for(i = start; i < start + length; i += size)
327 ioport_write_table[bsize][i] = func;
328 return 0;
329 }
330
331 void pstrcpy(char *buf, int buf_size, const char *str)
332 {
333 int c;
334 char *q = buf;
335
336 if (buf_size <= 0)
337 return;
338
339 for(;;) {
340 c = *str++;
341 if (c == 0 || q >= buf + buf_size - 1)
342 break;
343 *q++ = c;
344 }
345 *q = '\0';
346 }
347
348 /* strcat and truncate. */
349 char *pstrcat(char *buf, int buf_size, const char *s)
350 {
351 int len;
352 len = strlen(buf);
353 if (len < buf_size)
354 pstrcpy(buf + len, buf_size - len, s);
355 return buf;
356 }
357
358 int load_kernel(const char *filename, uint8_t *addr)
359 {
360 int fd, size;
361 #if defined (TARGET_I386)
362 int setup_sects;
363 uint8_t bootsect[512];
364 #endif
365
366 printf("Load kernel at %p (0x%08x)\n", addr,
367 (uint32_t)addr - (uint32_t)phys_ram_base);
368 fd = open(filename, O_RDONLY);
369 if (fd < 0)
370 return -1;
371 #if defined (TARGET_I386)
372 if (read(fd, bootsect, 512) != 512)
373 goto fail;
374 setup_sects = bootsect[0x1F1];
375 if (!setup_sects)
376 setup_sects = 4;
377 /* skip 16 bit setup code */
378 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
379 #endif
380 size = read(fd, addr, 16 * 1024 * 1024);
381 if (size < 0)
382 goto fail;
383 close(fd);
384 return size;
385 fail:
386 close(fd);
387 return -1;
388 }
389
390 /* return the size or -1 if error */
391 int load_image(const char *filename, uint8_t *addr)
392 {
393 int fd, size;
394 fd = open(filename, O_RDONLY);
395 if (fd < 0)
396 return -1;
397 size = lseek(fd, 0, SEEK_END);
398 lseek(fd, 0, SEEK_SET);
399 if (read(fd, addr, size) != size) {
400 close(fd);
401 return -1;
402 }
403 close(fd);
404 return size;
405 }
406
407 void cpu_outb(CPUState *env, int addr, int val)
408 {
409 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
410 }
411
412 void cpu_outw(CPUState *env, int addr, int val)
413 {
414 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
415 }
416
417 void cpu_outl(CPUState *env, int addr, int val)
418 {
419 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
420 }
421
422 int cpu_inb(CPUState *env, int addr)
423 {
424 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
425 }
426
427 int cpu_inw(CPUState *env, int addr)
428 {
429 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
430 }
431
432 int cpu_inl(CPUState *env, int addr)
433 {
434 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
435 }
436
437 /***********************************************************/
438 void ioport80_write(CPUState *env, uint32_t addr, uint32_t data)
439 {
440 }
441
442 void hw_error(const char *fmt, ...)
443 {
444 va_list ap;
445
446 va_start(ap, fmt);
447 fprintf(stderr, "qemu: hardware error: ");
448 vfprintf(stderr, fmt, ap);
449 fprintf(stderr, "\n");
450 #ifdef TARGET_I386
451 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
452 #else
453 cpu_dump_state(global_env, stderr, 0);
454 #endif
455 va_end(ap);
456 abort();
457 }
458
459 /***********************************************************/
460 /* cmos emulation */
461
462 #if defined (TARGET_I386)
463 #define RTC_SECONDS 0
464 #define RTC_SECONDS_ALARM 1
465 #define RTC_MINUTES 2
466 #define RTC_MINUTES_ALARM 3
467 #define RTC_HOURS 4
468 #define RTC_HOURS_ALARM 5
469 #define RTC_ALARM_DONT_CARE 0xC0
470
471 #define RTC_DAY_OF_WEEK 6
472 #define RTC_DAY_OF_MONTH 7
473 #define RTC_MONTH 8
474 #define RTC_YEAR 9
475
476 #define RTC_REG_A 10
477 #define RTC_REG_B 11
478 #define RTC_REG_C 12
479 #define RTC_REG_D 13
480
481 /* PC cmos mappings */
482 #define REG_EQUIPMENT_BYTE 0x14
483 #define REG_IBM_CENTURY_BYTE 0x32
484
485 uint8_t cmos_data[128];
486 uint8_t cmos_index;
487
488 void cmos_ioport_write(CPUState *env, uint32_t addr, uint32_t data)
489 {
490 if (addr == 0x70) {
491 cmos_index = data & 0x7f;
492 } else {
493 #ifdef DEBUG_CMOS
494 printf("cmos: write index=0x%02x val=0x%02x\n",
495 cmos_index, data);
496 #endif
497 switch(addr) {
498 case RTC_SECONDS_ALARM:
499 case RTC_MINUTES_ALARM:
500 case RTC_HOURS_ALARM:
501 /* XXX: not supported */
502 cmos_data[cmos_index] = data;
503 break;
504 case RTC_SECONDS:
505 case RTC_MINUTES:
506 case RTC_HOURS:
507 case RTC_DAY_OF_WEEK:
508 case RTC_DAY_OF_MONTH:
509 case RTC_MONTH:
510 case RTC_YEAR:
511 cmos_data[cmos_index] = data;
512 break;
513 case RTC_REG_A:
514 case RTC_REG_B:
515 cmos_data[cmos_index] = data;
516 break;
517 case RTC_REG_C:
518 case RTC_REG_D:
519 /* cannot write to them */
520 break;
521 default:
522 cmos_data[cmos_index] = data;
523 break;
524 }
525 }
526 }
527
528 static inline int to_bcd(int a)
529 {
530 return ((a / 10) << 4) | (a % 10);
531 }
532
533 static void cmos_update_time(void)
534 {
535 struct tm *tm;
536 time_t ti;
537
538 ti = time(NULL);
539 tm = gmtime(&ti);
540 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
541 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
542 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
543 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
544 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
545 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
546 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
547 cmos_data[REG_IBM_CENTURY_BYTE] = to_bcd((tm->tm_year / 100) + 19);
548 }
549
550 uint32_t cmos_ioport_read(CPUState *env, uint32_t addr)
551 {
552 int ret;
553
554 if (addr == 0x70) {
555 return 0xff;
556 } else {
557 switch(cmos_index) {
558 case RTC_SECONDS:
559 case RTC_MINUTES:
560 case RTC_HOURS:
561 case RTC_DAY_OF_WEEK:
562 case RTC_DAY_OF_MONTH:
563 case RTC_MONTH:
564 case RTC_YEAR:
565 case REG_IBM_CENTURY_BYTE:
566 cmos_update_time();
567 ret = cmos_data[cmos_index];
568 break;
569 case RTC_REG_A:
570 ret = cmos_data[cmos_index];
571 /* toggle update-in-progress bit for Linux (same hack as
572 plex86) */
573 cmos_data[RTC_REG_A] ^= 0x80;
574 break;
575 case RTC_REG_C:
576 ret = cmos_data[cmos_index];
577 pic_set_irq(8, 0);
578 cmos_data[RTC_REG_C] = 0x00;
579 break;
580 default:
581 ret = cmos_data[cmos_index];
582 break;
583 }
584 #ifdef DEBUG_CMOS
585 printf("cmos: read index=0x%02x val=0x%02x\n",
586 cmos_index, ret);
587 #endif
588 return ret;
589 }
590 }
591
592 void cmos_init(void)
593 {
594 int val;
595
596 cmos_update_time();
597
598 cmos_data[RTC_REG_A] = 0x26;
599 cmos_data[RTC_REG_B] = 0x02;
600 cmos_data[RTC_REG_C] = 0x00;
601 cmos_data[RTC_REG_D] = 0x80;
602
603 /* various important CMOS locations needed by PC/Bochs bios */
604
605 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
606 cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
607
608 /* memory size */
609 val = (phys_ram_size / 1024) - 1024;
610 if (val > 65535)
611 val = 65535;
612 cmos_data[0x17] = val;
613 cmos_data[0x18] = val >> 8;
614 cmos_data[0x30] = val;
615 cmos_data[0x31] = val >> 8;
616
617 val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
618 if (val > 65535)
619 val = 65535;
620 cmos_data[0x34] = val;
621 cmos_data[0x35] = val >> 8;
622
623 switch(boot_device) {
624 case 'a':
625 case 'b':
626 cmos_data[0x3d] = 0x01; /* floppy boot */
627 break;
628 default:
629 case 'c':
630 cmos_data[0x3d] = 0x02; /* hard drive boot */
631 break;
632 case 'd':
633 cmos_data[0x3d] = 0x03; /* CD-ROM boot */
634 break;
635 }
636
637 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
638 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
639 }
640
641 void cmos_register_fd (uint8_t fd0, uint8_t fd1)
642 {
643 int nb = 0;
644
645 cmos_data[0x10] = 0;
646 switch (fd0) {
647 case 0:
648 /* 1.44 Mb 3"5 drive */
649 cmos_data[0x10] |= 0x40;
650 break;
651 case 1:
652 /* 2.88 Mb 3"5 drive */
653 cmos_data[0x10] |= 0x60;
654 break;
655 case 2:
656 /* 1.2 Mb 5"5 drive */
657 cmos_data[0x10] |= 0x20;
658 break;
659 }
660 switch (fd1) {
661 case 0:
662 /* 1.44 Mb 3"5 drive */
663 cmos_data[0x10] |= 0x04;
664 break;
665 case 1:
666 /* 2.88 Mb 3"5 drive */
667 cmos_data[0x10] |= 0x06;
668 break;
669 case 2:
670 /* 1.2 Mb 5"5 drive */
671 cmos_data[0x10] |= 0x02;
672 break;
673 }
674 if (fd0 < 3)
675 nb++;
676 if (fd1 < 3)
677 nb++;
678 switch (nb) {
679 case 0:
680 break;
681 case 1:
682 cmos_data[REG_EQUIPMENT_BYTE] |= 0x01; /* 1 drive, ready for boot */
683 break;
684 case 2:
685 cmos_data[REG_EQUIPMENT_BYTE] |= 0x41; /* 2 drives, ready for boot */
686 break;
687 }
688 }
689 #endif /* TARGET_I386 */
690
691 /***********************************************************/
692 /* 8259 pic emulation */
693
694 typedef struct PicState {
695 uint8_t last_irr; /* edge detection */
696 uint8_t irr; /* interrupt request register */
697 uint8_t imr; /* interrupt mask register */
698 uint8_t isr; /* interrupt service register */
699 uint8_t priority_add; /* highest irq priority */
700 uint8_t irq_base;
701 uint8_t read_reg_select;
702 uint8_t poll;
703 uint8_t special_mask;
704 uint8_t init_state;
705 uint8_t auto_eoi;
706 uint8_t rotate_on_auto_eoi;
707 uint8_t special_fully_nested_mode;
708 uint8_t init4; /* true if 4 byte init */
709 } PicState;
710
711 /* 0 is master pic, 1 is slave pic */
712 PicState pics[2];
713 int pic_irq_requested;
714
715 /* set irq level. If an edge is detected, then the IRR is set to 1 */
716 static inline void pic_set_irq1(PicState *s, int irq, int level)
717 {
718 int mask;
719 mask = 1 << irq;
720 if (level) {
721 if ((s->last_irr & mask) == 0)
722 s->irr |= mask;
723 s->last_irr |= mask;
724 } else {
725 s->last_irr &= ~mask;
726 }
727 }
728
729 /* return the highest priority found in mask (highest = smallest
730 number). Return 8 if no irq */
731 static inline int get_priority(PicState *s, int mask)
732 {
733 int priority;
734 if (mask == 0)
735 return 8;
736 priority = 0;
737 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
738 priority++;
739 return priority;
740 }
741
742 /* return the pic wanted interrupt. return -1 if none */
743 static int pic_get_irq(PicState *s)
744 {
745 int mask, cur_priority, priority;
746
747 mask = s->irr & ~s->imr;
748 priority = get_priority(s, mask);
749 if (priority == 8)
750 return -1;
751 /* compute current priority. If special fully nested mode on the
752 master, the IRQ coming from the slave is not taken into account
753 for the priority computation. */
754 mask = s->isr;
755 if (s->special_fully_nested_mode && s == &pics[0])
756 mask &= ~(1 << 2);
757 cur_priority = get_priority(s, mask);
758 if (priority < cur_priority) {
759 /* higher priority found: an irq should be generated */
760 return (priority + s->priority_add) & 7;
761 } else {
762 return -1;
763 }
764 }
765
766 /* raise irq to CPU if necessary. must be called every time the active
767 irq may change */
768 void pic_update_irq(void)
769 {
770 int irq2, irq;
771
772 /* first look at slave pic */
773 irq2 = pic_get_irq(&pics[1]);
774 if (irq2 >= 0) {
775 /* if irq request by slave pic, signal master PIC */
776 pic_set_irq1(&pics[0], 2, 1);
777 pic_set_irq1(&pics[0], 2, 0);
778 }
779 /* look at requested irq */
780 irq = pic_get_irq(&pics[0]);
781 if (irq >= 0) {
782 if (irq == 2) {
783 /* from slave pic */
784 pic_irq_requested = 8 + irq2;
785 } else {
786 /* from master pic */
787 pic_irq_requested = irq;
788 }
789 #if defined(DEBUG_PIC)
790 {
791 int i;
792 for(i = 0; i < 2; i++) {
793 printf("pic%d: imr=%x irr=%x padd=%d\n",
794 i, pics[i].imr, pics[i].irr, pics[i].priority_add);
795
796 }
797 }
798 printf("pic: cpu_interrupt req=%d\n", pic_irq_requested);
799 #endif
800 cpu_interrupt(global_env, CPU_INTERRUPT_HARD);
801 }
802 }
803
804 #ifdef DEBUG_IRQ_LATENCY
805 int64_t irq_time[16];
806 int64_t cpu_get_ticks(void);
807 #endif
808 #if defined(DEBUG_PIC)
809 int irq_level[16];
810 #endif
811
812 void pic_set_irq(int irq, int level)
813 {
814 #if defined(DEBUG_PIC)
815 if (level != irq_level[irq]) {
816 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
817 irq_level[irq] = level;
818 }
819 #endif
820 #ifdef DEBUG_IRQ_LATENCY
821 if (level) {
822 irq_time[irq] = cpu_get_ticks();
823 }
824 #endif
825 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
826 pic_update_irq();
827 }
828
829 /* acknowledge interrupt 'irq' */
830 static inline void pic_intack(PicState *s, int irq)
831 {
832 if (s->auto_eoi) {
833 if (s->rotate_on_auto_eoi)
834 s->priority_add = (irq + 1) & 7;
835 } else {
836 s->isr |= (1 << irq);
837 }
838 s->irr &= ~(1 << irq);
839 }
840
841 int cpu_x86_get_pic_interrupt(CPUState *env)
842 {
843 int irq, irq2, intno;
844
845 /* signal the pic that the irq was acked by the CPU */
846 irq = pic_irq_requested;
847 #ifdef DEBUG_IRQ_LATENCY
848 printf("IRQ%d latency=%0.3fus\n",
849 irq,
850 (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
851 #endif
852 #if defined(DEBUG_PIC)
853 printf("pic_interrupt: irq=%d\n", irq);
854 #endif
855
856 if (irq >= 8) {
857 irq2 = irq & 7;
858 pic_intack(&pics[1], irq2);
859 irq = 2;
860 intno = pics[1].irq_base + irq2;
861 } else {
862 intno = pics[0].irq_base + irq;
863 }
864 pic_intack(&pics[0], irq);
865 return intno;
866 }
867
868 void pic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
869 {
870 PicState *s;
871 int priority, cmd, irq;
872
873 #ifdef DEBUG_PIC
874 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
875 #endif
876 s = &pics[addr >> 7];
877 addr &= 1;
878 if (addr == 0) {
879 if (val & 0x10) {
880 /* init */
881 memset(s, 0, sizeof(PicState));
882 s->init_state = 1;
883 s->init4 = val & 1;
884 if (val & 0x02)
885 hw_error("single mode not supported");
886 if (val & 0x08)
887 hw_error("level sensitive irq not supported");
888 } else if (val & 0x08) {
889 if (val & 0x04)
890 s->poll = 1;
891 if (val & 0x02)
892 s->read_reg_select = val & 1;
893 if (val & 0x40)
894 s->special_mask = (val >> 5) & 1;
895 } else {
896 cmd = val >> 5;
897 switch(cmd) {
898 case 0:
899 case 4:
900 s->rotate_on_auto_eoi = cmd >> 2;
901 break;
902 case 1: /* end of interrupt */
903 case 5:
904 priority = get_priority(s, s->isr);
905 if (priority != 8) {
906 irq = (priority + s->priority_add) & 7;
907 s->isr &= ~(1 << irq);
908 if (cmd == 5)
909 s->priority_add = (irq + 1) & 7;
910 pic_update_irq();
911 }
912 break;
913 case 3:
914 irq = val & 7;
915 s->isr &= ~(1 << irq);
916 pic_update_irq();
917 break;
918 case 6:
919 s->priority_add = (val + 1) & 7;
920 pic_update_irq();
921 break;
922 case 7:
923 irq = val & 7;
924 s->isr &= ~(1 << irq);
925 s->priority_add = (irq + 1) & 7;
926 pic_update_irq();
927 break;
928 default:
929 /* no operation */
930 break;
931 }
932 }
933 } else {
934 switch(s->init_state) {
935 case 0:
936 /* normal mode */
937 s->imr = val;
938 pic_update_irq();
939 break;
940 case 1:
941 s->irq_base = val & 0xf8;
942 s->init_state = 2;
943 break;
944 case 2:
945 if (s->init4) {
946 s->init_state = 3;
947 } else {
948 s->init_state = 0;
949 }
950 break;
951 case 3:
952 s->special_fully_nested_mode = (val >> 4) & 1;
953 s->auto_eoi = (val >> 1) & 1;
954 s->init_state = 0;
955 break;
956 }
957 }
958 }
959
960 static uint32_t pic_poll_read (PicState *s, uint32_t addr1)
961 {
962 int ret;
963
964 ret = pic_get_irq(s);
965 if (ret >= 0) {
966 if (addr1 >> 7) {
967 pics[0].isr &= ~(1 << 2);
968 pics[0].irr &= ~(1 << 2);
969 }
970 s->irr &= ~(1 << ret);
971 s->isr &= ~(1 << ret);
972 if (addr1 >> 7 || ret != 2)
973 pic_update_irq();
974 } else {
975 ret = 0x07;
976 pic_update_irq();
977 }
978
979 return ret;
980 }
981
982 uint32_t pic_ioport_read(CPUState *env, uint32_t addr1)
983 {
984 PicState *s;
985 unsigned int addr;
986 int ret;
987
988 addr = addr1;
989 s = &pics[addr >> 7];
990 addr &= 1;
991 if (s->poll) {
992 ret = pic_poll_read(s, addr1);
993 s->poll = 0;
994 } else {
995 if (addr == 0) {
996 if (s->read_reg_select)
997 ret = s->isr;
998 else
999 ret = s->irr;
1000 } else {
1001 ret = s->imr;
1002 }
1003 }
1004 #ifdef DEBUG_PIC
1005 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
1006 #endif
1007 return ret;
1008 }
1009
1010 /* memory mapped interrupt status */
1011 uint32_t pic_intack_read(CPUState *env)
1012 {
1013 int ret;
1014
1015 ret = pic_poll_read(&pics[0], 0x00);
1016 if (ret == 2)
1017 ret = pic_poll_read(&pics[1], 0x80) + 8;
1018 /* Prepare for ISR read */
1019 pics[0].read_reg_select = 1;
1020
1021 return ret;
1022 }
1023
1024 void pic_init(void)
1025 {
1026 #if defined (TARGET_I386) || defined (TARGET_PPC)
1027 register_ioport_write(0x20, 2, pic_ioport_write, 1);
1028 register_ioport_read(0x20, 2, pic_ioport_read, 1);
1029 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
1030 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
1031 #endif
1032 }
1033
1034 /***********************************************************/
1035 /* 8253 PIT emulation */
1036
1037 #define PIT_FREQ 1193182
1038
1039 #define RW_STATE_LSB 0
1040 #define RW_STATE_MSB 1
1041 #define RW_STATE_WORD0 2
1042 #define RW_STATE_WORD1 3
1043 #define RW_STATE_LATCHED_WORD0 4
1044 #define RW_STATE_LATCHED_WORD1 5
1045
1046 typedef struct PITChannelState {
1047 int count; /* can be 65536 */
1048 uint16_t latched_count;
1049 uint8_t rw_state;
1050 uint8_t mode;
1051 uint8_t bcd; /* not supported */
1052 uint8_t gate; /* timer start */
1053 int64_t count_load_time;
1054 int64_t count_last_edge_check_time;
1055 } PITChannelState;
1056
1057 PITChannelState pit_channels[3];
1058 int speaker_data_on;
1059 int dummy_refresh_clock;
1060 int pit_min_timer_count = 0;
1061
1062
1063 #if defined(__powerpc__)
1064
1065 static inline uint32_t get_tbl(void)
1066 {
1067 uint32_t tbl;
1068 asm volatile("mftb %0" : "=r" (tbl));
1069 return tbl;
1070 }
1071
1072 static inline uint32_t get_tbu(void)
1073 {
1074 uint32_t tbl;
1075 asm volatile("mftbu %0" : "=r" (tbl));
1076 return tbl;
1077 }
1078
1079 int64_t cpu_get_real_ticks(void)
1080 {
1081 uint32_t l, h, h1;
1082 /* NOTE: we test if wrapping has occurred */
1083 do {
1084 h = get_tbu();
1085 l = get_tbl();
1086 h1 = get_tbu();
1087 } while (h != h1);
1088 return ((int64_t)h << 32) | l;
1089 }
1090
1091 #elif defined(__i386__)
1092
1093 int64_t cpu_get_real_ticks(void)
1094 {
1095 int64_t val;
1096 asm("rdtsc" : "=A" (val));
1097 return val;
1098 }
1099
1100 #else
1101 #error unsupported CPU
1102 #endif
1103
1104 static int64_t cpu_ticks_offset;
1105 static int64_t cpu_ticks_last;
1106
1107 int64_t cpu_get_ticks(void)
1108 {
1109 return cpu_get_real_ticks() + cpu_ticks_offset;
1110 }
1111
1112 /* enable cpu_get_ticks() */
1113 void cpu_enable_ticks(void)
1114 {
1115 cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
1116 }
1117
1118 /* disable cpu_get_ticks() : the clock is stopped. You must not call
1119 cpu_get_ticks() after that. */
1120 void cpu_disable_ticks(void)
1121 {
1122 cpu_ticks_last = cpu_get_ticks();
1123 }
1124
1125 int64_t get_clock(void)
1126 {
1127 struct timeval tv;
1128 gettimeofday(&tv, NULL);
1129 return tv.tv_sec * 1000000LL + tv.tv_usec;
1130 }
1131
1132 void cpu_calibrate_ticks(void)
1133 {
1134 int64_t usec, ticks;
1135
1136 usec = get_clock();
1137 ticks = cpu_get_ticks();
1138 usleep(50 * 1000);
1139 usec = get_clock() - usec;
1140 ticks = cpu_get_ticks() - ticks;
1141 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
1142 }
1143
1144 /* compute with 96 bit intermediate result: (a*b)/c */
1145 static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
1146 {
1147 union {
1148 uint64_t ll;
1149 struct {
1150 #ifdef WORDS_BIGENDIAN
1151 uint32_t high, low;
1152 #else
1153 uint32_t low, high;
1154 #endif
1155 } l;
1156 } u, res;
1157 uint64_t rl, rh;
1158
1159 u.ll = a;
1160 rl = (uint64_t)u.l.low * (uint64_t)b;
1161 rh = (uint64_t)u.l.high * (uint64_t)b;
1162 rh += (rl >> 32);
1163 res.l.high = rh / c;
1164 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
1165 return res.ll;
1166 }
1167
1168 static int pit_get_count(PITChannelState *s)
1169 {
1170 uint64_t d;
1171 int counter;
1172
1173 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1174 switch(s->mode) {
1175 case 0:
1176 case 1:
1177 case 4:
1178 case 5:
1179 counter = (s->count - d) & 0xffff;
1180 break;
1181 case 3:
1182 /* XXX: may be incorrect for odd counts */
1183 counter = s->count - ((2 * d) % s->count);
1184 break;
1185 default:
1186 counter = s->count - (d % s->count);
1187 break;
1188 }
1189 return counter;
1190 }
1191
1192 /* get pit output bit */
1193 static int pit_get_out(PITChannelState *s)
1194 {
1195 uint64_t d;
1196 int out;
1197
1198 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
1199 switch(s->mode) {
1200 default:
1201 case 0:
1202 out = (d >= s->count);
1203 break;
1204 case 1:
1205 out = (d < s->count);
1206 break;
1207 case 2:
1208 if ((d % s->count) == 0 && d != 0)
1209 out = 1;
1210 else
1211 out = 0;
1212 break;
1213 case 3:
1214 out = (d % s->count) < ((s->count + 1) >> 1);
1215 break;
1216 case 4:
1217 case 5:
1218 out = (d == s->count);
1219 break;
1220 }
1221 return out;
1222 }
1223
1224 /* get the number of 0 to 1 transitions we had since we call this
1225 function */
1226 /* XXX: maybe better to use ticks precision to avoid getting edges
1227 twice if checks are done at very small intervals */
1228 static int pit_get_out_edges(PITChannelState *s)
1229 {
1230 uint64_t d1, d2;
1231 int64_t ticks;
1232 int ret, v;
1233
1234 ticks = cpu_get_ticks();
1235 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
1236 PIT_FREQ, ticks_per_sec);
1237 d2 = muldiv64(ticks - s->count_load_time,
1238 PIT_FREQ, ticks_per_sec);
1239 s->count_last_edge_check_time = ticks;
1240 switch(s->mode) {
1241 default:
1242 case 0:
1243 if (d1 < s->count && d2 >= s->count)
1244 ret = 1;
1245 else
1246 ret = 0;
1247 break;
1248 case 1:
1249 ret = 0;
1250 break;
1251 case 2:
1252 d1 /= s->count;
1253 d2 /= s->count;
1254 ret = d2 - d1;
1255 break;
1256 case 3:
1257 v = s->count - ((s->count + 1) >> 1);
1258 d1 = (d1 + v) / s->count;
1259 d2 = (d2 + v) / s->count;
1260 ret = d2 - d1;
1261 break;
1262 case 4:
1263 case 5:
1264 if (d1 < s->count && d2 >= s->count)
1265 ret = 1;
1266 else
1267 ret = 0;
1268 break;
1269 }
1270 return ret;
1271 }
1272
1273 /* val must be 0 or 1 */
1274 static inline void pit_set_gate(PITChannelState *s, int val)
1275 {
1276 switch(s->mode) {
1277 default:
1278 case 0:
1279 case 4:
1280 /* XXX: just disable/enable counting */
1281 break;
1282 case 1:
1283 case 5:
1284 if (s->gate < val) {
1285 /* restart counting on rising edge */
1286 s->count_load_time = cpu_get_ticks();
1287 s->count_last_edge_check_time = s->count_load_time;
1288 }
1289 break;
1290 case 2:
1291 case 3:
1292 if (s->gate < val) {
1293 /* restart counting on rising edge */
1294 s->count_load_time = cpu_get_ticks();
1295 s->count_last_edge_check_time = s->count_load_time;
1296 }
1297 /* XXX: disable/enable counting */
1298 break;
1299 }
1300 s->gate = val;
1301 }
1302
1303 static inline void pit_load_count(PITChannelState *s, int val)
1304 {
1305 if (val == 0)
1306 val = 0x10000;
1307 s->count_load_time = cpu_get_ticks();
1308 s->count_last_edge_check_time = s->count_load_time;
1309 s->count = val;
1310 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1311 fprintf(stderr,
1312 "\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
1313 PIT_FREQ / pit_min_timer_count);
1314 }
1315 }
1316
1317 void pit_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1318 {
1319 int channel, access;
1320 PITChannelState *s;
1321
1322 addr &= 3;
1323 if (addr == 3) {
1324 channel = val >> 6;
1325 if (channel == 3)
1326 return;
1327 s = &pit_channels[channel];
1328 access = (val >> 4) & 3;
1329 switch(access) {
1330 case 0:
1331 s->latched_count = pit_get_count(s);
1332 s->rw_state = RW_STATE_LATCHED_WORD0;
1333 break;
1334 default:
1335 s->mode = (val >> 1) & 7;
1336 s->bcd = val & 1;
1337 s->rw_state = access - 1 + RW_STATE_LSB;
1338 break;
1339 }
1340 } else {
1341 s = &pit_channels[addr];
1342 switch(s->rw_state) {
1343 case RW_STATE_LSB:
1344 pit_load_count(s, val);
1345 break;
1346 case RW_STATE_MSB:
1347 pit_load_count(s, val << 8);
1348 break;
1349 case RW_STATE_WORD0:
1350 case RW_STATE_WORD1:
1351 if (s->rw_state & 1) {
1352 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1353 } else {
1354 s->latched_count = val;
1355 }
1356 s->rw_state ^= 1;
1357 break;
1358 }
1359 }
1360 }
1361
1362 uint32_t pit_ioport_read(CPUState *env, uint32_t addr)
1363 {
1364 int ret, count;
1365 PITChannelState *s;
1366
1367 addr &= 3;
1368 s = &pit_channels[addr];
1369 switch(s->rw_state) {
1370 case RW_STATE_LSB:
1371 case RW_STATE_MSB:
1372 case RW_STATE_WORD0:
1373 case RW_STATE_WORD1:
1374 count = pit_get_count(s);
1375 if (s->rw_state & 1)
1376 ret = (count >> 8) & 0xff;
1377 else
1378 ret = count & 0xff;
1379 if (s->rw_state & 2)
1380 s->rw_state ^= 1;
1381 break;
1382 default:
1383 case RW_STATE_LATCHED_WORD0:
1384 case RW_STATE_LATCHED_WORD1:
1385 if (s->rw_state & 1)
1386 ret = s->latched_count >> 8;
1387 else
1388 ret = s->latched_count & 0xff;
1389 s->rw_state ^= 1;
1390 break;
1391 }
1392 return ret;
1393 }
1394
1395 #if defined (TARGET_I386)
1396 void speaker_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1397 {
1398 speaker_data_on = (val >> 1) & 1;
1399 pit_set_gate(&pit_channels[2], val & 1);
1400 }
1401
1402 uint32_t speaker_ioport_read(CPUState *env, uint32_t addr)
1403 {
1404 int out;
1405 out = pit_get_out(&pit_channels[2]);
1406 dummy_refresh_clock ^= 1;
1407 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1408 (dummy_refresh_clock << 4);
1409 }
1410 #endif
1411
1412 void pit_init(void)
1413 {
1414 PITChannelState *s;
1415 int i;
1416
1417 cpu_calibrate_ticks();
1418
1419 for(i = 0;i < 3; i++) {
1420 s = &pit_channels[i];
1421 s->mode = 3;
1422 s->gate = (i != 2);
1423 pit_load_count(s, 0);
1424 }
1425
1426 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1427 register_ioport_read(0x40, 3, pit_ioport_read, 1);
1428
1429 #if defined (TARGET_I386)
1430 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1431 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1432 #endif
1433 }
1434
1435 /***********************************************************/
1436 /* serial port emulation */
1437
1438 #define UART_IRQ 4
1439
1440 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1441
1442 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1443 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1444 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1445 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1446
1447 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1448 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1449
1450 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
1451 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1452 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1453 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1454
1455 /*
1456 * These are the definitions for the Modem Control Register
1457 */
1458 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
1459 #define UART_MCR_OUT2 0x08 /* Out2 complement */
1460 #define UART_MCR_OUT1 0x04 /* Out1 complement */
1461 #define UART_MCR_RTS 0x02 /* RTS complement */
1462 #define UART_MCR_DTR 0x01 /* DTR complement */
1463
1464 /*
1465 * These are the definitions for the Modem Status Register
1466 */
1467 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
1468 #define UART_MSR_RI 0x40 /* Ring Indicator */
1469 #define UART_MSR_DSR 0x20 /* Data Set Ready */
1470 #define UART_MSR_CTS 0x10 /* Clear to Send */
1471 #define UART_MSR_DDCD 0x08 /* Delta DCD */
1472 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
1473 #define UART_MSR_DDSR 0x02 /* Delta DSR */
1474 #define UART_MSR_DCTS 0x01 /* Delta CTS */
1475 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
1476
1477 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
1478 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1479 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
1480 #define UART_LSR_FE 0x08 /* Frame error indicator */
1481 #define UART_LSR_PE 0x04 /* Parity error indicator */
1482 #define UART_LSR_OE 0x02 /* Overrun error indicator */
1483 #define UART_LSR_DR 0x01 /* Receiver data ready */
1484
1485 typedef struct SerialState {
1486 uint8_t divider;
1487 uint8_t rbr; /* receive register */
1488 uint8_t ier;
1489 uint8_t iir; /* read only */
1490 uint8_t lcr;
1491 uint8_t mcr;
1492 uint8_t lsr; /* read only */
1493 uint8_t msr;
1494 uint8_t scr;
1495 /* NOTE: this hidden state is necessary for tx irq generation as
1496 it can be reset while reading iir */
1497 int thr_ipending;
1498 } SerialState;
1499
1500 SerialState serial_ports[1];
1501
1502 void serial_update_irq(void)
1503 {
1504 SerialState *s = &serial_ports[0];
1505
1506 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1507 s->iir = UART_IIR_RDI;
1508 } else if (s->thr_ipending && (s->ier & UART_IER_THRI)) {
1509 s->iir = UART_IIR_THRI;
1510 } else {
1511 s->iir = UART_IIR_NO_INT;
1512 }
1513 if (s->iir != UART_IIR_NO_INT) {
1514 pic_set_irq(UART_IRQ, 1);
1515 } else {
1516 pic_set_irq(UART_IRQ, 0);
1517 }
1518 }
1519
1520 void serial_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
1521 {
1522 SerialState *s = &serial_ports[0];
1523 unsigned char ch;
1524 int ret;
1525
1526 addr &= 7;
1527 #ifdef DEBUG_SERIAL
1528 printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
1529 #endif
1530 switch(addr) {
1531 default:
1532 case 0:
1533 if (s->lcr & UART_LCR_DLAB) {
1534 s->divider = (s->divider & 0xff00) | val;
1535 } else {
1536 s->thr_ipending = 0;
1537 s->lsr &= ~UART_LSR_THRE;
1538 serial_update_irq();
1539
1540 ch = val;
1541 do {
1542 ret = write(1, &ch, 1);
1543 } while (ret != 1);
1544 s->thr_ipending = 1;
1545 s->lsr |= UART_LSR_THRE;
1546 s->lsr |= UART_LSR_TEMT;
1547 serial_update_irq();
1548 }
1549 break;
1550 case 1:
1551 if (s->lcr & UART_LCR_DLAB) {
1552 s->divider = (s->divider & 0x00ff) | (val << 8);
1553 } else {
1554 s->ier = val;
1555 serial_update_irq();
1556 }
1557 break;
1558 case 2:
1559 break;
1560 case 3:
1561 s->lcr = val;
1562 break;
1563 case 4:
1564 s->mcr = val;
1565 break;
1566 case 5:
1567 break;
1568 case 6:
1569 s->msr = val;
1570 break;
1571 case 7:
1572 s->scr = val;
1573 break;
1574 }
1575 }
1576
1577 uint32_t serial_ioport_read(CPUState *env, uint32_t addr)
1578 {
1579 SerialState *s = &serial_ports[0];
1580 uint32_t ret;
1581
1582 addr &= 7;
1583 switch(addr) {
1584 default:
1585 case 0:
1586 if (s->lcr & UART_LCR_DLAB) {
1587 ret = s->divider & 0xff;
1588 } else {
1589 ret = s->rbr;
1590 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1591 serial_update_irq();
1592 }
1593 break;
1594 case 1:
1595 if (s->lcr & UART_LCR_DLAB) {
1596 ret = (s->divider >> 8) & 0xff;
1597 } else {
1598 ret = s->ier;
1599 }
1600 break;
1601 case 2:
1602 ret = s->iir;
1603 /* reset THR pending bit */
1604 if ((ret & 0x7) == UART_IIR_THRI)
1605 s->thr_ipending = 0;
1606 serial_update_irq();
1607 break;
1608 case 3:
1609 ret = s->lcr;
1610 break;
1611 case 4:
1612 ret = s->mcr;
1613 break;
1614 case 5:
1615 ret = s->lsr;
1616 break;
1617 case 6:
1618 if (s->mcr & UART_MCR_LOOP) {
1619 /* in loopback, the modem output pins are connected to the
1620 inputs */
1621 ret = (s->mcr & 0x0c) << 4;
1622 ret |= (s->mcr & 0x02) << 3;
1623 ret |= (s->mcr & 0x01) << 5;
1624 } else {
1625 ret = s->msr;
1626 }
1627 break;
1628 case 7:
1629 ret = s->scr;
1630 break;
1631 }
1632 #ifdef DEBUG_SERIAL
1633 printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
1634 #endif
1635 return ret;
1636 }
1637
1638 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1639 static int term_got_escape, term_command;
1640 static unsigned char term_cmd_buf[128];
1641
1642 typedef struct term_cmd_t {
1643 const unsigned char *name;
1644 void (*handler)(unsigned char *params);
1645 } term_cmd_t;
1646
1647 static void do_change_cdrom (unsigned char *params);
1648 static void do_change_fd0 (unsigned char *params);
1649 static void do_change_fd1 (unsigned char *params);
1650
1651 static term_cmd_t term_cmds[] = {
1652 { "changecd", &do_change_cdrom, },
1653 { "changefd0", &do_change_fd0, },
1654 { "changefd1", &do_change_fd1, },
1655 { NULL, NULL, },
1656 };
1657
1658 void term_print_help(void)
1659 {
1660 printf("\n"
1661 "C-a h print this help\n"
1662 "C-a x exit emulatior\n"
1663 "C-a d switch on/off debug log\n"
1664 "C-a s save disk data back to file (if -snapshot)\n"
1665 "C-a b send break (magic sysrq)\n"
1666 "C-a c send qemu internal command\n"
1667 "C-a C-a send C-a\n"
1668 );
1669 }
1670
1671 static void do_change_cdrom (unsigned char *params)
1672 {
1673 /* Dunno how to do it... */
1674 }
1675
1676 static void do_change_fd (int fd, unsigned char *params)
1677 {
1678 unsigned char *name_start, *name_end, *ros;
1679 int ro;
1680
1681 for (name_start = params;
1682 isspace(*name_start); name_start++)
1683 continue;
1684 if (*name_start == '\0')
1685 return;
1686 for (name_end = name_start;
1687 !isspace(*name_end) && *name_end != '\0'; name_end++)
1688 continue;
1689 for (ros = name_end + 1; isspace(*ros); ros++)
1690 continue;
1691 if (ros[0] == 'r' && ros[1] == 'o')
1692 ro = 1;
1693 else
1694 ro = 0;
1695 *name_end = '\0';
1696 printf("Change fd %d to %s (%s)\n", fd, name_start, params);
1697 fdctrl_disk_change(fd, name_start, ro);
1698 }
1699
1700 static void do_change_fd0 (unsigned char *params)
1701 {
1702 do_change_fd(0, params);
1703 }
1704
1705 static void do_change_fd1 (unsigned char *params)
1706 {
1707 do_change_fd(1, params);
1708 }
1709
1710 static void serial_treat_command ()
1711 {
1712 unsigned char *cmd_start, *cmd_end;
1713 int i;
1714
1715 for (cmd_start = term_cmd_buf; isspace(*cmd_start); cmd_start++)
1716 continue;
1717 for (cmd_end = cmd_start;
1718 !isspace(*cmd_end) && *cmd_end != '\0'; cmd_end++)
1719 continue;
1720 for (i = 0; term_cmds[i].name != NULL; i++) {
1721 if (strlen(term_cmds[i].name) == (cmd_end - cmd_start) &&
1722 memcmp(term_cmds[i].name, cmd_start, cmd_end - cmd_start) == 0) {
1723 (*term_cmds[i].handler)(cmd_end + 1);
1724 return;
1725 }
1726 }
1727 *cmd_end = '\0';
1728 printf("Unknown term command: %s\n", cmd_start);
1729 }
1730
1731 extern FILE *logfile;
1732
1733 /* called when a char is received */
1734 void serial_received_byte(SerialState *s, int ch)
1735 {
1736 if (term_command) {
1737 if (ch == '\n' || ch == '\r' || term_command == 127) {
1738 printf("\n");
1739 serial_treat_command();
1740 term_command = 0;
1741 } else {
1742 if (ch == 0x7F || ch == 0x08) {
1743 if (term_command > 1) {
1744 term_cmd_buf[--term_command - 1] = '\0';
1745 printf("\r "
1746 " ");
1747 printf("\r> %s", term_cmd_buf);
1748 }
1749 } else if (ch > 0x1f) {
1750 term_cmd_buf[term_command++ - 1] = ch;
1751 term_cmd_buf[term_command - 1] = '\0';
1752 printf("\r> %s", term_cmd_buf);
1753 }
1754 fflush(stdout);
1755 }
1756 } else if (term_got_escape) {
1757 term_got_escape = 0;
1758 switch(ch) {
1759 case 'h':
1760 term_print_help();
1761 break;
1762 case 'x':
1763 exit(0);
1764 break;
1765 case 's':
1766 {
1767 int i;
1768 for (i = 0; i < MAX_DISKS; i++) {
1769 if (bs_table[i])
1770 bdrv_commit(bs_table[i]);
1771 }
1772 }
1773 break;
1774 case 'b':
1775 /* send break */
1776 s->rbr = 0;
1777 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1778 serial_update_irq();
1779 break;
1780 case 'c':
1781 printf("> ");
1782 fflush(stdout);
1783 term_command = 1;
1784 break;
1785 case 'd':
1786 cpu_set_log(CPU_LOG_ALL);
1787 break;
1788 case TERM_ESCAPE:
1789 goto send_char;
1790 }
1791 } else if (ch == TERM_ESCAPE) {
1792 term_got_escape = 1;
1793 } else {
1794 send_char:
1795 s->rbr = ch;
1796 s->lsr |= UART_LSR_DR;
1797 serial_update_irq();
1798 }
1799 }
1800
1801 void serial_init(void)
1802 {
1803 SerialState *s = &serial_ports[0];
1804
1805 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1806 s->iir = UART_IIR_NO_INT;
1807
1808 #if defined(TARGET_I386) || defined (TARGET_PPC)
1809 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1810 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1811 #endif
1812 }
1813
1814 /***********************************************************/
1815 /* ne2000 emulation */
1816
1817 #if defined (TARGET_I386)
1818 #define NE2000_IOPORT 0x300
1819 #define NE2000_IRQ 9
1820
1821 #define MAX_ETH_FRAME_SIZE 1514
1822
1823 #define E8390_CMD 0x00 /* The command register (for all pages) */
1824 /* Page 0 register offsets. */
1825 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1826 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1827 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1828 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1829 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1830 #define EN0_TSR 0x04 /* Transmit status reg RD */
1831 #define EN0_TPSR 0x04 /* Transmit starting page WR */
1832 #define EN0_NCR 0x05 /* Number of collision reg RD */
1833 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1834 #define EN0_FIFO 0x06 /* FIFO RD */
1835 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1836 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1837 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1838 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1839 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1840 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1841 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1842 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1843 #define EN0_RSR 0x0c /* rx status reg RD */
1844 #define EN0_RXCR 0x0c /* RX configuration reg WR */
1845 #define EN0_TXCR 0x0d /* TX configuration reg WR */
1846 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1847 #define EN0_DCFG 0x0e /* Data configuration reg WR */
1848 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1849 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
1850 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1851
1852 #define EN1_PHYS 0x11
1853 #define EN1_CURPAG 0x17
1854 #define EN1_MULT 0x18
1855
1856 /* Register accessed at EN_CMD, the 8390 base addr. */
1857 #define E8390_STOP 0x01 /* Stop and reset the chip */
1858 #define E8390_START 0x02 /* Start the chip, clear reset */
1859 #define E8390_TRANS 0x04 /* Transmit a frame */
1860 #define E8390_RREAD 0x08 /* Remote read */
1861 #define E8390_RWRITE 0x10 /* Remote write */
1862 #define E8390_NODMA 0x20 /* Remote DMA */
1863 #define E8390_PAGE0 0x00 /* Select page chip registers */
1864 #define E8390_PAGE1 0x40 /* using the two high-order bits */
1865 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1866
1867 /* Bits in EN0_ISR - Interrupt status register */
1868 #define ENISR_RX 0x01 /* Receiver, no error */
1869 #define ENISR_TX 0x02 /* Transmitter, no error */
1870 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
1871 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1872 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1873 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
1874 #define ENISR_RDC 0x40 /* remote dma complete */
1875 #define ENISR_RESET 0x80 /* Reset completed */
1876 #define ENISR_ALL 0x3f /* Interrupts we will enable */
1877
1878 /* Bits in received packet status byte and EN0_RSR*/
1879 #define ENRSR_RXOK 0x01 /* Received a good packet */
1880 #define ENRSR_CRC 0x02 /* CRC error */
1881 #define ENRSR_FAE 0x04 /* frame alignment error */
1882 #define ENRSR_FO 0x08 /* FIFO overrun */
1883 #define ENRSR_MPA 0x10 /* missed pkt */
1884 #define ENRSR_PHY 0x20 /* physical/multicast address */
1885 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1886 #define ENRSR_DEF 0x80 /* deferring */
1887
1888 /* Transmitted packet status, EN0_TSR. */
1889 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
1890 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1891 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
1892 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1893 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1894 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1895 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1896 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1897
1898 #define NE2000_MEM_SIZE 32768
1899
1900 typedef struct NE2000State {
1901 uint8_t cmd;
1902 uint32_t start;
1903 uint32_t stop;
1904 uint8_t boundary;
1905 uint8_t tsr;
1906 uint8_t tpsr;
1907 uint16_t tcnt;
1908 uint16_t rcnt;
1909 uint32_t rsar;
1910 uint8_t isr;
1911 uint8_t dcfg;
1912 uint8_t imr;
1913 uint8_t phys[6]; /* mac address */
1914 uint8_t curpag;
1915 uint8_t mult[8]; /* multicast mask array */
1916 uint8_t mem[NE2000_MEM_SIZE];
1917 } NE2000State;
1918
1919 NE2000State ne2000_state;
1920 int net_fd = -1;
1921 char network_script[1024];
1922
1923 void ne2000_reset(void)
1924 {
1925 NE2000State *s = &ne2000_state;
1926 int i;
1927
1928 s->isr = ENISR_RESET;
1929 s->mem[0] = 0x52;
1930 s->mem[1] = 0x54;
1931 s->mem[2] = 0x00;
1932 s->mem[3] = 0x12;
1933 s->mem[4] = 0x34;
1934 s->mem[5] = 0x56;
1935 s->mem[14] = 0x57;
1936 s->mem[15] = 0x57;
1937
1938 /* duplicate prom data */
1939 for(i = 15;i >= 0; i--) {
1940 s->mem[2 * i] = s->mem[i];
1941 s->mem[2 * i + 1] = s->mem[i];
1942 }
1943 }
1944
1945 void ne2000_update_irq(NE2000State *s)
1946 {
1947 int isr;
1948 isr = s->isr & s->imr;
1949 if (isr)
1950 pic_set_irq(NE2000_IRQ, 1);
1951 else
1952 pic_set_irq(NE2000_IRQ, 0);
1953 }
1954
1955 int net_init(void)
1956 {
1957 struct ifreq ifr;
1958 int fd, ret, pid, status;
1959
1960 fd = open("/dev/net/tun", O_RDWR);
1961 if (fd < 0) {
1962 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1963 return -1;
1964 }
1965 memset(&ifr, 0, sizeof(ifr));
1966 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1967 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1968 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1969 if (ret != 0) {
1970 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1971 close(fd);
1972 return -1;
1973 }
1974 printf("Connected to host network interface: %s\n", ifr.ifr_name);
1975 fcntl(fd, F_SETFL, O_NONBLOCK);
1976 net_fd = fd;
1977
1978 /* try to launch network init script */
1979 pid = fork();
1980 if (pid >= 0) {
1981 if (pid == 0) {
1982 execl(network_script, network_script, ifr.ifr_name, NULL);
1983 exit(1);
1984 }
1985 while (waitpid(pid, &status, 0) != pid);
1986 if (!WIFEXITED(status) ||
1987 WEXITSTATUS(status) != 0) {
1988 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1989 network_script, ifr.ifr_name);
1990 }
1991 }
1992 return 0;
1993 }
1994
1995 void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1996 {
1997 #ifdef DEBUG_NE2000
1998 printf("NE2000: sending packet size=%d\n", size);
1999 #endif
2000 write(net_fd, buf, size);
2001 }
2002
2003 /* return true if the NE2000 can receive more data */
2004 int ne2000_can_receive(NE2000State *s)
2005 {
2006 int avail, index, boundary;
2007
2008 if (s->cmd & E8390_STOP)
2009 return 0;
2010 index = s->curpag << 8;
2011 boundary = s->boundary << 8;
2012 if (index < boundary)
2013 avail = boundary - index;
2014 else
2015 avail = (s->stop - s->start) - (index - boundary);
2016 if (avail < (MAX_ETH_FRAME_SIZE + 4))
2017 return 0;
2018 return 1;
2019 }
2020
2021 void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
2022 {
2023 uint8_t *p;
2024 int total_len, next, avail, len, index;
2025
2026 #if defined(DEBUG_NE2000)
2027 printf("NE2000: received len=%d\n", size);
2028 #endif
2029
2030 index = s->curpag << 8;
2031 /* 4 bytes for header */
2032 total_len = size + 4;
2033 /* address for next packet (4 bytes for CRC) */
2034 next = index + ((total_len + 4 + 255) & ~0xff);
2035 if (next >= s->stop)
2036 next -= (s->stop - s->start);
2037 /* prepare packet header */
2038 p = s->mem + index;
2039 p[0] = ENRSR_RXOK; /* receive status */
2040 p[1] = next >> 8;
2041 p[2] = total_len;
2042 p[3] = total_len >> 8;
2043 index += 4;
2044
2045 /* write packet data */
2046 while (size > 0) {
2047 avail = s->stop - index;
2048 len = size;
2049 if (len > avail)
2050 len = avail;
2051 memcpy(s->mem + index, buf, len);
2052 buf += len;
2053 index += len;
2054 if (index == s->stop)
2055 index = s->start;
2056 size -= len;
2057 }
2058 s->curpag = next >> 8;
2059
2060 /* now we can signal we have receive something */
2061 s->isr |= ENISR_RX;
2062 ne2000_update_irq(s);
2063 }
2064
2065 void ne2000_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2066 {
2067 NE2000State *s = &ne2000_state;
2068 int offset, page;
2069
2070 addr &= 0xf;
2071 #ifdef DEBUG_NE2000
2072 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
2073 #endif
2074 if (addr == E8390_CMD) {
2075 /* control register */
2076 s->cmd = val;
2077 if (val & E8390_START) {
2078 /* test specific case: zero length transfert */
2079 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
2080 s->rcnt == 0) {
2081 s->isr |= ENISR_RDC;
2082 ne2000_update_irq(s);
2083 }
2084 if (val & E8390_TRANS) {
2085 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
2086 /* signal end of transfert */
2087 s->tsr = ENTSR_PTX;
2088 s->isr |= ENISR_TX;
2089 ne2000_update_irq(s);
2090 }
2091 }
2092 } else {
2093 page = s->cmd >> 6;
2094 offset = addr | (page << 4);
2095 switch(offset) {
2096 case EN0_STARTPG:
2097 s->start = val << 8;
2098 break;
2099 case EN0_STOPPG:
2100 s->stop = val << 8;
2101 break;
2102 case EN0_BOUNDARY:
2103 s->boundary = val;
2104 break;
2105 case EN0_IMR:
2106 s->imr = val;
2107 ne2000_update_irq(s);
2108 break;
2109 case EN0_TPSR:
2110 s->tpsr = val;
2111 break;
2112 case EN0_TCNTLO:
2113 s->tcnt = (s->tcnt & 0xff00) | val;
2114 break;
2115 case EN0_TCNTHI:
2116 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
2117 break;
2118 case EN0_RSARLO:
2119 s->rsar = (s->rsar & 0xff00) | val;
2120 break;
2121 case EN0_RSARHI:
2122 s->rsar = (s->rsar & 0x00ff) | (val << 8);
2123 break;
2124 case EN0_RCNTLO:
2125 s->rcnt = (s->rcnt & 0xff00) | val;
2126 break;
2127 case EN0_RCNTHI:
2128 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
2129 break;
2130 case EN0_DCFG:
2131 s->dcfg = val;
2132 break;
2133 case EN0_ISR:
2134 s->isr &= ~val;
2135 ne2000_update_irq(s);
2136 break;
2137 case EN1_PHYS ... EN1_PHYS + 5:
2138 s->phys[offset - EN1_PHYS] = val;
2139 break;
2140 case EN1_CURPAG:
2141 s->curpag = val;
2142 break;
2143 case EN1_MULT ... EN1_MULT + 7:
2144 s->mult[offset - EN1_MULT] = val;
2145 break;
2146 }
2147 }
2148 }
2149
2150 uint32_t ne2000_ioport_read(CPUState *env, uint32_t addr)
2151 {
2152 NE2000State *s = &ne2000_state;
2153 int offset, page, ret;
2154
2155 addr &= 0xf;
2156 if (addr == E8390_CMD) {
2157 ret = s->cmd;
2158 } else {
2159 page = s->cmd >> 6;
2160 offset = addr | (page << 4);
2161 switch(offset) {
2162 case EN0_TSR:
2163 ret = s->tsr;
2164 break;
2165 case EN0_BOUNDARY:
2166 ret = s->boundary;
2167 break;
2168 case EN0_ISR:
2169 ret = s->isr;
2170 break;
2171 case EN1_PHYS ... EN1_PHYS + 5:
2172 ret = s->phys[offset - EN1_PHYS];
2173 break;
2174 case EN1_CURPAG:
2175 ret = s->curpag;
2176 break;
2177 case EN1_MULT ... EN1_MULT + 7:
2178 ret = s->mult[offset - EN1_MULT];
2179 break;
2180 default:
2181 ret = 0x00;
2182 break;
2183 }
2184 }
2185 #ifdef DEBUG_NE2000
2186 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
2187 #endif
2188 return ret;
2189 }
2190
2191 void ne2000_asic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2192 {
2193 NE2000State *s = &ne2000_state;
2194 uint8_t *p;
2195
2196 #ifdef DEBUG_NE2000
2197 printf("NE2000: asic write val=0x%04x\n", val);
2198 #endif
2199 p = s->mem + s->rsar;
2200 if (s->dcfg & 0x01) {
2201 /* 16 bit access */
2202 p[0] = val;
2203 p[1] = val >> 8;
2204 s->rsar += 2;
2205 s->rcnt -= 2;
2206 } else {
2207 /* 8 bit access */
2208 p[0] = val;
2209 s->rsar++;
2210 s->rcnt--;
2211 }
2212 /* wrap */
2213 if (s->rsar == s->stop)
2214 s->rsar = s->start;
2215 if (s->rcnt == 0) {
2216 /* signal end of transfert */
2217 s->isr |= ENISR_RDC;
2218 ne2000_update_irq(s);
2219 }
2220 }
2221
2222 uint32_t ne2000_asic_ioport_read(CPUState *env, uint32_t addr)
2223 {
2224 NE2000State *s = &ne2000_state;
2225 uint8_t *p;
2226 int ret;
2227
2228 p = s->mem + s->rsar;
2229 if (s->dcfg & 0x01) {
2230 /* 16 bit access */
2231 ret = p[0] | (p[1] << 8);
2232 s->rsar += 2;
2233 s->rcnt -= 2;
2234 } else {
2235 /* 8 bit access */
2236 ret = p[0];
2237 s->rsar++;
2238 s->rcnt--;
2239 }
2240 /* wrap */
2241 if (s->rsar == s->stop)
2242 s->rsar = s->start;
2243 if (s->rcnt == 0) {
2244 /* signal end of transfert */
2245 s->isr |= ENISR_RDC;
2246 ne2000_update_irq(s);
2247 }
2248 #ifdef DEBUG_NE2000
2249 printf("NE2000: asic read val=0x%04x\n", ret);
2250 #endif
2251 return ret;
2252 }
2253
2254 void ne2000_reset_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
2255 {
2256 /* nothing to do (end of reset pulse) */
2257 }
2258
2259 uint32_t ne2000_reset_ioport_read(CPUState *env, uint32_t addr)
2260 {
2261 ne2000_reset();
2262 return 0;
2263 }
2264
2265 void ne2000_init(void)
2266 {
2267 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
2268 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
2269
2270 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
2271 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
2272 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
2273 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
2274
2275 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
2276 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
2277 ne2000_reset();
2278 }
2279 #endif
2280
2281 /***********************************************************/
2282 /* PC floppy disk controler emulation glue */
2283 #define PC_FDC_DMA 0x2
2284 #define PC_FDC_IRQ 0x6
2285 #define PC_FDC_BASE 0x3F0
2286
2287 static void fdctrl_register (unsigned char **disknames, int ro,
2288 char boot_device)
2289 {
2290 int i;
2291
2292 fdctrl_init(PC_FDC_IRQ, PC_FDC_DMA, 0, PC_FDC_BASE, boot_device);
2293 for (i = 0; i < MAX_FD; i++) {
2294 if (disknames[i] != NULL)
2295 fdctrl_disk_change(i, disknames[i], ro);
2296 }
2297 }
2298
2299 /***********************************************************/
2300 /* keyboard emulation */
2301
2302 /* Keyboard Controller Commands */
2303 #define KBD_CCMD_READ_MODE 0x20 /* Read mode bits */
2304 #define KBD_CCMD_WRITE_MODE 0x60 /* Write mode bits */
2305 #define KBD_CCMD_GET_VERSION 0xA1 /* Get controller version */
2306 #define KBD_CCMD_MOUSE_DISABLE 0xA7 /* Disable mouse interface */
2307 #define KBD_CCMD_MOUSE_ENABLE 0xA8 /* Enable mouse interface */
2308 #define KBD_CCMD_TEST_MOUSE 0xA9 /* Mouse interface test */
2309 #define KBD_CCMD_SELF_TEST 0xAA /* Controller self test */
2310 #define KBD_CCMD_KBD_TEST 0xAB /* Keyboard interface test */
2311 #define KBD_CCMD_KBD_DISABLE 0xAD /* Keyboard interface disable */
2312 #define KBD_CCMD_KBD_ENABLE 0xAE /* Keyboard interface enable */
2313 #define KBD_CCMD_READ_INPORT 0xC0 /* read input port */
2314 #define KBD_CCMD_READ_OUTPORT 0xD0 /* read output port */
2315 #define KBD_CCMD_WRITE_OUTPORT 0xD1 /* write output port */
2316 #define KBD_CCMD_WRITE_OBUF 0xD2
2317 #define KBD_CCMD_WRITE_AUX_OBUF 0xD3 /* Write to output buffer as if
2318 initiated by the auxiliary device */
2319 #define KBD_CCMD_WRITE_MOUSE 0xD4 /* Write the following byte to the mouse */
2320 #define KBD_CCMD_DISABLE_A20 0xDD /* HP vectra only ? */
2321 #define KBD_CCMD_ENABLE_A20 0xDF /* HP vectra only ? */
2322 #define KBD_CCMD_RESET 0xFE
2323
2324 /* Keyboard Commands */
2325 #define KBD_CMD_SET_LEDS 0xED /* Set keyboard leds */
2326 #define KBD_CMD_ECHO 0xEE
2327 #define KBD_CMD_GET_ID 0xF2 /* get keyboard ID */
2328 #define KBD_CMD_SET_RATE 0xF3 /* Set typematic rate */
2329 #define KBD_CMD_ENABLE 0xF4 /* Enable scanning */
2330 #define KBD_CMD_RESET_DISABLE 0xF5 /* reset and disable scanning */
2331 #define KBD_CMD_RESET_ENABLE 0xF6 /* reset and enable scanning */
2332 #define KBD_CMD_RESET 0xFF /* Reset */
2333
2334 /* Keyboard Replies */
2335 #define KBD_REPLY_POR 0xAA /* Power on reset */
2336 #define KBD_REPLY_ACK 0xFA /* Command ACK */
2337 #define KBD_REPLY_RESEND 0xFE /* Command NACK, send the cmd again */
2338
2339 /* Status Register Bits */
2340 #define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */
2341 #define KBD_STAT_IBF 0x02 /* Keyboard input buffer full */
2342 #define KBD_STAT_SELFTEST 0x04 /* Self test successful */
2343 #define KBD_STAT_CMD 0x08 /* Last write was a command write (0=data) */
2344 #define KBD_STAT_UNLOCKED 0x10 /* Zero if keyboard locked */
2345 #define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */
2346 #define KBD_STAT_GTO 0x40 /* General receive/xmit timeout */
2347 #define KBD_STAT_PERR 0x80 /* Parity error */
2348
2349 /* Controller Mode Register Bits */
2350 #define KBD_MODE_KBD_INT 0x01 /* Keyboard data generate IRQ1 */
2351 #define KBD_MODE_MOUSE_INT 0x02 /* Mouse data generate IRQ12 */
2352 #define KBD_MODE_SYS 0x04 /* The system flag (?) */
2353 #define KBD_MODE_NO_KEYLOCK 0x08 /* The keylock doesn't affect the keyboard if set */
2354 #define KBD_MODE_DISABLE_KBD 0x10 /* Disable keyboard interface */
2355 #define KBD_MODE_DISABLE_MOUSE 0x20 /* Disable mouse interface */
2356 #define KBD_MODE_KCC 0x40 /* Scan code conversion to PC format */
2357 #define KBD_MODE_RFU 0x80
2358
2359 /* Mouse Commands */
2360 #define AUX_SET_SCALE11 0xE6 /* Set 1:1 scaling */
2361 #define AUX_SET_SCALE21 0xE7 /* Set 2:1 scaling */
2362 #define AUX_SET_RES 0xE8 /* Set resolution */
2363 #define AUX_GET_SCALE 0xE9 /* Get scaling factor */
2364 #define AUX_SET_STREAM 0xEA /* Set stream mode */
2365 #define AUX_POLL 0xEB /* Poll */
2366 #define AUX_RESET_WRAP 0xEC /* Reset wrap mode */
2367 #define AUX_SET_WRAP 0xEE /* Set wrap mode */
2368 #define AUX_SET_REMOTE 0xF0 /* Set remote mode */
2369 #define AUX_GET_TYPE 0xF2 /* Get type */
2370 #define AUX_SET_SAMPLE 0xF3 /* Set sample rate */
2371 #define AUX_ENABLE_DEV 0xF4 /* Enable aux device */
2372 #define AUX_DISABLE_DEV 0xF5 /* Disable aux device */
2373 #define AUX_SET_DEFAULT 0xF6
2374 #define AUX_RESET 0xFF /* Reset aux device */
2375 #define AUX_ACK 0xFA /* Command byte ACK. */
2376
2377 #define MOUSE_STATUS_REMOTE 0x40
2378 #define MOUSE_STATUS_ENABLED 0x20
2379 #define MOUSE_STATUS_SCALE21 0x10
2380
2381 #define KBD_QUEUE_SIZE 256
2382
2383 typedef struct {
2384 uint8_t data[KBD_QUEUE_SIZE];
2385 int rptr, wptr, count;
2386 } KBDQueue;
2387
2388 typedef struct KBDState {
2389 KBDQueue queues[2];
2390 uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2391 uint8_t status;
2392 uint8_t mode;
2393 /* keyboard state */
2394 int kbd_write_cmd;
2395 int scan_enabled;
2396 /* mouse state */
2397 int mouse_write_cmd;
2398 uint8_t mouse_status;
2399 uint8_t mouse_resolution;
2400 uint8_t mouse_sample_rate;
2401 uint8_t mouse_wrap;
2402 uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
2403 uint8_t mouse_detect_state;
2404 int mouse_dx; /* current values, needed for 'poll' mode */
2405 int mouse_dy;
2406 int mouse_dz;
2407 uint8_t mouse_buttons;
2408 } KBDState;
2409
2410 KBDState kbd_state;
2411 int reset_requested;
2412
2413 /* update irq and KBD_STAT_[MOUSE_]OBF */
2414 /* XXX: not generating the irqs if KBD_MODE_DISABLE_KBD is set may be
2415 incorrect, but it avoids having to simulate exact delays */
2416 static void kbd_update_irq(KBDState *s)
2417 {
2418 int irq12_level, irq1_level;
2419
2420 irq1_level = 0;
2421 irq12_level = 0;
2422 s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
2423 if (s->queues[0].count != 0 ||
2424 s->queues[1].count != 0) {
2425 s->status |= KBD_STAT_OBF;
2426 if (s->queues[1].count != 0) {
2427 s->status |= KBD_STAT_MOUSE_OBF;
2428 if (s->mode & KBD_MODE_MOUSE_INT)
2429 irq12_level = 1;
2430 } else {
2431 if ((s->mode & KBD_MODE_KBD_INT) &&
2432 !(s->mode & KBD_MODE_DISABLE_KBD))
2433 irq1_level = 1;
2434 }
2435 }
2436 pic_set_irq(1, irq1_level);
2437 pic_set_irq(12, irq12_level);
2438 }
2439
2440 static void kbd_queue(KBDState *s, int b, int aux)
2441 {
2442 KBDQueue *q = &kbd_state.queues[aux];
2443
2444 #if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
2445 if (aux)
2446 printf("mouse event: 0x%02x\n", b);
2447 #ifdef DEBUG_KBD
2448 else
2449 printf("kbd event: 0x%02x\n", b);
2450 #endif
2451 #endif
2452 if (q->count >= KBD_QUEUE_SIZE)
2453 return;
2454 q->data[q->wptr] = b;
2455 if (++q->wptr == KBD_QUEUE_SIZE)
2456 q->wptr = 0;
2457 q->count++;
2458 kbd_update_irq(s);
2459 }
2460
2461 void kbd_put_keycode(int keycode)
2462 {
2463 KBDState *s = &kbd_state;
2464 kbd_queue(s, keycode, 0);
2465 }
2466
2467 uint32_t kbd_read_status(CPUState *env, uint32_t addr)
2468 {
2469 KBDState *s = &kbd_state;
2470 int val;
2471 val = s->status;
2472 #if defined(DEBUG_KBD)
2473 printf("kbd: read status=0x%02x\n", val);
2474 #endif
2475 return val;
2476 }
2477
2478 void kbd_write_command(CPUState *env, uint32_t addr, uint32_t val)
2479 {
2480 KBDState *s = &kbd_state;
2481
2482 #ifdef DEBUG_KBD
2483 printf("kbd: write cmd=0x%02x\n", val);
2484 #endif
2485 switch(val) {
2486 case KBD_CCMD_READ_MODE:
2487 kbd_queue(s, s->mode, 0);
2488 break;
2489 case KBD_CCMD_WRITE_MODE:
2490 case KBD_CCMD_WRITE_OBUF:
2491 case KBD_CCMD_WRITE_AUX_OBUF:
2492 case KBD_CCMD_WRITE_MOUSE:
2493 case KBD_CCMD_WRITE_OUTPORT:
2494 s->write_cmd = val;
2495 break;
2496 case KBD_CCMD_MOUSE_DISABLE:
2497 s->mode |= KBD_MODE_DISABLE_MOUSE;
2498 break;
2499 case KBD_CCMD_MOUSE_ENABLE:
2500 s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2501 break;
2502 case KBD_CCMD_TEST_MOUSE:
2503 kbd_queue(s, 0x00, 0);
2504 break;
2505 case KBD_CCMD_SELF_TEST:
2506 s->status |= KBD_STAT_SELFTEST;
2507 kbd_queue(s, 0x55, 0);
2508 break;
2509 case KBD_CCMD_KBD_TEST:
2510 kbd_queue(s, 0x00, 0);
2511 break;
2512 case KBD_CCMD_KBD_DISABLE:
2513 s->mode |= KBD_MODE_DISABLE_KBD;
2514 kbd_update_irq(s);
2515 break;
2516 case KBD_CCMD_KBD_ENABLE:
2517 s->mode &= ~KBD_MODE_DISABLE_KBD;
2518 kbd_update_irq(s);
2519 break;
2520 case KBD_CCMD_READ_INPORT:
2521 kbd_queue(s, 0x00, 0);
2522 break;
2523 case KBD_CCMD_READ_OUTPORT:
2524 /* XXX: check that */
2525 #ifdef TARGET_I386
2526 val = 0x01 | (a20_enabled << 1);
2527 #else
2528 val = 0x01;
2529 #endif
2530 if (s->status & KBD_STAT_OBF)
2531 val |= 0x10;
2532 if (s->status & KBD_STAT_MOUSE_OBF)
2533 val |= 0x20;
2534 kbd_queue(s, val, 0);
2535 break;
2536 #ifdef TARGET_I386
2537 case KBD_CCMD_ENABLE_A20:
2538 cpu_x86_set_a20(env, 1);
2539 break;
2540 case KBD_CCMD_DISABLE_A20:
2541 cpu_x86_set_a20(env, 0);
2542 break;
2543 #endif
2544 case KBD_CCMD_RESET:
2545 reset_requested = 1;
2546 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
2547 break;
2548 case 0xff:
2549 /* ignore that - I don't know what is its use */
2550 break;
2551 default:
2552 fprintf(stderr, "qemu: unsupported keyboard cmd=0x%02x\n", val);
2553 break;
2554 }
2555 }
2556
2557 uint32_t kbd_read_data(CPUState *env, uint32_t addr)
2558 {
2559 KBDState *s = &kbd_state;
2560 KBDQueue *q;
2561 int val, index;
2562
2563 q = &s->queues[0]; /* first check KBD data */
2564 if (q->count == 0)
2565 q = &s->queues[1]; /* then check AUX data */
2566 if (q->count == 0) {
2567 /* NOTE: if no data left, we return the last keyboard one
2568 (needed for EMM386) */
2569 /* XXX: need a timer to do things correctly */
2570 q = &s->queues[0];
2571 index = q->rptr - 1;
2572 if (index < 0)
2573 index = KBD_QUEUE_SIZE - 1;
2574 val = q->data[index];
2575 } else {
2576 val = q->data[q->rptr];
2577 if (++q->rptr == KBD_QUEUE_SIZE)
2578 q->rptr = 0;
2579 q->count--;
2580 /* reading deasserts IRQ */
2581 if (q == &s->queues[0])
2582 pic_set_irq(1, 0);
2583 else
2584 pic_set_irq(12, 0);
2585 }
2586 /* reassert IRQs if data left */
2587 kbd_update_irq(s);
2588 #ifdef DEBUG_KBD
2589 printf("kbd: read data=0x%02x\n", val);
2590 #endif
2591 return val;
2592 }
2593
2594 static void kbd_reset_keyboard(KBDState *s)
2595 {
2596 s->scan_enabled = 1;
2597 }
2598
2599 static void kbd_write_keyboard(KBDState *s, int val)
2600 {
2601 switch(s->kbd_write_cmd) {
2602 default:
2603 case -1:
2604 switch(val) {
2605 case 0x00:
2606 kbd_queue(s, KBD_REPLY_ACK, 0);
2607 break;
2608 case 0x05:
2609 kbd_queue(s, KBD_REPLY_RESEND, 0);
2610 break;
2611 case KBD_CMD_GET_ID:
2612 kbd_queue(s, KBD_REPLY_ACK, 0);
2613 kbd_queue(s, 0xab, 0);
2614 kbd_queue(s, 0x83, 0);
2615 break;
2616 case KBD_CMD_ECHO:
2617 kbd_queue(s, KBD_CMD_ECHO, 0);
2618 break;
2619 case KBD_CMD_ENABLE:
2620 s->scan_enabled = 1;
2621 kbd_queue(s, KBD_REPLY_ACK, 0);
2622 break;
2623 case KBD_CMD_SET_LEDS:
2624 case KBD_CMD_SET_RATE:
2625 s->kbd_write_cmd = val;
2626 kbd_queue(s, KBD_REPLY_ACK, 0);
2627 break;
2628 case KBD_CMD_RESET_DISABLE:
2629 kbd_reset_keyboard(s);
2630 s->scan_enabled = 0;
2631 kbd_queue(s, KBD_REPLY_ACK, 0);
2632 break;
2633 case KBD_CMD_RESET_ENABLE:
2634 kbd_reset_keyboard(s);
2635 s->scan_enabled = 1;
2636 kbd_queue(s, KBD_REPLY_ACK, 0);
2637 break;
2638 case KBD_CMD_RESET:
2639 kbd_reset_keyboard(s);
2640 kbd_queue(s, KBD_REPLY_ACK, 0);
2641 kbd_queue(s, KBD_REPLY_POR, 0);
2642 break;
2643 default:
2644 kbd_queue(s, KBD_REPLY_ACK, 0);
2645 break;
2646 }
2647 break;
2648 case KBD_CMD_SET_LEDS:
2649 kbd_queue(s, KBD_REPLY_ACK, 0);
2650 s->kbd_write_cmd = -1;
2651 break;
2652 case KBD_CMD_SET_RATE:
2653 kbd_queue(s, KBD_REPLY_ACK, 0);
2654 s->kbd_write_cmd = -1;
2655 break;
2656 }
2657 }
2658
2659 static void kbd_mouse_send_packet(KBDState *s)
2660 {
2661 unsigned int b;
2662 int dx1, dy1, dz1;
2663
2664 dx1 = s->mouse_dx;
2665 dy1 = s->mouse_dy;
2666 dz1 = s->mouse_dz;
2667 /* XXX: increase range to 8 bits ? */
2668 if (dx1 > 127)
2669 dx1 = 127;
2670 else if (dx1 < -127)
2671 dx1 = -127;
2672 if (dy1 > 127)
2673 dy1 = 127;
2674 else if (dy1 < -127)
2675 dy1 = -127;
2676 b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
2677 kbd_queue(s, b, 1);
2678 kbd_queue(s, dx1 & 0xff, 1);
2679 kbd_queue(s, dy1 & 0xff, 1);
2680 /* extra byte for IMPS/2 or IMEX */
2681 switch(s->mouse_type) {
2682 default:
2683 break;
2684 case 3:
2685 if (dz1 > 127)
2686 dz1 = 127;
2687 else if (dz1 < -127)
2688 dz1 = -127;
2689 kbd_queue(s, dz1 & 0xff, 1);
2690 break;
2691 case 4:
2692 if (dz1 > 7)
2693 dz1 = 7;
2694 else if (dz1 < -7)
2695 dz1 = -7;
2696 b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
2697 kbd_queue(s, b, 1);
2698 break;
2699 }
2700
2701 /* update deltas */
2702 s->mouse_dx -= dx1;
2703 s->mouse_dy -= dy1;
2704 s->mouse_dz -= dz1;
2705 }
2706
2707 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
2708 {
2709 KBDState *s = &kbd_state;
2710
2711 /* check if deltas are recorded when disabled */
2712 if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
2713 return;
2714
2715 s->mouse_dx += dx;
2716 s->mouse_dy -= dy;
2717 s->mouse_dz += dz;
2718 s->mouse_buttons = buttons_state;
2719
2720 if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
2721 (s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
2722 for(;;) {
2723 /* if not remote, send event. Multiple events are sent if
2724 too big deltas */
2725 kbd_mouse_send_packet(s);
2726 if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
2727 break;
2728 }
2729 }
2730 }
2731
2732 static void kbd_write_mouse(KBDState *s, int val)
2733 {
2734 #ifdef DEBUG_MOUSE
2735 printf("kbd: write mouse 0x%02x\n", val);
2736 #endif
2737 switch(s->mouse_write_cmd) {
2738 default:
2739 case -1:
2740 /* mouse command */
2741 if (s->mouse_wrap) {
2742 if (val == AUX_RESET_WRAP) {
2743 s->mouse_wrap = 0;
2744 kbd_queue(s, AUX_ACK, 1);
2745 return;
2746 } else if (val != AUX_RESET) {
2747 kbd_queue(s, val, 1);
2748 return;
2749 }
2750 }
2751 switch(val) {
2752 case AUX_SET_SCALE11:
2753 s->mouse_status &= ~MOUSE_STATUS_SCALE21;
2754 kbd_queue(s, AUX_ACK, 1);
2755 break;
2756 case AUX_SET_SCALE21:
2757 s->mouse_status |= MOUSE_STATUS_SCALE21;
2758 kbd_queue(s, AUX_ACK, 1);
2759 break;
2760 case AUX_SET_STREAM:
2761 s->mouse_status &= ~MOUSE_STATUS_REMOTE;
2762 kbd_queue(s, AUX_ACK, 1);
2763 break;
2764 case AUX_SET_WRAP:
2765 s->mouse_wrap = 1;
2766 kbd_queue(s, AUX_ACK, 1);
2767 break;
2768 case AUX_SET_REMOTE:
2769 s->mouse_status |= MOUSE_STATUS_REMOTE;
2770 kbd_queue(s, AUX_ACK, 1);
2771 break;
2772 case AUX_GET_TYPE:
2773 kbd_queue(s, AUX_ACK, 1);
2774 kbd_queue(s, s->mouse_type, 1);
2775 break;
2776 case AUX_SET_RES:
2777 case AUX_SET_SAMPLE:
2778 s->mouse_write_cmd = val;
2779 kbd_queue(s, AUX_ACK, 1);
2780 break;
2781 case AUX_GET_SCALE:
2782 kbd_queue(s, AUX_ACK, 1);
2783 kbd_queue(s, s->mouse_status, 1);
2784 kbd_queue(s, s->mouse_resolution, 1);
2785 kbd_queue(s, s->mouse_sample_rate, 1);
2786 break;
2787 case AUX_POLL:
2788 kbd_queue(s, AUX_ACK, 1);
2789 kbd_mouse_send_packet(s);
2790 break;
2791 case AUX_ENABLE_DEV:
2792 s->mouse_status |= MOUSE_STATUS_ENABLED;
2793 kbd_queue(s, AUX_ACK, 1);
2794 break;
2795 case AUX_DISABLE_DEV:
2796 s->mouse_status &= ~MOUSE_STATUS_ENABLED;
2797 kbd_queue(s, AUX_ACK, 1);
2798 break;
2799 case AUX_SET_DEFAULT:
2800 s->mouse_sample_rate = 100;
2801 s->mouse_resolution = 2;
2802 s->mouse_status = 0;
2803 kbd_queue(s, AUX_ACK, 1);
2804 break;
2805 case AUX_RESET:
2806 s->mouse_sample_rate = 100;
2807 s->mouse_resolution = 2;
2808 s->mouse_status = 0;
2809 kbd_queue(s, AUX_ACK, 1);
2810 kbd_queue(s, 0xaa, 1);
2811 kbd_queue(s, s->mouse_type, 1);
2812 break;
2813 default:
2814 break;
2815 }
2816 break;
2817 case AUX_SET_SAMPLE:
2818 s->mouse_sample_rate = val;
2819 #if 0
2820 /* detect IMPS/2 or IMEX */
2821 switch(s->mouse_detect_state) {
2822 default:
2823 case 0:
2824 if (val == 200)
2825 s->mouse_detect_state = 1;
2826 break;
2827 case 1:
2828 if (val == 100)
2829 s->mouse_detect_state = 2;
2830 else if (val == 200)
2831 s->mouse_detect_state = 3;
2832 else
2833 s->mouse_detect_state = 0;
2834 break;
2835 case 2:
2836 if (val == 80)
2837 s->mouse_type = 3; /* IMPS/2 */
2838 s->mouse_detect_state = 0;
2839 break;
2840 case 3:
2841 if (val == 80)
2842 s->mouse_type = 4; /* IMEX */
2843 s->mouse_detect_state = 0;
2844 break;
2845 }
2846 #endif
2847 kbd_queue(s, AUX_ACK, 1);
2848 s->mouse_write_cmd = -1;
2849 break;
2850 case AUX_SET_RES:
2851 s->mouse_resolution = val;
2852 kbd_queue(s, AUX_ACK, 1);
2853 s->mouse_write_cmd = -1;
2854 break;
2855 }
2856 }
2857
2858 void kbd_write_data(CPUState *env, uint32_t addr, uint32_t val)
2859 {
2860 KBDState *s = &kbd_state;
2861
2862 #ifdef DEBUG_KBD
2863 printf("kbd: write data=0x%02x\n", val);
2864 #endif
2865
2866 switch(s->write_cmd) {
2867 case 0:
2868 kbd_write_keyboard(s, val);
2869 break;
2870 case KBD_CCMD_WRITE_MODE:
2871 s->mode = val;
2872 kbd_update_irq(s);
2873 break;
2874 case KBD_CCMD_WRITE_OBUF:
2875 kbd_queue(s, val, 0);
2876 break;
2877 case KBD_CCMD_WRITE_AUX_OBUF:
2878 kbd_queue(s, val, 1);
2879 break;
2880 case KBD_CCMD_WRITE_OUTPORT:
2881 #ifdef TARGET_I386
2882 cpu_x86_set_a20(env, (val >> 1) & 1);
2883 #endif
2884 if (!(val & 1)) {
2885 reset_requested = 1;
2886 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
2887 }
2888 break;
2889 case KBD_CCMD_WRITE_MOUSE:
2890 kbd_write_mouse(s, val);
2891 break;
2892 default:
2893 break;
2894 }
2895 s->write_cmd = 0;
2896 }
2897
2898 void kbd_reset(KBDState *s)
2899 {
2900 KBDQueue *q;
2901 int i;
2902
2903 s->kbd_write_cmd = -1;
2904 s->mouse_write_cmd = -1;
2905 s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2906 s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
2907 for(i = 0; i < 2; i++) {
2908 q = &s->queues[i];
2909 q->rptr = 0;
2910 q->wptr = 0;
2911 q->count = 0;
2912 }
2913 }
2914
2915 void kbd_init(void)
2916 {
2917 kbd_reset(&kbd_state);
2918 #if defined (TARGET_I386) || defined (TARGET_PPC)
2919 register_ioport_read(0x60, 1, kbd_read_data, 1);
2920 register_ioport_write(0x60, 1, kbd_write_data, 1);
2921 register_ioport_read(0x64, 1, kbd_read_status, 1);
2922 register_ioport_write(0x64, 1, kbd_write_command, 1);
2923 #endif
2924 }
2925
2926 /***********************************************************/
2927 /* Bochs BIOS debug ports */
2928 #ifdef TARGET_I386
2929 void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2930 {
2931 switch(addr) {
2932 /* Bochs BIOS messages */
2933 case 0x400:
2934 case 0x401:
2935 fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2936 exit(1);
2937 case 0x402:
2938 case 0x403:
2939 #ifdef DEBUG_BIOS
2940 fprintf(stderr, "%c", val);
2941 #endif
2942 break;
2943
2944 /* LGPL'ed VGA BIOS messages */
2945 case 0x501:
2946 case 0x502:
2947 fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2948 exit(1);
2949 case 0x500:
2950 case 0x503:
2951 #ifdef DEBUG_BIOS
2952 fprintf(stderr, "%c", val);
2953 #endif
2954 break;
2955 }
2956 }
2957
2958 void bochs_bios_init(void)
2959 {
2960 register_ioport_write(0x400, 1, bochs_bios_write, 2);
2961 register_ioport_write(0x401, 1, bochs_bios_write, 2);
2962 register_ioport_write(0x402, 1, bochs_bios_write, 1);
2963 register_ioport_write(0x403, 1, bochs_bios_write, 1);
2964
2965 register_ioport_write(0x501, 1, bochs_bios_write, 2);
2966 register_ioport_write(0x502, 1, bochs_bios_write, 2);
2967 register_ioport_write(0x500, 1, bochs_bios_write, 1);
2968 register_ioport_write(0x503, 1, bochs_bios_write, 1);
2969 }
2970 #endif
2971
2972 /***********************************************************/
2973 /* dumb display */
2974
2975 /* init terminal so that we can grab keys */
2976 static struct termios oldtty;
2977
2978 static void term_exit(void)
2979 {
2980 tcsetattr (0, TCSANOW, &oldtty);
2981 }
2982
2983 static void term_init(void)
2984 {
2985 struct termios tty;
2986
2987 tcgetattr (0, &tty);
2988 oldtty = tty;
2989
2990 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2991 |INLCR|IGNCR|ICRNL|IXON);
2992 tty.c_oflag |= OPOST;
2993 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2994 /* if graphical mode, we allow Ctrl-C handling */
2995 if (nographic)
2996 tty.c_lflag &= ~ISIG;
2997 tty.c_cflag &= ~(CSIZE|PARENB);
2998 tty.c_cflag |= CS8;
2999 tty.c_cc[VMIN] = 1;
3000 tty.c_cc[VTIME] = 0;
3001
3002 tcsetattr (0, TCSANOW, &tty);
3003
3004 atexit(term_exit);
3005
3006 fcntl(0, F_SETFL, O_NONBLOCK);
3007 }
3008
3009 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3010 {
3011 }
3012
3013 static void dumb_resize(DisplayState *ds, int w, int h)
3014 {
3015 }
3016
3017 static void dumb_refresh(DisplayState *ds)
3018 {
3019 vga_update_display();
3020 }
3021
3022 void dumb_display_init(DisplayState *ds)
3023 {
3024 ds->data = NULL;
3025 ds->linesize = 0;
3026 ds->depth = 0;
3027 ds->dpy_update = dumb_update;
3028 ds->dpy_resize = dumb_resize;
3029 ds->dpy_refresh = dumb_refresh;
3030 }
3031
3032 #if !defined(CONFIG_SOFTMMU)
3033 /***********************************************************/
3034 /* cpu signal handler */
3035 static void host_segv_handler(int host_signum, siginfo_t *info,
3036 void *puc)
3037 {
3038 if (cpu_signal_handler(host_signum, info, puc))
3039 return;
3040 term_exit();
3041 abort();
3042 }
3043 #endif
3044
3045 static int timer_irq_pending;
3046 static int timer_irq_count;
3047
3048 static int timer_ms;
3049 static int gui_refresh_pending, gui_refresh_count;
3050
3051 static void host_alarm_handler(int host_signum, siginfo_t *info,
3052 void *puc)
3053 {
3054 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
3055 some drift between cpu_get_ticks() and the interrupt time. So
3056 we queue some interrupts to avoid missing some */
3057 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
3058 if (timer_irq_count) {
3059 if (timer_irq_count > 2)
3060 timer_irq_count = 2;
3061 timer_irq_count--;
3062 timer_irq_pending = 1;
3063 }
3064 gui_refresh_count += timer_ms;
3065 if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
3066 gui_refresh_count = 0;
3067 gui_refresh_pending = 1;
3068 }
3069
3070 /* XXX: seems dangerous to run that here. */
3071 DMA_run();
3072 SB16_run();
3073
3074 if (gui_refresh_pending || timer_irq_pending) {
3075 /* just exit from the cpu to have a chance to handle timers */
3076 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
3077 }
3078 }
3079
3080 #ifdef CONFIG_SOFTMMU
3081 void *get_mmap_addr(unsigned long size)
3082 {
3083 return NULL;
3084 }
3085 #else
3086 unsigned long mmap_addr = PHYS_RAM_BASE;
3087
3088 void *get_mmap_addr(unsigned long size)
3089 {
3090 unsigned long addr;
3091 addr = mmap_addr;
3092 mmap_addr += ((size + 4095) & ~4095) + 4096;
3093 return (void *)addr;
3094 }
3095 #endif
3096
3097 /* main execution loop */
3098
3099 CPUState *cpu_gdbstub_get_env(void *opaque)
3100 {
3101 return global_env;
3102 }
3103
3104 int main_loop(void *opaque)
3105 {
3106 struct pollfd ufds[3], *pf, *serial_ufd, *gdb_ufd;
3107 #if defined (TARGET_I386)
3108 struct pollfd *net_ufd;
3109 #endif
3110 int ret, n, timeout, serial_ok;
3111 uint8_t ch;
3112 CPUState *env = global_env;
3113
3114 if (!term_inited) {
3115 /* initialize terminal only there so that the user has a
3116 chance to stop QEMU with Ctrl-C before the gdb connection
3117 is launched */
3118 term_inited = 1;
3119 term_init();
3120 }
3121
3122 serial_ok = 1;
3123 cpu_enable_ticks();
3124 for(;;) {
3125 #if defined (DO_TB_FLUSH)
3126 tb_flush();
3127 #endif
3128 ret = cpu_exec(env);
3129 if (reset_requested) {
3130 ret = EXCP_INTERRUPT;
3131 break;
3132 }
3133 if (ret == EXCP_DEBUG) {
3134 ret = EXCP_DEBUG;
3135 break;
3136 }
3137 /* if hlt instruction, we wait until the next IRQ */
3138 if (ret == EXCP_HLT)
3139 timeout = 10;
3140 else
3141 timeout = 0;
3142 /* poll any events */
3143 serial_ufd = NULL;
3144 pf = ufds;
3145 if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
3146 serial_ufd = pf;
3147 pf->fd = 0;
3148 pf->events = POLLIN;
3149 pf++;
3150 }
3151 #if defined (TARGET_I386)
3152 net_ufd = NULL;
3153 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
3154 net_ufd = pf;
3155 pf->fd = net_fd;
3156 pf->events = POLLIN;
3157 pf++;
3158 }
3159 #endif
3160 gdb_ufd = NULL;
3161 if (gdbstub_fd > 0) {
3162 gdb_ufd = pf;
3163 pf->fd = gdbstub_fd;
3164 pf->events = POLLIN;
3165 pf++;
3166 }
3167
3168 ret = poll(ufds, pf - ufds, timeout);
3169 if (ret > 0) {
3170 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
3171 n = read(0, &ch, 1);
3172 if (n == 1) {
3173 serial_received_byte(&serial_ports[0], ch);
3174 } else {
3175 /* Closed, stop polling. */
3176 serial_ok = 0;
3177 }
3178 }
3179 #if defined (TARGET_I386)
3180 if (net_ufd && (net_ufd->revents & POLLIN)) {
3181 uint8_t buf[MAX_ETH_FRAME_SIZE];
3182
3183 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
3184 if (n > 0) {
3185 if (n < 60) {
3186 memset(buf + n, 0, 60 - n);
3187 n = 60;
3188 }
3189 ne2000_receive(&ne2000_state, buf, n);
3190 }
3191 }
3192 #endif
3193 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
3194 uint8_t buf[1];
3195 /* stop emulation if requested by gdb */
3196 n = read(gdbstub_fd, buf, 1);
3197 if (n == 1) {
3198 ret = EXCP_INTERRUPT;
3199 break;
3200 }
3201 }
3202 }
3203
3204 /* timer IRQ */
3205 if (timer_irq_pending) {
3206 #if defined (TARGET_I386)
3207 pic_set_irq(0, 1);
3208 pic_set_irq(0, 0);
3209 timer_irq_pending = 0;
3210 /* XXX: RTC test */
3211 if (cmos_data[RTC_REG_B] & 0x50) {
3212 pic_set_irq(8, 1);
3213 }
3214 #endif
3215 }
3216
3217 /* VGA */
3218 if (gui_refresh_pending) {
3219 display_state.dpy_refresh(&display_state);
3220 gui_refresh_pending = 0;
3221 }
3222 }
3223 cpu_disable_ticks();
3224 return ret;
3225 }
3226
3227 void help(void)
3228 {
3229 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
3230 "usage: %s [options] [disk_image]\n"
3231 "\n"
3232 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3233 "\n"
3234 "Standard options:\n"
3235 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3236 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3237 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3238 "-cdrom file use 'file' as IDE cdrom 2 image\n"
3239 "-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
3240 "-snapshot write to temporary files instead of disk image files\n"
3241 "-m megs set virtual RAM size to megs MB\n"
3242 "-n script set network init script [default=%s]\n"
3243 "-tun-fd fd this fd talks to tap/tun, use it.\n"
3244 "-nographic disable graphical output\n"
3245 "\n"
3246 "Linux boot specific (does not require PC BIOS):\n"
3247 "-kernel bzImage use 'bzImage' as kernel image\n"
3248 "-append cmdline use 'cmdline' as kernel command line\n"
3249 "-initrd file use 'file' as initial ram disk\n"
3250 "\n"
3251 "Debug/Expert options:\n"
3252 "-s wait gdb connection to port %d\n"
3253 "-p port change gdb connection port\n"
3254 "-d output log to %s\n"
3255 "-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
3256 "-L path set the directory for the BIOS and VGA BIOS\n"
3257 "\n"
3258 "During emulation, use C-a h to get terminal commands:\n",
3259 #ifdef CONFIG_SOFTMMU
3260 "qemu",
3261 #else
3262 "qemu-fast",
3263 #endif
3264 DEFAULT_NETWORK_SCRIPT,
3265 DEFAULT_GDBSTUB_PORT,
3266 "/tmp/qemu.log");
3267 term_print_help();
3268 #ifndef CONFIG_SOFTMMU
3269 printf("\n"
3270 "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
3271 "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
3272 "PC emulation.\n");
3273 #endif
3274 exit(1);
3275 }
3276
3277 struct option long_options[] = {
3278 { "initrd", 1, NULL, 0, },
3279 { "hda", 1, NULL, 0, },
3280 { "hdb", 1, NULL, 0, },
3281 { "snapshot", 0, NULL, 0, },
3282 { "hdachs", 1, NULL, 0, },
3283 { "nographic", 0, NULL, 0, },
3284 { "kernel", 1, NULL, 0, },
3285 { "append", 1, NULL, 0, },
3286 { "tun-fd", 1, NULL, 0, },
3287 { "hdc", 1, NULL, 0, },
3288 { "hdd", 1, NULL, 0, },
3289 { "cdrom", 1, NULL, 0, },
3290 { "boot", 1, NULL, 0, },
3291 { "fda", 1, NULL, 0, },
3292 { "fdb", 1, NULL, 0, },
3293 { NULL, 0, NULL, 0 },
3294 };
3295
3296 #ifdef CONFIG_SDL
3297 /* SDL use the pthreads and they modify sigaction. We don't
3298 want that. */
3299 #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)
3300 extern void __libc_sigaction();
3301 #define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
3302 #else
3303 extern void __sigaction();
3304 #define sigaction(sig, act, oact) __sigaction(sig, act, oact)
3305 #endif
3306 #endif /* CONFIG_SDL */
3307
3308 int main(int argc, char **argv)
3309 {
3310 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
3311 int snapshot, linux_boot, total_ram_size;
3312 #if defined (TARGET_I386)
3313 struct linux_params *params;
3314 #endif
3315 struct sigaction act;
3316 struct itimerval itv;
3317 CPUState *env;
3318 const char *initrd_filename;
3319 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
3320 const char *kernel_filename, *kernel_cmdline;
3321 DisplayState *ds = &display_state;
3322
3323 /* we never want that malloc() uses mmap() */
3324 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
3325 initrd_filename = NULL;
3326 for(i = 0; i < MAX_FD; i++)
3327 fd_filename[i] = NULL;
3328 for(i = 0; i < MAX_DISKS; i++)
3329 hd_filename[i] = NULL;
3330 phys_ram_size = 32 * 1024 * 1024;
3331 vga_ram_size = VGA_RAM_SIZE;
3332 #if defined (TARGET_I386)
3333 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
3334 #endif
3335 use_gdbstub = 0;
3336 gdbstub_port = DEFAULT_GDBSTUB_PORT;
3337 snapshot = 0;
3338 nographic = 0;
3339 kernel_filename = NULL;
3340 kernel_cmdline = "";
3341 for(;;) {
3342 c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
3343 if (c == -1)
3344 break;
3345 switch(c) {
3346 case 0:
3347 switch(long_index) {
3348 case 0:
3349 initrd_filename = optarg;
3350 break;
3351 case 1:
3352 hd_filename[0] = optarg;
3353 break;
3354 case 2:
3355 hd_filename[1] = optarg;
3356 break;
3357 case 3:
3358 snapshot = 1;
3359 break;
3360 case 4:
3361 {
3362 int cyls, heads, secs;
3363 const char *p;
3364 p = optarg;
3365 cyls = strtol(p, (char **)&p, 0);
3366 if (*p != ',')
3367 goto chs_fail;
3368 p++;
3369 heads = strtol(p, (char **)&p, 0);
3370 if (*p != ',')
3371 goto chs_fail;
3372 p++;
3373 secs = strtol(p, (char **)&p, 0);
3374 if (*p != '\0')
3375 goto chs_fail;
3376 ide_set_geometry(0, cyls, heads, secs);
3377 chs_fail: ;
3378 }
3379 break;
3380 case 5:
3381 nographic = 1;
3382 break;
3383 case 6:
3384 kernel_filename = optarg;
3385 break;
3386 case 7:
3387 kernel_cmdline = optarg;
3388 break;
3389 #if defined (TARGET_I386)
3390 case 8:
3391 net_fd = atoi(optarg);
3392 break;
3393 #endif
3394 case 9:
3395 hd_filename[2] = optarg;
3396 break;
3397 case 10:
3398 hd_filename[3] = optarg;
3399 break;
3400 case 11:
3401 hd_filename[2] = optarg;
3402 ide_set_cdrom(2, 1);
3403 break;
3404 case 12:
3405 boot_device = optarg[0];
3406 if (boot_device != 'a' && boot_device != 'b' &&
3407 boot_device != 'c' && boot_device != 'd') {
3408 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
3409 exit(1);
3410 }
3411 break;
3412 case 13:
3413 fd_filename[0] = optarg;
3414 break;
3415 case 14:
3416 fd_filename[1] = optarg;
3417 break;
3418 }
3419 break;
3420 case 'h':
3421 help();
3422 break;
3423 case 'm':
3424 phys_ram_size = atoi(optarg) * 1024 * 1024;
3425 if (phys_ram_size <= 0)
3426 help();
3427 if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
3428 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
3429 PHYS_RAM_MAX_SIZE / (1024 * 1024));
3430 exit(1);
3431 }
3432 break;
3433 case 'd':
3434 cpu_set_log(CPU_LOG_ALL);
3435 break;
3436 #if defined (TARGET_I386)
3437 case 'n':
3438 pstrcpy(network_script, sizeof(network_script), optarg);
3439 break;
3440 #endif
3441 case 's':
3442 use_gdbstub = 1;
3443 break;
3444 case 'p':
3445 gdbstub_port = atoi(optarg);
3446 break;
3447 case 'L':
3448 bios_dir = optarg;
3449 break;
3450 }
3451 }
3452
3453 if (optind < argc) {
3454 hd_filename[0] = argv[optind++];
3455 }
3456
3457 linux_boot = (kernel_filename != NULL);
3458
3459 if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
3460 fd_filename[0] == '\0')
3461 help();
3462
3463 /* boot to cd by default if no hard disk */
3464 if (hd_filename[0] == '\0' && boot_device == 'c')
3465 boot_device = 'd';
3466
3467 #if !defined(CONFIG_SOFTMMU)
3468 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
3469 {
3470 static uint8_t stdout_buf[4096];
3471 setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
3472 }
3473 #else
3474 setvbuf(stdout, NULL, _IOLBF, 0);
3475 #endif
3476
3477 /* init network tun interface */
3478 #if defined (TARGET_I386)
3479 if (net_fd < 0)
3480 net_init();
3481 #endif
3482
3483 /* init the memory */
3484 total_ram_size = phys_ram_size + vga_ram_size;
3485
3486 #ifdef CONFIG_SOFTMMU
3487 phys_ram_base = malloc(total_ram_size);
3488 if (!phys_ram_base) {
3489 fprintf(stderr, "Could not allocate physical memory\n");
3490 exit(1);
3491 }
3492 #else
3493 /* as we must map the same page at several addresses, we must use
3494 a fd */
3495 {
3496 const char *tmpdir;
3497
3498 tmpdir = getenv("QEMU_TMPDIR");
3499 if (!tmpdir)
3500 tmpdir = "/tmp";
3501 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3502 if (mkstemp(phys_ram_file) < 0) {
3503 fprintf(stderr, "Could not create temporary memory file '%s'\n",
3504 phys_ram_file);
3505 exit(1);
3506 }
3507 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3508 if (phys_ram_fd < 0) {
3509 fprintf(stderr, "Could not open temporary memory file '%s'\n",
3510 phys_ram_file);
3511 exit(1);
3512 }
3513 ftruncate(phys_ram_fd, total_ram_size);
3514 unlink(phys_ram_file);
3515 phys_ram_base = mmap(get_mmap_addr(total_ram_size),
3516 total_ram_size,
3517 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
3518 phys_ram_fd, 0);
3519 if (phys_ram_base == MAP_FAILED) {
3520 fprintf(stderr, "Could not map physical memory\n");
3521 exit(1);
3522 }
3523 }
3524 #endif
3525
3526 /* open the virtual block devices */
3527 for(i = 0; i < MAX_DISKS; i++) {
3528 if (hd_filename[i]) {
3529 bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3530 if (!bs_table[i]) {
3531 fprintf(stderr, "qemu: could not open hard disk image '%s\n",
3532 hd_filename[i]);
3533 exit(1);
3534 }
3535 }
3536 }
3537
3538 /* init CPU state */
3539 env = cpu_init();
3540 global_env = env;
3541 cpu_single_env = env;
3542
3543 init_ioports();
3544
3545 /* allocate RAM */
3546 cpu_register_physical_memory(0, phys_ram_size, 0);
3547
3548 if (linux_boot) {
3549 /* now we can load the kernel */
3550 ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
3551 if (ret < 0) {
3552 fprintf(stderr, "qemu: could not load kernel '%s'\n",
3553 kernel_filename);
3554 exit(1);
3555 }
3556
3557 /* load initrd */
3558 initrd_size = 0;
3559 if (initrd_filename) {
3560 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3561 if (initrd_size < 0) {
3562 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
3563 initrd_filename);
3564 exit(1);
3565 }
3566 }
3567
3568 /* init kernel params */
3569 #ifdef TARGET_I386
3570 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3571 memset(params, 0, sizeof(struct linux_params));
3572 params->mount_root_rdonly = 0;
3573 stw_raw(&params->cl_magic, 0xA33F);
3574 stw_raw(&params->cl_offset, params->commandline - (uint8_t *)params);
3575 stl_raw(&params->alt_mem_k, (phys_ram_size / 1024) - 1024);
3576 pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
3577 params->loader_type = 0x01;
3578 if (initrd_size > 0) {
3579 stl_raw(&params->initrd_start, INITRD_LOAD_ADDR);
3580 stl_raw(&params->initrd_size, initrd_size);
3581 }
3582 params->orig_video_lines = 25;
3583 params->orig_video_cols = 80;
3584
3585 /* setup basic memory access */
3586 env->cr[0] = 0x00000033;
3587 env->hflags |= HF_PE_MASK;
3588 cpu_x86_init_mmu(env);
3589
3590 memset(params->idt_table, 0, sizeof(params->idt_table));
3591
3592 stq_raw(&params->gdt_table[2], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3593 stq_raw(&params->gdt_table[3], 0x00cf92000000ffffLL); /* KERNEL_DS */
3594 /* for newer kernels (2.6.0) CS/DS are at different addresses */
3595 stq_raw(&params->gdt_table[12], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3596 stq_raw(&params->gdt_table[13], 0x00cf92000000ffffLL); /* KERNEL_DS */
3597
3598 env->idt.base = (void *)((uint8_t *)params->idt_table - phys_ram_base);
3599 env->idt.limit = sizeof(params->idt_table) - 1;
3600 env->gdt.base = (void *)((uint8_t *)params->gdt_table - phys_ram_base);
3601 env->gdt.limit = sizeof(params->gdt_table) - 1;
3602
3603 cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
3604 cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3605 cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3606 cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3607 cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3608 cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3609
3610 env->eip = KERNEL_LOAD_ADDR;
3611 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3612 env->eflags = 0x2;
3613 #elif defined (TARGET_PPC)
3614 cpu_x86_init_mmu(env);
3615 PPC_init_hw(env, phys_ram_size, KERNEL_LOAD_ADDR, ret,
3616 KERNEL_STACK_ADDR, boot_device);
3617 #endif
3618 } else {
3619 char buf[1024];
3620
3621 /* RAW PC boot */
3622 #if defined(TARGET_I386)
3623 /* BIOS load */
3624 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3625 ret = load_image(buf, phys_ram_base + 0x000f0000);
3626 if (ret != 0x10000) {
3627 fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf);
3628 exit(1);
3629 }
3630
3631 /* VGA BIOS load */
3632 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
3633 ret = load_image(buf, phys_ram_base + 0x000c0000);
3634
3635 /* setup basic memory access */
3636 env->cr[0] = 0x60000010;
3637 cpu_x86_init_mmu(env);
3638
3639 cpu_register_physical_memory(0xc0000, 0x10000, 0xc0000 | IO_MEM_ROM);
3640 cpu_register_physical_memory(0xf0000, 0x10000, 0xf0000 | IO_MEM_ROM);
3641
3642 env->idt.limit = 0xffff;
3643 env->gdt.limit = 0xffff;
3644 env->ldt.limit = 0xffff;
3645 env->ldt.flags = DESC_P_MASK;
3646 env->tr.limit = 0xffff;
3647 env->tr.flags = DESC_P_MASK;
3648
3649 /* not correct (CS base=0xffff0000) */
3650 cpu_x86_load_seg_cache(env, R_CS, 0xf000, (uint8_t *)0x000f0000, 0xffff, 0);
3651 cpu_x86_load_seg_cache(env, R_DS, 0, NULL, 0xffff, 0);
3652 cpu_x86_load_seg_cache(env, R_ES, 0, NULL, 0xffff, 0);
3653 cpu_x86_load_seg_cache(env, R_SS, 0, NULL, 0xffff, 0);
3654 cpu_x86_load_seg_cache(env, R_FS, 0, NULL, 0xffff, 0);
3655 cpu_x86_load_seg_cache(env, R_GS, 0, NULL, 0xffff, 0);
3656
3657 env->eip = 0xfff0;
3658 env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3659
3660 env->eflags = 0x2;
3661
3662 bochs_bios_init();
3663 #elif defined(TARGET_PPC)
3664 cpu_x86_init_mmu(env);
3665 /* allocate ROM */
3666 // snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3667 snprintf(buf, sizeof(buf), "%s", BIOS_FILENAME);
3668 printf("load BIOS at %p\n", phys_ram_base + 0x000f0000);
3669 ret = load_image(buf, phys_ram_base + 0x000f0000);
3670 if (ret != 0x10000) {
3671 fprintf(stderr, "qemu: could not load PPC bios '%s' (%d)\n%m\n",
3672 buf, ret);
3673 exit(1);
3674 }
3675 #endif
3676 }
3677
3678 /* terminal init */
3679 if (nographic) {
3680 dumb_display_init(ds);
3681 } else {
3682 #ifdef CONFIG_SDL
3683 sdl_display_init(ds);
3684 #else
3685 dumb_display_init(ds);
3686 #endif
3687 }
3688 /* init basic PC hardware */
3689 register_ioport_write(0x80, 1, ioport80_write, 1);
3690
3691 vga_initialize(ds, phys_ram_base + phys_ram_size, phys_ram_size,
3692 vga_ram_size);
3693 #if defined (TARGET_I386)
3694 cmos_init();
3695 #endif
3696 pic_init();
3697 pit_init();
3698 serial_init();
3699 #if defined (TARGET_I386)
3700 ne2000_init();
3701 #endif
3702 ide_init();
3703 kbd_init();
3704 AUD_init();
3705 DMA_init();
3706 #if defined (TARGET_I386)
3707 SB16_init();
3708 #endif
3709 #if defined (TARGET_PPC)
3710 PPC_end_init();
3711 #endif
3712 fdctrl_register((unsigned char **)fd_filename, snapshot, boot_device);
3713 /* setup cpu signal handlers for MMU / self modifying code handling */
3714 sigfillset(&act.sa_mask);
3715 act.sa_flags = SA_SIGINFO;
3716 #if !defined(CONFIG_SOFTMMU)
3717 act.sa_sigaction = host_segv_handler;
3718 sigaction(SIGSEGV, &act, NULL);
3719 sigaction(SIGBUS, &act, NULL);
3720 #endif
3721
3722 act.sa_sigaction = host_alarm_handler;
3723 sigaction(SIGALRM, &act, NULL);
3724
3725 itv.it_interval.tv_sec = 0;
3726 itv.it_interval.tv_usec = 1000;
3727 itv.it_value.tv_sec = 0;
3728 itv.it_value.tv_usec = 10 * 1000;
3729 setitimer(ITIMER_REAL, &itv, NULL);
3730 /* we probe the tick duration of the kernel to inform the user if
3731 the emulated kernel requested a too high timer frequency */
3732 getitimer(ITIMER_REAL, &itv);
3733 timer_ms = itv.it_interval.tv_usec / 1000;
3734 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
3735 1000000;
3736
3737 if (use_gdbstub) {
3738 cpu_gdbstub(NULL, main_loop, gdbstub_port);
3739 } else {
3740 main_loop(NULL);
3741 }
3742 return 0;
3743 }