]> git.proxmox.com Git - qemu.git/blob - vl.c
ARM 64-bit host fix.
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #endif
59 #endif
60 #endif
61
62 #if defined(CONFIG_SLIRP)
63 #include "libslirp.h"
64 #endif
65
66 #ifdef _WIN32
67 #include <malloc.h>
68 #include <sys/timeb.h>
69 #include <windows.h>
70 #define getopt_long_only getopt_long
71 #define memalign(align, size) malloc(size)
72 #endif
73
74 #include "qemu_socket.h"
75
76 #ifdef CONFIG_SDL
77 #ifdef __APPLE__
78 #include <SDL/SDL.h>
79 #endif
80 #endif /* CONFIG_SDL */
81
82 #ifdef CONFIG_COCOA
83 #undef main
84 #define main qemu_main
85 #endif /* CONFIG_COCOA */
86
87 #include "disas.h"
88
89 #include "exec-all.h"
90
91 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
92
93 //#define DEBUG_UNUSED_IOPORT
94 //#define DEBUG_IOPORT
95
96 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
97
98 #ifdef TARGET_PPC
99 #define DEFAULT_RAM_SIZE 144
100 #else
101 #define DEFAULT_RAM_SIZE 128
102 #endif
103 /* in ms */
104 #define GUI_REFRESH_INTERVAL 30
105
106 /* Max number of USB devices that can be specified on the commandline. */
107 #define MAX_USB_CMDLINE 8
108
109 /* XXX: use a two level table to limit memory usage */
110 #define MAX_IOPORTS 65536
111
112 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
113 char phys_ram_file[1024];
114 void *ioport_opaque[MAX_IOPORTS];
115 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
116 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
117 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
118 to store the VM snapshots */
119 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
120 /* point to the block driver where the snapshots are managed */
121 BlockDriverState *bs_snapshots;
122 int vga_ram_size;
123 int bios_size;
124 static DisplayState display_state;
125 int nographic;
126 const char* keyboard_layout = NULL;
127 int64_t ticks_per_sec;
128 int boot_device = 'c';
129 int ram_size;
130 int pit_min_timer_count = 0;
131 int nb_nics;
132 NICInfo nd_table[MAX_NICS];
133 QEMUTimer *gui_timer;
134 int vm_running;
135 int rtc_utc = 1;
136 int cirrus_vga_enabled = 1;
137 #ifdef TARGET_SPARC
138 int graphic_width = 1024;
139 int graphic_height = 768;
140 #else
141 int graphic_width = 800;
142 int graphic_height = 600;
143 #endif
144 int graphic_depth = 15;
145 int full_screen = 0;
146 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
147 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
148 #ifdef TARGET_I386
149 int win2k_install_hack = 0;
150 #endif
151 int usb_enabled = 0;
152 static VLANState *first_vlan;
153 int smp_cpus = 1;
154 int vnc_display = -1;
155 #if defined(TARGET_SPARC)
156 #define MAX_CPUS 16
157 #elif defined(TARGET_I386)
158 #define MAX_CPUS 255
159 #else
160 #define MAX_CPUS 1
161 #endif
162 int acpi_enabled = 1;
163 int fd_bootchk = 1;
164
165 /***********************************************************/
166 /* x86 ISA bus support */
167
168 target_phys_addr_t isa_mem_base = 0;
169 PicState2 *isa_pic;
170
171 uint32_t default_ioport_readb(void *opaque, uint32_t address)
172 {
173 #ifdef DEBUG_UNUSED_IOPORT
174 fprintf(stderr, "inb: port=0x%04x\n", address);
175 #endif
176 return 0xff;
177 }
178
179 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
180 {
181 #ifdef DEBUG_UNUSED_IOPORT
182 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
183 #endif
184 }
185
186 /* default is to make two byte accesses */
187 uint32_t default_ioport_readw(void *opaque, uint32_t address)
188 {
189 uint32_t data;
190 data = ioport_read_table[0][address](ioport_opaque[address], address);
191 address = (address + 1) & (MAX_IOPORTS - 1);
192 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
193 return data;
194 }
195
196 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
197 {
198 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
199 address = (address + 1) & (MAX_IOPORTS - 1);
200 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
201 }
202
203 uint32_t default_ioport_readl(void *opaque, uint32_t address)
204 {
205 #ifdef DEBUG_UNUSED_IOPORT
206 fprintf(stderr, "inl: port=0x%04x\n", address);
207 #endif
208 return 0xffffffff;
209 }
210
211 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
212 {
213 #ifdef DEBUG_UNUSED_IOPORT
214 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
215 #endif
216 }
217
218 void init_ioports(void)
219 {
220 int i;
221
222 for(i = 0; i < MAX_IOPORTS; i++) {
223 ioport_read_table[0][i] = default_ioport_readb;
224 ioport_write_table[0][i] = default_ioport_writeb;
225 ioport_read_table[1][i] = default_ioport_readw;
226 ioport_write_table[1][i] = default_ioport_writew;
227 ioport_read_table[2][i] = default_ioport_readl;
228 ioport_write_table[2][i] = default_ioport_writel;
229 }
230 }
231
232 /* size is the word size in byte */
233 int register_ioport_read(int start, int length, int size,
234 IOPortReadFunc *func, void *opaque)
235 {
236 int i, bsize;
237
238 if (size == 1) {
239 bsize = 0;
240 } else if (size == 2) {
241 bsize = 1;
242 } else if (size == 4) {
243 bsize = 2;
244 } else {
245 hw_error("register_ioport_read: invalid size");
246 return -1;
247 }
248 for(i = start; i < start + length; i += size) {
249 ioport_read_table[bsize][i] = func;
250 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
251 hw_error("register_ioport_read: invalid opaque");
252 ioport_opaque[i] = opaque;
253 }
254 return 0;
255 }
256
257 /* size is the word size in byte */
258 int register_ioport_write(int start, int length, int size,
259 IOPortWriteFunc *func, void *opaque)
260 {
261 int i, bsize;
262
263 if (size == 1) {
264 bsize = 0;
265 } else if (size == 2) {
266 bsize = 1;
267 } else if (size == 4) {
268 bsize = 2;
269 } else {
270 hw_error("register_ioport_write: invalid size");
271 return -1;
272 }
273 for(i = start; i < start + length; i += size) {
274 ioport_write_table[bsize][i] = func;
275 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
276 hw_error("register_ioport_read: invalid opaque");
277 ioport_opaque[i] = opaque;
278 }
279 return 0;
280 }
281
282 void isa_unassign_ioport(int start, int length)
283 {
284 int i;
285
286 for(i = start; i < start + length; i++) {
287 ioport_read_table[0][i] = default_ioport_readb;
288 ioport_read_table[1][i] = default_ioport_readw;
289 ioport_read_table[2][i] = default_ioport_readl;
290
291 ioport_write_table[0][i] = default_ioport_writeb;
292 ioport_write_table[1][i] = default_ioport_writew;
293 ioport_write_table[2][i] = default_ioport_writel;
294 }
295 }
296
297 /***********************************************************/
298
299 void pstrcpy(char *buf, int buf_size, const char *str)
300 {
301 int c;
302 char *q = buf;
303
304 if (buf_size <= 0)
305 return;
306
307 for(;;) {
308 c = *str++;
309 if (c == 0 || q >= buf + buf_size - 1)
310 break;
311 *q++ = c;
312 }
313 *q = '\0';
314 }
315
316 /* strcat and truncate. */
317 char *pstrcat(char *buf, int buf_size, const char *s)
318 {
319 int len;
320 len = strlen(buf);
321 if (len < buf_size)
322 pstrcpy(buf + len, buf_size - len, s);
323 return buf;
324 }
325
326 int strstart(const char *str, const char *val, const char **ptr)
327 {
328 const char *p, *q;
329 p = str;
330 q = val;
331 while (*q != '\0') {
332 if (*p != *q)
333 return 0;
334 p++;
335 q++;
336 }
337 if (ptr)
338 *ptr = p;
339 return 1;
340 }
341
342 void cpu_outb(CPUState *env, int addr, int val)
343 {
344 #ifdef DEBUG_IOPORT
345 if (loglevel & CPU_LOG_IOPORT)
346 fprintf(logfile, "outb: %04x %02x\n", addr, val);
347 #endif
348 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
349 #ifdef USE_KQEMU
350 if (env)
351 env->last_io_time = cpu_get_time_fast();
352 #endif
353 }
354
355 void cpu_outw(CPUState *env, int addr, int val)
356 {
357 #ifdef DEBUG_IOPORT
358 if (loglevel & CPU_LOG_IOPORT)
359 fprintf(logfile, "outw: %04x %04x\n", addr, val);
360 #endif
361 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
362 #ifdef USE_KQEMU
363 if (env)
364 env->last_io_time = cpu_get_time_fast();
365 #endif
366 }
367
368 void cpu_outl(CPUState *env, int addr, int val)
369 {
370 #ifdef DEBUG_IOPORT
371 if (loglevel & CPU_LOG_IOPORT)
372 fprintf(logfile, "outl: %04x %08x\n", addr, val);
373 #endif
374 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
375 #ifdef USE_KQEMU
376 if (env)
377 env->last_io_time = cpu_get_time_fast();
378 #endif
379 }
380
381 int cpu_inb(CPUState *env, int addr)
382 {
383 int val;
384 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
385 #ifdef DEBUG_IOPORT
386 if (loglevel & CPU_LOG_IOPORT)
387 fprintf(logfile, "inb : %04x %02x\n", addr, val);
388 #endif
389 #ifdef USE_KQEMU
390 if (env)
391 env->last_io_time = cpu_get_time_fast();
392 #endif
393 return val;
394 }
395
396 int cpu_inw(CPUState *env, int addr)
397 {
398 int val;
399 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
400 #ifdef DEBUG_IOPORT
401 if (loglevel & CPU_LOG_IOPORT)
402 fprintf(logfile, "inw : %04x %04x\n", addr, val);
403 #endif
404 #ifdef USE_KQEMU
405 if (env)
406 env->last_io_time = cpu_get_time_fast();
407 #endif
408 return val;
409 }
410
411 int cpu_inl(CPUState *env, int addr)
412 {
413 int val;
414 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
415 #ifdef DEBUG_IOPORT
416 if (loglevel & CPU_LOG_IOPORT)
417 fprintf(logfile, "inl : %04x %08x\n", addr, val);
418 #endif
419 #ifdef USE_KQEMU
420 if (env)
421 env->last_io_time = cpu_get_time_fast();
422 #endif
423 return val;
424 }
425
426 /***********************************************************/
427 void hw_error(const char *fmt, ...)
428 {
429 va_list ap;
430 CPUState *env;
431
432 va_start(ap, fmt);
433 fprintf(stderr, "qemu: hardware error: ");
434 vfprintf(stderr, fmt, ap);
435 fprintf(stderr, "\n");
436 for(env = first_cpu; env != NULL; env = env->next_cpu) {
437 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
438 #ifdef TARGET_I386
439 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
440 #else
441 cpu_dump_state(env, stderr, fprintf, 0);
442 #endif
443 }
444 va_end(ap);
445 abort();
446 }
447
448 /***********************************************************/
449 /* keyboard/mouse */
450
451 static QEMUPutKBDEvent *qemu_put_kbd_event;
452 static void *qemu_put_kbd_event_opaque;
453 static QEMUPutMouseEvent *qemu_put_mouse_event;
454 static void *qemu_put_mouse_event_opaque;
455 static int qemu_put_mouse_event_absolute;
456
457 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
458 {
459 qemu_put_kbd_event_opaque = opaque;
460 qemu_put_kbd_event = func;
461 }
462
463 void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque, int absolute)
464 {
465 qemu_put_mouse_event_opaque = opaque;
466 qemu_put_mouse_event = func;
467 qemu_put_mouse_event_absolute = absolute;
468 }
469
470 void kbd_put_keycode(int keycode)
471 {
472 if (qemu_put_kbd_event) {
473 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
474 }
475 }
476
477 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
478 {
479 if (qemu_put_mouse_event) {
480 qemu_put_mouse_event(qemu_put_mouse_event_opaque,
481 dx, dy, dz, buttons_state);
482 }
483 }
484
485 int kbd_mouse_is_absolute(void)
486 {
487 return qemu_put_mouse_event_absolute;
488 }
489
490 /* compute with 96 bit intermediate result: (a*b)/c */
491 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
492 {
493 union {
494 uint64_t ll;
495 struct {
496 #ifdef WORDS_BIGENDIAN
497 uint32_t high, low;
498 #else
499 uint32_t low, high;
500 #endif
501 } l;
502 } u, res;
503 uint64_t rl, rh;
504
505 u.ll = a;
506 rl = (uint64_t)u.l.low * (uint64_t)b;
507 rh = (uint64_t)u.l.high * (uint64_t)b;
508 rh += (rl >> 32);
509 res.l.high = rh / c;
510 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
511 return res.ll;
512 }
513
514 /***********************************************************/
515 /* real time host monotonic timer */
516
517 #define QEMU_TIMER_BASE 1000000000LL
518
519 #ifdef WIN32
520
521 static int64_t clock_freq;
522
523 static void init_get_clock(void)
524 {
525 LARGE_INTEGER freq;
526 int ret;
527 ret = QueryPerformanceFrequency(&freq);
528 if (ret == 0) {
529 fprintf(stderr, "Could not calibrate ticks\n");
530 exit(1);
531 }
532 clock_freq = freq.QuadPart;
533 }
534
535 static int64_t get_clock(void)
536 {
537 LARGE_INTEGER ti;
538 QueryPerformanceCounter(&ti);
539 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
540 }
541
542 #else
543
544 static int use_rt_clock;
545
546 static void init_get_clock(void)
547 {
548 use_rt_clock = 0;
549 #if defined(__linux__)
550 {
551 struct timespec ts;
552 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
553 use_rt_clock = 1;
554 }
555 }
556 #endif
557 }
558
559 static int64_t get_clock(void)
560 {
561 #if defined(__linux__)
562 if (use_rt_clock) {
563 struct timespec ts;
564 clock_gettime(CLOCK_MONOTONIC, &ts);
565 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
566 } else
567 #endif
568 {
569 /* XXX: using gettimeofday leads to problems if the date
570 changes, so it should be avoided. */
571 struct timeval tv;
572 gettimeofday(&tv, NULL);
573 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
574 }
575 }
576
577 #endif
578
579 /***********************************************************/
580 /* guest cycle counter */
581
582 static int64_t cpu_ticks_prev;
583 static int64_t cpu_ticks_offset;
584 static int64_t cpu_clock_offset;
585 static int cpu_ticks_enabled;
586
587 /* return the host CPU cycle counter and handle stop/restart */
588 int64_t cpu_get_ticks(void)
589 {
590 if (!cpu_ticks_enabled) {
591 return cpu_ticks_offset;
592 } else {
593 int64_t ticks;
594 ticks = cpu_get_real_ticks();
595 if (cpu_ticks_prev > ticks) {
596 /* Note: non increasing ticks may happen if the host uses
597 software suspend */
598 cpu_ticks_offset += cpu_ticks_prev - ticks;
599 }
600 cpu_ticks_prev = ticks;
601 return ticks + cpu_ticks_offset;
602 }
603 }
604
605 /* return the host CPU monotonic timer and handle stop/restart */
606 static int64_t cpu_get_clock(void)
607 {
608 int64_t ti;
609 if (!cpu_ticks_enabled) {
610 return cpu_clock_offset;
611 } else {
612 ti = get_clock();
613 return ti + cpu_clock_offset;
614 }
615 }
616
617 /* enable cpu_get_ticks() */
618 void cpu_enable_ticks(void)
619 {
620 if (!cpu_ticks_enabled) {
621 cpu_ticks_offset -= cpu_get_real_ticks();
622 cpu_clock_offset -= get_clock();
623 cpu_ticks_enabled = 1;
624 }
625 }
626
627 /* disable cpu_get_ticks() : the clock is stopped. You must not call
628 cpu_get_ticks() after that. */
629 void cpu_disable_ticks(void)
630 {
631 if (cpu_ticks_enabled) {
632 cpu_ticks_offset = cpu_get_ticks();
633 cpu_clock_offset = cpu_get_clock();
634 cpu_ticks_enabled = 0;
635 }
636 }
637
638 /***********************************************************/
639 /* timers */
640
641 #define QEMU_TIMER_REALTIME 0
642 #define QEMU_TIMER_VIRTUAL 1
643
644 struct QEMUClock {
645 int type;
646 /* XXX: add frequency */
647 };
648
649 struct QEMUTimer {
650 QEMUClock *clock;
651 int64_t expire_time;
652 QEMUTimerCB *cb;
653 void *opaque;
654 struct QEMUTimer *next;
655 };
656
657 QEMUClock *rt_clock;
658 QEMUClock *vm_clock;
659
660 static QEMUTimer *active_timers[2];
661 #ifdef _WIN32
662 static MMRESULT timerID;
663 static HANDLE host_alarm = NULL;
664 static unsigned int period = 1;
665 #else
666 /* frequency of the times() clock tick */
667 static int timer_freq;
668 #endif
669
670 QEMUClock *qemu_new_clock(int type)
671 {
672 QEMUClock *clock;
673 clock = qemu_mallocz(sizeof(QEMUClock));
674 if (!clock)
675 return NULL;
676 clock->type = type;
677 return clock;
678 }
679
680 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
681 {
682 QEMUTimer *ts;
683
684 ts = qemu_mallocz(sizeof(QEMUTimer));
685 ts->clock = clock;
686 ts->cb = cb;
687 ts->opaque = opaque;
688 return ts;
689 }
690
691 void qemu_free_timer(QEMUTimer *ts)
692 {
693 qemu_free(ts);
694 }
695
696 /* stop a timer, but do not dealloc it */
697 void qemu_del_timer(QEMUTimer *ts)
698 {
699 QEMUTimer **pt, *t;
700
701 /* NOTE: this code must be signal safe because
702 qemu_timer_expired() can be called from a signal. */
703 pt = &active_timers[ts->clock->type];
704 for(;;) {
705 t = *pt;
706 if (!t)
707 break;
708 if (t == ts) {
709 *pt = t->next;
710 break;
711 }
712 pt = &t->next;
713 }
714 }
715
716 /* modify the current timer so that it will be fired when current_time
717 >= expire_time. The corresponding callback will be called. */
718 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
719 {
720 QEMUTimer **pt, *t;
721
722 qemu_del_timer(ts);
723
724 /* add the timer in the sorted list */
725 /* NOTE: this code must be signal safe because
726 qemu_timer_expired() can be called from a signal. */
727 pt = &active_timers[ts->clock->type];
728 for(;;) {
729 t = *pt;
730 if (!t)
731 break;
732 if (t->expire_time > expire_time)
733 break;
734 pt = &t->next;
735 }
736 ts->expire_time = expire_time;
737 ts->next = *pt;
738 *pt = ts;
739 }
740
741 int qemu_timer_pending(QEMUTimer *ts)
742 {
743 QEMUTimer *t;
744 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
745 if (t == ts)
746 return 1;
747 }
748 return 0;
749 }
750
751 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
752 {
753 if (!timer_head)
754 return 0;
755 return (timer_head->expire_time <= current_time);
756 }
757
758 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
759 {
760 QEMUTimer *ts;
761
762 for(;;) {
763 ts = *ptimer_head;
764 if (!ts || ts->expire_time > current_time)
765 break;
766 /* remove timer from the list before calling the callback */
767 *ptimer_head = ts->next;
768 ts->next = NULL;
769
770 /* run the callback (the timer list can be modified) */
771 ts->cb(ts->opaque);
772 }
773 }
774
775 int64_t qemu_get_clock(QEMUClock *clock)
776 {
777 switch(clock->type) {
778 case QEMU_TIMER_REALTIME:
779 return get_clock() / 1000000;
780 default:
781 case QEMU_TIMER_VIRTUAL:
782 return cpu_get_clock();
783 }
784 }
785
786 static void init_timers(void)
787 {
788 init_get_clock();
789 ticks_per_sec = QEMU_TIMER_BASE;
790 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
791 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
792 }
793
794 /* save a timer */
795 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
796 {
797 uint64_t expire_time;
798
799 if (qemu_timer_pending(ts)) {
800 expire_time = ts->expire_time;
801 } else {
802 expire_time = -1;
803 }
804 qemu_put_be64(f, expire_time);
805 }
806
807 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
808 {
809 uint64_t expire_time;
810
811 expire_time = qemu_get_be64(f);
812 if (expire_time != -1) {
813 qemu_mod_timer(ts, expire_time);
814 } else {
815 qemu_del_timer(ts);
816 }
817 }
818
819 static void timer_save(QEMUFile *f, void *opaque)
820 {
821 if (cpu_ticks_enabled) {
822 hw_error("cannot save state if virtual timers are running");
823 }
824 qemu_put_be64s(f, &cpu_ticks_offset);
825 qemu_put_be64s(f, &ticks_per_sec);
826 qemu_put_be64s(f, &cpu_clock_offset);
827 }
828
829 static int timer_load(QEMUFile *f, void *opaque, int version_id)
830 {
831 if (version_id != 1 && version_id != 2)
832 return -EINVAL;
833 if (cpu_ticks_enabled) {
834 return -EINVAL;
835 }
836 qemu_get_be64s(f, &cpu_ticks_offset);
837 qemu_get_be64s(f, &ticks_per_sec);
838 if (version_id == 2) {
839 qemu_get_be64s(f, &cpu_clock_offset);
840 }
841 return 0;
842 }
843
844 #ifdef _WIN32
845 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
846 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
847 #else
848 static void host_alarm_handler(int host_signum)
849 #endif
850 {
851 #if 0
852 #define DISP_FREQ 1000
853 {
854 static int64_t delta_min = INT64_MAX;
855 static int64_t delta_max, delta_cum, last_clock, delta, ti;
856 static int count;
857 ti = qemu_get_clock(vm_clock);
858 if (last_clock != 0) {
859 delta = ti - last_clock;
860 if (delta < delta_min)
861 delta_min = delta;
862 if (delta > delta_max)
863 delta_max = delta;
864 delta_cum += delta;
865 if (++count == DISP_FREQ) {
866 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
867 muldiv64(delta_min, 1000000, ticks_per_sec),
868 muldiv64(delta_max, 1000000, ticks_per_sec),
869 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
870 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
871 count = 0;
872 delta_min = INT64_MAX;
873 delta_max = 0;
874 delta_cum = 0;
875 }
876 }
877 last_clock = ti;
878 }
879 #endif
880 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
881 qemu_get_clock(vm_clock)) ||
882 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
883 qemu_get_clock(rt_clock))) {
884 #ifdef _WIN32
885 SetEvent(host_alarm);
886 #endif
887 CPUState *env = cpu_single_env;
888 if (env) {
889 /* stop the currently executing cpu because a timer occured */
890 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
891 #ifdef USE_KQEMU
892 if (env->kqemu_enabled) {
893 kqemu_cpu_interrupt(env);
894 }
895 #endif
896 }
897 }
898 }
899
900 #ifndef _WIN32
901
902 #if defined(__linux__)
903
904 #define RTC_FREQ 1024
905
906 static int rtc_fd;
907
908 static int start_rtc_timer(void)
909 {
910 rtc_fd = open("/dev/rtc", O_RDONLY);
911 if (rtc_fd < 0)
912 return -1;
913 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
914 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
915 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
916 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
917 goto fail;
918 }
919 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
920 fail:
921 close(rtc_fd);
922 return -1;
923 }
924 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
925 return 0;
926 }
927
928 #else
929
930 static int start_rtc_timer(void)
931 {
932 return -1;
933 }
934
935 #endif /* !defined(__linux__) */
936
937 #endif /* !defined(_WIN32) */
938
939 static void init_timer_alarm(void)
940 {
941 #ifdef _WIN32
942 {
943 int count=0;
944 TIMECAPS tc;
945
946 ZeroMemory(&tc, sizeof(TIMECAPS));
947 timeGetDevCaps(&tc, sizeof(TIMECAPS));
948 if (period < tc.wPeriodMin)
949 period = tc.wPeriodMin;
950 timeBeginPeriod(period);
951 timerID = timeSetEvent(1, // interval (ms)
952 period, // resolution
953 host_alarm_handler, // function
954 (DWORD)&count, // user parameter
955 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
956 if( !timerID ) {
957 perror("failed timer alarm");
958 exit(1);
959 }
960 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
961 if (!host_alarm) {
962 perror("failed CreateEvent");
963 exit(1);
964 }
965 qemu_add_wait_object(host_alarm, NULL, NULL);
966 }
967 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
968 #else
969 {
970 struct sigaction act;
971 struct itimerval itv;
972
973 /* get times() syscall frequency */
974 timer_freq = sysconf(_SC_CLK_TCK);
975
976 /* timer signal */
977 sigfillset(&act.sa_mask);
978 act.sa_flags = 0;
979 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
980 act.sa_flags |= SA_ONSTACK;
981 #endif
982 act.sa_handler = host_alarm_handler;
983 sigaction(SIGALRM, &act, NULL);
984
985 itv.it_interval.tv_sec = 0;
986 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
987 itv.it_value.tv_sec = 0;
988 itv.it_value.tv_usec = 10 * 1000;
989 setitimer(ITIMER_REAL, &itv, NULL);
990 /* we probe the tick duration of the kernel to inform the user if
991 the emulated kernel requested a too high timer frequency */
992 getitimer(ITIMER_REAL, &itv);
993
994 #if defined(__linux__)
995 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
996 have timers with 1 ms resolution. The correct solution will
997 be to use the POSIX real time timers available in recent
998 2.6 kernels */
999 if (itv.it_interval.tv_usec > 1000 || 1) {
1000 /* try to use /dev/rtc to have a faster timer */
1001 if (start_rtc_timer() < 0)
1002 goto use_itimer;
1003 /* disable itimer */
1004 itv.it_interval.tv_sec = 0;
1005 itv.it_interval.tv_usec = 0;
1006 itv.it_value.tv_sec = 0;
1007 itv.it_value.tv_usec = 0;
1008 setitimer(ITIMER_REAL, &itv, NULL);
1009
1010 /* use the RTC */
1011 sigaction(SIGIO, &act, NULL);
1012 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1013 fcntl(rtc_fd, F_SETOWN, getpid());
1014 } else
1015 #endif /* defined(__linux__) */
1016 {
1017 use_itimer:
1018 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1019 PIT_FREQ) / 1000000;
1020 }
1021 }
1022 #endif
1023 }
1024
1025 void quit_timers(void)
1026 {
1027 #ifdef _WIN32
1028 timeKillEvent(timerID);
1029 timeEndPeriod(period);
1030 if (host_alarm) {
1031 CloseHandle(host_alarm);
1032 host_alarm = NULL;
1033 }
1034 #endif
1035 }
1036
1037 /***********************************************************/
1038 /* character device */
1039
1040 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1041 {
1042 return s->chr_write(s, buf, len);
1043 }
1044
1045 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1046 {
1047 if (!s->chr_ioctl)
1048 return -ENOTSUP;
1049 return s->chr_ioctl(s, cmd, arg);
1050 }
1051
1052 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1053 {
1054 char buf[4096];
1055 va_list ap;
1056 va_start(ap, fmt);
1057 vsnprintf(buf, sizeof(buf), fmt, ap);
1058 qemu_chr_write(s, buf, strlen(buf));
1059 va_end(ap);
1060 }
1061
1062 void qemu_chr_send_event(CharDriverState *s, int event)
1063 {
1064 if (s->chr_send_event)
1065 s->chr_send_event(s, event);
1066 }
1067
1068 void qemu_chr_add_read_handler(CharDriverState *s,
1069 IOCanRWHandler *fd_can_read,
1070 IOReadHandler *fd_read, void *opaque)
1071 {
1072 s->chr_add_read_handler(s, fd_can_read, fd_read, opaque);
1073 }
1074
1075 void qemu_chr_add_event_handler(CharDriverState *s, IOEventHandler *chr_event)
1076 {
1077 s->chr_event = chr_event;
1078 }
1079
1080 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1081 {
1082 return len;
1083 }
1084
1085 static void null_chr_add_read_handler(CharDriverState *chr,
1086 IOCanRWHandler *fd_can_read,
1087 IOReadHandler *fd_read, void *opaque)
1088 {
1089 }
1090
1091 CharDriverState *qemu_chr_open_null(void)
1092 {
1093 CharDriverState *chr;
1094
1095 chr = qemu_mallocz(sizeof(CharDriverState));
1096 if (!chr)
1097 return NULL;
1098 chr->chr_write = null_chr_write;
1099 chr->chr_add_read_handler = null_chr_add_read_handler;
1100 return chr;
1101 }
1102
1103 #ifdef _WIN32
1104
1105 static void socket_cleanup(void)
1106 {
1107 WSACleanup();
1108 }
1109
1110 static int socket_init(void)
1111 {
1112 WSADATA Data;
1113 int ret, err;
1114
1115 ret = WSAStartup(MAKEWORD(2,2), &Data);
1116 if (ret != 0) {
1117 err = WSAGetLastError();
1118 fprintf(stderr, "WSAStartup: %d\n", err);
1119 return -1;
1120 }
1121 atexit(socket_cleanup);
1122 return 0;
1123 }
1124
1125 static int send_all(int fd, const uint8_t *buf, int len1)
1126 {
1127 int ret, len;
1128
1129 len = len1;
1130 while (len > 0) {
1131 ret = send(fd, buf, len, 0);
1132 if (ret < 0) {
1133 int errno;
1134 errno = WSAGetLastError();
1135 if (errno != WSAEWOULDBLOCK) {
1136 return -1;
1137 }
1138 } else if (ret == 0) {
1139 break;
1140 } else {
1141 buf += ret;
1142 len -= ret;
1143 }
1144 }
1145 return len1 - len;
1146 }
1147
1148 void socket_set_nonblock(int fd)
1149 {
1150 unsigned long opt = 1;
1151 ioctlsocket(fd, FIONBIO, &opt);
1152 }
1153
1154 #else
1155
1156 static int unix_write(int fd, const uint8_t *buf, int len1)
1157 {
1158 int ret, len;
1159
1160 len = len1;
1161 while (len > 0) {
1162 ret = write(fd, buf, len);
1163 if (ret < 0) {
1164 if (errno != EINTR && errno != EAGAIN)
1165 return -1;
1166 } else if (ret == 0) {
1167 break;
1168 } else {
1169 buf += ret;
1170 len -= ret;
1171 }
1172 }
1173 return len1 - len;
1174 }
1175
1176 static inline int send_all(int fd, const uint8_t *buf, int len1)
1177 {
1178 return unix_write(fd, buf, len1);
1179 }
1180
1181 void socket_set_nonblock(int fd)
1182 {
1183 fcntl(fd, F_SETFL, O_NONBLOCK);
1184 }
1185 #endif /* !_WIN32 */
1186
1187 #ifndef _WIN32
1188
1189 typedef struct {
1190 int fd_in, fd_out;
1191 IOCanRWHandler *fd_can_read;
1192 IOReadHandler *fd_read;
1193 void *fd_opaque;
1194 int max_size;
1195 } FDCharDriver;
1196
1197 #define STDIO_MAX_CLIENTS 2
1198
1199 static int stdio_nb_clients;
1200 static CharDriverState *stdio_clients[STDIO_MAX_CLIENTS];
1201
1202 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1203 {
1204 FDCharDriver *s = chr->opaque;
1205 return unix_write(s->fd_out, buf, len);
1206 }
1207
1208 static int fd_chr_read_poll(void *opaque)
1209 {
1210 CharDriverState *chr = opaque;
1211 FDCharDriver *s = chr->opaque;
1212
1213 s->max_size = s->fd_can_read(s->fd_opaque);
1214 return s->max_size;
1215 }
1216
1217 static void fd_chr_read(void *opaque)
1218 {
1219 CharDriverState *chr = opaque;
1220 FDCharDriver *s = chr->opaque;
1221 int size, len;
1222 uint8_t buf[1024];
1223
1224 len = sizeof(buf);
1225 if (len > s->max_size)
1226 len = s->max_size;
1227 if (len == 0)
1228 return;
1229 size = read(s->fd_in, buf, len);
1230 if (size > 0) {
1231 s->fd_read(s->fd_opaque, buf, size);
1232 }
1233 }
1234
1235 static void fd_chr_add_read_handler(CharDriverState *chr,
1236 IOCanRWHandler *fd_can_read,
1237 IOReadHandler *fd_read, void *opaque)
1238 {
1239 FDCharDriver *s = chr->opaque;
1240
1241 if (s->fd_in >= 0) {
1242 s->fd_can_read = fd_can_read;
1243 s->fd_read = fd_read;
1244 s->fd_opaque = opaque;
1245 if (nographic && s->fd_in == 0) {
1246 } else {
1247 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1248 fd_chr_read, NULL, chr);
1249 }
1250 }
1251 }
1252
1253 /* open a character device to a unix fd */
1254 CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1255 {
1256 CharDriverState *chr;
1257 FDCharDriver *s;
1258
1259 chr = qemu_mallocz(sizeof(CharDriverState));
1260 if (!chr)
1261 return NULL;
1262 s = qemu_mallocz(sizeof(FDCharDriver));
1263 if (!s) {
1264 free(chr);
1265 return NULL;
1266 }
1267 s->fd_in = fd_in;
1268 s->fd_out = fd_out;
1269 chr->opaque = s;
1270 chr->chr_write = fd_chr_write;
1271 chr->chr_add_read_handler = fd_chr_add_read_handler;
1272 return chr;
1273 }
1274
1275 CharDriverState *qemu_chr_open_file_out(const char *file_out)
1276 {
1277 int fd_out;
1278
1279 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1280 if (fd_out < 0)
1281 return NULL;
1282 return qemu_chr_open_fd(-1, fd_out);
1283 }
1284
1285 CharDriverState *qemu_chr_open_pipe(const char *filename)
1286 {
1287 int fd;
1288
1289 fd = open(filename, O_RDWR | O_BINARY);
1290 if (fd < 0)
1291 return NULL;
1292 return qemu_chr_open_fd(fd, fd);
1293 }
1294
1295
1296 /* for STDIO, we handle the case where several clients use it
1297 (nographic mode) */
1298
1299 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1300
1301 #define TERM_FIFO_MAX_SIZE 1
1302
1303 static int term_got_escape, client_index;
1304 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1305 static int term_fifo_size;
1306 static int term_timestamps;
1307 static int64_t term_timestamps_start;
1308
1309 void term_print_help(void)
1310 {
1311 printf("\n"
1312 "C-a h print this help\n"
1313 "C-a x exit emulator\n"
1314 "C-a s save disk data back to file (if -snapshot)\n"
1315 "C-a b send break (magic sysrq)\n"
1316 "C-a t toggle console timestamps\n"
1317 "C-a c switch between console and monitor\n"
1318 "C-a C-a send C-a\n"
1319 );
1320 }
1321
1322 /* called when a char is received */
1323 static void stdio_received_byte(int ch)
1324 {
1325 if (term_got_escape) {
1326 term_got_escape = 0;
1327 switch(ch) {
1328 case 'h':
1329 term_print_help();
1330 break;
1331 case 'x':
1332 exit(0);
1333 break;
1334 case 's':
1335 {
1336 int i;
1337 for (i = 0; i < MAX_DISKS; i++) {
1338 if (bs_table[i])
1339 bdrv_commit(bs_table[i]);
1340 }
1341 }
1342 break;
1343 case 'b':
1344 if (client_index < stdio_nb_clients) {
1345 CharDriverState *chr;
1346 FDCharDriver *s;
1347
1348 chr = stdio_clients[client_index];
1349 s = chr->opaque;
1350 chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
1351 }
1352 break;
1353 case 'c':
1354 client_index++;
1355 if (client_index >= stdio_nb_clients)
1356 client_index = 0;
1357 if (client_index == 0) {
1358 /* send a new line in the monitor to get the prompt */
1359 ch = '\r';
1360 goto send_char;
1361 }
1362 break;
1363 case 't':
1364 term_timestamps = !term_timestamps;
1365 term_timestamps_start = -1;
1366 break;
1367 case TERM_ESCAPE:
1368 goto send_char;
1369 }
1370 } else if (ch == TERM_ESCAPE) {
1371 term_got_escape = 1;
1372 } else {
1373 send_char:
1374 if (client_index < stdio_nb_clients) {
1375 uint8_t buf[1];
1376 CharDriverState *chr;
1377 FDCharDriver *s;
1378
1379 chr = stdio_clients[client_index];
1380 s = chr->opaque;
1381 if (s->fd_can_read(s->fd_opaque) > 0) {
1382 buf[0] = ch;
1383 s->fd_read(s->fd_opaque, buf, 1);
1384 } else if (term_fifo_size == 0) {
1385 term_fifo[term_fifo_size++] = ch;
1386 }
1387 }
1388 }
1389 }
1390
1391 static int stdio_read_poll(void *opaque)
1392 {
1393 CharDriverState *chr;
1394 FDCharDriver *s;
1395
1396 if (client_index < stdio_nb_clients) {
1397 chr = stdio_clients[client_index];
1398 s = chr->opaque;
1399 /* try to flush the queue if needed */
1400 if (term_fifo_size != 0 && s->fd_can_read(s->fd_opaque) > 0) {
1401 s->fd_read(s->fd_opaque, term_fifo, 1);
1402 term_fifo_size = 0;
1403 }
1404 /* see if we can absorb more chars */
1405 if (term_fifo_size == 0)
1406 return 1;
1407 else
1408 return 0;
1409 } else {
1410 return 1;
1411 }
1412 }
1413
1414 static void stdio_read(void *opaque)
1415 {
1416 int size;
1417 uint8_t buf[1];
1418
1419 size = read(0, buf, 1);
1420 if (size > 0)
1421 stdio_received_byte(buf[0]);
1422 }
1423
1424 static int stdio_write(CharDriverState *chr, const uint8_t *buf, int len)
1425 {
1426 FDCharDriver *s = chr->opaque;
1427 if (!term_timestamps) {
1428 return unix_write(s->fd_out, buf, len);
1429 } else {
1430 int i;
1431 char buf1[64];
1432
1433 for(i = 0; i < len; i++) {
1434 unix_write(s->fd_out, buf + i, 1);
1435 if (buf[i] == '\n') {
1436 int64_t ti;
1437 int secs;
1438
1439 ti = get_clock();
1440 if (term_timestamps_start == -1)
1441 term_timestamps_start = ti;
1442 ti -= term_timestamps_start;
1443 secs = ti / 1000000000;
1444 snprintf(buf1, sizeof(buf1),
1445 "[%02d:%02d:%02d.%03d] ",
1446 secs / 3600,
1447 (secs / 60) % 60,
1448 secs % 60,
1449 (int)((ti / 1000000) % 1000));
1450 unix_write(s->fd_out, buf1, strlen(buf1));
1451 }
1452 }
1453 return len;
1454 }
1455 }
1456
1457 /* init terminal so that we can grab keys */
1458 static struct termios oldtty;
1459 static int old_fd0_flags;
1460
1461 static void term_exit(void)
1462 {
1463 tcsetattr (0, TCSANOW, &oldtty);
1464 fcntl(0, F_SETFL, old_fd0_flags);
1465 }
1466
1467 static void term_init(void)
1468 {
1469 struct termios tty;
1470
1471 tcgetattr (0, &tty);
1472 oldtty = tty;
1473 old_fd0_flags = fcntl(0, F_GETFL);
1474
1475 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1476 |INLCR|IGNCR|ICRNL|IXON);
1477 tty.c_oflag |= OPOST;
1478 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1479 /* if graphical mode, we allow Ctrl-C handling */
1480 if (nographic)
1481 tty.c_lflag &= ~ISIG;
1482 tty.c_cflag &= ~(CSIZE|PARENB);
1483 tty.c_cflag |= CS8;
1484 tty.c_cc[VMIN] = 1;
1485 tty.c_cc[VTIME] = 0;
1486
1487 tcsetattr (0, TCSANOW, &tty);
1488
1489 atexit(term_exit);
1490
1491 fcntl(0, F_SETFL, O_NONBLOCK);
1492 }
1493
1494 CharDriverState *qemu_chr_open_stdio(void)
1495 {
1496 CharDriverState *chr;
1497
1498 if (nographic) {
1499 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1500 return NULL;
1501 chr = qemu_chr_open_fd(0, 1);
1502 chr->chr_write = stdio_write;
1503 if (stdio_nb_clients == 0)
1504 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, NULL);
1505 client_index = stdio_nb_clients;
1506 } else {
1507 if (stdio_nb_clients != 0)
1508 return NULL;
1509 chr = qemu_chr_open_fd(0, 1);
1510 }
1511 stdio_clients[stdio_nb_clients++] = chr;
1512 if (stdio_nb_clients == 1) {
1513 /* set the terminal in raw mode */
1514 term_init();
1515 }
1516 return chr;
1517 }
1518
1519 #if defined(__linux__)
1520 CharDriverState *qemu_chr_open_pty(void)
1521 {
1522 struct termios tty;
1523 char slave_name[1024];
1524 int master_fd, slave_fd;
1525
1526 /* Not satisfying */
1527 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1528 return NULL;
1529 }
1530
1531 /* Disabling local echo and line-buffered output */
1532 tcgetattr (master_fd, &tty);
1533 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1534 tty.c_cc[VMIN] = 1;
1535 tty.c_cc[VTIME] = 0;
1536 tcsetattr (master_fd, TCSAFLUSH, &tty);
1537
1538 fprintf(stderr, "char device redirected to %s\n", slave_name);
1539 return qemu_chr_open_fd(master_fd, master_fd);
1540 }
1541
1542 static void tty_serial_init(int fd, int speed,
1543 int parity, int data_bits, int stop_bits)
1544 {
1545 struct termios tty;
1546 speed_t spd;
1547
1548 #if 0
1549 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1550 speed, parity, data_bits, stop_bits);
1551 #endif
1552 tcgetattr (fd, &tty);
1553
1554 switch(speed) {
1555 case 50:
1556 spd = B50;
1557 break;
1558 case 75:
1559 spd = B75;
1560 break;
1561 case 300:
1562 spd = B300;
1563 break;
1564 case 600:
1565 spd = B600;
1566 break;
1567 case 1200:
1568 spd = B1200;
1569 break;
1570 case 2400:
1571 spd = B2400;
1572 break;
1573 case 4800:
1574 spd = B4800;
1575 break;
1576 case 9600:
1577 spd = B9600;
1578 break;
1579 case 19200:
1580 spd = B19200;
1581 break;
1582 case 38400:
1583 spd = B38400;
1584 break;
1585 case 57600:
1586 spd = B57600;
1587 break;
1588 default:
1589 case 115200:
1590 spd = B115200;
1591 break;
1592 }
1593
1594 cfsetispeed(&tty, spd);
1595 cfsetospeed(&tty, spd);
1596
1597 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1598 |INLCR|IGNCR|ICRNL|IXON);
1599 tty.c_oflag |= OPOST;
1600 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1601 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1602 switch(data_bits) {
1603 default:
1604 case 8:
1605 tty.c_cflag |= CS8;
1606 break;
1607 case 7:
1608 tty.c_cflag |= CS7;
1609 break;
1610 case 6:
1611 tty.c_cflag |= CS6;
1612 break;
1613 case 5:
1614 tty.c_cflag |= CS5;
1615 break;
1616 }
1617 switch(parity) {
1618 default:
1619 case 'N':
1620 break;
1621 case 'E':
1622 tty.c_cflag |= PARENB;
1623 break;
1624 case 'O':
1625 tty.c_cflag |= PARENB | PARODD;
1626 break;
1627 }
1628 if (stop_bits == 2)
1629 tty.c_cflag |= CSTOPB;
1630
1631 tcsetattr (fd, TCSANOW, &tty);
1632 }
1633
1634 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1635 {
1636 FDCharDriver *s = chr->opaque;
1637
1638 switch(cmd) {
1639 case CHR_IOCTL_SERIAL_SET_PARAMS:
1640 {
1641 QEMUSerialSetParams *ssp = arg;
1642 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1643 ssp->data_bits, ssp->stop_bits);
1644 }
1645 break;
1646 case CHR_IOCTL_SERIAL_SET_BREAK:
1647 {
1648 int enable = *(int *)arg;
1649 if (enable)
1650 tcsendbreak(s->fd_in, 1);
1651 }
1652 break;
1653 default:
1654 return -ENOTSUP;
1655 }
1656 return 0;
1657 }
1658
1659 CharDriverState *qemu_chr_open_tty(const char *filename)
1660 {
1661 CharDriverState *chr;
1662 int fd;
1663
1664 fd = open(filename, O_RDWR | O_NONBLOCK);
1665 if (fd < 0)
1666 return NULL;
1667 fcntl(fd, F_SETFL, O_NONBLOCK);
1668 tty_serial_init(fd, 115200, 'N', 8, 1);
1669 chr = qemu_chr_open_fd(fd, fd);
1670 if (!chr)
1671 return NULL;
1672 chr->chr_ioctl = tty_serial_ioctl;
1673 return chr;
1674 }
1675
1676 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1677 {
1678 int fd = (int)chr->opaque;
1679 uint8_t b;
1680
1681 switch(cmd) {
1682 case CHR_IOCTL_PP_READ_DATA:
1683 if (ioctl(fd, PPRDATA, &b) < 0)
1684 return -ENOTSUP;
1685 *(uint8_t *)arg = b;
1686 break;
1687 case CHR_IOCTL_PP_WRITE_DATA:
1688 b = *(uint8_t *)arg;
1689 if (ioctl(fd, PPWDATA, &b) < 0)
1690 return -ENOTSUP;
1691 break;
1692 case CHR_IOCTL_PP_READ_CONTROL:
1693 if (ioctl(fd, PPRCONTROL, &b) < 0)
1694 return -ENOTSUP;
1695 *(uint8_t *)arg = b;
1696 break;
1697 case CHR_IOCTL_PP_WRITE_CONTROL:
1698 b = *(uint8_t *)arg;
1699 if (ioctl(fd, PPWCONTROL, &b) < 0)
1700 return -ENOTSUP;
1701 break;
1702 case CHR_IOCTL_PP_READ_STATUS:
1703 if (ioctl(fd, PPRSTATUS, &b) < 0)
1704 return -ENOTSUP;
1705 *(uint8_t *)arg = b;
1706 break;
1707 default:
1708 return -ENOTSUP;
1709 }
1710 return 0;
1711 }
1712
1713 CharDriverState *qemu_chr_open_pp(const char *filename)
1714 {
1715 CharDriverState *chr;
1716 int fd;
1717
1718 fd = open(filename, O_RDWR);
1719 if (fd < 0)
1720 return NULL;
1721
1722 if (ioctl(fd, PPCLAIM) < 0) {
1723 close(fd);
1724 return NULL;
1725 }
1726
1727 chr = qemu_mallocz(sizeof(CharDriverState));
1728 if (!chr) {
1729 close(fd);
1730 return NULL;
1731 }
1732 chr->opaque = (void *)fd;
1733 chr->chr_write = null_chr_write;
1734 chr->chr_add_read_handler = null_chr_add_read_handler;
1735 chr->chr_ioctl = pp_ioctl;
1736 return chr;
1737 }
1738
1739 #else
1740 CharDriverState *qemu_chr_open_pty(void)
1741 {
1742 return NULL;
1743 }
1744 #endif
1745
1746 #endif /* !defined(_WIN32) */
1747
1748 #ifdef _WIN32
1749 typedef struct {
1750 IOCanRWHandler *fd_can_read;
1751 IOReadHandler *fd_read;
1752 void *win_opaque;
1753 int max_size;
1754 HANDLE hcom, hrecv, hsend;
1755 OVERLAPPED orecv, osend;
1756 BOOL fpipe;
1757 DWORD len;
1758 } WinCharState;
1759
1760 #define NSENDBUF 2048
1761 #define NRECVBUF 2048
1762 #define MAXCONNECT 1
1763 #define NTIMEOUT 5000
1764
1765 static int win_chr_poll(void *opaque);
1766 static int win_chr_pipe_poll(void *opaque);
1767
1768 static void win_chr_close2(WinCharState *s)
1769 {
1770 if (s->hsend) {
1771 CloseHandle(s->hsend);
1772 s->hsend = NULL;
1773 }
1774 if (s->hrecv) {
1775 CloseHandle(s->hrecv);
1776 s->hrecv = NULL;
1777 }
1778 if (s->hcom) {
1779 CloseHandle(s->hcom);
1780 s->hcom = NULL;
1781 }
1782 if (s->fpipe)
1783 qemu_del_polling_cb(win_chr_pipe_poll, s);
1784 else
1785 qemu_del_polling_cb(win_chr_poll, s);
1786 }
1787
1788 static void win_chr_close(CharDriverState *chr)
1789 {
1790 WinCharState *s = chr->opaque;
1791 win_chr_close2(s);
1792 }
1793
1794 static int win_chr_init(WinCharState *s, const char *filename)
1795 {
1796 COMMCONFIG comcfg;
1797 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
1798 COMSTAT comstat;
1799 DWORD size;
1800 DWORD err;
1801
1802 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
1803 if (!s->hsend) {
1804 fprintf(stderr, "Failed CreateEvent\n");
1805 goto fail;
1806 }
1807 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
1808 if (!s->hrecv) {
1809 fprintf(stderr, "Failed CreateEvent\n");
1810 goto fail;
1811 }
1812
1813 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
1814 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
1815 if (s->hcom == INVALID_HANDLE_VALUE) {
1816 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
1817 s->hcom = NULL;
1818 goto fail;
1819 }
1820
1821 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
1822 fprintf(stderr, "Failed SetupComm\n");
1823 goto fail;
1824 }
1825
1826 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
1827 size = sizeof(COMMCONFIG);
1828 GetDefaultCommConfig(filename, &comcfg, &size);
1829 comcfg.dcb.DCBlength = sizeof(DCB);
1830 CommConfigDialog(filename, NULL, &comcfg);
1831
1832 if (!SetCommState(s->hcom, &comcfg.dcb)) {
1833 fprintf(stderr, "Failed SetCommState\n");
1834 goto fail;
1835 }
1836
1837 if (!SetCommMask(s->hcom, EV_ERR)) {
1838 fprintf(stderr, "Failed SetCommMask\n");
1839 goto fail;
1840 }
1841
1842 cto.ReadIntervalTimeout = MAXDWORD;
1843 if (!SetCommTimeouts(s->hcom, &cto)) {
1844 fprintf(stderr, "Failed SetCommTimeouts\n");
1845 goto fail;
1846 }
1847
1848 if (!ClearCommError(s->hcom, &err, &comstat)) {
1849 fprintf(stderr, "Failed ClearCommError\n");
1850 goto fail;
1851 }
1852 qemu_add_polling_cb(win_chr_poll, s);
1853 return 0;
1854
1855 fail:
1856 win_chr_close2(s);
1857 return -1;
1858 }
1859
1860 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
1861 {
1862 WinCharState *s = chr->opaque;
1863 DWORD len, ret, size, err;
1864
1865 len = len1;
1866 ZeroMemory(&s->osend, sizeof(s->osend));
1867 s->osend.hEvent = s->hsend;
1868 while (len > 0) {
1869 if (s->hsend)
1870 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
1871 else
1872 ret = WriteFile(s->hcom, buf, len, &size, NULL);
1873 if (!ret) {
1874 err = GetLastError();
1875 if (err == ERROR_IO_PENDING) {
1876 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
1877 if (ret) {
1878 buf += size;
1879 len -= size;
1880 } else {
1881 break;
1882 }
1883 } else {
1884 break;
1885 }
1886 } else {
1887 buf += size;
1888 len -= size;
1889 }
1890 }
1891 return len1 - len;
1892 }
1893
1894 static int win_chr_read_poll(WinCharState *s)
1895 {
1896 s->max_size = s->fd_can_read(s->win_opaque);
1897 return s->max_size;
1898 }
1899
1900 static void win_chr_readfile(WinCharState *s)
1901 {
1902 int ret, err;
1903 uint8_t buf[1024];
1904 DWORD size;
1905
1906 ZeroMemory(&s->orecv, sizeof(s->orecv));
1907 s->orecv.hEvent = s->hrecv;
1908 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
1909 if (!ret) {
1910 err = GetLastError();
1911 if (err == ERROR_IO_PENDING) {
1912 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
1913 }
1914 }
1915
1916 if (size > 0) {
1917 s->fd_read(s->win_opaque, buf, size);
1918 }
1919 }
1920
1921 static void win_chr_read(WinCharState *s)
1922 {
1923 if (s->len > s->max_size)
1924 s->len = s->max_size;
1925 if (s->len == 0)
1926 return;
1927
1928 win_chr_readfile(s);
1929 }
1930
1931 static int win_chr_poll(void *opaque)
1932 {
1933 WinCharState *s = opaque;
1934 COMSTAT status;
1935 DWORD comerr;
1936
1937 ClearCommError(s->hcom, &comerr, &status);
1938 if (status.cbInQue > 0) {
1939 s->len = status.cbInQue;
1940 win_chr_read_poll(s);
1941 win_chr_read(s);
1942 return 1;
1943 }
1944 return 0;
1945 }
1946
1947 static void win_chr_add_read_handler(CharDriverState *chr,
1948 IOCanRWHandler *fd_can_read,
1949 IOReadHandler *fd_read, void *opaque)
1950 {
1951 WinCharState *s = chr->opaque;
1952
1953 s->fd_can_read = fd_can_read;
1954 s->fd_read = fd_read;
1955 s->win_opaque = opaque;
1956 }
1957
1958 CharDriverState *qemu_chr_open_win(const char *filename)
1959 {
1960 CharDriverState *chr;
1961 WinCharState *s;
1962
1963 chr = qemu_mallocz(sizeof(CharDriverState));
1964 if (!chr)
1965 return NULL;
1966 s = qemu_mallocz(sizeof(WinCharState));
1967 if (!s) {
1968 free(chr);
1969 return NULL;
1970 }
1971 chr->opaque = s;
1972 chr->chr_write = win_chr_write;
1973 chr->chr_add_read_handler = win_chr_add_read_handler;
1974 chr->chr_close = win_chr_close;
1975
1976 if (win_chr_init(s, filename) < 0) {
1977 free(s);
1978 free(chr);
1979 return NULL;
1980 }
1981 return chr;
1982 }
1983
1984 static int win_chr_pipe_poll(void *opaque)
1985 {
1986 WinCharState *s = opaque;
1987 DWORD size;
1988
1989 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
1990 if (size > 0) {
1991 s->len = size;
1992 win_chr_read_poll(s);
1993 win_chr_read(s);
1994 return 1;
1995 }
1996 return 0;
1997 }
1998
1999 static int win_chr_pipe_init(WinCharState *s, const char *filename)
2000 {
2001 OVERLAPPED ov;
2002 int ret;
2003 DWORD size;
2004 char openname[256];
2005
2006 s->fpipe = TRUE;
2007
2008 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2009 if (!s->hsend) {
2010 fprintf(stderr, "Failed CreateEvent\n");
2011 goto fail;
2012 }
2013 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2014 if (!s->hrecv) {
2015 fprintf(stderr, "Failed CreateEvent\n");
2016 goto fail;
2017 }
2018
2019 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2020 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2021 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2022 PIPE_WAIT,
2023 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2024 if (s->hcom == INVALID_HANDLE_VALUE) {
2025 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2026 s->hcom = NULL;
2027 goto fail;
2028 }
2029
2030 ZeroMemory(&ov, sizeof(ov));
2031 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2032 ret = ConnectNamedPipe(s->hcom, &ov);
2033 if (ret) {
2034 fprintf(stderr, "Failed ConnectNamedPipe\n");
2035 goto fail;
2036 }
2037
2038 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2039 if (!ret) {
2040 fprintf(stderr, "Failed GetOverlappedResult\n");
2041 if (ov.hEvent) {
2042 CloseHandle(ov.hEvent);
2043 ov.hEvent = NULL;
2044 }
2045 goto fail;
2046 }
2047
2048 if (ov.hEvent) {
2049 CloseHandle(ov.hEvent);
2050 ov.hEvent = NULL;
2051 }
2052 qemu_add_polling_cb(win_chr_pipe_poll, s);
2053 return 0;
2054
2055 fail:
2056 win_chr_close2(s);
2057 return -1;
2058 }
2059
2060
2061 CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2062 {
2063 CharDriverState *chr;
2064 WinCharState *s;
2065
2066 chr = qemu_mallocz(sizeof(CharDriverState));
2067 if (!chr)
2068 return NULL;
2069 s = qemu_mallocz(sizeof(WinCharState));
2070 if (!s) {
2071 free(chr);
2072 return NULL;
2073 }
2074 chr->opaque = s;
2075 chr->chr_write = win_chr_write;
2076 chr->chr_add_read_handler = win_chr_add_read_handler;
2077 chr->chr_close = win_chr_close;
2078
2079 if (win_chr_pipe_init(s, filename) < 0) {
2080 free(s);
2081 free(chr);
2082 return NULL;
2083 }
2084 return chr;
2085 }
2086
2087 CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2088 {
2089 CharDriverState *chr;
2090 WinCharState *s;
2091
2092 chr = qemu_mallocz(sizeof(CharDriverState));
2093 if (!chr)
2094 return NULL;
2095 s = qemu_mallocz(sizeof(WinCharState));
2096 if (!s) {
2097 free(chr);
2098 return NULL;
2099 }
2100 s->hcom = fd_out;
2101 chr->opaque = s;
2102 chr->chr_write = win_chr_write;
2103 chr->chr_add_read_handler = win_chr_add_read_handler;
2104 return chr;
2105 }
2106
2107 CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2108 {
2109 HANDLE fd_out;
2110
2111 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2112 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2113 if (fd_out == INVALID_HANDLE_VALUE)
2114 return NULL;
2115
2116 return qemu_chr_open_win_file(fd_out);
2117 }
2118 #endif
2119
2120 /***********************************************************/
2121 /* UDP Net console */
2122
2123 typedef struct {
2124 IOCanRWHandler *fd_can_read;
2125 IOReadHandler *fd_read;
2126 void *fd_opaque;
2127 int fd;
2128 struct sockaddr_in daddr;
2129 char buf[1024];
2130 int bufcnt;
2131 int bufptr;
2132 int max_size;
2133 } NetCharDriver;
2134
2135 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2136 {
2137 NetCharDriver *s = chr->opaque;
2138
2139 return sendto(s->fd, buf, len, 0,
2140 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2141 }
2142
2143 static int udp_chr_read_poll(void *opaque)
2144 {
2145 CharDriverState *chr = opaque;
2146 NetCharDriver *s = chr->opaque;
2147
2148 s->max_size = s->fd_can_read(s->fd_opaque);
2149
2150 /* If there were any stray characters in the queue process them
2151 * first
2152 */
2153 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2154 s->fd_read(s->fd_opaque, &s->buf[s->bufptr], 1);
2155 s->bufptr++;
2156 s->max_size = s->fd_can_read(s->fd_opaque);
2157 }
2158 return s->max_size;
2159 }
2160
2161 static void udp_chr_read(void *opaque)
2162 {
2163 CharDriverState *chr = opaque;
2164 NetCharDriver *s = chr->opaque;
2165
2166 if (s->max_size == 0)
2167 return;
2168 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2169 s->bufptr = s->bufcnt;
2170 if (s->bufcnt <= 0)
2171 return;
2172
2173 s->bufptr = 0;
2174 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2175 s->fd_read(s->fd_opaque, &s->buf[s->bufptr], 1);
2176 s->bufptr++;
2177 s->max_size = s->fd_can_read(s->fd_opaque);
2178 }
2179 }
2180
2181 static void udp_chr_add_read_handler(CharDriverState *chr,
2182 IOCanRWHandler *fd_can_read,
2183 IOReadHandler *fd_read, void *opaque)
2184 {
2185 NetCharDriver *s = chr->opaque;
2186
2187 if (s->fd >= 0) {
2188 s->fd_can_read = fd_can_read;
2189 s->fd_read = fd_read;
2190 s->fd_opaque = opaque;
2191 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2192 udp_chr_read, NULL, chr);
2193 }
2194 }
2195
2196 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2197 int parse_host_src_port(struct sockaddr_in *haddr,
2198 struct sockaddr_in *saddr,
2199 const char *str);
2200
2201 CharDriverState *qemu_chr_open_udp(const char *def)
2202 {
2203 CharDriverState *chr = NULL;
2204 NetCharDriver *s = NULL;
2205 int fd = -1;
2206 struct sockaddr_in saddr;
2207
2208 chr = qemu_mallocz(sizeof(CharDriverState));
2209 if (!chr)
2210 goto return_err;
2211 s = qemu_mallocz(sizeof(NetCharDriver));
2212 if (!s)
2213 goto return_err;
2214
2215 fd = socket(PF_INET, SOCK_DGRAM, 0);
2216 if (fd < 0) {
2217 perror("socket(PF_INET, SOCK_DGRAM)");
2218 goto return_err;
2219 }
2220
2221 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2222 printf("Could not parse: %s\n", def);
2223 goto return_err;
2224 }
2225
2226 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2227 {
2228 perror("bind");
2229 goto return_err;
2230 }
2231
2232 s->fd = fd;
2233 s->bufcnt = 0;
2234 s->bufptr = 0;
2235 chr->opaque = s;
2236 chr->chr_write = udp_chr_write;
2237 chr->chr_add_read_handler = udp_chr_add_read_handler;
2238 return chr;
2239
2240 return_err:
2241 if (chr)
2242 free(chr);
2243 if (s)
2244 free(s);
2245 if (fd >= 0)
2246 closesocket(fd);
2247 return NULL;
2248 }
2249
2250 /***********************************************************/
2251 /* TCP Net console */
2252
2253 typedef struct {
2254 IOCanRWHandler *fd_can_read;
2255 IOReadHandler *fd_read;
2256 void *fd_opaque;
2257 int fd, listen_fd;
2258 int connected;
2259 int max_size;
2260 int do_telnetopt;
2261 } TCPCharDriver;
2262
2263 static void tcp_chr_accept(void *opaque);
2264
2265 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2266 {
2267 TCPCharDriver *s = chr->opaque;
2268 if (s->connected) {
2269 return send_all(s->fd, buf, len);
2270 } else {
2271 /* XXX: indicate an error ? */
2272 return len;
2273 }
2274 }
2275
2276 static int tcp_chr_read_poll(void *opaque)
2277 {
2278 CharDriverState *chr = opaque;
2279 TCPCharDriver *s = chr->opaque;
2280 if (!s->connected)
2281 return 0;
2282 s->max_size = s->fd_can_read(s->fd_opaque);
2283 return s->max_size;
2284 }
2285
2286 #define IAC 255
2287 #define IAC_BREAK 243
2288 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2289 TCPCharDriver *s,
2290 char *buf, int *size)
2291 {
2292 /* Handle any telnet client's basic IAC options to satisfy char by
2293 * char mode with no echo. All IAC options will be removed from
2294 * the buf and the do_telnetopt variable will be used to track the
2295 * state of the width of the IAC information.
2296 *
2297 * IAC commands come in sets of 3 bytes with the exception of the
2298 * "IAC BREAK" command and the double IAC.
2299 */
2300
2301 int i;
2302 int j = 0;
2303
2304 for (i = 0; i < *size; i++) {
2305 if (s->do_telnetopt > 1) {
2306 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2307 /* Double IAC means send an IAC */
2308 if (j != i)
2309 buf[j] = buf[i];
2310 j++;
2311 s->do_telnetopt = 1;
2312 } else {
2313 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2314 /* Handle IAC break commands by sending a serial break */
2315 chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
2316 s->do_telnetopt++;
2317 }
2318 s->do_telnetopt++;
2319 }
2320 if (s->do_telnetopt >= 4) {
2321 s->do_telnetopt = 1;
2322 }
2323 } else {
2324 if ((unsigned char)buf[i] == IAC) {
2325 s->do_telnetopt = 2;
2326 } else {
2327 if (j != i)
2328 buf[j] = buf[i];
2329 j++;
2330 }
2331 }
2332 }
2333 *size = j;
2334 }
2335
2336 static void tcp_chr_read(void *opaque)
2337 {
2338 CharDriverState *chr = opaque;
2339 TCPCharDriver *s = chr->opaque;
2340 uint8_t buf[1024];
2341 int len, size;
2342
2343 if (!s->connected || s->max_size <= 0)
2344 return;
2345 len = sizeof(buf);
2346 if (len > s->max_size)
2347 len = s->max_size;
2348 size = recv(s->fd, buf, len, 0);
2349 if (size == 0) {
2350 /* connection closed */
2351 s->connected = 0;
2352 if (s->listen_fd >= 0) {
2353 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2354 }
2355 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2356 closesocket(s->fd);
2357 s->fd = -1;
2358 } else if (size > 0) {
2359 if (s->do_telnetopt)
2360 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2361 if (size > 0)
2362 s->fd_read(s->fd_opaque, buf, size);
2363 }
2364 }
2365
2366 static void tcp_chr_add_read_handler(CharDriverState *chr,
2367 IOCanRWHandler *fd_can_read,
2368 IOReadHandler *fd_read, void *opaque)
2369 {
2370 TCPCharDriver *s = chr->opaque;
2371
2372 s->fd_can_read = fd_can_read;
2373 s->fd_read = fd_read;
2374 s->fd_opaque = opaque;
2375 }
2376
2377 static void tcp_chr_connect(void *opaque)
2378 {
2379 CharDriverState *chr = opaque;
2380 TCPCharDriver *s = chr->opaque;
2381
2382 s->connected = 1;
2383 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2384 tcp_chr_read, NULL, chr);
2385 }
2386
2387 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2388 static void tcp_chr_telnet_init(int fd)
2389 {
2390 char buf[3];
2391 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2392 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2393 send(fd, (char *)buf, 3, 0);
2394 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2395 send(fd, (char *)buf, 3, 0);
2396 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2397 send(fd, (char *)buf, 3, 0);
2398 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2399 send(fd, (char *)buf, 3, 0);
2400 }
2401
2402 static void tcp_chr_accept(void *opaque)
2403 {
2404 CharDriverState *chr = opaque;
2405 TCPCharDriver *s = chr->opaque;
2406 struct sockaddr_in saddr;
2407 socklen_t len;
2408 int fd;
2409
2410 for(;;) {
2411 len = sizeof(saddr);
2412 fd = accept(s->listen_fd, (struct sockaddr *)&saddr, &len);
2413 if (fd < 0 && errno != EINTR) {
2414 return;
2415 } else if (fd >= 0) {
2416 if (s->do_telnetopt)
2417 tcp_chr_telnet_init(fd);
2418 break;
2419 }
2420 }
2421 socket_set_nonblock(fd);
2422 s->fd = fd;
2423 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2424 tcp_chr_connect(chr);
2425 }
2426
2427 static void tcp_chr_close(CharDriverState *chr)
2428 {
2429 TCPCharDriver *s = chr->opaque;
2430 if (s->fd >= 0)
2431 closesocket(s->fd);
2432 if (s->listen_fd >= 0)
2433 closesocket(s->listen_fd);
2434 qemu_free(s);
2435 }
2436
2437 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2438 int is_telnet)
2439 {
2440 CharDriverState *chr = NULL;
2441 TCPCharDriver *s = NULL;
2442 int fd = -1, ret, err, val;
2443 int is_listen = 0;
2444 int is_waitconnect = 1;
2445 const char *ptr;
2446 struct sockaddr_in saddr;
2447
2448 if (parse_host_port(&saddr, host_str) < 0)
2449 goto fail;
2450
2451 ptr = host_str;
2452 while((ptr = strchr(ptr,','))) {
2453 ptr++;
2454 if (!strncmp(ptr,"server",6)) {
2455 is_listen = 1;
2456 } else if (!strncmp(ptr,"nowait",6)) {
2457 is_waitconnect = 0;
2458 } else {
2459 printf("Unknown option: %s\n", ptr);
2460 goto fail;
2461 }
2462 }
2463 if (!is_listen)
2464 is_waitconnect = 0;
2465
2466 chr = qemu_mallocz(sizeof(CharDriverState));
2467 if (!chr)
2468 goto fail;
2469 s = qemu_mallocz(sizeof(TCPCharDriver));
2470 if (!s)
2471 goto fail;
2472
2473 fd = socket(PF_INET, SOCK_STREAM, 0);
2474 if (fd < 0)
2475 goto fail;
2476
2477 if (!is_waitconnect)
2478 socket_set_nonblock(fd);
2479
2480 s->connected = 0;
2481 s->fd = -1;
2482 s->listen_fd = -1;
2483 if (is_listen) {
2484 /* allow fast reuse */
2485 val = 1;
2486 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2487
2488 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2489 if (ret < 0)
2490 goto fail;
2491 ret = listen(fd, 0);
2492 if (ret < 0)
2493 goto fail;
2494 s->listen_fd = fd;
2495 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2496 if (is_telnet)
2497 s->do_telnetopt = 1;
2498 } else {
2499 for(;;) {
2500 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
2501 if (ret < 0) {
2502 err = socket_error();
2503 if (err == EINTR || err == EWOULDBLOCK) {
2504 } else if (err == EINPROGRESS) {
2505 break;
2506 } else {
2507 goto fail;
2508 }
2509 } else {
2510 s->connected = 1;
2511 break;
2512 }
2513 }
2514 s->fd = fd;
2515 if (s->connected)
2516 tcp_chr_connect(chr);
2517 else
2518 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2519 }
2520
2521 chr->opaque = s;
2522 chr->chr_write = tcp_chr_write;
2523 chr->chr_add_read_handler = tcp_chr_add_read_handler;
2524 chr->chr_close = tcp_chr_close;
2525 if (is_listen && is_waitconnect) {
2526 printf("QEMU waiting for connection on: %s\n", host_str);
2527 tcp_chr_accept(chr);
2528 socket_set_nonblock(s->listen_fd);
2529 }
2530
2531 return chr;
2532 fail:
2533 if (fd >= 0)
2534 closesocket(fd);
2535 qemu_free(s);
2536 qemu_free(chr);
2537 return NULL;
2538 }
2539
2540 CharDriverState *qemu_chr_open(const char *filename)
2541 {
2542 const char *p;
2543
2544 if (!strcmp(filename, "vc")) {
2545 return text_console_init(&display_state);
2546 } else if (!strcmp(filename, "null")) {
2547 return qemu_chr_open_null();
2548 } else
2549 if (strstart(filename, "tcp:", &p)) {
2550 return qemu_chr_open_tcp(p, 0);
2551 } else
2552 if (strstart(filename, "telnet:", &p)) {
2553 return qemu_chr_open_tcp(p, 1);
2554 } else
2555 if (strstart(filename, "udp:", &p)) {
2556 return qemu_chr_open_udp(p);
2557 } else
2558 #ifndef _WIN32
2559 if (strstart(filename, "file:", &p)) {
2560 return qemu_chr_open_file_out(p);
2561 } else if (strstart(filename, "pipe:", &p)) {
2562 return qemu_chr_open_pipe(p);
2563 } else if (!strcmp(filename, "pty")) {
2564 return qemu_chr_open_pty();
2565 } else if (!strcmp(filename, "stdio")) {
2566 return qemu_chr_open_stdio();
2567 } else
2568 #endif
2569 #if defined(__linux__)
2570 if (strstart(filename, "/dev/parport", NULL)) {
2571 return qemu_chr_open_pp(filename);
2572 } else
2573 if (strstart(filename, "/dev/", NULL)) {
2574 return qemu_chr_open_tty(filename);
2575 } else
2576 #endif
2577 #ifdef _WIN32
2578 if (strstart(filename, "COM", NULL)) {
2579 return qemu_chr_open_win(filename);
2580 } else
2581 if (strstart(filename, "pipe:", &p)) {
2582 return qemu_chr_open_win_pipe(p);
2583 } else
2584 if (strstart(filename, "file:", &p)) {
2585 return qemu_chr_open_win_file_out(p);
2586 }
2587 #endif
2588 {
2589 return NULL;
2590 }
2591 }
2592
2593 void qemu_chr_close(CharDriverState *chr)
2594 {
2595 if (chr->chr_close)
2596 chr->chr_close(chr);
2597 }
2598
2599 /***********************************************************/
2600 /* network device redirectors */
2601
2602 void hex_dump(FILE *f, const uint8_t *buf, int size)
2603 {
2604 int len, i, j, c;
2605
2606 for(i=0;i<size;i+=16) {
2607 len = size - i;
2608 if (len > 16)
2609 len = 16;
2610 fprintf(f, "%08x ", i);
2611 for(j=0;j<16;j++) {
2612 if (j < len)
2613 fprintf(f, " %02x", buf[i+j]);
2614 else
2615 fprintf(f, " ");
2616 }
2617 fprintf(f, " ");
2618 for(j=0;j<len;j++) {
2619 c = buf[i+j];
2620 if (c < ' ' || c > '~')
2621 c = '.';
2622 fprintf(f, "%c", c);
2623 }
2624 fprintf(f, "\n");
2625 }
2626 }
2627
2628 static int parse_macaddr(uint8_t *macaddr, const char *p)
2629 {
2630 int i;
2631 for(i = 0; i < 6; i++) {
2632 macaddr[i] = strtol(p, (char **)&p, 16);
2633 if (i == 5) {
2634 if (*p != '\0')
2635 return -1;
2636 } else {
2637 if (*p != ':')
2638 return -1;
2639 p++;
2640 }
2641 }
2642 return 0;
2643 }
2644
2645 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
2646 {
2647 const char *p, *p1;
2648 int len;
2649 p = *pp;
2650 p1 = strchr(p, sep);
2651 if (!p1)
2652 return -1;
2653 len = p1 - p;
2654 p1++;
2655 if (buf_size > 0) {
2656 if (len > buf_size - 1)
2657 len = buf_size - 1;
2658 memcpy(buf, p, len);
2659 buf[len] = '\0';
2660 }
2661 *pp = p1;
2662 return 0;
2663 }
2664
2665 int parse_host_src_port(struct sockaddr_in *haddr,
2666 struct sockaddr_in *saddr,
2667 const char *input_str)
2668 {
2669 char *str = strdup(input_str);
2670 char *host_str = str;
2671 char *src_str;
2672 char *ptr;
2673
2674 /*
2675 * Chop off any extra arguments at the end of the string which
2676 * would start with a comma, then fill in the src port information
2677 * if it was provided else use the "any address" and "any port".
2678 */
2679 if ((ptr = strchr(str,',')))
2680 *ptr = '\0';
2681
2682 if ((src_str = strchr(input_str,'@'))) {
2683 *src_str = '\0';
2684 src_str++;
2685 }
2686
2687 if (parse_host_port(haddr, host_str) < 0)
2688 goto fail;
2689
2690 if (!src_str || *src_str == '\0')
2691 src_str = ":0";
2692
2693 if (parse_host_port(saddr, src_str) < 0)
2694 goto fail;
2695
2696 free(str);
2697 return(0);
2698
2699 fail:
2700 free(str);
2701 return -1;
2702 }
2703
2704 int parse_host_port(struct sockaddr_in *saddr, const char *str)
2705 {
2706 char buf[512];
2707 struct hostent *he;
2708 const char *p, *r;
2709 int port;
2710
2711 p = str;
2712 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2713 return -1;
2714 saddr->sin_family = AF_INET;
2715 if (buf[0] == '\0') {
2716 saddr->sin_addr.s_addr = 0;
2717 } else {
2718 if (isdigit(buf[0])) {
2719 if (!inet_aton(buf, &saddr->sin_addr))
2720 return -1;
2721 } else {
2722 if ((he = gethostbyname(buf)) == NULL)
2723 return - 1;
2724 saddr->sin_addr = *(struct in_addr *)he->h_addr;
2725 }
2726 }
2727 port = strtol(p, (char **)&r, 0);
2728 if (r == p)
2729 return -1;
2730 saddr->sin_port = htons(port);
2731 return 0;
2732 }
2733
2734 /* find or alloc a new VLAN */
2735 VLANState *qemu_find_vlan(int id)
2736 {
2737 VLANState **pvlan, *vlan;
2738 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2739 if (vlan->id == id)
2740 return vlan;
2741 }
2742 vlan = qemu_mallocz(sizeof(VLANState));
2743 if (!vlan)
2744 return NULL;
2745 vlan->id = id;
2746 vlan->next = NULL;
2747 pvlan = &first_vlan;
2748 while (*pvlan != NULL)
2749 pvlan = &(*pvlan)->next;
2750 *pvlan = vlan;
2751 return vlan;
2752 }
2753
2754 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
2755 IOReadHandler *fd_read,
2756 IOCanRWHandler *fd_can_read,
2757 void *opaque)
2758 {
2759 VLANClientState *vc, **pvc;
2760 vc = qemu_mallocz(sizeof(VLANClientState));
2761 if (!vc)
2762 return NULL;
2763 vc->fd_read = fd_read;
2764 vc->fd_can_read = fd_can_read;
2765 vc->opaque = opaque;
2766 vc->vlan = vlan;
2767
2768 vc->next = NULL;
2769 pvc = &vlan->first_client;
2770 while (*pvc != NULL)
2771 pvc = &(*pvc)->next;
2772 *pvc = vc;
2773 return vc;
2774 }
2775
2776 int qemu_can_send_packet(VLANClientState *vc1)
2777 {
2778 VLANState *vlan = vc1->vlan;
2779 VLANClientState *vc;
2780
2781 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2782 if (vc != vc1) {
2783 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
2784 return 0;
2785 }
2786 }
2787 return 1;
2788 }
2789
2790 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
2791 {
2792 VLANState *vlan = vc1->vlan;
2793 VLANClientState *vc;
2794
2795 #if 0
2796 printf("vlan %d send:\n", vlan->id);
2797 hex_dump(stdout, buf, size);
2798 #endif
2799 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
2800 if (vc != vc1) {
2801 vc->fd_read(vc->opaque, buf, size);
2802 }
2803 }
2804 }
2805
2806 #if defined(CONFIG_SLIRP)
2807
2808 /* slirp network adapter */
2809
2810 static int slirp_inited;
2811 static VLANClientState *slirp_vc;
2812
2813 int slirp_can_output(void)
2814 {
2815 return !slirp_vc || qemu_can_send_packet(slirp_vc);
2816 }
2817
2818 void slirp_output(const uint8_t *pkt, int pkt_len)
2819 {
2820 #if 0
2821 printf("slirp output:\n");
2822 hex_dump(stdout, pkt, pkt_len);
2823 #endif
2824 if (!slirp_vc)
2825 return;
2826 qemu_send_packet(slirp_vc, pkt, pkt_len);
2827 }
2828
2829 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
2830 {
2831 #if 0
2832 printf("slirp input:\n");
2833 hex_dump(stdout, buf, size);
2834 #endif
2835 slirp_input(buf, size);
2836 }
2837
2838 static int net_slirp_init(VLANState *vlan)
2839 {
2840 if (!slirp_inited) {
2841 slirp_inited = 1;
2842 slirp_init();
2843 }
2844 slirp_vc = qemu_new_vlan_client(vlan,
2845 slirp_receive, NULL, NULL);
2846 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
2847 return 0;
2848 }
2849
2850 static void net_slirp_redir(const char *redir_str)
2851 {
2852 int is_udp;
2853 char buf[256], *r;
2854 const char *p;
2855 struct in_addr guest_addr;
2856 int host_port, guest_port;
2857
2858 if (!slirp_inited) {
2859 slirp_inited = 1;
2860 slirp_init();
2861 }
2862
2863 p = redir_str;
2864 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2865 goto fail;
2866 if (!strcmp(buf, "tcp")) {
2867 is_udp = 0;
2868 } else if (!strcmp(buf, "udp")) {
2869 is_udp = 1;
2870 } else {
2871 goto fail;
2872 }
2873
2874 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2875 goto fail;
2876 host_port = strtol(buf, &r, 0);
2877 if (r == buf)
2878 goto fail;
2879
2880 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
2881 goto fail;
2882 if (buf[0] == '\0') {
2883 pstrcpy(buf, sizeof(buf), "10.0.2.15");
2884 }
2885 if (!inet_aton(buf, &guest_addr))
2886 goto fail;
2887
2888 guest_port = strtol(p, &r, 0);
2889 if (r == p)
2890 goto fail;
2891
2892 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
2893 fprintf(stderr, "qemu: could not set up redirection\n");
2894 exit(1);
2895 }
2896 return;
2897 fail:
2898 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
2899 exit(1);
2900 }
2901
2902 #ifndef _WIN32
2903
2904 char smb_dir[1024];
2905
2906 static void smb_exit(void)
2907 {
2908 DIR *d;
2909 struct dirent *de;
2910 char filename[1024];
2911
2912 /* erase all the files in the directory */
2913 d = opendir(smb_dir);
2914 for(;;) {
2915 de = readdir(d);
2916 if (!de)
2917 break;
2918 if (strcmp(de->d_name, ".") != 0 &&
2919 strcmp(de->d_name, "..") != 0) {
2920 snprintf(filename, sizeof(filename), "%s/%s",
2921 smb_dir, de->d_name);
2922 unlink(filename);
2923 }
2924 }
2925 closedir(d);
2926 rmdir(smb_dir);
2927 }
2928
2929 /* automatic user mode samba server configuration */
2930 void net_slirp_smb(const char *exported_dir)
2931 {
2932 char smb_conf[1024];
2933 char smb_cmdline[1024];
2934 FILE *f;
2935
2936 if (!slirp_inited) {
2937 slirp_inited = 1;
2938 slirp_init();
2939 }
2940
2941 /* XXX: better tmp dir construction */
2942 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
2943 if (mkdir(smb_dir, 0700) < 0) {
2944 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
2945 exit(1);
2946 }
2947 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
2948
2949 f = fopen(smb_conf, "w");
2950 if (!f) {
2951 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
2952 exit(1);
2953 }
2954 fprintf(f,
2955 "[global]\n"
2956 "private dir=%s\n"
2957 "smb ports=0\n"
2958 "socket address=127.0.0.1\n"
2959 "pid directory=%s\n"
2960 "lock directory=%s\n"
2961 "log file=%s/log.smbd\n"
2962 "smb passwd file=%s/smbpasswd\n"
2963 "security = share\n"
2964 "[qemu]\n"
2965 "path=%s\n"
2966 "read only=no\n"
2967 "guest ok=yes\n",
2968 smb_dir,
2969 smb_dir,
2970 smb_dir,
2971 smb_dir,
2972 smb_dir,
2973 exported_dir
2974 );
2975 fclose(f);
2976 atexit(smb_exit);
2977
2978 snprintf(smb_cmdline, sizeof(smb_cmdline), "/usr/sbin/smbd -s %s",
2979 smb_conf);
2980
2981 slirp_add_exec(0, smb_cmdline, 4, 139);
2982 }
2983
2984 #endif /* !defined(_WIN32) */
2985
2986 #endif /* CONFIG_SLIRP */
2987
2988 #if !defined(_WIN32)
2989
2990 typedef struct TAPState {
2991 VLANClientState *vc;
2992 int fd;
2993 } TAPState;
2994
2995 static void tap_receive(void *opaque, const uint8_t *buf, int size)
2996 {
2997 TAPState *s = opaque;
2998 int ret;
2999 for(;;) {
3000 ret = write(s->fd, buf, size);
3001 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3002 } else {
3003 break;
3004 }
3005 }
3006 }
3007
3008 static void tap_send(void *opaque)
3009 {
3010 TAPState *s = opaque;
3011 uint8_t buf[4096];
3012 int size;
3013
3014 size = read(s->fd, buf, sizeof(buf));
3015 if (size > 0) {
3016 qemu_send_packet(s->vc, buf, size);
3017 }
3018 }
3019
3020 /* fd support */
3021
3022 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3023 {
3024 TAPState *s;
3025
3026 s = qemu_mallocz(sizeof(TAPState));
3027 if (!s)
3028 return NULL;
3029 s->fd = fd;
3030 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3031 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3032 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3033 return s;
3034 }
3035
3036 #ifdef _BSD
3037 static int tap_open(char *ifname, int ifname_size)
3038 {
3039 int fd;
3040 char *dev;
3041 struct stat s;
3042
3043 fd = open("/dev/tap", O_RDWR);
3044 if (fd < 0) {
3045 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3046 return -1;
3047 }
3048
3049 fstat(fd, &s);
3050 dev = devname(s.st_rdev, S_IFCHR);
3051 pstrcpy(ifname, ifname_size, dev);
3052
3053 fcntl(fd, F_SETFL, O_NONBLOCK);
3054 return fd;
3055 }
3056 #elif defined(__sun__)
3057 static int tap_open(char *ifname, int ifname_size)
3058 {
3059 fprintf(stderr, "warning: tap_open not yet implemented\n");
3060 return -1;
3061 }
3062 #else
3063 static int tap_open(char *ifname, int ifname_size)
3064 {
3065 struct ifreq ifr;
3066 int fd, ret;
3067
3068 fd = open("/dev/net/tun", O_RDWR);
3069 if (fd < 0) {
3070 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3071 return -1;
3072 }
3073 memset(&ifr, 0, sizeof(ifr));
3074 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3075 if (ifname[0] != '\0')
3076 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3077 else
3078 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3079 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3080 if (ret != 0) {
3081 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3082 close(fd);
3083 return -1;
3084 }
3085 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3086 fcntl(fd, F_SETFL, O_NONBLOCK);
3087 return fd;
3088 }
3089 #endif
3090
3091 static int net_tap_init(VLANState *vlan, const char *ifname1,
3092 const char *setup_script)
3093 {
3094 TAPState *s;
3095 int pid, status, fd;
3096 char *args[3];
3097 char **parg;
3098 char ifname[128];
3099
3100 if (ifname1 != NULL)
3101 pstrcpy(ifname, sizeof(ifname), ifname1);
3102 else
3103 ifname[0] = '\0';
3104 fd = tap_open(ifname, sizeof(ifname));
3105 if (fd < 0)
3106 return -1;
3107
3108 if (!setup_script)
3109 setup_script = "";
3110 if (setup_script[0] != '\0') {
3111 /* try to launch network init script */
3112 pid = fork();
3113 if (pid >= 0) {
3114 if (pid == 0) {
3115 parg = args;
3116 *parg++ = (char *)setup_script;
3117 *parg++ = ifname;
3118 *parg++ = NULL;
3119 execv(setup_script, args);
3120 _exit(1);
3121 }
3122 while (waitpid(pid, &status, 0) != pid);
3123 if (!WIFEXITED(status) ||
3124 WEXITSTATUS(status) != 0) {
3125 fprintf(stderr, "%s: could not launch network script\n",
3126 setup_script);
3127 return -1;
3128 }
3129 }
3130 }
3131 s = net_tap_fd_init(vlan, fd);
3132 if (!s)
3133 return -1;
3134 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3135 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3136 return 0;
3137 }
3138
3139 #endif /* !_WIN32 */
3140
3141 /* network connection */
3142 typedef struct NetSocketState {
3143 VLANClientState *vc;
3144 int fd;
3145 int state; /* 0 = getting length, 1 = getting data */
3146 int index;
3147 int packet_len;
3148 uint8_t buf[4096];
3149 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3150 } NetSocketState;
3151
3152 typedef struct NetSocketListenState {
3153 VLANState *vlan;
3154 int fd;
3155 } NetSocketListenState;
3156
3157 /* XXX: we consider we can send the whole packet without blocking */
3158 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3159 {
3160 NetSocketState *s = opaque;
3161 uint32_t len;
3162 len = htonl(size);
3163
3164 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3165 send_all(s->fd, buf, size);
3166 }
3167
3168 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3169 {
3170 NetSocketState *s = opaque;
3171 sendto(s->fd, buf, size, 0,
3172 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3173 }
3174
3175 static void net_socket_send(void *opaque)
3176 {
3177 NetSocketState *s = opaque;
3178 int l, size, err;
3179 uint8_t buf1[4096];
3180 const uint8_t *buf;
3181
3182 size = recv(s->fd, buf1, sizeof(buf1), 0);
3183 if (size < 0) {
3184 err = socket_error();
3185 if (err != EWOULDBLOCK)
3186 goto eoc;
3187 } else if (size == 0) {
3188 /* end of connection */
3189 eoc:
3190 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3191 closesocket(s->fd);
3192 return;
3193 }
3194 buf = buf1;
3195 while (size > 0) {
3196 /* reassemble a packet from the network */
3197 switch(s->state) {
3198 case 0:
3199 l = 4 - s->index;
3200 if (l > size)
3201 l = size;
3202 memcpy(s->buf + s->index, buf, l);
3203 buf += l;
3204 size -= l;
3205 s->index += l;
3206 if (s->index == 4) {
3207 /* got length */
3208 s->packet_len = ntohl(*(uint32_t *)s->buf);
3209 s->index = 0;
3210 s->state = 1;
3211 }
3212 break;
3213 case 1:
3214 l = s->packet_len - s->index;
3215 if (l > size)
3216 l = size;
3217 memcpy(s->buf + s->index, buf, l);
3218 s->index += l;
3219 buf += l;
3220 size -= l;
3221 if (s->index >= s->packet_len) {
3222 qemu_send_packet(s->vc, s->buf, s->packet_len);
3223 s->index = 0;
3224 s->state = 0;
3225 }
3226 break;
3227 }
3228 }
3229 }
3230
3231 static void net_socket_send_dgram(void *opaque)
3232 {
3233 NetSocketState *s = opaque;
3234 int size;
3235
3236 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3237 if (size < 0)
3238 return;
3239 if (size == 0) {
3240 /* end of connection */
3241 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3242 return;
3243 }
3244 qemu_send_packet(s->vc, s->buf, size);
3245 }
3246
3247 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3248 {
3249 struct ip_mreq imr;
3250 int fd;
3251 int val, ret;
3252 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3253 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3254 inet_ntoa(mcastaddr->sin_addr),
3255 (int)ntohl(mcastaddr->sin_addr.s_addr));
3256 return -1;
3257
3258 }
3259 fd = socket(PF_INET, SOCK_DGRAM, 0);
3260 if (fd < 0) {
3261 perror("socket(PF_INET, SOCK_DGRAM)");
3262 return -1;
3263 }
3264
3265 val = 1;
3266 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3267 (const char *)&val, sizeof(val));
3268 if (ret < 0) {
3269 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3270 goto fail;
3271 }
3272
3273 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3274 if (ret < 0) {
3275 perror("bind");
3276 goto fail;
3277 }
3278
3279 /* Add host to multicast group */
3280 imr.imr_multiaddr = mcastaddr->sin_addr;
3281 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3282
3283 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3284 (const char *)&imr, sizeof(struct ip_mreq));
3285 if (ret < 0) {
3286 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3287 goto fail;
3288 }
3289
3290 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3291 val = 1;
3292 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3293 (const char *)&val, sizeof(val));
3294 if (ret < 0) {
3295 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3296 goto fail;
3297 }
3298
3299 socket_set_nonblock(fd);
3300 return fd;
3301 fail:
3302 if (fd >= 0)
3303 closesocket(fd);
3304 return -1;
3305 }
3306
3307 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3308 int is_connected)
3309 {
3310 struct sockaddr_in saddr;
3311 int newfd;
3312 socklen_t saddr_len;
3313 NetSocketState *s;
3314
3315 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3316 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3317 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3318 */
3319
3320 if (is_connected) {
3321 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3322 /* must be bound */
3323 if (saddr.sin_addr.s_addr==0) {
3324 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3325 fd);
3326 return NULL;
3327 }
3328 /* clone dgram socket */
3329 newfd = net_socket_mcast_create(&saddr);
3330 if (newfd < 0) {
3331 /* error already reported by net_socket_mcast_create() */
3332 close(fd);
3333 return NULL;
3334 }
3335 /* clone newfd to fd, close newfd */
3336 dup2(newfd, fd);
3337 close(newfd);
3338
3339 } else {
3340 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3341 fd, strerror(errno));
3342 return NULL;
3343 }
3344 }
3345
3346 s = qemu_mallocz(sizeof(NetSocketState));
3347 if (!s)
3348 return NULL;
3349 s->fd = fd;
3350
3351 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3352 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3353
3354 /* mcast: save bound address as dst */
3355 if (is_connected) s->dgram_dst=saddr;
3356
3357 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3358 "socket: fd=%d (%s mcast=%s:%d)",
3359 fd, is_connected? "cloned" : "",
3360 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3361 return s;
3362 }
3363
3364 static void net_socket_connect(void *opaque)
3365 {
3366 NetSocketState *s = opaque;
3367 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3368 }
3369
3370 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3371 int is_connected)
3372 {
3373 NetSocketState *s;
3374 s = qemu_mallocz(sizeof(NetSocketState));
3375 if (!s)
3376 return NULL;
3377 s->fd = fd;
3378 s->vc = qemu_new_vlan_client(vlan,
3379 net_socket_receive, NULL, s);
3380 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3381 "socket: fd=%d", fd);
3382 if (is_connected) {
3383 net_socket_connect(s);
3384 } else {
3385 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3386 }
3387 return s;
3388 }
3389
3390 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3391 int is_connected)
3392 {
3393 int so_type=-1, optlen=sizeof(so_type);
3394
3395 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3396 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3397 return NULL;
3398 }
3399 switch(so_type) {
3400 case SOCK_DGRAM:
3401 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3402 case SOCK_STREAM:
3403 return net_socket_fd_init_stream(vlan, fd, is_connected);
3404 default:
3405 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3406 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3407 return net_socket_fd_init_stream(vlan, fd, is_connected);
3408 }
3409 return NULL;
3410 }
3411
3412 static void net_socket_accept(void *opaque)
3413 {
3414 NetSocketListenState *s = opaque;
3415 NetSocketState *s1;
3416 struct sockaddr_in saddr;
3417 socklen_t len;
3418 int fd;
3419
3420 for(;;) {
3421 len = sizeof(saddr);
3422 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3423 if (fd < 0 && errno != EINTR) {
3424 return;
3425 } else if (fd >= 0) {
3426 break;
3427 }
3428 }
3429 s1 = net_socket_fd_init(s->vlan, fd, 1);
3430 if (!s1) {
3431 closesocket(fd);
3432 } else {
3433 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3434 "socket: connection from %s:%d",
3435 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3436 }
3437 }
3438
3439 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3440 {
3441 NetSocketListenState *s;
3442 int fd, val, ret;
3443 struct sockaddr_in saddr;
3444
3445 if (parse_host_port(&saddr, host_str) < 0)
3446 return -1;
3447
3448 s = qemu_mallocz(sizeof(NetSocketListenState));
3449 if (!s)
3450 return -1;
3451
3452 fd = socket(PF_INET, SOCK_STREAM, 0);
3453 if (fd < 0) {
3454 perror("socket");
3455 return -1;
3456 }
3457 socket_set_nonblock(fd);
3458
3459 /* allow fast reuse */
3460 val = 1;
3461 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3462
3463 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3464 if (ret < 0) {
3465 perror("bind");
3466 return -1;
3467 }
3468 ret = listen(fd, 0);
3469 if (ret < 0) {
3470 perror("listen");
3471 return -1;
3472 }
3473 s->vlan = vlan;
3474 s->fd = fd;
3475 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
3476 return 0;
3477 }
3478
3479 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
3480 {
3481 NetSocketState *s;
3482 int fd, connected, ret, err;
3483 struct sockaddr_in saddr;
3484
3485 if (parse_host_port(&saddr, host_str) < 0)
3486 return -1;
3487
3488 fd = socket(PF_INET, SOCK_STREAM, 0);
3489 if (fd < 0) {
3490 perror("socket");
3491 return -1;
3492 }
3493 socket_set_nonblock(fd);
3494
3495 connected = 0;
3496 for(;;) {
3497 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3498 if (ret < 0) {
3499 err = socket_error();
3500 if (err == EINTR || err == EWOULDBLOCK) {
3501 } else if (err == EINPROGRESS) {
3502 break;
3503 } else {
3504 perror("connect");
3505 closesocket(fd);
3506 return -1;
3507 }
3508 } else {
3509 connected = 1;
3510 break;
3511 }
3512 }
3513 s = net_socket_fd_init(vlan, fd, connected);
3514 if (!s)
3515 return -1;
3516 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3517 "socket: connect to %s:%d",
3518 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3519 return 0;
3520 }
3521
3522 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
3523 {
3524 NetSocketState *s;
3525 int fd;
3526 struct sockaddr_in saddr;
3527
3528 if (parse_host_port(&saddr, host_str) < 0)
3529 return -1;
3530
3531
3532 fd = net_socket_mcast_create(&saddr);
3533 if (fd < 0)
3534 return -1;
3535
3536 s = net_socket_fd_init(vlan, fd, 0);
3537 if (!s)
3538 return -1;
3539
3540 s->dgram_dst = saddr;
3541
3542 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3543 "socket: mcast=%s:%d",
3544 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3545 return 0;
3546
3547 }
3548
3549 static int get_param_value(char *buf, int buf_size,
3550 const char *tag, const char *str)
3551 {
3552 const char *p;
3553 char *q;
3554 char option[128];
3555
3556 p = str;
3557 for(;;) {
3558 q = option;
3559 while (*p != '\0' && *p != '=') {
3560 if ((q - option) < sizeof(option) - 1)
3561 *q++ = *p;
3562 p++;
3563 }
3564 *q = '\0';
3565 if (*p != '=')
3566 break;
3567 p++;
3568 if (!strcmp(tag, option)) {
3569 q = buf;
3570 while (*p != '\0' && *p != ',') {
3571 if ((q - buf) < buf_size - 1)
3572 *q++ = *p;
3573 p++;
3574 }
3575 *q = '\0';
3576 return q - buf;
3577 } else {
3578 while (*p != '\0' && *p != ',') {
3579 p++;
3580 }
3581 }
3582 if (*p != ',')
3583 break;
3584 p++;
3585 }
3586 return 0;
3587 }
3588
3589 int net_client_init(const char *str)
3590 {
3591 const char *p;
3592 char *q;
3593 char device[64];
3594 char buf[1024];
3595 int vlan_id, ret;
3596 VLANState *vlan;
3597
3598 p = str;
3599 q = device;
3600 while (*p != '\0' && *p != ',') {
3601 if ((q - device) < sizeof(device) - 1)
3602 *q++ = *p;
3603 p++;
3604 }
3605 *q = '\0';
3606 if (*p == ',')
3607 p++;
3608 vlan_id = 0;
3609 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
3610 vlan_id = strtol(buf, NULL, 0);
3611 }
3612 vlan = qemu_find_vlan(vlan_id);
3613 if (!vlan) {
3614 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
3615 return -1;
3616 }
3617 if (!strcmp(device, "nic")) {
3618 NICInfo *nd;
3619 uint8_t *macaddr;
3620
3621 if (nb_nics >= MAX_NICS) {
3622 fprintf(stderr, "Too Many NICs\n");
3623 return -1;
3624 }
3625 nd = &nd_table[nb_nics];
3626 macaddr = nd->macaddr;
3627 macaddr[0] = 0x52;
3628 macaddr[1] = 0x54;
3629 macaddr[2] = 0x00;
3630 macaddr[3] = 0x12;
3631 macaddr[4] = 0x34;
3632 macaddr[5] = 0x56 + nb_nics;
3633
3634 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
3635 if (parse_macaddr(macaddr, buf) < 0) {
3636 fprintf(stderr, "invalid syntax for ethernet address\n");
3637 return -1;
3638 }
3639 }
3640 if (get_param_value(buf, sizeof(buf), "model", p)) {
3641 nd->model = strdup(buf);
3642 }
3643 nd->vlan = vlan;
3644 nb_nics++;
3645 ret = 0;
3646 } else
3647 if (!strcmp(device, "none")) {
3648 /* does nothing. It is needed to signal that no network cards
3649 are wanted */
3650 ret = 0;
3651 } else
3652 #ifdef CONFIG_SLIRP
3653 if (!strcmp(device, "user")) {
3654 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
3655 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
3656 }
3657 ret = net_slirp_init(vlan);
3658 } else
3659 #endif
3660 #ifdef _WIN32
3661 if (!strcmp(device, "tap")) {
3662 char ifname[64];
3663 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
3664 fprintf(stderr, "tap: no interface name\n");
3665 return -1;
3666 }
3667 ret = tap_win32_init(vlan, ifname);
3668 } else
3669 #else
3670 if (!strcmp(device, "tap")) {
3671 char ifname[64];
3672 char setup_script[1024];
3673 int fd;
3674 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3675 fd = strtol(buf, NULL, 0);
3676 ret = -1;
3677 if (net_tap_fd_init(vlan, fd))
3678 ret = 0;
3679 } else {
3680 get_param_value(ifname, sizeof(ifname), "ifname", p);
3681 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
3682 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
3683 }
3684 ret = net_tap_init(vlan, ifname, setup_script);
3685 }
3686 } else
3687 #endif
3688 if (!strcmp(device, "socket")) {
3689 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
3690 int fd;
3691 fd = strtol(buf, NULL, 0);
3692 ret = -1;
3693 if (net_socket_fd_init(vlan, fd, 1))
3694 ret = 0;
3695 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
3696 ret = net_socket_listen_init(vlan, buf);
3697 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
3698 ret = net_socket_connect_init(vlan, buf);
3699 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
3700 ret = net_socket_mcast_init(vlan, buf);
3701 } else {
3702 fprintf(stderr, "Unknown socket options: %s\n", p);
3703 return -1;
3704 }
3705 } else
3706 {
3707 fprintf(stderr, "Unknown network device: %s\n", device);
3708 return -1;
3709 }
3710 if (ret < 0) {
3711 fprintf(stderr, "Could not initialize device '%s'\n", device);
3712 }
3713
3714 return ret;
3715 }
3716
3717 void do_info_network(void)
3718 {
3719 VLANState *vlan;
3720 VLANClientState *vc;
3721
3722 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3723 term_printf("VLAN %d devices:\n", vlan->id);
3724 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
3725 term_printf(" %s\n", vc->info_str);
3726 }
3727 }
3728
3729 /***********************************************************/
3730 /* USB devices */
3731
3732 static USBPort *used_usb_ports;
3733 static USBPort *free_usb_ports;
3734
3735 /* ??? Maybe change this to register a hub to keep track of the topology. */
3736 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
3737 usb_attachfn attach)
3738 {
3739 port->opaque = opaque;
3740 port->index = index;
3741 port->attach = attach;
3742 port->next = free_usb_ports;
3743 free_usb_ports = port;
3744 }
3745
3746 static int usb_device_add(const char *devname)
3747 {
3748 const char *p;
3749 USBDevice *dev;
3750 USBPort *port;
3751
3752 if (!free_usb_ports)
3753 return -1;
3754
3755 if (strstart(devname, "host:", &p)) {
3756 dev = usb_host_device_open(p);
3757 } else if (!strcmp(devname, "mouse")) {
3758 dev = usb_mouse_init();
3759 } else if (!strcmp(devname, "tablet")) {
3760 dev = usb_tablet_init();
3761 } else if (strstart(devname, "disk:", &p)) {
3762 dev = usb_msd_init(p);
3763 } else {
3764 return -1;
3765 }
3766 if (!dev)
3767 return -1;
3768
3769 /* Find a USB port to add the device to. */
3770 port = free_usb_ports;
3771 if (!port->next) {
3772 USBDevice *hub;
3773
3774 /* Create a new hub and chain it on. */
3775 free_usb_ports = NULL;
3776 port->next = used_usb_ports;
3777 used_usb_ports = port;
3778
3779 hub = usb_hub_init(VM_USB_HUB_SIZE);
3780 usb_attach(port, hub);
3781 port = free_usb_ports;
3782 }
3783
3784 free_usb_ports = port->next;
3785 port->next = used_usb_ports;
3786 used_usb_ports = port;
3787 usb_attach(port, dev);
3788 return 0;
3789 }
3790
3791 static int usb_device_del(const char *devname)
3792 {
3793 USBPort *port;
3794 USBPort **lastp;
3795 USBDevice *dev;
3796 int bus_num, addr;
3797 const char *p;
3798
3799 if (!used_usb_ports)
3800 return -1;
3801
3802 p = strchr(devname, '.');
3803 if (!p)
3804 return -1;
3805 bus_num = strtoul(devname, NULL, 0);
3806 addr = strtoul(p + 1, NULL, 0);
3807 if (bus_num != 0)
3808 return -1;
3809
3810 lastp = &used_usb_ports;
3811 port = used_usb_ports;
3812 while (port && port->dev->addr != addr) {
3813 lastp = &port->next;
3814 port = port->next;
3815 }
3816
3817 if (!port)
3818 return -1;
3819
3820 dev = port->dev;
3821 *lastp = port->next;
3822 usb_attach(port, NULL);
3823 dev->handle_destroy(dev);
3824 port->next = free_usb_ports;
3825 free_usb_ports = port;
3826 return 0;
3827 }
3828
3829 void do_usb_add(const char *devname)
3830 {
3831 int ret;
3832 ret = usb_device_add(devname);
3833 if (ret < 0)
3834 term_printf("Could not add USB device '%s'\n", devname);
3835 }
3836
3837 void do_usb_del(const char *devname)
3838 {
3839 int ret;
3840 ret = usb_device_del(devname);
3841 if (ret < 0)
3842 term_printf("Could not remove USB device '%s'\n", devname);
3843 }
3844
3845 void usb_info(void)
3846 {
3847 USBDevice *dev;
3848 USBPort *port;
3849 const char *speed_str;
3850
3851 if (!usb_enabled) {
3852 term_printf("USB support not enabled\n");
3853 return;
3854 }
3855
3856 for (port = used_usb_ports; port; port = port->next) {
3857 dev = port->dev;
3858 if (!dev)
3859 continue;
3860 switch(dev->speed) {
3861 case USB_SPEED_LOW:
3862 speed_str = "1.5";
3863 break;
3864 case USB_SPEED_FULL:
3865 speed_str = "12";
3866 break;
3867 case USB_SPEED_HIGH:
3868 speed_str = "480";
3869 break;
3870 default:
3871 speed_str = "?";
3872 break;
3873 }
3874 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
3875 0, dev->addr, speed_str, dev->devname);
3876 }
3877 }
3878
3879 /***********************************************************/
3880 /* pid file */
3881
3882 static char *pid_filename;
3883
3884 /* Remove PID file. Called on normal exit */
3885
3886 static void remove_pidfile(void)
3887 {
3888 unlink (pid_filename);
3889 }
3890
3891 static void create_pidfile(const char *filename)
3892 {
3893 struct stat pidstat;
3894 FILE *f;
3895
3896 /* Try to write our PID to the named file */
3897 if (stat(filename, &pidstat) < 0) {
3898 if (errno == ENOENT) {
3899 if ((f = fopen (filename, "w")) == NULL) {
3900 perror("Opening pidfile");
3901 exit(1);
3902 }
3903 fprintf(f, "%d\n", getpid());
3904 fclose(f);
3905 pid_filename = qemu_strdup(filename);
3906 if (!pid_filename) {
3907 fprintf(stderr, "Could not save PID filename");
3908 exit(1);
3909 }
3910 atexit(remove_pidfile);
3911 }
3912 } else {
3913 fprintf(stderr, "%s already exists. Remove it and try again.\n",
3914 filename);
3915 exit(1);
3916 }
3917 }
3918
3919 /***********************************************************/
3920 /* dumb display */
3921
3922 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
3923 {
3924 }
3925
3926 static void dumb_resize(DisplayState *ds, int w, int h)
3927 {
3928 }
3929
3930 static void dumb_refresh(DisplayState *ds)
3931 {
3932 vga_hw_update();
3933 }
3934
3935 void dumb_display_init(DisplayState *ds)
3936 {
3937 ds->data = NULL;
3938 ds->linesize = 0;
3939 ds->depth = 0;
3940 ds->dpy_update = dumb_update;
3941 ds->dpy_resize = dumb_resize;
3942 ds->dpy_refresh = dumb_refresh;
3943 }
3944
3945 /***********************************************************/
3946 /* I/O handling */
3947
3948 #define MAX_IO_HANDLERS 64
3949
3950 typedef struct IOHandlerRecord {
3951 int fd;
3952 IOCanRWHandler *fd_read_poll;
3953 IOHandler *fd_read;
3954 IOHandler *fd_write;
3955 void *opaque;
3956 /* temporary data */
3957 struct pollfd *ufd;
3958 struct IOHandlerRecord *next;
3959 } IOHandlerRecord;
3960
3961 static IOHandlerRecord *first_io_handler;
3962
3963 /* XXX: fd_read_poll should be suppressed, but an API change is
3964 necessary in the character devices to suppress fd_can_read(). */
3965 int qemu_set_fd_handler2(int fd,
3966 IOCanRWHandler *fd_read_poll,
3967 IOHandler *fd_read,
3968 IOHandler *fd_write,
3969 void *opaque)
3970 {
3971 IOHandlerRecord **pioh, *ioh;
3972
3973 if (!fd_read && !fd_write) {
3974 pioh = &first_io_handler;
3975 for(;;) {
3976 ioh = *pioh;
3977 if (ioh == NULL)
3978 break;
3979 if (ioh->fd == fd) {
3980 *pioh = ioh->next;
3981 qemu_free(ioh);
3982 break;
3983 }
3984 pioh = &ioh->next;
3985 }
3986 } else {
3987 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3988 if (ioh->fd == fd)
3989 goto found;
3990 }
3991 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
3992 if (!ioh)
3993 return -1;
3994 ioh->next = first_io_handler;
3995 first_io_handler = ioh;
3996 found:
3997 ioh->fd = fd;
3998 ioh->fd_read_poll = fd_read_poll;
3999 ioh->fd_read = fd_read;
4000 ioh->fd_write = fd_write;
4001 ioh->opaque = opaque;
4002 }
4003 return 0;
4004 }
4005
4006 int qemu_set_fd_handler(int fd,
4007 IOHandler *fd_read,
4008 IOHandler *fd_write,
4009 void *opaque)
4010 {
4011 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4012 }
4013
4014 /***********************************************************/
4015 /* Polling handling */
4016
4017 typedef struct PollingEntry {
4018 PollingFunc *func;
4019 void *opaque;
4020 struct PollingEntry *next;
4021 } PollingEntry;
4022
4023 static PollingEntry *first_polling_entry;
4024
4025 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4026 {
4027 PollingEntry **ppe, *pe;
4028 pe = qemu_mallocz(sizeof(PollingEntry));
4029 if (!pe)
4030 return -1;
4031 pe->func = func;
4032 pe->opaque = opaque;
4033 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4034 *ppe = pe;
4035 return 0;
4036 }
4037
4038 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4039 {
4040 PollingEntry **ppe, *pe;
4041 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4042 pe = *ppe;
4043 if (pe->func == func && pe->opaque == opaque) {
4044 *ppe = pe->next;
4045 qemu_free(pe);
4046 break;
4047 }
4048 }
4049 }
4050
4051 #ifdef _WIN32
4052 /***********************************************************/
4053 /* Wait objects support */
4054 typedef struct WaitObjects {
4055 int num;
4056 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4057 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4058 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4059 } WaitObjects;
4060
4061 static WaitObjects wait_objects = {0};
4062
4063 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4064 {
4065 WaitObjects *w = &wait_objects;
4066
4067 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4068 return -1;
4069 w->events[w->num] = handle;
4070 w->func[w->num] = func;
4071 w->opaque[w->num] = opaque;
4072 w->num++;
4073 return 0;
4074 }
4075
4076 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4077 {
4078 int i, found;
4079 WaitObjects *w = &wait_objects;
4080
4081 found = 0;
4082 for (i = 0; i < w->num; i++) {
4083 if (w->events[i] == handle)
4084 found = 1;
4085 if (found) {
4086 w->events[i] = w->events[i + 1];
4087 w->func[i] = w->func[i + 1];
4088 w->opaque[i] = w->opaque[i + 1];
4089 }
4090 }
4091 if (found)
4092 w->num--;
4093 }
4094 #endif
4095
4096 /***********************************************************/
4097 /* savevm/loadvm support */
4098
4099 #define IO_BUF_SIZE 32768
4100
4101 struct QEMUFile {
4102 FILE *outfile;
4103 BlockDriverState *bs;
4104 int is_file;
4105 int is_writable;
4106 int64_t base_offset;
4107 int64_t buf_offset; /* start of buffer when writing, end of buffer
4108 when reading */
4109 int buf_index;
4110 int buf_size; /* 0 when writing */
4111 uint8_t buf[IO_BUF_SIZE];
4112 };
4113
4114 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4115 {
4116 QEMUFile *f;
4117
4118 f = qemu_mallocz(sizeof(QEMUFile));
4119 if (!f)
4120 return NULL;
4121 if (!strcmp(mode, "wb")) {
4122 f->is_writable = 1;
4123 } else if (!strcmp(mode, "rb")) {
4124 f->is_writable = 0;
4125 } else {
4126 goto fail;
4127 }
4128 f->outfile = fopen(filename, mode);
4129 if (!f->outfile)
4130 goto fail;
4131 f->is_file = 1;
4132 return f;
4133 fail:
4134 if (f->outfile)
4135 fclose(f->outfile);
4136 qemu_free(f);
4137 return NULL;
4138 }
4139
4140 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4141 {
4142 QEMUFile *f;
4143
4144 f = qemu_mallocz(sizeof(QEMUFile));
4145 if (!f)
4146 return NULL;
4147 f->is_file = 0;
4148 f->bs = bs;
4149 f->is_writable = is_writable;
4150 f->base_offset = offset;
4151 return f;
4152 }
4153
4154 void qemu_fflush(QEMUFile *f)
4155 {
4156 if (!f->is_writable)
4157 return;
4158 if (f->buf_index > 0) {
4159 if (f->is_file) {
4160 fseek(f->outfile, f->buf_offset, SEEK_SET);
4161 fwrite(f->buf, 1, f->buf_index, f->outfile);
4162 } else {
4163 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4164 f->buf, f->buf_index);
4165 }
4166 f->buf_offset += f->buf_index;
4167 f->buf_index = 0;
4168 }
4169 }
4170
4171 static void qemu_fill_buffer(QEMUFile *f)
4172 {
4173 int len;
4174
4175 if (f->is_writable)
4176 return;
4177 if (f->is_file) {
4178 fseek(f->outfile, f->buf_offset, SEEK_SET);
4179 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4180 if (len < 0)
4181 len = 0;
4182 } else {
4183 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4184 f->buf, IO_BUF_SIZE);
4185 if (len < 0)
4186 len = 0;
4187 }
4188 f->buf_index = 0;
4189 f->buf_size = len;
4190 f->buf_offset += len;
4191 }
4192
4193 void qemu_fclose(QEMUFile *f)
4194 {
4195 if (f->is_writable)
4196 qemu_fflush(f);
4197 if (f->is_file) {
4198 fclose(f->outfile);
4199 }
4200 qemu_free(f);
4201 }
4202
4203 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4204 {
4205 int l;
4206 while (size > 0) {
4207 l = IO_BUF_SIZE - f->buf_index;
4208 if (l > size)
4209 l = size;
4210 memcpy(f->buf + f->buf_index, buf, l);
4211 f->buf_index += l;
4212 buf += l;
4213 size -= l;
4214 if (f->buf_index >= IO_BUF_SIZE)
4215 qemu_fflush(f);
4216 }
4217 }
4218
4219 void qemu_put_byte(QEMUFile *f, int v)
4220 {
4221 f->buf[f->buf_index++] = v;
4222 if (f->buf_index >= IO_BUF_SIZE)
4223 qemu_fflush(f);
4224 }
4225
4226 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4227 {
4228 int size, l;
4229
4230 size = size1;
4231 while (size > 0) {
4232 l = f->buf_size - f->buf_index;
4233 if (l == 0) {
4234 qemu_fill_buffer(f);
4235 l = f->buf_size - f->buf_index;
4236 if (l == 0)
4237 break;
4238 }
4239 if (l > size)
4240 l = size;
4241 memcpy(buf, f->buf + f->buf_index, l);
4242 f->buf_index += l;
4243 buf += l;
4244 size -= l;
4245 }
4246 return size1 - size;
4247 }
4248
4249 int qemu_get_byte(QEMUFile *f)
4250 {
4251 if (f->buf_index >= f->buf_size) {
4252 qemu_fill_buffer(f);
4253 if (f->buf_index >= f->buf_size)
4254 return 0;
4255 }
4256 return f->buf[f->buf_index++];
4257 }
4258
4259 int64_t qemu_ftell(QEMUFile *f)
4260 {
4261 return f->buf_offset - f->buf_size + f->buf_index;
4262 }
4263
4264 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4265 {
4266 if (whence == SEEK_SET) {
4267 /* nothing to do */
4268 } else if (whence == SEEK_CUR) {
4269 pos += qemu_ftell(f);
4270 } else {
4271 /* SEEK_END not supported */
4272 return -1;
4273 }
4274 if (f->is_writable) {
4275 qemu_fflush(f);
4276 f->buf_offset = pos;
4277 } else {
4278 f->buf_offset = pos;
4279 f->buf_index = 0;
4280 f->buf_size = 0;
4281 }
4282 return pos;
4283 }
4284
4285 void qemu_put_be16(QEMUFile *f, unsigned int v)
4286 {
4287 qemu_put_byte(f, v >> 8);
4288 qemu_put_byte(f, v);
4289 }
4290
4291 void qemu_put_be32(QEMUFile *f, unsigned int v)
4292 {
4293 qemu_put_byte(f, v >> 24);
4294 qemu_put_byte(f, v >> 16);
4295 qemu_put_byte(f, v >> 8);
4296 qemu_put_byte(f, v);
4297 }
4298
4299 void qemu_put_be64(QEMUFile *f, uint64_t v)
4300 {
4301 qemu_put_be32(f, v >> 32);
4302 qemu_put_be32(f, v);
4303 }
4304
4305 unsigned int qemu_get_be16(QEMUFile *f)
4306 {
4307 unsigned int v;
4308 v = qemu_get_byte(f) << 8;
4309 v |= qemu_get_byte(f);
4310 return v;
4311 }
4312
4313 unsigned int qemu_get_be32(QEMUFile *f)
4314 {
4315 unsigned int v;
4316 v = qemu_get_byte(f) << 24;
4317 v |= qemu_get_byte(f) << 16;
4318 v |= qemu_get_byte(f) << 8;
4319 v |= qemu_get_byte(f);
4320 return v;
4321 }
4322
4323 uint64_t qemu_get_be64(QEMUFile *f)
4324 {
4325 uint64_t v;
4326 v = (uint64_t)qemu_get_be32(f) << 32;
4327 v |= qemu_get_be32(f);
4328 return v;
4329 }
4330
4331 typedef struct SaveStateEntry {
4332 char idstr[256];
4333 int instance_id;
4334 int version_id;
4335 SaveStateHandler *save_state;
4336 LoadStateHandler *load_state;
4337 void *opaque;
4338 struct SaveStateEntry *next;
4339 } SaveStateEntry;
4340
4341 static SaveStateEntry *first_se;
4342
4343 int register_savevm(const char *idstr,
4344 int instance_id,
4345 int version_id,
4346 SaveStateHandler *save_state,
4347 LoadStateHandler *load_state,
4348 void *opaque)
4349 {
4350 SaveStateEntry *se, **pse;
4351
4352 se = qemu_malloc(sizeof(SaveStateEntry));
4353 if (!se)
4354 return -1;
4355 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4356 se->instance_id = instance_id;
4357 se->version_id = version_id;
4358 se->save_state = save_state;
4359 se->load_state = load_state;
4360 se->opaque = opaque;
4361 se->next = NULL;
4362
4363 /* add at the end of list */
4364 pse = &first_se;
4365 while (*pse != NULL)
4366 pse = &(*pse)->next;
4367 *pse = se;
4368 return 0;
4369 }
4370
4371 #define QEMU_VM_FILE_MAGIC 0x5145564d
4372 #define QEMU_VM_FILE_VERSION 0x00000002
4373
4374 int qemu_savevm_state(QEMUFile *f)
4375 {
4376 SaveStateEntry *se;
4377 int len, ret;
4378 int64_t cur_pos, len_pos, total_len_pos;
4379
4380 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4381 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4382 total_len_pos = qemu_ftell(f);
4383 qemu_put_be64(f, 0); /* total size */
4384
4385 for(se = first_se; se != NULL; se = se->next) {
4386 /* ID string */
4387 len = strlen(se->idstr);
4388 qemu_put_byte(f, len);
4389 qemu_put_buffer(f, se->idstr, len);
4390
4391 qemu_put_be32(f, se->instance_id);
4392 qemu_put_be32(f, se->version_id);
4393
4394 /* record size: filled later */
4395 len_pos = qemu_ftell(f);
4396 qemu_put_be32(f, 0);
4397
4398 se->save_state(f, se->opaque);
4399
4400 /* fill record size */
4401 cur_pos = qemu_ftell(f);
4402 len = cur_pos - len_pos - 4;
4403 qemu_fseek(f, len_pos, SEEK_SET);
4404 qemu_put_be32(f, len);
4405 qemu_fseek(f, cur_pos, SEEK_SET);
4406 }
4407 cur_pos = qemu_ftell(f);
4408 qemu_fseek(f, total_len_pos, SEEK_SET);
4409 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4410 qemu_fseek(f, cur_pos, SEEK_SET);
4411
4412 ret = 0;
4413 return ret;
4414 }
4415
4416 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4417 {
4418 SaveStateEntry *se;
4419
4420 for(se = first_se; se != NULL; se = se->next) {
4421 if (!strcmp(se->idstr, idstr) &&
4422 instance_id == se->instance_id)
4423 return se;
4424 }
4425 return NULL;
4426 }
4427
4428 int qemu_loadvm_state(QEMUFile *f)
4429 {
4430 SaveStateEntry *se;
4431 int len, ret, instance_id, record_len, version_id;
4432 int64_t total_len, end_pos, cur_pos;
4433 unsigned int v;
4434 char idstr[256];
4435
4436 v = qemu_get_be32(f);
4437 if (v != QEMU_VM_FILE_MAGIC)
4438 goto fail;
4439 v = qemu_get_be32(f);
4440 if (v != QEMU_VM_FILE_VERSION) {
4441 fail:
4442 ret = -1;
4443 goto the_end;
4444 }
4445 total_len = qemu_get_be64(f);
4446 end_pos = total_len + qemu_ftell(f);
4447 for(;;) {
4448 if (qemu_ftell(f) >= end_pos)
4449 break;
4450 len = qemu_get_byte(f);
4451 qemu_get_buffer(f, idstr, len);
4452 idstr[len] = '\0';
4453 instance_id = qemu_get_be32(f);
4454 version_id = qemu_get_be32(f);
4455 record_len = qemu_get_be32(f);
4456 #if 0
4457 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4458 idstr, instance_id, version_id, record_len);
4459 #endif
4460 cur_pos = qemu_ftell(f);
4461 se = find_se(idstr, instance_id);
4462 if (!se) {
4463 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4464 instance_id, idstr);
4465 } else {
4466 ret = se->load_state(f, se->opaque, version_id);
4467 if (ret < 0) {
4468 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4469 instance_id, idstr);
4470 }
4471 }
4472 /* always seek to exact end of record */
4473 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4474 }
4475 ret = 0;
4476 the_end:
4477 return ret;
4478 }
4479
4480 /* device can contain snapshots */
4481 static int bdrv_can_snapshot(BlockDriverState *bs)
4482 {
4483 return (bs &&
4484 !bdrv_is_removable(bs) &&
4485 !bdrv_is_read_only(bs));
4486 }
4487
4488 /* device must be snapshots in order to have a reliable snapshot */
4489 static int bdrv_has_snapshot(BlockDriverState *bs)
4490 {
4491 return (bs &&
4492 !bdrv_is_removable(bs) &&
4493 !bdrv_is_read_only(bs));
4494 }
4495
4496 static BlockDriverState *get_bs_snapshots(void)
4497 {
4498 BlockDriverState *bs;
4499 int i;
4500
4501 if (bs_snapshots)
4502 return bs_snapshots;
4503 for(i = 0; i <= MAX_DISKS; i++) {
4504 bs = bs_table[i];
4505 if (bdrv_can_snapshot(bs))
4506 goto ok;
4507 }
4508 return NULL;
4509 ok:
4510 bs_snapshots = bs;
4511 return bs;
4512 }
4513
4514 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
4515 const char *name)
4516 {
4517 QEMUSnapshotInfo *sn_tab, *sn;
4518 int nb_sns, i, ret;
4519
4520 ret = -ENOENT;
4521 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
4522 if (nb_sns < 0)
4523 return ret;
4524 for(i = 0; i < nb_sns; i++) {
4525 sn = &sn_tab[i];
4526 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
4527 *sn_info = *sn;
4528 ret = 0;
4529 break;
4530 }
4531 }
4532 qemu_free(sn_tab);
4533 return ret;
4534 }
4535
4536 void do_savevm(const char *name)
4537 {
4538 BlockDriverState *bs, *bs1;
4539 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
4540 int must_delete, ret, i;
4541 BlockDriverInfo bdi1, *bdi = &bdi1;
4542 QEMUFile *f;
4543 int saved_vm_running;
4544 #ifdef _WIN32
4545 struct _timeb tb;
4546 #else
4547 struct timeval tv;
4548 #endif
4549
4550 bs = get_bs_snapshots();
4551 if (!bs) {
4552 term_printf("No block device can accept snapshots\n");
4553 return;
4554 }
4555
4556 /* ??? Should this occur after vm_stop? */
4557 qemu_aio_flush();
4558
4559 saved_vm_running = vm_running;
4560 vm_stop(0);
4561
4562 must_delete = 0;
4563 if (name) {
4564 ret = bdrv_snapshot_find(bs, old_sn, name);
4565 if (ret >= 0) {
4566 must_delete = 1;
4567 }
4568 }
4569 memset(sn, 0, sizeof(*sn));
4570 if (must_delete) {
4571 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
4572 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
4573 } else {
4574 if (name)
4575 pstrcpy(sn->name, sizeof(sn->name), name);
4576 }
4577
4578 /* fill auxiliary fields */
4579 #ifdef _WIN32
4580 _ftime(&tb);
4581 sn->date_sec = tb.time;
4582 sn->date_nsec = tb.millitm * 1000000;
4583 #else
4584 gettimeofday(&tv, NULL);
4585 sn->date_sec = tv.tv_sec;
4586 sn->date_nsec = tv.tv_usec * 1000;
4587 #endif
4588 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
4589
4590 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
4591 term_printf("Device %s does not support VM state snapshots\n",
4592 bdrv_get_device_name(bs));
4593 goto the_end;
4594 }
4595
4596 /* save the VM state */
4597 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
4598 if (!f) {
4599 term_printf("Could not open VM state file\n");
4600 goto the_end;
4601 }
4602 ret = qemu_savevm_state(f);
4603 sn->vm_state_size = qemu_ftell(f);
4604 qemu_fclose(f);
4605 if (ret < 0) {
4606 term_printf("Error %d while writing VM\n", ret);
4607 goto the_end;
4608 }
4609
4610 /* create the snapshots */
4611
4612 for(i = 0; i < MAX_DISKS; i++) {
4613 bs1 = bs_table[i];
4614 if (bdrv_has_snapshot(bs1)) {
4615 if (must_delete) {
4616 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
4617 if (ret < 0) {
4618 term_printf("Error while deleting snapshot on '%s'\n",
4619 bdrv_get_device_name(bs1));
4620 }
4621 }
4622 ret = bdrv_snapshot_create(bs1, sn);
4623 if (ret < 0) {
4624 term_printf("Error while creating snapshot on '%s'\n",
4625 bdrv_get_device_name(bs1));
4626 }
4627 }
4628 }
4629
4630 the_end:
4631 if (saved_vm_running)
4632 vm_start();
4633 }
4634
4635 void do_loadvm(const char *name)
4636 {
4637 BlockDriverState *bs, *bs1;
4638 BlockDriverInfo bdi1, *bdi = &bdi1;
4639 QEMUFile *f;
4640 int i, ret;
4641 int saved_vm_running;
4642
4643 bs = get_bs_snapshots();
4644 if (!bs) {
4645 term_printf("No block device supports snapshots\n");
4646 return;
4647 }
4648
4649 /* Flush all IO requests so they don't interfere with the new state. */
4650 qemu_aio_flush();
4651
4652 saved_vm_running = vm_running;
4653 vm_stop(0);
4654
4655 for(i = 0; i <= MAX_DISKS; i++) {
4656 bs1 = bs_table[i];
4657 if (bdrv_has_snapshot(bs1)) {
4658 ret = bdrv_snapshot_goto(bs1, name);
4659 if (ret < 0) {
4660 if (bs != bs1)
4661 term_printf("Warning: ");
4662 switch(ret) {
4663 case -ENOTSUP:
4664 term_printf("Snapshots not supported on device '%s'\n",
4665 bdrv_get_device_name(bs1));
4666 break;
4667 case -ENOENT:
4668 term_printf("Could not find snapshot '%s' on device '%s'\n",
4669 name, bdrv_get_device_name(bs1));
4670 break;
4671 default:
4672 term_printf("Error %d while activating snapshot on '%s'\n",
4673 ret, bdrv_get_device_name(bs1));
4674 break;
4675 }
4676 /* fatal on snapshot block device */
4677 if (bs == bs1)
4678 goto the_end;
4679 }
4680 }
4681 }
4682
4683 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
4684 term_printf("Device %s does not support VM state snapshots\n",
4685 bdrv_get_device_name(bs));
4686 return;
4687 }
4688
4689 /* restore the VM state */
4690 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
4691 if (!f) {
4692 term_printf("Could not open VM state file\n");
4693 goto the_end;
4694 }
4695 ret = qemu_loadvm_state(f);
4696 qemu_fclose(f);
4697 if (ret < 0) {
4698 term_printf("Error %d while loading VM state\n", ret);
4699 }
4700 the_end:
4701 if (saved_vm_running)
4702 vm_start();
4703 }
4704
4705 void do_delvm(const char *name)
4706 {
4707 BlockDriverState *bs, *bs1;
4708 int i, ret;
4709
4710 bs = get_bs_snapshots();
4711 if (!bs) {
4712 term_printf("No block device supports snapshots\n");
4713 return;
4714 }
4715
4716 for(i = 0; i <= MAX_DISKS; i++) {
4717 bs1 = bs_table[i];
4718 if (bdrv_has_snapshot(bs1)) {
4719 ret = bdrv_snapshot_delete(bs1, name);
4720 if (ret < 0) {
4721 if (ret == -ENOTSUP)
4722 term_printf("Snapshots not supported on device '%s'\n",
4723 bdrv_get_device_name(bs1));
4724 else
4725 term_printf("Error %d while deleting snapshot on '%s'\n",
4726 ret, bdrv_get_device_name(bs1));
4727 }
4728 }
4729 }
4730 }
4731
4732 void do_info_snapshots(void)
4733 {
4734 BlockDriverState *bs, *bs1;
4735 QEMUSnapshotInfo *sn_tab, *sn;
4736 int nb_sns, i;
4737 char buf[256];
4738
4739 bs = get_bs_snapshots();
4740 if (!bs) {
4741 term_printf("No available block device supports snapshots\n");
4742 return;
4743 }
4744 term_printf("Snapshot devices:");
4745 for(i = 0; i <= MAX_DISKS; i++) {
4746 bs1 = bs_table[i];
4747 if (bdrv_has_snapshot(bs1)) {
4748 if (bs == bs1)
4749 term_printf(" %s", bdrv_get_device_name(bs1));
4750 }
4751 }
4752 term_printf("\n");
4753
4754 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
4755 if (nb_sns < 0) {
4756 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
4757 return;
4758 }
4759 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
4760 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
4761 for(i = 0; i < nb_sns; i++) {
4762 sn = &sn_tab[i];
4763 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
4764 }
4765 qemu_free(sn_tab);
4766 }
4767
4768 /***********************************************************/
4769 /* cpu save/restore */
4770
4771 #if defined(TARGET_I386)
4772
4773 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
4774 {
4775 qemu_put_be32(f, dt->selector);
4776 qemu_put_betl(f, dt->base);
4777 qemu_put_be32(f, dt->limit);
4778 qemu_put_be32(f, dt->flags);
4779 }
4780
4781 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
4782 {
4783 dt->selector = qemu_get_be32(f);
4784 dt->base = qemu_get_betl(f);
4785 dt->limit = qemu_get_be32(f);
4786 dt->flags = qemu_get_be32(f);
4787 }
4788
4789 void cpu_save(QEMUFile *f, void *opaque)
4790 {
4791 CPUState *env = opaque;
4792 uint16_t fptag, fpus, fpuc, fpregs_format;
4793 uint32_t hflags;
4794 int i;
4795
4796 for(i = 0; i < CPU_NB_REGS; i++)
4797 qemu_put_betls(f, &env->regs[i]);
4798 qemu_put_betls(f, &env->eip);
4799 qemu_put_betls(f, &env->eflags);
4800 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
4801 qemu_put_be32s(f, &hflags);
4802
4803 /* FPU */
4804 fpuc = env->fpuc;
4805 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4806 fptag = 0;
4807 for(i = 0; i < 8; i++) {
4808 fptag |= ((!env->fptags[i]) << i);
4809 }
4810
4811 qemu_put_be16s(f, &fpuc);
4812 qemu_put_be16s(f, &fpus);
4813 qemu_put_be16s(f, &fptag);
4814
4815 #ifdef USE_X86LDOUBLE
4816 fpregs_format = 0;
4817 #else
4818 fpregs_format = 1;
4819 #endif
4820 qemu_put_be16s(f, &fpregs_format);
4821
4822 for(i = 0; i < 8; i++) {
4823 #ifdef USE_X86LDOUBLE
4824 {
4825 uint64_t mant;
4826 uint16_t exp;
4827 /* we save the real CPU data (in case of MMX usage only 'mant'
4828 contains the MMX register */
4829 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
4830 qemu_put_be64(f, mant);
4831 qemu_put_be16(f, exp);
4832 }
4833 #else
4834 /* if we use doubles for float emulation, we save the doubles to
4835 avoid losing information in case of MMX usage. It can give
4836 problems if the image is restored on a CPU where long
4837 doubles are used instead. */
4838 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
4839 #endif
4840 }
4841
4842 for(i = 0; i < 6; i++)
4843 cpu_put_seg(f, &env->segs[i]);
4844 cpu_put_seg(f, &env->ldt);
4845 cpu_put_seg(f, &env->tr);
4846 cpu_put_seg(f, &env->gdt);
4847 cpu_put_seg(f, &env->idt);
4848
4849 qemu_put_be32s(f, &env->sysenter_cs);
4850 qemu_put_be32s(f, &env->sysenter_esp);
4851 qemu_put_be32s(f, &env->sysenter_eip);
4852
4853 qemu_put_betls(f, &env->cr[0]);
4854 qemu_put_betls(f, &env->cr[2]);
4855 qemu_put_betls(f, &env->cr[3]);
4856 qemu_put_betls(f, &env->cr[4]);
4857
4858 for(i = 0; i < 8; i++)
4859 qemu_put_betls(f, &env->dr[i]);
4860
4861 /* MMU */
4862 qemu_put_be32s(f, &env->a20_mask);
4863
4864 /* XMM */
4865 qemu_put_be32s(f, &env->mxcsr);
4866 for(i = 0; i < CPU_NB_REGS; i++) {
4867 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
4868 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
4869 }
4870
4871 #ifdef TARGET_X86_64
4872 qemu_put_be64s(f, &env->efer);
4873 qemu_put_be64s(f, &env->star);
4874 qemu_put_be64s(f, &env->lstar);
4875 qemu_put_be64s(f, &env->cstar);
4876 qemu_put_be64s(f, &env->fmask);
4877 qemu_put_be64s(f, &env->kernelgsbase);
4878 #endif
4879 }
4880
4881 #ifdef USE_X86LDOUBLE
4882 /* XXX: add that in a FPU generic layer */
4883 union x86_longdouble {
4884 uint64_t mant;
4885 uint16_t exp;
4886 };
4887
4888 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
4889 #define EXPBIAS1 1023
4890 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
4891 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
4892
4893 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
4894 {
4895 int e;
4896 /* mantissa */
4897 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
4898 /* exponent + sign */
4899 e = EXPD1(temp) - EXPBIAS1 + 16383;
4900 e |= SIGND1(temp) >> 16;
4901 p->exp = e;
4902 }
4903 #endif
4904
4905 int cpu_load(QEMUFile *f, void *opaque, int version_id)
4906 {
4907 CPUState *env = opaque;
4908 int i, guess_mmx;
4909 uint32_t hflags;
4910 uint16_t fpus, fpuc, fptag, fpregs_format;
4911
4912 if (version_id != 3)
4913 return -EINVAL;
4914 for(i = 0; i < CPU_NB_REGS; i++)
4915 qemu_get_betls(f, &env->regs[i]);
4916 qemu_get_betls(f, &env->eip);
4917 qemu_get_betls(f, &env->eflags);
4918 qemu_get_be32s(f, &hflags);
4919
4920 qemu_get_be16s(f, &fpuc);
4921 qemu_get_be16s(f, &fpus);
4922 qemu_get_be16s(f, &fptag);
4923 qemu_get_be16s(f, &fpregs_format);
4924
4925 /* NOTE: we cannot always restore the FPU state if the image come
4926 from a host with a different 'USE_X86LDOUBLE' define. We guess
4927 if we are in an MMX state to restore correctly in that case. */
4928 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
4929 for(i = 0; i < 8; i++) {
4930 uint64_t mant;
4931 uint16_t exp;
4932
4933 switch(fpregs_format) {
4934 case 0:
4935 mant = qemu_get_be64(f);
4936 exp = qemu_get_be16(f);
4937 #ifdef USE_X86LDOUBLE
4938 env->fpregs[i].d = cpu_set_fp80(mant, exp);
4939 #else
4940 /* difficult case */
4941 if (guess_mmx)
4942 env->fpregs[i].mmx.MMX_Q(0) = mant;
4943 else
4944 env->fpregs[i].d = cpu_set_fp80(mant, exp);
4945 #endif
4946 break;
4947 case 1:
4948 mant = qemu_get_be64(f);
4949 #ifdef USE_X86LDOUBLE
4950 {
4951 union x86_longdouble *p;
4952 /* difficult case */
4953 p = (void *)&env->fpregs[i];
4954 if (guess_mmx) {
4955 p->mant = mant;
4956 p->exp = 0xffff;
4957 } else {
4958 fp64_to_fp80(p, mant);
4959 }
4960 }
4961 #else
4962 env->fpregs[i].mmx.MMX_Q(0) = mant;
4963 #endif
4964 break;
4965 default:
4966 return -EINVAL;
4967 }
4968 }
4969
4970 env->fpuc = fpuc;
4971 /* XXX: restore FPU round state */
4972 env->fpstt = (fpus >> 11) & 7;
4973 env->fpus = fpus & ~0x3800;
4974 fptag ^= 0xff;
4975 for(i = 0; i < 8; i++) {
4976 env->fptags[i] = (fptag >> i) & 1;
4977 }
4978
4979 for(i = 0; i < 6; i++)
4980 cpu_get_seg(f, &env->segs[i]);
4981 cpu_get_seg(f, &env->ldt);
4982 cpu_get_seg(f, &env->tr);
4983 cpu_get_seg(f, &env->gdt);
4984 cpu_get_seg(f, &env->idt);
4985
4986 qemu_get_be32s(f, &env->sysenter_cs);
4987 qemu_get_be32s(f, &env->sysenter_esp);
4988 qemu_get_be32s(f, &env->sysenter_eip);
4989
4990 qemu_get_betls(f, &env->cr[0]);
4991 qemu_get_betls(f, &env->cr[2]);
4992 qemu_get_betls(f, &env->cr[3]);
4993 qemu_get_betls(f, &env->cr[4]);
4994
4995 for(i = 0; i < 8; i++)
4996 qemu_get_betls(f, &env->dr[i]);
4997
4998 /* MMU */
4999 qemu_get_be32s(f, &env->a20_mask);
5000
5001 qemu_get_be32s(f, &env->mxcsr);
5002 for(i = 0; i < CPU_NB_REGS; i++) {
5003 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5004 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5005 }
5006
5007 #ifdef TARGET_X86_64
5008 qemu_get_be64s(f, &env->efer);
5009 qemu_get_be64s(f, &env->star);
5010 qemu_get_be64s(f, &env->lstar);
5011 qemu_get_be64s(f, &env->cstar);
5012 qemu_get_be64s(f, &env->fmask);
5013 qemu_get_be64s(f, &env->kernelgsbase);
5014 #endif
5015
5016 /* XXX: compute hflags from scratch, except for CPL and IIF */
5017 env->hflags = hflags;
5018 tlb_flush(env, 1);
5019 return 0;
5020 }
5021
5022 #elif defined(TARGET_PPC)
5023 void cpu_save(QEMUFile *f, void *opaque)
5024 {
5025 }
5026
5027 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5028 {
5029 return 0;
5030 }
5031
5032 #elif defined(TARGET_MIPS)
5033 void cpu_save(QEMUFile *f, void *opaque)
5034 {
5035 }
5036
5037 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5038 {
5039 return 0;
5040 }
5041
5042 #elif defined(TARGET_SPARC)
5043 void cpu_save(QEMUFile *f, void *opaque)
5044 {
5045 CPUState *env = opaque;
5046 int i;
5047 uint32_t tmp;
5048
5049 for(i = 0; i < 8; i++)
5050 qemu_put_betls(f, &env->gregs[i]);
5051 for(i = 0; i < NWINDOWS * 16; i++)
5052 qemu_put_betls(f, &env->regbase[i]);
5053
5054 /* FPU */
5055 for(i = 0; i < TARGET_FPREGS; i++) {
5056 union {
5057 float32 f;
5058 uint32_t i;
5059 } u;
5060 u.f = env->fpr[i];
5061 qemu_put_be32(f, u.i);
5062 }
5063
5064 qemu_put_betls(f, &env->pc);
5065 qemu_put_betls(f, &env->npc);
5066 qemu_put_betls(f, &env->y);
5067 tmp = GET_PSR(env);
5068 qemu_put_be32(f, tmp);
5069 qemu_put_betls(f, &env->fsr);
5070 qemu_put_betls(f, &env->tbr);
5071 #ifndef TARGET_SPARC64
5072 qemu_put_be32s(f, &env->wim);
5073 /* MMU */
5074 for(i = 0; i < 16; i++)
5075 qemu_put_be32s(f, &env->mmuregs[i]);
5076 #endif
5077 }
5078
5079 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5080 {
5081 CPUState *env = opaque;
5082 int i;
5083 uint32_t tmp;
5084
5085 for(i = 0; i < 8; i++)
5086 qemu_get_betls(f, &env->gregs[i]);
5087 for(i = 0; i < NWINDOWS * 16; i++)
5088 qemu_get_betls(f, &env->regbase[i]);
5089
5090 /* FPU */
5091 for(i = 0; i < TARGET_FPREGS; i++) {
5092 union {
5093 float32 f;
5094 uint32_t i;
5095 } u;
5096 u.i = qemu_get_be32(f);
5097 env->fpr[i] = u.f;
5098 }
5099
5100 qemu_get_betls(f, &env->pc);
5101 qemu_get_betls(f, &env->npc);
5102 qemu_get_betls(f, &env->y);
5103 tmp = qemu_get_be32(f);
5104 env->cwp = 0; /* needed to ensure that the wrapping registers are
5105 correctly updated */
5106 PUT_PSR(env, tmp);
5107 qemu_get_betls(f, &env->fsr);
5108 qemu_get_betls(f, &env->tbr);
5109 #ifndef TARGET_SPARC64
5110 qemu_get_be32s(f, &env->wim);
5111 /* MMU */
5112 for(i = 0; i < 16; i++)
5113 qemu_get_be32s(f, &env->mmuregs[i]);
5114 #endif
5115 tlb_flush(env, 1);
5116 return 0;
5117 }
5118
5119 #elif defined(TARGET_ARM)
5120
5121 /* ??? Need to implement these. */
5122 void cpu_save(QEMUFile *f, void *opaque)
5123 {
5124 }
5125
5126 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5127 {
5128 return 0;
5129 }
5130
5131 #else
5132
5133 #warning No CPU save/restore functions
5134
5135 #endif
5136
5137 /***********************************************************/
5138 /* ram save/restore */
5139
5140 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5141 {
5142 int v;
5143
5144 v = qemu_get_byte(f);
5145 switch(v) {
5146 case 0:
5147 if (qemu_get_buffer(f, buf, len) != len)
5148 return -EIO;
5149 break;
5150 case 1:
5151 v = qemu_get_byte(f);
5152 memset(buf, v, len);
5153 break;
5154 default:
5155 return -EINVAL;
5156 }
5157 return 0;
5158 }
5159
5160 static int ram_load_v1(QEMUFile *f, void *opaque)
5161 {
5162 int i, ret;
5163
5164 if (qemu_get_be32(f) != phys_ram_size)
5165 return -EINVAL;
5166 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5167 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5168 if (ret)
5169 return ret;
5170 }
5171 return 0;
5172 }
5173
5174 #define BDRV_HASH_BLOCK_SIZE 1024
5175 #define IOBUF_SIZE 4096
5176 #define RAM_CBLOCK_MAGIC 0xfabe
5177
5178 typedef struct RamCompressState {
5179 z_stream zstream;
5180 QEMUFile *f;
5181 uint8_t buf[IOBUF_SIZE];
5182 } RamCompressState;
5183
5184 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5185 {
5186 int ret;
5187 memset(s, 0, sizeof(*s));
5188 s->f = f;
5189 ret = deflateInit2(&s->zstream, 1,
5190 Z_DEFLATED, 15,
5191 9, Z_DEFAULT_STRATEGY);
5192 if (ret != Z_OK)
5193 return -1;
5194 s->zstream.avail_out = IOBUF_SIZE;
5195 s->zstream.next_out = s->buf;
5196 return 0;
5197 }
5198
5199 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5200 {
5201 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5202 qemu_put_be16(s->f, len);
5203 qemu_put_buffer(s->f, buf, len);
5204 }
5205
5206 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5207 {
5208 int ret;
5209
5210 s->zstream.avail_in = len;
5211 s->zstream.next_in = (uint8_t *)buf;
5212 while (s->zstream.avail_in > 0) {
5213 ret = deflate(&s->zstream, Z_NO_FLUSH);
5214 if (ret != Z_OK)
5215 return -1;
5216 if (s->zstream.avail_out == 0) {
5217 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5218 s->zstream.avail_out = IOBUF_SIZE;
5219 s->zstream.next_out = s->buf;
5220 }
5221 }
5222 return 0;
5223 }
5224
5225 static void ram_compress_close(RamCompressState *s)
5226 {
5227 int len, ret;
5228
5229 /* compress last bytes */
5230 for(;;) {
5231 ret = deflate(&s->zstream, Z_FINISH);
5232 if (ret == Z_OK || ret == Z_STREAM_END) {
5233 len = IOBUF_SIZE - s->zstream.avail_out;
5234 if (len > 0) {
5235 ram_put_cblock(s, s->buf, len);
5236 }
5237 s->zstream.avail_out = IOBUF_SIZE;
5238 s->zstream.next_out = s->buf;
5239 if (ret == Z_STREAM_END)
5240 break;
5241 } else {
5242 goto fail;
5243 }
5244 }
5245 fail:
5246 deflateEnd(&s->zstream);
5247 }
5248
5249 typedef struct RamDecompressState {
5250 z_stream zstream;
5251 QEMUFile *f;
5252 uint8_t buf[IOBUF_SIZE];
5253 } RamDecompressState;
5254
5255 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5256 {
5257 int ret;
5258 memset(s, 0, sizeof(*s));
5259 s->f = f;
5260 ret = inflateInit(&s->zstream);
5261 if (ret != Z_OK)
5262 return -1;
5263 return 0;
5264 }
5265
5266 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5267 {
5268 int ret, clen;
5269
5270 s->zstream.avail_out = len;
5271 s->zstream.next_out = buf;
5272 while (s->zstream.avail_out > 0) {
5273 if (s->zstream.avail_in == 0) {
5274 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5275 return -1;
5276 clen = qemu_get_be16(s->f);
5277 if (clen > IOBUF_SIZE)
5278 return -1;
5279 qemu_get_buffer(s->f, s->buf, clen);
5280 s->zstream.avail_in = clen;
5281 s->zstream.next_in = s->buf;
5282 }
5283 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5284 if (ret != Z_OK && ret != Z_STREAM_END) {
5285 return -1;
5286 }
5287 }
5288 return 0;
5289 }
5290
5291 static void ram_decompress_close(RamDecompressState *s)
5292 {
5293 inflateEnd(&s->zstream);
5294 }
5295
5296 static void ram_save(QEMUFile *f, void *opaque)
5297 {
5298 int i;
5299 RamCompressState s1, *s = &s1;
5300 uint8_t buf[10];
5301
5302 qemu_put_be32(f, phys_ram_size);
5303 if (ram_compress_open(s, f) < 0)
5304 return;
5305 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5306 #if 0
5307 if (tight_savevm_enabled) {
5308 int64_t sector_num;
5309 int j;
5310
5311 /* find if the memory block is available on a virtual
5312 block device */
5313 sector_num = -1;
5314 for(j = 0; j < MAX_DISKS; j++) {
5315 if (bs_table[j]) {
5316 sector_num = bdrv_hash_find(bs_table[j],
5317 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5318 if (sector_num >= 0)
5319 break;
5320 }
5321 }
5322 if (j == MAX_DISKS)
5323 goto normal_compress;
5324 buf[0] = 1;
5325 buf[1] = j;
5326 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5327 ram_compress_buf(s, buf, 10);
5328 } else
5329 #endif
5330 {
5331 // normal_compress:
5332 buf[0] = 0;
5333 ram_compress_buf(s, buf, 1);
5334 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5335 }
5336 }
5337 ram_compress_close(s);
5338 }
5339
5340 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5341 {
5342 RamDecompressState s1, *s = &s1;
5343 uint8_t buf[10];
5344 int i;
5345
5346 if (version_id == 1)
5347 return ram_load_v1(f, opaque);
5348 if (version_id != 2)
5349 return -EINVAL;
5350 if (qemu_get_be32(f) != phys_ram_size)
5351 return -EINVAL;
5352 if (ram_decompress_open(s, f) < 0)
5353 return -EINVAL;
5354 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5355 if (ram_decompress_buf(s, buf, 1) < 0) {
5356 fprintf(stderr, "Error while reading ram block header\n");
5357 goto error;
5358 }
5359 if (buf[0] == 0) {
5360 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5361 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5362 goto error;
5363 }
5364 } else
5365 #if 0
5366 if (buf[0] == 1) {
5367 int bs_index;
5368 int64_t sector_num;
5369
5370 ram_decompress_buf(s, buf + 1, 9);
5371 bs_index = buf[1];
5372 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5373 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5374 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5375 goto error;
5376 }
5377 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5378 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5379 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5380 bs_index, sector_num);
5381 goto error;
5382 }
5383 } else
5384 #endif
5385 {
5386 error:
5387 printf("Error block header\n");
5388 return -EINVAL;
5389 }
5390 }
5391 ram_decompress_close(s);
5392 return 0;
5393 }
5394
5395 /***********************************************************/
5396 /* bottom halves (can be seen as timers which expire ASAP) */
5397
5398 struct QEMUBH {
5399 QEMUBHFunc *cb;
5400 void *opaque;
5401 int scheduled;
5402 QEMUBH *next;
5403 };
5404
5405 static QEMUBH *first_bh = NULL;
5406
5407 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5408 {
5409 QEMUBH *bh;
5410 bh = qemu_mallocz(sizeof(QEMUBH));
5411 if (!bh)
5412 return NULL;
5413 bh->cb = cb;
5414 bh->opaque = opaque;
5415 return bh;
5416 }
5417
5418 int qemu_bh_poll(void)
5419 {
5420 QEMUBH *bh, **pbh;
5421 int ret;
5422
5423 ret = 0;
5424 for(;;) {
5425 pbh = &first_bh;
5426 bh = *pbh;
5427 if (!bh)
5428 break;
5429 ret = 1;
5430 *pbh = bh->next;
5431 bh->scheduled = 0;
5432 bh->cb(bh->opaque);
5433 }
5434 return ret;
5435 }
5436
5437 void qemu_bh_schedule(QEMUBH *bh)
5438 {
5439 CPUState *env = cpu_single_env;
5440 if (bh->scheduled)
5441 return;
5442 bh->scheduled = 1;
5443 bh->next = first_bh;
5444 first_bh = bh;
5445
5446 /* stop the currently executing CPU to execute the BH ASAP */
5447 if (env) {
5448 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5449 }
5450 }
5451
5452 void qemu_bh_cancel(QEMUBH *bh)
5453 {
5454 QEMUBH **pbh;
5455 if (bh->scheduled) {
5456 pbh = &first_bh;
5457 while (*pbh != bh)
5458 pbh = &(*pbh)->next;
5459 *pbh = bh->next;
5460 bh->scheduled = 0;
5461 }
5462 }
5463
5464 void qemu_bh_delete(QEMUBH *bh)
5465 {
5466 qemu_bh_cancel(bh);
5467 qemu_free(bh);
5468 }
5469
5470 /***********************************************************/
5471 /* machine registration */
5472
5473 QEMUMachine *first_machine = NULL;
5474
5475 int qemu_register_machine(QEMUMachine *m)
5476 {
5477 QEMUMachine **pm;
5478 pm = &first_machine;
5479 while (*pm != NULL)
5480 pm = &(*pm)->next;
5481 m->next = NULL;
5482 *pm = m;
5483 return 0;
5484 }
5485
5486 QEMUMachine *find_machine(const char *name)
5487 {
5488 QEMUMachine *m;
5489
5490 for(m = first_machine; m != NULL; m = m->next) {
5491 if (!strcmp(m->name, name))
5492 return m;
5493 }
5494 return NULL;
5495 }
5496
5497 /***********************************************************/
5498 /* main execution loop */
5499
5500 void gui_update(void *opaque)
5501 {
5502 display_state.dpy_refresh(&display_state);
5503 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
5504 }
5505
5506 struct vm_change_state_entry {
5507 VMChangeStateHandler *cb;
5508 void *opaque;
5509 LIST_ENTRY (vm_change_state_entry) entries;
5510 };
5511
5512 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
5513
5514 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
5515 void *opaque)
5516 {
5517 VMChangeStateEntry *e;
5518
5519 e = qemu_mallocz(sizeof (*e));
5520 if (!e)
5521 return NULL;
5522
5523 e->cb = cb;
5524 e->opaque = opaque;
5525 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
5526 return e;
5527 }
5528
5529 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
5530 {
5531 LIST_REMOVE (e, entries);
5532 qemu_free (e);
5533 }
5534
5535 static void vm_state_notify(int running)
5536 {
5537 VMChangeStateEntry *e;
5538
5539 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
5540 e->cb(e->opaque, running);
5541 }
5542 }
5543
5544 /* XXX: support several handlers */
5545 static VMStopHandler *vm_stop_cb;
5546 static void *vm_stop_opaque;
5547
5548 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
5549 {
5550 vm_stop_cb = cb;
5551 vm_stop_opaque = opaque;
5552 return 0;
5553 }
5554
5555 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
5556 {
5557 vm_stop_cb = NULL;
5558 }
5559
5560 void vm_start(void)
5561 {
5562 if (!vm_running) {
5563 cpu_enable_ticks();
5564 vm_running = 1;
5565 vm_state_notify(1);
5566 }
5567 }
5568
5569 void vm_stop(int reason)
5570 {
5571 if (vm_running) {
5572 cpu_disable_ticks();
5573 vm_running = 0;
5574 if (reason != 0) {
5575 if (vm_stop_cb) {
5576 vm_stop_cb(vm_stop_opaque, reason);
5577 }
5578 }
5579 vm_state_notify(0);
5580 }
5581 }
5582
5583 /* reset/shutdown handler */
5584
5585 typedef struct QEMUResetEntry {
5586 QEMUResetHandler *func;
5587 void *opaque;
5588 struct QEMUResetEntry *next;
5589 } QEMUResetEntry;
5590
5591 static QEMUResetEntry *first_reset_entry;
5592 static int reset_requested;
5593 static int shutdown_requested;
5594 static int powerdown_requested;
5595
5596 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
5597 {
5598 QEMUResetEntry **pre, *re;
5599
5600 pre = &first_reset_entry;
5601 while (*pre != NULL)
5602 pre = &(*pre)->next;
5603 re = qemu_mallocz(sizeof(QEMUResetEntry));
5604 re->func = func;
5605 re->opaque = opaque;
5606 re->next = NULL;
5607 *pre = re;
5608 }
5609
5610 void qemu_system_reset(void)
5611 {
5612 QEMUResetEntry *re;
5613
5614 /* reset all devices */
5615 for(re = first_reset_entry; re != NULL; re = re->next) {
5616 re->func(re->opaque);
5617 }
5618 }
5619
5620 void qemu_system_reset_request(void)
5621 {
5622 reset_requested = 1;
5623 if (cpu_single_env)
5624 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5625 }
5626
5627 void qemu_system_shutdown_request(void)
5628 {
5629 shutdown_requested = 1;
5630 if (cpu_single_env)
5631 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5632 }
5633
5634 void qemu_system_powerdown_request(void)
5635 {
5636 powerdown_requested = 1;
5637 if (cpu_single_env)
5638 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
5639 }
5640
5641 void main_loop_wait(int timeout)
5642 {
5643 IOHandlerRecord *ioh, *ioh_next;
5644 fd_set rfds, wfds, xfds;
5645 int ret, nfds;
5646 struct timeval tv;
5647 PollingEntry *pe;
5648
5649
5650 /* XXX: need to suppress polling by better using win32 events */
5651 ret = 0;
5652 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
5653 ret |= pe->func(pe->opaque);
5654 }
5655 #ifdef _WIN32
5656 if (ret == 0 && timeout > 0) {
5657 int err;
5658 WaitObjects *w = &wait_objects;
5659
5660 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
5661 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
5662 if (w->func[ret - WAIT_OBJECT_0])
5663 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
5664 } else if (ret == WAIT_TIMEOUT) {
5665 } else {
5666 err = GetLastError();
5667 fprintf(stderr, "Wait error %d %d\n", ret, err);
5668 }
5669 }
5670 #endif
5671 /* poll any events */
5672 /* XXX: separate device handlers from system ones */
5673 nfds = -1;
5674 FD_ZERO(&rfds);
5675 FD_ZERO(&wfds);
5676 FD_ZERO(&xfds);
5677 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5678 if (ioh->fd_read &&
5679 (!ioh->fd_read_poll ||
5680 ioh->fd_read_poll(ioh->opaque) != 0)) {
5681 FD_SET(ioh->fd, &rfds);
5682 if (ioh->fd > nfds)
5683 nfds = ioh->fd;
5684 }
5685 if (ioh->fd_write) {
5686 FD_SET(ioh->fd, &wfds);
5687 if (ioh->fd > nfds)
5688 nfds = ioh->fd;
5689 }
5690 }
5691
5692 tv.tv_sec = 0;
5693 #ifdef _WIN32
5694 tv.tv_usec = 0;
5695 #else
5696 tv.tv_usec = timeout * 1000;
5697 #endif
5698 #if defined(CONFIG_SLIRP)
5699 if (slirp_inited) {
5700 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
5701 }
5702 #endif
5703 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
5704 if (ret > 0) {
5705 /* XXX: better handling of removal */
5706 for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
5707 ioh_next = ioh->next;
5708 if (FD_ISSET(ioh->fd, &rfds)) {
5709 ioh->fd_read(ioh->opaque);
5710 }
5711 if (FD_ISSET(ioh->fd, &wfds)) {
5712 ioh->fd_write(ioh->opaque);
5713 }
5714 }
5715 }
5716 #if defined(CONFIG_SLIRP)
5717 if (slirp_inited) {
5718 if (ret < 0) {
5719 FD_ZERO(&rfds);
5720 FD_ZERO(&wfds);
5721 FD_ZERO(&xfds);
5722 }
5723 slirp_select_poll(&rfds, &wfds, &xfds);
5724 }
5725 #endif
5726 qemu_aio_poll();
5727 qemu_bh_poll();
5728
5729 if (vm_running) {
5730 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
5731 qemu_get_clock(vm_clock));
5732 /* run dma transfers, if any */
5733 DMA_run();
5734 }
5735
5736 /* real time timers */
5737 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
5738 qemu_get_clock(rt_clock));
5739 }
5740
5741 static CPUState *cur_cpu;
5742
5743 int main_loop(void)
5744 {
5745 int ret, timeout;
5746 #ifdef CONFIG_PROFILER
5747 int64_t ti;
5748 #endif
5749 CPUState *env;
5750
5751 cur_cpu = first_cpu;
5752 for(;;) {
5753 if (vm_running) {
5754
5755 env = cur_cpu;
5756 for(;;) {
5757 /* get next cpu */
5758 env = env->next_cpu;
5759 if (!env)
5760 env = first_cpu;
5761 #ifdef CONFIG_PROFILER
5762 ti = profile_getclock();
5763 #endif
5764 ret = cpu_exec(env);
5765 #ifdef CONFIG_PROFILER
5766 qemu_time += profile_getclock() - ti;
5767 #endif
5768 if (ret != EXCP_HALTED)
5769 break;
5770 /* all CPUs are halted ? */
5771 if (env == cur_cpu) {
5772 ret = EXCP_HLT;
5773 break;
5774 }
5775 }
5776 cur_cpu = env;
5777
5778 if (shutdown_requested) {
5779 ret = EXCP_INTERRUPT;
5780 break;
5781 }
5782 if (reset_requested) {
5783 reset_requested = 0;
5784 qemu_system_reset();
5785 ret = EXCP_INTERRUPT;
5786 }
5787 if (powerdown_requested) {
5788 powerdown_requested = 0;
5789 qemu_system_powerdown();
5790 ret = EXCP_INTERRUPT;
5791 }
5792 if (ret == EXCP_DEBUG) {
5793 vm_stop(EXCP_DEBUG);
5794 }
5795 /* if hlt instruction, we wait until the next IRQ */
5796 /* XXX: use timeout computed from timers */
5797 if (ret == EXCP_HLT)
5798 timeout = 10;
5799 else
5800 timeout = 0;
5801 } else {
5802 timeout = 10;
5803 }
5804 #ifdef CONFIG_PROFILER
5805 ti = profile_getclock();
5806 #endif
5807 main_loop_wait(timeout);
5808 #ifdef CONFIG_PROFILER
5809 dev_time += profile_getclock() - ti;
5810 #endif
5811 }
5812 cpu_disable_ticks();
5813 return ret;
5814 }
5815
5816 void help(void)
5817 {
5818 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2006 Fabrice Bellard\n"
5819 "usage: %s [options] [disk_image]\n"
5820 "\n"
5821 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
5822 "\n"
5823 "Standard options:\n"
5824 "-M machine select emulated machine (-M ? for list)\n"
5825 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
5826 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
5827 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
5828 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
5829 "-boot [a|c|d] boot on floppy (a), hard disk (c) or CD-ROM (d)\n"
5830 "-snapshot write to temporary files instead of disk image files\n"
5831 #ifdef TARGET_I386
5832 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
5833 #endif
5834 "-m megs set virtual RAM size to megs MB [default=%d]\n"
5835 "-smp n set the number of CPUs to 'n' [default=1]\n"
5836 "-nographic disable graphical output and redirect serial I/Os to console\n"
5837 #ifndef _WIN32
5838 "-k language use keyboard layout (for example \"fr\" for French)\n"
5839 #endif
5840 #ifdef HAS_AUDIO
5841 "-audio-help print list of audio drivers and their options\n"
5842 "-soundhw c1,... enable audio support\n"
5843 " and only specified sound cards (comma separated list)\n"
5844 " use -soundhw ? to get the list of supported cards\n"
5845 " use -soundhw all to enable all of them\n"
5846 #endif
5847 "-localtime set the real time clock to local time [default=utc]\n"
5848 "-full-screen start in full screen\n"
5849 #ifdef TARGET_I386
5850 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
5851 #endif
5852 "-usb enable the USB driver (will be the default soon)\n"
5853 "-usbdevice name add the host or guest USB device 'name'\n"
5854 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5855 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
5856 #endif
5857 "\n"
5858 "Network options:\n"
5859 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
5860 " create a new Network Interface Card and connect it to VLAN 'n'\n"
5861 #ifdef CONFIG_SLIRP
5862 "-net user[,vlan=n][,hostname=host]\n"
5863 " connect the user mode network stack to VLAN 'n' and send\n"
5864 " hostname 'host' to DHCP clients\n"
5865 #endif
5866 #ifdef _WIN32
5867 "-net tap[,vlan=n],ifname=name\n"
5868 " connect the host TAP network interface to VLAN 'n'\n"
5869 #else
5870 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
5871 " connect the host TAP network interface to VLAN 'n' and use\n"
5872 " the network script 'file' (default=%s);\n"
5873 " use 'fd=h' to connect to an already opened TAP interface\n"
5874 #endif
5875 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
5876 " connect the vlan 'n' to another VLAN using a socket connection\n"
5877 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
5878 " connect the vlan 'n' to multicast maddr and port\n"
5879 "-net none use it alone to have zero network devices; if no -net option\n"
5880 " is provided, the default is '-net nic -net user'\n"
5881 "\n"
5882 #ifdef CONFIG_SLIRP
5883 "-tftp prefix allow tftp access to files starting with prefix [-net user]\n"
5884 #ifndef _WIN32
5885 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
5886 #endif
5887 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
5888 " redirect TCP or UDP connections from host to guest [-net user]\n"
5889 #endif
5890 "\n"
5891 "Linux boot specific:\n"
5892 "-kernel bzImage use 'bzImage' as kernel image\n"
5893 "-append cmdline use 'cmdline' as kernel command line\n"
5894 "-initrd file use 'file' as initial ram disk\n"
5895 "\n"
5896 "Debug/Expert options:\n"
5897 "-monitor dev redirect the monitor to char device 'dev'\n"
5898 "-serial dev redirect the serial port to char device 'dev'\n"
5899 "-parallel dev redirect the parallel port to char device 'dev'\n"
5900 "-pidfile file Write PID to 'file'\n"
5901 "-S freeze CPU at startup (use 'c' to start execution)\n"
5902 "-s wait gdb connection to port %d\n"
5903 "-p port change gdb connection port\n"
5904 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
5905 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
5906 " translation (t=none or lba) (usually qemu can guess them)\n"
5907 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
5908 #ifdef USE_KQEMU
5909 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
5910 "-no-kqemu disable KQEMU kernel module usage\n"
5911 #endif
5912 #ifdef USE_CODE_COPY
5913 "-no-code-copy disable code copy acceleration\n"
5914 #endif
5915 #ifdef TARGET_I386
5916 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
5917 " (default is CL-GD5446 PCI VGA)\n"
5918 "-no-acpi disable ACPI\n"
5919 #endif
5920 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
5921 "-vnc display start a VNC server on display\n"
5922 "\n"
5923 "During emulation, the following keys are useful:\n"
5924 "ctrl-alt-f toggle full screen\n"
5925 "ctrl-alt-n switch to virtual console 'n'\n"
5926 "ctrl-alt toggle mouse and keyboard grab\n"
5927 "\n"
5928 "When using -nographic, press 'ctrl-a h' to get some help.\n"
5929 ,
5930 "qemu",
5931 DEFAULT_RAM_SIZE,
5932 #ifndef _WIN32
5933 DEFAULT_NETWORK_SCRIPT,
5934 #endif
5935 DEFAULT_GDBSTUB_PORT,
5936 "/tmp/qemu.log");
5937 exit(1);
5938 }
5939
5940 #define HAS_ARG 0x0001
5941
5942 enum {
5943 QEMU_OPTION_h,
5944
5945 QEMU_OPTION_M,
5946 QEMU_OPTION_fda,
5947 QEMU_OPTION_fdb,
5948 QEMU_OPTION_hda,
5949 QEMU_OPTION_hdb,
5950 QEMU_OPTION_hdc,
5951 QEMU_OPTION_hdd,
5952 QEMU_OPTION_cdrom,
5953 QEMU_OPTION_boot,
5954 QEMU_OPTION_snapshot,
5955 #ifdef TARGET_I386
5956 QEMU_OPTION_no_fd_bootchk,
5957 #endif
5958 QEMU_OPTION_m,
5959 QEMU_OPTION_nographic,
5960 #ifdef HAS_AUDIO
5961 QEMU_OPTION_audio_help,
5962 QEMU_OPTION_soundhw,
5963 #endif
5964
5965 QEMU_OPTION_net,
5966 QEMU_OPTION_tftp,
5967 QEMU_OPTION_smb,
5968 QEMU_OPTION_redir,
5969
5970 QEMU_OPTION_kernel,
5971 QEMU_OPTION_append,
5972 QEMU_OPTION_initrd,
5973
5974 QEMU_OPTION_S,
5975 QEMU_OPTION_s,
5976 QEMU_OPTION_p,
5977 QEMU_OPTION_d,
5978 QEMU_OPTION_hdachs,
5979 QEMU_OPTION_L,
5980 QEMU_OPTION_no_code_copy,
5981 QEMU_OPTION_k,
5982 QEMU_OPTION_localtime,
5983 QEMU_OPTION_cirrusvga,
5984 QEMU_OPTION_g,
5985 QEMU_OPTION_std_vga,
5986 QEMU_OPTION_monitor,
5987 QEMU_OPTION_serial,
5988 QEMU_OPTION_parallel,
5989 QEMU_OPTION_loadvm,
5990 QEMU_OPTION_full_screen,
5991 QEMU_OPTION_pidfile,
5992 QEMU_OPTION_no_kqemu,
5993 QEMU_OPTION_kernel_kqemu,
5994 QEMU_OPTION_win2k_hack,
5995 QEMU_OPTION_usb,
5996 QEMU_OPTION_usbdevice,
5997 QEMU_OPTION_smp,
5998 QEMU_OPTION_vnc,
5999 QEMU_OPTION_no_acpi,
6000 };
6001
6002 typedef struct QEMUOption {
6003 const char *name;
6004 int flags;
6005 int index;
6006 } QEMUOption;
6007
6008 const QEMUOption qemu_options[] = {
6009 { "h", 0, QEMU_OPTION_h },
6010
6011 { "M", HAS_ARG, QEMU_OPTION_M },
6012 { "fda", HAS_ARG, QEMU_OPTION_fda },
6013 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6014 { "hda", HAS_ARG, QEMU_OPTION_hda },
6015 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6016 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6017 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6018 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6019 { "boot", HAS_ARG, QEMU_OPTION_boot },
6020 { "snapshot", 0, QEMU_OPTION_snapshot },
6021 #ifdef TARGET_I386
6022 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6023 #endif
6024 { "m", HAS_ARG, QEMU_OPTION_m },
6025 { "nographic", 0, QEMU_OPTION_nographic },
6026 { "k", HAS_ARG, QEMU_OPTION_k },
6027 #ifdef HAS_AUDIO
6028 { "audio-help", 0, QEMU_OPTION_audio_help },
6029 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6030 #endif
6031
6032 { "net", HAS_ARG, QEMU_OPTION_net},
6033 #ifdef CONFIG_SLIRP
6034 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6035 #ifndef _WIN32
6036 { "smb", HAS_ARG, QEMU_OPTION_smb },
6037 #endif
6038 { "redir", HAS_ARG, QEMU_OPTION_redir },
6039 #endif
6040
6041 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6042 { "append", HAS_ARG, QEMU_OPTION_append },
6043 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6044
6045 { "S", 0, QEMU_OPTION_S },
6046 { "s", 0, QEMU_OPTION_s },
6047 { "p", HAS_ARG, QEMU_OPTION_p },
6048 { "d", HAS_ARG, QEMU_OPTION_d },
6049 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6050 { "L", HAS_ARG, QEMU_OPTION_L },
6051 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6052 #ifdef USE_KQEMU
6053 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6054 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6055 #endif
6056 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6057 { "g", 1, QEMU_OPTION_g },
6058 #endif
6059 { "localtime", 0, QEMU_OPTION_localtime },
6060 { "std-vga", 0, QEMU_OPTION_std_vga },
6061 { "monitor", 1, QEMU_OPTION_monitor },
6062 { "serial", 1, QEMU_OPTION_serial },
6063 { "parallel", 1, QEMU_OPTION_parallel },
6064 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6065 { "full-screen", 0, QEMU_OPTION_full_screen },
6066 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6067 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6068 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6069 { "smp", HAS_ARG, QEMU_OPTION_smp },
6070 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6071
6072 /* temporary options */
6073 { "usb", 0, QEMU_OPTION_usb },
6074 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6075 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6076 { NULL },
6077 };
6078
6079 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6080
6081 /* this stack is only used during signal handling */
6082 #define SIGNAL_STACK_SIZE 32768
6083
6084 static uint8_t *signal_stack;
6085
6086 #endif
6087
6088 /* password input */
6089
6090 static BlockDriverState *get_bdrv(int index)
6091 {
6092 BlockDriverState *bs;
6093
6094 if (index < 4) {
6095 bs = bs_table[index];
6096 } else if (index < 6) {
6097 bs = fd_table[index - 4];
6098 } else {
6099 bs = NULL;
6100 }
6101 return bs;
6102 }
6103
6104 static void read_passwords(void)
6105 {
6106 BlockDriverState *bs;
6107 int i, j;
6108 char password[256];
6109
6110 for(i = 0; i < 6; i++) {
6111 bs = get_bdrv(i);
6112 if (bs && bdrv_is_encrypted(bs)) {
6113 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
6114 for(j = 0; j < 3; j++) {
6115 monitor_readline("Password: ",
6116 1, password, sizeof(password));
6117 if (bdrv_set_key(bs, password) == 0)
6118 break;
6119 term_printf("invalid password\n");
6120 }
6121 }
6122 }
6123 }
6124
6125 /* XXX: currently we cannot use simultaneously different CPUs */
6126 void register_machines(void)
6127 {
6128 #if defined(TARGET_I386)
6129 qemu_register_machine(&pc_machine);
6130 qemu_register_machine(&isapc_machine);
6131 #elif defined(TARGET_PPC)
6132 qemu_register_machine(&heathrow_machine);
6133 qemu_register_machine(&core99_machine);
6134 qemu_register_machine(&prep_machine);
6135 #elif defined(TARGET_MIPS)
6136 qemu_register_machine(&mips_machine);
6137 #elif defined(TARGET_SPARC)
6138 #ifdef TARGET_SPARC64
6139 qemu_register_machine(&sun4u_machine);
6140 #else
6141 qemu_register_machine(&sun4m_machine);
6142 #endif
6143 #elif defined(TARGET_ARM)
6144 qemu_register_machine(&integratorcp926_machine);
6145 qemu_register_machine(&integratorcp1026_machine);
6146 qemu_register_machine(&versatilepb_machine);
6147 qemu_register_machine(&versatileab_machine);
6148 #elif defined(TARGET_SH4)
6149 qemu_register_machine(&shix_machine);
6150 #else
6151 #error unsupported CPU
6152 #endif
6153 }
6154
6155 #ifdef HAS_AUDIO
6156 struct soundhw soundhw[] = {
6157 #ifdef TARGET_I386
6158 {
6159 "pcspk",
6160 "PC speaker",
6161 0,
6162 1,
6163 { .init_isa = pcspk_audio_init }
6164 },
6165 #endif
6166 {
6167 "sb16",
6168 "Creative Sound Blaster 16",
6169 0,
6170 1,
6171 { .init_isa = SB16_init }
6172 },
6173
6174 #ifdef CONFIG_ADLIB
6175 {
6176 "adlib",
6177 #ifdef HAS_YMF262
6178 "Yamaha YMF262 (OPL3)",
6179 #else
6180 "Yamaha YM3812 (OPL2)",
6181 #endif
6182 0,
6183 1,
6184 { .init_isa = Adlib_init }
6185 },
6186 #endif
6187
6188 #ifdef CONFIG_GUS
6189 {
6190 "gus",
6191 "Gravis Ultrasound GF1",
6192 0,
6193 1,
6194 { .init_isa = GUS_init }
6195 },
6196 #endif
6197
6198 {
6199 "es1370",
6200 "ENSONIQ AudioPCI ES1370",
6201 0,
6202 0,
6203 { .init_pci = es1370_init }
6204 },
6205
6206 { NULL, NULL, 0, 0, { NULL } }
6207 };
6208
6209 static void select_soundhw (const char *optarg)
6210 {
6211 struct soundhw *c;
6212
6213 if (*optarg == '?') {
6214 show_valid_cards:
6215
6216 printf ("Valid sound card names (comma separated):\n");
6217 for (c = soundhw; c->name; ++c) {
6218 printf ("%-11s %s\n", c->name, c->descr);
6219 }
6220 printf ("\n-soundhw all will enable all of the above\n");
6221 exit (*optarg != '?');
6222 }
6223 else {
6224 size_t l;
6225 const char *p;
6226 char *e;
6227 int bad_card = 0;
6228
6229 if (!strcmp (optarg, "all")) {
6230 for (c = soundhw; c->name; ++c) {
6231 c->enabled = 1;
6232 }
6233 return;
6234 }
6235
6236 p = optarg;
6237 while (*p) {
6238 e = strchr (p, ',');
6239 l = !e ? strlen (p) : (size_t) (e - p);
6240
6241 for (c = soundhw; c->name; ++c) {
6242 if (!strncmp (c->name, p, l)) {
6243 c->enabled = 1;
6244 break;
6245 }
6246 }
6247
6248 if (!c->name) {
6249 if (l > 80) {
6250 fprintf (stderr,
6251 "Unknown sound card name (too big to show)\n");
6252 }
6253 else {
6254 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6255 (int) l, p);
6256 }
6257 bad_card = 1;
6258 }
6259 p += l + (e != NULL);
6260 }
6261
6262 if (bad_card)
6263 goto show_valid_cards;
6264 }
6265 }
6266 #endif
6267
6268 #ifdef _WIN32
6269 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6270 {
6271 exit(STATUS_CONTROL_C_EXIT);
6272 return TRUE;
6273 }
6274 #endif
6275
6276 #define MAX_NET_CLIENTS 32
6277
6278 int main(int argc, char **argv)
6279 {
6280 #ifdef CONFIG_GDBSTUB
6281 int use_gdbstub, gdbstub_port;
6282 #endif
6283 int i, cdrom_index;
6284 int snapshot, linux_boot;
6285 const char *initrd_filename;
6286 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6287 const char *kernel_filename, *kernel_cmdline;
6288 DisplayState *ds = &display_state;
6289 int cyls, heads, secs, translation;
6290 int start_emulation = 1;
6291 char net_clients[MAX_NET_CLIENTS][256];
6292 int nb_net_clients;
6293 int optind;
6294 const char *r, *optarg;
6295 CharDriverState *monitor_hd;
6296 char monitor_device[128];
6297 char serial_devices[MAX_SERIAL_PORTS][128];
6298 int serial_device_index;
6299 char parallel_devices[MAX_PARALLEL_PORTS][128];
6300 int parallel_device_index;
6301 const char *loadvm = NULL;
6302 QEMUMachine *machine;
6303 char usb_devices[MAX_USB_CMDLINE][128];
6304 int usb_devices_index;
6305
6306 LIST_INIT (&vm_change_state_head);
6307 #ifndef _WIN32
6308 {
6309 struct sigaction act;
6310 sigfillset(&act.sa_mask);
6311 act.sa_flags = 0;
6312 act.sa_handler = SIG_IGN;
6313 sigaction(SIGPIPE, &act, NULL);
6314 }
6315 #else
6316 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6317 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6318 QEMU to run on a single CPU */
6319 {
6320 HANDLE h;
6321 DWORD mask, smask;
6322 int i;
6323 h = GetCurrentProcess();
6324 if (GetProcessAffinityMask(h, &mask, &smask)) {
6325 for(i = 0; i < 32; i++) {
6326 if (mask & (1 << i))
6327 break;
6328 }
6329 if (i != 32) {
6330 mask = 1 << i;
6331 SetProcessAffinityMask(h, mask);
6332 }
6333 }
6334 }
6335 #endif
6336
6337 register_machines();
6338 machine = first_machine;
6339 initrd_filename = NULL;
6340 for(i = 0; i < MAX_FD; i++)
6341 fd_filename[i] = NULL;
6342 for(i = 0; i < MAX_DISKS; i++)
6343 hd_filename[i] = NULL;
6344 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6345 vga_ram_size = VGA_RAM_SIZE;
6346 bios_size = BIOS_SIZE;
6347 #ifdef CONFIG_GDBSTUB
6348 use_gdbstub = 0;
6349 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6350 #endif
6351 snapshot = 0;
6352 nographic = 0;
6353 kernel_filename = NULL;
6354 kernel_cmdline = "";
6355 #ifdef TARGET_PPC
6356 cdrom_index = 1;
6357 #else
6358 cdrom_index = 2;
6359 #endif
6360 cyls = heads = secs = 0;
6361 translation = BIOS_ATA_TRANSLATION_AUTO;
6362 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6363
6364 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6365 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6366 serial_devices[i][0] = '\0';
6367 serial_device_index = 0;
6368
6369 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6370 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6371 parallel_devices[i][0] = '\0';
6372 parallel_device_index = 0;
6373
6374 usb_devices_index = 0;
6375
6376 nb_net_clients = 0;
6377
6378 nb_nics = 0;
6379 /* default mac address of the first network interface */
6380
6381 optind = 1;
6382 for(;;) {
6383 if (optind >= argc)
6384 break;
6385 r = argv[optind];
6386 if (r[0] != '-') {
6387 hd_filename[0] = argv[optind++];
6388 } else {
6389 const QEMUOption *popt;
6390
6391 optind++;
6392 popt = qemu_options;
6393 for(;;) {
6394 if (!popt->name) {
6395 fprintf(stderr, "%s: invalid option -- '%s'\n",
6396 argv[0], r);
6397 exit(1);
6398 }
6399 if (!strcmp(popt->name, r + 1))
6400 break;
6401 popt++;
6402 }
6403 if (popt->flags & HAS_ARG) {
6404 if (optind >= argc) {
6405 fprintf(stderr, "%s: option '%s' requires an argument\n",
6406 argv[0], r);
6407 exit(1);
6408 }
6409 optarg = argv[optind++];
6410 } else {
6411 optarg = NULL;
6412 }
6413
6414 switch(popt->index) {
6415 case QEMU_OPTION_M:
6416 machine = find_machine(optarg);
6417 if (!machine) {
6418 QEMUMachine *m;
6419 printf("Supported machines are:\n");
6420 for(m = first_machine; m != NULL; m = m->next) {
6421 printf("%-10s %s%s\n",
6422 m->name, m->desc,
6423 m == first_machine ? " (default)" : "");
6424 }
6425 exit(1);
6426 }
6427 break;
6428 case QEMU_OPTION_initrd:
6429 initrd_filename = optarg;
6430 break;
6431 case QEMU_OPTION_hda:
6432 case QEMU_OPTION_hdb:
6433 case QEMU_OPTION_hdc:
6434 case QEMU_OPTION_hdd:
6435 {
6436 int hd_index;
6437 hd_index = popt->index - QEMU_OPTION_hda;
6438 hd_filename[hd_index] = optarg;
6439 if (hd_index == cdrom_index)
6440 cdrom_index = -1;
6441 }
6442 break;
6443 case QEMU_OPTION_snapshot:
6444 snapshot = 1;
6445 break;
6446 case QEMU_OPTION_hdachs:
6447 {
6448 const char *p;
6449 p = optarg;
6450 cyls = strtol(p, (char **)&p, 0);
6451 if (cyls < 1 || cyls > 16383)
6452 goto chs_fail;
6453 if (*p != ',')
6454 goto chs_fail;
6455 p++;
6456 heads = strtol(p, (char **)&p, 0);
6457 if (heads < 1 || heads > 16)
6458 goto chs_fail;
6459 if (*p != ',')
6460 goto chs_fail;
6461 p++;
6462 secs = strtol(p, (char **)&p, 0);
6463 if (secs < 1 || secs > 63)
6464 goto chs_fail;
6465 if (*p == ',') {
6466 p++;
6467 if (!strcmp(p, "none"))
6468 translation = BIOS_ATA_TRANSLATION_NONE;
6469 else if (!strcmp(p, "lba"))
6470 translation = BIOS_ATA_TRANSLATION_LBA;
6471 else if (!strcmp(p, "auto"))
6472 translation = BIOS_ATA_TRANSLATION_AUTO;
6473 else
6474 goto chs_fail;
6475 } else if (*p != '\0') {
6476 chs_fail:
6477 fprintf(stderr, "qemu: invalid physical CHS format\n");
6478 exit(1);
6479 }
6480 }
6481 break;
6482 case QEMU_OPTION_nographic:
6483 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
6484 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
6485 nographic = 1;
6486 break;
6487 case QEMU_OPTION_kernel:
6488 kernel_filename = optarg;
6489 break;
6490 case QEMU_OPTION_append:
6491 kernel_cmdline = optarg;
6492 break;
6493 case QEMU_OPTION_cdrom:
6494 if (cdrom_index >= 0) {
6495 hd_filename[cdrom_index] = optarg;
6496 }
6497 break;
6498 case QEMU_OPTION_boot:
6499 boot_device = optarg[0];
6500 if (boot_device != 'a' &&
6501 #ifdef TARGET_SPARC
6502 // Network boot
6503 boot_device != 'n' &&
6504 #endif
6505 boot_device != 'c' && boot_device != 'd') {
6506 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
6507 exit(1);
6508 }
6509 break;
6510 case QEMU_OPTION_fda:
6511 fd_filename[0] = optarg;
6512 break;
6513 case QEMU_OPTION_fdb:
6514 fd_filename[1] = optarg;
6515 break;
6516 #ifdef TARGET_I386
6517 case QEMU_OPTION_no_fd_bootchk:
6518 fd_bootchk = 0;
6519 break;
6520 #endif
6521 case QEMU_OPTION_no_code_copy:
6522 code_copy_enabled = 0;
6523 break;
6524 case QEMU_OPTION_net:
6525 if (nb_net_clients >= MAX_NET_CLIENTS) {
6526 fprintf(stderr, "qemu: too many network clients\n");
6527 exit(1);
6528 }
6529 pstrcpy(net_clients[nb_net_clients],
6530 sizeof(net_clients[0]),
6531 optarg);
6532 nb_net_clients++;
6533 break;
6534 #ifdef CONFIG_SLIRP
6535 case QEMU_OPTION_tftp:
6536 tftp_prefix = optarg;
6537 break;
6538 #ifndef _WIN32
6539 case QEMU_OPTION_smb:
6540 net_slirp_smb(optarg);
6541 break;
6542 #endif
6543 case QEMU_OPTION_redir:
6544 net_slirp_redir(optarg);
6545 break;
6546 #endif
6547 #ifdef HAS_AUDIO
6548 case QEMU_OPTION_audio_help:
6549 AUD_help ();
6550 exit (0);
6551 break;
6552 case QEMU_OPTION_soundhw:
6553 select_soundhw (optarg);
6554 break;
6555 #endif
6556 case QEMU_OPTION_h:
6557 help();
6558 break;
6559 case QEMU_OPTION_m:
6560 ram_size = atoi(optarg) * 1024 * 1024;
6561 if (ram_size <= 0)
6562 help();
6563 if (ram_size > PHYS_RAM_MAX_SIZE) {
6564 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
6565 PHYS_RAM_MAX_SIZE / (1024 * 1024));
6566 exit(1);
6567 }
6568 break;
6569 case QEMU_OPTION_d:
6570 {
6571 int mask;
6572 CPULogItem *item;
6573
6574 mask = cpu_str_to_log_mask(optarg);
6575 if (!mask) {
6576 printf("Log items (comma separated):\n");
6577 for(item = cpu_log_items; item->mask != 0; item++) {
6578 printf("%-10s %s\n", item->name, item->help);
6579 }
6580 exit(1);
6581 }
6582 cpu_set_log(mask);
6583 }
6584 break;
6585 #ifdef CONFIG_GDBSTUB
6586 case QEMU_OPTION_s:
6587 use_gdbstub = 1;
6588 break;
6589 case QEMU_OPTION_p:
6590 gdbstub_port = atoi(optarg);
6591 break;
6592 #endif
6593 case QEMU_OPTION_L:
6594 bios_dir = optarg;
6595 break;
6596 case QEMU_OPTION_S:
6597 start_emulation = 0;
6598 break;
6599 case QEMU_OPTION_k:
6600 keyboard_layout = optarg;
6601 break;
6602 case QEMU_OPTION_localtime:
6603 rtc_utc = 0;
6604 break;
6605 case QEMU_OPTION_cirrusvga:
6606 cirrus_vga_enabled = 1;
6607 break;
6608 case QEMU_OPTION_std_vga:
6609 cirrus_vga_enabled = 0;
6610 break;
6611 case QEMU_OPTION_g:
6612 {
6613 const char *p;
6614 int w, h, depth;
6615 p = optarg;
6616 w = strtol(p, (char **)&p, 10);
6617 if (w <= 0) {
6618 graphic_error:
6619 fprintf(stderr, "qemu: invalid resolution or depth\n");
6620 exit(1);
6621 }
6622 if (*p != 'x')
6623 goto graphic_error;
6624 p++;
6625 h = strtol(p, (char **)&p, 10);
6626 if (h <= 0)
6627 goto graphic_error;
6628 if (*p == 'x') {
6629 p++;
6630 depth = strtol(p, (char **)&p, 10);
6631 if (depth != 8 && depth != 15 && depth != 16 &&
6632 depth != 24 && depth != 32)
6633 goto graphic_error;
6634 } else if (*p == '\0') {
6635 depth = graphic_depth;
6636 } else {
6637 goto graphic_error;
6638 }
6639
6640 graphic_width = w;
6641 graphic_height = h;
6642 graphic_depth = depth;
6643 }
6644 break;
6645 case QEMU_OPTION_monitor:
6646 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
6647 break;
6648 case QEMU_OPTION_serial:
6649 if (serial_device_index >= MAX_SERIAL_PORTS) {
6650 fprintf(stderr, "qemu: too many serial ports\n");
6651 exit(1);
6652 }
6653 pstrcpy(serial_devices[serial_device_index],
6654 sizeof(serial_devices[0]), optarg);
6655 serial_device_index++;
6656 break;
6657 case QEMU_OPTION_parallel:
6658 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
6659 fprintf(stderr, "qemu: too many parallel ports\n");
6660 exit(1);
6661 }
6662 pstrcpy(parallel_devices[parallel_device_index],
6663 sizeof(parallel_devices[0]), optarg);
6664 parallel_device_index++;
6665 break;
6666 case QEMU_OPTION_loadvm:
6667 loadvm = optarg;
6668 break;
6669 case QEMU_OPTION_full_screen:
6670 full_screen = 1;
6671 break;
6672 case QEMU_OPTION_pidfile:
6673 create_pidfile(optarg);
6674 break;
6675 #ifdef TARGET_I386
6676 case QEMU_OPTION_win2k_hack:
6677 win2k_install_hack = 1;
6678 break;
6679 #endif
6680 #ifdef USE_KQEMU
6681 case QEMU_OPTION_no_kqemu:
6682 kqemu_allowed = 0;
6683 break;
6684 case QEMU_OPTION_kernel_kqemu:
6685 kqemu_allowed = 2;
6686 break;
6687 #endif
6688 case QEMU_OPTION_usb:
6689 usb_enabled = 1;
6690 break;
6691 case QEMU_OPTION_usbdevice:
6692 usb_enabled = 1;
6693 if (usb_devices_index >= MAX_USB_CMDLINE) {
6694 fprintf(stderr, "Too many USB devices\n");
6695 exit(1);
6696 }
6697 pstrcpy(usb_devices[usb_devices_index],
6698 sizeof(usb_devices[usb_devices_index]),
6699 optarg);
6700 usb_devices_index++;
6701 break;
6702 case QEMU_OPTION_smp:
6703 smp_cpus = atoi(optarg);
6704 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
6705 fprintf(stderr, "Invalid number of CPUs\n");
6706 exit(1);
6707 }
6708 break;
6709 case QEMU_OPTION_vnc:
6710 vnc_display = atoi(optarg);
6711 if (vnc_display < 0) {
6712 fprintf(stderr, "Invalid VNC display\n");
6713 exit(1);
6714 }
6715 break;
6716 case QEMU_OPTION_no_acpi:
6717 acpi_enabled = 0;
6718 break;
6719 }
6720 }
6721 }
6722
6723 #ifdef USE_KQEMU
6724 if (smp_cpus > 1)
6725 kqemu_allowed = 0;
6726 #endif
6727 linux_boot = (kernel_filename != NULL);
6728
6729 if (!linux_boot &&
6730 hd_filename[0] == '\0' &&
6731 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
6732 fd_filename[0] == '\0')
6733 help();
6734
6735 /* boot to cd by default if no hard disk */
6736 if (hd_filename[0] == '\0' && boot_device == 'c') {
6737 if (fd_filename[0] != '\0')
6738 boot_device = 'a';
6739 else
6740 boot_device = 'd';
6741 }
6742
6743 setvbuf(stdout, NULL, _IOLBF, 0);
6744
6745 init_timers();
6746 init_timer_alarm();
6747 qemu_aio_init();
6748
6749 #ifdef _WIN32
6750 socket_init();
6751 #endif
6752
6753 /* init network clients */
6754 if (nb_net_clients == 0) {
6755 /* if no clients, we use a default config */
6756 pstrcpy(net_clients[0], sizeof(net_clients[0]),
6757 "nic");
6758 pstrcpy(net_clients[1], sizeof(net_clients[0]),
6759 "user");
6760 nb_net_clients = 2;
6761 }
6762
6763 for(i = 0;i < nb_net_clients; i++) {
6764 if (net_client_init(net_clients[i]) < 0)
6765 exit(1);
6766 }
6767
6768 /* init the memory */
6769 phys_ram_size = ram_size + vga_ram_size + bios_size;
6770
6771 phys_ram_base = qemu_vmalloc(phys_ram_size);
6772 if (!phys_ram_base) {
6773 fprintf(stderr, "Could not allocate physical memory\n");
6774 exit(1);
6775 }
6776
6777 /* we always create the cdrom drive, even if no disk is there */
6778 bdrv_init();
6779 if (cdrom_index >= 0) {
6780 bs_table[cdrom_index] = bdrv_new("cdrom");
6781 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
6782 }
6783
6784 /* open the virtual block devices */
6785 for(i = 0; i < MAX_DISKS; i++) {
6786 if (hd_filename[i]) {
6787 if (!bs_table[i]) {
6788 char buf[64];
6789 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
6790 bs_table[i] = bdrv_new(buf);
6791 }
6792 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
6793 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
6794 hd_filename[i]);
6795 exit(1);
6796 }
6797 if (i == 0 && cyls != 0) {
6798 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
6799 bdrv_set_translation_hint(bs_table[i], translation);
6800 }
6801 }
6802 }
6803
6804 /* we always create at least one floppy disk */
6805 fd_table[0] = bdrv_new("fda");
6806 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
6807
6808 for(i = 0; i < MAX_FD; i++) {
6809 if (fd_filename[i]) {
6810 if (!fd_table[i]) {
6811 char buf[64];
6812 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
6813 fd_table[i] = bdrv_new(buf);
6814 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
6815 }
6816 if (fd_filename[i] != '\0') {
6817 if (bdrv_open(fd_table[i], fd_filename[i],
6818 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
6819 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
6820 fd_filename[i]);
6821 exit(1);
6822 }
6823 }
6824 }
6825 }
6826
6827 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
6828 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
6829
6830 init_ioports();
6831
6832 /* terminal init */
6833 if (nographic) {
6834 dumb_display_init(ds);
6835 } else if (vnc_display != -1) {
6836 vnc_display_init(ds, vnc_display);
6837 } else {
6838 #if defined(CONFIG_SDL)
6839 sdl_display_init(ds, full_screen);
6840 #elif defined(CONFIG_COCOA)
6841 cocoa_display_init(ds, full_screen);
6842 #else
6843 dumb_display_init(ds);
6844 #endif
6845 }
6846
6847 monitor_hd = qemu_chr_open(monitor_device);
6848 if (!monitor_hd) {
6849 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6850 exit(1);
6851 }
6852 monitor_init(monitor_hd, !nographic);
6853
6854 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6855 const char *devname = serial_devices[i];
6856 if (devname[0] != '\0' && strcmp(devname, "none")) {
6857 serial_hds[i] = qemu_chr_open(devname);
6858 if (!serial_hds[i]) {
6859 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6860 devname);
6861 exit(1);
6862 }
6863 if (!strcmp(devname, "vc"))
6864 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6865 }
6866 }
6867
6868 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6869 const char *devname = parallel_devices[i];
6870 if (devname[0] != '\0' && strcmp(devname, "none")) {
6871 parallel_hds[i] = qemu_chr_open(devname);
6872 if (!parallel_hds[i]) {
6873 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6874 devname);
6875 exit(1);
6876 }
6877 if (!strcmp(devname, "vc"))
6878 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6879 }
6880 }
6881
6882 machine->init(ram_size, vga_ram_size, boot_device,
6883 ds, fd_filename, snapshot,
6884 kernel_filename, kernel_cmdline, initrd_filename);
6885
6886 /* init USB devices */
6887 if (usb_enabled) {
6888 for(i = 0; i < usb_devices_index; i++) {
6889 if (usb_device_add(usb_devices[i]) < 0) {
6890 fprintf(stderr, "Warning: could not add USB device %s\n",
6891 usb_devices[i]);
6892 }
6893 }
6894 }
6895
6896 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
6897 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
6898
6899 #ifdef CONFIG_GDBSTUB
6900 if (use_gdbstub) {
6901 if (gdbserver_start(gdbstub_port) < 0) {
6902 fprintf(stderr, "Could not open gdbserver socket on port %d\n",
6903 gdbstub_port);
6904 exit(1);
6905 } else {
6906 printf("Waiting gdb connection on port %d\n", gdbstub_port);
6907 }
6908 } else
6909 #endif
6910 if (loadvm)
6911 do_loadvm(loadvm);
6912
6913 {
6914 /* XXX: simplify init */
6915 read_passwords();
6916 if (start_emulation) {
6917 vm_start();
6918 }
6919 }
6920 main_loop();
6921 quit_timers();
6922 return 0;
6923 }