]> git.proxmox.com Git - qemu.git/blob - vl.c
gdbstub: manage CPUs as threads (Jan Kiszka)
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "block.h"
40 #include "audio/audio.h"
41 #include "migration.h"
42 #include "kvm.h"
43
44 #include <unistd.h>
45 #include <fcntl.h>
46 #include <signal.h>
47 #include <time.h>
48 #include <errno.h>
49 #include <sys/time.h>
50 #include <zlib.h>
51
52 #ifndef _WIN32
53 #include <sys/times.h>
54 #include <sys/wait.h>
55 #include <termios.h>
56 #include <sys/mman.h>
57 #include <sys/ioctl.h>
58 #include <sys/resource.h>
59 #include <sys/socket.h>
60 #include <netinet/in.h>
61 #include <net/if.h>
62 #if defined(__NetBSD__)
63 #include <net/if_tap.h>
64 #endif
65 #ifdef __linux__
66 #include <linux/if_tun.h>
67 #endif
68 #include <arpa/inet.h>
69 #include <dirent.h>
70 #include <netdb.h>
71 #include <sys/select.h>
72 #ifdef _BSD
73 #include <sys/stat.h>
74 #ifdef __FreeBSD__
75 #include <libutil.h>
76 #else
77 #include <util.h>
78 #endif
79 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
80 #include <freebsd/stdlib.h>
81 #else
82 #ifdef __linux__
83 #include <pty.h>
84 #include <malloc.h>
85 #include <linux/rtc.h>
86
87 /* For the benefit of older linux systems which don't supply it,
88 we use a local copy of hpet.h. */
89 /* #include <linux/hpet.h> */
90 #include "hpet.h"
91
92 #include <linux/ppdev.h>
93 #include <linux/parport.h>
94 #endif
95 #ifdef __sun__
96 #include <sys/stat.h>
97 #include <sys/ethernet.h>
98 #include <sys/sockio.h>
99 #include <netinet/arp.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/ip_icmp.h> // must come after ip.h
104 #include <netinet/udp.h>
105 #include <netinet/tcp.h>
106 #include <net/if.h>
107 #include <syslog.h>
108 #include <stropts.h>
109 #endif
110 #endif
111 #endif
112
113 #include "qemu_socket.h"
114
115 #if defined(CONFIG_SLIRP)
116 #include "libslirp.h"
117 #endif
118
119 #if defined(__OpenBSD__)
120 #include <util.h>
121 #endif
122
123 #if defined(CONFIG_VDE)
124 #include <libvdeplug.h>
125 #endif
126
127 #ifdef _WIN32
128 #include <malloc.h>
129 #include <sys/timeb.h>
130 #include <mmsystem.h>
131 #define getopt_long_only getopt_long
132 #define memalign(align, size) malloc(size)
133 #endif
134
135 #ifdef CONFIG_SDL
136 #ifdef __APPLE__
137 #include <SDL/SDL.h>
138 #endif
139 #endif /* CONFIG_SDL */
140
141 #ifdef CONFIG_COCOA
142 #undef main
143 #define main qemu_main
144 #endif /* CONFIG_COCOA */
145
146 #include "disas.h"
147
148 #include "exec-all.h"
149
150 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
151 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
152 #ifdef __sun__
153 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
154 #else
155 #define SMBD_COMMAND "/usr/sbin/smbd"
156 #endif
157
158 //#define DEBUG_UNUSED_IOPORT
159 //#define DEBUG_IOPORT
160 //#define DEBUG_NET
161 //#define DEBUG_SLIRP
162
163 #ifdef TARGET_PPC
164 #define DEFAULT_RAM_SIZE 144
165 #else
166 #define DEFAULT_RAM_SIZE 128
167 #endif
168
169 /* Max number of USB devices that can be specified on the commandline. */
170 #define MAX_USB_CMDLINE 8
171
172 /* Max number of bluetooth switches on the commandline. */
173 #define MAX_BT_CMDLINE 10
174
175 /* XXX: use a two level table to limit memory usage */
176 #define MAX_IOPORTS 65536
177
178 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
179 const char *bios_name = NULL;
180 static void *ioport_opaque[MAX_IOPORTS];
181 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
182 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
183 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
184 to store the VM snapshots */
185 DriveInfo drives_table[MAX_DRIVES+1];
186 int nb_drives;
187 static int vga_ram_size;
188 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
189 DisplayState display_state;
190 int nographic;
191 static int curses;
192 const char* keyboard_layout = NULL;
193 int64_t ticks_per_sec;
194 ram_addr_t ram_size;
195 int nb_nics;
196 NICInfo nd_table[MAX_NICS];
197 int vm_running;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 int cirrus_vga_enabled = 1;
201 int vmsvga_enabled = 0;
202 #ifdef TARGET_SPARC
203 int graphic_width = 1024;
204 int graphic_height = 768;
205 int graphic_depth = 8;
206 #else
207 int graphic_width = 800;
208 int graphic_height = 600;
209 int graphic_depth = 15;
210 #endif
211 static int full_screen = 0;
212 #ifdef CONFIG_SDL
213 static int no_frame = 0;
214 #endif
215 int no_quit = 0;
216 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
217 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
218 #ifdef TARGET_I386
219 int win2k_install_hack = 0;
220 #endif
221 int usb_enabled = 0;
222 int smp_cpus = 1;
223 const char *vnc_display;
224 int acpi_enabled = 1;
225 int fd_bootchk = 1;
226 int no_reboot = 0;
227 int no_shutdown = 0;
228 int cursor_hide = 1;
229 int graphic_rotate = 0;
230 int daemonize = 0;
231 const char *option_rom[MAX_OPTION_ROMS];
232 int nb_option_roms;
233 int semihosting_enabled = 0;
234 #ifdef TARGET_ARM
235 int old_param = 0;
236 #endif
237 const char *qemu_name;
238 int alt_grab = 0;
239 #ifdef TARGET_SPARC
240 unsigned int nb_prom_envs = 0;
241 const char *prom_envs[MAX_PROM_ENVS];
242 #endif
243 static int nb_drives_opt;
244 static struct drive_opt {
245 const char *file;
246 char opt[1024];
247 } drives_opt[MAX_DRIVES];
248
249 static CPUState *cur_cpu;
250 static CPUState *next_cpu;
251 static int event_pending = 1;
252 /* Conversion factor from emulated instructions to virtual clock ticks. */
253 static int icount_time_shift;
254 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
255 #define MAX_ICOUNT_SHIFT 10
256 /* Compensate for varying guest execution speed. */
257 static int64_t qemu_icount_bias;
258 static QEMUTimer *icount_rt_timer;
259 static QEMUTimer *icount_vm_timer;
260
261 uint8_t qemu_uuid[16];
262
263 /***********************************************************/
264 /* x86 ISA bus support */
265
266 target_phys_addr_t isa_mem_base = 0;
267 PicState2 *isa_pic;
268
269 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
270 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
271
272 static uint32_t ioport_read(int index, uint32_t address)
273 {
274 static IOPortReadFunc *default_func[3] = {
275 default_ioport_readb,
276 default_ioport_readw,
277 default_ioport_readl
278 };
279 IOPortReadFunc *func = ioport_read_table[index][address];
280 if (!func)
281 func = default_func[index];
282 return func(ioport_opaque[address], address);
283 }
284
285 static void ioport_write(int index, uint32_t address, uint32_t data)
286 {
287 static IOPortWriteFunc *default_func[3] = {
288 default_ioport_writeb,
289 default_ioport_writew,
290 default_ioport_writel
291 };
292 IOPortWriteFunc *func = ioport_write_table[index][address];
293 if (!func)
294 func = default_func[index];
295 func(ioport_opaque[address], address, data);
296 }
297
298 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
299 {
300 #ifdef DEBUG_UNUSED_IOPORT
301 fprintf(stderr, "unused inb: port=0x%04x\n", address);
302 #endif
303 return 0xff;
304 }
305
306 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
307 {
308 #ifdef DEBUG_UNUSED_IOPORT
309 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
310 #endif
311 }
312
313 /* default is to make two byte accesses */
314 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
315 {
316 uint32_t data;
317 data = ioport_read(0, address);
318 address = (address + 1) & (MAX_IOPORTS - 1);
319 data |= ioport_read(0, address) << 8;
320 return data;
321 }
322
323 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
324 {
325 ioport_write(0, address, data & 0xff);
326 address = (address + 1) & (MAX_IOPORTS - 1);
327 ioport_write(0, address, (data >> 8) & 0xff);
328 }
329
330 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
331 {
332 #ifdef DEBUG_UNUSED_IOPORT
333 fprintf(stderr, "unused inl: port=0x%04x\n", address);
334 #endif
335 return 0xffffffff;
336 }
337
338 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
339 {
340 #ifdef DEBUG_UNUSED_IOPORT
341 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
342 #endif
343 }
344
345 /* size is the word size in byte */
346 int register_ioport_read(int start, int length, int size,
347 IOPortReadFunc *func, void *opaque)
348 {
349 int i, bsize;
350
351 if (size == 1) {
352 bsize = 0;
353 } else if (size == 2) {
354 bsize = 1;
355 } else if (size == 4) {
356 bsize = 2;
357 } else {
358 hw_error("register_ioport_read: invalid size");
359 return -1;
360 }
361 for(i = start; i < start + length; i += size) {
362 ioport_read_table[bsize][i] = func;
363 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
364 hw_error("register_ioport_read: invalid opaque");
365 ioport_opaque[i] = opaque;
366 }
367 return 0;
368 }
369
370 /* size is the word size in byte */
371 int register_ioport_write(int start, int length, int size,
372 IOPortWriteFunc *func, void *opaque)
373 {
374 int i, bsize;
375
376 if (size == 1) {
377 bsize = 0;
378 } else if (size == 2) {
379 bsize = 1;
380 } else if (size == 4) {
381 bsize = 2;
382 } else {
383 hw_error("register_ioport_write: invalid size");
384 return -1;
385 }
386 for(i = start; i < start + length; i += size) {
387 ioport_write_table[bsize][i] = func;
388 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
389 hw_error("register_ioport_write: invalid opaque");
390 ioport_opaque[i] = opaque;
391 }
392 return 0;
393 }
394
395 void isa_unassign_ioport(int start, int length)
396 {
397 int i;
398
399 for(i = start; i < start + length; i++) {
400 ioport_read_table[0][i] = default_ioport_readb;
401 ioport_read_table[1][i] = default_ioport_readw;
402 ioport_read_table[2][i] = default_ioport_readl;
403
404 ioport_write_table[0][i] = default_ioport_writeb;
405 ioport_write_table[1][i] = default_ioport_writew;
406 ioport_write_table[2][i] = default_ioport_writel;
407 }
408 }
409
410 /***********************************************************/
411
412 void cpu_outb(CPUState *env, int addr, int val)
413 {
414 #ifdef DEBUG_IOPORT
415 if (loglevel & CPU_LOG_IOPORT)
416 fprintf(logfile, "outb: %04x %02x\n", addr, val);
417 #endif
418 ioport_write(0, addr, val);
419 #ifdef USE_KQEMU
420 if (env)
421 env->last_io_time = cpu_get_time_fast();
422 #endif
423 }
424
425 void cpu_outw(CPUState *env, int addr, int val)
426 {
427 #ifdef DEBUG_IOPORT
428 if (loglevel & CPU_LOG_IOPORT)
429 fprintf(logfile, "outw: %04x %04x\n", addr, val);
430 #endif
431 ioport_write(1, addr, val);
432 #ifdef USE_KQEMU
433 if (env)
434 env->last_io_time = cpu_get_time_fast();
435 #endif
436 }
437
438 void cpu_outl(CPUState *env, int addr, int val)
439 {
440 #ifdef DEBUG_IOPORT
441 if (loglevel & CPU_LOG_IOPORT)
442 fprintf(logfile, "outl: %04x %08x\n", addr, val);
443 #endif
444 ioport_write(2, addr, val);
445 #ifdef USE_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
449 }
450
451 int cpu_inb(CPUState *env, int addr)
452 {
453 int val;
454 val = ioport_read(0, addr);
455 #ifdef DEBUG_IOPORT
456 if (loglevel & CPU_LOG_IOPORT)
457 fprintf(logfile, "inb : %04x %02x\n", addr, val);
458 #endif
459 #ifdef USE_KQEMU
460 if (env)
461 env->last_io_time = cpu_get_time_fast();
462 #endif
463 return val;
464 }
465
466 int cpu_inw(CPUState *env, int addr)
467 {
468 int val;
469 val = ioport_read(1, addr);
470 #ifdef DEBUG_IOPORT
471 if (loglevel & CPU_LOG_IOPORT)
472 fprintf(logfile, "inw : %04x %04x\n", addr, val);
473 #endif
474 #ifdef USE_KQEMU
475 if (env)
476 env->last_io_time = cpu_get_time_fast();
477 #endif
478 return val;
479 }
480
481 int cpu_inl(CPUState *env, int addr)
482 {
483 int val;
484 val = ioport_read(2, addr);
485 #ifdef DEBUG_IOPORT
486 if (loglevel & CPU_LOG_IOPORT)
487 fprintf(logfile, "inl : %04x %08x\n", addr, val);
488 #endif
489 #ifdef USE_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
494 }
495
496 /***********************************************************/
497 void hw_error(const char *fmt, ...)
498 {
499 va_list ap;
500 CPUState *env;
501
502 va_start(ap, fmt);
503 fprintf(stderr, "qemu: hardware error: ");
504 vfprintf(stderr, fmt, ap);
505 fprintf(stderr, "\n");
506 for(env = first_cpu; env != NULL; env = env->next_cpu) {
507 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
508 #ifdef TARGET_I386
509 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
510 #else
511 cpu_dump_state(env, stderr, fprintf, 0);
512 #endif
513 }
514 va_end(ap);
515 abort();
516 }
517
518 /***********************************************************/
519 /* keyboard/mouse */
520
521 static QEMUPutKBDEvent *qemu_put_kbd_event;
522 static void *qemu_put_kbd_event_opaque;
523 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
524 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
525
526 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
527 {
528 qemu_put_kbd_event_opaque = opaque;
529 qemu_put_kbd_event = func;
530 }
531
532 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
533 void *opaque, int absolute,
534 const char *name)
535 {
536 QEMUPutMouseEntry *s, *cursor;
537
538 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
539 if (!s)
540 return NULL;
541
542 s->qemu_put_mouse_event = func;
543 s->qemu_put_mouse_event_opaque = opaque;
544 s->qemu_put_mouse_event_absolute = absolute;
545 s->qemu_put_mouse_event_name = qemu_strdup(name);
546 s->next = NULL;
547
548 if (!qemu_put_mouse_event_head) {
549 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
550 return s;
551 }
552
553 cursor = qemu_put_mouse_event_head;
554 while (cursor->next != NULL)
555 cursor = cursor->next;
556
557 cursor->next = s;
558 qemu_put_mouse_event_current = s;
559
560 return s;
561 }
562
563 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
564 {
565 QEMUPutMouseEntry *prev = NULL, *cursor;
566
567 if (!qemu_put_mouse_event_head || entry == NULL)
568 return;
569
570 cursor = qemu_put_mouse_event_head;
571 while (cursor != NULL && cursor != entry) {
572 prev = cursor;
573 cursor = cursor->next;
574 }
575
576 if (cursor == NULL) // does not exist or list empty
577 return;
578 else if (prev == NULL) { // entry is head
579 qemu_put_mouse_event_head = cursor->next;
580 if (qemu_put_mouse_event_current == entry)
581 qemu_put_mouse_event_current = cursor->next;
582 qemu_free(entry->qemu_put_mouse_event_name);
583 qemu_free(entry);
584 return;
585 }
586
587 prev->next = entry->next;
588
589 if (qemu_put_mouse_event_current == entry)
590 qemu_put_mouse_event_current = prev;
591
592 qemu_free(entry->qemu_put_mouse_event_name);
593 qemu_free(entry);
594 }
595
596 void kbd_put_keycode(int keycode)
597 {
598 if (qemu_put_kbd_event) {
599 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
600 }
601 }
602
603 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
604 {
605 QEMUPutMouseEvent *mouse_event;
606 void *mouse_event_opaque;
607 int width;
608
609 if (!qemu_put_mouse_event_current) {
610 return;
611 }
612
613 mouse_event =
614 qemu_put_mouse_event_current->qemu_put_mouse_event;
615 mouse_event_opaque =
616 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
617
618 if (mouse_event) {
619 if (graphic_rotate) {
620 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
621 width = 0x7fff;
622 else
623 width = graphic_width - 1;
624 mouse_event(mouse_event_opaque,
625 width - dy, dx, dz, buttons_state);
626 } else
627 mouse_event(mouse_event_opaque,
628 dx, dy, dz, buttons_state);
629 }
630 }
631
632 int kbd_mouse_is_absolute(void)
633 {
634 if (!qemu_put_mouse_event_current)
635 return 0;
636
637 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
638 }
639
640 void do_info_mice(void)
641 {
642 QEMUPutMouseEntry *cursor;
643 int index = 0;
644
645 if (!qemu_put_mouse_event_head) {
646 term_printf("No mouse devices connected\n");
647 return;
648 }
649
650 term_printf("Mouse devices available:\n");
651 cursor = qemu_put_mouse_event_head;
652 while (cursor != NULL) {
653 term_printf("%c Mouse #%d: %s\n",
654 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
655 index, cursor->qemu_put_mouse_event_name);
656 index++;
657 cursor = cursor->next;
658 }
659 }
660
661 void do_mouse_set(int index)
662 {
663 QEMUPutMouseEntry *cursor;
664 int i = 0;
665
666 if (!qemu_put_mouse_event_head) {
667 term_printf("No mouse devices connected\n");
668 return;
669 }
670
671 cursor = qemu_put_mouse_event_head;
672 while (cursor != NULL && index != i) {
673 i++;
674 cursor = cursor->next;
675 }
676
677 if (cursor != NULL)
678 qemu_put_mouse_event_current = cursor;
679 else
680 term_printf("Mouse at given index not found\n");
681 }
682
683 /* compute with 96 bit intermediate result: (a*b)/c */
684 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
685 {
686 union {
687 uint64_t ll;
688 struct {
689 #ifdef WORDS_BIGENDIAN
690 uint32_t high, low;
691 #else
692 uint32_t low, high;
693 #endif
694 } l;
695 } u, res;
696 uint64_t rl, rh;
697
698 u.ll = a;
699 rl = (uint64_t)u.l.low * (uint64_t)b;
700 rh = (uint64_t)u.l.high * (uint64_t)b;
701 rh += (rl >> 32);
702 res.l.high = rh / c;
703 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
704 return res.ll;
705 }
706
707 /***********************************************************/
708 /* real time host monotonic timer */
709
710 #define QEMU_TIMER_BASE 1000000000LL
711
712 #ifdef WIN32
713
714 static int64_t clock_freq;
715
716 static void init_get_clock(void)
717 {
718 LARGE_INTEGER freq;
719 int ret;
720 ret = QueryPerformanceFrequency(&freq);
721 if (ret == 0) {
722 fprintf(stderr, "Could not calibrate ticks\n");
723 exit(1);
724 }
725 clock_freq = freq.QuadPart;
726 }
727
728 static int64_t get_clock(void)
729 {
730 LARGE_INTEGER ti;
731 QueryPerformanceCounter(&ti);
732 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
733 }
734
735 #else
736
737 static int use_rt_clock;
738
739 static void init_get_clock(void)
740 {
741 use_rt_clock = 0;
742 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
743 {
744 struct timespec ts;
745 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
746 use_rt_clock = 1;
747 }
748 }
749 #endif
750 }
751
752 static int64_t get_clock(void)
753 {
754 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
755 if (use_rt_clock) {
756 struct timespec ts;
757 clock_gettime(CLOCK_MONOTONIC, &ts);
758 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
759 } else
760 #endif
761 {
762 /* XXX: using gettimeofday leads to problems if the date
763 changes, so it should be avoided. */
764 struct timeval tv;
765 gettimeofday(&tv, NULL);
766 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
767 }
768 }
769 #endif
770
771 /* Return the virtual CPU time, based on the instruction counter. */
772 static int64_t cpu_get_icount(void)
773 {
774 int64_t icount;
775 CPUState *env = cpu_single_env;;
776 icount = qemu_icount;
777 if (env) {
778 if (!can_do_io(env))
779 fprintf(stderr, "Bad clock read\n");
780 icount -= (env->icount_decr.u16.low + env->icount_extra);
781 }
782 return qemu_icount_bias + (icount << icount_time_shift);
783 }
784
785 /***********************************************************/
786 /* guest cycle counter */
787
788 static int64_t cpu_ticks_prev;
789 static int64_t cpu_ticks_offset;
790 static int64_t cpu_clock_offset;
791 static int cpu_ticks_enabled;
792
793 /* return the host CPU cycle counter and handle stop/restart */
794 int64_t cpu_get_ticks(void)
795 {
796 if (use_icount) {
797 return cpu_get_icount();
798 }
799 if (!cpu_ticks_enabled) {
800 return cpu_ticks_offset;
801 } else {
802 int64_t ticks;
803 ticks = cpu_get_real_ticks();
804 if (cpu_ticks_prev > ticks) {
805 /* Note: non increasing ticks may happen if the host uses
806 software suspend */
807 cpu_ticks_offset += cpu_ticks_prev - ticks;
808 }
809 cpu_ticks_prev = ticks;
810 return ticks + cpu_ticks_offset;
811 }
812 }
813
814 /* return the host CPU monotonic timer and handle stop/restart */
815 static int64_t cpu_get_clock(void)
816 {
817 int64_t ti;
818 if (!cpu_ticks_enabled) {
819 return cpu_clock_offset;
820 } else {
821 ti = get_clock();
822 return ti + cpu_clock_offset;
823 }
824 }
825
826 /* enable cpu_get_ticks() */
827 void cpu_enable_ticks(void)
828 {
829 if (!cpu_ticks_enabled) {
830 cpu_ticks_offset -= cpu_get_real_ticks();
831 cpu_clock_offset -= get_clock();
832 cpu_ticks_enabled = 1;
833 }
834 }
835
836 /* disable cpu_get_ticks() : the clock is stopped. You must not call
837 cpu_get_ticks() after that. */
838 void cpu_disable_ticks(void)
839 {
840 if (cpu_ticks_enabled) {
841 cpu_ticks_offset = cpu_get_ticks();
842 cpu_clock_offset = cpu_get_clock();
843 cpu_ticks_enabled = 0;
844 }
845 }
846
847 /***********************************************************/
848 /* timers */
849
850 #define QEMU_TIMER_REALTIME 0
851 #define QEMU_TIMER_VIRTUAL 1
852
853 struct QEMUClock {
854 int type;
855 /* XXX: add frequency */
856 };
857
858 struct QEMUTimer {
859 QEMUClock *clock;
860 int64_t expire_time;
861 QEMUTimerCB *cb;
862 void *opaque;
863 struct QEMUTimer *next;
864 };
865
866 struct qemu_alarm_timer {
867 char const *name;
868 unsigned int flags;
869
870 int (*start)(struct qemu_alarm_timer *t);
871 void (*stop)(struct qemu_alarm_timer *t);
872 void (*rearm)(struct qemu_alarm_timer *t);
873 void *priv;
874 };
875
876 #define ALARM_FLAG_DYNTICKS 0x1
877 #define ALARM_FLAG_EXPIRED 0x2
878
879 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
880 {
881 return t->flags & ALARM_FLAG_DYNTICKS;
882 }
883
884 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
885 {
886 if (!alarm_has_dynticks(t))
887 return;
888
889 t->rearm(t);
890 }
891
892 /* TODO: MIN_TIMER_REARM_US should be optimized */
893 #define MIN_TIMER_REARM_US 250
894
895 static struct qemu_alarm_timer *alarm_timer;
896 #ifndef _WIN32
897 static int alarm_timer_rfd, alarm_timer_wfd;
898 #endif
899
900 #ifdef _WIN32
901
902 struct qemu_alarm_win32 {
903 MMRESULT timerId;
904 HANDLE host_alarm;
905 unsigned int period;
906 } alarm_win32_data = {0, NULL, -1};
907
908 static int win32_start_timer(struct qemu_alarm_timer *t);
909 static void win32_stop_timer(struct qemu_alarm_timer *t);
910 static void win32_rearm_timer(struct qemu_alarm_timer *t);
911
912 #else
913
914 static int unix_start_timer(struct qemu_alarm_timer *t);
915 static void unix_stop_timer(struct qemu_alarm_timer *t);
916
917 #ifdef __linux__
918
919 static int dynticks_start_timer(struct qemu_alarm_timer *t);
920 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
921 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
922
923 static int hpet_start_timer(struct qemu_alarm_timer *t);
924 static void hpet_stop_timer(struct qemu_alarm_timer *t);
925
926 static int rtc_start_timer(struct qemu_alarm_timer *t);
927 static void rtc_stop_timer(struct qemu_alarm_timer *t);
928
929 #endif /* __linux__ */
930
931 #endif /* _WIN32 */
932
933 /* Correlation between real and virtual time is always going to be
934 fairly approximate, so ignore small variation.
935 When the guest is idle real and virtual time will be aligned in
936 the IO wait loop. */
937 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
938
939 static void icount_adjust(void)
940 {
941 int64_t cur_time;
942 int64_t cur_icount;
943 int64_t delta;
944 static int64_t last_delta;
945 /* If the VM is not running, then do nothing. */
946 if (!vm_running)
947 return;
948
949 cur_time = cpu_get_clock();
950 cur_icount = qemu_get_clock(vm_clock);
951 delta = cur_icount - cur_time;
952 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
953 if (delta > 0
954 && last_delta + ICOUNT_WOBBLE < delta * 2
955 && icount_time_shift > 0) {
956 /* The guest is getting too far ahead. Slow time down. */
957 icount_time_shift--;
958 }
959 if (delta < 0
960 && last_delta - ICOUNT_WOBBLE > delta * 2
961 && icount_time_shift < MAX_ICOUNT_SHIFT) {
962 /* The guest is getting too far behind. Speed time up. */
963 icount_time_shift++;
964 }
965 last_delta = delta;
966 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
967 }
968
969 static void icount_adjust_rt(void * opaque)
970 {
971 qemu_mod_timer(icount_rt_timer,
972 qemu_get_clock(rt_clock) + 1000);
973 icount_adjust();
974 }
975
976 static void icount_adjust_vm(void * opaque)
977 {
978 qemu_mod_timer(icount_vm_timer,
979 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
980 icount_adjust();
981 }
982
983 static void init_icount_adjust(void)
984 {
985 /* Have both realtime and virtual time triggers for speed adjustment.
986 The realtime trigger catches emulated time passing too slowly,
987 the virtual time trigger catches emulated time passing too fast.
988 Realtime triggers occur even when idle, so use them less frequently
989 than VM triggers. */
990 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
991 qemu_mod_timer(icount_rt_timer,
992 qemu_get_clock(rt_clock) + 1000);
993 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
994 qemu_mod_timer(icount_vm_timer,
995 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
996 }
997
998 static struct qemu_alarm_timer alarm_timers[] = {
999 #ifndef _WIN32
1000 #ifdef __linux__
1001 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1002 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1003 /* HPET - if available - is preferred */
1004 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1005 /* ...otherwise try RTC */
1006 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1007 #endif
1008 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1009 #else
1010 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1011 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1012 {"win32", 0, win32_start_timer,
1013 win32_stop_timer, NULL, &alarm_win32_data},
1014 #endif
1015 {NULL, }
1016 };
1017
1018 static void show_available_alarms(void)
1019 {
1020 int i;
1021
1022 printf("Available alarm timers, in order of precedence:\n");
1023 for (i = 0; alarm_timers[i].name; i++)
1024 printf("%s\n", alarm_timers[i].name);
1025 }
1026
1027 static void configure_alarms(char const *opt)
1028 {
1029 int i;
1030 int cur = 0;
1031 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1032 char *arg;
1033 char *name;
1034 struct qemu_alarm_timer tmp;
1035
1036 if (!strcmp(opt, "?")) {
1037 show_available_alarms();
1038 exit(0);
1039 }
1040
1041 arg = strdup(opt);
1042
1043 /* Reorder the array */
1044 name = strtok(arg, ",");
1045 while (name) {
1046 for (i = 0; i < count && alarm_timers[i].name; i++) {
1047 if (!strcmp(alarm_timers[i].name, name))
1048 break;
1049 }
1050
1051 if (i == count) {
1052 fprintf(stderr, "Unknown clock %s\n", name);
1053 goto next;
1054 }
1055
1056 if (i < cur)
1057 /* Ignore */
1058 goto next;
1059
1060 /* Swap */
1061 tmp = alarm_timers[i];
1062 alarm_timers[i] = alarm_timers[cur];
1063 alarm_timers[cur] = tmp;
1064
1065 cur++;
1066 next:
1067 name = strtok(NULL, ",");
1068 }
1069
1070 free(arg);
1071
1072 if (cur) {
1073 /* Disable remaining timers */
1074 for (i = cur; i < count; i++)
1075 alarm_timers[i].name = NULL;
1076 } else {
1077 show_available_alarms();
1078 exit(1);
1079 }
1080 }
1081
1082 QEMUClock *rt_clock;
1083 QEMUClock *vm_clock;
1084
1085 static QEMUTimer *active_timers[2];
1086
1087 static QEMUClock *qemu_new_clock(int type)
1088 {
1089 QEMUClock *clock;
1090 clock = qemu_mallocz(sizeof(QEMUClock));
1091 if (!clock)
1092 return NULL;
1093 clock->type = type;
1094 return clock;
1095 }
1096
1097 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1098 {
1099 QEMUTimer *ts;
1100
1101 ts = qemu_mallocz(sizeof(QEMUTimer));
1102 ts->clock = clock;
1103 ts->cb = cb;
1104 ts->opaque = opaque;
1105 return ts;
1106 }
1107
1108 void qemu_free_timer(QEMUTimer *ts)
1109 {
1110 qemu_free(ts);
1111 }
1112
1113 /* stop a timer, but do not dealloc it */
1114 void qemu_del_timer(QEMUTimer *ts)
1115 {
1116 QEMUTimer **pt, *t;
1117
1118 /* NOTE: this code must be signal safe because
1119 qemu_timer_expired() can be called from a signal. */
1120 pt = &active_timers[ts->clock->type];
1121 for(;;) {
1122 t = *pt;
1123 if (!t)
1124 break;
1125 if (t == ts) {
1126 *pt = t->next;
1127 break;
1128 }
1129 pt = &t->next;
1130 }
1131 }
1132
1133 /* modify the current timer so that it will be fired when current_time
1134 >= expire_time. The corresponding callback will be called. */
1135 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1136 {
1137 QEMUTimer **pt, *t;
1138
1139 qemu_del_timer(ts);
1140
1141 /* add the timer in the sorted list */
1142 /* NOTE: this code must be signal safe because
1143 qemu_timer_expired() can be called from a signal. */
1144 pt = &active_timers[ts->clock->type];
1145 for(;;) {
1146 t = *pt;
1147 if (!t)
1148 break;
1149 if (t->expire_time > expire_time)
1150 break;
1151 pt = &t->next;
1152 }
1153 ts->expire_time = expire_time;
1154 ts->next = *pt;
1155 *pt = ts;
1156
1157 /* Rearm if necessary */
1158 if (pt == &active_timers[ts->clock->type]) {
1159 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1160 qemu_rearm_alarm_timer(alarm_timer);
1161 }
1162 /* Interrupt execution to force deadline recalculation. */
1163 if (use_icount && cpu_single_env) {
1164 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1165 }
1166 }
1167 }
1168
1169 int qemu_timer_pending(QEMUTimer *ts)
1170 {
1171 QEMUTimer *t;
1172 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1173 if (t == ts)
1174 return 1;
1175 }
1176 return 0;
1177 }
1178
1179 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1180 {
1181 if (!timer_head)
1182 return 0;
1183 return (timer_head->expire_time <= current_time);
1184 }
1185
1186 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1187 {
1188 QEMUTimer *ts;
1189
1190 for(;;) {
1191 ts = *ptimer_head;
1192 if (!ts || ts->expire_time > current_time)
1193 break;
1194 /* remove timer from the list before calling the callback */
1195 *ptimer_head = ts->next;
1196 ts->next = NULL;
1197
1198 /* run the callback (the timer list can be modified) */
1199 ts->cb(ts->opaque);
1200 }
1201 }
1202
1203 int64_t qemu_get_clock(QEMUClock *clock)
1204 {
1205 switch(clock->type) {
1206 case QEMU_TIMER_REALTIME:
1207 return get_clock() / 1000000;
1208 default:
1209 case QEMU_TIMER_VIRTUAL:
1210 if (use_icount) {
1211 return cpu_get_icount();
1212 } else {
1213 return cpu_get_clock();
1214 }
1215 }
1216 }
1217
1218 static void init_timers(void)
1219 {
1220 init_get_clock();
1221 ticks_per_sec = QEMU_TIMER_BASE;
1222 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1223 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1224 }
1225
1226 /* save a timer */
1227 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1228 {
1229 uint64_t expire_time;
1230
1231 if (qemu_timer_pending(ts)) {
1232 expire_time = ts->expire_time;
1233 } else {
1234 expire_time = -1;
1235 }
1236 qemu_put_be64(f, expire_time);
1237 }
1238
1239 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1240 {
1241 uint64_t expire_time;
1242
1243 expire_time = qemu_get_be64(f);
1244 if (expire_time != -1) {
1245 qemu_mod_timer(ts, expire_time);
1246 } else {
1247 qemu_del_timer(ts);
1248 }
1249 }
1250
1251 static void timer_save(QEMUFile *f, void *opaque)
1252 {
1253 if (cpu_ticks_enabled) {
1254 hw_error("cannot save state if virtual timers are running");
1255 }
1256 qemu_put_be64(f, cpu_ticks_offset);
1257 qemu_put_be64(f, ticks_per_sec);
1258 qemu_put_be64(f, cpu_clock_offset);
1259 }
1260
1261 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1262 {
1263 if (version_id != 1 && version_id != 2)
1264 return -EINVAL;
1265 if (cpu_ticks_enabled) {
1266 return -EINVAL;
1267 }
1268 cpu_ticks_offset=qemu_get_be64(f);
1269 ticks_per_sec=qemu_get_be64(f);
1270 if (version_id == 2) {
1271 cpu_clock_offset=qemu_get_be64(f);
1272 }
1273 return 0;
1274 }
1275
1276 #ifdef _WIN32
1277 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1278 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1279 #else
1280 static void host_alarm_handler(int host_signum)
1281 #endif
1282 {
1283 #if 0
1284 #define DISP_FREQ 1000
1285 {
1286 static int64_t delta_min = INT64_MAX;
1287 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1288 static int count;
1289 ti = qemu_get_clock(vm_clock);
1290 if (last_clock != 0) {
1291 delta = ti - last_clock;
1292 if (delta < delta_min)
1293 delta_min = delta;
1294 if (delta > delta_max)
1295 delta_max = delta;
1296 delta_cum += delta;
1297 if (++count == DISP_FREQ) {
1298 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1299 muldiv64(delta_min, 1000000, ticks_per_sec),
1300 muldiv64(delta_max, 1000000, ticks_per_sec),
1301 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1302 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1303 count = 0;
1304 delta_min = INT64_MAX;
1305 delta_max = 0;
1306 delta_cum = 0;
1307 }
1308 }
1309 last_clock = ti;
1310 }
1311 #endif
1312 if (alarm_has_dynticks(alarm_timer) ||
1313 (!use_icount &&
1314 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1315 qemu_get_clock(vm_clock))) ||
1316 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1317 qemu_get_clock(rt_clock))) {
1318 CPUState *env = next_cpu;
1319
1320 #ifdef _WIN32
1321 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1322 SetEvent(data->host_alarm);
1323 #else
1324 static const char byte = 0;
1325 write(alarm_timer_wfd, &byte, sizeof(byte));
1326 #endif
1327 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1328
1329 if (env) {
1330 /* stop the currently executing cpu because a timer occured */
1331 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1332 #ifdef USE_KQEMU
1333 if (env->kqemu_enabled) {
1334 kqemu_cpu_interrupt(env);
1335 }
1336 #endif
1337 }
1338 event_pending = 1;
1339 }
1340 }
1341
1342 static int64_t qemu_next_deadline(void)
1343 {
1344 int64_t delta;
1345
1346 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1347 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1348 qemu_get_clock(vm_clock);
1349 } else {
1350 /* To avoid problems with overflow limit this to 2^32. */
1351 delta = INT32_MAX;
1352 }
1353
1354 if (delta < 0)
1355 delta = 0;
1356
1357 return delta;
1358 }
1359
1360 #if defined(__linux__) || defined(_WIN32)
1361 static uint64_t qemu_next_deadline_dyntick(void)
1362 {
1363 int64_t delta;
1364 int64_t rtdelta;
1365
1366 if (use_icount)
1367 delta = INT32_MAX;
1368 else
1369 delta = (qemu_next_deadline() + 999) / 1000;
1370
1371 if (active_timers[QEMU_TIMER_REALTIME]) {
1372 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1373 qemu_get_clock(rt_clock))*1000;
1374 if (rtdelta < delta)
1375 delta = rtdelta;
1376 }
1377
1378 if (delta < MIN_TIMER_REARM_US)
1379 delta = MIN_TIMER_REARM_US;
1380
1381 return delta;
1382 }
1383 #endif
1384
1385 #ifndef _WIN32
1386
1387 /* Sets a specific flag */
1388 static int fcntl_setfl(int fd, int flag)
1389 {
1390 int flags;
1391
1392 flags = fcntl(fd, F_GETFL);
1393 if (flags == -1)
1394 return -errno;
1395
1396 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1397 return -errno;
1398
1399 return 0;
1400 }
1401
1402 #if defined(__linux__)
1403
1404 #define RTC_FREQ 1024
1405
1406 static void enable_sigio_timer(int fd)
1407 {
1408 struct sigaction act;
1409
1410 /* timer signal */
1411 sigfillset(&act.sa_mask);
1412 act.sa_flags = 0;
1413 act.sa_handler = host_alarm_handler;
1414
1415 sigaction(SIGIO, &act, NULL);
1416 fcntl_setfl(fd, O_ASYNC);
1417 fcntl(fd, F_SETOWN, getpid());
1418 }
1419
1420 static int hpet_start_timer(struct qemu_alarm_timer *t)
1421 {
1422 struct hpet_info info;
1423 int r, fd;
1424
1425 fd = open("/dev/hpet", O_RDONLY);
1426 if (fd < 0)
1427 return -1;
1428
1429 /* Set frequency */
1430 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1431 if (r < 0) {
1432 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1433 "error, but for better emulation accuracy type:\n"
1434 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1435 goto fail;
1436 }
1437
1438 /* Check capabilities */
1439 r = ioctl(fd, HPET_INFO, &info);
1440 if (r < 0)
1441 goto fail;
1442
1443 /* Enable periodic mode */
1444 r = ioctl(fd, HPET_EPI, 0);
1445 if (info.hi_flags && (r < 0))
1446 goto fail;
1447
1448 /* Enable interrupt */
1449 r = ioctl(fd, HPET_IE_ON, 0);
1450 if (r < 0)
1451 goto fail;
1452
1453 enable_sigio_timer(fd);
1454 t->priv = (void *)(long)fd;
1455
1456 return 0;
1457 fail:
1458 close(fd);
1459 return -1;
1460 }
1461
1462 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1463 {
1464 int fd = (long)t->priv;
1465
1466 close(fd);
1467 }
1468
1469 static int rtc_start_timer(struct qemu_alarm_timer *t)
1470 {
1471 int rtc_fd;
1472 unsigned long current_rtc_freq = 0;
1473
1474 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1475 if (rtc_fd < 0)
1476 return -1;
1477 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1478 if (current_rtc_freq != RTC_FREQ &&
1479 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1480 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1481 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1482 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1483 goto fail;
1484 }
1485 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1486 fail:
1487 close(rtc_fd);
1488 return -1;
1489 }
1490
1491 enable_sigio_timer(rtc_fd);
1492
1493 t->priv = (void *)(long)rtc_fd;
1494
1495 return 0;
1496 }
1497
1498 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1499 {
1500 int rtc_fd = (long)t->priv;
1501
1502 close(rtc_fd);
1503 }
1504
1505 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1506 {
1507 struct sigevent ev;
1508 timer_t host_timer;
1509 struct sigaction act;
1510
1511 sigfillset(&act.sa_mask);
1512 act.sa_flags = 0;
1513 act.sa_handler = host_alarm_handler;
1514
1515 sigaction(SIGALRM, &act, NULL);
1516
1517 ev.sigev_value.sival_int = 0;
1518 ev.sigev_notify = SIGEV_SIGNAL;
1519 ev.sigev_signo = SIGALRM;
1520
1521 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1522 perror("timer_create");
1523
1524 /* disable dynticks */
1525 fprintf(stderr, "Dynamic Ticks disabled\n");
1526
1527 return -1;
1528 }
1529
1530 t->priv = (void *)(long)host_timer;
1531
1532 return 0;
1533 }
1534
1535 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1536 {
1537 timer_t host_timer = (timer_t)(long)t->priv;
1538
1539 timer_delete(host_timer);
1540 }
1541
1542 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1543 {
1544 timer_t host_timer = (timer_t)(long)t->priv;
1545 struct itimerspec timeout;
1546 int64_t nearest_delta_us = INT64_MAX;
1547 int64_t current_us;
1548
1549 if (!active_timers[QEMU_TIMER_REALTIME] &&
1550 !active_timers[QEMU_TIMER_VIRTUAL])
1551 return;
1552
1553 nearest_delta_us = qemu_next_deadline_dyntick();
1554
1555 /* check whether a timer is already running */
1556 if (timer_gettime(host_timer, &timeout)) {
1557 perror("gettime");
1558 fprintf(stderr, "Internal timer error: aborting\n");
1559 exit(1);
1560 }
1561 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1562 if (current_us && current_us <= nearest_delta_us)
1563 return;
1564
1565 timeout.it_interval.tv_sec = 0;
1566 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1567 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1568 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1569 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1570 perror("settime");
1571 fprintf(stderr, "Internal timer error: aborting\n");
1572 exit(1);
1573 }
1574 }
1575
1576 #endif /* defined(__linux__) */
1577
1578 static int unix_start_timer(struct qemu_alarm_timer *t)
1579 {
1580 struct sigaction act;
1581 struct itimerval itv;
1582 int err;
1583
1584 /* timer signal */
1585 sigfillset(&act.sa_mask);
1586 act.sa_flags = 0;
1587 act.sa_handler = host_alarm_handler;
1588
1589 sigaction(SIGALRM, &act, NULL);
1590
1591 itv.it_interval.tv_sec = 0;
1592 /* for i386 kernel 2.6 to get 1 ms */
1593 itv.it_interval.tv_usec = 999;
1594 itv.it_value.tv_sec = 0;
1595 itv.it_value.tv_usec = 10 * 1000;
1596
1597 err = setitimer(ITIMER_REAL, &itv, NULL);
1598 if (err)
1599 return -1;
1600
1601 return 0;
1602 }
1603
1604 static void unix_stop_timer(struct qemu_alarm_timer *t)
1605 {
1606 struct itimerval itv;
1607
1608 memset(&itv, 0, sizeof(itv));
1609 setitimer(ITIMER_REAL, &itv, NULL);
1610 }
1611
1612 #endif /* !defined(_WIN32) */
1613
1614 static void try_to_rearm_timer(void *opaque)
1615 {
1616 struct qemu_alarm_timer *t = opaque;
1617 #ifndef _WIN32
1618 ssize_t len;
1619
1620 /* Drain the notify pipe */
1621 do {
1622 char buffer[512];
1623 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1624 } while ((len == -1 && errno == EINTR) || len > 0);
1625 #endif
1626
1627 /* vm time timers */
1628 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
1629 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
1630 qemu_get_clock(vm_clock));
1631
1632 /* real time timers */
1633 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
1634 qemu_get_clock(rt_clock));
1635
1636 if (t->flags & ALARM_FLAG_EXPIRED) {
1637 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1638 qemu_rearm_alarm_timer(alarm_timer);
1639 }
1640 }
1641
1642 #ifdef _WIN32
1643
1644 static int win32_start_timer(struct qemu_alarm_timer *t)
1645 {
1646 TIMECAPS tc;
1647 struct qemu_alarm_win32 *data = t->priv;
1648 UINT flags;
1649
1650 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1651 if (!data->host_alarm) {
1652 perror("Failed CreateEvent");
1653 return -1;
1654 }
1655
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1658
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1661
1662 timeBeginPeriod(data->period);
1663
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1669
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1675
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678
1679 timeEndPeriod(data->period);
1680 CloseHandle(data->host_alarm);
1681 return -1;
1682 }
1683
1684 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1685
1686 return 0;
1687 }
1688
1689 static void win32_stop_timer(struct qemu_alarm_timer *t)
1690 {
1691 struct qemu_alarm_win32 *data = t->priv;
1692
1693 timeKillEvent(data->timerId);
1694 timeEndPeriod(data->period);
1695
1696 CloseHandle(data->host_alarm);
1697 }
1698
1699 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1700 {
1701 struct qemu_alarm_win32 *data = t->priv;
1702 uint64_t nearest_delta_us;
1703
1704 if (!active_timers[QEMU_TIMER_REALTIME] &&
1705 !active_timers[QEMU_TIMER_VIRTUAL])
1706 return;
1707
1708 nearest_delta_us = qemu_next_deadline_dyntick();
1709 nearest_delta_us /= 1000;
1710
1711 timeKillEvent(data->timerId);
1712
1713 data->timerId = timeSetEvent(1,
1714 data->period,
1715 host_alarm_handler,
1716 (DWORD)t,
1717 TIME_ONESHOT | TIME_PERIODIC);
1718
1719 if (!data->timerId) {
1720 perror("Failed to re-arm win32 alarm timer");
1721
1722 timeEndPeriod(data->period);
1723 CloseHandle(data->host_alarm);
1724 exit(1);
1725 }
1726 }
1727
1728 #endif /* _WIN32 */
1729
1730 static int init_timer_alarm(void)
1731 {
1732 struct qemu_alarm_timer *t = NULL;
1733 int i, err = -1;
1734
1735 #ifndef _WIN32
1736 int fds[2];
1737
1738 err = pipe(fds);
1739 if (err == -1)
1740 return -errno;
1741
1742 err = fcntl_setfl(fds[0], O_NONBLOCK);
1743 if (err < 0)
1744 goto fail;
1745
1746 err = fcntl_setfl(fds[1], O_NONBLOCK);
1747 if (err < 0)
1748 goto fail;
1749
1750 alarm_timer_rfd = fds[0];
1751 alarm_timer_wfd = fds[1];
1752 #endif
1753
1754 for (i = 0; alarm_timers[i].name; i++) {
1755 t = &alarm_timers[i];
1756
1757 err = t->start(t);
1758 if (!err)
1759 break;
1760 }
1761
1762 if (err) {
1763 err = -ENOENT;
1764 goto fail;
1765 }
1766
1767 #ifndef _WIN32
1768 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1769 try_to_rearm_timer, NULL, t);
1770 #endif
1771
1772 alarm_timer = t;
1773
1774 return 0;
1775
1776 fail:
1777 #ifndef _WIN32
1778 close(fds[0]);
1779 close(fds[1]);
1780 #endif
1781 return err;
1782 }
1783
1784 static void quit_timers(void)
1785 {
1786 alarm_timer->stop(alarm_timer);
1787 alarm_timer = NULL;
1788 }
1789
1790 /***********************************************************/
1791 /* host time/date access */
1792 void qemu_get_timedate(struct tm *tm, int offset)
1793 {
1794 time_t ti;
1795 struct tm *ret;
1796
1797 time(&ti);
1798 ti += offset;
1799 if (rtc_date_offset == -1) {
1800 if (rtc_utc)
1801 ret = gmtime(&ti);
1802 else
1803 ret = localtime(&ti);
1804 } else {
1805 ti -= rtc_date_offset;
1806 ret = gmtime(&ti);
1807 }
1808
1809 memcpy(tm, ret, sizeof(struct tm));
1810 }
1811
1812 int qemu_timedate_diff(struct tm *tm)
1813 {
1814 time_t seconds;
1815
1816 if (rtc_date_offset == -1)
1817 if (rtc_utc)
1818 seconds = mktimegm(tm);
1819 else
1820 seconds = mktime(tm);
1821 else
1822 seconds = mktimegm(tm) + rtc_date_offset;
1823
1824 return seconds - time(NULL);
1825 }
1826
1827 #ifdef _WIN32
1828 static void socket_cleanup(void)
1829 {
1830 WSACleanup();
1831 }
1832
1833 static int socket_init(void)
1834 {
1835 WSADATA Data;
1836 int ret, err;
1837
1838 ret = WSAStartup(MAKEWORD(2,2), &Data);
1839 if (ret != 0) {
1840 err = WSAGetLastError();
1841 fprintf(stderr, "WSAStartup: %d\n", err);
1842 return -1;
1843 }
1844 atexit(socket_cleanup);
1845 return 0;
1846 }
1847 #endif
1848
1849 const char *get_opt_name(char *buf, int buf_size, const char *p)
1850 {
1851 char *q;
1852
1853 q = buf;
1854 while (*p != '\0' && *p != '=') {
1855 if (q && (q - buf) < buf_size - 1)
1856 *q++ = *p;
1857 p++;
1858 }
1859 if (q)
1860 *q = '\0';
1861
1862 return p;
1863 }
1864
1865 const char *get_opt_value(char *buf, int buf_size, const char *p)
1866 {
1867 char *q;
1868
1869 q = buf;
1870 while (*p != '\0') {
1871 if (*p == ',') {
1872 if (*(p + 1) != ',')
1873 break;
1874 p++;
1875 }
1876 if (q && (q - buf) < buf_size - 1)
1877 *q++ = *p;
1878 p++;
1879 }
1880 if (q)
1881 *q = '\0';
1882
1883 return p;
1884 }
1885
1886 int get_param_value(char *buf, int buf_size,
1887 const char *tag, const char *str)
1888 {
1889 const char *p;
1890 char option[128];
1891
1892 p = str;
1893 for(;;) {
1894 p = get_opt_name(option, sizeof(option), p);
1895 if (*p != '=')
1896 break;
1897 p++;
1898 if (!strcmp(tag, option)) {
1899 (void)get_opt_value(buf, buf_size, p);
1900 return strlen(buf);
1901 } else {
1902 p = get_opt_value(NULL, 0, p);
1903 }
1904 if (*p != ',')
1905 break;
1906 p++;
1907 }
1908 return 0;
1909 }
1910
1911 int check_params(char *buf, int buf_size,
1912 const char * const *params, const char *str)
1913 {
1914 const char *p;
1915 int i;
1916
1917 p = str;
1918 for(;;) {
1919 p = get_opt_name(buf, buf_size, p);
1920 if (*p != '=')
1921 return -1;
1922 p++;
1923 for(i = 0; params[i] != NULL; i++)
1924 if (!strcmp(params[i], buf))
1925 break;
1926 if (params[i] == NULL)
1927 return -1;
1928 p = get_opt_value(NULL, 0, p);
1929 if (*p != ',')
1930 break;
1931 p++;
1932 }
1933 return 0;
1934 }
1935
1936 /***********************************************************/
1937 /* Bluetooth support */
1938 static int nb_hcis;
1939 static int cur_hci;
1940 static struct HCIInfo *hci_table[MAX_NICS];
1941
1942 static struct bt_vlan_s {
1943 struct bt_scatternet_s net;
1944 int id;
1945 struct bt_vlan_s *next;
1946 } *first_bt_vlan;
1947
1948 /* find or alloc a new bluetooth "VLAN" */
1949 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1950 {
1951 struct bt_vlan_s **pvlan, *vlan;
1952 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1953 if (vlan->id == id)
1954 return &vlan->net;
1955 }
1956 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1957 vlan->id = id;
1958 pvlan = &first_bt_vlan;
1959 while (*pvlan != NULL)
1960 pvlan = &(*pvlan)->next;
1961 *pvlan = vlan;
1962 return &vlan->net;
1963 }
1964
1965 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1966 {
1967 }
1968
1969 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1970 {
1971 return -ENOTSUP;
1972 }
1973
1974 static struct HCIInfo null_hci = {
1975 .cmd_send = null_hci_send,
1976 .sco_send = null_hci_send,
1977 .acl_send = null_hci_send,
1978 .bdaddr_set = null_hci_addr_set,
1979 };
1980
1981 struct HCIInfo *qemu_next_hci(void)
1982 {
1983 if (cur_hci == nb_hcis)
1984 return &null_hci;
1985
1986 return hci_table[cur_hci++];
1987 }
1988
1989 static struct HCIInfo *hci_init(const char *str)
1990 {
1991 char *endp;
1992 struct bt_scatternet_s *vlan = 0;
1993
1994 if (!strcmp(str, "null"))
1995 /* null */
1996 return &null_hci;
1997 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1998 /* host[:hciN] */
1999 return bt_host_hci(str[4] ? str + 5 : "hci0");
2000 else if (!strncmp(str, "hci", 3)) {
2001 /* hci[,vlan=n] */
2002 if (str[3]) {
2003 if (!strncmp(str + 3, ",vlan=", 6)) {
2004 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2005 if (*endp)
2006 vlan = 0;
2007 }
2008 } else
2009 vlan = qemu_find_bt_vlan(0);
2010 if (vlan)
2011 return bt_new_hci(vlan);
2012 }
2013
2014 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2015
2016 return 0;
2017 }
2018
2019 static int bt_hci_parse(const char *str)
2020 {
2021 struct HCIInfo *hci;
2022 bdaddr_t bdaddr;
2023
2024 if (nb_hcis >= MAX_NICS) {
2025 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2026 return -1;
2027 }
2028
2029 hci = hci_init(str);
2030 if (!hci)
2031 return -1;
2032
2033 bdaddr.b[0] = 0x52;
2034 bdaddr.b[1] = 0x54;
2035 bdaddr.b[2] = 0x00;
2036 bdaddr.b[3] = 0x12;
2037 bdaddr.b[4] = 0x34;
2038 bdaddr.b[5] = 0x56 + nb_hcis;
2039 hci->bdaddr_set(hci, bdaddr.b);
2040
2041 hci_table[nb_hcis++] = hci;
2042
2043 return 0;
2044 }
2045
2046 static void bt_vhci_add(int vlan_id)
2047 {
2048 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2049
2050 if (!vlan->slave)
2051 fprintf(stderr, "qemu: warning: adding a VHCI to "
2052 "an empty scatternet %i\n", vlan_id);
2053
2054 bt_vhci_init(bt_new_hci(vlan));
2055 }
2056
2057 static struct bt_device_s *bt_device_add(const char *opt)
2058 {
2059 struct bt_scatternet_s *vlan;
2060 int vlan_id = 0;
2061 char *endp = strstr(opt, ",vlan=");
2062 int len = (endp ? endp - opt : strlen(opt)) + 1;
2063 char devname[10];
2064
2065 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2066
2067 if (endp) {
2068 vlan_id = strtol(endp + 6, &endp, 0);
2069 if (*endp) {
2070 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2071 return 0;
2072 }
2073 }
2074
2075 vlan = qemu_find_bt_vlan(vlan_id);
2076
2077 if (!vlan->slave)
2078 fprintf(stderr, "qemu: warning: adding a slave device to "
2079 "an empty scatternet %i\n", vlan_id);
2080
2081 if (!strcmp(devname, "keyboard"))
2082 return bt_keyboard_init(vlan);
2083
2084 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2085 return 0;
2086 }
2087
2088 static int bt_parse(const char *opt)
2089 {
2090 const char *endp, *p;
2091 int vlan;
2092
2093 if (strstart(opt, "hci", &endp)) {
2094 if (!*endp || *endp == ',') {
2095 if (*endp)
2096 if (!strstart(endp, ",vlan=", 0))
2097 opt = endp + 1;
2098
2099 return bt_hci_parse(opt);
2100 }
2101 } else if (strstart(opt, "vhci", &endp)) {
2102 if (!*endp || *endp == ',') {
2103 if (*endp) {
2104 if (strstart(endp, ",vlan=", &p)) {
2105 vlan = strtol(p, (char **) &endp, 0);
2106 if (*endp) {
2107 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2108 return 1;
2109 }
2110 } else {
2111 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2112 return 1;
2113 }
2114 } else
2115 vlan = 0;
2116
2117 bt_vhci_add(vlan);
2118 return 0;
2119 }
2120 } else if (strstart(opt, "device:", &endp))
2121 return !bt_device_add(endp);
2122
2123 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2124 return 1;
2125 }
2126
2127 /***********************************************************/
2128 /* QEMU Block devices */
2129
2130 #define HD_ALIAS "index=%d,media=disk"
2131 #ifdef TARGET_PPC
2132 #define CDROM_ALIAS "index=1,media=cdrom"
2133 #else
2134 #define CDROM_ALIAS "index=2,media=cdrom"
2135 #endif
2136 #define FD_ALIAS "index=%d,if=floppy"
2137 #define PFLASH_ALIAS "if=pflash"
2138 #define MTD_ALIAS "if=mtd"
2139 #define SD_ALIAS "index=0,if=sd"
2140
2141 static int drive_add(const char *file, const char *fmt, ...)
2142 {
2143 va_list ap;
2144
2145 if (nb_drives_opt >= MAX_DRIVES) {
2146 fprintf(stderr, "qemu: too many drives\n");
2147 exit(1);
2148 }
2149
2150 drives_opt[nb_drives_opt].file = file;
2151 va_start(ap, fmt);
2152 vsnprintf(drives_opt[nb_drives_opt].opt,
2153 sizeof(drives_opt[0].opt), fmt, ap);
2154 va_end(ap);
2155
2156 return nb_drives_opt++;
2157 }
2158
2159 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2160 {
2161 int index;
2162
2163 /* seek interface, bus and unit */
2164
2165 for (index = 0; index < nb_drives; index++)
2166 if (drives_table[index].type == type &&
2167 drives_table[index].bus == bus &&
2168 drives_table[index].unit == unit)
2169 return index;
2170
2171 return -1;
2172 }
2173
2174 int drive_get_max_bus(BlockInterfaceType type)
2175 {
2176 int max_bus;
2177 int index;
2178
2179 max_bus = -1;
2180 for (index = 0; index < nb_drives; index++) {
2181 if(drives_table[index].type == type &&
2182 drives_table[index].bus > max_bus)
2183 max_bus = drives_table[index].bus;
2184 }
2185 return max_bus;
2186 }
2187
2188 static void bdrv_format_print(void *opaque, const char *name)
2189 {
2190 fprintf(stderr, " %s", name);
2191 }
2192
2193 static int drive_init(struct drive_opt *arg, int snapshot,
2194 QEMUMachine *machine)
2195 {
2196 char buf[128];
2197 char file[1024];
2198 char devname[128];
2199 const char *mediastr = "";
2200 BlockInterfaceType type;
2201 enum { MEDIA_DISK, MEDIA_CDROM } media;
2202 int bus_id, unit_id;
2203 int cyls, heads, secs, translation;
2204 BlockDriverState *bdrv;
2205 BlockDriver *drv = NULL;
2206 int max_devs;
2207 int index;
2208 int cache;
2209 int bdrv_flags;
2210 char *str = arg->opt;
2211 static const char * const params[] = { "bus", "unit", "if", "index",
2212 "cyls", "heads", "secs", "trans",
2213 "media", "snapshot", "file",
2214 "cache", "format", NULL };
2215
2216 if (check_params(buf, sizeof(buf), params, str) < 0) {
2217 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2218 buf, str);
2219 return -1;
2220 }
2221
2222 file[0] = 0;
2223 cyls = heads = secs = 0;
2224 bus_id = 0;
2225 unit_id = -1;
2226 translation = BIOS_ATA_TRANSLATION_AUTO;
2227 index = -1;
2228 cache = 1;
2229
2230 if (machine->use_scsi) {
2231 type = IF_SCSI;
2232 max_devs = MAX_SCSI_DEVS;
2233 pstrcpy(devname, sizeof(devname), "scsi");
2234 } else {
2235 type = IF_IDE;
2236 max_devs = MAX_IDE_DEVS;
2237 pstrcpy(devname, sizeof(devname), "ide");
2238 }
2239 media = MEDIA_DISK;
2240
2241 /* extract parameters */
2242
2243 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2244 bus_id = strtol(buf, NULL, 0);
2245 if (bus_id < 0) {
2246 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2247 return -1;
2248 }
2249 }
2250
2251 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2252 unit_id = strtol(buf, NULL, 0);
2253 if (unit_id < 0) {
2254 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2255 return -1;
2256 }
2257 }
2258
2259 if (get_param_value(buf, sizeof(buf), "if", str)) {
2260 pstrcpy(devname, sizeof(devname), buf);
2261 if (!strcmp(buf, "ide")) {
2262 type = IF_IDE;
2263 max_devs = MAX_IDE_DEVS;
2264 } else if (!strcmp(buf, "scsi")) {
2265 type = IF_SCSI;
2266 max_devs = MAX_SCSI_DEVS;
2267 } else if (!strcmp(buf, "floppy")) {
2268 type = IF_FLOPPY;
2269 max_devs = 0;
2270 } else if (!strcmp(buf, "pflash")) {
2271 type = IF_PFLASH;
2272 max_devs = 0;
2273 } else if (!strcmp(buf, "mtd")) {
2274 type = IF_MTD;
2275 max_devs = 0;
2276 } else if (!strcmp(buf, "sd")) {
2277 type = IF_SD;
2278 max_devs = 0;
2279 } else {
2280 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2281 return -1;
2282 }
2283 }
2284
2285 if (get_param_value(buf, sizeof(buf), "index", str)) {
2286 index = strtol(buf, NULL, 0);
2287 if (index < 0) {
2288 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2289 return -1;
2290 }
2291 }
2292
2293 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2294 cyls = strtol(buf, NULL, 0);
2295 }
2296
2297 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2298 heads = strtol(buf, NULL, 0);
2299 }
2300
2301 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2302 secs = strtol(buf, NULL, 0);
2303 }
2304
2305 if (cyls || heads || secs) {
2306 if (cyls < 1 || cyls > 16383) {
2307 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2308 return -1;
2309 }
2310 if (heads < 1 || heads > 16) {
2311 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2312 return -1;
2313 }
2314 if (secs < 1 || secs > 63) {
2315 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2316 return -1;
2317 }
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2321 if (!cyls) {
2322 fprintf(stderr,
2323 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2324 str);
2325 return -1;
2326 }
2327 if (!strcmp(buf, "none"))
2328 translation = BIOS_ATA_TRANSLATION_NONE;
2329 else if (!strcmp(buf, "lba"))
2330 translation = BIOS_ATA_TRANSLATION_LBA;
2331 else if (!strcmp(buf, "auto"))
2332 translation = BIOS_ATA_TRANSLATION_AUTO;
2333 else {
2334 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "media", str)) {
2340 if (!strcmp(buf, "disk")) {
2341 media = MEDIA_DISK;
2342 } else if (!strcmp(buf, "cdrom")) {
2343 if (cyls || secs || heads) {
2344 fprintf(stderr,
2345 "qemu: '%s' invalid physical CHS format\n", str);
2346 return -1;
2347 }
2348 media = MEDIA_CDROM;
2349 } else {
2350 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2351 return -1;
2352 }
2353 }
2354
2355 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2356 if (!strcmp(buf, "on"))
2357 snapshot = 1;
2358 else if (!strcmp(buf, "off"))
2359 snapshot = 0;
2360 else {
2361 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2362 return -1;
2363 }
2364 }
2365
2366 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2367 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2368 cache = 0;
2369 else if (!strcmp(buf, "writethrough"))
2370 cache = 1;
2371 else if (!strcmp(buf, "writeback"))
2372 cache = 2;
2373 else {
2374 fprintf(stderr, "qemu: invalid cache option\n");
2375 return -1;
2376 }
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "format", str)) {
2380 if (strcmp(buf, "?") == 0) {
2381 fprintf(stderr, "qemu: Supported formats:");
2382 bdrv_iterate_format(bdrv_format_print, NULL);
2383 fprintf(stderr, "\n");
2384 return -1;
2385 }
2386 drv = bdrv_find_format(buf);
2387 if (!drv) {
2388 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2389 return -1;
2390 }
2391 }
2392
2393 if (arg->file == NULL)
2394 get_param_value(file, sizeof(file), "file", str);
2395 else
2396 pstrcpy(file, sizeof(file), arg->file);
2397
2398 /* compute bus and unit according index */
2399
2400 if (index != -1) {
2401 if (bus_id != 0 || unit_id != -1) {
2402 fprintf(stderr,
2403 "qemu: '%s' index cannot be used with bus and unit\n", str);
2404 return -1;
2405 }
2406 if (max_devs == 0)
2407 {
2408 unit_id = index;
2409 bus_id = 0;
2410 } else {
2411 unit_id = index % max_devs;
2412 bus_id = index / max_devs;
2413 }
2414 }
2415
2416 /* if user doesn't specify a unit_id,
2417 * try to find the first free
2418 */
2419
2420 if (unit_id == -1) {
2421 unit_id = 0;
2422 while (drive_get_index(type, bus_id, unit_id) != -1) {
2423 unit_id++;
2424 if (max_devs && unit_id >= max_devs) {
2425 unit_id -= max_devs;
2426 bus_id++;
2427 }
2428 }
2429 }
2430
2431 /* check unit id */
2432
2433 if (max_devs && unit_id >= max_devs) {
2434 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2435 str, unit_id, max_devs - 1);
2436 return -1;
2437 }
2438
2439 /*
2440 * ignore multiple definitions
2441 */
2442
2443 if (drive_get_index(type, bus_id, unit_id) != -1)
2444 return 0;
2445
2446 /* init */
2447
2448 if (type == IF_IDE || type == IF_SCSI)
2449 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2450 if (max_devs)
2451 snprintf(buf, sizeof(buf), "%s%i%s%i",
2452 devname, bus_id, mediastr, unit_id);
2453 else
2454 snprintf(buf, sizeof(buf), "%s%s%i",
2455 devname, mediastr, unit_id);
2456 bdrv = bdrv_new(buf);
2457 drives_table[nb_drives].bdrv = bdrv;
2458 drives_table[nb_drives].type = type;
2459 drives_table[nb_drives].bus = bus_id;
2460 drives_table[nb_drives].unit = unit_id;
2461 nb_drives++;
2462
2463 switch(type) {
2464 case IF_IDE:
2465 case IF_SCSI:
2466 switch(media) {
2467 case MEDIA_DISK:
2468 if (cyls != 0) {
2469 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2470 bdrv_set_translation_hint(bdrv, translation);
2471 }
2472 break;
2473 case MEDIA_CDROM:
2474 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2475 break;
2476 }
2477 break;
2478 case IF_SD:
2479 /* FIXME: This isn't really a floppy, but it's a reasonable
2480 approximation. */
2481 case IF_FLOPPY:
2482 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2483 break;
2484 case IF_PFLASH:
2485 case IF_MTD:
2486 break;
2487 }
2488 if (!file[0])
2489 return 0;
2490 bdrv_flags = 0;
2491 if (snapshot) {
2492 bdrv_flags |= BDRV_O_SNAPSHOT;
2493 cache = 2; /* always use write-back with snapshot */
2494 }
2495 if (cache == 0) /* no caching */
2496 bdrv_flags |= BDRV_O_NOCACHE;
2497 else if (cache == 2) /* write-back */
2498 bdrv_flags |= BDRV_O_CACHE_WB;
2499 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2500 fprintf(stderr, "qemu: could not open disk image %s\n",
2501 file);
2502 return -1;
2503 }
2504 return 0;
2505 }
2506
2507 /***********************************************************/
2508 /* USB devices */
2509
2510 static USBPort *used_usb_ports;
2511 static USBPort *free_usb_ports;
2512
2513 /* ??? Maybe change this to register a hub to keep track of the topology. */
2514 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2515 usb_attachfn attach)
2516 {
2517 port->opaque = opaque;
2518 port->index = index;
2519 port->attach = attach;
2520 port->next = free_usb_ports;
2521 free_usb_ports = port;
2522 }
2523
2524 int usb_device_add_dev(USBDevice *dev)
2525 {
2526 USBPort *port;
2527
2528 /* Find a USB port to add the device to. */
2529 port = free_usb_ports;
2530 if (!port->next) {
2531 USBDevice *hub;
2532
2533 /* Create a new hub and chain it on. */
2534 free_usb_ports = NULL;
2535 port->next = used_usb_ports;
2536 used_usb_ports = port;
2537
2538 hub = usb_hub_init(VM_USB_HUB_SIZE);
2539 usb_attach(port, hub);
2540 port = free_usb_ports;
2541 }
2542
2543 free_usb_ports = port->next;
2544 port->next = used_usb_ports;
2545 used_usb_ports = port;
2546 usb_attach(port, dev);
2547 return 0;
2548 }
2549
2550 static int usb_device_add(const char *devname)
2551 {
2552 const char *p;
2553 USBDevice *dev;
2554
2555 if (!free_usb_ports)
2556 return -1;
2557
2558 if (strstart(devname, "host:", &p)) {
2559 dev = usb_host_device_open(p);
2560 } else if (!strcmp(devname, "mouse")) {
2561 dev = usb_mouse_init();
2562 } else if (!strcmp(devname, "tablet")) {
2563 dev = usb_tablet_init();
2564 } else if (!strcmp(devname, "keyboard")) {
2565 dev = usb_keyboard_init();
2566 } else if (strstart(devname, "disk:", &p)) {
2567 dev = usb_msd_init(p);
2568 } else if (!strcmp(devname, "wacom-tablet")) {
2569 dev = usb_wacom_init();
2570 } else if (strstart(devname, "serial:", &p)) {
2571 dev = usb_serial_init(p);
2572 #ifdef CONFIG_BRLAPI
2573 } else if (!strcmp(devname, "braille")) {
2574 dev = usb_baum_init();
2575 #endif
2576 } else if (strstart(devname, "net:", &p)) {
2577 int nic = nb_nics;
2578
2579 if (net_client_init("nic", p) < 0)
2580 return -1;
2581 nd_table[nic].model = "usb";
2582 dev = usb_net_init(&nd_table[nic]);
2583 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2584 dev = usb_bt_init(devname[2] ? hci_init(p) :
2585 bt_new_hci(qemu_find_bt_vlan(0)));
2586 } else {
2587 return -1;
2588 }
2589 if (!dev)
2590 return -1;
2591
2592 return usb_device_add_dev(dev);
2593 }
2594
2595 int usb_device_del_addr(int bus_num, int addr)
2596 {
2597 USBPort *port;
2598 USBPort **lastp;
2599 USBDevice *dev;
2600
2601 if (!used_usb_ports)
2602 return -1;
2603
2604 if (bus_num != 0)
2605 return -1;
2606
2607 lastp = &used_usb_ports;
2608 port = used_usb_ports;
2609 while (port && port->dev->addr != addr) {
2610 lastp = &port->next;
2611 port = port->next;
2612 }
2613
2614 if (!port)
2615 return -1;
2616
2617 dev = port->dev;
2618 *lastp = port->next;
2619 usb_attach(port, NULL);
2620 dev->handle_destroy(dev);
2621 port->next = free_usb_ports;
2622 free_usb_ports = port;
2623 return 0;
2624 }
2625
2626 static int usb_device_del(const char *devname)
2627 {
2628 int bus_num, addr;
2629 const char *p;
2630
2631 if (strstart(devname, "host:", &p))
2632 return usb_host_device_close(p);
2633
2634 if (!used_usb_ports)
2635 return -1;
2636
2637 p = strchr(devname, '.');
2638 if (!p)
2639 return -1;
2640 bus_num = strtoul(devname, NULL, 0);
2641 addr = strtoul(p + 1, NULL, 0);
2642
2643 return usb_device_del_addr(bus_num, addr);
2644 }
2645
2646 void do_usb_add(const char *devname)
2647 {
2648 usb_device_add(devname);
2649 }
2650
2651 void do_usb_del(const char *devname)
2652 {
2653 usb_device_del(devname);
2654 }
2655
2656 void usb_info(void)
2657 {
2658 USBDevice *dev;
2659 USBPort *port;
2660 const char *speed_str;
2661
2662 if (!usb_enabled) {
2663 term_printf("USB support not enabled\n");
2664 return;
2665 }
2666
2667 for (port = used_usb_ports; port; port = port->next) {
2668 dev = port->dev;
2669 if (!dev)
2670 continue;
2671 switch(dev->speed) {
2672 case USB_SPEED_LOW:
2673 speed_str = "1.5";
2674 break;
2675 case USB_SPEED_FULL:
2676 speed_str = "12";
2677 break;
2678 case USB_SPEED_HIGH:
2679 speed_str = "480";
2680 break;
2681 default:
2682 speed_str = "?";
2683 break;
2684 }
2685 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2686 0, dev->addr, speed_str, dev->devname);
2687 }
2688 }
2689
2690 /***********************************************************/
2691 /* PCMCIA/Cardbus */
2692
2693 static struct pcmcia_socket_entry_s {
2694 struct pcmcia_socket_s *socket;
2695 struct pcmcia_socket_entry_s *next;
2696 } *pcmcia_sockets = 0;
2697
2698 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2699 {
2700 struct pcmcia_socket_entry_s *entry;
2701
2702 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2703 entry->socket = socket;
2704 entry->next = pcmcia_sockets;
2705 pcmcia_sockets = entry;
2706 }
2707
2708 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2709 {
2710 struct pcmcia_socket_entry_s *entry, **ptr;
2711
2712 ptr = &pcmcia_sockets;
2713 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2714 if (entry->socket == socket) {
2715 *ptr = entry->next;
2716 qemu_free(entry);
2717 }
2718 }
2719
2720 void pcmcia_info(void)
2721 {
2722 struct pcmcia_socket_entry_s *iter;
2723 if (!pcmcia_sockets)
2724 term_printf("No PCMCIA sockets\n");
2725
2726 for (iter = pcmcia_sockets; iter; iter = iter->next)
2727 term_printf("%s: %s\n", iter->socket->slot_string,
2728 iter->socket->attached ? iter->socket->card_string :
2729 "Empty");
2730 }
2731
2732 /***********************************************************/
2733 /* dumb display */
2734
2735 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2736 {
2737 }
2738
2739 static void dumb_resize(DisplayState *ds, int w, int h)
2740 {
2741 }
2742
2743 static void dumb_display_init(DisplayState *ds)
2744 {
2745 ds->data = NULL;
2746 ds->linesize = 0;
2747 ds->depth = 0;
2748 ds->dpy_update = dumb_update;
2749 ds->dpy_resize = dumb_resize;
2750 ds->dpy_refresh = NULL;
2751 ds->gui_timer_interval = 0;
2752 ds->idle = 1;
2753 }
2754
2755 /***********************************************************/
2756 /* I/O handling */
2757
2758 #define MAX_IO_HANDLERS 64
2759
2760 typedef struct IOHandlerRecord {
2761 int fd;
2762 IOCanRWHandler *fd_read_poll;
2763 IOHandler *fd_read;
2764 IOHandler *fd_write;
2765 int deleted;
2766 void *opaque;
2767 /* temporary data */
2768 struct pollfd *ufd;
2769 struct IOHandlerRecord *next;
2770 } IOHandlerRecord;
2771
2772 static IOHandlerRecord *first_io_handler;
2773
2774 /* XXX: fd_read_poll should be suppressed, but an API change is
2775 necessary in the character devices to suppress fd_can_read(). */
2776 int qemu_set_fd_handler2(int fd,
2777 IOCanRWHandler *fd_read_poll,
2778 IOHandler *fd_read,
2779 IOHandler *fd_write,
2780 void *opaque)
2781 {
2782 IOHandlerRecord **pioh, *ioh;
2783
2784 if (!fd_read && !fd_write) {
2785 pioh = &first_io_handler;
2786 for(;;) {
2787 ioh = *pioh;
2788 if (ioh == NULL)
2789 break;
2790 if (ioh->fd == fd) {
2791 ioh->deleted = 1;
2792 break;
2793 }
2794 pioh = &ioh->next;
2795 }
2796 } else {
2797 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2798 if (ioh->fd == fd)
2799 goto found;
2800 }
2801 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2802 if (!ioh)
2803 return -1;
2804 ioh->next = first_io_handler;
2805 first_io_handler = ioh;
2806 found:
2807 ioh->fd = fd;
2808 ioh->fd_read_poll = fd_read_poll;
2809 ioh->fd_read = fd_read;
2810 ioh->fd_write = fd_write;
2811 ioh->opaque = opaque;
2812 ioh->deleted = 0;
2813 }
2814 return 0;
2815 }
2816
2817 int qemu_set_fd_handler(int fd,
2818 IOHandler *fd_read,
2819 IOHandler *fd_write,
2820 void *opaque)
2821 {
2822 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2823 }
2824
2825 #ifdef _WIN32
2826 /***********************************************************/
2827 /* Polling handling */
2828
2829 typedef struct PollingEntry {
2830 PollingFunc *func;
2831 void *opaque;
2832 struct PollingEntry *next;
2833 } PollingEntry;
2834
2835 static PollingEntry *first_polling_entry;
2836
2837 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2838 {
2839 PollingEntry **ppe, *pe;
2840 pe = qemu_mallocz(sizeof(PollingEntry));
2841 if (!pe)
2842 return -1;
2843 pe->func = func;
2844 pe->opaque = opaque;
2845 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2846 *ppe = pe;
2847 return 0;
2848 }
2849
2850 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2851 {
2852 PollingEntry **ppe, *pe;
2853 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2854 pe = *ppe;
2855 if (pe->func == func && pe->opaque == opaque) {
2856 *ppe = pe->next;
2857 qemu_free(pe);
2858 break;
2859 }
2860 }
2861 }
2862
2863 /***********************************************************/
2864 /* Wait objects support */
2865 typedef struct WaitObjects {
2866 int num;
2867 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2868 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2869 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2870 } WaitObjects;
2871
2872 static WaitObjects wait_objects = {0};
2873
2874 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2875 {
2876 WaitObjects *w = &wait_objects;
2877
2878 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2879 return -1;
2880 w->events[w->num] = handle;
2881 w->func[w->num] = func;
2882 w->opaque[w->num] = opaque;
2883 w->num++;
2884 return 0;
2885 }
2886
2887 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2888 {
2889 int i, found;
2890 WaitObjects *w = &wait_objects;
2891
2892 found = 0;
2893 for (i = 0; i < w->num; i++) {
2894 if (w->events[i] == handle)
2895 found = 1;
2896 if (found) {
2897 w->events[i] = w->events[i + 1];
2898 w->func[i] = w->func[i + 1];
2899 w->opaque[i] = w->opaque[i + 1];
2900 }
2901 }
2902 if (found)
2903 w->num--;
2904 }
2905 #endif
2906
2907 /***********************************************************/
2908 /* ram save/restore */
2909
2910 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2911 {
2912 int v;
2913
2914 v = qemu_get_byte(f);
2915 switch(v) {
2916 case 0:
2917 if (qemu_get_buffer(f, buf, len) != len)
2918 return -EIO;
2919 break;
2920 case 1:
2921 v = qemu_get_byte(f);
2922 memset(buf, v, len);
2923 break;
2924 default:
2925 return -EINVAL;
2926 }
2927
2928 if (qemu_file_has_error(f))
2929 return -EIO;
2930
2931 return 0;
2932 }
2933
2934 static int ram_load_v1(QEMUFile *f, void *opaque)
2935 {
2936 int ret;
2937 ram_addr_t i;
2938
2939 if (qemu_get_be32(f) != phys_ram_size)
2940 return -EINVAL;
2941 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2942 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2943 if (ret)
2944 return ret;
2945 }
2946 return 0;
2947 }
2948
2949 #define BDRV_HASH_BLOCK_SIZE 1024
2950 #define IOBUF_SIZE 4096
2951 #define RAM_CBLOCK_MAGIC 0xfabe
2952
2953 typedef struct RamDecompressState {
2954 z_stream zstream;
2955 QEMUFile *f;
2956 uint8_t buf[IOBUF_SIZE];
2957 } RamDecompressState;
2958
2959 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2960 {
2961 int ret;
2962 memset(s, 0, sizeof(*s));
2963 s->f = f;
2964 ret = inflateInit(&s->zstream);
2965 if (ret != Z_OK)
2966 return -1;
2967 return 0;
2968 }
2969
2970 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2971 {
2972 int ret, clen;
2973
2974 s->zstream.avail_out = len;
2975 s->zstream.next_out = buf;
2976 while (s->zstream.avail_out > 0) {
2977 if (s->zstream.avail_in == 0) {
2978 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2979 return -1;
2980 clen = qemu_get_be16(s->f);
2981 if (clen > IOBUF_SIZE)
2982 return -1;
2983 qemu_get_buffer(s->f, s->buf, clen);
2984 s->zstream.avail_in = clen;
2985 s->zstream.next_in = s->buf;
2986 }
2987 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2988 if (ret != Z_OK && ret != Z_STREAM_END) {
2989 return -1;
2990 }
2991 }
2992 return 0;
2993 }
2994
2995 static void ram_decompress_close(RamDecompressState *s)
2996 {
2997 inflateEnd(&s->zstream);
2998 }
2999
3000 #define RAM_SAVE_FLAG_FULL 0x01
3001 #define RAM_SAVE_FLAG_COMPRESS 0x02
3002 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3003 #define RAM_SAVE_FLAG_PAGE 0x08
3004 #define RAM_SAVE_FLAG_EOS 0x10
3005
3006 static int is_dup_page(uint8_t *page, uint8_t ch)
3007 {
3008 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3009 uint32_t *array = (uint32_t *)page;
3010 int i;
3011
3012 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3013 if (array[i] != val)
3014 return 0;
3015 }
3016
3017 return 1;
3018 }
3019
3020 static int ram_save_block(QEMUFile *f)
3021 {
3022 static ram_addr_t current_addr = 0;
3023 ram_addr_t saved_addr = current_addr;
3024 ram_addr_t addr = 0;
3025 int found = 0;
3026
3027 while (addr < phys_ram_size) {
3028 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3029 uint8_t ch;
3030
3031 cpu_physical_memory_reset_dirty(current_addr,
3032 current_addr + TARGET_PAGE_SIZE,
3033 MIGRATION_DIRTY_FLAG);
3034
3035 ch = *(phys_ram_base + current_addr);
3036
3037 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3038 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3039 qemu_put_byte(f, ch);
3040 } else {
3041 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3042 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3043 }
3044
3045 found = 1;
3046 break;
3047 }
3048 addr += TARGET_PAGE_SIZE;
3049 current_addr = (saved_addr + addr) % phys_ram_size;
3050 }
3051
3052 return found;
3053 }
3054
3055 static ram_addr_t ram_save_threshold = 10;
3056
3057 static ram_addr_t ram_save_remaining(void)
3058 {
3059 ram_addr_t addr;
3060 ram_addr_t count = 0;
3061
3062 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3063 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3064 count++;
3065 }
3066
3067 return count;
3068 }
3069
3070 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3071 {
3072 ram_addr_t addr;
3073
3074 if (stage == 1) {
3075 /* Make sure all dirty bits are set */
3076 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3077 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3078 cpu_physical_memory_set_dirty(addr);
3079 }
3080
3081 /* Enable dirty memory tracking */
3082 cpu_physical_memory_set_dirty_tracking(1);
3083
3084 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3085 }
3086
3087 while (!qemu_file_rate_limit(f)) {
3088 int ret;
3089
3090 ret = ram_save_block(f);
3091 if (ret == 0) /* no more blocks */
3092 break;
3093 }
3094
3095 /* try transferring iterative blocks of memory */
3096
3097 if (stage == 3) {
3098 cpu_physical_memory_set_dirty_tracking(0);
3099
3100 /* flush all remaining blocks regardless of rate limiting */
3101 while (ram_save_block(f) != 0);
3102 }
3103
3104 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3105
3106 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3107 }
3108
3109 static int ram_load_dead(QEMUFile *f, void *opaque)
3110 {
3111 RamDecompressState s1, *s = &s1;
3112 uint8_t buf[10];
3113 ram_addr_t i;
3114
3115 if (ram_decompress_open(s, f) < 0)
3116 return -EINVAL;
3117 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3118 if (ram_decompress_buf(s, buf, 1) < 0) {
3119 fprintf(stderr, "Error while reading ram block header\n");
3120 goto error;
3121 }
3122 if (buf[0] == 0) {
3123 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3124 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3125 goto error;
3126 }
3127 } else {
3128 error:
3129 printf("Error block header\n");
3130 return -EINVAL;
3131 }
3132 }
3133 ram_decompress_close(s);
3134
3135 return 0;
3136 }
3137
3138 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3139 {
3140 ram_addr_t addr;
3141 int flags;
3142
3143 if (version_id == 1)
3144 return ram_load_v1(f, opaque);
3145
3146 if (version_id == 2) {
3147 if (qemu_get_be32(f) != phys_ram_size)
3148 return -EINVAL;
3149 return ram_load_dead(f, opaque);
3150 }
3151
3152 if (version_id != 3)
3153 return -EINVAL;
3154
3155 do {
3156 addr = qemu_get_be64(f);
3157
3158 flags = addr & ~TARGET_PAGE_MASK;
3159 addr &= TARGET_PAGE_MASK;
3160
3161 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3162 if (addr != phys_ram_size)
3163 return -EINVAL;
3164 }
3165
3166 if (flags & RAM_SAVE_FLAG_FULL) {
3167 if (ram_load_dead(f, opaque) < 0)
3168 return -EINVAL;
3169 }
3170
3171 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3172 uint8_t ch = qemu_get_byte(f);
3173 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3174 } else if (flags & RAM_SAVE_FLAG_PAGE)
3175 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3176 } while (!(flags & RAM_SAVE_FLAG_EOS));
3177
3178 return 0;
3179 }
3180
3181 void qemu_service_io(void)
3182 {
3183 CPUState *env = cpu_single_env;
3184 if (env) {
3185 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3186 #ifdef USE_KQEMU
3187 if (env->kqemu_enabled) {
3188 kqemu_cpu_interrupt(env);
3189 }
3190 #endif
3191 }
3192 }
3193
3194 /***********************************************************/
3195 /* bottom halves (can be seen as timers which expire ASAP) */
3196
3197 struct QEMUBH {
3198 QEMUBHFunc *cb;
3199 void *opaque;
3200 int scheduled;
3201 int idle;
3202 int deleted;
3203 QEMUBH *next;
3204 };
3205
3206 static QEMUBH *first_bh = NULL;
3207
3208 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3209 {
3210 QEMUBH *bh;
3211 bh = qemu_mallocz(sizeof(QEMUBH));
3212 if (!bh)
3213 return NULL;
3214 bh->cb = cb;
3215 bh->opaque = opaque;
3216 bh->next = first_bh;
3217 first_bh = bh;
3218 return bh;
3219 }
3220
3221 int qemu_bh_poll(void)
3222 {
3223 QEMUBH *bh, **bhp;
3224 int ret;
3225
3226 ret = 0;
3227 for (bh = first_bh; bh; bh = bh->next) {
3228 if (!bh->deleted && bh->scheduled) {
3229 bh->scheduled = 0;
3230 if (!bh->idle)
3231 ret = 1;
3232 bh->idle = 0;
3233 bh->cb(bh->opaque);
3234 }
3235 }
3236
3237 /* remove deleted bhs */
3238 bhp = &first_bh;
3239 while (*bhp) {
3240 bh = *bhp;
3241 if (bh->deleted) {
3242 *bhp = bh->next;
3243 qemu_free(bh);
3244 } else
3245 bhp = &bh->next;
3246 }
3247
3248 return ret;
3249 }
3250
3251 void qemu_bh_schedule_idle(QEMUBH *bh)
3252 {
3253 if (bh->scheduled)
3254 return;
3255 bh->scheduled = 1;
3256 bh->idle = 1;
3257 }
3258
3259 void qemu_bh_schedule(QEMUBH *bh)
3260 {
3261 CPUState *env = cpu_single_env;
3262 if (bh->scheduled)
3263 return;
3264 bh->scheduled = 1;
3265 bh->idle = 0;
3266 /* stop the currently executing CPU to execute the BH ASAP */
3267 if (env) {
3268 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3269 }
3270 }
3271
3272 void qemu_bh_cancel(QEMUBH *bh)
3273 {
3274 bh->scheduled = 0;
3275 }
3276
3277 void qemu_bh_delete(QEMUBH *bh)
3278 {
3279 bh->scheduled = 0;
3280 bh->deleted = 1;
3281 }
3282
3283 static void qemu_bh_update_timeout(int *timeout)
3284 {
3285 QEMUBH *bh;
3286
3287 for (bh = first_bh; bh; bh = bh->next) {
3288 if (!bh->deleted && bh->scheduled) {
3289 if (bh->idle) {
3290 /* idle bottom halves will be polled at least
3291 * every 10ms */
3292 *timeout = MIN(10, *timeout);
3293 } else {
3294 /* non-idle bottom halves will be executed
3295 * immediately */
3296 *timeout = 0;
3297 break;
3298 }
3299 }
3300 }
3301 }
3302
3303 /***********************************************************/
3304 /* machine registration */
3305
3306 static QEMUMachine *first_machine = NULL;
3307
3308 int qemu_register_machine(QEMUMachine *m)
3309 {
3310 QEMUMachine **pm;
3311 pm = &first_machine;
3312 while (*pm != NULL)
3313 pm = &(*pm)->next;
3314 m->next = NULL;
3315 *pm = m;
3316 return 0;
3317 }
3318
3319 static QEMUMachine *find_machine(const char *name)
3320 {
3321 QEMUMachine *m;
3322
3323 for(m = first_machine; m != NULL; m = m->next) {
3324 if (!strcmp(m->name, name))
3325 return m;
3326 }
3327 return NULL;
3328 }
3329
3330 /***********************************************************/
3331 /* main execution loop */
3332
3333 static void gui_update(void *opaque)
3334 {
3335 DisplayState *ds = opaque;
3336 ds->dpy_refresh(ds);
3337 qemu_mod_timer(ds->gui_timer,
3338 (ds->gui_timer_interval ?
3339 ds->gui_timer_interval :
3340 GUI_REFRESH_INTERVAL)
3341 + qemu_get_clock(rt_clock));
3342 }
3343
3344 struct vm_change_state_entry {
3345 VMChangeStateHandler *cb;
3346 void *opaque;
3347 LIST_ENTRY (vm_change_state_entry) entries;
3348 };
3349
3350 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3351
3352 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3353 void *opaque)
3354 {
3355 VMChangeStateEntry *e;
3356
3357 e = qemu_mallocz(sizeof (*e));
3358 if (!e)
3359 return NULL;
3360
3361 e->cb = cb;
3362 e->opaque = opaque;
3363 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3364 return e;
3365 }
3366
3367 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3368 {
3369 LIST_REMOVE (e, entries);
3370 qemu_free (e);
3371 }
3372
3373 static void vm_state_notify(int running)
3374 {
3375 VMChangeStateEntry *e;
3376
3377 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3378 e->cb(e->opaque, running);
3379 }
3380 }
3381
3382 /* XXX: support several handlers */
3383 static VMStopHandler *vm_stop_cb;
3384 static void *vm_stop_opaque;
3385
3386 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3387 {
3388 vm_stop_cb = cb;
3389 vm_stop_opaque = opaque;
3390 return 0;
3391 }
3392
3393 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3394 {
3395 vm_stop_cb = NULL;
3396 }
3397
3398 void vm_start(void)
3399 {
3400 if (!vm_running) {
3401 cpu_enable_ticks();
3402 vm_running = 1;
3403 vm_state_notify(1);
3404 qemu_rearm_alarm_timer(alarm_timer);
3405 }
3406 }
3407
3408 void vm_stop(int reason)
3409 {
3410 if (vm_running) {
3411 cpu_disable_ticks();
3412 vm_running = 0;
3413 if (reason != 0) {
3414 if (vm_stop_cb) {
3415 vm_stop_cb(vm_stop_opaque, reason);
3416 }
3417 }
3418 vm_state_notify(0);
3419 }
3420 }
3421
3422 /* reset/shutdown handler */
3423
3424 typedef struct QEMUResetEntry {
3425 QEMUResetHandler *func;
3426 void *opaque;
3427 struct QEMUResetEntry *next;
3428 } QEMUResetEntry;
3429
3430 static QEMUResetEntry *first_reset_entry;
3431 static int reset_requested;
3432 static int shutdown_requested;
3433 static int powerdown_requested;
3434
3435 int qemu_shutdown_requested(void)
3436 {
3437 int r = shutdown_requested;
3438 shutdown_requested = 0;
3439 return r;
3440 }
3441
3442 int qemu_reset_requested(void)
3443 {
3444 int r = reset_requested;
3445 reset_requested = 0;
3446 return r;
3447 }
3448
3449 int qemu_powerdown_requested(void)
3450 {
3451 int r = powerdown_requested;
3452 powerdown_requested = 0;
3453 return r;
3454 }
3455
3456 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3457 {
3458 QEMUResetEntry **pre, *re;
3459
3460 pre = &first_reset_entry;
3461 while (*pre != NULL)
3462 pre = &(*pre)->next;
3463 re = qemu_mallocz(sizeof(QEMUResetEntry));
3464 re->func = func;
3465 re->opaque = opaque;
3466 re->next = NULL;
3467 *pre = re;
3468 }
3469
3470 void qemu_system_reset(void)
3471 {
3472 QEMUResetEntry *re;
3473
3474 /* reset all devices */
3475 for(re = first_reset_entry; re != NULL; re = re->next) {
3476 re->func(re->opaque);
3477 }
3478 }
3479
3480 void qemu_system_reset_request(void)
3481 {
3482 if (no_reboot) {
3483 shutdown_requested = 1;
3484 } else {
3485 reset_requested = 1;
3486 }
3487 if (cpu_single_env)
3488 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3489 }
3490
3491 void qemu_system_shutdown_request(void)
3492 {
3493 shutdown_requested = 1;
3494 if (cpu_single_env)
3495 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3496 }
3497
3498 void qemu_system_powerdown_request(void)
3499 {
3500 powerdown_requested = 1;
3501 if (cpu_single_env)
3502 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3503 }
3504
3505 #ifdef _WIN32
3506 void host_main_loop_wait(int *timeout)
3507 {
3508 int ret, ret2, i;
3509 PollingEntry *pe;
3510
3511
3512 /* XXX: need to suppress polling by better using win32 events */
3513 ret = 0;
3514 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3515 ret |= pe->func(pe->opaque);
3516 }
3517 if (ret == 0) {
3518 int err;
3519 WaitObjects *w = &wait_objects;
3520
3521 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3522 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3523 if (w->func[ret - WAIT_OBJECT_0])
3524 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3525
3526 /* Check for additional signaled events */
3527 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3528
3529 /* Check if event is signaled */
3530 ret2 = WaitForSingleObject(w->events[i], 0);
3531 if(ret2 == WAIT_OBJECT_0) {
3532 if (w->func[i])
3533 w->func[i](w->opaque[i]);
3534 } else if (ret2 == WAIT_TIMEOUT) {
3535 } else {
3536 err = GetLastError();
3537 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3538 }
3539 }
3540 } else if (ret == WAIT_TIMEOUT) {
3541 } else {
3542 err = GetLastError();
3543 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3544 }
3545 }
3546
3547 *timeout = 0;
3548 }
3549 #else
3550 void host_main_loop_wait(int *timeout)
3551 {
3552 }
3553 #endif
3554
3555 void main_loop_wait(int timeout)
3556 {
3557 IOHandlerRecord *ioh;
3558 fd_set rfds, wfds, xfds;
3559 int ret, nfds;
3560 struct timeval tv;
3561
3562 qemu_bh_update_timeout(&timeout);
3563
3564 host_main_loop_wait(&timeout);
3565
3566 /* poll any events */
3567 /* XXX: separate device handlers from system ones */
3568 nfds = -1;
3569 FD_ZERO(&rfds);
3570 FD_ZERO(&wfds);
3571 FD_ZERO(&xfds);
3572 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3573 if (ioh->deleted)
3574 continue;
3575 if (ioh->fd_read &&
3576 (!ioh->fd_read_poll ||
3577 ioh->fd_read_poll(ioh->opaque) != 0)) {
3578 FD_SET(ioh->fd, &rfds);
3579 if (ioh->fd > nfds)
3580 nfds = ioh->fd;
3581 }
3582 if (ioh->fd_write) {
3583 FD_SET(ioh->fd, &wfds);
3584 if (ioh->fd > nfds)
3585 nfds = ioh->fd;
3586 }
3587 }
3588
3589 tv.tv_sec = timeout / 1000;
3590 tv.tv_usec = (timeout % 1000) * 1000;
3591
3592 #if defined(CONFIG_SLIRP)
3593 if (slirp_is_inited()) {
3594 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3595 }
3596 #endif
3597 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3598 if (ret > 0) {
3599 IOHandlerRecord **pioh;
3600
3601 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3602 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3603 ioh->fd_read(ioh->opaque);
3604 }
3605 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3606 ioh->fd_write(ioh->opaque);
3607 }
3608 }
3609
3610 /* remove deleted IO handlers */
3611 pioh = &first_io_handler;
3612 while (*pioh) {
3613 ioh = *pioh;
3614 if (ioh->deleted) {
3615 *pioh = ioh->next;
3616 qemu_free(ioh);
3617 } else
3618 pioh = &ioh->next;
3619 }
3620 }
3621 #if defined(CONFIG_SLIRP)
3622 if (slirp_is_inited()) {
3623 if (ret < 0) {
3624 FD_ZERO(&rfds);
3625 FD_ZERO(&wfds);
3626 FD_ZERO(&xfds);
3627 }
3628 slirp_select_poll(&rfds, &wfds, &xfds);
3629 }
3630 #endif
3631
3632 /* Check bottom-halves last in case any of the earlier events triggered
3633 them. */
3634 qemu_bh_poll();
3635
3636 }
3637
3638 static int main_loop(void)
3639 {
3640 int ret, timeout;
3641 #ifdef CONFIG_PROFILER
3642 int64_t ti;
3643 #endif
3644 CPUState *env;
3645
3646 cur_cpu = first_cpu;
3647 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3648 for(;;) {
3649 if (vm_running) {
3650
3651 for(;;) {
3652 /* get next cpu */
3653 env = next_cpu;
3654 #ifdef CONFIG_PROFILER
3655 ti = profile_getclock();
3656 #endif
3657 if (use_icount) {
3658 int64_t count;
3659 int decr;
3660 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3661 env->icount_decr.u16.low = 0;
3662 env->icount_extra = 0;
3663 count = qemu_next_deadline();
3664 count = (count + (1 << icount_time_shift) - 1)
3665 >> icount_time_shift;
3666 qemu_icount += count;
3667 decr = (count > 0xffff) ? 0xffff : count;
3668 count -= decr;
3669 env->icount_decr.u16.low = decr;
3670 env->icount_extra = count;
3671 }
3672 ret = cpu_exec(env);
3673 #ifdef CONFIG_PROFILER
3674 qemu_time += profile_getclock() - ti;
3675 #endif
3676 if (use_icount) {
3677 /* Fold pending instructions back into the
3678 instruction counter, and clear the interrupt flag. */
3679 qemu_icount -= (env->icount_decr.u16.low
3680 + env->icount_extra);
3681 env->icount_decr.u32 = 0;
3682 env->icount_extra = 0;
3683 }
3684 next_cpu = env->next_cpu ?: first_cpu;
3685 if (event_pending && likely(ret != EXCP_DEBUG)) {
3686 ret = EXCP_INTERRUPT;
3687 event_pending = 0;
3688 break;
3689 }
3690 if (ret == EXCP_HLT) {
3691 /* Give the next CPU a chance to run. */
3692 cur_cpu = env;
3693 continue;
3694 }
3695 if (ret != EXCP_HALTED)
3696 break;
3697 /* all CPUs are halted ? */
3698 if (env == cur_cpu)
3699 break;
3700 }
3701 cur_cpu = env;
3702
3703 if (shutdown_requested) {
3704 ret = EXCP_INTERRUPT;
3705 if (no_shutdown) {
3706 vm_stop(0);
3707 no_shutdown = 0;
3708 }
3709 else
3710 break;
3711 }
3712 if (reset_requested) {
3713 reset_requested = 0;
3714 qemu_system_reset();
3715 ret = EXCP_INTERRUPT;
3716 }
3717 if (powerdown_requested) {
3718 powerdown_requested = 0;
3719 qemu_system_powerdown();
3720 ret = EXCP_INTERRUPT;
3721 }
3722 if (unlikely(ret == EXCP_DEBUG)) {
3723 gdb_set_stop_cpu(cur_cpu);
3724 vm_stop(EXCP_DEBUG);
3725 }
3726 /* If all cpus are halted then wait until the next IRQ */
3727 /* XXX: use timeout computed from timers */
3728 if (ret == EXCP_HALTED) {
3729 if (use_icount) {
3730 int64_t add;
3731 int64_t delta;
3732 /* Advance virtual time to the next event. */
3733 if (use_icount == 1) {
3734 /* When not using an adaptive execution frequency
3735 we tend to get badly out of sync with real time,
3736 so just delay for a reasonable amount of time. */
3737 delta = 0;
3738 } else {
3739 delta = cpu_get_icount() - cpu_get_clock();
3740 }
3741 if (delta > 0) {
3742 /* If virtual time is ahead of real time then just
3743 wait for IO. */
3744 timeout = (delta / 1000000) + 1;
3745 } else {
3746 /* Wait for either IO to occur or the next
3747 timer event. */
3748 add = qemu_next_deadline();
3749 /* We advance the timer before checking for IO.
3750 Limit the amount we advance so that early IO
3751 activity won't get the guest too far ahead. */
3752 if (add > 10000000)
3753 add = 10000000;
3754 delta += add;
3755 add = (add + (1 << icount_time_shift) - 1)
3756 >> icount_time_shift;
3757 qemu_icount += add;
3758 timeout = delta / 1000000;
3759 if (timeout < 0)
3760 timeout = 0;
3761 }
3762 } else {
3763 timeout = 5000;
3764 }
3765 } else {
3766 timeout = 0;
3767 }
3768 } else {
3769 if (shutdown_requested) {
3770 ret = EXCP_INTERRUPT;
3771 break;
3772 }
3773 timeout = 5000;
3774 }
3775 #ifdef CONFIG_PROFILER
3776 ti = profile_getclock();
3777 #endif
3778 main_loop_wait(timeout);
3779 #ifdef CONFIG_PROFILER
3780 dev_time += profile_getclock() - ti;
3781 #endif
3782 }
3783 cpu_disable_ticks();
3784 return ret;
3785 }
3786
3787 static void help(int exitcode)
3788 {
3789 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3790 "usage: %s [options] [disk_image]\n"
3791 "\n"
3792 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3793 "\n"
3794 "Standard options:\n"
3795 "-M machine select emulated machine (-M ? for list)\n"
3796 "-cpu cpu select CPU (-cpu ? for list)\n"
3797 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3798 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3799 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3800 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3801 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3802 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3803 " [,cache=writethrough|writeback|none][,format=f]\n"
3804 " use 'file' as a drive image\n"
3805 "-mtdblock file use 'file' as on-board Flash memory image\n"
3806 "-sd file use 'file' as SecureDigital card image\n"
3807 "-pflash file use 'file' as a parallel flash image\n"
3808 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3809 "-snapshot write to temporary files instead of disk image files\n"
3810 #ifdef CONFIG_SDL
3811 "-no-frame open SDL window without a frame and window decorations\n"
3812 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3813 "-no-quit disable SDL window close capability\n"
3814 #endif
3815 #ifdef TARGET_I386
3816 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
3817 #endif
3818 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3819 "-smp n set the number of CPUs to 'n' [default=1]\n"
3820 "-nographic disable graphical output and redirect serial I/Os to console\n"
3821 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3822 #ifndef _WIN32
3823 "-k language use keyboard layout (for example \"fr\" for French)\n"
3824 #endif
3825 #ifdef HAS_AUDIO
3826 "-audio-help print list of audio drivers and their options\n"
3827 "-soundhw c1,... enable audio support\n"
3828 " and only specified sound cards (comma separated list)\n"
3829 " use -soundhw ? to get the list of supported cards\n"
3830 " use -soundhw all to enable all of them\n"
3831 #endif
3832 "-vga [std|cirrus|vmware]\n"
3833 " select video card type\n"
3834 "-localtime set the real time clock to local time [default=utc]\n"
3835 "-full-screen start in full screen\n"
3836 #ifdef TARGET_I386
3837 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
3838 #endif
3839 "-usb enable the USB driver (will be the default soon)\n"
3840 "-usbdevice name add the host or guest USB device 'name'\n"
3841 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3842 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3843 #endif
3844 "-name string set the name of the guest\n"
3845 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3846 "\n"
3847 "Network options:\n"
3848 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
3849 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3850 #ifdef CONFIG_SLIRP
3851 "-net user[,vlan=n][,hostname=host]\n"
3852 " connect the user mode network stack to VLAN 'n' and send\n"
3853 " hostname 'host' to DHCP clients\n"
3854 #endif
3855 #ifdef _WIN32
3856 "-net tap[,vlan=n],ifname=name\n"
3857 " connect the host TAP network interface to VLAN 'n'\n"
3858 #else
3859 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3860 " connect the host TAP network interface to VLAN 'n' and use the\n"
3861 " network scripts 'file' (default=%s)\n"
3862 " and 'dfile' (default=%s);\n"
3863 " use '[down]script=no' to disable script execution;\n"
3864 " use 'fd=h' to connect to an already opened TAP interface\n"
3865 #endif
3866 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3867 " connect the vlan 'n' to another VLAN using a socket connection\n"
3868 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
3869 " connect the vlan 'n' to multicast maddr and port\n"
3870 #ifdef CONFIG_VDE
3871 "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3872 " connect the vlan 'n' to port 'n' of a vde switch running\n"
3873 " on host and listening for incoming connections on 'socketpath'.\n"
3874 " Use group 'groupname' and mode 'octalmode' to change default\n"
3875 " ownership and permissions for communication port.\n"
3876 #endif
3877 "-net none use it alone to have zero network devices; if no -net option\n"
3878 " is provided, the default is '-net nic -net user'\n"
3879 "\n"
3880 "-bt hci,null Dumb bluetooth HCI - doesn't respond to commands\n"
3881 "-bt hci,host[:id]\n"
3882 " Use host's HCI with the given name\n"
3883 "-bt hci[,vlan=n]\n"
3884 " Emulate a standard HCI in virtual scatternet 'n'\n"
3885 "-bt vhci[,vlan=n]\n"
3886 " Add host computer to virtual scatternet 'n' using VHCI\n"
3887 "-bt device:dev[,vlan=n]\n"
3888 " Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3889 "\n"
3890 #ifdef CONFIG_SLIRP
3891 "-tftp dir allow tftp access to files in dir [-net user]\n"
3892 "-bootp file advertise file in BOOTP replies\n"
3893 #ifndef _WIN32
3894 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
3895 #endif
3896 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3897 " redirect TCP or UDP connections from host to guest [-net user]\n"
3898 #endif
3899 "\n"
3900 "Linux boot specific:\n"
3901 "-kernel bzImage use 'bzImage' as kernel image\n"
3902 "-append cmdline use 'cmdline' as kernel command line\n"
3903 "-initrd file use 'file' as initial ram disk\n"
3904 "\n"
3905 "Debug/Expert options:\n"
3906 "-monitor dev redirect the monitor to char device 'dev'\n"
3907 "-serial dev redirect the serial port to char device 'dev'\n"
3908 "-parallel dev redirect the parallel port to char device 'dev'\n"
3909 "-pidfile file Write PID to 'file'\n"
3910 "-S freeze CPU at startup (use 'c' to start execution)\n"
3911 "-s wait gdb connection to port\n"
3912 "-p port set gdb connection port [default=%s]\n"
3913 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
3914 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
3915 " translation (t=none or lba) (usually qemu can guess them)\n"
3916 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
3917 #ifdef USE_KQEMU
3918 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
3919 "-no-kqemu disable KQEMU kernel module usage\n"
3920 #endif
3921 #ifdef CONFIG_KVM
3922 "-enable-kvm enable KVM full virtualization support\n"
3923 #endif
3924 #ifdef TARGET_I386
3925 "-no-acpi disable ACPI\n"
3926 #endif
3927 #ifdef CONFIG_CURSES
3928 "-curses use a curses/ncurses interface instead of SDL\n"
3929 #endif
3930 "-no-reboot exit instead of rebooting\n"
3931 "-no-shutdown stop before shutdown\n"
3932 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
3933 "-vnc display start a VNC server on display\n"
3934 #ifndef _WIN32
3935 "-daemonize daemonize QEMU after initializing\n"
3936 #endif
3937 "-option-rom rom load a file, rom, into the option ROM space\n"
3938 #ifdef TARGET_SPARC
3939 "-prom-env variable=value set OpenBIOS nvram variables\n"
3940 #endif
3941 "-clock force the use of the given methods for timer alarm.\n"
3942 " To see what timers are available use -clock ?\n"
3943 "-startdate select initial date of the clock\n"
3944 "-icount [N|auto]\n"
3945 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
3946 "\n"
3947 "During emulation, the following keys are useful:\n"
3948 "ctrl-alt-f toggle full screen\n"
3949 "ctrl-alt-n switch to virtual console 'n'\n"
3950 "ctrl-alt toggle mouse and keyboard grab\n"
3951 "\n"
3952 "When using -nographic, press 'ctrl-a h' to get some help.\n"
3953 ,
3954 "qemu",
3955 DEFAULT_RAM_SIZE,
3956 #ifndef _WIN32
3957 DEFAULT_NETWORK_SCRIPT,
3958 DEFAULT_NETWORK_DOWN_SCRIPT,
3959 #endif
3960 DEFAULT_GDBSTUB_PORT,
3961 "/tmp/qemu.log");
3962 exit(exitcode);
3963 }
3964
3965 #define HAS_ARG 0x0001
3966
3967 enum {
3968 QEMU_OPTION_h,
3969
3970 QEMU_OPTION_M,
3971 QEMU_OPTION_cpu,
3972 QEMU_OPTION_fda,
3973 QEMU_OPTION_fdb,
3974 QEMU_OPTION_hda,
3975 QEMU_OPTION_hdb,
3976 QEMU_OPTION_hdc,
3977 QEMU_OPTION_hdd,
3978 QEMU_OPTION_drive,
3979 QEMU_OPTION_cdrom,
3980 QEMU_OPTION_mtdblock,
3981 QEMU_OPTION_sd,
3982 QEMU_OPTION_pflash,
3983 QEMU_OPTION_boot,
3984 QEMU_OPTION_snapshot,
3985 #ifdef TARGET_I386
3986 QEMU_OPTION_no_fd_bootchk,
3987 #endif
3988 QEMU_OPTION_m,
3989 QEMU_OPTION_nographic,
3990 QEMU_OPTION_portrait,
3991 #ifdef HAS_AUDIO
3992 QEMU_OPTION_audio_help,
3993 QEMU_OPTION_soundhw,
3994 #endif
3995
3996 QEMU_OPTION_net,
3997 QEMU_OPTION_tftp,
3998 QEMU_OPTION_bootp,
3999 QEMU_OPTION_smb,
4000 QEMU_OPTION_redir,
4001 QEMU_OPTION_bt,
4002
4003 QEMU_OPTION_kernel,
4004 QEMU_OPTION_append,
4005 QEMU_OPTION_initrd,
4006
4007 QEMU_OPTION_S,
4008 QEMU_OPTION_s,
4009 QEMU_OPTION_p,
4010 QEMU_OPTION_d,
4011 QEMU_OPTION_hdachs,
4012 QEMU_OPTION_L,
4013 QEMU_OPTION_bios,
4014 QEMU_OPTION_k,
4015 QEMU_OPTION_localtime,
4016 QEMU_OPTION_g,
4017 QEMU_OPTION_vga,
4018 QEMU_OPTION_echr,
4019 QEMU_OPTION_monitor,
4020 QEMU_OPTION_serial,
4021 QEMU_OPTION_parallel,
4022 QEMU_OPTION_loadvm,
4023 QEMU_OPTION_full_screen,
4024 QEMU_OPTION_no_frame,
4025 QEMU_OPTION_alt_grab,
4026 QEMU_OPTION_no_quit,
4027 QEMU_OPTION_pidfile,
4028 QEMU_OPTION_no_kqemu,
4029 QEMU_OPTION_kernel_kqemu,
4030 QEMU_OPTION_enable_kvm,
4031 QEMU_OPTION_win2k_hack,
4032 QEMU_OPTION_usb,
4033 QEMU_OPTION_usbdevice,
4034 QEMU_OPTION_smp,
4035 QEMU_OPTION_vnc,
4036 QEMU_OPTION_no_acpi,
4037 QEMU_OPTION_curses,
4038 QEMU_OPTION_no_reboot,
4039 QEMU_OPTION_no_shutdown,
4040 QEMU_OPTION_show_cursor,
4041 QEMU_OPTION_daemonize,
4042 QEMU_OPTION_option_rom,
4043 QEMU_OPTION_semihosting,
4044 QEMU_OPTION_name,
4045 QEMU_OPTION_prom_env,
4046 QEMU_OPTION_old_param,
4047 QEMU_OPTION_clock,
4048 QEMU_OPTION_startdate,
4049 QEMU_OPTION_tb_size,
4050 QEMU_OPTION_icount,
4051 QEMU_OPTION_uuid,
4052 QEMU_OPTION_incoming,
4053 };
4054
4055 typedef struct QEMUOption {
4056 const char *name;
4057 int flags;
4058 int index;
4059 } QEMUOption;
4060
4061 static const QEMUOption qemu_options[] = {
4062 { "h", 0, QEMU_OPTION_h },
4063 { "help", 0, QEMU_OPTION_h },
4064
4065 { "M", HAS_ARG, QEMU_OPTION_M },
4066 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4067 { "fda", HAS_ARG, QEMU_OPTION_fda },
4068 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4069 { "hda", HAS_ARG, QEMU_OPTION_hda },
4070 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4071 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4072 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4073 { "drive", HAS_ARG, QEMU_OPTION_drive },
4074 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4075 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4076 { "sd", HAS_ARG, QEMU_OPTION_sd },
4077 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4078 { "boot", HAS_ARG, QEMU_OPTION_boot },
4079 { "snapshot", 0, QEMU_OPTION_snapshot },
4080 #ifdef TARGET_I386
4081 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4082 #endif
4083 { "m", HAS_ARG, QEMU_OPTION_m },
4084 { "nographic", 0, QEMU_OPTION_nographic },
4085 { "portrait", 0, QEMU_OPTION_portrait },
4086 { "k", HAS_ARG, QEMU_OPTION_k },
4087 #ifdef HAS_AUDIO
4088 { "audio-help", 0, QEMU_OPTION_audio_help },
4089 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4090 #endif
4091
4092 { "net", HAS_ARG, QEMU_OPTION_net},
4093 #ifdef CONFIG_SLIRP
4094 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4095 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4096 #ifndef _WIN32
4097 { "smb", HAS_ARG, QEMU_OPTION_smb },
4098 #endif
4099 { "redir", HAS_ARG, QEMU_OPTION_redir },
4100 #endif
4101 { "bt", HAS_ARG, QEMU_OPTION_bt },
4102
4103 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4104 { "append", HAS_ARG, QEMU_OPTION_append },
4105 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4106
4107 { "S", 0, QEMU_OPTION_S },
4108 { "s", 0, QEMU_OPTION_s },
4109 { "p", HAS_ARG, QEMU_OPTION_p },
4110 { "d", HAS_ARG, QEMU_OPTION_d },
4111 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4112 { "L", HAS_ARG, QEMU_OPTION_L },
4113 { "bios", HAS_ARG, QEMU_OPTION_bios },
4114 #ifdef USE_KQEMU
4115 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4116 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4117 #endif
4118 #ifdef CONFIG_KVM
4119 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4120 #endif
4121 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4122 { "g", 1, QEMU_OPTION_g },
4123 #endif
4124 { "localtime", 0, QEMU_OPTION_localtime },
4125 { "vga", HAS_ARG, QEMU_OPTION_vga },
4126 { "echr", HAS_ARG, QEMU_OPTION_echr },
4127 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4128 { "serial", HAS_ARG, QEMU_OPTION_serial },
4129 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4130 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4131 { "full-screen", 0, QEMU_OPTION_full_screen },
4132 #ifdef CONFIG_SDL
4133 { "no-frame", 0, QEMU_OPTION_no_frame },
4134 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4135 { "no-quit", 0, QEMU_OPTION_no_quit },
4136 #endif
4137 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4138 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4139 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4140 { "smp", HAS_ARG, QEMU_OPTION_smp },
4141 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4142 #ifdef CONFIG_CURSES
4143 { "curses", 0, QEMU_OPTION_curses },
4144 #endif
4145 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4146
4147 /* temporary options */
4148 { "usb", 0, QEMU_OPTION_usb },
4149 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4150 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4151 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4152 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4153 { "daemonize", 0, QEMU_OPTION_daemonize },
4154 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4155 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4156 { "semihosting", 0, QEMU_OPTION_semihosting },
4157 #endif
4158 { "name", HAS_ARG, QEMU_OPTION_name },
4159 #if defined(TARGET_SPARC)
4160 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4161 #endif
4162 #if defined(TARGET_ARM)
4163 { "old-param", 0, QEMU_OPTION_old_param },
4164 #endif
4165 { "clock", HAS_ARG, QEMU_OPTION_clock },
4166 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4167 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4168 { "icount", HAS_ARG, QEMU_OPTION_icount },
4169 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4170 { NULL },
4171 };
4172
4173 /* password input */
4174
4175 int qemu_key_check(BlockDriverState *bs, const char *name)
4176 {
4177 char password[256];
4178 int i;
4179
4180 if (!bdrv_is_encrypted(bs))
4181 return 0;
4182
4183 term_printf("%s is encrypted.\n", name);
4184 for(i = 0; i < 3; i++) {
4185 monitor_readline("Password: ", 1, password, sizeof(password));
4186 if (bdrv_set_key(bs, password) == 0)
4187 return 0;
4188 term_printf("invalid password\n");
4189 }
4190 return -EPERM;
4191 }
4192
4193 static BlockDriverState *get_bdrv(int index)
4194 {
4195 if (index > nb_drives)
4196 return NULL;
4197 return drives_table[index].bdrv;
4198 }
4199
4200 static void read_passwords(void)
4201 {
4202 BlockDriverState *bs;
4203 int i;
4204
4205 for(i = 0; i < 6; i++) {
4206 bs = get_bdrv(i);
4207 if (bs)
4208 qemu_key_check(bs, bdrv_get_device_name(bs));
4209 }
4210 }
4211
4212 #ifdef HAS_AUDIO
4213 struct soundhw soundhw[] = {
4214 #ifdef HAS_AUDIO_CHOICE
4215 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4216 {
4217 "pcspk",
4218 "PC speaker",
4219 0,
4220 1,
4221 { .init_isa = pcspk_audio_init }
4222 },
4223 #endif
4224 {
4225 "sb16",
4226 "Creative Sound Blaster 16",
4227 0,
4228 1,
4229 { .init_isa = SB16_init }
4230 },
4231
4232 #ifdef CONFIG_CS4231A
4233 {
4234 "cs4231a",
4235 "CS4231A",
4236 0,
4237 1,
4238 { .init_isa = cs4231a_init }
4239 },
4240 #endif
4241
4242 #ifdef CONFIG_ADLIB
4243 {
4244 "adlib",
4245 #ifdef HAS_YMF262
4246 "Yamaha YMF262 (OPL3)",
4247 #else
4248 "Yamaha YM3812 (OPL2)",
4249 #endif
4250 0,
4251 1,
4252 { .init_isa = Adlib_init }
4253 },
4254 #endif
4255
4256 #ifdef CONFIG_GUS
4257 {
4258 "gus",
4259 "Gravis Ultrasound GF1",
4260 0,
4261 1,
4262 { .init_isa = GUS_init }
4263 },
4264 #endif
4265
4266 #ifdef CONFIG_AC97
4267 {
4268 "ac97",
4269 "Intel 82801AA AC97 Audio",
4270 0,
4271 0,
4272 { .init_pci = ac97_init }
4273 },
4274 #endif
4275
4276 {
4277 "es1370",
4278 "ENSONIQ AudioPCI ES1370",
4279 0,
4280 0,
4281 { .init_pci = es1370_init }
4282 },
4283 #endif
4284
4285 { NULL, NULL, 0, 0, { NULL } }
4286 };
4287
4288 static void select_soundhw (const char *optarg)
4289 {
4290 struct soundhw *c;
4291
4292 if (*optarg == '?') {
4293 show_valid_cards:
4294
4295 printf ("Valid sound card names (comma separated):\n");
4296 for (c = soundhw; c->name; ++c) {
4297 printf ("%-11s %s\n", c->name, c->descr);
4298 }
4299 printf ("\n-soundhw all will enable all of the above\n");
4300 exit (*optarg != '?');
4301 }
4302 else {
4303 size_t l;
4304 const char *p;
4305 char *e;
4306 int bad_card = 0;
4307
4308 if (!strcmp (optarg, "all")) {
4309 for (c = soundhw; c->name; ++c) {
4310 c->enabled = 1;
4311 }
4312 return;
4313 }
4314
4315 p = optarg;
4316 while (*p) {
4317 e = strchr (p, ',');
4318 l = !e ? strlen (p) : (size_t) (e - p);
4319
4320 for (c = soundhw; c->name; ++c) {
4321 if (!strncmp (c->name, p, l)) {
4322 c->enabled = 1;
4323 break;
4324 }
4325 }
4326
4327 if (!c->name) {
4328 if (l > 80) {
4329 fprintf (stderr,
4330 "Unknown sound card name (too big to show)\n");
4331 }
4332 else {
4333 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4334 (int) l, p);
4335 }
4336 bad_card = 1;
4337 }
4338 p += l + (e != NULL);
4339 }
4340
4341 if (bad_card)
4342 goto show_valid_cards;
4343 }
4344 }
4345 #endif
4346
4347 static void select_vgahw (const char *p)
4348 {
4349 const char *opts;
4350
4351 if (strstart(p, "std", &opts)) {
4352 cirrus_vga_enabled = 0;
4353 vmsvga_enabled = 0;
4354 } else if (strstart(p, "cirrus", &opts)) {
4355 cirrus_vga_enabled = 1;
4356 vmsvga_enabled = 0;
4357 } else if (strstart(p, "vmware", &opts)) {
4358 cirrus_vga_enabled = 0;
4359 vmsvga_enabled = 1;
4360 } else {
4361 invalid_vga:
4362 fprintf(stderr, "Unknown vga type: %s\n", p);
4363 exit(1);
4364 }
4365 while (*opts) {
4366 const char *nextopt;
4367
4368 if (strstart(opts, ",retrace=", &nextopt)) {
4369 opts = nextopt;
4370 if (strstart(opts, "dumb", &nextopt))
4371 vga_retrace_method = VGA_RETRACE_DUMB;
4372 else if (strstart(opts, "precise", &nextopt))
4373 vga_retrace_method = VGA_RETRACE_PRECISE;
4374 else goto invalid_vga;
4375 } else goto invalid_vga;
4376 opts = nextopt;
4377 }
4378 }
4379
4380 #ifdef _WIN32
4381 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4382 {
4383 exit(STATUS_CONTROL_C_EXIT);
4384 return TRUE;
4385 }
4386 #endif
4387
4388 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4389 {
4390 int ret;
4391
4392 if(strlen(str) != 36)
4393 return -1;
4394
4395 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4396 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4397 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4398
4399 if(ret != 16)
4400 return -1;
4401
4402 return 0;
4403 }
4404
4405 #define MAX_NET_CLIENTS 32
4406
4407 #ifndef _WIN32
4408
4409 static void termsig_handler(int signal)
4410 {
4411 qemu_system_shutdown_request();
4412 }
4413
4414 static void termsig_setup(void)
4415 {
4416 struct sigaction act;
4417
4418 memset(&act, 0, sizeof(act));
4419 act.sa_handler = termsig_handler;
4420 sigaction(SIGINT, &act, NULL);
4421 sigaction(SIGHUP, &act, NULL);
4422 sigaction(SIGTERM, &act, NULL);
4423 }
4424
4425 #endif
4426
4427 int main(int argc, char **argv)
4428 {
4429 #ifdef CONFIG_GDBSTUB
4430 int use_gdbstub;
4431 const char *gdbstub_port;
4432 #endif
4433 uint32_t boot_devices_bitmap = 0;
4434 int i;
4435 int snapshot, linux_boot, net_boot;
4436 const char *initrd_filename;
4437 const char *kernel_filename, *kernel_cmdline;
4438 const char *boot_devices = "";
4439 DisplayState *ds = &display_state;
4440 int cyls, heads, secs, translation;
4441 const char *net_clients[MAX_NET_CLIENTS];
4442 int nb_net_clients;
4443 const char *bt_opts[MAX_BT_CMDLINE];
4444 int nb_bt_opts;
4445 int hda_index;
4446 int optind;
4447 const char *r, *optarg;
4448 CharDriverState *monitor_hd;
4449 const char *monitor_device;
4450 const char *serial_devices[MAX_SERIAL_PORTS];
4451 int serial_device_index;
4452 const char *parallel_devices[MAX_PARALLEL_PORTS];
4453 int parallel_device_index;
4454 const char *loadvm = NULL;
4455 QEMUMachine *machine;
4456 const char *cpu_model;
4457 const char *usb_devices[MAX_USB_CMDLINE];
4458 int usb_devices_index;
4459 int fds[2];
4460 int tb_size;
4461 const char *pid_file = NULL;
4462 int autostart;
4463 const char *incoming = NULL;
4464
4465 LIST_INIT (&vm_change_state_head);
4466 #ifndef _WIN32
4467 {
4468 struct sigaction act;
4469 sigfillset(&act.sa_mask);
4470 act.sa_flags = 0;
4471 act.sa_handler = SIG_IGN;
4472 sigaction(SIGPIPE, &act, NULL);
4473 }
4474 #else
4475 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4476 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4477 QEMU to run on a single CPU */
4478 {
4479 HANDLE h;
4480 DWORD mask, smask;
4481 int i;
4482 h = GetCurrentProcess();
4483 if (GetProcessAffinityMask(h, &mask, &smask)) {
4484 for(i = 0; i < 32; i++) {
4485 if (mask & (1 << i))
4486 break;
4487 }
4488 if (i != 32) {
4489 mask = 1 << i;
4490 SetProcessAffinityMask(h, mask);
4491 }
4492 }
4493 }
4494 #endif
4495
4496 register_machines();
4497 machine = first_machine;
4498 cpu_model = NULL;
4499 initrd_filename = NULL;
4500 ram_size = 0;
4501 vga_ram_size = VGA_RAM_SIZE;
4502 #ifdef CONFIG_GDBSTUB
4503 use_gdbstub = 0;
4504 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4505 #endif
4506 snapshot = 0;
4507 nographic = 0;
4508 curses = 0;
4509 kernel_filename = NULL;
4510 kernel_cmdline = "";
4511 cyls = heads = secs = 0;
4512 translation = BIOS_ATA_TRANSLATION_AUTO;
4513 monitor_device = "vc";
4514
4515 serial_devices[0] = "vc:80Cx24C";
4516 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4517 serial_devices[i] = NULL;
4518 serial_device_index = 0;
4519
4520 parallel_devices[0] = "vc:640x480";
4521 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4522 parallel_devices[i] = NULL;
4523 parallel_device_index = 0;
4524
4525 usb_devices_index = 0;
4526
4527 nb_net_clients = 0;
4528 nb_bt_opts = 0;
4529 nb_drives = 0;
4530 nb_drives_opt = 0;
4531 hda_index = -1;
4532
4533 nb_nics = 0;
4534
4535 tb_size = 0;
4536 autostart= 1;
4537
4538 optind = 1;
4539 for(;;) {
4540 if (optind >= argc)
4541 break;
4542 r = argv[optind];
4543 if (r[0] != '-') {
4544 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4545 } else {
4546 const QEMUOption *popt;
4547
4548 optind++;
4549 /* Treat --foo the same as -foo. */
4550 if (r[1] == '-')
4551 r++;
4552 popt = qemu_options;
4553 for(;;) {
4554 if (!popt->name) {
4555 fprintf(stderr, "%s: invalid option -- '%s'\n",
4556 argv[0], r);
4557 exit(1);
4558 }
4559 if (!strcmp(popt->name, r + 1))
4560 break;
4561 popt++;
4562 }
4563 if (popt->flags & HAS_ARG) {
4564 if (optind >= argc) {
4565 fprintf(stderr, "%s: option '%s' requires an argument\n",
4566 argv[0], r);
4567 exit(1);
4568 }
4569 optarg = argv[optind++];
4570 } else {
4571 optarg = NULL;
4572 }
4573
4574 switch(popt->index) {
4575 case QEMU_OPTION_M:
4576 machine = find_machine(optarg);
4577 if (!machine) {
4578 QEMUMachine *m;
4579 printf("Supported machines are:\n");
4580 for(m = first_machine; m != NULL; m = m->next) {
4581 printf("%-10s %s%s\n",
4582 m->name, m->desc,
4583 m == first_machine ? " (default)" : "");
4584 }
4585 exit(*optarg != '?');
4586 }
4587 break;
4588 case QEMU_OPTION_cpu:
4589 /* hw initialization will check this */
4590 if (*optarg == '?') {
4591 /* XXX: implement xxx_cpu_list for targets that still miss it */
4592 #if defined(cpu_list)
4593 cpu_list(stdout, &fprintf);
4594 #endif
4595 exit(0);
4596 } else {
4597 cpu_model = optarg;
4598 }
4599 break;
4600 case QEMU_OPTION_initrd:
4601 initrd_filename = optarg;
4602 break;
4603 case QEMU_OPTION_hda:
4604 if (cyls == 0)
4605 hda_index = drive_add(optarg, HD_ALIAS, 0);
4606 else
4607 hda_index = drive_add(optarg, HD_ALIAS
4608 ",cyls=%d,heads=%d,secs=%d%s",
4609 0, cyls, heads, secs,
4610 translation == BIOS_ATA_TRANSLATION_LBA ?
4611 ",trans=lba" :
4612 translation == BIOS_ATA_TRANSLATION_NONE ?
4613 ",trans=none" : "");
4614 break;
4615 case QEMU_OPTION_hdb:
4616 case QEMU_OPTION_hdc:
4617 case QEMU_OPTION_hdd:
4618 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4619 break;
4620 case QEMU_OPTION_drive:
4621 drive_add(NULL, "%s", optarg);
4622 break;
4623 case QEMU_OPTION_mtdblock:
4624 drive_add(optarg, MTD_ALIAS);
4625 break;
4626 case QEMU_OPTION_sd:
4627 drive_add(optarg, SD_ALIAS);
4628 break;
4629 case QEMU_OPTION_pflash:
4630 drive_add(optarg, PFLASH_ALIAS);
4631 break;
4632 case QEMU_OPTION_snapshot:
4633 snapshot = 1;
4634 break;
4635 case QEMU_OPTION_hdachs:
4636 {
4637 const char *p;
4638 p = optarg;
4639 cyls = strtol(p, (char **)&p, 0);
4640 if (cyls < 1 || cyls > 16383)
4641 goto chs_fail;
4642 if (*p != ',')
4643 goto chs_fail;
4644 p++;
4645 heads = strtol(p, (char **)&p, 0);
4646 if (heads < 1 || heads > 16)
4647 goto chs_fail;
4648 if (*p != ',')
4649 goto chs_fail;
4650 p++;
4651 secs = strtol(p, (char **)&p, 0);
4652 if (secs < 1 || secs > 63)
4653 goto chs_fail;
4654 if (*p == ',') {
4655 p++;
4656 if (!strcmp(p, "none"))
4657 translation = BIOS_ATA_TRANSLATION_NONE;
4658 else if (!strcmp(p, "lba"))
4659 translation = BIOS_ATA_TRANSLATION_LBA;
4660 else if (!strcmp(p, "auto"))
4661 translation = BIOS_ATA_TRANSLATION_AUTO;
4662 else
4663 goto chs_fail;
4664 } else if (*p != '\0') {
4665 chs_fail:
4666 fprintf(stderr, "qemu: invalid physical CHS format\n");
4667 exit(1);
4668 }
4669 if (hda_index != -1)
4670 snprintf(drives_opt[hda_index].opt,
4671 sizeof(drives_opt[hda_index].opt),
4672 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4673 0, cyls, heads, secs,
4674 translation == BIOS_ATA_TRANSLATION_LBA ?
4675 ",trans=lba" :
4676 translation == BIOS_ATA_TRANSLATION_NONE ?
4677 ",trans=none" : "");
4678 }
4679 break;
4680 case QEMU_OPTION_nographic:
4681 nographic = 1;
4682 break;
4683 #ifdef CONFIG_CURSES
4684 case QEMU_OPTION_curses:
4685 curses = 1;
4686 break;
4687 #endif
4688 case QEMU_OPTION_portrait:
4689 graphic_rotate = 1;
4690 break;
4691 case QEMU_OPTION_kernel:
4692 kernel_filename = optarg;
4693 break;
4694 case QEMU_OPTION_append:
4695 kernel_cmdline = optarg;
4696 break;
4697 case QEMU_OPTION_cdrom:
4698 drive_add(optarg, CDROM_ALIAS);
4699 break;
4700 case QEMU_OPTION_boot:
4701 boot_devices = optarg;
4702 /* We just do some generic consistency checks */
4703 {
4704 /* Could easily be extended to 64 devices if needed */
4705 const char *p;
4706
4707 boot_devices_bitmap = 0;
4708 for (p = boot_devices; *p != '\0'; p++) {
4709 /* Allowed boot devices are:
4710 * a b : floppy disk drives
4711 * c ... f : IDE disk drives
4712 * g ... m : machine implementation dependant drives
4713 * n ... p : network devices
4714 * It's up to each machine implementation to check
4715 * if the given boot devices match the actual hardware
4716 * implementation and firmware features.
4717 */
4718 if (*p < 'a' || *p > 'q') {
4719 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4720 exit(1);
4721 }
4722 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4723 fprintf(stderr,
4724 "Boot device '%c' was given twice\n",*p);
4725 exit(1);
4726 }
4727 boot_devices_bitmap |= 1 << (*p - 'a');
4728 }
4729 }
4730 break;
4731 case QEMU_OPTION_fda:
4732 case QEMU_OPTION_fdb:
4733 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4734 break;
4735 #ifdef TARGET_I386
4736 case QEMU_OPTION_no_fd_bootchk:
4737 fd_bootchk = 0;
4738 break;
4739 #endif
4740 case QEMU_OPTION_net:
4741 if (nb_net_clients >= MAX_NET_CLIENTS) {
4742 fprintf(stderr, "qemu: too many network clients\n");
4743 exit(1);
4744 }
4745 net_clients[nb_net_clients] = optarg;
4746 nb_net_clients++;
4747 break;
4748 #ifdef CONFIG_SLIRP
4749 case QEMU_OPTION_tftp:
4750 tftp_prefix = optarg;
4751 break;
4752 case QEMU_OPTION_bootp:
4753 bootp_filename = optarg;
4754 break;
4755 #ifndef _WIN32
4756 case QEMU_OPTION_smb:
4757 net_slirp_smb(optarg);
4758 break;
4759 #endif
4760 case QEMU_OPTION_redir:
4761 net_slirp_redir(optarg);
4762 break;
4763 #endif
4764 case QEMU_OPTION_bt:
4765 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4766 fprintf(stderr, "qemu: too many bluetooth options\n");
4767 exit(1);
4768 }
4769 bt_opts[nb_bt_opts++] = optarg;
4770 break;
4771 #ifdef HAS_AUDIO
4772 case QEMU_OPTION_audio_help:
4773 AUD_help ();
4774 exit (0);
4775 break;
4776 case QEMU_OPTION_soundhw:
4777 select_soundhw (optarg);
4778 break;
4779 #endif
4780 case QEMU_OPTION_h:
4781 help(0);
4782 break;
4783 case QEMU_OPTION_m: {
4784 uint64_t value;
4785 char *ptr;
4786
4787 value = strtoul(optarg, &ptr, 10);
4788 switch (*ptr) {
4789 case 0: case 'M': case 'm':
4790 value <<= 20;
4791 break;
4792 case 'G': case 'g':
4793 value <<= 30;
4794 break;
4795 default:
4796 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4797 exit(1);
4798 }
4799
4800 /* On 32-bit hosts, QEMU is limited by virtual address space */
4801 if (value > (2047 << 20)
4802 #ifndef USE_KQEMU
4803 && HOST_LONG_BITS == 32
4804 #endif
4805 ) {
4806 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4807 exit(1);
4808 }
4809 if (value != (uint64_t)(ram_addr_t)value) {
4810 fprintf(stderr, "qemu: ram size too large\n");
4811 exit(1);
4812 }
4813 ram_size = value;
4814 break;
4815 }
4816 case QEMU_OPTION_d:
4817 {
4818 int mask;
4819 const CPULogItem *item;
4820
4821 mask = cpu_str_to_log_mask(optarg);
4822 if (!mask) {
4823 printf("Log items (comma separated):\n");
4824 for(item = cpu_log_items; item->mask != 0; item++) {
4825 printf("%-10s %s\n", item->name, item->help);
4826 }
4827 exit(1);
4828 }
4829 cpu_set_log(mask);
4830 }
4831 break;
4832 #ifdef CONFIG_GDBSTUB
4833 case QEMU_OPTION_s:
4834 use_gdbstub = 1;
4835 break;
4836 case QEMU_OPTION_p:
4837 gdbstub_port = optarg;
4838 break;
4839 #endif
4840 case QEMU_OPTION_L:
4841 bios_dir = optarg;
4842 break;
4843 case QEMU_OPTION_bios:
4844 bios_name = optarg;
4845 break;
4846 case QEMU_OPTION_S:
4847 autostart = 0;
4848 break;
4849 case QEMU_OPTION_k:
4850 keyboard_layout = optarg;
4851 break;
4852 case QEMU_OPTION_localtime:
4853 rtc_utc = 0;
4854 break;
4855 case QEMU_OPTION_vga:
4856 select_vgahw (optarg);
4857 break;
4858 case QEMU_OPTION_g:
4859 {
4860 const char *p;
4861 int w, h, depth;
4862 p = optarg;
4863 w = strtol(p, (char **)&p, 10);
4864 if (w <= 0) {
4865 graphic_error:
4866 fprintf(stderr, "qemu: invalid resolution or depth\n");
4867 exit(1);
4868 }
4869 if (*p != 'x')
4870 goto graphic_error;
4871 p++;
4872 h = strtol(p, (char **)&p, 10);
4873 if (h <= 0)
4874 goto graphic_error;
4875 if (*p == 'x') {
4876 p++;
4877 depth = strtol(p, (char **)&p, 10);
4878 if (depth != 8 && depth != 15 && depth != 16 &&
4879 depth != 24 && depth != 32)
4880 goto graphic_error;
4881 } else if (*p == '\0') {
4882 depth = graphic_depth;
4883 } else {
4884 goto graphic_error;
4885 }
4886
4887 graphic_width = w;
4888 graphic_height = h;
4889 graphic_depth = depth;
4890 }
4891 break;
4892 case QEMU_OPTION_echr:
4893 {
4894 char *r;
4895 term_escape_char = strtol(optarg, &r, 0);
4896 if (r == optarg)
4897 printf("Bad argument to echr\n");
4898 break;
4899 }
4900 case QEMU_OPTION_monitor:
4901 monitor_device = optarg;
4902 break;
4903 case QEMU_OPTION_serial:
4904 if (serial_device_index >= MAX_SERIAL_PORTS) {
4905 fprintf(stderr, "qemu: too many serial ports\n");
4906 exit(1);
4907 }
4908 serial_devices[serial_device_index] = optarg;
4909 serial_device_index++;
4910 break;
4911 case QEMU_OPTION_parallel:
4912 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4913 fprintf(stderr, "qemu: too many parallel ports\n");
4914 exit(1);
4915 }
4916 parallel_devices[parallel_device_index] = optarg;
4917 parallel_device_index++;
4918 break;
4919 case QEMU_OPTION_loadvm:
4920 loadvm = optarg;
4921 break;
4922 case QEMU_OPTION_full_screen:
4923 full_screen = 1;
4924 break;
4925 #ifdef CONFIG_SDL
4926 case QEMU_OPTION_no_frame:
4927 no_frame = 1;
4928 break;
4929 case QEMU_OPTION_alt_grab:
4930 alt_grab = 1;
4931 break;
4932 case QEMU_OPTION_no_quit:
4933 no_quit = 1;
4934 break;
4935 #endif
4936 case QEMU_OPTION_pidfile:
4937 pid_file = optarg;
4938 break;
4939 #ifdef TARGET_I386
4940 case QEMU_OPTION_win2k_hack:
4941 win2k_install_hack = 1;
4942 break;
4943 #endif
4944 #ifdef USE_KQEMU
4945 case QEMU_OPTION_no_kqemu:
4946 kqemu_allowed = 0;
4947 break;
4948 case QEMU_OPTION_kernel_kqemu:
4949 kqemu_allowed = 2;
4950 break;
4951 #endif
4952 #ifdef CONFIG_KVM
4953 case QEMU_OPTION_enable_kvm:
4954 kvm_allowed = 1;
4955 #ifdef USE_KQEMU
4956 kqemu_allowed = 0;
4957 #endif
4958 break;
4959 #endif
4960 case QEMU_OPTION_usb:
4961 usb_enabled = 1;
4962 break;
4963 case QEMU_OPTION_usbdevice:
4964 usb_enabled = 1;
4965 if (usb_devices_index >= MAX_USB_CMDLINE) {
4966 fprintf(stderr, "Too many USB devices\n");
4967 exit(1);
4968 }
4969 usb_devices[usb_devices_index] = optarg;
4970 usb_devices_index++;
4971 break;
4972 case QEMU_OPTION_smp:
4973 smp_cpus = atoi(optarg);
4974 if (smp_cpus < 1) {
4975 fprintf(stderr, "Invalid number of CPUs\n");
4976 exit(1);
4977 }
4978 break;
4979 case QEMU_OPTION_vnc:
4980 vnc_display = optarg;
4981 break;
4982 case QEMU_OPTION_no_acpi:
4983 acpi_enabled = 0;
4984 break;
4985 case QEMU_OPTION_no_reboot:
4986 no_reboot = 1;
4987 break;
4988 case QEMU_OPTION_no_shutdown:
4989 no_shutdown = 1;
4990 break;
4991 case QEMU_OPTION_show_cursor:
4992 cursor_hide = 0;
4993 break;
4994 case QEMU_OPTION_uuid:
4995 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
4996 fprintf(stderr, "Fail to parse UUID string."
4997 " Wrong format.\n");
4998 exit(1);
4999 }
5000 break;
5001 case QEMU_OPTION_daemonize:
5002 daemonize = 1;
5003 break;
5004 case QEMU_OPTION_option_rom:
5005 if (nb_option_roms >= MAX_OPTION_ROMS) {
5006 fprintf(stderr, "Too many option ROMs\n");
5007 exit(1);
5008 }
5009 option_rom[nb_option_roms] = optarg;
5010 nb_option_roms++;
5011 break;
5012 case QEMU_OPTION_semihosting:
5013 semihosting_enabled = 1;
5014 break;
5015 case QEMU_OPTION_name:
5016 qemu_name = optarg;
5017 break;
5018 #ifdef TARGET_SPARC
5019 case QEMU_OPTION_prom_env:
5020 if (nb_prom_envs >= MAX_PROM_ENVS) {
5021 fprintf(stderr, "Too many prom variables\n");
5022 exit(1);
5023 }
5024 prom_envs[nb_prom_envs] = optarg;
5025 nb_prom_envs++;
5026 break;
5027 #endif
5028 #ifdef TARGET_ARM
5029 case QEMU_OPTION_old_param:
5030 old_param = 1;
5031 break;
5032 #endif
5033 case QEMU_OPTION_clock:
5034 configure_alarms(optarg);
5035 break;
5036 case QEMU_OPTION_startdate:
5037 {
5038 struct tm tm;
5039 time_t rtc_start_date;
5040 if (!strcmp(optarg, "now")) {
5041 rtc_date_offset = -1;
5042 } else {
5043 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5044 &tm.tm_year,
5045 &tm.tm_mon,
5046 &tm.tm_mday,
5047 &tm.tm_hour,
5048 &tm.tm_min,
5049 &tm.tm_sec) == 6) {
5050 /* OK */
5051 } else if (sscanf(optarg, "%d-%d-%d",
5052 &tm.tm_year,
5053 &tm.tm_mon,
5054 &tm.tm_mday) == 3) {
5055 tm.tm_hour = 0;
5056 tm.tm_min = 0;
5057 tm.tm_sec = 0;
5058 } else {
5059 goto date_fail;
5060 }
5061 tm.tm_year -= 1900;
5062 tm.tm_mon--;
5063 rtc_start_date = mktimegm(&tm);
5064 if (rtc_start_date == -1) {
5065 date_fail:
5066 fprintf(stderr, "Invalid date format. Valid format are:\n"
5067 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5068 exit(1);
5069 }
5070 rtc_date_offset = time(NULL) - rtc_start_date;
5071 }
5072 }
5073 break;
5074 case QEMU_OPTION_tb_size:
5075 tb_size = strtol(optarg, NULL, 0);
5076 if (tb_size < 0)
5077 tb_size = 0;
5078 break;
5079 case QEMU_OPTION_icount:
5080 use_icount = 1;
5081 if (strcmp(optarg, "auto") == 0) {
5082 icount_time_shift = -1;
5083 } else {
5084 icount_time_shift = strtol(optarg, NULL, 0);
5085 }
5086 break;
5087 case QEMU_OPTION_incoming:
5088 incoming = optarg;
5089 break;
5090 }
5091 }
5092 }
5093
5094 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5095 if (kvm_allowed && kqemu_allowed) {
5096 fprintf(stderr,
5097 "You can not enable both KVM and kqemu at the same time\n");
5098 exit(1);
5099 }
5100 #endif
5101
5102 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5103 if (smp_cpus > machine->max_cpus) {
5104 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5105 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5106 machine->max_cpus);
5107 exit(1);
5108 }
5109
5110 if (nographic) {
5111 if (serial_device_index == 0)
5112 serial_devices[0] = "stdio";
5113 if (parallel_device_index == 0)
5114 parallel_devices[0] = "null";
5115 if (strncmp(monitor_device, "vc", 2) == 0)
5116 monitor_device = "stdio";
5117 }
5118
5119 #ifndef _WIN32
5120 if (daemonize) {
5121 pid_t pid;
5122
5123 if (pipe(fds) == -1)
5124 exit(1);
5125
5126 pid = fork();
5127 if (pid > 0) {
5128 uint8_t status;
5129 ssize_t len;
5130
5131 close(fds[1]);
5132
5133 again:
5134 len = read(fds[0], &status, 1);
5135 if (len == -1 && (errno == EINTR))
5136 goto again;
5137
5138 if (len != 1)
5139 exit(1);
5140 else if (status == 1) {
5141 fprintf(stderr, "Could not acquire pidfile\n");
5142 exit(1);
5143 } else
5144 exit(0);
5145 } else if (pid < 0)
5146 exit(1);
5147
5148 setsid();
5149
5150 pid = fork();
5151 if (pid > 0)
5152 exit(0);
5153 else if (pid < 0)
5154 exit(1);
5155
5156 umask(027);
5157
5158 signal(SIGTSTP, SIG_IGN);
5159 signal(SIGTTOU, SIG_IGN);
5160 signal(SIGTTIN, SIG_IGN);
5161 }
5162 #endif
5163
5164 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5165 if (daemonize) {
5166 uint8_t status = 1;
5167 write(fds[1], &status, 1);
5168 } else
5169 fprintf(stderr, "Could not acquire pid file\n");
5170 exit(1);
5171 }
5172
5173 #ifdef USE_KQEMU
5174 if (smp_cpus > 1)
5175 kqemu_allowed = 0;
5176 #endif
5177 linux_boot = (kernel_filename != NULL);
5178 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5179
5180 if (!linux_boot && net_boot == 0 &&
5181 !machine->nodisk_ok && nb_drives_opt == 0)
5182 help(1);
5183
5184 if (!linux_boot && *kernel_cmdline != '\0') {
5185 fprintf(stderr, "-append only allowed with -kernel option\n");
5186 exit(1);
5187 }
5188
5189 if (!linux_boot && initrd_filename != NULL) {
5190 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5191 exit(1);
5192 }
5193
5194 /* boot to floppy or the default cd if no hard disk defined yet */
5195 if (!boot_devices[0]) {
5196 boot_devices = "cad";
5197 }
5198 setvbuf(stdout, NULL, _IOLBF, 0);
5199
5200 init_timers();
5201 if (init_timer_alarm() < 0) {
5202 fprintf(stderr, "could not initialize alarm timer\n");
5203 exit(1);
5204 }
5205 if (use_icount && icount_time_shift < 0) {
5206 use_icount = 2;
5207 /* 125MIPS seems a reasonable initial guess at the guest speed.
5208 It will be corrected fairly quickly anyway. */
5209 icount_time_shift = 3;
5210 init_icount_adjust();
5211 }
5212
5213 #ifdef _WIN32
5214 socket_init();
5215 #endif
5216
5217 /* init network clients */
5218 if (nb_net_clients == 0) {
5219 /* if no clients, we use a default config */
5220 net_clients[nb_net_clients++] = "nic";
5221 #ifdef CONFIG_SLIRP
5222 net_clients[nb_net_clients++] = "user";
5223 #endif
5224 }
5225
5226 for(i = 0;i < nb_net_clients; i++) {
5227 if (net_client_parse(net_clients[i]) < 0)
5228 exit(1);
5229 }
5230 net_client_check();
5231
5232 #ifdef TARGET_I386
5233 /* XXX: this should be moved in the PC machine instantiation code */
5234 if (net_boot != 0) {
5235 int netroms = 0;
5236 for (i = 0; i < nb_nics && i < 4; i++) {
5237 const char *model = nd_table[i].model;
5238 char buf[1024];
5239 if (net_boot & (1 << i)) {
5240 if (model == NULL)
5241 model = "ne2k_pci";
5242 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5243 if (get_image_size(buf) > 0) {
5244 if (nb_option_roms >= MAX_OPTION_ROMS) {
5245 fprintf(stderr, "Too many option ROMs\n");
5246 exit(1);
5247 }
5248 option_rom[nb_option_roms] = strdup(buf);
5249 nb_option_roms++;
5250 netroms++;
5251 }
5252 }
5253 }
5254 if (netroms == 0) {
5255 fprintf(stderr, "No valid PXE rom found for network device\n");
5256 exit(1);
5257 }
5258 }
5259 #endif
5260
5261 /* init the bluetooth world */
5262 for (i = 0; i < nb_bt_opts; i++)
5263 if (bt_parse(bt_opts[i]))
5264 exit(1);
5265
5266 /* init the memory */
5267 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5268
5269 if (machine->ram_require & RAMSIZE_FIXED) {
5270 if (ram_size > 0) {
5271 if (ram_size < phys_ram_size) {
5272 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5273 machine->name, (unsigned long long) phys_ram_size);
5274 exit(-1);
5275 }
5276
5277 phys_ram_size = ram_size;
5278 } else
5279 ram_size = phys_ram_size;
5280 } else {
5281 if (ram_size == 0)
5282 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5283
5284 phys_ram_size += ram_size;
5285 }
5286
5287 phys_ram_base = qemu_vmalloc(phys_ram_size);
5288 if (!phys_ram_base) {
5289 fprintf(stderr, "Could not allocate physical memory\n");
5290 exit(1);
5291 }
5292
5293 /* init the dynamic translator */
5294 cpu_exec_init_all(tb_size * 1024 * 1024);
5295
5296 bdrv_init();
5297
5298 /* we always create the cdrom drive, even if no disk is there */
5299
5300 if (nb_drives_opt < MAX_DRIVES)
5301 drive_add(NULL, CDROM_ALIAS);
5302
5303 /* we always create at least one floppy */
5304
5305 if (nb_drives_opt < MAX_DRIVES)
5306 drive_add(NULL, FD_ALIAS, 0);
5307
5308 /* we always create one sd slot, even if no card is in it */
5309
5310 if (nb_drives_opt < MAX_DRIVES)
5311 drive_add(NULL, SD_ALIAS);
5312
5313 /* open the virtual block devices */
5314
5315 for(i = 0; i < nb_drives_opt; i++)
5316 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5317 exit(1);
5318
5319 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5320 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5321
5322 /* terminal init */
5323 memset(&display_state, 0, sizeof(display_state));
5324 if (nographic) {
5325 if (curses) {
5326 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5327 exit(1);
5328 }
5329 /* nearly nothing to do */
5330 dumb_display_init(ds);
5331 } else if (vnc_display != NULL) {
5332 vnc_display_init(ds);
5333 if (vnc_display_open(ds, vnc_display) < 0)
5334 exit(1);
5335 } else
5336 #if defined(CONFIG_CURSES)
5337 if (curses) {
5338 curses_display_init(ds, full_screen);
5339 } else
5340 #endif
5341 {
5342 #if defined(CONFIG_SDL)
5343 sdl_display_init(ds, full_screen, no_frame);
5344 #elif defined(CONFIG_COCOA)
5345 cocoa_display_init(ds, full_screen);
5346 #else
5347 dumb_display_init(ds);
5348 #endif
5349 }
5350
5351 #ifndef _WIN32
5352 /* must be after terminal init, SDL library changes signal handlers */
5353 termsig_setup();
5354 #endif
5355
5356 /* Maintain compatibility with multiple stdio monitors */
5357 if (!strcmp(monitor_device,"stdio")) {
5358 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5359 const char *devname = serial_devices[i];
5360 if (devname && !strcmp(devname,"mon:stdio")) {
5361 monitor_device = NULL;
5362 break;
5363 } else if (devname && !strcmp(devname,"stdio")) {
5364 monitor_device = NULL;
5365 serial_devices[i] = "mon:stdio";
5366 break;
5367 }
5368 }
5369 }
5370 if (monitor_device) {
5371 monitor_hd = qemu_chr_open("monitor", monitor_device);
5372 if (!monitor_hd) {
5373 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5374 exit(1);
5375 }
5376 monitor_init(monitor_hd, !nographic);
5377 }
5378
5379 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5380 const char *devname = serial_devices[i];
5381 if (devname && strcmp(devname, "none")) {
5382 char label[32];
5383 snprintf(label, sizeof(label), "serial%d", i);
5384 serial_hds[i] = qemu_chr_open(label, devname);
5385 if (!serial_hds[i]) {
5386 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5387 devname);
5388 exit(1);
5389 }
5390 if (strstart(devname, "vc", 0))
5391 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5392 }
5393 }
5394
5395 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5396 const char *devname = parallel_devices[i];
5397 if (devname && strcmp(devname, "none")) {
5398 char label[32];
5399 snprintf(label, sizeof(label), "parallel%d", i);
5400 parallel_hds[i] = qemu_chr_open(label, devname);
5401 if (!parallel_hds[i]) {
5402 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5403 devname);
5404 exit(1);
5405 }
5406 if (strstart(devname, "vc", 0))
5407 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5408 }
5409 }
5410
5411 if (kvm_enabled()) {
5412 int ret;
5413
5414 ret = kvm_init(smp_cpus);
5415 if (ret < 0) {
5416 fprintf(stderr, "failed to initialize KVM\n");
5417 exit(1);
5418 }
5419 }
5420
5421 machine->init(ram_size, vga_ram_size, boot_devices, ds,
5422 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5423
5424 /* init USB devices */
5425 if (usb_enabled) {
5426 for(i = 0; i < usb_devices_index; i++) {
5427 if (usb_device_add(usb_devices[i]) < 0) {
5428 fprintf(stderr, "Warning: could not add USB device %s\n",
5429 usb_devices[i]);
5430 }
5431 }
5432 }
5433
5434 if (display_state.dpy_refresh) {
5435 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
5436 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
5437 }
5438
5439 #ifdef CONFIG_GDBSTUB
5440 if (use_gdbstub) {
5441 /* XXX: use standard host:port notation and modify options
5442 accordingly. */
5443 if (gdbserver_start(gdbstub_port) < 0) {
5444 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5445 gdbstub_port);
5446 exit(1);
5447 }
5448 }
5449 #endif
5450
5451 if (loadvm)
5452 do_loadvm(loadvm);
5453
5454 if (incoming) {
5455 autostart = 0; /* fixme how to deal with -daemonize */
5456 qemu_start_incoming_migration(incoming);
5457 }
5458
5459 {
5460 /* XXX: simplify init */
5461 read_passwords();
5462 if (autostart) {
5463 vm_start();
5464 }
5465 }
5466
5467 if (daemonize) {
5468 uint8_t status = 0;
5469 ssize_t len;
5470 int fd;
5471
5472 again1:
5473 len = write(fds[1], &status, 1);
5474 if (len == -1 && (errno == EINTR))
5475 goto again1;
5476
5477 if (len != 1)
5478 exit(1);
5479
5480 chdir("/");
5481 TFR(fd = open("/dev/null", O_RDWR));
5482 if (fd == -1)
5483 exit(1);
5484
5485 dup2(fd, 0);
5486 dup2(fd, 1);
5487 dup2(fd, 2);
5488
5489 close(fd);
5490 }
5491
5492 main_loop();
5493 quit_timers();
5494 net_cleanup();
5495
5496 return 0;
5497 }