]> git.proxmox.com Git - qemu.git/blob - vl.c
net socket verify packet size (Dustin Kirkland)
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "cache-utils.h"
40 #include "block.h"
41 #include "audio/audio.h"
42 #include "migration.h"
43 #include "kvm.h"
44 #include "balloon.h"
45
46 #include <unistd.h>
47 #include <fcntl.h>
48 #include <signal.h>
49 #include <time.h>
50 #include <errno.h>
51 #include <sys/time.h>
52 #include <zlib.h>
53
54 #ifndef _WIN32
55 #include <sys/times.h>
56 #include <sys/wait.h>
57 #include <termios.h>
58 #include <sys/mman.h>
59 #include <sys/ioctl.h>
60 #include <sys/resource.h>
61 #include <sys/socket.h>
62 #include <netinet/in.h>
63 #include <net/if.h>
64 #if defined(__NetBSD__)
65 #include <net/if_tap.h>
66 #endif
67 #ifdef __linux__
68 #include <linux/if_tun.h>
69 #endif
70 #include <arpa/inet.h>
71 #include <dirent.h>
72 #include <netdb.h>
73 #include <sys/select.h>
74 #ifdef _BSD
75 #include <sys/stat.h>
76 #ifdef __FreeBSD__
77 #include <libutil.h>
78 #else
79 #include <util.h>
80 #endif
81 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82 #include <freebsd/stdlib.h>
83 #else
84 #ifdef __linux__
85 #include <pty.h>
86 #include <malloc.h>
87 #include <linux/rtc.h>
88
89 /* For the benefit of older linux systems which don't supply it,
90 we use a local copy of hpet.h. */
91 /* #include <linux/hpet.h> */
92 #include "hpet.h"
93
94 #include <linux/ppdev.h>
95 #include <linux/parport.h>
96 #endif
97 #ifdef __sun__
98 #include <sys/stat.h>
99 #include <sys/ethernet.h>
100 #include <sys/sockio.h>
101 #include <netinet/arp.h>
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip_icmp.h> // must come after ip.h
106 #include <netinet/udp.h>
107 #include <netinet/tcp.h>
108 #include <net/if.h>
109 #include <syslog.h>
110 #include <stropts.h>
111 #endif
112 #endif
113 #endif
114
115 #include "qemu_socket.h"
116
117 #if defined(CONFIG_SLIRP)
118 #include "libslirp.h"
119 #endif
120
121 #if defined(__OpenBSD__)
122 #include <util.h>
123 #endif
124
125 #if defined(CONFIG_VDE)
126 #include <libvdeplug.h>
127 #endif
128
129 #ifdef _WIN32
130 #include <malloc.h>
131 #include <sys/timeb.h>
132 #include <mmsystem.h>
133 #define getopt_long_only getopt_long
134 #define memalign(align, size) malloc(size)
135 #endif
136
137 #ifdef CONFIG_SDL
138 #ifdef __APPLE__
139 #include <SDL/SDL.h>
140 int qemu_main(int argc, char **argv, char **envp);
141 int main(int argc, char **argv)
142 {
143 qemu_main(argc, argv, NULL);
144 }
145 #undef main
146 #define main qemu_main
147 #endif
148 #endif /* CONFIG_SDL */
149
150 #ifdef CONFIG_COCOA
151 #undef main
152 #define main qemu_main
153 #endif /* CONFIG_COCOA */
154
155 #include "disas.h"
156
157 #include "exec-all.h"
158
159 //#define DEBUG_UNUSED_IOPORT
160 //#define DEBUG_IOPORT
161 //#define DEBUG_NET
162 //#define DEBUG_SLIRP
163
164
165 #ifdef DEBUG_IOPORT
166 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
167 #else
168 # define LOG_IOPORT(...) do { } while (0)
169 #endif
170
171 #define DEFAULT_RAM_SIZE 128
172
173 /* Max number of USB devices that can be specified on the commandline. */
174 #define MAX_USB_CMDLINE 8
175
176 /* Max number of bluetooth switches on the commandline. */
177 #define MAX_BT_CMDLINE 10
178
179 /* XXX: use a two level table to limit memory usage */
180 #define MAX_IOPORTS 65536
181
182 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
183 const char *bios_name = NULL;
184 static void *ioport_opaque[MAX_IOPORTS];
185 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
186 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
187 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
188 to store the VM snapshots */
189 DriveInfo drives_table[MAX_DRIVES+1];
190 int nb_drives;
191 static int vga_ram_size;
192 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
193 static DisplayState *display_state;
194 int nographic;
195 static int curses;
196 static int sdl;
197 const char* keyboard_layout = NULL;
198 int64_t ticks_per_sec;
199 ram_addr_t ram_size;
200 int nb_nics;
201 NICInfo nd_table[MAX_NICS];
202 int vm_running;
203 static int rtc_utc = 1;
204 static int rtc_date_offset = -1; /* -1 means no change */
205 int cirrus_vga_enabled = 1;
206 int std_vga_enabled = 0;
207 int vmsvga_enabled = 0;
208 #ifdef TARGET_SPARC
209 int graphic_width = 1024;
210 int graphic_height = 768;
211 int graphic_depth = 8;
212 #else
213 int graphic_width = 800;
214 int graphic_height = 600;
215 int graphic_depth = 15;
216 #endif
217 static int full_screen = 0;
218 #ifdef CONFIG_SDL
219 static int no_frame = 0;
220 #endif
221 int no_quit = 0;
222 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
223 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
224 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
225 #ifdef TARGET_I386
226 int win2k_install_hack = 0;
227 int rtc_td_hack = 0;
228 #endif
229 int usb_enabled = 0;
230 int smp_cpus = 1;
231 const char *vnc_display;
232 int acpi_enabled = 1;
233 int no_hpet = 0;
234 int fd_bootchk = 1;
235 int no_reboot = 0;
236 int no_shutdown = 0;
237 int cursor_hide = 1;
238 int graphic_rotate = 0;
239 int daemonize = 0;
240 const char *option_rom[MAX_OPTION_ROMS];
241 int nb_option_roms;
242 int semihosting_enabled = 0;
243 #ifdef TARGET_ARM
244 int old_param = 0;
245 #endif
246 const char *qemu_name;
247 int alt_grab = 0;
248 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
249 unsigned int nb_prom_envs = 0;
250 const char *prom_envs[MAX_PROM_ENVS];
251 #endif
252 int nb_drives_opt;
253 struct drive_opt drives_opt[MAX_DRIVES];
254
255 static CPUState *cur_cpu;
256 static CPUState *next_cpu;
257 static int event_pending = 1;
258 /* Conversion factor from emulated instructions to virtual clock ticks. */
259 static int icount_time_shift;
260 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261 #define MAX_ICOUNT_SHIFT 10
262 /* Compensate for varying guest execution speed. */
263 static int64_t qemu_icount_bias;
264 static QEMUTimer *icount_rt_timer;
265 static QEMUTimer *icount_vm_timer;
266 static QEMUTimer *nographic_timer;
267
268 uint8_t qemu_uuid[16];
269
270 /***********************************************************/
271 /* x86 ISA bus support */
272
273 target_phys_addr_t isa_mem_base = 0;
274 PicState2 *isa_pic;
275
276 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
277 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
278
279 static uint32_t ioport_read(int index, uint32_t address)
280 {
281 static IOPortReadFunc *default_func[3] = {
282 default_ioport_readb,
283 default_ioport_readw,
284 default_ioport_readl
285 };
286 IOPortReadFunc *func = ioport_read_table[index][address];
287 if (!func)
288 func = default_func[index];
289 return func(ioport_opaque[address], address);
290 }
291
292 static void ioport_write(int index, uint32_t address, uint32_t data)
293 {
294 static IOPortWriteFunc *default_func[3] = {
295 default_ioport_writeb,
296 default_ioport_writew,
297 default_ioport_writel
298 };
299 IOPortWriteFunc *func = ioport_write_table[index][address];
300 if (!func)
301 func = default_func[index];
302 func(ioport_opaque[address], address, data);
303 }
304
305 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
306 {
307 #ifdef DEBUG_UNUSED_IOPORT
308 fprintf(stderr, "unused inb: port=0x%04x\n", address);
309 #endif
310 return 0xff;
311 }
312
313 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
314 {
315 #ifdef DEBUG_UNUSED_IOPORT
316 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
317 #endif
318 }
319
320 /* default is to make two byte accesses */
321 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
322 {
323 uint32_t data;
324 data = ioport_read(0, address);
325 address = (address + 1) & (MAX_IOPORTS - 1);
326 data |= ioport_read(0, address) << 8;
327 return data;
328 }
329
330 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
331 {
332 ioport_write(0, address, data & 0xff);
333 address = (address + 1) & (MAX_IOPORTS - 1);
334 ioport_write(0, address, (data >> 8) & 0xff);
335 }
336
337 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
338 {
339 #ifdef DEBUG_UNUSED_IOPORT
340 fprintf(stderr, "unused inl: port=0x%04x\n", address);
341 #endif
342 return 0xffffffff;
343 }
344
345 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
346 {
347 #ifdef DEBUG_UNUSED_IOPORT
348 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
349 #endif
350 }
351
352 /* size is the word size in byte */
353 int register_ioport_read(int start, int length, int size,
354 IOPortReadFunc *func, void *opaque)
355 {
356 int i, bsize;
357
358 if (size == 1) {
359 bsize = 0;
360 } else if (size == 2) {
361 bsize = 1;
362 } else if (size == 4) {
363 bsize = 2;
364 } else {
365 hw_error("register_ioport_read: invalid size");
366 return -1;
367 }
368 for(i = start; i < start + length; i += size) {
369 ioport_read_table[bsize][i] = func;
370 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
371 hw_error("register_ioport_read: invalid opaque");
372 ioport_opaque[i] = opaque;
373 }
374 return 0;
375 }
376
377 /* size is the word size in byte */
378 int register_ioport_write(int start, int length, int size,
379 IOPortWriteFunc *func, void *opaque)
380 {
381 int i, bsize;
382
383 if (size == 1) {
384 bsize = 0;
385 } else if (size == 2) {
386 bsize = 1;
387 } else if (size == 4) {
388 bsize = 2;
389 } else {
390 hw_error("register_ioport_write: invalid size");
391 return -1;
392 }
393 for(i = start; i < start + length; i += size) {
394 ioport_write_table[bsize][i] = func;
395 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
396 hw_error("register_ioport_write: invalid opaque");
397 ioport_opaque[i] = opaque;
398 }
399 return 0;
400 }
401
402 void isa_unassign_ioport(int start, int length)
403 {
404 int i;
405
406 for(i = start; i < start + length; i++) {
407 ioport_read_table[0][i] = default_ioport_readb;
408 ioport_read_table[1][i] = default_ioport_readw;
409 ioport_read_table[2][i] = default_ioport_readl;
410
411 ioport_write_table[0][i] = default_ioport_writeb;
412 ioport_write_table[1][i] = default_ioport_writew;
413 ioport_write_table[2][i] = default_ioport_writel;
414
415 ioport_opaque[i] = NULL;
416 }
417 }
418
419 /***********************************************************/
420
421 void cpu_outb(CPUState *env, int addr, int val)
422 {
423 LOG_IOPORT("outb: %04x %02x\n", addr, val);
424 ioport_write(0, addr, val);
425 #ifdef USE_KQEMU
426 if (env)
427 env->last_io_time = cpu_get_time_fast();
428 #endif
429 }
430
431 void cpu_outw(CPUState *env, int addr, int val)
432 {
433 LOG_IOPORT("outw: %04x %04x\n", addr, val);
434 ioport_write(1, addr, val);
435 #ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438 #endif
439 }
440
441 void cpu_outl(CPUState *env, int addr, int val)
442 {
443 LOG_IOPORT("outl: %04x %08x\n", addr, val);
444 ioport_write(2, addr, val);
445 #ifdef USE_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
449 }
450
451 int cpu_inb(CPUState *env, int addr)
452 {
453 int val;
454 val = ioport_read(0, addr);
455 LOG_IOPORT("inb : %04x %02x\n", addr, val);
456 #ifdef USE_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 return val;
461 }
462
463 int cpu_inw(CPUState *env, int addr)
464 {
465 int val;
466 val = ioport_read(1, addr);
467 LOG_IOPORT("inw : %04x %04x\n", addr, val);
468 #ifdef USE_KQEMU
469 if (env)
470 env->last_io_time = cpu_get_time_fast();
471 #endif
472 return val;
473 }
474
475 int cpu_inl(CPUState *env, int addr)
476 {
477 int val;
478 val = ioport_read(2, addr);
479 LOG_IOPORT("inl : %04x %08x\n", addr, val);
480 #ifdef USE_KQEMU
481 if (env)
482 env->last_io_time = cpu_get_time_fast();
483 #endif
484 return val;
485 }
486
487 /***********************************************************/
488 void hw_error(const char *fmt, ...)
489 {
490 va_list ap;
491 CPUState *env;
492
493 va_start(ap, fmt);
494 fprintf(stderr, "qemu: hardware error: ");
495 vfprintf(stderr, fmt, ap);
496 fprintf(stderr, "\n");
497 for(env = first_cpu; env != NULL; env = env->next_cpu) {
498 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
499 #ifdef TARGET_I386
500 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
501 #else
502 cpu_dump_state(env, stderr, fprintf, 0);
503 #endif
504 }
505 va_end(ap);
506 abort();
507 }
508
509 /***************/
510 /* ballooning */
511
512 static QEMUBalloonEvent *qemu_balloon_event;
513 void *qemu_balloon_event_opaque;
514
515 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
516 {
517 qemu_balloon_event = func;
518 qemu_balloon_event_opaque = opaque;
519 }
520
521 void qemu_balloon(ram_addr_t target)
522 {
523 if (qemu_balloon_event)
524 qemu_balloon_event(qemu_balloon_event_opaque, target);
525 }
526
527 ram_addr_t qemu_balloon_status(void)
528 {
529 if (qemu_balloon_event)
530 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
531 return 0;
532 }
533
534 /***********************************************************/
535 /* keyboard/mouse */
536
537 static QEMUPutKBDEvent *qemu_put_kbd_event;
538 static void *qemu_put_kbd_event_opaque;
539 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
540 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
541
542 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
543 {
544 qemu_put_kbd_event_opaque = opaque;
545 qemu_put_kbd_event = func;
546 }
547
548 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
549 void *opaque, int absolute,
550 const char *name)
551 {
552 QEMUPutMouseEntry *s, *cursor;
553
554 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
555
556 s->qemu_put_mouse_event = func;
557 s->qemu_put_mouse_event_opaque = opaque;
558 s->qemu_put_mouse_event_absolute = absolute;
559 s->qemu_put_mouse_event_name = qemu_strdup(name);
560 s->next = NULL;
561
562 if (!qemu_put_mouse_event_head) {
563 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
564 return s;
565 }
566
567 cursor = qemu_put_mouse_event_head;
568 while (cursor->next != NULL)
569 cursor = cursor->next;
570
571 cursor->next = s;
572 qemu_put_mouse_event_current = s;
573
574 return s;
575 }
576
577 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
578 {
579 QEMUPutMouseEntry *prev = NULL, *cursor;
580
581 if (!qemu_put_mouse_event_head || entry == NULL)
582 return;
583
584 cursor = qemu_put_mouse_event_head;
585 while (cursor != NULL && cursor != entry) {
586 prev = cursor;
587 cursor = cursor->next;
588 }
589
590 if (cursor == NULL) // does not exist or list empty
591 return;
592 else if (prev == NULL) { // entry is head
593 qemu_put_mouse_event_head = cursor->next;
594 if (qemu_put_mouse_event_current == entry)
595 qemu_put_mouse_event_current = cursor->next;
596 qemu_free(entry->qemu_put_mouse_event_name);
597 qemu_free(entry);
598 return;
599 }
600
601 prev->next = entry->next;
602
603 if (qemu_put_mouse_event_current == entry)
604 qemu_put_mouse_event_current = prev;
605
606 qemu_free(entry->qemu_put_mouse_event_name);
607 qemu_free(entry);
608 }
609
610 void kbd_put_keycode(int keycode)
611 {
612 if (qemu_put_kbd_event) {
613 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
614 }
615 }
616
617 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
618 {
619 QEMUPutMouseEvent *mouse_event;
620 void *mouse_event_opaque;
621 int width;
622
623 if (!qemu_put_mouse_event_current) {
624 return;
625 }
626
627 mouse_event =
628 qemu_put_mouse_event_current->qemu_put_mouse_event;
629 mouse_event_opaque =
630 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
631
632 if (mouse_event) {
633 if (graphic_rotate) {
634 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
635 width = 0x7fff;
636 else
637 width = graphic_width - 1;
638 mouse_event(mouse_event_opaque,
639 width - dy, dx, dz, buttons_state);
640 } else
641 mouse_event(mouse_event_opaque,
642 dx, dy, dz, buttons_state);
643 }
644 }
645
646 int kbd_mouse_is_absolute(void)
647 {
648 if (!qemu_put_mouse_event_current)
649 return 0;
650
651 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
652 }
653
654 void do_info_mice(void)
655 {
656 QEMUPutMouseEntry *cursor;
657 int index = 0;
658
659 if (!qemu_put_mouse_event_head) {
660 term_printf("No mouse devices connected\n");
661 return;
662 }
663
664 term_printf("Mouse devices available:\n");
665 cursor = qemu_put_mouse_event_head;
666 while (cursor != NULL) {
667 term_printf("%c Mouse #%d: %s\n",
668 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
669 index, cursor->qemu_put_mouse_event_name);
670 index++;
671 cursor = cursor->next;
672 }
673 }
674
675 void do_mouse_set(int index)
676 {
677 QEMUPutMouseEntry *cursor;
678 int i = 0;
679
680 if (!qemu_put_mouse_event_head) {
681 term_printf("No mouse devices connected\n");
682 return;
683 }
684
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL && index != i) {
687 i++;
688 cursor = cursor->next;
689 }
690
691 if (cursor != NULL)
692 qemu_put_mouse_event_current = cursor;
693 else
694 term_printf("Mouse at given index not found\n");
695 }
696
697 /* compute with 96 bit intermediate result: (a*b)/c */
698 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
699 {
700 union {
701 uint64_t ll;
702 struct {
703 #ifdef WORDS_BIGENDIAN
704 uint32_t high, low;
705 #else
706 uint32_t low, high;
707 #endif
708 } l;
709 } u, res;
710 uint64_t rl, rh;
711
712 u.ll = a;
713 rl = (uint64_t)u.l.low * (uint64_t)b;
714 rh = (uint64_t)u.l.high * (uint64_t)b;
715 rh += (rl >> 32);
716 res.l.high = rh / c;
717 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
718 return res.ll;
719 }
720
721 /***********************************************************/
722 /* real time host monotonic timer */
723
724 #define QEMU_TIMER_BASE 1000000000LL
725
726 #ifdef WIN32
727
728 static int64_t clock_freq;
729
730 static void init_get_clock(void)
731 {
732 LARGE_INTEGER freq;
733 int ret;
734 ret = QueryPerformanceFrequency(&freq);
735 if (ret == 0) {
736 fprintf(stderr, "Could not calibrate ticks\n");
737 exit(1);
738 }
739 clock_freq = freq.QuadPart;
740 }
741
742 static int64_t get_clock(void)
743 {
744 LARGE_INTEGER ti;
745 QueryPerformanceCounter(&ti);
746 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
747 }
748
749 #else
750
751 static int use_rt_clock;
752
753 static void init_get_clock(void)
754 {
755 use_rt_clock = 0;
756 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
757 {
758 struct timespec ts;
759 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
760 use_rt_clock = 1;
761 }
762 }
763 #endif
764 }
765
766 static int64_t get_clock(void)
767 {
768 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
769 if (use_rt_clock) {
770 struct timespec ts;
771 clock_gettime(CLOCK_MONOTONIC, &ts);
772 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
773 } else
774 #endif
775 {
776 /* XXX: using gettimeofday leads to problems if the date
777 changes, so it should be avoided. */
778 struct timeval tv;
779 gettimeofday(&tv, NULL);
780 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
781 }
782 }
783 #endif
784
785 /* Return the virtual CPU time, based on the instruction counter. */
786 static int64_t cpu_get_icount(void)
787 {
788 int64_t icount;
789 CPUState *env = cpu_single_env;;
790 icount = qemu_icount;
791 if (env) {
792 if (!can_do_io(env))
793 fprintf(stderr, "Bad clock read\n");
794 icount -= (env->icount_decr.u16.low + env->icount_extra);
795 }
796 return qemu_icount_bias + (icount << icount_time_shift);
797 }
798
799 /***********************************************************/
800 /* guest cycle counter */
801
802 static int64_t cpu_ticks_prev;
803 static int64_t cpu_ticks_offset;
804 static int64_t cpu_clock_offset;
805 static int cpu_ticks_enabled;
806
807 /* return the host CPU cycle counter and handle stop/restart */
808 int64_t cpu_get_ticks(void)
809 {
810 if (use_icount) {
811 return cpu_get_icount();
812 }
813 if (!cpu_ticks_enabled) {
814 return cpu_ticks_offset;
815 } else {
816 int64_t ticks;
817 ticks = cpu_get_real_ticks();
818 if (cpu_ticks_prev > ticks) {
819 /* Note: non increasing ticks may happen if the host uses
820 software suspend */
821 cpu_ticks_offset += cpu_ticks_prev - ticks;
822 }
823 cpu_ticks_prev = ticks;
824 return ticks + cpu_ticks_offset;
825 }
826 }
827
828 /* return the host CPU monotonic timer and handle stop/restart */
829 static int64_t cpu_get_clock(void)
830 {
831 int64_t ti;
832 if (!cpu_ticks_enabled) {
833 return cpu_clock_offset;
834 } else {
835 ti = get_clock();
836 return ti + cpu_clock_offset;
837 }
838 }
839
840 /* enable cpu_get_ticks() */
841 void cpu_enable_ticks(void)
842 {
843 if (!cpu_ticks_enabled) {
844 cpu_ticks_offset -= cpu_get_real_ticks();
845 cpu_clock_offset -= get_clock();
846 cpu_ticks_enabled = 1;
847 }
848 }
849
850 /* disable cpu_get_ticks() : the clock is stopped. You must not call
851 cpu_get_ticks() after that. */
852 void cpu_disable_ticks(void)
853 {
854 if (cpu_ticks_enabled) {
855 cpu_ticks_offset = cpu_get_ticks();
856 cpu_clock_offset = cpu_get_clock();
857 cpu_ticks_enabled = 0;
858 }
859 }
860
861 /***********************************************************/
862 /* timers */
863
864 #define QEMU_TIMER_REALTIME 0
865 #define QEMU_TIMER_VIRTUAL 1
866
867 struct QEMUClock {
868 int type;
869 /* XXX: add frequency */
870 };
871
872 struct QEMUTimer {
873 QEMUClock *clock;
874 int64_t expire_time;
875 QEMUTimerCB *cb;
876 void *opaque;
877 struct QEMUTimer *next;
878 };
879
880 struct qemu_alarm_timer {
881 char const *name;
882 unsigned int flags;
883
884 int (*start)(struct qemu_alarm_timer *t);
885 void (*stop)(struct qemu_alarm_timer *t);
886 void (*rearm)(struct qemu_alarm_timer *t);
887 void *priv;
888 };
889
890 #define ALARM_FLAG_DYNTICKS 0x1
891 #define ALARM_FLAG_EXPIRED 0x2
892
893 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
894 {
895 return t->flags & ALARM_FLAG_DYNTICKS;
896 }
897
898 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
899 {
900 if (!alarm_has_dynticks(t))
901 return;
902
903 t->rearm(t);
904 }
905
906 /* TODO: MIN_TIMER_REARM_US should be optimized */
907 #define MIN_TIMER_REARM_US 250
908
909 static struct qemu_alarm_timer *alarm_timer;
910 #ifndef _WIN32
911 static int alarm_timer_rfd, alarm_timer_wfd;
912 #endif
913
914 #ifdef _WIN32
915
916 struct qemu_alarm_win32 {
917 MMRESULT timerId;
918 HANDLE host_alarm;
919 unsigned int period;
920 } alarm_win32_data = {0, NULL, -1};
921
922 static int win32_start_timer(struct qemu_alarm_timer *t);
923 static void win32_stop_timer(struct qemu_alarm_timer *t);
924 static void win32_rearm_timer(struct qemu_alarm_timer *t);
925
926 #else
927
928 static int unix_start_timer(struct qemu_alarm_timer *t);
929 static void unix_stop_timer(struct qemu_alarm_timer *t);
930
931 #ifdef __linux__
932
933 static int dynticks_start_timer(struct qemu_alarm_timer *t);
934 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
935 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
936
937 static int hpet_start_timer(struct qemu_alarm_timer *t);
938 static void hpet_stop_timer(struct qemu_alarm_timer *t);
939
940 static int rtc_start_timer(struct qemu_alarm_timer *t);
941 static void rtc_stop_timer(struct qemu_alarm_timer *t);
942
943 #endif /* __linux__ */
944
945 #endif /* _WIN32 */
946
947 /* Correlation between real and virtual time is always going to be
948 fairly approximate, so ignore small variation.
949 When the guest is idle real and virtual time will be aligned in
950 the IO wait loop. */
951 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
952
953 static void icount_adjust(void)
954 {
955 int64_t cur_time;
956 int64_t cur_icount;
957 int64_t delta;
958 static int64_t last_delta;
959 /* If the VM is not running, then do nothing. */
960 if (!vm_running)
961 return;
962
963 cur_time = cpu_get_clock();
964 cur_icount = qemu_get_clock(vm_clock);
965 delta = cur_icount - cur_time;
966 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
967 if (delta > 0
968 && last_delta + ICOUNT_WOBBLE < delta * 2
969 && icount_time_shift > 0) {
970 /* The guest is getting too far ahead. Slow time down. */
971 icount_time_shift--;
972 }
973 if (delta < 0
974 && last_delta - ICOUNT_WOBBLE > delta * 2
975 && icount_time_shift < MAX_ICOUNT_SHIFT) {
976 /* The guest is getting too far behind. Speed time up. */
977 icount_time_shift++;
978 }
979 last_delta = delta;
980 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
981 }
982
983 static void icount_adjust_rt(void * opaque)
984 {
985 qemu_mod_timer(icount_rt_timer,
986 qemu_get_clock(rt_clock) + 1000);
987 icount_adjust();
988 }
989
990 static void icount_adjust_vm(void * opaque)
991 {
992 qemu_mod_timer(icount_vm_timer,
993 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
994 icount_adjust();
995 }
996
997 static void init_icount_adjust(void)
998 {
999 /* Have both realtime and virtual time triggers for speed adjustment.
1000 The realtime trigger catches emulated time passing too slowly,
1001 the virtual time trigger catches emulated time passing too fast.
1002 Realtime triggers occur even when idle, so use them less frequently
1003 than VM triggers. */
1004 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1005 qemu_mod_timer(icount_rt_timer,
1006 qemu_get_clock(rt_clock) + 1000);
1007 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1008 qemu_mod_timer(icount_vm_timer,
1009 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1010 }
1011
1012 static struct qemu_alarm_timer alarm_timers[] = {
1013 #ifndef _WIN32
1014 #ifdef __linux__
1015 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1016 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1017 /* HPET - if available - is preferred */
1018 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1019 /* ...otherwise try RTC */
1020 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1021 #endif
1022 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1023 #else
1024 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1025 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1026 {"win32", 0, win32_start_timer,
1027 win32_stop_timer, NULL, &alarm_win32_data},
1028 #endif
1029 {NULL, }
1030 };
1031
1032 static void show_available_alarms(void)
1033 {
1034 int i;
1035
1036 printf("Available alarm timers, in order of precedence:\n");
1037 for (i = 0; alarm_timers[i].name; i++)
1038 printf("%s\n", alarm_timers[i].name);
1039 }
1040
1041 static void configure_alarms(char const *opt)
1042 {
1043 int i;
1044 int cur = 0;
1045 int count = ARRAY_SIZE(alarm_timers) - 1;
1046 char *arg;
1047 char *name;
1048 struct qemu_alarm_timer tmp;
1049
1050 if (!strcmp(opt, "?")) {
1051 show_available_alarms();
1052 exit(0);
1053 }
1054
1055 arg = strdup(opt);
1056
1057 /* Reorder the array */
1058 name = strtok(arg, ",");
1059 while (name) {
1060 for (i = 0; i < count && alarm_timers[i].name; i++) {
1061 if (!strcmp(alarm_timers[i].name, name))
1062 break;
1063 }
1064
1065 if (i == count) {
1066 fprintf(stderr, "Unknown clock %s\n", name);
1067 goto next;
1068 }
1069
1070 if (i < cur)
1071 /* Ignore */
1072 goto next;
1073
1074 /* Swap */
1075 tmp = alarm_timers[i];
1076 alarm_timers[i] = alarm_timers[cur];
1077 alarm_timers[cur] = tmp;
1078
1079 cur++;
1080 next:
1081 name = strtok(NULL, ",");
1082 }
1083
1084 free(arg);
1085
1086 if (cur) {
1087 /* Disable remaining timers */
1088 for (i = cur; i < count; i++)
1089 alarm_timers[i].name = NULL;
1090 } else {
1091 show_available_alarms();
1092 exit(1);
1093 }
1094 }
1095
1096 QEMUClock *rt_clock;
1097 QEMUClock *vm_clock;
1098
1099 static QEMUTimer *active_timers[2];
1100
1101 static QEMUClock *qemu_new_clock(int type)
1102 {
1103 QEMUClock *clock;
1104 clock = qemu_mallocz(sizeof(QEMUClock));
1105 clock->type = type;
1106 return clock;
1107 }
1108
1109 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1110 {
1111 QEMUTimer *ts;
1112
1113 ts = qemu_mallocz(sizeof(QEMUTimer));
1114 ts->clock = clock;
1115 ts->cb = cb;
1116 ts->opaque = opaque;
1117 return ts;
1118 }
1119
1120 void qemu_free_timer(QEMUTimer *ts)
1121 {
1122 qemu_free(ts);
1123 }
1124
1125 /* stop a timer, but do not dealloc it */
1126 void qemu_del_timer(QEMUTimer *ts)
1127 {
1128 QEMUTimer **pt, *t;
1129
1130 /* NOTE: this code must be signal safe because
1131 qemu_timer_expired() can be called from a signal. */
1132 pt = &active_timers[ts->clock->type];
1133 for(;;) {
1134 t = *pt;
1135 if (!t)
1136 break;
1137 if (t == ts) {
1138 *pt = t->next;
1139 break;
1140 }
1141 pt = &t->next;
1142 }
1143 }
1144
1145 /* modify the current timer so that it will be fired when current_time
1146 >= expire_time. The corresponding callback will be called. */
1147 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1148 {
1149 QEMUTimer **pt, *t;
1150
1151 qemu_del_timer(ts);
1152
1153 /* add the timer in the sorted list */
1154 /* NOTE: this code must be signal safe because
1155 qemu_timer_expired() can be called from a signal. */
1156 pt = &active_timers[ts->clock->type];
1157 for(;;) {
1158 t = *pt;
1159 if (!t)
1160 break;
1161 if (t->expire_time > expire_time)
1162 break;
1163 pt = &t->next;
1164 }
1165 ts->expire_time = expire_time;
1166 ts->next = *pt;
1167 *pt = ts;
1168
1169 /* Rearm if necessary */
1170 if (pt == &active_timers[ts->clock->type]) {
1171 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1172 qemu_rearm_alarm_timer(alarm_timer);
1173 }
1174 /* Interrupt execution to force deadline recalculation. */
1175 if (use_icount && cpu_single_env) {
1176 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1177 }
1178 }
1179 }
1180
1181 int qemu_timer_pending(QEMUTimer *ts)
1182 {
1183 QEMUTimer *t;
1184 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1185 if (t == ts)
1186 return 1;
1187 }
1188 return 0;
1189 }
1190
1191 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1192 {
1193 if (!timer_head)
1194 return 0;
1195 return (timer_head->expire_time <= current_time);
1196 }
1197
1198 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1199 {
1200 QEMUTimer *ts;
1201
1202 for(;;) {
1203 ts = *ptimer_head;
1204 if (!ts || ts->expire_time > current_time)
1205 break;
1206 /* remove timer from the list before calling the callback */
1207 *ptimer_head = ts->next;
1208 ts->next = NULL;
1209
1210 /* run the callback (the timer list can be modified) */
1211 ts->cb(ts->opaque);
1212 }
1213 }
1214
1215 int64_t qemu_get_clock(QEMUClock *clock)
1216 {
1217 switch(clock->type) {
1218 case QEMU_TIMER_REALTIME:
1219 return get_clock() / 1000000;
1220 default:
1221 case QEMU_TIMER_VIRTUAL:
1222 if (use_icount) {
1223 return cpu_get_icount();
1224 } else {
1225 return cpu_get_clock();
1226 }
1227 }
1228 }
1229
1230 static void init_timers(void)
1231 {
1232 init_get_clock();
1233 ticks_per_sec = QEMU_TIMER_BASE;
1234 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1235 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1236 }
1237
1238 /* save a timer */
1239 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1240 {
1241 uint64_t expire_time;
1242
1243 if (qemu_timer_pending(ts)) {
1244 expire_time = ts->expire_time;
1245 } else {
1246 expire_time = -1;
1247 }
1248 qemu_put_be64(f, expire_time);
1249 }
1250
1251 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1252 {
1253 uint64_t expire_time;
1254
1255 expire_time = qemu_get_be64(f);
1256 if (expire_time != -1) {
1257 qemu_mod_timer(ts, expire_time);
1258 } else {
1259 qemu_del_timer(ts);
1260 }
1261 }
1262
1263 static void timer_save(QEMUFile *f, void *opaque)
1264 {
1265 if (cpu_ticks_enabled) {
1266 hw_error("cannot save state if virtual timers are running");
1267 }
1268 qemu_put_be64(f, cpu_ticks_offset);
1269 qemu_put_be64(f, ticks_per_sec);
1270 qemu_put_be64(f, cpu_clock_offset);
1271 }
1272
1273 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1274 {
1275 if (version_id != 1 && version_id != 2)
1276 return -EINVAL;
1277 if (cpu_ticks_enabled) {
1278 return -EINVAL;
1279 }
1280 cpu_ticks_offset=qemu_get_be64(f);
1281 ticks_per_sec=qemu_get_be64(f);
1282 if (version_id == 2) {
1283 cpu_clock_offset=qemu_get_be64(f);
1284 }
1285 return 0;
1286 }
1287
1288 #ifdef _WIN32
1289 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1290 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1291 #else
1292 static void host_alarm_handler(int host_signum)
1293 #endif
1294 {
1295 #if 0
1296 #define DISP_FREQ 1000
1297 {
1298 static int64_t delta_min = INT64_MAX;
1299 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1300 static int count;
1301 ti = qemu_get_clock(vm_clock);
1302 if (last_clock != 0) {
1303 delta = ti - last_clock;
1304 if (delta < delta_min)
1305 delta_min = delta;
1306 if (delta > delta_max)
1307 delta_max = delta;
1308 delta_cum += delta;
1309 if (++count == DISP_FREQ) {
1310 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1311 muldiv64(delta_min, 1000000, ticks_per_sec),
1312 muldiv64(delta_max, 1000000, ticks_per_sec),
1313 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1314 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1315 count = 0;
1316 delta_min = INT64_MAX;
1317 delta_max = 0;
1318 delta_cum = 0;
1319 }
1320 }
1321 last_clock = ti;
1322 }
1323 #endif
1324 if (alarm_has_dynticks(alarm_timer) ||
1325 (!use_icount &&
1326 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1327 qemu_get_clock(vm_clock))) ||
1328 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1329 qemu_get_clock(rt_clock))) {
1330 CPUState *env = next_cpu;
1331
1332 #ifdef _WIN32
1333 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1334 SetEvent(data->host_alarm);
1335 #else
1336 static const char byte = 0;
1337 write(alarm_timer_wfd, &byte, sizeof(byte));
1338 #endif
1339 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1340
1341 if (env) {
1342 /* stop the currently executing cpu because a timer occured */
1343 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1344 #ifdef USE_KQEMU
1345 if (env->kqemu_enabled) {
1346 kqemu_cpu_interrupt(env);
1347 }
1348 #endif
1349 }
1350 event_pending = 1;
1351 }
1352 }
1353
1354 static int64_t qemu_next_deadline(void)
1355 {
1356 int64_t delta;
1357
1358 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1359 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1360 qemu_get_clock(vm_clock);
1361 } else {
1362 /* To avoid problems with overflow limit this to 2^32. */
1363 delta = INT32_MAX;
1364 }
1365
1366 if (delta < 0)
1367 delta = 0;
1368
1369 return delta;
1370 }
1371
1372 #if defined(__linux__) || defined(_WIN32)
1373 static uint64_t qemu_next_deadline_dyntick(void)
1374 {
1375 int64_t delta;
1376 int64_t rtdelta;
1377
1378 if (use_icount)
1379 delta = INT32_MAX;
1380 else
1381 delta = (qemu_next_deadline() + 999) / 1000;
1382
1383 if (active_timers[QEMU_TIMER_REALTIME]) {
1384 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1385 qemu_get_clock(rt_clock))*1000;
1386 if (rtdelta < delta)
1387 delta = rtdelta;
1388 }
1389
1390 if (delta < MIN_TIMER_REARM_US)
1391 delta = MIN_TIMER_REARM_US;
1392
1393 return delta;
1394 }
1395 #endif
1396
1397 #ifndef _WIN32
1398
1399 /* Sets a specific flag */
1400 static int fcntl_setfl(int fd, int flag)
1401 {
1402 int flags;
1403
1404 flags = fcntl(fd, F_GETFL);
1405 if (flags == -1)
1406 return -errno;
1407
1408 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1409 return -errno;
1410
1411 return 0;
1412 }
1413
1414 #if defined(__linux__)
1415
1416 #define RTC_FREQ 1024
1417
1418 static void enable_sigio_timer(int fd)
1419 {
1420 struct sigaction act;
1421
1422 /* timer signal */
1423 sigfillset(&act.sa_mask);
1424 act.sa_flags = 0;
1425 act.sa_handler = host_alarm_handler;
1426
1427 sigaction(SIGIO, &act, NULL);
1428 fcntl_setfl(fd, O_ASYNC);
1429 fcntl(fd, F_SETOWN, getpid());
1430 }
1431
1432 static int hpet_start_timer(struct qemu_alarm_timer *t)
1433 {
1434 struct hpet_info info;
1435 int r, fd;
1436
1437 fd = open("/dev/hpet", O_RDONLY);
1438 if (fd < 0)
1439 return -1;
1440
1441 /* Set frequency */
1442 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1443 if (r < 0) {
1444 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1445 "error, but for better emulation accuracy type:\n"
1446 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1447 goto fail;
1448 }
1449
1450 /* Check capabilities */
1451 r = ioctl(fd, HPET_INFO, &info);
1452 if (r < 0)
1453 goto fail;
1454
1455 /* Enable periodic mode */
1456 r = ioctl(fd, HPET_EPI, 0);
1457 if (info.hi_flags && (r < 0))
1458 goto fail;
1459
1460 /* Enable interrupt */
1461 r = ioctl(fd, HPET_IE_ON, 0);
1462 if (r < 0)
1463 goto fail;
1464
1465 enable_sigio_timer(fd);
1466 t->priv = (void *)(long)fd;
1467
1468 return 0;
1469 fail:
1470 close(fd);
1471 return -1;
1472 }
1473
1474 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1475 {
1476 int fd = (long)t->priv;
1477
1478 close(fd);
1479 }
1480
1481 static int rtc_start_timer(struct qemu_alarm_timer *t)
1482 {
1483 int rtc_fd;
1484 unsigned long current_rtc_freq = 0;
1485
1486 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1487 if (rtc_fd < 0)
1488 return -1;
1489 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1490 if (current_rtc_freq != RTC_FREQ &&
1491 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1492 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1493 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1494 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1495 goto fail;
1496 }
1497 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1498 fail:
1499 close(rtc_fd);
1500 return -1;
1501 }
1502
1503 enable_sigio_timer(rtc_fd);
1504
1505 t->priv = (void *)(long)rtc_fd;
1506
1507 return 0;
1508 }
1509
1510 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1511 {
1512 int rtc_fd = (long)t->priv;
1513
1514 close(rtc_fd);
1515 }
1516
1517 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1518 {
1519 struct sigevent ev;
1520 timer_t host_timer;
1521 struct sigaction act;
1522
1523 sigfillset(&act.sa_mask);
1524 act.sa_flags = 0;
1525 act.sa_handler = host_alarm_handler;
1526
1527 sigaction(SIGALRM, &act, NULL);
1528
1529 ev.sigev_value.sival_int = 0;
1530 ev.sigev_notify = SIGEV_SIGNAL;
1531 ev.sigev_signo = SIGALRM;
1532
1533 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1534 perror("timer_create");
1535
1536 /* disable dynticks */
1537 fprintf(stderr, "Dynamic Ticks disabled\n");
1538
1539 return -1;
1540 }
1541
1542 t->priv = (void *)(long)host_timer;
1543
1544 return 0;
1545 }
1546
1547 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1548 {
1549 timer_t host_timer = (timer_t)(long)t->priv;
1550
1551 timer_delete(host_timer);
1552 }
1553
1554 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1555 {
1556 timer_t host_timer = (timer_t)(long)t->priv;
1557 struct itimerspec timeout;
1558 int64_t nearest_delta_us = INT64_MAX;
1559 int64_t current_us;
1560
1561 if (!active_timers[QEMU_TIMER_REALTIME] &&
1562 !active_timers[QEMU_TIMER_VIRTUAL])
1563 return;
1564
1565 nearest_delta_us = qemu_next_deadline_dyntick();
1566
1567 /* check whether a timer is already running */
1568 if (timer_gettime(host_timer, &timeout)) {
1569 perror("gettime");
1570 fprintf(stderr, "Internal timer error: aborting\n");
1571 exit(1);
1572 }
1573 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1574 if (current_us && current_us <= nearest_delta_us)
1575 return;
1576
1577 timeout.it_interval.tv_sec = 0;
1578 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1579 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1580 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1581 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1582 perror("settime");
1583 fprintf(stderr, "Internal timer error: aborting\n");
1584 exit(1);
1585 }
1586 }
1587
1588 #endif /* defined(__linux__) */
1589
1590 static int unix_start_timer(struct qemu_alarm_timer *t)
1591 {
1592 struct sigaction act;
1593 struct itimerval itv;
1594 int err;
1595
1596 /* timer signal */
1597 sigfillset(&act.sa_mask);
1598 act.sa_flags = 0;
1599 act.sa_handler = host_alarm_handler;
1600
1601 sigaction(SIGALRM, &act, NULL);
1602
1603 itv.it_interval.tv_sec = 0;
1604 /* for i386 kernel 2.6 to get 1 ms */
1605 itv.it_interval.tv_usec = 999;
1606 itv.it_value.tv_sec = 0;
1607 itv.it_value.tv_usec = 10 * 1000;
1608
1609 err = setitimer(ITIMER_REAL, &itv, NULL);
1610 if (err)
1611 return -1;
1612
1613 return 0;
1614 }
1615
1616 static void unix_stop_timer(struct qemu_alarm_timer *t)
1617 {
1618 struct itimerval itv;
1619
1620 memset(&itv, 0, sizeof(itv));
1621 setitimer(ITIMER_REAL, &itv, NULL);
1622 }
1623
1624 #endif /* !defined(_WIN32) */
1625
1626 static void try_to_rearm_timer(void *opaque)
1627 {
1628 struct qemu_alarm_timer *t = opaque;
1629 #ifndef _WIN32
1630 ssize_t len;
1631
1632 /* Drain the notify pipe */
1633 do {
1634 char buffer[512];
1635 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1636 } while ((len == -1 && errno == EINTR) || len > 0);
1637 #endif
1638
1639 if (t->flags & ALARM_FLAG_EXPIRED) {
1640 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1641 qemu_rearm_alarm_timer(alarm_timer);
1642 }
1643 }
1644
1645 #ifdef _WIN32
1646
1647 static int win32_start_timer(struct qemu_alarm_timer *t)
1648 {
1649 TIMECAPS tc;
1650 struct qemu_alarm_win32 *data = t->priv;
1651 UINT flags;
1652
1653 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1654 if (!data->host_alarm) {
1655 perror("Failed CreateEvent");
1656 return -1;
1657 }
1658
1659 memset(&tc, 0, sizeof(tc));
1660 timeGetDevCaps(&tc, sizeof(tc));
1661
1662 if (data->period < tc.wPeriodMin)
1663 data->period = tc.wPeriodMin;
1664
1665 timeBeginPeriod(data->period);
1666
1667 flags = TIME_CALLBACK_FUNCTION;
1668 if (alarm_has_dynticks(t))
1669 flags |= TIME_ONESHOT;
1670 else
1671 flags |= TIME_PERIODIC;
1672
1673 data->timerId = timeSetEvent(1, // interval (ms)
1674 data->period, // resolution
1675 host_alarm_handler, // function
1676 (DWORD)t, // parameter
1677 flags);
1678
1679 if (!data->timerId) {
1680 perror("Failed to initialize win32 alarm timer");
1681
1682 timeEndPeriod(data->period);
1683 CloseHandle(data->host_alarm);
1684 return -1;
1685 }
1686
1687 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1688
1689 return 0;
1690 }
1691
1692 static void win32_stop_timer(struct qemu_alarm_timer *t)
1693 {
1694 struct qemu_alarm_win32 *data = t->priv;
1695
1696 timeKillEvent(data->timerId);
1697 timeEndPeriod(data->period);
1698
1699 CloseHandle(data->host_alarm);
1700 }
1701
1702 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1703 {
1704 struct qemu_alarm_win32 *data = t->priv;
1705 uint64_t nearest_delta_us;
1706
1707 if (!active_timers[QEMU_TIMER_REALTIME] &&
1708 !active_timers[QEMU_TIMER_VIRTUAL])
1709 return;
1710
1711 nearest_delta_us = qemu_next_deadline_dyntick();
1712 nearest_delta_us /= 1000;
1713
1714 timeKillEvent(data->timerId);
1715
1716 data->timerId = timeSetEvent(1,
1717 data->period,
1718 host_alarm_handler,
1719 (DWORD)t,
1720 TIME_ONESHOT | TIME_PERIODIC);
1721
1722 if (!data->timerId) {
1723 perror("Failed to re-arm win32 alarm timer");
1724
1725 timeEndPeriod(data->period);
1726 CloseHandle(data->host_alarm);
1727 exit(1);
1728 }
1729 }
1730
1731 #endif /* _WIN32 */
1732
1733 static int init_timer_alarm(void)
1734 {
1735 struct qemu_alarm_timer *t = NULL;
1736 int i, err = -1;
1737
1738 #ifndef _WIN32
1739 int fds[2];
1740
1741 err = pipe(fds);
1742 if (err == -1)
1743 return -errno;
1744
1745 err = fcntl_setfl(fds[0], O_NONBLOCK);
1746 if (err < 0)
1747 goto fail;
1748
1749 err = fcntl_setfl(fds[1], O_NONBLOCK);
1750 if (err < 0)
1751 goto fail;
1752
1753 alarm_timer_rfd = fds[0];
1754 alarm_timer_wfd = fds[1];
1755 #endif
1756
1757 for (i = 0; alarm_timers[i].name; i++) {
1758 t = &alarm_timers[i];
1759
1760 err = t->start(t);
1761 if (!err)
1762 break;
1763 }
1764
1765 if (err) {
1766 err = -ENOENT;
1767 goto fail;
1768 }
1769
1770 #ifndef _WIN32
1771 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1772 try_to_rearm_timer, NULL, t);
1773 #endif
1774
1775 alarm_timer = t;
1776
1777 return 0;
1778
1779 fail:
1780 #ifndef _WIN32
1781 close(fds[0]);
1782 close(fds[1]);
1783 #endif
1784 return err;
1785 }
1786
1787 static void quit_timers(void)
1788 {
1789 alarm_timer->stop(alarm_timer);
1790 alarm_timer = NULL;
1791 }
1792
1793 /***********************************************************/
1794 /* host time/date access */
1795 void qemu_get_timedate(struct tm *tm, int offset)
1796 {
1797 time_t ti;
1798 struct tm *ret;
1799
1800 time(&ti);
1801 ti += offset;
1802 if (rtc_date_offset == -1) {
1803 if (rtc_utc)
1804 ret = gmtime(&ti);
1805 else
1806 ret = localtime(&ti);
1807 } else {
1808 ti -= rtc_date_offset;
1809 ret = gmtime(&ti);
1810 }
1811
1812 memcpy(tm, ret, sizeof(struct tm));
1813 }
1814
1815 int qemu_timedate_diff(struct tm *tm)
1816 {
1817 time_t seconds;
1818
1819 if (rtc_date_offset == -1)
1820 if (rtc_utc)
1821 seconds = mktimegm(tm);
1822 else
1823 seconds = mktime(tm);
1824 else
1825 seconds = mktimegm(tm) + rtc_date_offset;
1826
1827 return seconds - time(NULL);
1828 }
1829
1830 #ifdef _WIN32
1831 static void socket_cleanup(void)
1832 {
1833 WSACleanup();
1834 }
1835
1836 static int socket_init(void)
1837 {
1838 WSADATA Data;
1839 int ret, err;
1840
1841 ret = WSAStartup(MAKEWORD(2,2), &Data);
1842 if (ret != 0) {
1843 err = WSAGetLastError();
1844 fprintf(stderr, "WSAStartup: %d\n", err);
1845 return -1;
1846 }
1847 atexit(socket_cleanup);
1848 return 0;
1849 }
1850 #endif
1851
1852 const char *get_opt_name(char *buf, int buf_size, const char *p)
1853 {
1854 char *q;
1855
1856 q = buf;
1857 while (*p != '\0' && *p != '=') {
1858 if (q && (q - buf) < buf_size - 1)
1859 *q++ = *p;
1860 p++;
1861 }
1862 if (q)
1863 *q = '\0';
1864
1865 return p;
1866 }
1867
1868 const char *get_opt_value(char *buf, int buf_size, const char *p)
1869 {
1870 char *q;
1871
1872 q = buf;
1873 while (*p != '\0') {
1874 if (*p == ',') {
1875 if (*(p + 1) != ',')
1876 break;
1877 p++;
1878 }
1879 if (q && (q - buf) < buf_size - 1)
1880 *q++ = *p;
1881 p++;
1882 }
1883 if (q)
1884 *q = '\0';
1885
1886 return p;
1887 }
1888
1889 int get_param_value(char *buf, int buf_size,
1890 const char *tag, const char *str)
1891 {
1892 const char *p;
1893 char option[128];
1894
1895 p = str;
1896 for(;;) {
1897 p = get_opt_name(option, sizeof(option), p);
1898 if (*p != '=')
1899 break;
1900 p++;
1901 if (!strcmp(tag, option)) {
1902 (void)get_opt_value(buf, buf_size, p);
1903 return strlen(buf);
1904 } else {
1905 p = get_opt_value(NULL, 0, p);
1906 }
1907 if (*p != ',')
1908 break;
1909 p++;
1910 }
1911 return 0;
1912 }
1913
1914 int check_params(char *buf, int buf_size,
1915 const char * const *params, const char *str)
1916 {
1917 const char *p;
1918 int i;
1919
1920 p = str;
1921 for(;;) {
1922 p = get_opt_name(buf, buf_size, p);
1923 if (*p != '=')
1924 return -1;
1925 p++;
1926 for(i = 0; params[i] != NULL; i++)
1927 if (!strcmp(params[i], buf))
1928 break;
1929 if (params[i] == NULL)
1930 return -1;
1931 p = get_opt_value(NULL, 0, p);
1932 if (*p != ',')
1933 break;
1934 p++;
1935 }
1936 return 0;
1937 }
1938
1939 /***********************************************************/
1940 /* Bluetooth support */
1941 static int nb_hcis;
1942 static int cur_hci;
1943 static struct HCIInfo *hci_table[MAX_NICS];
1944
1945 static struct bt_vlan_s {
1946 struct bt_scatternet_s net;
1947 int id;
1948 struct bt_vlan_s *next;
1949 } *first_bt_vlan;
1950
1951 /* find or alloc a new bluetooth "VLAN" */
1952 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1953 {
1954 struct bt_vlan_s **pvlan, *vlan;
1955 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1956 if (vlan->id == id)
1957 return &vlan->net;
1958 }
1959 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1960 vlan->id = id;
1961 pvlan = &first_bt_vlan;
1962 while (*pvlan != NULL)
1963 pvlan = &(*pvlan)->next;
1964 *pvlan = vlan;
1965 return &vlan->net;
1966 }
1967
1968 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1969 {
1970 }
1971
1972 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1973 {
1974 return -ENOTSUP;
1975 }
1976
1977 static struct HCIInfo null_hci = {
1978 .cmd_send = null_hci_send,
1979 .sco_send = null_hci_send,
1980 .acl_send = null_hci_send,
1981 .bdaddr_set = null_hci_addr_set,
1982 };
1983
1984 struct HCIInfo *qemu_next_hci(void)
1985 {
1986 if (cur_hci == nb_hcis)
1987 return &null_hci;
1988
1989 return hci_table[cur_hci++];
1990 }
1991
1992 static struct HCIInfo *hci_init(const char *str)
1993 {
1994 char *endp;
1995 struct bt_scatternet_s *vlan = 0;
1996
1997 if (!strcmp(str, "null"))
1998 /* null */
1999 return &null_hci;
2000 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2001 /* host[:hciN] */
2002 return bt_host_hci(str[4] ? str + 5 : "hci0");
2003 else if (!strncmp(str, "hci", 3)) {
2004 /* hci[,vlan=n] */
2005 if (str[3]) {
2006 if (!strncmp(str + 3, ",vlan=", 6)) {
2007 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2008 if (*endp)
2009 vlan = 0;
2010 }
2011 } else
2012 vlan = qemu_find_bt_vlan(0);
2013 if (vlan)
2014 return bt_new_hci(vlan);
2015 }
2016
2017 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2018
2019 return 0;
2020 }
2021
2022 static int bt_hci_parse(const char *str)
2023 {
2024 struct HCIInfo *hci;
2025 bdaddr_t bdaddr;
2026
2027 if (nb_hcis >= MAX_NICS) {
2028 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2029 return -1;
2030 }
2031
2032 hci = hci_init(str);
2033 if (!hci)
2034 return -1;
2035
2036 bdaddr.b[0] = 0x52;
2037 bdaddr.b[1] = 0x54;
2038 bdaddr.b[2] = 0x00;
2039 bdaddr.b[3] = 0x12;
2040 bdaddr.b[4] = 0x34;
2041 bdaddr.b[5] = 0x56 + nb_hcis;
2042 hci->bdaddr_set(hci, bdaddr.b);
2043
2044 hci_table[nb_hcis++] = hci;
2045
2046 return 0;
2047 }
2048
2049 static void bt_vhci_add(int vlan_id)
2050 {
2051 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2052
2053 if (!vlan->slave)
2054 fprintf(stderr, "qemu: warning: adding a VHCI to "
2055 "an empty scatternet %i\n", vlan_id);
2056
2057 bt_vhci_init(bt_new_hci(vlan));
2058 }
2059
2060 static struct bt_device_s *bt_device_add(const char *opt)
2061 {
2062 struct bt_scatternet_s *vlan;
2063 int vlan_id = 0;
2064 char *endp = strstr(opt, ",vlan=");
2065 int len = (endp ? endp - opt : strlen(opt)) + 1;
2066 char devname[10];
2067
2068 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2069
2070 if (endp) {
2071 vlan_id = strtol(endp + 6, &endp, 0);
2072 if (*endp) {
2073 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2074 return 0;
2075 }
2076 }
2077
2078 vlan = qemu_find_bt_vlan(vlan_id);
2079
2080 if (!vlan->slave)
2081 fprintf(stderr, "qemu: warning: adding a slave device to "
2082 "an empty scatternet %i\n", vlan_id);
2083
2084 if (!strcmp(devname, "keyboard"))
2085 return bt_keyboard_init(vlan);
2086
2087 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2088 return 0;
2089 }
2090
2091 static int bt_parse(const char *opt)
2092 {
2093 const char *endp, *p;
2094 int vlan;
2095
2096 if (strstart(opt, "hci", &endp)) {
2097 if (!*endp || *endp == ',') {
2098 if (*endp)
2099 if (!strstart(endp, ",vlan=", 0))
2100 opt = endp + 1;
2101
2102 return bt_hci_parse(opt);
2103 }
2104 } else if (strstart(opt, "vhci", &endp)) {
2105 if (!*endp || *endp == ',') {
2106 if (*endp) {
2107 if (strstart(endp, ",vlan=", &p)) {
2108 vlan = strtol(p, (char **) &endp, 0);
2109 if (*endp) {
2110 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2111 return 1;
2112 }
2113 } else {
2114 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2115 return 1;
2116 }
2117 } else
2118 vlan = 0;
2119
2120 bt_vhci_add(vlan);
2121 return 0;
2122 }
2123 } else if (strstart(opt, "device:", &endp))
2124 return !bt_device_add(endp);
2125
2126 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2127 return 1;
2128 }
2129
2130 /***********************************************************/
2131 /* QEMU Block devices */
2132
2133 #define HD_ALIAS "index=%d,media=disk"
2134 #ifdef TARGET_PPC
2135 #define CDROM_ALIAS "index=1,media=cdrom"
2136 #else
2137 #define CDROM_ALIAS "index=2,media=cdrom"
2138 #endif
2139 #define FD_ALIAS "index=%d,if=floppy"
2140 #define PFLASH_ALIAS "if=pflash"
2141 #define MTD_ALIAS "if=mtd"
2142 #define SD_ALIAS "index=0,if=sd"
2143
2144 static int drive_opt_get_free_idx(void)
2145 {
2146 int index;
2147
2148 for (index = 0; index < MAX_DRIVES; index++)
2149 if (!drives_opt[index].used) {
2150 drives_opt[index].used = 1;
2151 return index;
2152 }
2153
2154 return -1;
2155 }
2156
2157 static int drive_get_free_idx(void)
2158 {
2159 int index;
2160
2161 for (index = 0; index < MAX_DRIVES; index++)
2162 if (!drives_table[index].used) {
2163 drives_table[index].used = 1;
2164 return index;
2165 }
2166
2167 return -1;
2168 }
2169
2170 int drive_add(const char *file, const char *fmt, ...)
2171 {
2172 va_list ap;
2173 int index = drive_opt_get_free_idx();
2174
2175 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2176 fprintf(stderr, "qemu: too many drives\n");
2177 return -1;
2178 }
2179
2180 drives_opt[index].file = file;
2181 va_start(ap, fmt);
2182 vsnprintf(drives_opt[index].opt,
2183 sizeof(drives_opt[0].opt), fmt, ap);
2184 va_end(ap);
2185
2186 nb_drives_opt++;
2187 return index;
2188 }
2189
2190 void drive_remove(int index)
2191 {
2192 drives_opt[index].used = 0;
2193 nb_drives_opt--;
2194 }
2195
2196 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2197 {
2198 int index;
2199
2200 /* seek interface, bus and unit */
2201
2202 for (index = 0; index < MAX_DRIVES; index++)
2203 if (drives_table[index].type == type &&
2204 drives_table[index].bus == bus &&
2205 drives_table[index].unit == unit &&
2206 drives_table[index].used)
2207 return index;
2208
2209 return -1;
2210 }
2211
2212 int drive_get_max_bus(BlockInterfaceType type)
2213 {
2214 int max_bus;
2215 int index;
2216
2217 max_bus = -1;
2218 for (index = 0; index < nb_drives; index++) {
2219 if(drives_table[index].type == type &&
2220 drives_table[index].bus > max_bus)
2221 max_bus = drives_table[index].bus;
2222 }
2223 return max_bus;
2224 }
2225
2226 const char *drive_get_serial(BlockDriverState *bdrv)
2227 {
2228 int index;
2229
2230 for (index = 0; index < nb_drives; index++)
2231 if (drives_table[index].bdrv == bdrv)
2232 return drives_table[index].serial;
2233
2234 return "\0";
2235 }
2236
2237 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2238 {
2239 int index;
2240
2241 for (index = 0; index < nb_drives; index++)
2242 if (drives_table[index].bdrv == bdrv)
2243 return drives_table[index].onerror;
2244
2245 return BLOCK_ERR_REPORT;
2246 }
2247
2248 static void bdrv_format_print(void *opaque, const char *name)
2249 {
2250 fprintf(stderr, " %s", name);
2251 }
2252
2253 void drive_uninit(BlockDriverState *bdrv)
2254 {
2255 int i;
2256
2257 for (i = 0; i < MAX_DRIVES; i++)
2258 if (drives_table[i].bdrv == bdrv) {
2259 drives_table[i].bdrv = NULL;
2260 drives_table[i].used = 0;
2261 drive_remove(drives_table[i].drive_opt_idx);
2262 nb_drives--;
2263 break;
2264 }
2265 }
2266
2267 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2268 {
2269 char buf[128];
2270 char file[1024];
2271 char devname[128];
2272 char serial[21];
2273 const char *mediastr = "";
2274 BlockInterfaceType type;
2275 enum { MEDIA_DISK, MEDIA_CDROM } media;
2276 int bus_id, unit_id;
2277 int cyls, heads, secs, translation;
2278 BlockDriverState *bdrv;
2279 BlockDriver *drv = NULL;
2280 QEMUMachine *machine = opaque;
2281 int max_devs;
2282 int index;
2283 int cache;
2284 int bdrv_flags, onerror;
2285 int drives_table_idx;
2286 char *str = arg->opt;
2287 static const char * const params[] = { "bus", "unit", "if", "index",
2288 "cyls", "heads", "secs", "trans",
2289 "media", "snapshot", "file",
2290 "cache", "format", "serial", "werror",
2291 NULL };
2292
2293 if (check_params(buf, sizeof(buf), params, str) < 0) {
2294 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2295 buf, str);
2296 return -1;
2297 }
2298
2299 file[0] = 0;
2300 cyls = heads = secs = 0;
2301 bus_id = 0;
2302 unit_id = -1;
2303 translation = BIOS_ATA_TRANSLATION_AUTO;
2304 index = -1;
2305 cache = 3;
2306
2307 if (machine->use_scsi) {
2308 type = IF_SCSI;
2309 max_devs = MAX_SCSI_DEVS;
2310 pstrcpy(devname, sizeof(devname), "scsi");
2311 } else {
2312 type = IF_IDE;
2313 max_devs = MAX_IDE_DEVS;
2314 pstrcpy(devname, sizeof(devname), "ide");
2315 }
2316 media = MEDIA_DISK;
2317
2318 /* extract parameters */
2319
2320 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2321 bus_id = strtol(buf, NULL, 0);
2322 if (bus_id < 0) {
2323 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2324 return -1;
2325 }
2326 }
2327
2328 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2329 unit_id = strtol(buf, NULL, 0);
2330 if (unit_id < 0) {
2331 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2332 return -1;
2333 }
2334 }
2335
2336 if (get_param_value(buf, sizeof(buf), "if", str)) {
2337 pstrcpy(devname, sizeof(devname), buf);
2338 if (!strcmp(buf, "ide")) {
2339 type = IF_IDE;
2340 max_devs = MAX_IDE_DEVS;
2341 } else if (!strcmp(buf, "scsi")) {
2342 type = IF_SCSI;
2343 max_devs = MAX_SCSI_DEVS;
2344 } else if (!strcmp(buf, "floppy")) {
2345 type = IF_FLOPPY;
2346 max_devs = 0;
2347 } else if (!strcmp(buf, "pflash")) {
2348 type = IF_PFLASH;
2349 max_devs = 0;
2350 } else if (!strcmp(buf, "mtd")) {
2351 type = IF_MTD;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "sd")) {
2354 type = IF_SD;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "virtio")) {
2357 type = IF_VIRTIO;
2358 max_devs = 0;
2359 } else {
2360 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2361 return -1;
2362 }
2363 }
2364
2365 if (get_param_value(buf, sizeof(buf), "index", str)) {
2366 index = strtol(buf, NULL, 0);
2367 if (index < 0) {
2368 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2369 return -1;
2370 }
2371 }
2372
2373 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2374 cyls = strtol(buf, NULL, 0);
2375 }
2376
2377 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2378 heads = strtol(buf, NULL, 0);
2379 }
2380
2381 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2382 secs = strtol(buf, NULL, 0);
2383 }
2384
2385 if (cyls || heads || secs) {
2386 if (cyls < 1 || cyls > 16383) {
2387 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2388 return -1;
2389 }
2390 if (heads < 1 || heads > 16) {
2391 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2392 return -1;
2393 }
2394 if (secs < 1 || secs > 63) {
2395 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2396 return -1;
2397 }
2398 }
2399
2400 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2401 if (!cyls) {
2402 fprintf(stderr,
2403 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2404 str);
2405 return -1;
2406 }
2407 if (!strcmp(buf, "none"))
2408 translation = BIOS_ATA_TRANSLATION_NONE;
2409 else if (!strcmp(buf, "lba"))
2410 translation = BIOS_ATA_TRANSLATION_LBA;
2411 else if (!strcmp(buf, "auto"))
2412 translation = BIOS_ATA_TRANSLATION_AUTO;
2413 else {
2414 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2415 return -1;
2416 }
2417 }
2418
2419 if (get_param_value(buf, sizeof(buf), "media", str)) {
2420 if (!strcmp(buf, "disk")) {
2421 media = MEDIA_DISK;
2422 } else if (!strcmp(buf, "cdrom")) {
2423 if (cyls || secs || heads) {
2424 fprintf(stderr,
2425 "qemu: '%s' invalid physical CHS format\n", str);
2426 return -1;
2427 }
2428 media = MEDIA_CDROM;
2429 } else {
2430 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2431 return -1;
2432 }
2433 }
2434
2435 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2436 if (!strcmp(buf, "on"))
2437 snapshot = 1;
2438 else if (!strcmp(buf, "off"))
2439 snapshot = 0;
2440 else {
2441 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2442 return -1;
2443 }
2444 }
2445
2446 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2447 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2448 cache = 0;
2449 else if (!strcmp(buf, "writethrough"))
2450 cache = 1;
2451 else if (!strcmp(buf, "writeback"))
2452 cache = 2;
2453 else {
2454 fprintf(stderr, "qemu: invalid cache option\n");
2455 return -1;
2456 }
2457 }
2458
2459 if (get_param_value(buf, sizeof(buf), "format", str)) {
2460 if (strcmp(buf, "?") == 0) {
2461 fprintf(stderr, "qemu: Supported formats:");
2462 bdrv_iterate_format(bdrv_format_print, NULL);
2463 fprintf(stderr, "\n");
2464 return -1;
2465 }
2466 drv = bdrv_find_format(buf);
2467 if (!drv) {
2468 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2469 return -1;
2470 }
2471 }
2472
2473 if (arg->file == NULL)
2474 get_param_value(file, sizeof(file), "file", str);
2475 else
2476 pstrcpy(file, sizeof(file), arg->file);
2477
2478 if (!get_param_value(serial, sizeof(serial), "serial", str))
2479 memset(serial, 0, sizeof(serial));
2480
2481 onerror = BLOCK_ERR_REPORT;
2482 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2483 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2484 fprintf(stderr, "werror is no supported by this format\n");
2485 return -1;
2486 }
2487 if (!strcmp(buf, "ignore"))
2488 onerror = BLOCK_ERR_IGNORE;
2489 else if (!strcmp(buf, "enospc"))
2490 onerror = BLOCK_ERR_STOP_ENOSPC;
2491 else if (!strcmp(buf, "stop"))
2492 onerror = BLOCK_ERR_STOP_ANY;
2493 else if (!strcmp(buf, "report"))
2494 onerror = BLOCK_ERR_REPORT;
2495 else {
2496 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2497 return -1;
2498 }
2499 }
2500
2501 /* compute bus and unit according index */
2502
2503 if (index != -1) {
2504 if (bus_id != 0 || unit_id != -1) {
2505 fprintf(stderr,
2506 "qemu: '%s' index cannot be used with bus and unit\n", str);
2507 return -1;
2508 }
2509 if (max_devs == 0)
2510 {
2511 unit_id = index;
2512 bus_id = 0;
2513 } else {
2514 unit_id = index % max_devs;
2515 bus_id = index / max_devs;
2516 }
2517 }
2518
2519 /* if user doesn't specify a unit_id,
2520 * try to find the first free
2521 */
2522
2523 if (unit_id == -1) {
2524 unit_id = 0;
2525 while (drive_get_index(type, bus_id, unit_id) != -1) {
2526 unit_id++;
2527 if (max_devs && unit_id >= max_devs) {
2528 unit_id -= max_devs;
2529 bus_id++;
2530 }
2531 }
2532 }
2533
2534 /* check unit id */
2535
2536 if (max_devs && unit_id >= max_devs) {
2537 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2538 str, unit_id, max_devs - 1);
2539 return -1;
2540 }
2541
2542 /*
2543 * ignore multiple definitions
2544 */
2545
2546 if (drive_get_index(type, bus_id, unit_id) != -1)
2547 return -2;
2548
2549 /* init */
2550
2551 if (type == IF_IDE || type == IF_SCSI)
2552 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2553 if (max_devs)
2554 snprintf(buf, sizeof(buf), "%s%i%s%i",
2555 devname, bus_id, mediastr, unit_id);
2556 else
2557 snprintf(buf, sizeof(buf), "%s%s%i",
2558 devname, mediastr, unit_id);
2559 bdrv = bdrv_new(buf);
2560 drives_table_idx = drive_get_free_idx();
2561 drives_table[drives_table_idx].bdrv = bdrv;
2562 drives_table[drives_table_idx].type = type;
2563 drives_table[drives_table_idx].bus = bus_id;
2564 drives_table[drives_table_idx].unit = unit_id;
2565 drives_table[drives_table_idx].onerror = onerror;
2566 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2567 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2568 nb_drives++;
2569
2570 switch(type) {
2571 case IF_IDE:
2572 case IF_SCSI:
2573 switch(media) {
2574 case MEDIA_DISK:
2575 if (cyls != 0) {
2576 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2577 bdrv_set_translation_hint(bdrv, translation);
2578 }
2579 break;
2580 case MEDIA_CDROM:
2581 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2582 break;
2583 }
2584 break;
2585 case IF_SD:
2586 /* FIXME: This isn't really a floppy, but it's a reasonable
2587 approximation. */
2588 case IF_FLOPPY:
2589 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2590 break;
2591 case IF_PFLASH:
2592 case IF_MTD:
2593 case IF_VIRTIO:
2594 break;
2595 }
2596 if (!file[0])
2597 return -2;
2598 bdrv_flags = 0;
2599 if (snapshot) {
2600 bdrv_flags |= BDRV_O_SNAPSHOT;
2601 cache = 2; /* always use write-back with snapshot */
2602 }
2603 if (cache == 0) /* no caching */
2604 bdrv_flags |= BDRV_O_NOCACHE;
2605 else if (cache == 2) /* write-back */
2606 bdrv_flags |= BDRV_O_CACHE_WB;
2607 else if (cache == 3) /* not specified */
2608 bdrv_flags |= BDRV_O_CACHE_DEF;
2609 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2610 fprintf(stderr, "qemu: could not open disk image %s\n",
2611 file);
2612 return -1;
2613 }
2614 return drives_table_idx;
2615 }
2616
2617 /***********************************************************/
2618 /* USB devices */
2619
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2622
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626 {
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632 }
2633
2634 int usb_device_add_dev(USBDevice *dev)
2635 {
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658 }
2659
2660 static int usb_device_add(const char *devname)
2661 {
2662 const char *p;
2663 USBDevice *dev;
2664
2665 if (!free_usb_ports)
2666 return -1;
2667
2668 if (strstart(devname, "host:", &p)) {
2669 dev = usb_host_device_open(p);
2670 } else if (!strcmp(devname, "mouse")) {
2671 dev = usb_mouse_init();
2672 } else if (!strcmp(devname, "tablet")) {
2673 dev = usb_tablet_init();
2674 } else if (!strcmp(devname, "keyboard")) {
2675 dev = usb_keyboard_init();
2676 } else if (strstart(devname, "disk:", &p)) {
2677 dev = usb_msd_init(p);
2678 } else if (!strcmp(devname, "wacom-tablet")) {
2679 dev = usb_wacom_init();
2680 } else if (strstart(devname, "serial:", &p)) {
2681 dev = usb_serial_init(p);
2682 #ifdef CONFIG_BRLAPI
2683 } else if (!strcmp(devname, "braille")) {
2684 dev = usb_baum_init();
2685 #endif
2686 } else if (strstart(devname, "net:", &p)) {
2687 int nic = nb_nics;
2688
2689 if (net_client_init("nic", p) < 0)
2690 return -1;
2691 nd_table[nic].model = "usb";
2692 dev = usb_net_init(&nd_table[nic]);
2693 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2694 dev = usb_bt_init(devname[2] ? hci_init(p) :
2695 bt_new_hci(qemu_find_bt_vlan(0)));
2696 } else {
2697 return -1;
2698 }
2699 if (!dev)
2700 return -1;
2701
2702 return usb_device_add_dev(dev);
2703 }
2704
2705 int usb_device_del_addr(int bus_num, int addr)
2706 {
2707 USBPort *port;
2708 USBPort **lastp;
2709 USBDevice *dev;
2710
2711 if (!used_usb_ports)
2712 return -1;
2713
2714 if (bus_num != 0)
2715 return -1;
2716
2717 lastp = &used_usb_ports;
2718 port = used_usb_ports;
2719 while (port && port->dev->addr != addr) {
2720 lastp = &port->next;
2721 port = port->next;
2722 }
2723
2724 if (!port)
2725 return -1;
2726
2727 dev = port->dev;
2728 *lastp = port->next;
2729 usb_attach(port, NULL);
2730 dev->handle_destroy(dev);
2731 port->next = free_usb_ports;
2732 free_usb_ports = port;
2733 return 0;
2734 }
2735
2736 static int usb_device_del(const char *devname)
2737 {
2738 int bus_num, addr;
2739 const char *p;
2740
2741 if (strstart(devname, "host:", &p))
2742 return usb_host_device_close(p);
2743
2744 if (!used_usb_ports)
2745 return -1;
2746
2747 p = strchr(devname, '.');
2748 if (!p)
2749 return -1;
2750 bus_num = strtoul(devname, NULL, 0);
2751 addr = strtoul(p + 1, NULL, 0);
2752
2753 return usb_device_del_addr(bus_num, addr);
2754 }
2755
2756 void do_usb_add(const char *devname)
2757 {
2758 usb_device_add(devname);
2759 }
2760
2761 void do_usb_del(const char *devname)
2762 {
2763 usb_device_del(devname);
2764 }
2765
2766 void usb_info(void)
2767 {
2768 USBDevice *dev;
2769 USBPort *port;
2770 const char *speed_str;
2771
2772 if (!usb_enabled) {
2773 term_printf("USB support not enabled\n");
2774 return;
2775 }
2776
2777 for (port = used_usb_ports; port; port = port->next) {
2778 dev = port->dev;
2779 if (!dev)
2780 continue;
2781 switch(dev->speed) {
2782 case USB_SPEED_LOW:
2783 speed_str = "1.5";
2784 break;
2785 case USB_SPEED_FULL:
2786 speed_str = "12";
2787 break;
2788 case USB_SPEED_HIGH:
2789 speed_str = "480";
2790 break;
2791 default:
2792 speed_str = "?";
2793 break;
2794 }
2795 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2796 0, dev->addr, speed_str, dev->devname);
2797 }
2798 }
2799
2800 /***********************************************************/
2801 /* PCMCIA/Cardbus */
2802
2803 static struct pcmcia_socket_entry_s {
2804 struct pcmcia_socket_s *socket;
2805 struct pcmcia_socket_entry_s *next;
2806 } *pcmcia_sockets = 0;
2807
2808 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2809 {
2810 struct pcmcia_socket_entry_s *entry;
2811
2812 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2813 entry->socket = socket;
2814 entry->next = pcmcia_sockets;
2815 pcmcia_sockets = entry;
2816 }
2817
2818 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2819 {
2820 struct pcmcia_socket_entry_s *entry, **ptr;
2821
2822 ptr = &pcmcia_sockets;
2823 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2824 if (entry->socket == socket) {
2825 *ptr = entry->next;
2826 qemu_free(entry);
2827 }
2828 }
2829
2830 void pcmcia_info(void)
2831 {
2832 struct pcmcia_socket_entry_s *iter;
2833 if (!pcmcia_sockets)
2834 term_printf("No PCMCIA sockets\n");
2835
2836 for (iter = pcmcia_sockets; iter; iter = iter->next)
2837 term_printf("%s: %s\n", iter->socket->slot_string,
2838 iter->socket->attached ? iter->socket->card_string :
2839 "Empty");
2840 }
2841
2842 /***********************************************************/
2843 /* register display */
2844
2845 void register_displaystate(DisplayState *ds)
2846 {
2847 DisplayState **s;
2848 s = &display_state;
2849 while (*s != NULL)
2850 s = &(*s)->next;
2851 ds->next = NULL;
2852 *s = ds;
2853 }
2854
2855 DisplayState *get_displaystate(void)
2856 {
2857 return display_state;
2858 }
2859
2860 /* dumb display */
2861
2862 static void dumb_display_init(void)
2863 {
2864 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2865 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2866 register_displaystate(ds);
2867 }
2868
2869 /***********************************************************/
2870 /* I/O handling */
2871
2872 #define MAX_IO_HANDLERS 64
2873
2874 typedef struct IOHandlerRecord {
2875 int fd;
2876 IOCanRWHandler *fd_read_poll;
2877 IOHandler *fd_read;
2878 IOHandler *fd_write;
2879 int deleted;
2880 void *opaque;
2881 /* temporary data */
2882 struct pollfd *ufd;
2883 struct IOHandlerRecord *next;
2884 } IOHandlerRecord;
2885
2886 static IOHandlerRecord *first_io_handler;
2887
2888 /* XXX: fd_read_poll should be suppressed, but an API change is
2889 necessary in the character devices to suppress fd_can_read(). */
2890 int qemu_set_fd_handler2(int fd,
2891 IOCanRWHandler *fd_read_poll,
2892 IOHandler *fd_read,
2893 IOHandler *fd_write,
2894 void *opaque)
2895 {
2896 IOHandlerRecord **pioh, *ioh;
2897
2898 if (!fd_read && !fd_write) {
2899 pioh = &first_io_handler;
2900 for(;;) {
2901 ioh = *pioh;
2902 if (ioh == NULL)
2903 break;
2904 if (ioh->fd == fd) {
2905 ioh->deleted = 1;
2906 break;
2907 }
2908 pioh = &ioh->next;
2909 }
2910 } else {
2911 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2912 if (ioh->fd == fd)
2913 goto found;
2914 }
2915 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2916 ioh->next = first_io_handler;
2917 first_io_handler = ioh;
2918 found:
2919 ioh->fd = fd;
2920 ioh->fd_read_poll = fd_read_poll;
2921 ioh->fd_read = fd_read;
2922 ioh->fd_write = fd_write;
2923 ioh->opaque = opaque;
2924 ioh->deleted = 0;
2925 }
2926 return 0;
2927 }
2928
2929 int qemu_set_fd_handler(int fd,
2930 IOHandler *fd_read,
2931 IOHandler *fd_write,
2932 void *opaque)
2933 {
2934 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2935 }
2936
2937 #ifdef _WIN32
2938 /***********************************************************/
2939 /* Polling handling */
2940
2941 typedef struct PollingEntry {
2942 PollingFunc *func;
2943 void *opaque;
2944 struct PollingEntry *next;
2945 } PollingEntry;
2946
2947 static PollingEntry *first_polling_entry;
2948
2949 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2950 {
2951 PollingEntry **ppe, *pe;
2952 pe = qemu_mallocz(sizeof(PollingEntry));
2953 pe->func = func;
2954 pe->opaque = opaque;
2955 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2956 *ppe = pe;
2957 return 0;
2958 }
2959
2960 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2961 {
2962 PollingEntry **ppe, *pe;
2963 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2964 pe = *ppe;
2965 if (pe->func == func && pe->opaque == opaque) {
2966 *ppe = pe->next;
2967 qemu_free(pe);
2968 break;
2969 }
2970 }
2971 }
2972
2973 /***********************************************************/
2974 /* Wait objects support */
2975 typedef struct WaitObjects {
2976 int num;
2977 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2978 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2979 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2980 } WaitObjects;
2981
2982 static WaitObjects wait_objects = {0};
2983
2984 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2985 {
2986 WaitObjects *w = &wait_objects;
2987
2988 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2989 return -1;
2990 w->events[w->num] = handle;
2991 w->func[w->num] = func;
2992 w->opaque[w->num] = opaque;
2993 w->num++;
2994 return 0;
2995 }
2996
2997 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2998 {
2999 int i, found;
3000 WaitObjects *w = &wait_objects;
3001
3002 found = 0;
3003 for (i = 0; i < w->num; i++) {
3004 if (w->events[i] == handle)
3005 found = 1;
3006 if (found) {
3007 w->events[i] = w->events[i + 1];
3008 w->func[i] = w->func[i + 1];
3009 w->opaque[i] = w->opaque[i + 1];
3010 }
3011 }
3012 if (found)
3013 w->num--;
3014 }
3015 #endif
3016
3017 /***********************************************************/
3018 /* ram save/restore */
3019
3020 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3021 {
3022 int v;
3023
3024 v = qemu_get_byte(f);
3025 switch(v) {
3026 case 0:
3027 if (qemu_get_buffer(f, buf, len) != len)
3028 return -EIO;
3029 break;
3030 case 1:
3031 v = qemu_get_byte(f);
3032 memset(buf, v, len);
3033 break;
3034 default:
3035 return -EINVAL;
3036 }
3037
3038 if (qemu_file_has_error(f))
3039 return -EIO;
3040
3041 return 0;
3042 }
3043
3044 static int ram_load_v1(QEMUFile *f, void *opaque)
3045 {
3046 int ret;
3047 ram_addr_t i;
3048
3049 if (qemu_get_be32(f) != phys_ram_size)
3050 return -EINVAL;
3051 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3052 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3053 if (ret)
3054 return ret;
3055 }
3056 return 0;
3057 }
3058
3059 #define BDRV_HASH_BLOCK_SIZE 1024
3060 #define IOBUF_SIZE 4096
3061 #define RAM_CBLOCK_MAGIC 0xfabe
3062
3063 typedef struct RamDecompressState {
3064 z_stream zstream;
3065 QEMUFile *f;
3066 uint8_t buf[IOBUF_SIZE];
3067 } RamDecompressState;
3068
3069 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3070 {
3071 int ret;
3072 memset(s, 0, sizeof(*s));
3073 s->f = f;
3074 ret = inflateInit(&s->zstream);
3075 if (ret != Z_OK)
3076 return -1;
3077 return 0;
3078 }
3079
3080 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3081 {
3082 int ret, clen;
3083
3084 s->zstream.avail_out = len;
3085 s->zstream.next_out = buf;
3086 while (s->zstream.avail_out > 0) {
3087 if (s->zstream.avail_in == 0) {
3088 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3089 return -1;
3090 clen = qemu_get_be16(s->f);
3091 if (clen > IOBUF_SIZE)
3092 return -1;
3093 qemu_get_buffer(s->f, s->buf, clen);
3094 s->zstream.avail_in = clen;
3095 s->zstream.next_in = s->buf;
3096 }
3097 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3098 if (ret != Z_OK && ret != Z_STREAM_END) {
3099 return -1;
3100 }
3101 }
3102 return 0;
3103 }
3104
3105 static void ram_decompress_close(RamDecompressState *s)
3106 {
3107 inflateEnd(&s->zstream);
3108 }
3109
3110 #define RAM_SAVE_FLAG_FULL 0x01
3111 #define RAM_SAVE_FLAG_COMPRESS 0x02
3112 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3113 #define RAM_SAVE_FLAG_PAGE 0x08
3114 #define RAM_SAVE_FLAG_EOS 0x10
3115
3116 static int is_dup_page(uint8_t *page, uint8_t ch)
3117 {
3118 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3119 uint32_t *array = (uint32_t *)page;
3120 int i;
3121
3122 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3123 if (array[i] != val)
3124 return 0;
3125 }
3126
3127 return 1;
3128 }
3129
3130 static int ram_save_block(QEMUFile *f)
3131 {
3132 static ram_addr_t current_addr = 0;
3133 ram_addr_t saved_addr = current_addr;
3134 ram_addr_t addr = 0;
3135 int found = 0;
3136
3137 while (addr < phys_ram_size) {
3138 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3139 uint8_t ch;
3140
3141 cpu_physical_memory_reset_dirty(current_addr,
3142 current_addr + TARGET_PAGE_SIZE,
3143 MIGRATION_DIRTY_FLAG);
3144
3145 ch = *(phys_ram_base + current_addr);
3146
3147 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3148 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3149 qemu_put_byte(f, ch);
3150 } else {
3151 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3152 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3153 }
3154
3155 found = 1;
3156 break;
3157 }
3158 addr += TARGET_PAGE_SIZE;
3159 current_addr = (saved_addr + addr) % phys_ram_size;
3160 }
3161
3162 return found;
3163 }
3164
3165 static ram_addr_t ram_save_threshold = 10;
3166
3167 static ram_addr_t ram_save_remaining(void)
3168 {
3169 ram_addr_t addr;
3170 ram_addr_t count = 0;
3171
3172 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3173 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3174 count++;
3175 }
3176
3177 return count;
3178 }
3179
3180 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3181 {
3182 ram_addr_t addr;
3183
3184 if (stage == 1) {
3185 /* Make sure all dirty bits are set */
3186 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3187 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3188 cpu_physical_memory_set_dirty(addr);
3189 }
3190
3191 /* Enable dirty memory tracking */
3192 cpu_physical_memory_set_dirty_tracking(1);
3193
3194 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3195 }
3196
3197 while (!qemu_file_rate_limit(f)) {
3198 int ret;
3199
3200 ret = ram_save_block(f);
3201 if (ret == 0) /* no more blocks */
3202 break;
3203 }
3204
3205 /* try transferring iterative blocks of memory */
3206
3207 if (stage == 3) {
3208 cpu_physical_memory_set_dirty_tracking(0);
3209
3210 /* flush all remaining blocks regardless of rate limiting */
3211 while (ram_save_block(f) != 0);
3212 }
3213
3214 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3215
3216 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3217 }
3218
3219 static int ram_load_dead(QEMUFile *f, void *opaque)
3220 {
3221 RamDecompressState s1, *s = &s1;
3222 uint8_t buf[10];
3223 ram_addr_t i;
3224
3225 if (ram_decompress_open(s, f) < 0)
3226 return -EINVAL;
3227 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3228 if (ram_decompress_buf(s, buf, 1) < 0) {
3229 fprintf(stderr, "Error while reading ram block header\n");
3230 goto error;
3231 }
3232 if (buf[0] == 0) {
3233 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3234 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3235 goto error;
3236 }
3237 } else {
3238 error:
3239 printf("Error block header\n");
3240 return -EINVAL;
3241 }
3242 }
3243 ram_decompress_close(s);
3244
3245 return 0;
3246 }
3247
3248 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3249 {
3250 ram_addr_t addr;
3251 int flags;
3252
3253 if (version_id == 1)
3254 return ram_load_v1(f, opaque);
3255
3256 if (version_id == 2) {
3257 if (qemu_get_be32(f) != phys_ram_size)
3258 return -EINVAL;
3259 return ram_load_dead(f, opaque);
3260 }
3261
3262 if (version_id != 3)
3263 return -EINVAL;
3264
3265 do {
3266 addr = qemu_get_be64(f);
3267
3268 flags = addr & ~TARGET_PAGE_MASK;
3269 addr &= TARGET_PAGE_MASK;
3270
3271 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3272 if (addr != phys_ram_size)
3273 return -EINVAL;
3274 }
3275
3276 if (flags & RAM_SAVE_FLAG_FULL) {
3277 if (ram_load_dead(f, opaque) < 0)
3278 return -EINVAL;
3279 }
3280
3281 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3282 uint8_t ch = qemu_get_byte(f);
3283 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3284 } else if (flags & RAM_SAVE_FLAG_PAGE)
3285 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3286 } while (!(flags & RAM_SAVE_FLAG_EOS));
3287
3288 return 0;
3289 }
3290
3291 void qemu_service_io(void)
3292 {
3293 CPUState *env = cpu_single_env;
3294 if (env) {
3295 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3296 #ifdef USE_KQEMU
3297 if (env->kqemu_enabled) {
3298 kqemu_cpu_interrupt(env);
3299 }
3300 #endif
3301 }
3302 }
3303
3304 /***********************************************************/
3305 /* bottom halves (can be seen as timers which expire ASAP) */
3306
3307 struct QEMUBH {
3308 QEMUBHFunc *cb;
3309 void *opaque;
3310 int scheduled;
3311 int idle;
3312 int deleted;
3313 QEMUBH *next;
3314 };
3315
3316 static QEMUBH *first_bh = NULL;
3317
3318 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3319 {
3320 QEMUBH *bh;
3321 bh = qemu_mallocz(sizeof(QEMUBH));
3322 bh->cb = cb;
3323 bh->opaque = opaque;
3324 bh->next = first_bh;
3325 first_bh = bh;
3326 return bh;
3327 }
3328
3329 int qemu_bh_poll(void)
3330 {
3331 QEMUBH *bh, **bhp;
3332 int ret;
3333
3334 ret = 0;
3335 for (bh = first_bh; bh; bh = bh->next) {
3336 if (!bh->deleted && bh->scheduled) {
3337 bh->scheduled = 0;
3338 if (!bh->idle)
3339 ret = 1;
3340 bh->idle = 0;
3341 bh->cb(bh->opaque);
3342 }
3343 }
3344
3345 /* remove deleted bhs */
3346 bhp = &first_bh;
3347 while (*bhp) {
3348 bh = *bhp;
3349 if (bh->deleted) {
3350 *bhp = bh->next;
3351 qemu_free(bh);
3352 } else
3353 bhp = &bh->next;
3354 }
3355
3356 return ret;
3357 }
3358
3359 void qemu_bh_schedule_idle(QEMUBH *bh)
3360 {
3361 if (bh->scheduled)
3362 return;
3363 bh->scheduled = 1;
3364 bh->idle = 1;
3365 }
3366
3367 void qemu_bh_schedule(QEMUBH *bh)
3368 {
3369 CPUState *env = cpu_single_env;
3370 if (bh->scheduled)
3371 return;
3372 bh->scheduled = 1;
3373 bh->idle = 0;
3374 /* stop the currently executing CPU to execute the BH ASAP */
3375 if (env) {
3376 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3377 }
3378 }
3379
3380 void qemu_bh_cancel(QEMUBH *bh)
3381 {
3382 bh->scheduled = 0;
3383 }
3384
3385 void qemu_bh_delete(QEMUBH *bh)
3386 {
3387 bh->scheduled = 0;
3388 bh->deleted = 1;
3389 }
3390
3391 static void qemu_bh_update_timeout(int *timeout)
3392 {
3393 QEMUBH *bh;
3394
3395 for (bh = first_bh; bh; bh = bh->next) {
3396 if (!bh->deleted && bh->scheduled) {
3397 if (bh->idle) {
3398 /* idle bottom halves will be polled at least
3399 * every 10ms */
3400 *timeout = MIN(10, *timeout);
3401 } else {
3402 /* non-idle bottom halves will be executed
3403 * immediately */
3404 *timeout = 0;
3405 break;
3406 }
3407 }
3408 }
3409 }
3410
3411 /***********************************************************/
3412 /* machine registration */
3413
3414 static QEMUMachine *first_machine = NULL;
3415 QEMUMachine *current_machine = NULL;
3416
3417 int qemu_register_machine(QEMUMachine *m)
3418 {
3419 QEMUMachine **pm;
3420 pm = &first_machine;
3421 while (*pm != NULL)
3422 pm = &(*pm)->next;
3423 m->next = NULL;
3424 *pm = m;
3425 return 0;
3426 }
3427
3428 static QEMUMachine *find_machine(const char *name)
3429 {
3430 QEMUMachine *m;
3431
3432 for(m = first_machine; m != NULL; m = m->next) {
3433 if (!strcmp(m->name, name))
3434 return m;
3435 }
3436 return NULL;
3437 }
3438
3439 /***********************************************************/
3440 /* main execution loop */
3441
3442 static void gui_update(void *opaque)
3443 {
3444 uint64_t interval = GUI_REFRESH_INTERVAL;
3445 DisplayState *ds = opaque;
3446 DisplayChangeListener *dcl = ds->listeners;
3447
3448 dpy_refresh(ds);
3449
3450 while (dcl != NULL) {
3451 if (dcl->gui_timer_interval &&
3452 dcl->gui_timer_interval < interval)
3453 interval = dcl->gui_timer_interval;
3454 dcl = dcl->next;
3455 }
3456 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3457 }
3458
3459 static void nographic_update(void *opaque)
3460 {
3461 uint64_t interval = GUI_REFRESH_INTERVAL;
3462
3463 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3464 }
3465
3466 struct vm_change_state_entry {
3467 VMChangeStateHandler *cb;
3468 void *opaque;
3469 LIST_ENTRY (vm_change_state_entry) entries;
3470 };
3471
3472 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3473
3474 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3475 void *opaque)
3476 {
3477 VMChangeStateEntry *e;
3478
3479 e = qemu_mallocz(sizeof (*e));
3480
3481 e->cb = cb;
3482 e->opaque = opaque;
3483 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3484 return e;
3485 }
3486
3487 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3488 {
3489 LIST_REMOVE (e, entries);
3490 qemu_free (e);
3491 }
3492
3493 static void vm_state_notify(int running, int reason)
3494 {
3495 VMChangeStateEntry *e;
3496
3497 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3498 e->cb(e->opaque, running, reason);
3499 }
3500 }
3501
3502 void vm_start(void)
3503 {
3504 if (!vm_running) {
3505 cpu_enable_ticks();
3506 vm_running = 1;
3507 vm_state_notify(1, 0);
3508 qemu_rearm_alarm_timer(alarm_timer);
3509 }
3510 }
3511
3512 void vm_stop(int reason)
3513 {
3514 if (vm_running) {
3515 cpu_disable_ticks();
3516 vm_running = 0;
3517 vm_state_notify(0, reason);
3518 }
3519 }
3520
3521 /* reset/shutdown handler */
3522
3523 typedef struct QEMUResetEntry {
3524 QEMUResetHandler *func;
3525 void *opaque;
3526 struct QEMUResetEntry *next;
3527 } QEMUResetEntry;
3528
3529 static QEMUResetEntry *first_reset_entry;
3530 static int reset_requested;
3531 static int shutdown_requested;
3532 static int powerdown_requested;
3533
3534 int qemu_shutdown_requested(void)
3535 {
3536 int r = shutdown_requested;
3537 shutdown_requested = 0;
3538 return r;
3539 }
3540
3541 int qemu_reset_requested(void)
3542 {
3543 int r = reset_requested;
3544 reset_requested = 0;
3545 return r;
3546 }
3547
3548 int qemu_powerdown_requested(void)
3549 {
3550 int r = powerdown_requested;
3551 powerdown_requested = 0;
3552 return r;
3553 }
3554
3555 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3556 {
3557 QEMUResetEntry **pre, *re;
3558
3559 pre = &first_reset_entry;
3560 while (*pre != NULL)
3561 pre = &(*pre)->next;
3562 re = qemu_mallocz(sizeof(QEMUResetEntry));
3563 re->func = func;
3564 re->opaque = opaque;
3565 re->next = NULL;
3566 *pre = re;
3567 }
3568
3569 void qemu_system_reset(void)
3570 {
3571 QEMUResetEntry *re;
3572
3573 /* reset all devices */
3574 for(re = first_reset_entry; re != NULL; re = re->next) {
3575 re->func(re->opaque);
3576 }
3577 }
3578
3579 void qemu_system_reset_request(void)
3580 {
3581 if (no_reboot) {
3582 shutdown_requested = 1;
3583 } else {
3584 reset_requested = 1;
3585 }
3586 if (cpu_single_env)
3587 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3588 }
3589
3590 void qemu_system_shutdown_request(void)
3591 {
3592 shutdown_requested = 1;
3593 if (cpu_single_env)
3594 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3595 }
3596
3597 void qemu_system_powerdown_request(void)
3598 {
3599 powerdown_requested = 1;
3600 if (cpu_single_env)
3601 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3602 }
3603
3604 #ifdef _WIN32
3605 static void host_main_loop_wait(int *timeout)
3606 {
3607 int ret, ret2, i;
3608 PollingEntry *pe;
3609
3610
3611 /* XXX: need to suppress polling by better using win32 events */
3612 ret = 0;
3613 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3614 ret |= pe->func(pe->opaque);
3615 }
3616 if (ret == 0) {
3617 int err;
3618 WaitObjects *w = &wait_objects;
3619
3620 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3621 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3622 if (w->func[ret - WAIT_OBJECT_0])
3623 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3624
3625 /* Check for additional signaled events */
3626 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3627
3628 /* Check if event is signaled */
3629 ret2 = WaitForSingleObject(w->events[i], 0);
3630 if(ret2 == WAIT_OBJECT_0) {
3631 if (w->func[i])
3632 w->func[i](w->opaque[i]);
3633 } else if (ret2 == WAIT_TIMEOUT) {
3634 } else {
3635 err = GetLastError();
3636 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3637 }
3638 }
3639 } else if (ret == WAIT_TIMEOUT) {
3640 } else {
3641 err = GetLastError();
3642 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3643 }
3644 }
3645
3646 *timeout = 0;
3647 }
3648 #else
3649 static void host_main_loop_wait(int *timeout)
3650 {
3651 }
3652 #endif
3653
3654 void main_loop_wait(int timeout)
3655 {
3656 IOHandlerRecord *ioh;
3657 fd_set rfds, wfds, xfds;
3658 int ret, nfds;
3659 struct timeval tv;
3660
3661 qemu_bh_update_timeout(&timeout);
3662
3663 host_main_loop_wait(&timeout);
3664
3665 /* poll any events */
3666 /* XXX: separate device handlers from system ones */
3667 nfds = -1;
3668 FD_ZERO(&rfds);
3669 FD_ZERO(&wfds);
3670 FD_ZERO(&xfds);
3671 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3672 if (ioh->deleted)
3673 continue;
3674 if (ioh->fd_read &&
3675 (!ioh->fd_read_poll ||
3676 ioh->fd_read_poll(ioh->opaque) != 0)) {
3677 FD_SET(ioh->fd, &rfds);
3678 if (ioh->fd > nfds)
3679 nfds = ioh->fd;
3680 }
3681 if (ioh->fd_write) {
3682 FD_SET(ioh->fd, &wfds);
3683 if (ioh->fd > nfds)
3684 nfds = ioh->fd;
3685 }
3686 }
3687
3688 tv.tv_sec = timeout / 1000;
3689 tv.tv_usec = (timeout % 1000) * 1000;
3690
3691 #if defined(CONFIG_SLIRP)
3692 if (slirp_is_inited()) {
3693 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3694 }
3695 #endif
3696 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3697 if (ret > 0) {
3698 IOHandlerRecord **pioh;
3699
3700 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3701 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3702 ioh->fd_read(ioh->opaque);
3703 }
3704 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3705 ioh->fd_write(ioh->opaque);
3706 }
3707 }
3708
3709 /* remove deleted IO handlers */
3710 pioh = &first_io_handler;
3711 while (*pioh) {
3712 ioh = *pioh;
3713 if (ioh->deleted) {
3714 *pioh = ioh->next;
3715 qemu_free(ioh);
3716 } else
3717 pioh = &ioh->next;
3718 }
3719 }
3720 #if defined(CONFIG_SLIRP)
3721 if (slirp_is_inited()) {
3722 if (ret < 0) {
3723 FD_ZERO(&rfds);
3724 FD_ZERO(&wfds);
3725 FD_ZERO(&xfds);
3726 }
3727 slirp_select_poll(&rfds, &wfds, &xfds);
3728 }
3729 #endif
3730
3731 /* vm time timers */
3732 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3733 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3734 qemu_get_clock(vm_clock));
3735
3736 /* real time timers */
3737 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3738 qemu_get_clock(rt_clock));
3739
3740 /* Check bottom-halves last in case any of the earlier events triggered
3741 them. */
3742 qemu_bh_poll();
3743
3744 }
3745
3746 static int main_loop(void)
3747 {
3748 int ret, timeout;
3749 #ifdef CONFIG_PROFILER
3750 int64_t ti;
3751 #endif
3752 CPUState *env;
3753
3754 cur_cpu = first_cpu;
3755 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3756 for(;;) {
3757 if (vm_running) {
3758
3759 for(;;) {
3760 /* get next cpu */
3761 env = next_cpu;
3762 #ifdef CONFIG_PROFILER
3763 ti = profile_getclock();
3764 #endif
3765 if (use_icount) {
3766 int64_t count;
3767 int decr;
3768 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3769 env->icount_decr.u16.low = 0;
3770 env->icount_extra = 0;
3771 count = qemu_next_deadline();
3772 count = (count + (1 << icount_time_shift) - 1)
3773 >> icount_time_shift;
3774 qemu_icount += count;
3775 decr = (count > 0xffff) ? 0xffff : count;
3776 count -= decr;
3777 env->icount_decr.u16.low = decr;
3778 env->icount_extra = count;
3779 }
3780 ret = cpu_exec(env);
3781 #ifdef CONFIG_PROFILER
3782 qemu_time += profile_getclock() - ti;
3783 #endif
3784 if (use_icount) {
3785 /* Fold pending instructions back into the
3786 instruction counter, and clear the interrupt flag. */
3787 qemu_icount -= (env->icount_decr.u16.low
3788 + env->icount_extra);
3789 env->icount_decr.u32 = 0;
3790 env->icount_extra = 0;
3791 }
3792 next_cpu = env->next_cpu ?: first_cpu;
3793 if (event_pending && likely(ret != EXCP_DEBUG)) {
3794 ret = EXCP_INTERRUPT;
3795 event_pending = 0;
3796 break;
3797 }
3798 if (ret == EXCP_HLT) {
3799 /* Give the next CPU a chance to run. */
3800 cur_cpu = env;
3801 continue;
3802 }
3803 if (ret != EXCP_HALTED)
3804 break;
3805 /* all CPUs are halted ? */
3806 if (env == cur_cpu)
3807 break;
3808 }
3809 cur_cpu = env;
3810
3811 if (shutdown_requested) {
3812 ret = EXCP_INTERRUPT;
3813 if (no_shutdown) {
3814 vm_stop(0);
3815 no_shutdown = 0;
3816 }
3817 else
3818 break;
3819 }
3820 if (reset_requested) {
3821 reset_requested = 0;
3822 qemu_system_reset();
3823 ret = EXCP_INTERRUPT;
3824 }
3825 if (powerdown_requested) {
3826 powerdown_requested = 0;
3827 qemu_system_powerdown();
3828 ret = EXCP_INTERRUPT;
3829 }
3830 if (unlikely(ret == EXCP_DEBUG)) {
3831 gdb_set_stop_cpu(cur_cpu);
3832 vm_stop(EXCP_DEBUG);
3833 }
3834 /* If all cpus are halted then wait until the next IRQ */
3835 /* XXX: use timeout computed from timers */
3836 if (ret == EXCP_HALTED) {
3837 if (use_icount) {
3838 int64_t add;
3839 int64_t delta;
3840 /* Advance virtual time to the next event. */
3841 if (use_icount == 1) {
3842 /* When not using an adaptive execution frequency
3843 we tend to get badly out of sync with real time,
3844 so just delay for a reasonable amount of time. */
3845 delta = 0;
3846 } else {
3847 delta = cpu_get_icount() - cpu_get_clock();
3848 }
3849 if (delta > 0) {
3850 /* If virtual time is ahead of real time then just
3851 wait for IO. */
3852 timeout = (delta / 1000000) + 1;
3853 } else {
3854 /* Wait for either IO to occur or the next
3855 timer event. */
3856 add = qemu_next_deadline();
3857 /* We advance the timer before checking for IO.
3858 Limit the amount we advance so that early IO
3859 activity won't get the guest too far ahead. */
3860 if (add > 10000000)
3861 add = 10000000;
3862 delta += add;
3863 add = (add + (1 << icount_time_shift) - 1)
3864 >> icount_time_shift;
3865 qemu_icount += add;
3866 timeout = delta / 1000000;
3867 if (timeout < 0)
3868 timeout = 0;
3869 }
3870 } else {
3871 timeout = 5000;
3872 }
3873 } else {
3874 timeout = 0;
3875 }
3876 } else {
3877 if (shutdown_requested) {
3878 ret = EXCP_INTERRUPT;
3879 break;
3880 }
3881 timeout = 5000;
3882 }
3883 #ifdef CONFIG_PROFILER
3884 ti = profile_getclock();
3885 #endif
3886 main_loop_wait(timeout);
3887 #ifdef CONFIG_PROFILER
3888 dev_time += profile_getclock() - ti;
3889 #endif
3890 }
3891 cpu_disable_ticks();
3892 return ret;
3893 }
3894
3895 static void help(int exitcode)
3896 {
3897 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3898 and qemu-doc.texi */
3899 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3900 "usage: %s [options] [disk_image]\n"
3901 "\n"
3902 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3903 "\n"
3904 "Standard options:\n"
3905 "-h or -help display this help and exit\n"
3906 "-M machine select emulated machine (-M ? for list)\n"
3907 "-cpu cpu select CPU (-cpu ? for list)\n"
3908 "-smp n set the number of CPUs to 'n' [default=1]\n"
3909 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3910 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3911 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3912 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3913 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3914 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3915 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3916 " use 'file' as a drive image\n"
3917 "-mtdblock file use 'file' as on-board Flash memory image\n"
3918 "-sd file use 'file' as SecureDigital card image\n"
3919 "-pflash file use 'file' as a parallel flash image\n"
3920 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3921 "-snapshot write to temporary files instead of disk image files\n"
3922 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3923 #ifndef _WIN32
3924 "-k language use keyboard layout (for example \"fr\" for French)\n"
3925 #endif
3926 #ifdef HAS_AUDIO
3927 "-audio-help print list of audio drivers and their options\n"
3928 "-soundhw c1,... enable audio support\n"
3929 " and only specified sound cards (comma separated list)\n"
3930 " use -soundhw ? to get the list of supported cards\n"
3931 " use -soundhw all to enable all of them\n"
3932 #endif
3933 "-usb enable the USB driver (will be the default soon)\n"
3934 "-usbdevice name add the host or guest USB device 'name'\n"
3935 "-name string set the name of the guest\n"
3936 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3937 " specify machine UUID\n"
3938 "\n"
3939 "Display options:\n"
3940 "-nographic disable graphical output and redirect serial I/Os to console\n"
3941 #ifdef CONFIG_CURSES
3942 "-curses use a curses/ncurses interface instead of SDL\n"
3943 #endif
3944 #ifdef CONFIG_SDL
3945 "-no-frame open SDL window without a frame and window decorations\n"
3946 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3947 "-no-quit disable SDL window close capability\n"
3948 "-sdl enable SDL\n"
3949 #endif
3950 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3951 "-vga [std|cirrus|vmware|none]\n"
3952 " select video card type\n"
3953 "-full-screen start in full screen\n"
3954 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3955 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3956 #endif
3957 "-vnc display start a VNC server on display\n"
3958 "\n"
3959 "Network options:\n"
3960 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3961 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3962 #ifdef CONFIG_SLIRP
3963 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3964 " connect the user mode network stack to VLAN 'n' and send\n"
3965 " hostname 'host' to DHCP clients\n"
3966 #endif
3967 #ifdef _WIN32
3968 "-net tap[,vlan=n][,name=str],ifname=name\n"
3969 " connect the host TAP network interface to VLAN 'n'\n"
3970 #else
3971 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3972 " connect the host TAP network interface to VLAN 'n' and use the\n"
3973 " network scripts 'file' (default=%s)\n"
3974 " and 'dfile' (default=%s);\n"
3975 " use '[down]script=no' to disable script execution;\n"
3976 " use 'fd=h' to connect to an already opened TAP interface\n"
3977 #endif
3978 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3979 " connect the vlan 'n' to another VLAN using a socket connection\n"
3980 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3981 " connect the vlan 'n' to multicast maddr and port\n"
3982 #ifdef CONFIG_VDE
3983 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3984 " connect the vlan 'n' to port 'n' of a vde switch running\n"
3985 " on host and listening for incoming connections on 'socketpath'.\n"
3986 " Use group 'groupname' and mode 'octalmode' to change default\n"
3987 " ownership and permissions for communication port.\n"
3988 #endif
3989 "-net none use it alone to have zero network devices; if no -net option\n"
3990 " is provided, the default is '-net nic -net user'\n"
3991 #ifdef CONFIG_SLIRP
3992 "-tftp dir allow tftp access to files in dir [-net user]\n"
3993 "-bootp file advertise file in BOOTP replies\n"
3994 #ifndef _WIN32
3995 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
3996 #endif
3997 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3998 " redirect TCP or UDP connections from host to guest [-net user]\n"
3999 #endif
4000 "\n"
4001 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4002 "-bt hci,host[:id]\n"
4003 " use host's HCI with the given name\n"
4004 "-bt hci[,vlan=n]\n"
4005 " emulate a standard HCI in virtual scatternet 'n'\n"
4006 "-bt vhci[,vlan=n]\n"
4007 " add host computer to virtual scatternet 'n' using VHCI\n"
4008 "-bt device:dev[,vlan=n]\n"
4009 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4010 "\n"
4011 #ifdef TARGET_I386
4012 "\n"
4013 "i386 target only:\n"
4014 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4015 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4016 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4017 "-no-acpi disable ACPI\n"
4018 "-no-hpet disable HPET\n"
4019 #endif
4020 "Linux boot specific:\n"
4021 "-kernel bzImage use 'bzImage' as kernel image\n"
4022 "-append cmdline use 'cmdline' as kernel command line\n"
4023 "-initrd file use 'file' as initial ram disk\n"
4024 "\n"
4025 "Debug/Expert options:\n"
4026 "-serial dev redirect the serial port to char device 'dev'\n"
4027 "-parallel dev redirect the parallel port to char device 'dev'\n"
4028 "-monitor dev redirect the monitor to char device 'dev'\n"
4029 "-pidfile file write PID to 'file'\n"
4030 "-S freeze CPU at startup (use 'c' to start execution)\n"
4031 "-s wait gdb connection to port\n"
4032 "-p port set gdb connection port [default=%s]\n"
4033 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4034 "-hdachs c,h,s[,t]\n"
4035 " force hard disk 0 physical geometry and the optional BIOS\n"
4036 " translation (t=none or lba) (usually qemu can guess them)\n"
4037 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4038 "-bios file set the filename for the BIOS\n"
4039 #ifdef USE_KQEMU
4040 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4041 "-no-kqemu disable KQEMU kernel module usage\n"
4042 #endif
4043 #ifdef CONFIG_KVM
4044 "-enable-kvm enable KVM full virtualization support\n"
4045 #endif
4046 "-no-reboot exit instead of rebooting\n"
4047 "-no-shutdown stop before shutdown\n"
4048 "-loadvm [tag|id]\n"
4049 " start right away with a saved state (loadvm in monitor)\n"
4050 #ifndef _WIN32
4051 "-daemonize daemonize QEMU after initializing\n"
4052 #endif
4053 "-option-rom rom load a file, rom, into the option ROM space\n"
4054 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4055 "-prom-env variable=value\n"
4056 " set OpenBIOS nvram variables\n"
4057 #endif
4058 "-clock force the use of the given methods for timer alarm.\n"
4059 " To see what timers are available use -clock ?\n"
4060 "-localtime set the real time clock to local time [default=utc]\n"
4061 "-startdate select initial date of the clock\n"
4062 "-icount [N|auto]\n"
4063 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4064 "-echr chr set terminal escape character instead of ctrl-a\n"
4065 "-virtioconsole c\n"
4066 " set virtio console\n"
4067 "-show-cursor show cursor\n"
4068 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4069 "-semihosting semihosting mode\n"
4070 #endif
4071 #if defined(TARGET_ARM)
4072 "-old-param old param mode\n"
4073 #endif
4074 "-tb-size n set TB size\n"
4075 "-incoming p prepare for incoming migration, listen on port p\n"
4076 "\n"
4077 "During emulation, the following keys are useful:\n"
4078 "ctrl-alt-f toggle full screen\n"
4079 "ctrl-alt-n switch to virtual console 'n'\n"
4080 "ctrl-alt toggle mouse and keyboard grab\n"
4081 "\n"
4082 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4083 ,
4084 "qemu",
4085 DEFAULT_RAM_SIZE,
4086 #ifndef _WIN32
4087 DEFAULT_NETWORK_SCRIPT,
4088 DEFAULT_NETWORK_DOWN_SCRIPT,
4089 #endif
4090 DEFAULT_GDBSTUB_PORT,
4091 "/tmp/qemu.log");
4092 exit(exitcode);
4093 }
4094
4095 #define HAS_ARG 0x0001
4096
4097 enum {
4098 /* Please keep in synch with help, qemu_options[] and
4099 qemu-doc.texi */
4100 /* Standard options: */
4101 QEMU_OPTION_h,
4102 QEMU_OPTION_M,
4103 QEMU_OPTION_cpu,
4104 QEMU_OPTION_smp,
4105 QEMU_OPTION_fda,
4106 QEMU_OPTION_fdb,
4107 QEMU_OPTION_hda,
4108 QEMU_OPTION_hdb,
4109 QEMU_OPTION_hdc,
4110 QEMU_OPTION_hdd,
4111 QEMU_OPTION_cdrom,
4112 QEMU_OPTION_drive,
4113 QEMU_OPTION_mtdblock,
4114 QEMU_OPTION_sd,
4115 QEMU_OPTION_pflash,
4116 QEMU_OPTION_boot,
4117 QEMU_OPTION_snapshot,
4118 QEMU_OPTION_m,
4119 QEMU_OPTION_k,
4120 QEMU_OPTION_audio_help,
4121 QEMU_OPTION_soundhw,
4122 QEMU_OPTION_usb,
4123 QEMU_OPTION_usbdevice,
4124 QEMU_OPTION_name,
4125 QEMU_OPTION_uuid,
4126
4127 /* Display options: */
4128 QEMU_OPTION_nographic,
4129 QEMU_OPTION_curses,
4130 QEMU_OPTION_no_frame,
4131 QEMU_OPTION_alt_grab,
4132 QEMU_OPTION_no_quit,
4133 QEMU_OPTION_sdl,
4134 QEMU_OPTION_portrait,
4135 QEMU_OPTION_vga,
4136 QEMU_OPTION_full_screen,
4137 QEMU_OPTION_g,
4138 QEMU_OPTION_vnc,
4139
4140 /* Network options: */
4141 QEMU_OPTION_net,
4142 QEMU_OPTION_tftp,
4143 QEMU_OPTION_bootp,
4144 QEMU_OPTION_smb,
4145 QEMU_OPTION_redir,
4146 QEMU_OPTION_bt,
4147
4148 /* i386 target only: */
4149 QEMU_OPTION_win2k_hack,
4150 QEMU_OPTION_rtc_td_hack,
4151 QEMU_OPTION_no_fd_bootchk,
4152 QEMU_OPTION_no_acpi,
4153 QEMU_OPTION_no_hpet,
4154
4155 /* Linux boot specific: */
4156 QEMU_OPTION_kernel,
4157 QEMU_OPTION_append,
4158 QEMU_OPTION_initrd,
4159
4160 /* Debug/Expert options: */
4161 QEMU_OPTION_serial,
4162 QEMU_OPTION_parallel,
4163 QEMU_OPTION_monitor,
4164 QEMU_OPTION_pidfile,
4165 QEMU_OPTION_S,
4166 QEMU_OPTION_s,
4167 QEMU_OPTION_p,
4168 QEMU_OPTION_d,
4169 QEMU_OPTION_hdachs,
4170 QEMU_OPTION_L,
4171 QEMU_OPTION_bios,
4172 QEMU_OPTION_kernel_kqemu,
4173 QEMU_OPTION_no_kqemu,
4174 QEMU_OPTION_enable_kvm,
4175 QEMU_OPTION_no_reboot,
4176 QEMU_OPTION_no_shutdown,
4177 QEMU_OPTION_loadvm,
4178 QEMU_OPTION_daemonize,
4179 QEMU_OPTION_option_rom,
4180 QEMU_OPTION_prom_env,
4181 QEMU_OPTION_clock,
4182 QEMU_OPTION_localtime,
4183 QEMU_OPTION_startdate,
4184 QEMU_OPTION_icount,
4185 QEMU_OPTION_echr,
4186 QEMU_OPTION_virtiocon,
4187 QEMU_OPTION_show_cursor,
4188 QEMU_OPTION_semihosting,
4189 QEMU_OPTION_old_param,
4190 QEMU_OPTION_tb_size,
4191 QEMU_OPTION_incoming,
4192 };
4193
4194 typedef struct QEMUOption {
4195 const char *name;
4196 int flags;
4197 int index;
4198 } QEMUOption;
4199
4200 static const QEMUOption qemu_options[] = {
4201 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4202 qemu-doc.texi */
4203 /* Standard options: */
4204 { "h", 0, QEMU_OPTION_h },
4205 { "help", 0, QEMU_OPTION_h },
4206 { "M", HAS_ARG, QEMU_OPTION_M },
4207 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4208 { "smp", HAS_ARG, QEMU_OPTION_smp },
4209 { "fda", HAS_ARG, QEMU_OPTION_fda },
4210 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4211 { "hda", HAS_ARG, QEMU_OPTION_hda },
4212 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4213 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4214 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4215 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4216 { "drive", HAS_ARG, QEMU_OPTION_drive },
4217 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4218 { "sd", HAS_ARG, QEMU_OPTION_sd },
4219 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4220 { "boot", HAS_ARG, QEMU_OPTION_boot },
4221 { "snapshot", 0, QEMU_OPTION_snapshot },
4222 { "m", HAS_ARG, QEMU_OPTION_m },
4223 #ifndef _WIN32
4224 { "k", HAS_ARG, QEMU_OPTION_k },
4225 #endif
4226 #ifdef HAS_AUDIO
4227 { "audio-help", 0, QEMU_OPTION_audio_help },
4228 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4229 #endif
4230 { "usb", 0, QEMU_OPTION_usb },
4231 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4232 { "name", HAS_ARG, QEMU_OPTION_name },
4233 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4234
4235 /* Display options: */
4236 { "nographic", 0, QEMU_OPTION_nographic },
4237 #ifdef CONFIG_CURSES
4238 { "curses", 0, QEMU_OPTION_curses },
4239 #endif
4240 #ifdef CONFIG_SDL
4241 { "no-frame", 0, QEMU_OPTION_no_frame },
4242 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4243 { "no-quit", 0, QEMU_OPTION_no_quit },
4244 { "sdl", 0, QEMU_OPTION_sdl },
4245 #endif
4246 { "portrait", 0, QEMU_OPTION_portrait },
4247 { "vga", HAS_ARG, QEMU_OPTION_vga },
4248 { "full-screen", 0, QEMU_OPTION_full_screen },
4249 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4250 { "g", 1, QEMU_OPTION_g },
4251 #endif
4252 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4253
4254 /* Network options: */
4255 { "net", HAS_ARG, QEMU_OPTION_net},
4256 #ifdef CONFIG_SLIRP
4257 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4258 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4259 #ifndef _WIN32
4260 { "smb", HAS_ARG, QEMU_OPTION_smb },
4261 #endif
4262 { "redir", HAS_ARG, QEMU_OPTION_redir },
4263 #endif
4264 { "bt", HAS_ARG, QEMU_OPTION_bt },
4265 #ifdef TARGET_I386
4266 /* i386 target only: */
4267 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4268 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4269 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4270 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4271 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4272 #endif
4273
4274 /* Linux boot specific: */
4275 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4276 { "append", HAS_ARG, QEMU_OPTION_append },
4277 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4278
4279 /* Debug/Expert options: */
4280 { "serial", HAS_ARG, QEMU_OPTION_serial },
4281 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4282 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4283 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4284 { "S", 0, QEMU_OPTION_S },
4285 { "s", 0, QEMU_OPTION_s },
4286 { "p", HAS_ARG, QEMU_OPTION_p },
4287 { "d", HAS_ARG, QEMU_OPTION_d },
4288 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4289 { "L", HAS_ARG, QEMU_OPTION_L },
4290 { "bios", HAS_ARG, QEMU_OPTION_bios },
4291 #ifdef USE_KQEMU
4292 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4293 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4294 #endif
4295 #ifdef CONFIG_KVM
4296 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4297 #endif
4298 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4299 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4300 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4301 { "daemonize", 0, QEMU_OPTION_daemonize },
4302 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4303 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4304 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4305 #endif
4306 { "clock", HAS_ARG, QEMU_OPTION_clock },
4307 { "localtime", 0, QEMU_OPTION_localtime },
4308 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4309 { "icount", HAS_ARG, QEMU_OPTION_icount },
4310 { "echr", HAS_ARG, QEMU_OPTION_echr },
4311 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4312 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4313 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4314 { "semihosting", 0, QEMU_OPTION_semihosting },
4315 #endif
4316 #if defined(TARGET_ARM)
4317 { "old-param", 0, QEMU_OPTION_old_param },
4318 #endif
4319 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4320 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4321 { NULL },
4322 };
4323
4324 /* password input */
4325
4326 int qemu_key_check(BlockDriverState *bs, const char *name)
4327 {
4328 char password[256];
4329 int i;
4330
4331 if (!bdrv_is_encrypted(bs))
4332 return 0;
4333
4334 term_printf("%s is encrypted.\n", name);
4335 for(i = 0; i < 3; i++) {
4336 monitor_readline("Password: ", 1, password, sizeof(password));
4337 if (bdrv_set_key(bs, password) == 0)
4338 return 0;
4339 term_printf("invalid password\n");
4340 }
4341 return -EPERM;
4342 }
4343
4344 static BlockDriverState *get_bdrv(int index)
4345 {
4346 if (index > nb_drives)
4347 return NULL;
4348 return drives_table[index].bdrv;
4349 }
4350
4351 static void read_passwords(void)
4352 {
4353 BlockDriverState *bs;
4354 int i;
4355
4356 for(i = 0; i < 6; i++) {
4357 bs = get_bdrv(i);
4358 if (bs)
4359 qemu_key_check(bs, bdrv_get_device_name(bs));
4360 }
4361 }
4362
4363 #ifdef HAS_AUDIO
4364 struct soundhw soundhw[] = {
4365 #ifdef HAS_AUDIO_CHOICE
4366 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4367 {
4368 "pcspk",
4369 "PC speaker",
4370 0,
4371 1,
4372 { .init_isa = pcspk_audio_init }
4373 },
4374 #endif
4375
4376 #ifdef CONFIG_SB16
4377 {
4378 "sb16",
4379 "Creative Sound Blaster 16",
4380 0,
4381 1,
4382 { .init_isa = SB16_init }
4383 },
4384 #endif
4385
4386 #ifdef CONFIG_CS4231A
4387 {
4388 "cs4231a",
4389 "CS4231A",
4390 0,
4391 1,
4392 { .init_isa = cs4231a_init }
4393 },
4394 #endif
4395
4396 #ifdef CONFIG_ADLIB
4397 {
4398 "adlib",
4399 #ifdef HAS_YMF262
4400 "Yamaha YMF262 (OPL3)",
4401 #else
4402 "Yamaha YM3812 (OPL2)",
4403 #endif
4404 0,
4405 1,
4406 { .init_isa = Adlib_init }
4407 },
4408 #endif
4409
4410 #ifdef CONFIG_GUS
4411 {
4412 "gus",
4413 "Gravis Ultrasound GF1",
4414 0,
4415 1,
4416 { .init_isa = GUS_init }
4417 },
4418 #endif
4419
4420 #ifdef CONFIG_AC97
4421 {
4422 "ac97",
4423 "Intel 82801AA AC97 Audio",
4424 0,
4425 0,
4426 { .init_pci = ac97_init }
4427 },
4428 #endif
4429
4430 #ifdef CONFIG_ES1370
4431 {
4432 "es1370",
4433 "ENSONIQ AudioPCI ES1370",
4434 0,
4435 0,
4436 { .init_pci = es1370_init }
4437 },
4438 #endif
4439
4440 #endif /* HAS_AUDIO_CHOICE */
4441
4442 { NULL, NULL, 0, 0, { NULL } }
4443 };
4444
4445 static void select_soundhw (const char *optarg)
4446 {
4447 struct soundhw *c;
4448
4449 if (*optarg == '?') {
4450 show_valid_cards:
4451
4452 printf ("Valid sound card names (comma separated):\n");
4453 for (c = soundhw; c->name; ++c) {
4454 printf ("%-11s %s\n", c->name, c->descr);
4455 }
4456 printf ("\n-soundhw all will enable all of the above\n");
4457 exit (*optarg != '?');
4458 }
4459 else {
4460 size_t l;
4461 const char *p;
4462 char *e;
4463 int bad_card = 0;
4464
4465 if (!strcmp (optarg, "all")) {
4466 for (c = soundhw; c->name; ++c) {
4467 c->enabled = 1;
4468 }
4469 return;
4470 }
4471
4472 p = optarg;
4473 while (*p) {
4474 e = strchr (p, ',');
4475 l = !e ? strlen (p) : (size_t) (e - p);
4476
4477 for (c = soundhw; c->name; ++c) {
4478 if (!strncmp (c->name, p, l)) {
4479 c->enabled = 1;
4480 break;
4481 }
4482 }
4483
4484 if (!c->name) {
4485 if (l > 80) {
4486 fprintf (stderr,
4487 "Unknown sound card name (too big to show)\n");
4488 }
4489 else {
4490 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4491 (int) l, p);
4492 }
4493 bad_card = 1;
4494 }
4495 p += l + (e != NULL);
4496 }
4497
4498 if (bad_card)
4499 goto show_valid_cards;
4500 }
4501 }
4502 #endif
4503
4504 static void select_vgahw (const char *p)
4505 {
4506 const char *opts;
4507
4508 if (strstart(p, "std", &opts)) {
4509 std_vga_enabled = 1;
4510 cirrus_vga_enabled = 0;
4511 vmsvga_enabled = 0;
4512 } else if (strstart(p, "cirrus", &opts)) {
4513 cirrus_vga_enabled = 1;
4514 std_vga_enabled = 0;
4515 vmsvga_enabled = 0;
4516 } else if (strstart(p, "vmware", &opts)) {
4517 cirrus_vga_enabled = 0;
4518 std_vga_enabled = 0;
4519 vmsvga_enabled = 1;
4520 } else if (strstart(p, "none", &opts)) {
4521 cirrus_vga_enabled = 0;
4522 std_vga_enabled = 0;
4523 vmsvga_enabled = 0;
4524 } else {
4525 invalid_vga:
4526 fprintf(stderr, "Unknown vga type: %s\n", p);
4527 exit(1);
4528 }
4529 while (*opts) {
4530 const char *nextopt;
4531
4532 if (strstart(opts, ",retrace=", &nextopt)) {
4533 opts = nextopt;
4534 if (strstart(opts, "dumb", &nextopt))
4535 vga_retrace_method = VGA_RETRACE_DUMB;
4536 else if (strstart(opts, "precise", &nextopt))
4537 vga_retrace_method = VGA_RETRACE_PRECISE;
4538 else goto invalid_vga;
4539 } else goto invalid_vga;
4540 opts = nextopt;
4541 }
4542 }
4543
4544 #ifdef _WIN32
4545 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4546 {
4547 exit(STATUS_CONTROL_C_EXIT);
4548 return TRUE;
4549 }
4550 #endif
4551
4552 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4553 {
4554 int ret;
4555
4556 if(strlen(str) != 36)
4557 return -1;
4558
4559 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4560 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4561 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4562
4563 if(ret != 16)
4564 return -1;
4565
4566 return 0;
4567 }
4568
4569 #define MAX_NET_CLIENTS 32
4570
4571 #ifndef _WIN32
4572
4573 static void termsig_handler(int signal)
4574 {
4575 qemu_system_shutdown_request();
4576 }
4577
4578 static void termsig_setup(void)
4579 {
4580 struct sigaction act;
4581
4582 memset(&act, 0, sizeof(act));
4583 act.sa_handler = termsig_handler;
4584 sigaction(SIGINT, &act, NULL);
4585 sigaction(SIGHUP, &act, NULL);
4586 sigaction(SIGTERM, &act, NULL);
4587 }
4588
4589 #endif
4590
4591 int main(int argc, char **argv, char **envp)
4592 {
4593 #ifdef CONFIG_GDBSTUB
4594 int use_gdbstub;
4595 const char *gdbstub_port;
4596 #endif
4597 uint32_t boot_devices_bitmap = 0;
4598 int i;
4599 int snapshot, linux_boot, net_boot;
4600 const char *initrd_filename;
4601 const char *kernel_filename, *kernel_cmdline;
4602 const char *boot_devices = "";
4603 DisplayState *ds;
4604 DisplayChangeListener *dcl;
4605 int cyls, heads, secs, translation;
4606 const char *net_clients[MAX_NET_CLIENTS];
4607 int nb_net_clients;
4608 const char *bt_opts[MAX_BT_CMDLINE];
4609 int nb_bt_opts;
4610 int hda_index;
4611 int optind;
4612 const char *r, *optarg;
4613 CharDriverState *monitor_hd = NULL;
4614 const char *monitor_device;
4615 const char *serial_devices[MAX_SERIAL_PORTS];
4616 int serial_device_index;
4617 const char *parallel_devices[MAX_PARALLEL_PORTS];
4618 int parallel_device_index;
4619 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4620 int virtio_console_index;
4621 const char *loadvm = NULL;
4622 QEMUMachine *machine;
4623 const char *cpu_model;
4624 const char *usb_devices[MAX_USB_CMDLINE];
4625 int usb_devices_index;
4626 int fds[2];
4627 int tb_size;
4628 const char *pid_file = NULL;
4629 int autostart;
4630 const char *incoming = NULL;
4631
4632 qemu_cache_utils_init(envp);
4633
4634 LIST_INIT (&vm_change_state_head);
4635 #ifndef _WIN32
4636 {
4637 struct sigaction act;
4638 sigfillset(&act.sa_mask);
4639 act.sa_flags = 0;
4640 act.sa_handler = SIG_IGN;
4641 sigaction(SIGPIPE, &act, NULL);
4642 }
4643 #else
4644 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4645 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4646 QEMU to run on a single CPU */
4647 {
4648 HANDLE h;
4649 DWORD mask, smask;
4650 int i;
4651 h = GetCurrentProcess();
4652 if (GetProcessAffinityMask(h, &mask, &smask)) {
4653 for(i = 0; i < 32; i++) {
4654 if (mask & (1 << i))
4655 break;
4656 }
4657 if (i != 32) {
4658 mask = 1 << i;
4659 SetProcessAffinityMask(h, mask);
4660 }
4661 }
4662 }
4663 #endif
4664
4665 register_machines();
4666 machine = first_machine;
4667 cpu_model = NULL;
4668 initrd_filename = NULL;
4669 ram_size = 0;
4670 vga_ram_size = VGA_RAM_SIZE;
4671 #ifdef CONFIG_GDBSTUB
4672 use_gdbstub = 0;
4673 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4674 #endif
4675 snapshot = 0;
4676 nographic = 0;
4677 curses = 0;
4678 kernel_filename = NULL;
4679 kernel_cmdline = "";
4680 cyls = heads = secs = 0;
4681 translation = BIOS_ATA_TRANSLATION_AUTO;
4682 monitor_device = "vc";
4683
4684 serial_devices[0] = "vc:80Cx24C";
4685 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4686 serial_devices[i] = NULL;
4687 serial_device_index = 0;
4688
4689 parallel_devices[0] = "vc:640x480";
4690 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4691 parallel_devices[i] = NULL;
4692 parallel_device_index = 0;
4693
4694 virtio_consoles[0] = "vc:80Cx24C";
4695 for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4696 virtio_consoles[i] = NULL;
4697 virtio_console_index = 0;
4698
4699 usb_devices_index = 0;
4700
4701 nb_net_clients = 0;
4702 nb_bt_opts = 0;
4703 nb_drives = 0;
4704 nb_drives_opt = 0;
4705 hda_index = -1;
4706
4707 nb_nics = 0;
4708
4709 tb_size = 0;
4710 autostart= 1;
4711
4712 optind = 1;
4713 for(;;) {
4714 if (optind >= argc)
4715 break;
4716 r = argv[optind];
4717 if (r[0] != '-') {
4718 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4719 } else {
4720 const QEMUOption *popt;
4721
4722 optind++;
4723 /* Treat --foo the same as -foo. */
4724 if (r[1] == '-')
4725 r++;
4726 popt = qemu_options;
4727 for(;;) {
4728 if (!popt->name) {
4729 fprintf(stderr, "%s: invalid option -- '%s'\n",
4730 argv[0], r);
4731 exit(1);
4732 }
4733 if (!strcmp(popt->name, r + 1))
4734 break;
4735 popt++;
4736 }
4737 if (popt->flags & HAS_ARG) {
4738 if (optind >= argc) {
4739 fprintf(stderr, "%s: option '%s' requires an argument\n",
4740 argv[0], r);
4741 exit(1);
4742 }
4743 optarg = argv[optind++];
4744 } else {
4745 optarg = NULL;
4746 }
4747
4748 switch(popt->index) {
4749 case QEMU_OPTION_M:
4750 machine = find_machine(optarg);
4751 if (!machine) {
4752 QEMUMachine *m;
4753 printf("Supported machines are:\n");
4754 for(m = first_machine; m != NULL; m = m->next) {
4755 printf("%-10s %s%s\n",
4756 m->name, m->desc,
4757 m == first_machine ? " (default)" : "");
4758 }
4759 exit(*optarg != '?');
4760 }
4761 break;
4762 case QEMU_OPTION_cpu:
4763 /* hw initialization will check this */
4764 if (*optarg == '?') {
4765 /* XXX: implement xxx_cpu_list for targets that still miss it */
4766 #if defined(cpu_list)
4767 cpu_list(stdout, &fprintf);
4768 #endif
4769 exit(0);
4770 } else {
4771 cpu_model = optarg;
4772 }
4773 break;
4774 case QEMU_OPTION_initrd:
4775 initrd_filename = optarg;
4776 break;
4777 case QEMU_OPTION_hda:
4778 if (cyls == 0)
4779 hda_index = drive_add(optarg, HD_ALIAS, 0);
4780 else
4781 hda_index = drive_add(optarg, HD_ALIAS
4782 ",cyls=%d,heads=%d,secs=%d%s",
4783 0, cyls, heads, secs,
4784 translation == BIOS_ATA_TRANSLATION_LBA ?
4785 ",trans=lba" :
4786 translation == BIOS_ATA_TRANSLATION_NONE ?
4787 ",trans=none" : "");
4788 break;
4789 case QEMU_OPTION_hdb:
4790 case QEMU_OPTION_hdc:
4791 case QEMU_OPTION_hdd:
4792 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4793 break;
4794 case QEMU_OPTION_drive:
4795 drive_add(NULL, "%s", optarg);
4796 break;
4797 case QEMU_OPTION_mtdblock:
4798 drive_add(optarg, MTD_ALIAS);
4799 break;
4800 case QEMU_OPTION_sd:
4801 drive_add(optarg, SD_ALIAS);
4802 break;
4803 case QEMU_OPTION_pflash:
4804 drive_add(optarg, PFLASH_ALIAS);
4805 break;
4806 case QEMU_OPTION_snapshot:
4807 snapshot = 1;
4808 break;
4809 case QEMU_OPTION_hdachs:
4810 {
4811 const char *p;
4812 p = optarg;
4813 cyls = strtol(p, (char **)&p, 0);
4814 if (cyls < 1 || cyls > 16383)
4815 goto chs_fail;
4816 if (*p != ',')
4817 goto chs_fail;
4818 p++;
4819 heads = strtol(p, (char **)&p, 0);
4820 if (heads < 1 || heads > 16)
4821 goto chs_fail;
4822 if (*p != ',')
4823 goto chs_fail;
4824 p++;
4825 secs = strtol(p, (char **)&p, 0);
4826 if (secs < 1 || secs > 63)
4827 goto chs_fail;
4828 if (*p == ',') {
4829 p++;
4830 if (!strcmp(p, "none"))
4831 translation = BIOS_ATA_TRANSLATION_NONE;
4832 else if (!strcmp(p, "lba"))
4833 translation = BIOS_ATA_TRANSLATION_LBA;
4834 else if (!strcmp(p, "auto"))
4835 translation = BIOS_ATA_TRANSLATION_AUTO;
4836 else
4837 goto chs_fail;
4838 } else if (*p != '\0') {
4839 chs_fail:
4840 fprintf(stderr, "qemu: invalid physical CHS format\n");
4841 exit(1);
4842 }
4843 if (hda_index != -1)
4844 snprintf(drives_opt[hda_index].opt,
4845 sizeof(drives_opt[hda_index].opt),
4846 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4847 0, cyls, heads, secs,
4848 translation == BIOS_ATA_TRANSLATION_LBA ?
4849 ",trans=lba" :
4850 translation == BIOS_ATA_TRANSLATION_NONE ?
4851 ",trans=none" : "");
4852 }
4853 break;
4854 case QEMU_OPTION_nographic:
4855 nographic = 1;
4856 break;
4857 #ifdef CONFIG_CURSES
4858 case QEMU_OPTION_curses:
4859 curses = 1;
4860 break;
4861 #endif
4862 case QEMU_OPTION_portrait:
4863 graphic_rotate = 1;
4864 break;
4865 case QEMU_OPTION_kernel:
4866 kernel_filename = optarg;
4867 break;
4868 case QEMU_OPTION_append:
4869 kernel_cmdline = optarg;
4870 break;
4871 case QEMU_OPTION_cdrom:
4872 drive_add(optarg, CDROM_ALIAS);
4873 break;
4874 case QEMU_OPTION_boot:
4875 boot_devices = optarg;
4876 /* We just do some generic consistency checks */
4877 {
4878 /* Could easily be extended to 64 devices if needed */
4879 const char *p;
4880
4881 boot_devices_bitmap = 0;
4882 for (p = boot_devices; *p != '\0'; p++) {
4883 /* Allowed boot devices are:
4884 * a b : floppy disk drives
4885 * c ... f : IDE disk drives
4886 * g ... m : machine implementation dependant drives
4887 * n ... p : network devices
4888 * It's up to each machine implementation to check
4889 * if the given boot devices match the actual hardware
4890 * implementation and firmware features.
4891 */
4892 if (*p < 'a' || *p > 'q') {
4893 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4894 exit(1);
4895 }
4896 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4897 fprintf(stderr,
4898 "Boot device '%c' was given twice\n",*p);
4899 exit(1);
4900 }
4901 boot_devices_bitmap |= 1 << (*p - 'a');
4902 }
4903 }
4904 break;
4905 case QEMU_OPTION_fda:
4906 case QEMU_OPTION_fdb:
4907 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4908 break;
4909 #ifdef TARGET_I386
4910 case QEMU_OPTION_no_fd_bootchk:
4911 fd_bootchk = 0;
4912 break;
4913 #endif
4914 case QEMU_OPTION_net:
4915 if (nb_net_clients >= MAX_NET_CLIENTS) {
4916 fprintf(stderr, "qemu: too many network clients\n");
4917 exit(1);
4918 }
4919 net_clients[nb_net_clients] = optarg;
4920 nb_net_clients++;
4921 break;
4922 #ifdef CONFIG_SLIRP
4923 case QEMU_OPTION_tftp:
4924 tftp_prefix = optarg;
4925 break;
4926 case QEMU_OPTION_bootp:
4927 bootp_filename = optarg;
4928 break;
4929 #ifndef _WIN32
4930 case QEMU_OPTION_smb:
4931 net_slirp_smb(optarg);
4932 break;
4933 #endif
4934 case QEMU_OPTION_redir:
4935 net_slirp_redir(optarg);
4936 break;
4937 #endif
4938 case QEMU_OPTION_bt:
4939 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4940 fprintf(stderr, "qemu: too many bluetooth options\n");
4941 exit(1);
4942 }
4943 bt_opts[nb_bt_opts++] = optarg;
4944 break;
4945 #ifdef HAS_AUDIO
4946 case QEMU_OPTION_audio_help:
4947 AUD_help ();
4948 exit (0);
4949 break;
4950 case QEMU_OPTION_soundhw:
4951 select_soundhw (optarg);
4952 break;
4953 #endif
4954 case QEMU_OPTION_h:
4955 help(0);
4956 break;
4957 case QEMU_OPTION_m: {
4958 uint64_t value;
4959 char *ptr;
4960
4961 value = strtoul(optarg, &ptr, 10);
4962 switch (*ptr) {
4963 case 0: case 'M': case 'm':
4964 value <<= 20;
4965 break;
4966 case 'G': case 'g':
4967 value <<= 30;
4968 break;
4969 default:
4970 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4971 exit(1);
4972 }
4973
4974 /* On 32-bit hosts, QEMU is limited by virtual address space */
4975 if (value > (2047 << 20)
4976 #ifndef USE_KQEMU
4977 && HOST_LONG_BITS == 32
4978 #endif
4979 ) {
4980 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4981 exit(1);
4982 }
4983 if (value != (uint64_t)(ram_addr_t)value) {
4984 fprintf(stderr, "qemu: ram size too large\n");
4985 exit(1);
4986 }
4987 ram_size = value;
4988 break;
4989 }
4990 case QEMU_OPTION_d:
4991 {
4992 int mask;
4993 const CPULogItem *item;
4994
4995 mask = cpu_str_to_log_mask(optarg);
4996 if (!mask) {
4997 printf("Log items (comma separated):\n");
4998 for(item = cpu_log_items; item->mask != 0; item++) {
4999 printf("%-10s %s\n", item->name, item->help);
5000 }
5001 exit(1);
5002 }
5003 cpu_set_log(mask);
5004 }
5005 break;
5006 #ifdef CONFIG_GDBSTUB
5007 case QEMU_OPTION_s:
5008 use_gdbstub = 1;
5009 break;
5010 case QEMU_OPTION_p:
5011 gdbstub_port = optarg;
5012 break;
5013 #endif
5014 case QEMU_OPTION_L:
5015 bios_dir = optarg;
5016 break;
5017 case QEMU_OPTION_bios:
5018 bios_name = optarg;
5019 break;
5020 case QEMU_OPTION_S:
5021 autostart = 0;
5022 break;
5023 case QEMU_OPTION_k:
5024 keyboard_layout = optarg;
5025 break;
5026 case QEMU_OPTION_localtime:
5027 rtc_utc = 0;
5028 break;
5029 case QEMU_OPTION_vga:
5030 select_vgahw (optarg);
5031 break;
5032 case QEMU_OPTION_g:
5033 {
5034 const char *p;
5035 int w, h, depth;
5036 p = optarg;
5037 w = strtol(p, (char **)&p, 10);
5038 if (w <= 0) {
5039 graphic_error:
5040 fprintf(stderr, "qemu: invalid resolution or depth\n");
5041 exit(1);
5042 }
5043 if (*p != 'x')
5044 goto graphic_error;
5045 p++;
5046 h = strtol(p, (char **)&p, 10);
5047 if (h <= 0)
5048 goto graphic_error;
5049 if (*p == 'x') {
5050 p++;
5051 depth = strtol(p, (char **)&p, 10);
5052 if (depth != 8 && depth != 15 && depth != 16 &&
5053 depth != 24 && depth != 32)
5054 goto graphic_error;
5055 } else if (*p == '\0') {
5056 depth = graphic_depth;
5057 } else {
5058 goto graphic_error;
5059 }
5060
5061 graphic_width = w;
5062 graphic_height = h;
5063 graphic_depth = depth;
5064 }
5065 break;
5066 case QEMU_OPTION_echr:
5067 {
5068 char *r;
5069 term_escape_char = strtol(optarg, &r, 0);
5070 if (r == optarg)
5071 printf("Bad argument to echr\n");
5072 break;
5073 }
5074 case QEMU_OPTION_monitor:
5075 monitor_device = optarg;
5076 break;
5077 case QEMU_OPTION_serial:
5078 if (serial_device_index >= MAX_SERIAL_PORTS) {
5079 fprintf(stderr, "qemu: too many serial ports\n");
5080 exit(1);
5081 }
5082 serial_devices[serial_device_index] = optarg;
5083 serial_device_index++;
5084 break;
5085 case QEMU_OPTION_virtiocon:
5086 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5087 fprintf(stderr, "qemu: too many virtio consoles\n");
5088 exit(1);
5089 }
5090 virtio_consoles[virtio_console_index] = optarg;
5091 virtio_console_index++;
5092 break;
5093 case QEMU_OPTION_parallel:
5094 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5095 fprintf(stderr, "qemu: too many parallel ports\n");
5096 exit(1);
5097 }
5098 parallel_devices[parallel_device_index] = optarg;
5099 parallel_device_index++;
5100 break;
5101 case QEMU_OPTION_loadvm:
5102 loadvm = optarg;
5103 break;
5104 case QEMU_OPTION_full_screen:
5105 full_screen = 1;
5106 break;
5107 #ifdef CONFIG_SDL
5108 case QEMU_OPTION_no_frame:
5109 no_frame = 1;
5110 break;
5111 case QEMU_OPTION_alt_grab:
5112 alt_grab = 1;
5113 break;
5114 case QEMU_OPTION_no_quit:
5115 no_quit = 1;
5116 break;
5117 case QEMU_OPTION_sdl:
5118 sdl = 1;
5119 break;
5120 #endif
5121 case QEMU_OPTION_pidfile:
5122 pid_file = optarg;
5123 break;
5124 #ifdef TARGET_I386
5125 case QEMU_OPTION_win2k_hack:
5126 win2k_install_hack = 1;
5127 break;
5128 case QEMU_OPTION_rtc_td_hack:
5129 rtc_td_hack = 1;
5130 break;
5131 #endif
5132 #ifdef USE_KQEMU
5133 case QEMU_OPTION_no_kqemu:
5134 kqemu_allowed = 0;
5135 break;
5136 case QEMU_OPTION_kernel_kqemu:
5137 kqemu_allowed = 2;
5138 break;
5139 #endif
5140 #ifdef CONFIG_KVM
5141 case QEMU_OPTION_enable_kvm:
5142 kvm_allowed = 1;
5143 #ifdef USE_KQEMU
5144 kqemu_allowed = 0;
5145 #endif
5146 break;
5147 #endif
5148 case QEMU_OPTION_usb:
5149 usb_enabled = 1;
5150 break;
5151 case QEMU_OPTION_usbdevice:
5152 usb_enabled = 1;
5153 if (usb_devices_index >= MAX_USB_CMDLINE) {
5154 fprintf(stderr, "Too many USB devices\n");
5155 exit(1);
5156 }
5157 usb_devices[usb_devices_index] = optarg;
5158 usb_devices_index++;
5159 break;
5160 case QEMU_OPTION_smp:
5161 smp_cpus = atoi(optarg);
5162 if (smp_cpus < 1) {
5163 fprintf(stderr, "Invalid number of CPUs\n");
5164 exit(1);
5165 }
5166 break;
5167 case QEMU_OPTION_vnc:
5168 vnc_display = optarg;
5169 break;
5170 case QEMU_OPTION_no_acpi:
5171 acpi_enabled = 0;
5172 break;
5173 case QEMU_OPTION_no_hpet:
5174 no_hpet = 1;
5175 break;
5176 case QEMU_OPTION_no_reboot:
5177 no_reboot = 1;
5178 break;
5179 case QEMU_OPTION_no_shutdown:
5180 no_shutdown = 1;
5181 break;
5182 case QEMU_OPTION_show_cursor:
5183 cursor_hide = 0;
5184 break;
5185 case QEMU_OPTION_uuid:
5186 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5187 fprintf(stderr, "Fail to parse UUID string."
5188 " Wrong format.\n");
5189 exit(1);
5190 }
5191 break;
5192 case QEMU_OPTION_daemonize:
5193 daemonize = 1;
5194 break;
5195 case QEMU_OPTION_option_rom:
5196 if (nb_option_roms >= MAX_OPTION_ROMS) {
5197 fprintf(stderr, "Too many option ROMs\n");
5198 exit(1);
5199 }
5200 option_rom[nb_option_roms] = optarg;
5201 nb_option_roms++;
5202 break;
5203 case QEMU_OPTION_semihosting:
5204 semihosting_enabled = 1;
5205 break;
5206 case QEMU_OPTION_name:
5207 qemu_name = optarg;
5208 break;
5209 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5210 case QEMU_OPTION_prom_env:
5211 if (nb_prom_envs >= MAX_PROM_ENVS) {
5212 fprintf(stderr, "Too many prom variables\n");
5213 exit(1);
5214 }
5215 prom_envs[nb_prom_envs] = optarg;
5216 nb_prom_envs++;
5217 break;
5218 #endif
5219 #ifdef TARGET_ARM
5220 case QEMU_OPTION_old_param:
5221 old_param = 1;
5222 break;
5223 #endif
5224 case QEMU_OPTION_clock:
5225 configure_alarms(optarg);
5226 break;
5227 case QEMU_OPTION_startdate:
5228 {
5229 struct tm tm;
5230 time_t rtc_start_date;
5231 if (!strcmp(optarg, "now")) {
5232 rtc_date_offset = -1;
5233 } else {
5234 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5235 &tm.tm_year,
5236 &tm.tm_mon,
5237 &tm.tm_mday,
5238 &tm.tm_hour,
5239 &tm.tm_min,
5240 &tm.tm_sec) == 6) {
5241 /* OK */
5242 } else if (sscanf(optarg, "%d-%d-%d",
5243 &tm.tm_year,
5244 &tm.tm_mon,
5245 &tm.tm_mday) == 3) {
5246 tm.tm_hour = 0;
5247 tm.tm_min = 0;
5248 tm.tm_sec = 0;
5249 } else {
5250 goto date_fail;
5251 }
5252 tm.tm_year -= 1900;
5253 tm.tm_mon--;
5254 rtc_start_date = mktimegm(&tm);
5255 if (rtc_start_date == -1) {
5256 date_fail:
5257 fprintf(stderr, "Invalid date format. Valid format are:\n"
5258 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5259 exit(1);
5260 }
5261 rtc_date_offset = time(NULL) - rtc_start_date;
5262 }
5263 }
5264 break;
5265 case QEMU_OPTION_tb_size:
5266 tb_size = strtol(optarg, NULL, 0);
5267 if (tb_size < 0)
5268 tb_size = 0;
5269 break;
5270 case QEMU_OPTION_icount:
5271 use_icount = 1;
5272 if (strcmp(optarg, "auto") == 0) {
5273 icount_time_shift = -1;
5274 } else {
5275 icount_time_shift = strtol(optarg, NULL, 0);
5276 }
5277 break;
5278 case QEMU_OPTION_incoming:
5279 incoming = optarg;
5280 break;
5281 }
5282 }
5283 }
5284
5285 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5286 if (kvm_allowed && kqemu_allowed) {
5287 fprintf(stderr,
5288 "You can not enable both KVM and kqemu at the same time\n");
5289 exit(1);
5290 }
5291 #endif
5292
5293 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5294 if (smp_cpus > machine->max_cpus) {
5295 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5296 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5297 machine->max_cpus);
5298 exit(1);
5299 }
5300
5301 if (nographic) {
5302 if (serial_device_index == 0)
5303 serial_devices[0] = "stdio";
5304 if (parallel_device_index == 0)
5305 parallel_devices[0] = "null";
5306 if (strncmp(monitor_device, "vc", 2) == 0)
5307 monitor_device = "stdio";
5308 if (virtio_console_index == 0)
5309 virtio_consoles[0] = "null";
5310 }
5311
5312 #ifndef _WIN32
5313 if (daemonize) {
5314 pid_t pid;
5315
5316 if (pipe(fds) == -1)
5317 exit(1);
5318
5319 pid = fork();
5320 if (pid > 0) {
5321 uint8_t status;
5322 ssize_t len;
5323
5324 close(fds[1]);
5325
5326 again:
5327 len = read(fds[0], &status, 1);
5328 if (len == -1 && (errno == EINTR))
5329 goto again;
5330
5331 if (len != 1)
5332 exit(1);
5333 else if (status == 1) {
5334 fprintf(stderr, "Could not acquire pidfile\n");
5335 exit(1);
5336 } else
5337 exit(0);
5338 } else if (pid < 0)
5339 exit(1);
5340
5341 setsid();
5342
5343 pid = fork();
5344 if (pid > 0)
5345 exit(0);
5346 else if (pid < 0)
5347 exit(1);
5348
5349 umask(027);
5350
5351 signal(SIGTSTP, SIG_IGN);
5352 signal(SIGTTOU, SIG_IGN);
5353 signal(SIGTTIN, SIG_IGN);
5354 }
5355 #endif
5356
5357 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5358 if (daemonize) {
5359 uint8_t status = 1;
5360 write(fds[1], &status, 1);
5361 } else
5362 fprintf(stderr, "Could not acquire pid file\n");
5363 exit(1);
5364 }
5365
5366 #ifdef USE_KQEMU
5367 if (smp_cpus > 1)
5368 kqemu_allowed = 0;
5369 #endif
5370 linux_boot = (kernel_filename != NULL);
5371 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5372
5373 if (!linux_boot && net_boot == 0 &&
5374 !machine->nodisk_ok && nb_drives_opt == 0)
5375 help(1);
5376
5377 if (!linux_boot && *kernel_cmdline != '\0') {
5378 fprintf(stderr, "-append only allowed with -kernel option\n");
5379 exit(1);
5380 }
5381
5382 if (!linux_boot && initrd_filename != NULL) {
5383 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5384 exit(1);
5385 }
5386
5387 /* boot to floppy or the default cd if no hard disk defined yet */
5388 if (!boot_devices[0]) {
5389 boot_devices = "cad";
5390 }
5391 setvbuf(stdout, NULL, _IOLBF, 0);
5392
5393 init_timers();
5394 if (init_timer_alarm() < 0) {
5395 fprintf(stderr, "could not initialize alarm timer\n");
5396 exit(1);
5397 }
5398 if (use_icount && icount_time_shift < 0) {
5399 use_icount = 2;
5400 /* 125MIPS seems a reasonable initial guess at the guest speed.
5401 It will be corrected fairly quickly anyway. */
5402 icount_time_shift = 3;
5403 init_icount_adjust();
5404 }
5405
5406 #ifdef _WIN32
5407 socket_init();
5408 #endif
5409
5410 /* init network clients */
5411 if (nb_net_clients == 0) {
5412 /* if no clients, we use a default config */
5413 net_clients[nb_net_clients++] = "nic";
5414 #ifdef CONFIG_SLIRP
5415 net_clients[nb_net_clients++] = "user";
5416 #endif
5417 }
5418
5419 for(i = 0;i < nb_net_clients; i++) {
5420 if (net_client_parse(net_clients[i]) < 0)
5421 exit(1);
5422 }
5423 net_client_check();
5424
5425 #ifdef TARGET_I386
5426 /* XXX: this should be moved in the PC machine instantiation code */
5427 if (net_boot != 0) {
5428 int netroms = 0;
5429 for (i = 0; i < nb_nics && i < 4; i++) {
5430 const char *model = nd_table[i].model;
5431 char buf[1024];
5432 if (net_boot & (1 << i)) {
5433 if (model == NULL)
5434 model = "ne2k_pci";
5435 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5436 if (get_image_size(buf) > 0) {
5437 if (nb_option_roms >= MAX_OPTION_ROMS) {
5438 fprintf(stderr, "Too many option ROMs\n");
5439 exit(1);
5440 }
5441 option_rom[nb_option_roms] = strdup(buf);
5442 nb_option_roms++;
5443 netroms++;
5444 }
5445 }
5446 }
5447 if (netroms == 0) {
5448 fprintf(stderr, "No valid PXE rom found for network device\n");
5449 exit(1);
5450 }
5451 }
5452 #endif
5453
5454 /* init the bluetooth world */
5455 for (i = 0; i < nb_bt_opts; i++)
5456 if (bt_parse(bt_opts[i]))
5457 exit(1);
5458
5459 /* init the memory */
5460 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5461
5462 if (machine->ram_require & RAMSIZE_FIXED) {
5463 if (ram_size > 0) {
5464 if (ram_size < phys_ram_size) {
5465 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5466 machine->name, (unsigned long long) phys_ram_size);
5467 exit(-1);
5468 }
5469
5470 phys_ram_size = ram_size;
5471 } else
5472 ram_size = phys_ram_size;
5473 } else {
5474 if (ram_size == 0)
5475 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5476
5477 phys_ram_size += ram_size;
5478 }
5479
5480 phys_ram_base = qemu_vmalloc(phys_ram_size);
5481 if (!phys_ram_base) {
5482 fprintf(stderr, "Could not allocate physical memory\n");
5483 exit(1);
5484 }
5485
5486 /* init the dynamic translator */
5487 cpu_exec_init_all(tb_size * 1024 * 1024);
5488
5489 bdrv_init();
5490
5491 /* we always create the cdrom drive, even if no disk is there */
5492
5493 if (nb_drives_opt < MAX_DRIVES)
5494 drive_add(NULL, CDROM_ALIAS);
5495
5496 /* we always create at least one floppy */
5497
5498 if (nb_drives_opt < MAX_DRIVES)
5499 drive_add(NULL, FD_ALIAS, 0);
5500
5501 /* we always create one sd slot, even if no card is in it */
5502
5503 if (nb_drives_opt < MAX_DRIVES)
5504 drive_add(NULL, SD_ALIAS);
5505
5506 /* open the virtual block devices */
5507
5508 for(i = 0; i < nb_drives_opt; i++)
5509 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5510 exit(1);
5511
5512 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5513 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5514
5515 #ifndef _WIN32
5516 /* must be after terminal init, SDL library changes signal handlers */
5517 termsig_setup();
5518 #endif
5519
5520 /* Maintain compatibility with multiple stdio monitors */
5521 if (!strcmp(monitor_device,"stdio")) {
5522 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5523 const char *devname = serial_devices[i];
5524 if (devname && !strcmp(devname,"mon:stdio")) {
5525 monitor_device = NULL;
5526 break;
5527 } else if (devname && !strcmp(devname,"stdio")) {
5528 monitor_device = NULL;
5529 serial_devices[i] = "mon:stdio";
5530 break;
5531 }
5532 }
5533 }
5534
5535 if (kvm_enabled()) {
5536 int ret;
5537
5538 ret = kvm_init(smp_cpus);
5539 if (ret < 0) {
5540 fprintf(stderr, "failed to initialize KVM\n");
5541 exit(1);
5542 }
5543 }
5544
5545 if (monitor_device) {
5546 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5547 if (!monitor_hd) {
5548 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5549 exit(1);
5550 }
5551 }
5552
5553 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5554 const char *devname = serial_devices[i];
5555 if (devname && strcmp(devname, "none")) {
5556 char label[32];
5557 snprintf(label, sizeof(label), "serial%d", i);
5558 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5559 if (!serial_hds[i]) {
5560 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5561 devname);
5562 exit(1);
5563 }
5564 }
5565 }
5566
5567 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5568 const char *devname = parallel_devices[i];
5569 if (devname && strcmp(devname, "none")) {
5570 char label[32];
5571 snprintf(label, sizeof(label), "parallel%d", i);
5572 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5573 if (!parallel_hds[i]) {
5574 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5575 devname);
5576 exit(1);
5577 }
5578 }
5579 }
5580
5581 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5582 const char *devname = virtio_consoles[i];
5583 if (devname && strcmp(devname, "none")) {
5584 char label[32];
5585 snprintf(label, sizeof(label), "virtcon%d", i);
5586 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5587 if (!virtcon_hds[i]) {
5588 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5589 devname);
5590 exit(1);
5591 }
5592 }
5593 }
5594
5595 machine->init(ram_size, vga_ram_size, boot_devices,
5596 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5597
5598 current_machine = machine;
5599
5600 /* Set KVM's vcpu state to qemu's initial CPUState. */
5601 if (kvm_enabled()) {
5602 int ret;
5603
5604 ret = kvm_sync_vcpus();
5605 if (ret < 0) {
5606 fprintf(stderr, "failed to initialize vcpus\n");
5607 exit(1);
5608 }
5609 }
5610
5611 /* init USB devices */
5612 if (usb_enabled) {
5613 for(i = 0; i < usb_devices_index; i++) {
5614 if (usb_device_add(usb_devices[i]) < 0) {
5615 fprintf(stderr, "Warning: could not add USB device %s\n",
5616 usb_devices[i]);
5617 }
5618 }
5619 }
5620
5621 if (!display_state)
5622 dumb_display_init();
5623 /* just use the first displaystate for the moment */
5624 ds = display_state;
5625 /* terminal init */
5626 if (nographic) {
5627 if (curses) {
5628 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5629 exit(1);
5630 }
5631 } else {
5632 #if defined(CONFIG_CURSES)
5633 if (curses) {
5634 /* At the moment curses cannot be used with other displays */
5635 curses_display_init(ds, full_screen);
5636 } else
5637 #endif
5638 {
5639 if (vnc_display != NULL) {
5640 vnc_display_init(ds);
5641 if (vnc_display_open(ds, vnc_display) < 0)
5642 exit(1);
5643 }
5644 #if defined(CONFIG_SDL)
5645 if (sdl || !vnc_display)
5646 sdl_display_init(ds, full_screen, no_frame);
5647 #elif defined(CONFIG_COCOA)
5648 if (sdl || !vnc_display)
5649 cocoa_display_init(ds, full_screen);
5650 #endif
5651 }
5652 }
5653 dpy_resize(ds);
5654
5655 dcl = ds->listeners;
5656 while (dcl != NULL) {
5657 if (dcl->dpy_refresh != NULL) {
5658 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5659 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5660 }
5661 dcl = dcl->next;
5662 }
5663
5664 if (nographic || (vnc_display && !sdl)) {
5665 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5666 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5667 }
5668
5669 text_consoles_set_display(display_state);
5670
5671 if (monitor_device && monitor_hd)
5672 monitor_init(monitor_hd, !nographic);
5673
5674 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5675 const char *devname = serial_devices[i];
5676 if (devname && strcmp(devname, "none")) {
5677 char label[32];
5678 snprintf(label, sizeof(label), "serial%d", i);
5679 if (strstart(devname, "vc", 0))
5680 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5681 }
5682 }
5683
5684 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5685 const char *devname = parallel_devices[i];
5686 if (devname && strcmp(devname, "none")) {
5687 char label[32];
5688 snprintf(label, sizeof(label), "parallel%d", i);
5689 if (strstart(devname, "vc", 0))
5690 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5691 }
5692 }
5693
5694 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5695 const char *devname = virtio_consoles[i];
5696 if (virtcon_hds[i] && devname) {
5697 char label[32];
5698 snprintf(label, sizeof(label), "virtcon%d", i);
5699 if (strstart(devname, "vc", 0))
5700 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5701 }
5702 }
5703
5704 #ifdef CONFIG_GDBSTUB
5705 if (use_gdbstub) {
5706 /* XXX: use standard host:port notation and modify options
5707 accordingly. */
5708 if (gdbserver_start(gdbstub_port) < 0) {
5709 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5710 gdbstub_port);
5711 exit(1);
5712 }
5713 }
5714 #endif
5715
5716 if (loadvm)
5717 do_loadvm(loadvm);
5718
5719 if (incoming) {
5720 autostart = 0; /* fixme how to deal with -daemonize */
5721 qemu_start_incoming_migration(incoming);
5722 }
5723
5724 {
5725 /* XXX: simplify init */
5726 read_passwords();
5727 if (autostart) {
5728 vm_start();
5729 }
5730 }
5731
5732 if (daemonize) {
5733 uint8_t status = 0;
5734 ssize_t len;
5735 int fd;
5736
5737 again1:
5738 len = write(fds[1], &status, 1);
5739 if (len == -1 && (errno == EINTR))
5740 goto again1;
5741
5742 if (len != 1)
5743 exit(1);
5744
5745 chdir("/");
5746 TFR(fd = open("/dev/null", O_RDWR));
5747 if (fd == -1)
5748 exit(1);
5749
5750 dup2(fd, 0);
5751 dup2(fd, 1);
5752 dup2(fd, 2);
5753
5754 close(fd);
5755 }
5756
5757 main_loop();
5758 quit_timers();
5759 net_cleanup();
5760
5761 return 0;
5762 }