]> git.proxmox.com Git - qemu.git/blob - vl.c
Add option to use file backed guest memory
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 #define MAX_VIRTIO_CONSOLES 1
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 DisplayType display_type = DT_DEFAULT;
186 const char* keyboard_layout = NULL;
187 ram_addr_t ram_size;
188 const char *mem_path = NULL;
189 #ifdef MAP_POPULATE
190 int mem_prealloc = 0; /* force preallocation of physical target memory */
191 #endif
192 int nb_nics;
193 NICInfo nd_table[MAX_NICS];
194 int vm_running;
195 int autostart;
196 static int rtc_utc = 1;
197 static int rtc_date_offset = -1; /* -1 means no change */
198 QEMUClock *rtc_clock;
199 int vga_interface_type = VGA_NONE;
200 #ifdef TARGET_SPARC
201 int graphic_width = 1024;
202 int graphic_height = 768;
203 int graphic_depth = 8;
204 #else
205 int graphic_width = 800;
206 int graphic_height = 600;
207 int graphic_depth = 15;
208 #endif
209 static int full_screen = 0;
210 #ifdef CONFIG_SDL
211 static int no_frame = 0;
212 #endif
213 int no_quit = 0;
214 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
215 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
216 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
217 #ifdef TARGET_I386
218 int win2k_install_hack = 0;
219 int rtc_td_hack = 0;
220 #endif
221 int usb_enabled = 0;
222 int singlestep = 0;
223 int smp_cpus = 1;
224 int max_cpus = 0;
225 int smp_cores = 1;
226 int smp_threads = 1;
227 const char *vnc_display;
228 int acpi_enabled = 1;
229 int no_hpet = 0;
230 int fd_bootchk = 1;
231 int no_reboot = 0;
232 int no_shutdown = 0;
233 int cursor_hide = 1;
234 int graphic_rotate = 0;
235 uint8_t irq0override = 1;
236 #ifndef _WIN32
237 int daemonize = 0;
238 #endif
239 const char *watchdog;
240 const char *option_rom[MAX_OPTION_ROMS];
241 int nb_option_roms;
242 int semihosting_enabled = 0;
243 #ifdef TARGET_ARM
244 int old_param = 0;
245 #endif
246 const char *qemu_name;
247 int alt_grab = 0;
248 int ctrl_grab = 0;
249 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
250 unsigned int nb_prom_envs = 0;
251 const char *prom_envs[MAX_PROM_ENVS];
252 #endif
253 int boot_menu;
254
255 int nb_numa_nodes;
256 uint64_t node_mem[MAX_NODES];
257 uint64_t node_cpumask[MAX_NODES];
258
259 static CPUState *cur_cpu;
260 static CPUState *next_cpu;
261 static int timer_alarm_pending = 1;
262 /* Conversion factor from emulated instructions to virtual clock ticks. */
263 static int icount_time_shift;
264 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
265 #define MAX_ICOUNT_SHIFT 10
266 /* Compensate for varying guest execution speed. */
267 static int64_t qemu_icount_bias;
268 static QEMUTimer *icount_rt_timer;
269 static QEMUTimer *icount_vm_timer;
270 static QEMUTimer *nographic_timer;
271
272 uint8_t qemu_uuid[16];
273
274 static QEMUBootSetHandler *boot_set_handler;
275 static void *boot_set_opaque;
276
277 #ifdef SIGRTMIN
278 #define SIG_IPI (SIGRTMIN+4)
279 #else
280 #define SIG_IPI SIGUSR1
281 #endif
282
283 static int default_serial = 1;
284 static int default_parallel = 1;
285 static int default_virtcon = 1;
286 static int default_monitor = 1;
287 static int default_vga = 1;
288 static int default_floppy = 1;
289 static int default_cdrom = 1;
290 static int default_sdcard = 1;
291
292 static struct {
293 const char *driver;
294 int *flag;
295 } default_list[] = {
296 { .driver = "isa-serial", .flag = &default_serial },
297 { .driver = "isa-parallel", .flag = &default_parallel },
298 { .driver = "isa-fdc", .flag = &default_floppy },
299 { .driver = "ide-drive", .flag = &default_cdrom },
300 { .driver = "virtio-serial-pci", .flag = &default_virtcon },
301 { .driver = "virtio-serial-s390", .flag = &default_virtcon },
302 { .driver = "virtio-serial", .flag = &default_virtcon },
303 { .driver = "VGA", .flag = &default_vga },
304 { .driver = "cirrus-vga", .flag = &default_vga },
305 { .driver = "vmware-svga", .flag = &default_vga },
306 };
307
308 static int default_driver_check(QemuOpts *opts, void *opaque)
309 {
310 const char *driver = qemu_opt_get(opts, "driver");
311 int i;
312
313 if (!driver)
314 return 0;
315 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
316 if (strcmp(default_list[i].driver, driver) != 0)
317 continue;
318 *(default_list[i].flag) = 0;
319 }
320 return 0;
321 }
322
323 /***********************************************************/
324 /* x86 ISA bus support */
325
326 target_phys_addr_t isa_mem_base = 0;
327 PicState2 *isa_pic;
328
329 /***********************************************************/
330 void hw_error(const char *fmt, ...)
331 {
332 va_list ap;
333 CPUState *env;
334
335 va_start(ap, fmt);
336 fprintf(stderr, "qemu: hardware error: ");
337 vfprintf(stderr, fmt, ap);
338 fprintf(stderr, "\n");
339 for(env = first_cpu; env != NULL; env = env->next_cpu) {
340 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
341 #ifdef TARGET_I386
342 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
343 #else
344 cpu_dump_state(env, stderr, fprintf, 0);
345 #endif
346 }
347 va_end(ap);
348 abort();
349 }
350
351 static void set_proc_name(const char *s)
352 {
353 #if defined(__linux__) && defined(PR_SET_NAME)
354 char name[16];
355 if (!s)
356 return;
357 name[sizeof(name) - 1] = 0;
358 strncpy(name, s, sizeof(name));
359 /* Could rewrite argv[0] too, but that's a bit more complicated.
360 This simple way is enough for `top'. */
361 prctl(PR_SET_NAME, name);
362 #endif
363 }
364
365 /***************/
366 /* ballooning */
367
368 static QEMUBalloonEvent *qemu_balloon_event;
369 void *qemu_balloon_event_opaque;
370
371 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
372 {
373 qemu_balloon_event = func;
374 qemu_balloon_event_opaque = opaque;
375 }
376
377 int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque)
378 {
379 if (qemu_balloon_event) {
380 qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque);
381 return 1;
382 } else {
383 return 0;
384 }
385 }
386
387 int qemu_balloon_status(MonitorCompletion cb, void *opaque)
388 {
389 if (qemu_balloon_event) {
390 qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque);
391 return 1;
392 } else {
393 return 0;
394 }
395 }
396
397
398 /***********************************************************/
399 /* real time host monotonic timer */
400
401 /* compute with 96 bit intermediate result: (a*b)/c */
402 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
403 {
404 union {
405 uint64_t ll;
406 struct {
407 #ifdef HOST_WORDS_BIGENDIAN
408 uint32_t high, low;
409 #else
410 uint32_t low, high;
411 #endif
412 } l;
413 } u, res;
414 uint64_t rl, rh;
415
416 u.ll = a;
417 rl = (uint64_t)u.l.low * (uint64_t)b;
418 rh = (uint64_t)u.l.high * (uint64_t)b;
419 rh += (rl >> 32);
420 res.l.high = rh / c;
421 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
422 return res.ll;
423 }
424
425 static int64_t get_clock_realtime(void)
426 {
427 struct timeval tv;
428
429 gettimeofday(&tv, NULL);
430 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
431 }
432
433 #ifdef WIN32
434
435 static int64_t clock_freq;
436
437 static void init_get_clock(void)
438 {
439 LARGE_INTEGER freq;
440 int ret;
441 ret = QueryPerformanceFrequency(&freq);
442 if (ret == 0) {
443 fprintf(stderr, "Could not calibrate ticks\n");
444 exit(1);
445 }
446 clock_freq = freq.QuadPart;
447 }
448
449 static int64_t get_clock(void)
450 {
451 LARGE_INTEGER ti;
452 QueryPerformanceCounter(&ti);
453 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
454 }
455
456 #else
457
458 static int use_rt_clock;
459
460 static void init_get_clock(void)
461 {
462 use_rt_clock = 0;
463 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
464 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
465 {
466 struct timespec ts;
467 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
468 use_rt_clock = 1;
469 }
470 }
471 #endif
472 }
473
474 static int64_t get_clock(void)
475 {
476 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
477 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
478 if (use_rt_clock) {
479 struct timespec ts;
480 clock_gettime(CLOCK_MONOTONIC, &ts);
481 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
482 } else
483 #endif
484 {
485 /* XXX: using gettimeofday leads to problems if the date
486 changes, so it should be avoided. */
487 return get_clock_realtime();
488 }
489 }
490 #endif
491
492 /* Return the virtual CPU time, based on the instruction counter. */
493 static int64_t cpu_get_icount(void)
494 {
495 int64_t icount;
496 CPUState *env = cpu_single_env;;
497 icount = qemu_icount;
498 if (env) {
499 if (!can_do_io(env))
500 fprintf(stderr, "Bad clock read\n");
501 icount -= (env->icount_decr.u16.low + env->icount_extra);
502 }
503 return qemu_icount_bias + (icount << icount_time_shift);
504 }
505
506 /***********************************************************/
507 /* guest cycle counter */
508
509 typedef struct TimersState {
510 int64_t cpu_ticks_prev;
511 int64_t cpu_ticks_offset;
512 int64_t cpu_clock_offset;
513 int32_t cpu_ticks_enabled;
514 int64_t dummy;
515 } TimersState;
516
517 TimersState timers_state;
518
519 /* return the host CPU cycle counter and handle stop/restart */
520 int64_t cpu_get_ticks(void)
521 {
522 if (use_icount) {
523 return cpu_get_icount();
524 }
525 if (!timers_state.cpu_ticks_enabled) {
526 return timers_state.cpu_ticks_offset;
527 } else {
528 int64_t ticks;
529 ticks = cpu_get_real_ticks();
530 if (timers_state.cpu_ticks_prev > ticks) {
531 /* Note: non increasing ticks may happen if the host uses
532 software suspend */
533 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
534 }
535 timers_state.cpu_ticks_prev = ticks;
536 return ticks + timers_state.cpu_ticks_offset;
537 }
538 }
539
540 /* return the host CPU monotonic timer and handle stop/restart */
541 static int64_t cpu_get_clock(void)
542 {
543 int64_t ti;
544 if (!timers_state.cpu_ticks_enabled) {
545 return timers_state.cpu_clock_offset;
546 } else {
547 ti = get_clock();
548 return ti + timers_state.cpu_clock_offset;
549 }
550 }
551
552 /* enable cpu_get_ticks() */
553 void cpu_enable_ticks(void)
554 {
555 if (!timers_state.cpu_ticks_enabled) {
556 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
557 timers_state.cpu_clock_offset -= get_clock();
558 timers_state.cpu_ticks_enabled = 1;
559 }
560 }
561
562 /* disable cpu_get_ticks() : the clock is stopped. You must not call
563 cpu_get_ticks() after that. */
564 void cpu_disable_ticks(void)
565 {
566 if (timers_state.cpu_ticks_enabled) {
567 timers_state.cpu_ticks_offset = cpu_get_ticks();
568 timers_state.cpu_clock_offset = cpu_get_clock();
569 timers_state.cpu_ticks_enabled = 0;
570 }
571 }
572
573 /***********************************************************/
574 /* timers */
575
576 #define QEMU_CLOCK_REALTIME 0
577 #define QEMU_CLOCK_VIRTUAL 1
578 #define QEMU_CLOCK_HOST 2
579
580 struct QEMUClock {
581 int type;
582 /* XXX: add frequency */
583 };
584
585 struct QEMUTimer {
586 QEMUClock *clock;
587 int64_t expire_time;
588 QEMUTimerCB *cb;
589 void *opaque;
590 struct QEMUTimer *next;
591 };
592
593 struct qemu_alarm_timer {
594 char const *name;
595 unsigned int flags;
596
597 int (*start)(struct qemu_alarm_timer *t);
598 void (*stop)(struct qemu_alarm_timer *t);
599 void (*rearm)(struct qemu_alarm_timer *t);
600 void *priv;
601 };
602
603 #define ALARM_FLAG_DYNTICKS 0x1
604 #define ALARM_FLAG_EXPIRED 0x2
605
606 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
607 {
608 return t && (t->flags & ALARM_FLAG_DYNTICKS);
609 }
610
611 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
612 {
613 if (!alarm_has_dynticks(t))
614 return;
615
616 t->rearm(t);
617 }
618
619 /* TODO: MIN_TIMER_REARM_US should be optimized */
620 #define MIN_TIMER_REARM_US 250
621
622 static struct qemu_alarm_timer *alarm_timer;
623
624 #ifdef _WIN32
625
626 struct qemu_alarm_win32 {
627 MMRESULT timerId;
628 unsigned int period;
629 } alarm_win32_data = {0, -1};
630
631 static int win32_start_timer(struct qemu_alarm_timer *t);
632 static void win32_stop_timer(struct qemu_alarm_timer *t);
633 static void win32_rearm_timer(struct qemu_alarm_timer *t);
634
635 #else
636
637 static int unix_start_timer(struct qemu_alarm_timer *t);
638 static void unix_stop_timer(struct qemu_alarm_timer *t);
639
640 #ifdef __linux__
641
642 static int dynticks_start_timer(struct qemu_alarm_timer *t);
643 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
644 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
645
646 static int hpet_start_timer(struct qemu_alarm_timer *t);
647 static void hpet_stop_timer(struct qemu_alarm_timer *t);
648
649 static int rtc_start_timer(struct qemu_alarm_timer *t);
650 static void rtc_stop_timer(struct qemu_alarm_timer *t);
651
652 #endif /* __linux__ */
653
654 #endif /* _WIN32 */
655
656 /* Correlation between real and virtual time is always going to be
657 fairly approximate, so ignore small variation.
658 When the guest is idle real and virtual time will be aligned in
659 the IO wait loop. */
660 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
661
662 static void icount_adjust(void)
663 {
664 int64_t cur_time;
665 int64_t cur_icount;
666 int64_t delta;
667 static int64_t last_delta;
668 /* If the VM is not running, then do nothing. */
669 if (!vm_running)
670 return;
671
672 cur_time = cpu_get_clock();
673 cur_icount = qemu_get_clock(vm_clock);
674 delta = cur_icount - cur_time;
675 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
676 if (delta > 0
677 && last_delta + ICOUNT_WOBBLE < delta * 2
678 && icount_time_shift > 0) {
679 /* The guest is getting too far ahead. Slow time down. */
680 icount_time_shift--;
681 }
682 if (delta < 0
683 && last_delta - ICOUNT_WOBBLE > delta * 2
684 && icount_time_shift < MAX_ICOUNT_SHIFT) {
685 /* The guest is getting too far behind. Speed time up. */
686 icount_time_shift++;
687 }
688 last_delta = delta;
689 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
690 }
691
692 static void icount_adjust_rt(void * opaque)
693 {
694 qemu_mod_timer(icount_rt_timer,
695 qemu_get_clock(rt_clock) + 1000);
696 icount_adjust();
697 }
698
699 static void icount_adjust_vm(void * opaque)
700 {
701 qemu_mod_timer(icount_vm_timer,
702 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
703 icount_adjust();
704 }
705
706 static void init_icount_adjust(void)
707 {
708 /* Have both realtime and virtual time triggers for speed adjustment.
709 The realtime trigger catches emulated time passing too slowly,
710 the virtual time trigger catches emulated time passing too fast.
711 Realtime triggers occur even when idle, so use them less frequently
712 than VM triggers. */
713 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
714 qemu_mod_timer(icount_rt_timer,
715 qemu_get_clock(rt_clock) + 1000);
716 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
717 qemu_mod_timer(icount_vm_timer,
718 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
719 }
720
721 static struct qemu_alarm_timer alarm_timers[] = {
722 #ifndef _WIN32
723 #ifdef __linux__
724 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
725 dynticks_stop_timer, dynticks_rearm_timer, NULL},
726 /* HPET - if available - is preferred */
727 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
728 /* ...otherwise try RTC */
729 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
730 #endif
731 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
732 #else
733 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
734 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
735 {"win32", 0, win32_start_timer,
736 win32_stop_timer, NULL, &alarm_win32_data},
737 #endif
738 {NULL, }
739 };
740
741 static void show_available_alarms(void)
742 {
743 int i;
744
745 printf("Available alarm timers, in order of precedence:\n");
746 for (i = 0; alarm_timers[i].name; i++)
747 printf("%s\n", alarm_timers[i].name);
748 }
749
750 static void configure_alarms(char const *opt)
751 {
752 int i;
753 int cur = 0;
754 int count = ARRAY_SIZE(alarm_timers) - 1;
755 char *arg;
756 char *name;
757 struct qemu_alarm_timer tmp;
758
759 if (!strcmp(opt, "?")) {
760 show_available_alarms();
761 exit(0);
762 }
763
764 arg = qemu_strdup(opt);
765
766 /* Reorder the array */
767 name = strtok(arg, ",");
768 while (name) {
769 for (i = 0; i < count && alarm_timers[i].name; i++) {
770 if (!strcmp(alarm_timers[i].name, name))
771 break;
772 }
773
774 if (i == count) {
775 fprintf(stderr, "Unknown clock %s\n", name);
776 goto next;
777 }
778
779 if (i < cur)
780 /* Ignore */
781 goto next;
782
783 /* Swap */
784 tmp = alarm_timers[i];
785 alarm_timers[i] = alarm_timers[cur];
786 alarm_timers[cur] = tmp;
787
788 cur++;
789 next:
790 name = strtok(NULL, ",");
791 }
792
793 qemu_free(arg);
794
795 if (cur) {
796 /* Disable remaining timers */
797 for (i = cur; i < count; i++)
798 alarm_timers[i].name = NULL;
799 } else {
800 show_available_alarms();
801 exit(1);
802 }
803 }
804
805 #define QEMU_NUM_CLOCKS 3
806
807 QEMUClock *rt_clock;
808 QEMUClock *vm_clock;
809 QEMUClock *host_clock;
810
811 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
812
813 static QEMUClock *qemu_new_clock(int type)
814 {
815 QEMUClock *clock;
816 clock = qemu_mallocz(sizeof(QEMUClock));
817 clock->type = type;
818 return clock;
819 }
820
821 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
822 {
823 QEMUTimer *ts;
824
825 ts = qemu_mallocz(sizeof(QEMUTimer));
826 ts->clock = clock;
827 ts->cb = cb;
828 ts->opaque = opaque;
829 return ts;
830 }
831
832 void qemu_free_timer(QEMUTimer *ts)
833 {
834 qemu_free(ts);
835 }
836
837 /* stop a timer, but do not dealloc it */
838 void qemu_del_timer(QEMUTimer *ts)
839 {
840 QEMUTimer **pt, *t;
841
842 /* NOTE: this code must be signal safe because
843 qemu_timer_expired() can be called from a signal. */
844 pt = &active_timers[ts->clock->type];
845 for(;;) {
846 t = *pt;
847 if (!t)
848 break;
849 if (t == ts) {
850 *pt = t->next;
851 break;
852 }
853 pt = &t->next;
854 }
855 }
856
857 /* modify the current timer so that it will be fired when current_time
858 >= expire_time. The corresponding callback will be called. */
859 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
860 {
861 QEMUTimer **pt, *t;
862
863 qemu_del_timer(ts);
864
865 /* add the timer in the sorted list */
866 /* NOTE: this code must be signal safe because
867 qemu_timer_expired() can be called from a signal. */
868 pt = &active_timers[ts->clock->type];
869 for(;;) {
870 t = *pt;
871 if (!t)
872 break;
873 if (t->expire_time > expire_time)
874 break;
875 pt = &t->next;
876 }
877 ts->expire_time = expire_time;
878 ts->next = *pt;
879 *pt = ts;
880
881 /* Rearm if necessary */
882 if (pt == &active_timers[ts->clock->type]) {
883 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
884 qemu_rearm_alarm_timer(alarm_timer);
885 }
886 /* Interrupt execution to force deadline recalculation. */
887 if (use_icount)
888 qemu_notify_event();
889 }
890 }
891
892 int qemu_timer_pending(QEMUTimer *ts)
893 {
894 QEMUTimer *t;
895 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
896 if (t == ts)
897 return 1;
898 }
899 return 0;
900 }
901
902 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
903 {
904 if (!timer_head)
905 return 0;
906 return (timer_head->expire_time <= current_time);
907 }
908
909 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
910 {
911 QEMUTimer *ts;
912
913 for(;;) {
914 ts = *ptimer_head;
915 if (!ts || ts->expire_time > current_time)
916 break;
917 /* remove timer from the list before calling the callback */
918 *ptimer_head = ts->next;
919 ts->next = NULL;
920
921 /* run the callback (the timer list can be modified) */
922 ts->cb(ts->opaque);
923 }
924 }
925
926 int64_t qemu_get_clock(QEMUClock *clock)
927 {
928 switch(clock->type) {
929 case QEMU_CLOCK_REALTIME:
930 return get_clock() / 1000000;
931 default:
932 case QEMU_CLOCK_VIRTUAL:
933 if (use_icount) {
934 return cpu_get_icount();
935 } else {
936 return cpu_get_clock();
937 }
938 case QEMU_CLOCK_HOST:
939 return get_clock_realtime();
940 }
941 }
942
943 int64_t qemu_get_clock_ns(QEMUClock *clock)
944 {
945 switch(clock->type) {
946 case QEMU_CLOCK_REALTIME:
947 return get_clock();
948 default:
949 case QEMU_CLOCK_VIRTUAL:
950 if (use_icount) {
951 return cpu_get_icount();
952 } else {
953 return cpu_get_clock();
954 }
955 case QEMU_CLOCK_HOST:
956 return get_clock_realtime();
957 }
958 }
959
960 static void init_clocks(void)
961 {
962 init_get_clock();
963 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
964 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
965 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
966
967 rtc_clock = host_clock;
968 }
969
970 /* save a timer */
971 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
972 {
973 uint64_t expire_time;
974
975 if (qemu_timer_pending(ts)) {
976 expire_time = ts->expire_time;
977 } else {
978 expire_time = -1;
979 }
980 qemu_put_be64(f, expire_time);
981 }
982
983 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
984 {
985 uint64_t expire_time;
986
987 expire_time = qemu_get_be64(f);
988 if (expire_time != -1) {
989 qemu_mod_timer(ts, expire_time);
990 } else {
991 qemu_del_timer(ts);
992 }
993 }
994
995 static const VMStateDescription vmstate_timers = {
996 .name = "timer",
997 .version_id = 2,
998 .minimum_version_id = 1,
999 .minimum_version_id_old = 1,
1000 .fields = (VMStateField []) {
1001 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1002 VMSTATE_INT64(dummy, TimersState),
1003 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1004 VMSTATE_END_OF_LIST()
1005 }
1006 };
1007
1008 static void qemu_event_increment(void);
1009
1010 #ifdef _WIN32
1011 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1012 DWORD_PTR dwUser, DWORD_PTR dw1,
1013 DWORD_PTR dw2)
1014 #else
1015 static void host_alarm_handler(int host_signum)
1016 #endif
1017 {
1018 #if 0
1019 #define DISP_FREQ 1000
1020 {
1021 static int64_t delta_min = INT64_MAX;
1022 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1023 static int count;
1024 ti = qemu_get_clock(vm_clock);
1025 if (last_clock != 0) {
1026 delta = ti - last_clock;
1027 if (delta < delta_min)
1028 delta_min = delta;
1029 if (delta > delta_max)
1030 delta_max = delta;
1031 delta_cum += delta;
1032 if (++count == DISP_FREQ) {
1033 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1034 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1035 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1036 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1037 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1038 count = 0;
1039 delta_min = INT64_MAX;
1040 delta_max = 0;
1041 delta_cum = 0;
1042 }
1043 }
1044 last_clock = ti;
1045 }
1046 #endif
1047 if (alarm_has_dynticks(alarm_timer) ||
1048 (!use_icount &&
1049 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1050 qemu_get_clock(vm_clock))) ||
1051 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1052 qemu_get_clock(rt_clock)) ||
1053 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1054 qemu_get_clock(host_clock))) {
1055 qemu_event_increment();
1056 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1057
1058 #ifndef CONFIG_IOTHREAD
1059 if (next_cpu) {
1060 /* stop the currently executing cpu because a timer occured */
1061 cpu_exit(next_cpu);
1062 }
1063 #endif
1064 timer_alarm_pending = 1;
1065 qemu_notify_event();
1066 }
1067 }
1068
1069 static int64_t qemu_next_deadline(void)
1070 {
1071 /* To avoid problems with overflow limit this to 2^32. */
1072 int64_t delta = INT32_MAX;
1073
1074 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1075 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1076 qemu_get_clock(vm_clock);
1077 }
1078 if (active_timers[QEMU_CLOCK_HOST]) {
1079 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1080 qemu_get_clock(host_clock);
1081 if (hdelta < delta)
1082 delta = hdelta;
1083 }
1084
1085 if (delta < 0)
1086 delta = 0;
1087
1088 return delta;
1089 }
1090
1091 #if defined(__linux__)
1092 static uint64_t qemu_next_deadline_dyntick(void)
1093 {
1094 int64_t delta;
1095 int64_t rtdelta;
1096
1097 if (use_icount)
1098 delta = INT32_MAX;
1099 else
1100 delta = (qemu_next_deadline() + 999) / 1000;
1101
1102 if (active_timers[QEMU_CLOCK_REALTIME]) {
1103 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1104 qemu_get_clock(rt_clock))*1000;
1105 if (rtdelta < delta)
1106 delta = rtdelta;
1107 }
1108
1109 if (delta < MIN_TIMER_REARM_US)
1110 delta = MIN_TIMER_REARM_US;
1111
1112 return delta;
1113 }
1114 #endif
1115
1116 #ifndef _WIN32
1117
1118 /* Sets a specific flag */
1119 static int fcntl_setfl(int fd, int flag)
1120 {
1121 int flags;
1122
1123 flags = fcntl(fd, F_GETFL);
1124 if (flags == -1)
1125 return -errno;
1126
1127 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1128 return -errno;
1129
1130 return 0;
1131 }
1132
1133 #if defined(__linux__)
1134
1135 #define RTC_FREQ 1024
1136
1137 static void enable_sigio_timer(int fd)
1138 {
1139 struct sigaction act;
1140
1141 /* timer signal */
1142 sigfillset(&act.sa_mask);
1143 act.sa_flags = 0;
1144 act.sa_handler = host_alarm_handler;
1145
1146 sigaction(SIGIO, &act, NULL);
1147 fcntl_setfl(fd, O_ASYNC);
1148 fcntl(fd, F_SETOWN, getpid());
1149 }
1150
1151 static int hpet_start_timer(struct qemu_alarm_timer *t)
1152 {
1153 struct hpet_info info;
1154 int r, fd;
1155
1156 fd = qemu_open("/dev/hpet", O_RDONLY);
1157 if (fd < 0)
1158 return -1;
1159
1160 /* Set frequency */
1161 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1162 if (r < 0) {
1163 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1164 "error, but for better emulation accuracy type:\n"
1165 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1166 goto fail;
1167 }
1168
1169 /* Check capabilities */
1170 r = ioctl(fd, HPET_INFO, &info);
1171 if (r < 0)
1172 goto fail;
1173
1174 /* Enable periodic mode */
1175 r = ioctl(fd, HPET_EPI, 0);
1176 if (info.hi_flags && (r < 0))
1177 goto fail;
1178
1179 /* Enable interrupt */
1180 r = ioctl(fd, HPET_IE_ON, 0);
1181 if (r < 0)
1182 goto fail;
1183
1184 enable_sigio_timer(fd);
1185 t->priv = (void *)(long)fd;
1186
1187 return 0;
1188 fail:
1189 close(fd);
1190 return -1;
1191 }
1192
1193 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1194 {
1195 int fd = (long)t->priv;
1196
1197 close(fd);
1198 }
1199
1200 static int rtc_start_timer(struct qemu_alarm_timer *t)
1201 {
1202 int rtc_fd;
1203 unsigned long current_rtc_freq = 0;
1204
1205 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1206 if (rtc_fd < 0)
1207 return -1;
1208 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1209 if (current_rtc_freq != RTC_FREQ &&
1210 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1211 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1212 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1213 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1214 goto fail;
1215 }
1216 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1217 fail:
1218 close(rtc_fd);
1219 return -1;
1220 }
1221
1222 enable_sigio_timer(rtc_fd);
1223
1224 t->priv = (void *)(long)rtc_fd;
1225
1226 return 0;
1227 }
1228
1229 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1230 {
1231 int rtc_fd = (long)t->priv;
1232
1233 close(rtc_fd);
1234 }
1235
1236 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1237 {
1238 struct sigevent ev;
1239 timer_t host_timer;
1240 struct sigaction act;
1241
1242 sigfillset(&act.sa_mask);
1243 act.sa_flags = 0;
1244 act.sa_handler = host_alarm_handler;
1245
1246 sigaction(SIGALRM, &act, NULL);
1247
1248 /*
1249 * Initialize ev struct to 0 to avoid valgrind complaining
1250 * about uninitialized data in timer_create call
1251 */
1252 memset(&ev, 0, sizeof(ev));
1253 ev.sigev_value.sival_int = 0;
1254 ev.sigev_notify = SIGEV_SIGNAL;
1255 ev.sigev_signo = SIGALRM;
1256
1257 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1258 perror("timer_create");
1259
1260 /* disable dynticks */
1261 fprintf(stderr, "Dynamic Ticks disabled\n");
1262
1263 return -1;
1264 }
1265
1266 t->priv = (void *)(long)host_timer;
1267
1268 return 0;
1269 }
1270
1271 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1272 {
1273 timer_t host_timer = (timer_t)(long)t->priv;
1274
1275 timer_delete(host_timer);
1276 }
1277
1278 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1279 {
1280 timer_t host_timer = (timer_t)(long)t->priv;
1281 struct itimerspec timeout;
1282 int64_t nearest_delta_us = INT64_MAX;
1283 int64_t current_us;
1284
1285 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1286 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1287 !active_timers[QEMU_CLOCK_HOST])
1288 return;
1289
1290 nearest_delta_us = qemu_next_deadline_dyntick();
1291
1292 /* check whether a timer is already running */
1293 if (timer_gettime(host_timer, &timeout)) {
1294 perror("gettime");
1295 fprintf(stderr, "Internal timer error: aborting\n");
1296 exit(1);
1297 }
1298 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1299 if (current_us && current_us <= nearest_delta_us)
1300 return;
1301
1302 timeout.it_interval.tv_sec = 0;
1303 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1304 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1305 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1306 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1307 perror("settime");
1308 fprintf(stderr, "Internal timer error: aborting\n");
1309 exit(1);
1310 }
1311 }
1312
1313 #endif /* defined(__linux__) */
1314
1315 static int unix_start_timer(struct qemu_alarm_timer *t)
1316 {
1317 struct sigaction act;
1318 struct itimerval itv;
1319 int err;
1320
1321 /* timer signal */
1322 sigfillset(&act.sa_mask);
1323 act.sa_flags = 0;
1324 act.sa_handler = host_alarm_handler;
1325
1326 sigaction(SIGALRM, &act, NULL);
1327
1328 itv.it_interval.tv_sec = 0;
1329 /* for i386 kernel 2.6 to get 1 ms */
1330 itv.it_interval.tv_usec = 999;
1331 itv.it_value.tv_sec = 0;
1332 itv.it_value.tv_usec = 10 * 1000;
1333
1334 err = setitimer(ITIMER_REAL, &itv, NULL);
1335 if (err)
1336 return -1;
1337
1338 return 0;
1339 }
1340
1341 static void unix_stop_timer(struct qemu_alarm_timer *t)
1342 {
1343 struct itimerval itv;
1344
1345 memset(&itv, 0, sizeof(itv));
1346 setitimer(ITIMER_REAL, &itv, NULL);
1347 }
1348
1349 #endif /* !defined(_WIN32) */
1350
1351
1352 #ifdef _WIN32
1353
1354 static int win32_start_timer(struct qemu_alarm_timer *t)
1355 {
1356 TIMECAPS tc;
1357 struct qemu_alarm_win32 *data = t->priv;
1358 UINT flags;
1359
1360 memset(&tc, 0, sizeof(tc));
1361 timeGetDevCaps(&tc, sizeof(tc));
1362
1363 if (data->period < tc.wPeriodMin)
1364 data->period = tc.wPeriodMin;
1365
1366 timeBeginPeriod(data->period);
1367
1368 flags = TIME_CALLBACK_FUNCTION;
1369 if (alarm_has_dynticks(t))
1370 flags |= TIME_ONESHOT;
1371 else
1372 flags |= TIME_PERIODIC;
1373
1374 data->timerId = timeSetEvent(1, // interval (ms)
1375 data->period, // resolution
1376 host_alarm_handler, // function
1377 (DWORD)t, // parameter
1378 flags);
1379
1380 if (!data->timerId) {
1381 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1382 GetLastError());
1383 timeEndPeriod(data->period);
1384 return -1;
1385 }
1386
1387 return 0;
1388 }
1389
1390 static void win32_stop_timer(struct qemu_alarm_timer *t)
1391 {
1392 struct qemu_alarm_win32 *data = t->priv;
1393
1394 timeKillEvent(data->timerId);
1395 timeEndPeriod(data->period);
1396 }
1397
1398 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1399 {
1400 struct qemu_alarm_win32 *data = t->priv;
1401
1402 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1403 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1404 !active_timers[QEMU_CLOCK_HOST])
1405 return;
1406
1407 timeKillEvent(data->timerId);
1408
1409 data->timerId = timeSetEvent(1,
1410 data->period,
1411 host_alarm_handler,
1412 (DWORD)t,
1413 TIME_ONESHOT | TIME_PERIODIC);
1414
1415 if (!data->timerId) {
1416 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1417 GetLastError());
1418
1419 timeEndPeriod(data->period);
1420 exit(1);
1421 }
1422 }
1423
1424 #endif /* _WIN32 */
1425
1426 static int init_timer_alarm(void)
1427 {
1428 struct qemu_alarm_timer *t = NULL;
1429 int i, err = -1;
1430
1431 for (i = 0; alarm_timers[i].name; i++) {
1432 t = &alarm_timers[i];
1433
1434 err = t->start(t);
1435 if (!err)
1436 break;
1437 }
1438
1439 if (err) {
1440 err = -ENOENT;
1441 goto fail;
1442 }
1443
1444 alarm_timer = t;
1445
1446 return 0;
1447
1448 fail:
1449 return err;
1450 }
1451
1452 static void quit_timers(void)
1453 {
1454 alarm_timer->stop(alarm_timer);
1455 alarm_timer = NULL;
1456 }
1457
1458 /***********************************************************/
1459 /* host time/date access */
1460 void qemu_get_timedate(struct tm *tm, int offset)
1461 {
1462 time_t ti;
1463 struct tm *ret;
1464
1465 time(&ti);
1466 ti += offset;
1467 if (rtc_date_offset == -1) {
1468 if (rtc_utc)
1469 ret = gmtime(&ti);
1470 else
1471 ret = localtime(&ti);
1472 } else {
1473 ti -= rtc_date_offset;
1474 ret = gmtime(&ti);
1475 }
1476
1477 memcpy(tm, ret, sizeof(struct tm));
1478 }
1479
1480 int qemu_timedate_diff(struct tm *tm)
1481 {
1482 time_t seconds;
1483
1484 if (rtc_date_offset == -1)
1485 if (rtc_utc)
1486 seconds = mktimegm(tm);
1487 else
1488 seconds = mktime(tm);
1489 else
1490 seconds = mktimegm(tm) + rtc_date_offset;
1491
1492 return seconds - time(NULL);
1493 }
1494
1495 static void configure_rtc_date_offset(const char *startdate, int legacy)
1496 {
1497 time_t rtc_start_date;
1498 struct tm tm;
1499
1500 if (!strcmp(startdate, "now") && legacy) {
1501 rtc_date_offset = -1;
1502 } else {
1503 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1504 &tm.tm_year,
1505 &tm.tm_mon,
1506 &tm.tm_mday,
1507 &tm.tm_hour,
1508 &tm.tm_min,
1509 &tm.tm_sec) == 6) {
1510 /* OK */
1511 } else if (sscanf(startdate, "%d-%d-%d",
1512 &tm.tm_year,
1513 &tm.tm_mon,
1514 &tm.tm_mday) == 3) {
1515 tm.tm_hour = 0;
1516 tm.tm_min = 0;
1517 tm.tm_sec = 0;
1518 } else {
1519 goto date_fail;
1520 }
1521 tm.tm_year -= 1900;
1522 tm.tm_mon--;
1523 rtc_start_date = mktimegm(&tm);
1524 if (rtc_start_date == -1) {
1525 date_fail:
1526 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1527 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1528 exit(1);
1529 }
1530 rtc_date_offset = time(NULL) - rtc_start_date;
1531 }
1532 }
1533
1534 static void configure_rtc(QemuOpts *opts)
1535 {
1536 const char *value;
1537
1538 value = qemu_opt_get(opts, "base");
1539 if (value) {
1540 if (!strcmp(value, "utc")) {
1541 rtc_utc = 1;
1542 } else if (!strcmp(value, "localtime")) {
1543 rtc_utc = 0;
1544 } else {
1545 configure_rtc_date_offset(value, 0);
1546 }
1547 }
1548 value = qemu_opt_get(opts, "clock");
1549 if (value) {
1550 if (!strcmp(value, "host")) {
1551 rtc_clock = host_clock;
1552 } else if (!strcmp(value, "vm")) {
1553 rtc_clock = vm_clock;
1554 } else {
1555 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1556 exit(1);
1557 }
1558 }
1559 #ifdef CONFIG_TARGET_I386
1560 value = qemu_opt_get(opts, "driftfix");
1561 if (value) {
1562 if (!strcmp(buf, "slew")) {
1563 rtc_td_hack = 1;
1564 } else if (!strcmp(buf, "none")) {
1565 rtc_td_hack = 0;
1566 } else {
1567 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1568 exit(1);
1569 }
1570 }
1571 #endif
1572 }
1573
1574 #ifdef _WIN32
1575 static void socket_cleanup(void)
1576 {
1577 WSACleanup();
1578 }
1579
1580 static int socket_init(void)
1581 {
1582 WSADATA Data;
1583 int ret, err;
1584
1585 ret = WSAStartup(MAKEWORD(2,2), &Data);
1586 if (ret != 0) {
1587 err = WSAGetLastError();
1588 fprintf(stderr, "WSAStartup: %d\n", err);
1589 return -1;
1590 }
1591 atexit(socket_cleanup);
1592 return 0;
1593 }
1594 #endif
1595
1596 /***********************************************************/
1597 /* Bluetooth support */
1598 static int nb_hcis;
1599 static int cur_hci;
1600 static struct HCIInfo *hci_table[MAX_NICS];
1601
1602 static struct bt_vlan_s {
1603 struct bt_scatternet_s net;
1604 int id;
1605 struct bt_vlan_s *next;
1606 } *first_bt_vlan;
1607
1608 /* find or alloc a new bluetooth "VLAN" */
1609 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1610 {
1611 struct bt_vlan_s **pvlan, *vlan;
1612 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1613 if (vlan->id == id)
1614 return &vlan->net;
1615 }
1616 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1617 vlan->id = id;
1618 pvlan = &first_bt_vlan;
1619 while (*pvlan != NULL)
1620 pvlan = &(*pvlan)->next;
1621 *pvlan = vlan;
1622 return &vlan->net;
1623 }
1624
1625 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1626 {
1627 }
1628
1629 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1630 {
1631 return -ENOTSUP;
1632 }
1633
1634 static struct HCIInfo null_hci = {
1635 .cmd_send = null_hci_send,
1636 .sco_send = null_hci_send,
1637 .acl_send = null_hci_send,
1638 .bdaddr_set = null_hci_addr_set,
1639 };
1640
1641 struct HCIInfo *qemu_next_hci(void)
1642 {
1643 if (cur_hci == nb_hcis)
1644 return &null_hci;
1645
1646 return hci_table[cur_hci++];
1647 }
1648
1649 static struct HCIInfo *hci_init(const char *str)
1650 {
1651 char *endp;
1652 struct bt_scatternet_s *vlan = 0;
1653
1654 if (!strcmp(str, "null"))
1655 /* null */
1656 return &null_hci;
1657 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1658 /* host[:hciN] */
1659 return bt_host_hci(str[4] ? str + 5 : "hci0");
1660 else if (!strncmp(str, "hci", 3)) {
1661 /* hci[,vlan=n] */
1662 if (str[3]) {
1663 if (!strncmp(str + 3, ",vlan=", 6)) {
1664 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1665 if (*endp)
1666 vlan = 0;
1667 }
1668 } else
1669 vlan = qemu_find_bt_vlan(0);
1670 if (vlan)
1671 return bt_new_hci(vlan);
1672 }
1673
1674 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1675
1676 return 0;
1677 }
1678
1679 static int bt_hci_parse(const char *str)
1680 {
1681 struct HCIInfo *hci;
1682 bdaddr_t bdaddr;
1683
1684 if (nb_hcis >= MAX_NICS) {
1685 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1686 return -1;
1687 }
1688
1689 hci = hci_init(str);
1690 if (!hci)
1691 return -1;
1692
1693 bdaddr.b[0] = 0x52;
1694 bdaddr.b[1] = 0x54;
1695 bdaddr.b[2] = 0x00;
1696 bdaddr.b[3] = 0x12;
1697 bdaddr.b[4] = 0x34;
1698 bdaddr.b[5] = 0x56 + nb_hcis;
1699 hci->bdaddr_set(hci, bdaddr.b);
1700
1701 hci_table[nb_hcis++] = hci;
1702
1703 return 0;
1704 }
1705
1706 static void bt_vhci_add(int vlan_id)
1707 {
1708 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1709
1710 if (!vlan->slave)
1711 fprintf(stderr, "qemu: warning: adding a VHCI to "
1712 "an empty scatternet %i\n", vlan_id);
1713
1714 bt_vhci_init(bt_new_hci(vlan));
1715 }
1716
1717 static struct bt_device_s *bt_device_add(const char *opt)
1718 {
1719 struct bt_scatternet_s *vlan;
1720 int vlan_id = 0;
1721 char *endp = strstr(opt, ",vlan=");
1722 int len = (endp ? endp - opt : strlen(opt)) + 1;
1723 char devname[10];
1724
1725 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1726
1727 if (endp) {
1728 vlan_id = strtol(endp + 6, &endp, 0);
1729 if (*endp) {
1730 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1731 return 0;
1732 }
1733 }
1734
1735 vlan = qemu_find_bt_vlan(vlan_id);
1736
1737 if (!vlan->slave)
1738 fprintf(stderr, "qemu: warning: adding a slave device to "
1739 "an empty scatternet %i\n", vlan_id);
1740
1741 if (!strcmp(devname, "keyboard"))
1742 return bt_keyboard_init(vlan);
1743
1744 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1745 return 0;
1746 }
1747
1748 static int bt_parse(const char *opt)
1749 {
1750 const char *endp, *p;
1751 int vlan;
1752
1753 if (strstart(opt, "hci", &endp)) {
1754 if (!*endp || *endp == ',') {
1755 if (*endp)
1756 if (!strstart(endp, ",vlan=", 0))
1757 opt = endp + 1;
1758
1759 return bt_hci_parse(opt);
1760 }
1761 } else if (strstart(opt, "vhci", &endp)) {
1762 if (!*endp || *endp == ',') {
1763 if (*endp) {
1764 if (strstart(endp, ",vlan=", &p)) {
1765 vlan = strtol(p, (char **) &endp, 0);
1766 if (*endp) {
1767 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1768 return 1;
1769 }
1770 } else {
1771 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1772 return 1;
1773 }
1774 } else
1775 vlan = 0;
1776
1777 bt_vhci_add(vlan);
1778 return 0;
1779 }
1780 } else if (strstart(opt, "device:", &endp))
1781 return !bt_device_add(endp);
1782
1783 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1784 return 1;
1785 }
1786
1787 /***********************************************************/
1788 /* QEMU Block devices */
1789
1790 #define HD_ALIAS "index=%d,media=disk"
1791 #define CDROM_ALIAS "index=2,media=cdrom"
1792 #define FD_ALIAS "index=%d,if=floppy"
1793 #define PFLASH_ALIAS "if=pflash"
1794 #define MTD_ALIAS "if=mtd"
1795 #define SD_ALIAS "index=0,if=sd"
1796
1797 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1798 {
1799 va_list ap;
1800 char optstr[1024];
1801 QemuOpts *opts;
1802
1803 va_start(ap, fmt);
1804 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1805 va_end(ap);
1806
1807 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1808 if (!opts) {
1809 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1810 __FUNCTION__, optstr);
1811 return NULL;
1812 }
1813 if (file)
1814 qemu_opt_set(opts, "file", file);
1815 return opts;
1816 }
1817
1818 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1819 {
1820 DriveInfo *dinfo;
1821
1822 /* seek interface, bus and unit */
1823
1824 QTAILQ_FOREACH(dinfo, &drives, next) {
1825 if (dinfo->type == type &&
1826 dinfo->bus == bus &&
1827 dinfo->unit == unit)
1828 return dinfo;
1829 }
1830
1831 return NULL;
1832 }
1833
1834 DriveInfo *drive_get_by_id(const char *id)
1835 {
1836 DriveInfo *dinfo;
1837
1838 QTAILQ_FOREACH(dinfo, &drives, next) {
1839 if (strcmp(id, dinfo->id))
1840 continue;
1841 return dinfo;
1842 }
1843 return NULL;
1844 }
1845
1846 int drive_get_max_bus(BlockInterfaceType type)
1847 {
1848 int max_bus;
1849 DriveInfo *dinfo;
1850
1851 max_bus = -1;
1852 QTAILQ_FOREACH(dinfo, &drives, next) {
1853 if(dinfo->type == type &&
1854 dinfo->bus > max_bus)
1855 max_bus = dinfo->bus;
1856 }
1857 return max_bus;
1858 }
1859
1860 const char *drive_get_serial(BlockDriverState *bdrv)
1861 {
1862 DriveInfo *dinfo;
1863
1864 QTAILQ_FOREACH(dinfo, &drives, next) {
1865 if (dinfo->bdrv == bdrv)
1866 return dinfo->serial;
1867 }
1868
1869 return "\0";
1870 }
1871
1872 BlockInterfaceErrorAction drive_get_on_error(
1873 BlockDriverState *bdrv, int is_read)
1874 {
1875 DriveInfo *dinfo;
1876
1877 QTAILQ_FOREACH(dinfo, &drives, next) {
1878 if (dinfo->bdrv == bdrv)
1879 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1880 }
1881
1882 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1883 }
1884
1885 static void bdrv_format_print(void *opaque, const char *name)
1886 {
1887 fprintf(stderr, " %s", name);
1888 }
1889
1890 void drive_uninit(DriveInfo *dinfo)
1891 {
1892 qemu_opts_del(dinfo->opts);
1893 bdrv_delete(dinfo->bdrv);
1894 QTAILQ_REMOVE(&drives, dinfo, next);
1895 qemu_free(dinfo);
1896 }
1897
1898 static int parse_block_error_action(const char *buf, int is_read)
1899 {
1900 if (!strcmp(buf, "ignore")) {
1901 return BLOCK_ERR_IGNORE;
1902 } else if (!is_read && !strcmp(buf, "enospc")) {
1903 return BLOCK_ERR_STOP_ENOSPC;
1904 } else if (!strcmp(buf, "stop")) {
1905 return BLOCK_ERR_STOP_ANY;
1906 } else if (!strcmp(buf, "report")) {
1907 return BLOCK_ERR_REPORT;
1908 } else {
1909 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
1910 buf, is_read ? "read" : "write");
1911 return -1;
1912 }
1913 }
1914
1915 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1916 int *fatal_error)
1917 {
1918 const char *buf;
1919 const char *file = NULL;
1920 char devname[128];
1921 const char *serial;
1922 const char *mediastr = "";
1923 BlockInterfaceType type;
1924 enum { MEDIA_DISK, MEDIA_CDROM } media;
1925 int bus_id, unit_id;
1926 int cyls, heads, secs, translation;
1927 BlockDriver *drv = NULL;
1928 QEMUMachine *machine = opaque;
1929 int max_devs;
1930 int index;
1931 int cache;
1932 int aio = 0;
1933 int ro = 0;
1934 int bdrv_flags;
1935 int on_read_error, on_write_error;
1936 const char *devaddr;
1937 DriveInfo *dinfo;
1938 int snapshot = 0;
1939
1940 *fatal_error = 1;
1941
1942 translation = BIOS_ATA_TRANSLATION_AUTO;
1943 cache = 1;
1944
1945 if (machine && machine->use_scsi) {
1946 type = IF_SCSI;
1947 max_devs = MAX_SCSI_DEVS;
1948 pstrcpy(devname, sizeof(devname), "scsi");
1949 } else {
1950 type = IF_IDE;
1951 max_devs = MAX_IDE_DEVS;
1952 pstrcpy(devname, sizeof(devname), "ide");
1953 }
1954 media = MEDIA_DISK;
1955
1956 /* extract parameters */
1957 bus_id = qemu_opt_get_number(opts, "bus", 0);
1958 unit_id = qemu_opt_get_number(opts, "unit", -1);
1959 index = qemu_opt_get_number(opts, "index", -1);
1960
1961 cyls = qemu_opt_get_number(opts, "cyls", 0);
1962 heads = qemu_opt_get_number(opts, "heads", 0);
1963 secs = qemu_opt_get_number(opts, "secs", 0);
1964
1965 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1966 ro = qemu_opt_get_bool(opts, "readonly", 0);
1967
1968 file = qemu_opt_get(opts, "file");
1969 serial = qemu_opt_get(opts, "serial");
1970
1971 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1972 pstrcpy(devname, sizeof(devname), buf);
1973 if (!strcmp(buf, "ide")) {
1974 type = IF_IDE;
1975 max_devs = MAX_IDE_DEVS;
1976 } else if (!strcmp(buf, "scsi")) {
1977 type = IF_SCSI;
1978 max_devs = MAX_SCSI_DEVS;
1979 } else if (!strcmp(buf, "floppy")) {
1980 type = IF_FLOPPY;
1981 max_devs = 0;
1982 } else if (!strcmp(buf, "pflash")) {
1983 type = IF_PFLASH;
1984 max_devs = 0;
1985 } else if (!strcmp(buf, "mtd")) {
1986 type = IF_MTD;
1987 max_devs = 0;
1988 } else if (!strcmp(buf, "sd")) {
1989 type = IF_SD;
1990 max_devs = 0;
1991 } else if (!strcmp(buf, "virtio")) {
1992 type = IF_VIRTIO;
1993 max_devs = 0;
1994 } else if (!strcmp(buf, "xen")) {
1995 type = IF_XEN;
1996 max_devs = 0;
1997 } else if (!strcmp(buf, "none")) {
1998 type = IF_NONE;
1999 max_devs = 0;
2000 } else {
2001 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2002 return NULL;
2003 }
2004 }
2005
2006 if (cyls || heads || secs) {
2007 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2008 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2009 return NULL;
2010 }
2011 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2012 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2013 return NULL;
2014 }
2015 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2016 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2017 return NULL;
2018 }
2019 }
2020
2021 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2022 if (!cyls) {
2023 fprintf(stderr,
2024 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2025 buf);
2026 return NULL;
2027 }
2028 if (!strcmp(buf, "none"))
2029 translation = BIOS_ATA_TRANSLATION_NONE;
2030 else if (!strcmp(buf, "lba"))
2031 translation = BIOS_ATA_TRANSLATION_LBA;
2032 else if (!strcmp(buf, "auto"))
2033 translation = BIOS_ATA_TRANSLATION_AUTO;
2034 else {
2035 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2036 return NULL;
2037 }
2038 }
2039
2040 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2041 if (!strcmp(buf, "disk")) {
2042 media = MEDIA_DISK;
2043 } else if (!strcmp(buf, "cdrom")) {
2044 if (cyls || secs || heads) {
2045 fprintf(stderr,
2046 "qemu: '%s' invalid physical CHS format\n", buf);
2047 return NULL;
2048 }
2049 media = MEDIA_CDROM;
2050 } else {
2051 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2052 return NULL;
2053 }
2054 }
2055
2056 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2057 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2058 cache = 0;
2059 else if (!strcmp(buf, "writethrough"))
2060 cache = 1;
2061 else if (!strcmp(buf, "writeback"))
2062 cache = 2;
2063 else {
2064 fprintf(stderr, "qemu: invalid cache option\n");
2065 return NULL;
2066 }
2067 }
2068
2069 #ifdef CONFIG_LINUX_AIO
2070 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2071 if (!strcmp(buf, "threads"))
2072 aio = 0;
2073 else if (!strcmp(buf, "native"))
2074 aio = 1;
2075 else {
2076 fprintf(stderr, "qemu: invalid aio option\n");
2077 return NULL;
2078 }
2079 }
2080 #endif
2081
2082 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2083 if (strcmp(buf, "?") == 0) {
2084 fprintf(stderr, "qemu: Supported formats:");
2085 bdrv_iterate_format(bdrv_format_print, NULL);
2086 fprintf(stderr, "\n");
2087 return NULL;
2088 }
2089 drv = bdrv_find_whitelisted_format(buf);
2090 if (!drv) {
2091 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2092 return NULL;
2093 }
2094 }
2095
2096 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2097 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2098 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2099 fprintf(stderr, "werror is no supported by this format\n");
2100 return NULL;
2101 }
2102
2103 on_write_error = parse_block_error_action(buf, 0);
2104 if (on_write_error < 0) {
2105 return NULL;
2106 }
2107 }
2108
2109 on_read_error = BLOCK_ERR_REPORT;
2110 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2111 if (type != IF_IDE && type != IF_VIRTIO) {
2112 fprintf(stderr, "rerror is no supported by this format\n");
2113 return NULL;
2114 }
2115
2116 on_read_error = parse_block_error_action(buf, 1);
2117 if (on_read_error < 0) {
2118 return NULL;
2119 }
2120 }
2121
2122 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2123 if (type != IF_VIRTIO) {
2124 fprintf(stderr, "addr is not supported\n");
2125 return NULL;
2126 }
2127 }
2128
2129 /* compute bus and unit according index */
2130
2131 if (index != -1) {
2132 if (bus_id != 0 || unit_id != -1) {
2133 fprintf(stderr,
2134 "qemu: index cannot be used with bus and unit\n");
2135 return NULL;
2136 }
2137 if (max_devs == 0)
2138 {
2139 unit_id = index;
2140 bus_id = 0;
2141 } else {
2142 unit_id = index % max_devs;
2143 bus_id = index / max_devs;
2144 }
2145 }
2146
2147 /* if user doesn't specify a unit_id,
2148 * try to find the first free
2149 */
2150
2151 if (unit_id == -1) {
2152 unit_id = 0;
2153 while (drive_get(type, bus_id, unit_id) != NULL) {
2154 unit_id++;
2155 if (max_devs && unit_id >= max_devs) {
2156 unit_id -= max_devs;
2157 bus_id++;
2158 }
2159 }
2160 }
2161
2162 /* check unit id */
2163
2164 if (max_devs && unit_id >= max_devs) {
2165 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2166 unit_id, max_devs - 1);
2167 return NULL;
2168 }
2169
2170 /*
2171 * ignore multiple definitions
2172 */
2173
2174 if (drive_get(type, bus_id, unit_id) != NULL) {
2175 *fatal_error = 0;
2176 return NULL;
2177 }
2178
2179 /* init */
2180
2181 dinfo = qemu_mallocz(sizeof(*dinfo));
2182 if ((buf = qemu_opts_id(opts)) != NULL) {
2183 dinfo->id = qemu_strdup(buf);
2184 } else {
2185 /* no id supplied -> create one */
2186 dinfo->id = qemu_mallocz(32);
2187 if (type == IF_IDE || type == IF_SCSI)
2188 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2189 if (max_devs)
2190 snprintf(dinfo->id, 32, "%s%i%s%i",
2191 devname, bus_id, mediastr, unit_id);
2192 else
2193 snprintf(dinfo->id, 32, "%s%s%i",
2194 devname, mediastr, unit_id);
2195 }
2196 dinfo->bdrv = bdrv_new(dinfo->id);
2197 dinfo->devaddr = devaddr;
2198 dinfo->type = type;
2199 dinfo->bus = bus_id;
2200 dinfo->unit = unit_id;
2201 dinfo->on_read_error = on_read_error;
2202 dinfo->on_write_error = on_write_error;
2203 dinfo->opts = opts;
2204 if (serial)
2205 strncpy(dinfo->serial, serial, sizeof(serial));
2206 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2207
2208 switch(type) {
2209 case IF_IDE:
2210 case IF_SCSI:
2211 case IF_XEN:
2212 case IF_NONE:
2213 switch(media) {
2214 case MEDIA_DISK:
2215 if (cyls != 0) {
2216 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2217 bdrv_set_translation_hint(dinfo->bdrv, translation);
2218 }
2219 break;
2220 case MEDIA_CDROM:
2221 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2222 break;
2223 }
2224 break;
2225 case IF_SD:
2226 /* FIXME: This isn't really a floppy, but it's a reasonable
2227 approximation. */
2228 case IF_FLOPPY:
2229 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2230 break;
2231 case IF_PFLASH:
2232 case IF_MTD:
2233 break;
2234 case IF_VIRTIO:
2235 /* add virtio block device */
2236 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2237 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2238 qemu_opt_set(opts, "drive", dinfo->id);
2239 if (devaddr)
2240 qemu_opt_set(opts, "addr", devaddr);
2241 break;
2242 case IF_COUNT:
2243 abort();
2244 }
2245 if (!file) {
2246 *fatal_error = 0;
2247 return NULL;
2248 }
2249 bdrv_flags = 0;
2250 if (snapshot) {
2251 bdrv_flags |= BDRV_O_SNAPSHOT;
2252 cache = 2; /* always use write-back with snapshot */
2253 }
2254 if (cache == 0) /* no caching */
2255 bdrv_flags |= BDRV_O_NOCACHE;
2256 else if (cache == 2) /* write-back */
2257 bdrv_flags |= BDRV_O_CACHE_WB;
2258
2259 if (aio == 1) {
2260 bdrv_flags |= BDRV_O_NATIVE_AIO;
2261 } else {
2262 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2263 }
2264
2265 if (ro == 1) {
2266 if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) {
2267 fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n");
2268 return NULL;
2269 }
2270 }
2271 /*
2272 * cdrom is read-only. Set it now, after above interface checking
2273 * since readonly attribute not explicitly required, so no error.
2274 */
2275 if (media == MEDIA_CDROM) {
2276 ro = 1;
2277 }
2278 bdrv_flags |= ro ? 0 : BDRV_O_RDWR;
2279
2280 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2281 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2282 file, strerror(errno));
2283 return NULL;
2284 }
2285
2286 if (bdrv_key_required(dinfo->bdrv))
2287 autostart = 0;
2288 *fatal_error = 0;
2289 return dinfo;
2290 }
2291
2292 static int drive_init_func(QemuOpts *opts, void *opaque)
2293 {
2294 QEMUMachine *machine = opaque;
2295 int fatal_error = 0;
2296
2297 if (drive_init(opts, machine, &fatal_error) == NULL) {
2298 if (fatal_error)
2299 return 1;
2300 }
2301 return 0;
2302 }
2303
2304 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2305 {
2306 if (NULL == qemu_opt_get(opts, "snapshot")) {
2307 qemu_opt_set(opts, "snapshot", "on");
2308 }
2309 return 0;
2310 }
2311
2312 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2313 {
2314 boot_set_handler = func;
2315 boot_set_opaque = opaque;
2316 }
2317
2318 int qemu_boot_set(const char *boot_devices)
2319 {
2320 if (!boot_set_handler) {
2321 return -EINVAL;
2322 }
2323 return boot_set_handler(boot_set_opaque, boot_devices);
2324 }
2325
2326 static int parse_bootdevices(char *devices)
2327 {
2328 /* We just do some generic consistency checks */
2329 const char *p;
2330 int bitmap = 0;
2331
2332 for (p = devices; *p != '\0'; p++) {
2333 /* Allowed boot devices are:
2334 * a-b: floppy disk drives
2335 * c-f: IDE disk drives
2336 * g-m: machine implementation dependant drives
2337 * n-p: network devices
2338 * It's up to each machine implementation to check if the given boot
2339 * devices match the actual hardware implementation and firmware
2340 * features.
2341 */
2342 if (*p < 'a' || *p > 'p') {
2343 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2344 exit(1);
2345 }
2346 if (bitmap & (1 << (*p - 'a'))) {
2347 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2348 exit(1);
2349 }
2350 bitmap |= 1 << (*p - 'a');
2351 }
2352 return bitmap;
2353 }
2354
2355 static void restore_boot_devices(void *opaque)
2356 {
2357 char *standard_boot_devices = opaque;
2358
2359 qemu_boot_set(standard_boot_devices);
2360
2361 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2362 qemu_free(standard_boot_devices);
2363 }
2364
2365 static void numa_add(const char *optarg)
2366 {
2367 char option[128];
2368 char *endptr;
2369 unsigned long long value, endvalue;
2370 int nodenr;
2371
2372 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2373 if (!strcmp(option, "node")) {
2374 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2375 nodenr = nb_numa_nodes;
2376 } else {
2377 nodenr = strtoull(option, NULL, 10);
2378 }
2379
2380 if (get_param_value(option, 128, "mem", optarg) == 0) {
2381 node_mem[nodenr] = 0;
2382 } else {
2383 value = strtoull(option, &endptr, 0);
2384 switch (*endptr) {
2385 case 0: case 'M': case 'm':
2386 value <<= 20;
2387 break;
2388 case 'G': case 'g':
2389 value <<= 30;
2390 break;
2391 }
2392 node_mem[nodenr] = value;
2393 }
2394 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2395 node_cpumask[nodenr] = 0;
2396 } else {
2397 value = strtoull(option, &endptr, 10);
2398 if (value >= 64) {
2399 value = 63;
2400 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2401 } else {
2402 if (*endptr == '-') {
2403 endvalue = strtoull(endptr+1, &endptr, 10);
2404 if (endvalue >= 63) {
2405 endvalue = 62;
2406 fprintf(stderr,
2407 "only 63 CPUs in NUMA mode supported.\n");
2408 }
2409 value = (2ULL << endvalue) - (1ULL << value);
2410 } else {
2411 value = 1ULL << value;
2412 }
2413 }
2414 node_cpumask[nodenr] = value;
2415 }
2416 nb_numa_nodes++;
2417 }
2418 return;
2419 }
2420
2421 static void smp_parse(const char *optarg)
2422 {
2423 int smp, sockets = 0, threads = 0, cores = 0;
2424 char *endptr;
2425 char option[128];
2426
2427 smp = strtoul(optarg, &endptr, 10);
2428 if (endptr != optarg) {
2429 if (*endptr == ',') {
2430 endptr++;
2431 }
2432 }
2433 if (get_param_value(option, 128, "sockets", endptr) != 0)
2434 sockets = strtoull(option, NULL, 10);
2435 if (get_param_value(option, 128, "cores", endptr) != 0)
2436 cores = strtoull(option, NULL, 10);
2437 if (get_param_value(option, 128, "threads", endptr) != 0)
2438 threads = strtoull(option, NULL, 10);
2439 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2440 max_cpus = strtoull(option, NULL, 10);
2441
2442 /* compute missing values, prefer sockets over cores over threads */
2443 if (smp == 0 || sockets == 0) {
2444 sockets = sockets > 0 ? sockets : 1;
2445 cores = cores > 0 ? cores : 1;
2446 threads = threads > 0 ? threads : 1;
2447 if (smp == 0) {
2448 smp = cores * threads * sockets;
2449 }
2450 } else {
2451 if (cores == 0) {
2452 threads = threads > 0 ? threads : 1;
2453 cores = smp / (sockets * threads);
2454 } else {
2455 if (sockets) {
2456 threads = smp / (cores * sockets);
2457 }
2458 }
2459 }
2460 smp_cpus = smp;
2461 smp_cores = cores > 0 ? cores : 1;
2462 smp_threads = threads > 0 ? threads : 1;
2463 if (max_cpus == 0)
2464 max_cpus = smp_cpus;
2465 }
2466
2467 /***********************************************************/
2468 /* USB devices */
2469
2470 static int usb_device_add(const char *devname, int is_hotplug)
2471 {
2472 const char *p;
2473 USBDevice *dev = NULL;
2474
2475 if (!usb_enabled)
2476 return -1;
2477
2478 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2479 dev = usbdevice_create(devname);
2480 if (dev)
2481 goto done;
2482
2483 /* the other ones */
2484 if (strstart(devname, "host:", &p)) {
2485 dev = usb_host_device_open(p);
2486 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2487 dev = usb_bt_init(devname[2] ? hci_init(p) :
2488 bt_new_hci(qemu_find_bt_vlan(0)));
2489 } else {
2490 return -1;
2491 }
2492 if (!dev)
2493 return -1;
2494
2495 done:
2496 return 0;
2497 }
2498
2499 static int usb_device_del(const char *devname)
2500 {
2501 int bus_num, addr;
2502 const char *p;
2503
2504 if (strstart(devname, "host:", &p))
2505 return usb_host_device_close(p);
2506
2507 if (!usb_enabled)
2508 return -1;
2509
2510 p = strchr(devname, '.');
2511 if (!p)
2512 return -1;
2513 bus_num = strtoul(devname, NULL, 0);
2514 addr = strtoul(p + 1, NULL, 0);
2515
2516 return usb_device_delete_addr(bus_num, addr);
2517 }
2518
2519 static int usb_parse(const char *cmdline)
2520 {
2521 int r;
2522 r = usb_device_add(cmdline, 0);
2523 if (r < 0) {
2524 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2525 }
2526 return r;
2527 }
2528
2529 void do_usb_add(Monitor *mon, const QDict *qdict)
2530 {
2531 const char *devname = qdict_get_str(qdict, "devname");
2532 if (usb_device_add(devname, 1) < 0) {
2533 qemu_error("could not add USB device '%s'\n", devname);
2534 }
2535 }
2536
2537 void do_usb_del(Monitor *mon, const QDict *qdict)
2538 {
2539 const char *devname = qdict_get_str(qdict, "devname");
2540 if (usb_device_del(devname) < 0) {
2541 qemu_error("could not delete USB device '%s'\n", devname);
2542 }
2543 }
2544
2545 /***********************************************************/
2546 /* PCMCIA/Cardbus */
2547
2548 static struct pcmcia_socket_entry_s {
2549 PCMCIASocket *socket;
2550 struct pcmcia_socket_entry_s *next;
2551 } *pcmcia_sockets = 0;
2552
2553 void pcmcia_socket_register(PCMCIASocket *socket)
2554 {
2555 struct pcmcia_socket_entry_s *entry;
2556
2557 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2558 entry->socket = socket;
2559 entry->next = pcmcia_sockets;
2560 pcmcia_sockets = entry;
2561 }
2562
2563 void pcmcia_socket_unregister(PCMCIASocket *socket)
2564 {
2565 struct pcmcia_socket_entry_s *entry, **ptr;
2566
2567 ptr = &pcmcia_sockets;
2568 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2569 if (entry->socket == socket) {
2570 *ptr = entry->next;
2571 qemu_free(entry);
2572 }
2573 }
2574
2575 void pcmcia_info(Monitor *mon)
2576 {
2577 struct pcmcia_socket_entry_s *iter;
2578
2579 if (!pcmcia_sockets)
2580 monitor_printf(mon, "No PCMCIA sockets\n");
2581
2582 for (iter = pcmcia_sockets; iter; iter = iter->next)
2583 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2584 iter->socket->attached ? iter->socket->card_string :
2585 "Empty");
2586 }
2587
2588 /***********************************************************/
2589 /* I/O handling */
2590
2591 typedef struct IOHandlerRecord {
2592 int fd;
2593 IOCanRWHandler *fd_read_poll;
2594 IOHandler *fd_read;
2595 IOHandler *fd_write;
2596 int deleted;
2597 void *opaque;
2598 /* temporary data */
2599 struct pollfd *ufd;
2600 struct IOHandlerRecord *next;
2601 } IOHandlerRecord;
2602
2603 static IOHandlerRecord *first_io_handler;
2604
2605 /* XXX: fd_read_poll should be suppressed, but an API change is
2606 necessary in the character devices to suppress fd_can_read(). */
2607 int qemu_set_fd_handler2(int fd,
2608 IOCanRWHandler *fd_read_poll,
2609 IOHandler *fd_read,
2610 IOHandler *fd_write,
2611 void *opaque)
2612 {
2613 IOHandlerRecord **pioh, *ioh;
2614
2615 if (!fd_read && !fd_write) {
2616 pioh = &first_io_handler;
2617 for(;;) {
2618 ioh = *pioh;
2619 if (ioh == NULL)
2620 break;
2621 if (ioh->fd == fd) {
2622 ioh->deleted = 1;
2623 break;
2624 }
2625 pioh = &ioh->next;
2626 }
2627 } else {
2628 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2629 if (ioh->fd == fd)
2630 goto found;
2631 }
2632 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2633 ioh->next = first_io_handler;
2634 first_io_handler = ioh;
2635 found:
2636 ioh->fd = fd;
2637 ioh->fd_read_poll = fd_read_poll;
2638 ioh->fd_read = fd_read;
2639 ioh->fd_write = fd_write;
2640 ioh->opaque = opaque;
2641 ioh->deleted = 0;
2642 }
2643 return 0;
2644 }
2645
2646 int qemu_set_fd_handler(int fd,
2647 IOHandler *fd_read,
2648 IOHandler *fd_write,
2649 void *opaque)
2650 {
2651 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2652 }
2653
2654 #ifdef _WIN32
2655 /***********************************************************/
2656 /* Polling handling */
2657
2658 typedef struct PollingEntry {
2659 PollingFunc *func;
2660 void *opaque;
2661 struct PollingEntry *next;
2662 } PollingEntry;
2663
2664 static PollingEntry *first_polling_entry;
2665
2666 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2667 {
2668 PollingEntry **ppe, *pe;
2669 pe = qemu_mallocz(sizeof(PollingEntry));
2670 pe->func = func;
2671 pe->opaque = opaque;
2672 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2673 *ppe = pe;
2674 return 0;
2675 }
2676
2677 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2678 {
2679 PollingEntry **ppe, *pe;
2680 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2681 pe = *ppe;
2682 if (pe->func == func && pe->opaque == opaque) {
2683 *ppe = pe->next;
2684 qemu_free(pe);
2685 break;
2686 }
2687 }
2688 }
2689
2690 /***********************************************************/
2691 /* Wait objects support */
2692 typedef struct WaitObjects {
2693 int num;
2694 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2695 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2696 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2697 } WaitObjects;
2698
2699 static WaitObjects wait_objects = {0};
2700
2701 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2702 {
2703 WaitObjects *w = &wait_objects;
2704
2705 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2706 return -1;
2707 w->events[w->num] = handle;
2708 w->func[w->num] = func;
2709 w->opaque[w->num] = opaque;
2710 w->num++;
2711 return 0;
2712 }
2713
2714 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2715 {
2716 int i, found;
2717 WaitObjects *w = &wait_objects;
2718
2719 found = 0;
2720 for (i = 0; i < w->num; i++) {
2721 if (w->events[i] == handle)
2722 found = 1;
2723 if (found) {
2724 w->events[i] = w->events[i + 1];
2725 w->func[i] = w->func[i + 1];
2726 w->opaque[i] = w->opaque[i + 1];
2727 }
2728 }
2729 if (found)
2730 w->num--;
2731 }
2732 #endif
2733
2734 /***********************************************************/
2735 /* ram save/restore */
2736
2737 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2738 #define RAM_SAVE_FLAG_COMPRESS 0x02
2739 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2740 #define RAM_SAVE_FLAG_PAGE 0x08
2741 #define RAM_SAVE_FLAG_EOS 0x10
2742
2743 static int is_dup_page(uint8_t *page, uint8_t ch)
2744 {
2745 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2746 uint32_t *array = (uint32_t *)page;
2747 int i;
2748
2749 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2750 if (array[i] != val)
2751 return 0;
2752 }
2753
2754 return 1;
2755 }
2756
2757 static int ram_save_block(QEMUFile *f)
2758 {
2759 static ram_addr_t current_addr = 0;
2760 ram_addr_t saved_addr = current_addr;
2761 ram_addr_t addr = 0;
2762 int found = 0;
2763
2764 while (addr < last_ram_offset) {
2765 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2766 uint8_t *p;
2767
2768 cpu_physical_memory_reset_dirty(current_addr,
2769 current_addr + TARGET_PAGE_SIZE,
2770 MIGRATION_DIRTY_FLAG);
2771
2772 p = qemu_get_ram_ptr(current_addr);
2773
2774 if (is_dup_page(p, *p)) {
2775 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2776 qemu_put_byte(f, *p);
2777 } else {
2778 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2779 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2780 }
2781
2782 found = 1;
2783 break;
2784 }
2785 addr += TARGET_PAGE_SIZE;
2786 current_addr = (saved_addr + addr) % last_ram_offset;
2787 }
2788
2789 return found;
2790 }
2791
2792 static uint64_t bytes_transferred;
2793
2794 static ram_addr_t ram_save_remaining(void)
2795 {
2796 ram_addr_t addr;
2797 ram_addr_t count = 0;
2798
2799 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2800 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2801 count++;
2802 }
2803
2804 return count;
2805 }
2806
2807 uint64_t ram_bytes_remaining(void)
2808 {
2809 return ram_save_remaining() * TARGET_PAGE_SIZE;
2810 }
2811
2812 uint64_t ram_bytes_transferred(void)
2813 {
2814 return bytes_transferred;
2815 }
2816
2817 uint64_t ram_bytes_total(void)
2818 {
2819 return last_ram_offset;
2820 }
2821
2822 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2823 {
2824 ram_addr_t addr;
2825 uint64_t bytes_transferred_last;
2826 double bwidth = 0;
2827 uint64_t expected_time = 0;
2828
2829 if (stage < 0) {
2830 cpu_physical_memory_set_dirty_tracking(0);
2831 return 0;
2832 }
2833
2834 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2835 qemu_file_set_error(f);
2836 return 0;
2837 }
2838
2839 if (stage == 1) {
2840 bytes_transferred = 0;
2841
2842 /* Make sure all dirty bits are set */
2843 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2844 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2845 cpu_physical_memory_set_dirty(addr);
2846 }
2847
2848 /* Enable dirty memory tracking */
2849 cpu_physical_memory_set_dirty_tracking(1);
2850
2851 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2852 }
2853
2854 bytes_transferred_last = bytes_transferred;
2855 bwidth = qemu_get_clock_ns(rt_clock);
2856
2857 while (!qemu_file_rate_limit(f)) {
2858 int ret;
2859
2860 ret = ram_save_block(f);
2861 bytes_transferred += ret * TARGET_PAGE_SIZE;
2862 if (ret == 0) /* no more blocks */
2863 break;
2864 }
2865
2866 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
2867 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2868
2869 /* if we haven't transferred anything this round, force expected_time to a
2870 * a very high value, but without crashing */
2871 if (bwidth == 0)
2872 bwidth = 0.000001;
2873
2874 /* try transferring iterative blocks of memory */
2875 if (stage == 3) {
2876 /* flush all remaining blocks regardless of rate limiting */
2877 while (ram_save_block(f) != 0) {
2878 bytes_transferred += TARGET_PAGE_SIZE;
2879 }
2880 cpu_physical_memory_set_dirty_tracking(0);
2881 }
2882
2883 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2884
2885 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2886
2887 return (stage == 2) && (expected_time <= migrate_max_downtime());
2888 }
2889
2890 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2891 {
2892 ram_addr_t addr;
2893 int flags;
2894
2895 if (version_id != 3)
2896 return -EINVAL;
2897
2898 do {
2899 addr = qemu_get_be64(f);
2900
2901 flags = addr & ~TARGET_PAGE_MASK;
2902 addr &= TARGET_PAGE_MASK;
2903
2904 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2905 if (addr != last_ram_offset)
2906 return -EINVAL;
2907 }
2908
2909 if (flags & RAM_SAVE_FLAG_COMPRESS) {
2910 uint8_t ch = qemu_get_byte(f);
2911 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2912 #ifndef _WIN32
2913 if (ch == 0 &&
2914 (!kvm_enabled() || kvm_has_sync_mmu())) {
2915 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2916 }
2917 #endif
2918 } else if (flags & RAM_SAVE_FLAG_PAGE) {
2919 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2920 }
2921 if (qemu_file_has_error(f)) {
2922 return -EIO;
2923 }
2924 } while (!(flags & RAM_SAVE_FLAG_EOS));
2925
2926 return 0;
2927 }
2928
2929 void qemu_service_io(void)
2930 {
2931 qemu_notify_event();
2932 }
2933
2934 /***********************************************************/
2935 /* machine registration */
2936
2937 static QEMUMachine *first_machine = NULL;
2938 QEMUMachine *current_machine = NULL;
2939
2940 int qemu_register_machine(QEMUMachine *m)
2941 {
2942 QEMUMachine **pm;
2943 pm = &first_machine;
2944 while (*pm != NULL)
2945 pm = &(*pm)->next;
2946 m->next = NULL;
2947 *pm = m;
2948 return 0;
2949 }
2950
2951 static QEMUMachine *find_machine(const char *name)
2952 {
2953 QEMUMachine *m;
2954
2955 for(m = first_machine; m != NULL; m = m->next) {
2956 if (!strcmp(m->name, name))
2957 return m;
2958 if (m->alias && !strcmp(m->alias, name))
2959 return m;
2960 }
2961 return NULL;
2962 }
2963
2964 static QEMUMachine *find_default_machine(void)
2965 {
2966 QEMUMachine *m;
2967
2968 for(m = first_machine; m != NULL; m = m->next) {
2969 if (m->is_default) {
2970 return m;
2971 }
2972 }
2973 return NULL;
2974 }
2975
2976 /***********************************************************/
2977 /* main execution loop */
2978
2979 static void gui_update(void *opaque)
2980 {
2981 uint64_t interval = GUI_REFRESH_INTERVAL;
2982 DisplayState *ds = opaque;
2983 DisplayChangeListener *dcl = ds->listeners;
2984
2985 qemu_flush_coalesced_mmio_buffer();
2986 dpy_refresh(ds);
2987
2988 while (dcl != NULL) {
2989 if (dcl->gui_timer_interval &&
2990 dcl->gui_timer_interval < interval)
2991 interval = dcl->gui_timer_interval;
2992 dcl = dcl->next;
2993 }
2994 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
2995 }
2996
2997 static void nographic_update(void *opaque)
2998 {
2999 uint64_t interval = GUI_REFRESH_INTERVAL;
3000
3001 qemu_flush_coalesced_mmio_buffer();
3002 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3003 }
3004
3005 struct vm_change_state_entry {
3006 VMChangeStateHandler *cb;
3007 void *opaque;
3008 QLIST_ENTRY (vm_change_state_entry) entries;
3009 };
3010
3011 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3012
3013 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3014 void *opaque)
3015 {
3016 VMChangeStateEntry *e;
3017
3018 e = qemu_mallocz(sizeof (*e));
3019
3020 e->cb = cb;
3021 e->opaque = opaque;
3022 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3023 return e;
3024 }
3025
3026 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3027 {
3028 QLIST_REMOVE (e, entries);
3029 qemu_free (e);
3030 }
3031
3032 static void vm_state_notify(int running, int reason)
3033 {
3034 VMChangeStateEntry *e;
3035
3036 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3037 e->cb(e->opaque, running, reason);
3038 }
3039 }
3040
3041 static void resume_all_vcpus(void);
3042 static void pause_all_vcpus(void);
3043
3044 void vm_start(void)
3045 {
3046 if (!vm_running) {
3047 cpu_enable_ticks();
3048 vm_running = 1;
3049 vm_state_notify(1, 0);
3050 qemu_rearm_alarm_timer(alarm_timer);
3051 resume_all_vcpus();
3052 }
3053 }
3054
3055 /* reset/shutdown handler */
3056
3057 typedef struct QEMUResetEntry {
3058 QTAILQ_ENTRY(QEMUResetEntry) entry;
3059 QEMUResetHandler *func;
3060 void *opaque;
3061 } QEMUResetEntry;
3062
3063 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3064 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3065 static int reset_requested;
3066 static int shutdown_requested;
3067 static int powerdown_requested;
3068 static int debug_requested;
3069 static int vmstop_requested;
3070
3071 int qemu_shutdown_requested(void)
3072 {
3073 int r = shutdown_requested;
3074 shutdown_requested = 0;
3075 return r;
3076 }
3077
3078 int qemu_reset_requested(void)
3079 {
3080 int r = reset_requested;
3081 reset_requested = 0;
3082 return r;
3083 }
3084
3085 int qemu_powerdown_requested(void)
3086 {
3087 int r = powerdown_requested;
3088 powerdown_requested = 0;
3089 return r;
3090 }
3091
3092 static int qemu_debug_requested(void)
3093 {
3094 int r = debug_requested;
3095 debug_requested = 0;
3096 return r;
3097 }
3098
3099 static int qemu_vmstop_requested(void)
3100 {
3101 int r = vmstop_requested;
3102 vmstop_requested = 0;
3103 return r;
3104 }
3105
3106 static void do_vm_stop(int reason)
3107 {
3108 if (vm_running) {
3109 cpu_disable_ticks();
3110 vm_running = 0;
3111 pause_all_vcpus();
3112 vm_state_notify(0, reason);
3113 }
3114 }
3115
3116 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3117 {
3118 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3119
3120 re->func = func;
3121 re->opaque = opaque;
3122 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3123 }
3124
3125 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3126 {
3127 QEMUResetEntry *re;
3128
3129 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3130 if (re->func == func && re->opaque == opaque) {
3131 QTAILQ_REMOVE(&reset_handlers, re, entry);
3132 qemu_free(re);
3133 return;
3134 }
3135 }
3136 }
3137
3138 void qemu_system_reset(void)
3139 {
3140 QEMUResetEntry *re, *nre;
3141
3142 /* reset all devices */
3143 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3144 re->func(re->opaque);
3145 }
3146 }
3147
3148 void qemu_system_reset_request(void)
3149 {
3150 if (no_reboot) {
3151 shutdown_requested = 1;
3152 } else {
3153 reset_requested = 1;
3154 }
3155 qemu_notify_event();
3156 }
3157
3158 void qemu_system_shutdown_request(void)
3159 {
3160 shutdown_requested = 1;
3161 qemu_notify_event();
3162 }
3163
3164 void qemu_system_powerdown_request(void)
3165 {
3166 powerdown_requested = 1;
3167 qemu_notify_event();
3168 }
3169
3170 #ifdef CONFIG_IOTHREAD
3171 static void qemu_system_vmstop_request(int reason)
3172 {
3173 vmstop_requested = reason;
3174 qemu_notify_event();
3175 }
3176 #endif
3177
3178 #ifndef _WIN32
3179 static int io_thread_fd = -1;
3180
3181 static void qemu_event_increment(void)
3182 {
3183 /* Write 8 bytes to be compatible with eventfd. */
3184 static uint64_t val = 1;
3185 ssize_t ret;
3186
3187 if (io_thread_fd == -1)
3188 return;
3189
3190 do {
3191 ret = write(io_thread_fd, &val, sizeof(val));
3192 } while (ret < 0 && errno == EINTR);
3193
3194 /* EAGAIN is fine, a read must be pending. */
3195 if (ret < 0 && errno != EAGAIN) {
3196 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
3197 strerror(errno));
3198 exit (1);
3199 }
3200 }
3201
3202 static void qemu_event_read(void *opaque)
3203 {
3204 int fd = (unsigned long)opaque;
3205 ssize_t len;
3206 char buffer[512];
3207
3208 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
3209 do {
3210 len = read(fd, buffer, sizeof(buffer));
3211 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
3212 }
3213
3214 static int qemu_event_init(void)
3215 {
3216 int err;
3217 int fds[2];
3218
3219 err = qemu_eventfd(fds);
3220 if (err == -1)
3221 return -errno;
3222
3223 err = fcntl_setfl(fds[0], O_NONBLOCK);
3224 if (err < 0)
3225 goto fail;
3226
3227 err = fcntl_setfl(fds[1], O_NONBLOCK);
3228 if (err < 0)
3229 goto fail;
3230
3231 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3232 (void *)(unsigned long)fds[0]);
3233
3234 io_thread_fd = fds[1];
3235 return 0;
3236
3237 fail:
3238 close(fds[0]);
3239 close(fds[1]);
3240 return err;
3241 }
3242 #else
3243 HANDLE qemu_event_handle;
3244
3245 static void dummy_event_handler(void *opaque)
3246 {
3247 }
3248
3249 static int qemu_event_init(void)
3250 {
3251 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3252 if (!qemu_event_handle) {
3253 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3254 return -1;
3255 }
3256 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3257 return 0;
3258 }
3259
3260 static void qemu_event_increment(void)
3261 {
3262 if (!SetEvent(qemu_event_handle)) {
3263 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3264 GetLastError());
3265 exit (1);
3266 }
3267 }
3268 #endif
3269
3270 static int cpu_can_run(CPUState *env)
3271 {
3272 if (env->stop)
3273 return 0;
3274 if (env->stopped)
3275 return 0;
3276 if (!vm_running)
3277 return 0;
3278 return 1;
3279 }
3280
3281 #ifndef CONFIG_IOTHREAD
3282 static int qemu_init_main_loop(void)
3283 {
3284 return qemu_event_init();
3285 }
3286
3287 void qemu_init_vcpu(void *_env)
3288 {
3289 CPUState *env = _env;
3290
3291 env->nr_cores = smp_cores;
3292 env->nr_threads = smp_threads;
3293 if (kvm_enabled())
3294 kvm_init_vcpu(env);
3295 return;
3296 }
3297
3298 int qemu_cpu_self(void *env)
3299 {
3300 return 1;
3301 }
3302
3303 static void resume_all_vcpus(void)
3304 {
3305 }
3306
3307 static void pause_all_vcpus(void)
3308 {
3309 }
3310
3311 void qemu_cpu_kick(void *env)
3312 {
3313 return;
3314 }
3315
3316 void qemu_notify_event(void)
3317 {
3318 CPUState *env = cpu_single_env;
3319
3320 if (env) {
3321 cpu_exit(env);
3322 }
3323 }
3324
3325 void qemu_mutex_lock_iothread(void) {}
3326 void qemu_mutex_unlock_iothread(void) {}
3327
3328 void vm_stop(int reason)
3329 {
3330 do_vm_stop(reason);
3331 }
3332
3333 #else /* CONFIG_IOTHREAD */
3334
3335 #include "qemu-thread.h"
3336
3337 QemuMutex qemu_global_mutex;
3338 static QemuMutex qemu_fair_mutex;
3339
3340 static QemuThread io_thread;
3341
3342 static QemuThread *tcg_cpu_thread;
3343 static QemuCond *tcg_halt_cond;
3344
3345 static int qemu_system_ready;
3346 /* cpu creation */
3347 static QemuCond qemu_cpu_cond;
3348 /* system init */
3349 static QemuCond qemu_system_cond;
3350 static QemuCond qemu_pause_cond;
3351
3352 static void tcg_block_io_signals(void);
3353 static void kvm_block_io_signals(CPUState *env);
3354 static void unblock_io_signals(void);
3355 static int tcg_has_work(void);
3356 static int cpu_has_work(CPUState *env);
3357
3358 static int qemu_init_main_loop(void)
3359 {
3360 int ret;
3361
3362 ret = qemu_event_init();
3363 if (ret)
3364 return ret;
3365
3366 qemu_cond_init(&qemu_pause_cond);
3367 qemu_mutex_init(&qemu_fair_mutex);
3368 qemu_mutex_init(&qemu_global_mutex);
3369 qemu_mutex_lock(&qemu_global_mutex);
3370
3371 unblock_io_signals();
3372 qemu_thread_self(&io_thread);
3373
3374 return 0;
3375 }
3376
3377 static void qemu_wait_io_event_common(CPUState *env)
3378 {
3379 if (env->stop) {
3380 env->stop = 0;
3381 env->stopped = 1;
3382 qemu_cond_signal(&qemu_pause_cond);
3383 }
3384 }
3385
3386 static void qemu_wait_io_event(CPUState *env)
3387 {
3388 while (!tcg_has_work())
3389 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3390
3391 qemu_mutex_unlock(&qemu_global_mutex);
3392
3393 /*
3394 * Users of qemu_global_mutex can be starved, having no chance
3395 * to acquire it since this path will get to it first.
3396 * So use another lock to provide fairness.
3397 */
3398 qemu_mutex_lock(&qemu_fair_mutex);
3399 qemu_mutex_unlock(&qemu_fair_mutex);
3400
3401 qemu_mutex_lock(&qemu_global_mutex);
3402 qemu_wait_io_event_common(env);
3403 }
3404
3405 static void qemu_kvm_eat_signal(CPUState *env, int timeout)
3406 {
3407 struct timespec ts;
3408 int r, e;
3409 siginfo_t siginfo;
3410 sigset_t waitset;
3411
3412 ts.tv_sec = timeout / 1000;
3413 ts.tv_nsec = (timeout % 1000) * 1000000;
3414
3415 sigemptyset(&waitset);
3416 sigaddset(&waitset, SIG_IPI);
3417
3418 qemu_mutex_unlock(&qemu_global_mutex);
3419 r = sigtimedwait(&waitset, &siginfo, &ts);
3420 e = errno;
3421 qemu_mutex_lock(&qemu_global_mutex);
3422
3423 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
3424 fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
3425 exit(1);
3426 }
3427 }
3428
3429 static void qemu_kvm_wait_io_event(CPUState *env)
3430 {
3431 while (!cpu_has_work(env))
3432 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3433
3434 qemu_kvm_eat_signal(env, 0);
3435 qemu_wait_io_event_common(env);
3436 }
3437
3438 static int qemu_cpu_exec(CPUState *env);
3439
3440 static void *kvm_cpu_thread_fn(void *arg)
3441 {
3442 CPUState *env = arg;
3443
3444 qemu_thread_self(env->thread);
3445 if (kvm_enabled())
3446 kvm_init_vcpu(env);
3447
3448 kvm_block_io_signals(env);
3449
3450 /* signal CPU creation */
3451 qemu_mutex_lock(&qemu_global_mutex);
3452 env->created = 1;
3453 qemu_cond_signal(&qemu_cpu_cond);
3454
3455 /* and wait for machine initialization */
3456 while (!qemu_system_ready)
3457 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3458
3459 while (1) {
3460 if (cpu_can_run(env))
3461 qemu_cpu_exec(env);
3462 qemu_kvm_wait_io_event(env);
3463 }
3464
3465 return NULL;
3466 }
3467
3468 static void tcg_cpu_exec(void);
3469
3470 static void *tcg_cpu_thread_fn(void *arg)
3471 {
3472 CPUState *env = arg;
3473
3474 tcg_block_io_signals();
3475 qemu_thread_self(env->thread);
3476
3477 /* signal CPU creation */
3478 qemu_mutex_lock(&qemu_global_mutex);
3479 for (env = first_cpu; env != NULL; env = env->next_cpu)
3480 env->created = 1;
3481 qemu_cond_signal(&qemu_cpu_cond);
3482
3483 /* and wait for machine initialization */
3484 while (!qemu_system_ready)
3485 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3486
3487 while (1) {
3488 tcg_cpu_exec();
3489 qemu_wait_io_event(cur_cpu);
3490 }
3491
3492 return NULL;
3493 }
3494
3495 void qemu_cpu_kick(void *_env)
3496 {
3497 CPUState *env = _env;
3498 qemu_cond_broadcast(env->halt_cond);
3499 if (kvm_enabled())
3500 qemu_thread_signal(env->thread, SIG_IPI);
3501 }
3502
3503 int qemu_cpu_self(void *_env)
3504 {
3505 CPUState *env = _env;
3506 QemuThread this;
3507
3508 qemu_thread_self(&this);
3509
3510 return qemu_thread_equal(&this, env->thread);
3511 }
3512
3513 static void cpu_signal(int sig)
3514 {
3515 if (cpu_single_env)
3516 cpu_exit(cpu_single_env);
3517 }
3518
3519 static void tcg_block_io_signals(void)
3520 {
3521 sigset_t set;
3522 struct sigaction sigact;
3523
3524 sigemptyset(&set);
3525 sigaddset(&set, SIGUSR2);
3526 sigaddset(&set, SIGIO);
3527 sigaddset(&set, SIGALRM);
3528 sigaddset(&set, SIGCHLD);
3529 pthread_sigmask(SIG_BLOCK, &set, NULL);
3530
3531 sigemptyset(&set);
3532 sigaddset(&set, SIG_IPI);
3533 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3534
3535 memset(&sigact, 0, sizeof(sigact));
3536 sigact.sa_handler = cpu_signal;
3537 sigaction(SIG_IPI, &sigact, NULL);
3538 }
3539
3540 static void dummy_signal(int sig)
3541 {
3542 }
3543
3544 static void kvm_block_io_signals(CPUState *env)
3545 {
3546 int r;
3547 sigset_t set;
3548 struct sigaction sigact;
3549
3550 sigemptyset(&set);
3551 sigaddset(&set, SIGUSR2);
3552 sigaddset(&set, SIGIO);
3553 sigaddset(&set, SIGALRM);
3554 sigaddset(&set, SIGCHLD);
3555 sigaddset(&set, SIG_IPI);
3556 pthread_sigmask(SIG_BLOCK, &set, NULL);
3557
3558 pthread_sigmask(SIG_BLOCK, NULL, &set);
3559 sigdelset(&set, SIG_IPI);
3560
3561 memset(&sigact, 0, sizeof(sigact));
3562 sigact.sa_handler = dummy_signal;
3563 sigaction(SIG_IPI, &sigact, NULL);
3564
3565 r = kvm_set_signal_mask(env, &set);
3566 if (r) {
3567 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
3568 exit(1);
3569 }
3570 }
3571
3572 static void unblock_io_signals(void)
3573 {
3574 sigset_t set;
3575
3576 sigemptyset(&set);
3577 sigaddset(&set, SIGUSR2);
3578 sigaddset(&set, SIGIO);
3579 sigaddset(&set, SIGALRM);
3580 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3581
3582 sigemptyset(&set);
3583 sigaddset(&set, SIG_IPI);
3584 pthread_sigmask(SIG_BLOCK, &set, NULL);
3585 }
3586
3587 static void qemu_signal_lock(unsigned int msecs)
3588 {
3589 qemu_mutex_lock(&qemu_fair_mutex);
3590
3591 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3592 qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
3593 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3594 break;
3595 }
3596 qemu_mutex_unlock(&qemu_fair_mutex);
3597 }
3598
3599 void qemu_mutex_lock_iothread(void)
3600 {
3601 if (kvm_enabled()) {
3602 qemu_mutex_lock(&qemu_fair_mutex);
3603 qemu_mutex_lock(&qemu_global_mutex);
3604 qemu_mutex_unlock(&qemu_fair_mutex);
3605 } else
3606 qemu_signal_lock(100);
3607 }
3608
3609 void qemu_mutex_unlock_iothread(void)
3610 {
3611 qemu_mutex_unlock(&qemu_global_mutex);
3612 }
3613
3614 static int all_vcpus_paused(void)
3615 {
3616 CPUState *penv = first_cpu;
3617
3618 while (penv) {
3619 if (!penv->stopped)
3620 return 0;
3621 penv = (CPUState *)penv->next_cpu;
3622 }
3623
3624 return 1;
3625 }
3626
3627 static void pause_all_vcpus(void)
3628 {
3629 CPUState *penv = first_cpu;
3630
3631 while (penv) {
3632 penv->stop = 1;
3633 qemu_thread_signal(penv->thread, SIG_IPI);
3634 qemu_cpu_kick(penv);
3635 penv = (CPUState *)penv->next_cpu;
3636 }
3637
3638 while (!all_vcpus_paused()) {
3639 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3640 penv = first_cpu;
3641 while (penv) {
3642 qemu_thread_signal(penv->thread, SIG_IPI);
3643 penv = (CPUState *)penv->next_cpu;
3644 }
3645 }
3646 }
3647
3648 static void resume_all_vcpus(void)
3649 {
3650 CPUState *penv = first_cpu;
3651
3652 while (penv) {
3653 penv->stop = 0;
3654 penv->stopped = 0;
3655 qemu_thread_signal(penv->thread, SIG_IPI);
3656 qemu_cpu_kick(penv);
3657 penv = (CPUState *)penv->next_cpu;
3658 }
3659 }
3660
3661 static void tcg_init_vcpu(void *_env)
3662 {
3663 CPUState *env = _env;
3664 /* share a single thread for all cpus with TCG */
3665 if (!tcg_cpu_thread) {
3666 env->thread = qemu_mallocz(sizeof(QemuThread));
3667 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3668 qemu_cond_init(env->halt_cond);
3669 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3670 while (env->created == 0)
3671 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3672 tcg_cpu_thread = env->thread;
3673 tcg_halt_cond = env->halt_cond;
3674 } else {
3675 env->thread = tcg_cpu_thread;
3676 env->halt_cond = tcg_halt_cond;
3677 }
3678 }
3679
3680 static void kvm_start_vcpu(CPUState *env)
3681 {
3682 env->thread = qemu_mallocz(sizeof(QemuThread));
3683 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3684 qemu_cond_init(env->halt_cond);
3685 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3686 while (env->created == 0)
3687 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3688 }
3689
3690 void qemu_init_vcpu(void *_env)
3691 {
3692 CPUState *env = _env;
3693
3694 env->nr_cores = smp_cores;
3695 env->nr_threads = smp_threads;
3696 if (kvm_enabled())
3697 kvm_start_vcpu(env);
3698 else
3699 tcg_init_vcpu(env);
3700 }
3701
3702 void qemu_notify_event(void)
3703 {
3704 qemu_event_increment();
3705 }
3706
3707 void vm_stop(int reason)
3708 {
3709 QemuThread me;
3710 qemu_thread_self(&me);
3711
3712 if (!qemu_thread_equal(&me, &io_thread)) {
3713 qemu_system_vmstop_request(reason);
3714 /*
3715 * FIXME: should not return to device code in case
3716 * vm_stop() has been requested.
3717 */
3718 if (cpu_single_env) {
3719 cpu_exit(cpu_single_env);
3720 cpu_single_env->stop = 1;
3721 }
3722 return;
3723 }
3724 do_vm_stop(reason);
3725 }
3726
3727 #endif
3728
3729
3730 #ifdef _WIN32
3731 static void host_main_loop_wait(int *timeout)
3732 {
3733 int ret, ret2, i;
3734 PollingEntry *pe;
3735
3736
3737 /* XXX: need to suppress polling by better using win32 events */
3738 ret = 0;
3739 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3740 ret |= pe->func(pe->opaque);
3741 }
3742 if (ret == 0) {
3743 int err;
3744 WaitObjects *w = &wait_objects;
3745
3746 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3747 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3748 if (w->func[ret - WAIT_OBJECT_0])
3749 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3750
3751 /* Check for additional signaled events */
3752 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3753
3754 /* Check if event is signaled */
3755 ret2 = WaitForSingleObject(w->events[i], 0);
3756 if(ret2 == WAIT_OBJECT_0) {
3757 if (w->func[i])
3758 w->func[i](w->opaque[i]);
3759 } else if (ret2 == WAIT_TIMEOUT) {
3760 } else {
3761 err = GetLastError();
3762 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3763 }
3764 }
3765 } else if (ret == WAIT_TIMEOUT) {
3766 } else {
3767 err = GetLastError();
3768 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3769 }
3770 }
3771
3772 *timeout = 0;
3773 }
3774 #else
3775 static void host_main_loop_wait(int *timeout)
3776 {
3777 }
3778 #endif
3779
3780 void main_loop_wait(int timeout)
3781 {
3782 IOHandlerRecord *ioh;
3783 fd_set rfds, wfds, xfds;
3784 int ret, nfds;
3785 struct timeval tv;
3786
3787 qemu_bh_update_timeout(&timeout);
3788
3789 host_main_loop_wait(&timeout);
3790
3791 /* poll any events */
3792 /* XXX: separate device handlers from system ones */
3793 nfds = -1;
3794 FD_ZERO(&rfds);
3795 FD_ZERO(&wfds);
3796 FD_ZERO(&xfds);
3797 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3798 if (ioh->deleted)
3799 continue;
3800 if (ioh->fd_read &&
3801 (!ioh->fd_read_poll ||
3802 ioh->fd_read_poll(ioh->opaque) != 0)) {
3803 FD_SET(ioh->fd, &rfds);
3804 if (ioh->fd > nfds)
3805 nfds = ioh->fd;
3806 }
3807 if (ioh->fd_write) {
3808 FD_SET(ioh->fd, &wfds);
3809 if (ioh->fd > nfds)
3810 nfds = ioh->fd;
3811 }
3812 }
3813
3814 tv.tv_sec = timeout / 1000;
3815 tv.tv_usec = (timeout % 1000) * 1000;
3816
3817 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3818
3819 qemu_mutex_unlock_iothread();
3820 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3821 qemu_mutex_lock_iothread();
3822 if (ret > 0) {
3823 IOHandlerRecord **pioh;
3824
3825 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3826 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3827 ioh->fd_read(ioh->opaque);
3828 }
3829 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3830 ioh->fd_write(ioh->opaque);
3831 }
3832 }
3833
3834 /* remove deleted IO handlers */
3835 pioh = &first_io_handler;
3836 while (*pioh) {
3837 ioh = *pioh;
3838 if (ioh->deleted) {
3839 *pioh = ioh->next;
3840 qemu_free(ioh);
3841 } else
3842 pioh = &ioh->next;
3843 }
3844 }
3845
3846 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3847
3848 /* rearm timer, if not periodic */
3849 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3850 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3851 qemu_rearm_alarm_timer(alarm_timer);
3852 }
3853
3854 /* vm time timers */
3855 if (vm_running) {
3856 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3857 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3858 qemu_get_clock(vm_clock));
3859 }
3860
3861 /* real time timers */
3862 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3863 qemu_get_clock(rt_clock));
3864
3865 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3866 qemu_get_clock(host_clock));
3867
3868 /* Check bottom-halves last in case any of the earlier events triggered
3869 them. */
3870 qemu_bh_poll();
3871
3872 }
3873
3874 static int qemu_cpu_exec(CPUState *env)
3875 {
3876 int ret;
3877 #ifdef CONFIG_PROFILER
3878 int64_t ti;
3879 #endif
3880
3881 #ifdef CONFIG_PROFILER
3882 ti = profile_getclock();
3883 #endif
3884 if (use_icount) {
3885 int64_t count;
3886 int decr;
3887 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3888 env->icount_decr.u16.low = 0;
3889 env->icount_extra = 0;
3890 count = qemu_next_deadline();
3891 count = (count + (1 << icount_time_shift) - 1)
3892 >> icount_time_shift;
3893 qemu_icount += count;
3894 decr = (count > 0xffff) ? 0xffff : count;
3895 count -= decr;
3896 env->icount_decr.u16.low = decr;
3897 env->icount_extra = count;
3898 }
3899 ret = cpu_exec(env);
3900 #ifdef CONFIG_PROFILER
3901 qemu_time += profile_getclock() - ti;
3902 #endif
3903 if (use_icount) {
3904 /* Fold pending instructions back into the
3905 instruction counter, and clear the interrupt flag. */
3906 qemu_icount -= (env->icount_decr.u16.low
3907 + env->icount_extra);
3908 env->icount_decr.u32 = 0;
3909 env->icount_extra = 0;
3910 }
3911 return ret;
3912 }
3913
3914 static void tcg_cpu_exec(void)
3915 {
3916 int ret = 0;
3917
3918 if (next_cpu == NULL)
3919 next_cpu = first_cpu;
3920 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3921 CPUState *env = cur_cpu = next_cpu;
3922
3923 if (timer_alarm_pending) {
3924 timer_alarm_pending = 0;
3925 break;
3926 }
3927 if (cpu_can_run(env))
3928 ret = qemu_cpu_exec(env);
3929 else if (env->stop)
3930 break;
3931
3932 if (ret == EXCP_DEBUG) {
3933 gdb_set_stop_cpu(env);
3934 debug_requested = 1;
3935 break;
3936 }
3937 }
3938 }
3939
3940 static int cpu_has_work(CPUState *env)
3941 {
3942 if (env->stop)
3943 return 1;
3944 if (env->stopped)
3945 return 0;
3946 if (!env->halted)
3947 return 1;
3948 if (qemu_cpu_has_work(env))
3949 return 1;
3950 return 0;
3951 }
3952
3953 static int tcg_has_work(void)
3954 {
3955 CPUState *env;
3956
3957 for (env = first_cpu; env != NULL; env = env->next_cpu)
3958 if (cpu_has_work(env))
3959 return 1;
3960 return 0;
3961 }
3962
3963 static int qemu_calculate_timeout(void)
3964 {
3965 #ifndef CONFIG_IOTHREAD
3966 int timeout;
3967
3968 if (!vm_running)
3969 timeout = 5000;
3970 else if (tcg_has_work())
3971 timeout = 0;
3972 else if (!use_icount)
3973 timeout = 5000;
3974 else {
3975 /* XXX: use timeout computed from timers */
3976 int64_t add;
3977 int64_t delta;
3978 /* Advance virtual time to the next event. */
3979 if (use_icount == 1) {
3980 /* When not using an adaptive execution frequency
3981 we tend to get badly out of sync with real time,
3982 so just delay for a reasonable amount of time. */
3983 delta = 0;
3984 } else {
3985 delta = cpu_get_icount() - cpu_get_clock();
3986 }
3987 if (delta > 0) {
3988 /* If virtual time is ahead of real time then just
3989 wait for IO. */
3990 timeout = (delta / 1000000) + 1;
3991 } else {
3992 /* Wait for either IO to occur or the next
3993 timer event. */
3994 add = qemu_next_deadline();
3995 /* We advance the timer before checking for IO.
3996 Limit the amount we advance so that early IO
3997 activity won't get the guest too far ahead. */
3998 if (add > 10000000)
3999 add = 10000000;
4000 delta += add;
4001 add = (add + (1 << icount_time_shift) - 1)
4002 >> icount_time_shift;
4003 qemu_icount += add;
4004 timeout = delta / 1000000;
4005 if (timeout < 0)
4006 timeout = 0;
4007 }
4008 }
4009
4010 return timeout;
4011 #else /* CONFIG_IOTHREAD */
4012 return 1000;
4013 #endif
4014 }
4015
4016 static int vm_can_run(void)
4017 {
4018 if (powerdown_requested)
4019 return 0;
4020 if (reset_requested)
4021 return 0;
4022 if (shutdown_requested)
4023 return 0;
4024 if (debug_requested)
4025 return 0;
4026 return 1;
4027 }
4028
4029 qemu_irq qemu_system_powerdown;
4030
4031 static void main_loop(void)
4032 {
4033 int r;
4034
4035 #ifdef CONFIG_IOTHREAD
4036 qemu_system_ready = 1;
4037 qemu_cond_broadcast(&qemu_system_cond);
4038 #endif
4039
4040 for (;;) {
4041 do {
4042 #ifdef CONFIG_PROFILER
4043 int64_t ti;
4044 #endif
4045 #ifndef CONFIG_IOTHREAD
4046 tcg_cpu_exec();
4047 #endif
4048 #ifdef CONFIG_PROFILER
4049 ti = profile_getclock();
4050 #endif
4051 main_loop_wait(qemu_calculate_timeout());
4052 #ifdef CONFIG_PROFILER
4053 dev_time += profile_getclock() - ti;
4054 #endif
4055 } while (vm_can_run());
4056
4057 if (qemu_debug_requested()) {
4058 monitor_protocol_event(QEVENT_DEBUG, NULL);
4059 vm_stop(EXCP_DEBUG);
4060 }
4061 if (qemu_shutdown_requested()) {
4062 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4063 if (no_shutdown) {
4064 vm_stop(0);
4065 no_shutdown = 0;
4066 } else
4067 break;
4068 }
4069 if (qemu_reset_requested()) {
4070 monitor_protocol_event(QEVENT_RESET, NULL);
4071 pause_all_vcpus();
4072 qemu_system_reset();
4073 resume_all_vcpus();
4074 }
4075 if (qemu_powerdown_requested()) {
4076 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4077 qemu_irq_raise(qemu_system_powerdown);
4078 }
4079 if ((r = qemu_vmstop_requested())) {
4080 monitor_protocol_event(QEVENT_STOP, NULL);
4081 vm_stop(r);
4082 }
4083 }
4084 pause_all_vcpus();
4085 }
4086
4087 static void version(void)
4088 {
4089 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4090 }
4091
4092 static void help(int exitcode)
4093 {
4094 const char *options_help =
4095 #define DEF(option, opt_arg, opt_enum, opt_help) \
4096 opt_help
4097 #define DEFHEADING(text) stringify(text) "\n"
4098 #include "qemu-options.h"
4099 #undef DEF
4100 #undef DEFHEADING
4101 #undef GEN_DOCS
4102 ;
4103 version();
4104 printf("usage: %s [options] [disk_image]\n"
4105 "\n"
4106 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4107 "\n"
4108 "%s\n"
4109 "During emulation, the following keys are useful:\n"
4110 "ctrl-alt-f toggle full screen\n"
4111 "ctrl-alt-n switch to virtual console 'n'\n"
4112 "ctrl-alt toggle mouse and keyboard grab\n"
4113 "\n"
4114 "When using -nographic, press 'ctrl-a h' to get some help.\n",
4115 "qemu",
4116 options_help);
4117 exit(exitcode);
4118 }
4119
4120 #define HAS_ARG 0x0001
4121
4122 enum {
4123 #define DEF(option, opt_arg, opt_enum, opt_help) \
4124 opt_enum,
4125 #define DEFHEADING(text)
4126 #include "qemu-options.h"
4127 #undef DEF
4128 #undef DEFHEADING
4129 #undef GEN_DOCS
4130 };
4131
4132 typedef struct QEMUOption {
4133 const char *name;
4134 int flags;
4135 int index;
4136 } QEMUOption;
4137
4138 static const QEMUOption qemu_options[] = {
4139 { "h", 0, QEMU_OPTION_h },
4140 #define DEF(option, opt_arg, opt_enum, opt_help) \
4141 { option, opt_arg, opt_enum },
4142 #define DEFHEADING(text)
4143 #include "qemu-options.h"
4144 #undef DEF
4145 #undef DEFHEADING
4146 #undef GEN_DOCS
4147 { NULL },
4148 };
4149
4150 #ifdef HAS_AUDIO
4151 struct soundhw soundhw[] = {
4152 #ifdef HAS_AUDIO_CHOICE
4153 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4154 {
4155 "pcspk",
4156 "PC speaker",
4157 0,
4158 1,
4159 { .init_isa = pcspk_audio_init }
4160 },
4161 #endif
4162
4163 #ifdef CONFIG_SB16
4164 {
4165 "sb16",
4166 "Creative Sound Blaster 16",
4167 0,
4168 1,
4169 { .init_isa = SB16_init }
4170 },
4171 #endif
4172
4173 #ifdef CONFIG_CS4231A
4174 {
4175 "cs4231a",
4176 "CS4231A",
4177 0,
4178 1,
4179 { .init_isa = cs4231a_init }
4180 },
4181 #endif
4182
4183 #ifdef CONFIG_ADLIB
4184 {
4185 "adlib",
4186 #ifdef HAS_YMF262
4187 "Yamaha YMF262 (OPL3)",
4188 #else
4189 "Yamaha YM3812 (OPL2)",
4190 #endif
4191 0,
4192 1,
4193 { .init_isa = Adlib_init }
4194 },
4195 #endif
4196
4197 #ifdef CONFIG_GUS
4198 {
4199 "gus",
4200 "Gravis Ultrasound GF1",
4201 0,
4202 1,
4203 { .init_isa = GUS_init }
4204 },
4205 #endif
4206
4207 #ifdef CONFIG_AC97
4208 {
4209 "ac97",
4210 "Intel 82801AA AC97 Audio",
4211 0,
4212 0,
4213 { .init_pci = ac97_init }
4214 },
4215 #endif
4216
4217 #ifdef CONFIG_ES1370
4218 {
4219 "es1370",
4220 "ENSONIQ AudioPCI ES1370",
4221 0,
4222 0,
4223 { .init_pci = es1370_init }
4224 },
4225 #endif
4226
4227 #endif /* HAS_AUDIO_CHOICE */
4228
4229 { NULL, NULL, 0, 0, { NULL } }
4230 };
4231
4232 static void select_soundhw (const char *optarg)
4233 {
4234 struct soundhw *c;
4235
4236 if (*optarg == '?') {
4237 show_valid_cards:
4238
4239 printf ("Valid sound card names (comma separated):\n");
4240 for (c = soundhw; c->name; ++c) {
4241 printf ("%-11s %s\n", c->name, c->descr);
4242 }
4243 printf ("\n-soundhw all will enable all of the above\n");
4244 exit (*optarg != '?');
4245 }
4246 else {
4247 size_t l;
4248 const char *p;
4249 char *e;
4250 int bad_card = 0;
4251
4252 if (!strcmp (optarg, "all")) {
4253 for (c = soundhw; c->name; ++c) {
4254 c->enabled = 1;
4255 }
4256 return;
4257 }
4258
4259 p = optarg;
4260 while (*p) {
4261 e = strchr (p, ',');
4262 l = !e ? strlen (p) : (size_t) (e - p);
4263
4264 for (c = soundhw; c->name; ++c) {
4265 if (!strncmp (c->name, p, l) && !c->name[l]) {
4266 c->enabled = 1;
4267 break;
4268 }
4269 }
4270
4271 if (!c->name) {
4272 if (l > 80) {
4273 fprintf (stderr,
4274 "Unknown sound card name (too big to show)\n");
4275 }
4276 else {
4277 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4278 (int) l, p);
4279 }
4280 bad_card = 1;
4281 }
4282 p += l + (e != NULL);
4283 }
4284
4285 if (bad_card)
4286 goto show_valid_cards;
4287 }
4288 }
4289 #endif
4290
4291 static void select_vgahw (const char *p)
4292 {
4293 const char *opts;
4294
4295 default_vga = 0;
4296 vga_interface_type = VGA_NONE;
4297 if (strstart(p, "std", &opts)) {
4298 vga_interface_type = VGA_STD;
4299 } else if (strstart(p, "cirrus", &opts)) {
4300 vga_interface_type = VGA_CIRRUS;
4301 } else if (strstart(p, "vmware", &opts)) {
4302 vga_interface_type = VGA_VMWARE;
4303 } else if (strstart(p, "xenfb", &opts)) {
4304 vga_interface_type = VGA_XENFB;
4305 } else if (!strstart(p, "none", &opts)) {
4306 invalid_vga:
4307 fprintf(stderr, "Unknown vga type: %s\n", p);
4308 exit(1);
4309 }
4310 while (*opts) {
4311 const char *nextopt;
4312
4313 if (strstart(opts, ",retrace=", &nextopt)) {
4314 opts = nextopt;
4315 if (strstart(opts, "dumb", &nextopt))
4316 vga_retrace_method = VGA_RETRACE_DUMB;
4317 else if (strstart(opts, "precise", &nextopt))
4318 vga_retrace_method = VGA_RETRACE_PRECISE;
4319 else goto invalid_vga;
4320 } else goto invalid_vga;
4321 opts = nextopt;
4322 }
4323 }
4324
4325 #ifdef TARGET_I386
4326 static int balloon_parse(const char *arg)
4327 {
4328 QemuOpts *opts;
4329
4330 if (strcmp(arg, "none") == 0) {
4331 return 0;
4332 }
4333
4334 if (!strncmp(arg, "virtio", 6)) {
4335 if (arg[6] == ',') {
4336 /* have params -> parse them */
4337 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4338 if (!opts)
4339 return -1;
4340 } else {
4341 /* create empty opts */
4342 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4343 }
4344 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4345 return 0;
4346 }
4347
4348 return -1;
4349 }
4350 #endif
4351
4352 #ifdef _WIN32
4353 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4354 {
4355 exit(STATUS_CONTROL_C_EXIT);
4356 return TRUE;
4357 }
4358 #endif
4359
4360 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4361 {
4362 int ret;
4363
4364 if(strlen(str) != 36)
4365 return -1;
4366
4367 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4368 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4369 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4370
4371 if(ret != 16)
4372 return -1;
4373
4374 #ifdef TARGET_I386
4375 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4376 #endif
4377
4378 return 0;
4379 }
4380
4381 #ifndef _WIN32
4382
4383 static void termsig_handler(int signal)
4384 {
4385 qemu_system_shutdown_request();
4386 }
4387
4388 static void sigchld_handler(int signal)
4389 {
4390 waitpid(-1, NULL, WNOHANG);
4391 }
4392
4393 static void sighandler_setup(void)
4394 {
4395 struct sigaction act;
4396
4397 memset(&act, 0, sizeof(act));
4398 act.sa_handler = termsig_handler;
4399 sigaction(SIGINT, &act, NULL);
4400 sigaction(SIGHUP, &act, NULL);
4401 sigaction(SIGTERM, &act, NULL);
4402
4403 act.sa_handler = sigchld_handler;
4404 act.sa_flags = SA_NOCLDSTOP;
4405 sigaction(SIGCHLD, &act, NULL);
4406 }
4407
4408 #endif
4409
4410 #ifdef _WIN32
4411 /* Look for support files in the same directory as the executable. */
4412 static char *find_datadir(const char *argv0)
4413 {
4414 char *p;
4415 char buf[MAX_PATH];
4416 DWORD len;
4417
4418 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4419 if (len == 0) {
4420 return NULL;
4421 }
4422
4423 buf[len] = 0;
4424 p = buf + len - 1;
4425 while (p != buf && *p != '\\')
4426 p--;
4427 *p = 0;
4428 if (access(buf, R_OK) == 0) {
4429 return qemu_strdup(buf);
4430 }
4431 return NULL;
4432 }
4433 #else /* !_WIN32 */
4434
4435 /* Find a likely location for support files using the location of the binary.
4436 For installed binaries this will be "$bindir/../share/qemu". When
4437 running from the build tree this will be "$bindir/../pc-bios". */
4438 #define SHARE_SUFFIX "/share/qemu"
4439 #define BUILD_SUFFIX "/pc-bios"
4440 static char *find_datadir(const char *argv0)
4441 {
4442 char *dir;
4443 char *p = NULL;
4444 char *res;
4445 char buf[PATH_MAX];
4446 size_t max_len;
4447
4448 #if defined(__linux__)
4449 {
4450 int len;
4451 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4452 if (len > 0) {
4453 buf[len] = 0;
4454 p = buf;
4455 }
4456 }
4457 #elif defined(__FreeBSD__)
4458 {
4459 int len;
4460 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4461 if (len > 0) {
4462 buf[len] = 0;
4463 p = buf;
4464 }
4465 }
4466 #endif
4467 /* If we don't have any way of figuring out the actual executable
4468 location then try argv[0]. */
4469 if (!p) {
4470 p = realpath(argv0, buf);
4471 if (!p) {
4472 return NULL;
4473 }
4474 }
4475 dir = dirname(p);
4476 dir = dirname(dir);
4477
4478 max_len = strlen(dir) +
4479 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4480 res = qemu_mallocz(max_len);
4481 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4482 if (access(res, R_OK)) {
4483 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4484 if (access(res, R_OK)) {
4485 qemu_free(res);
4486 res = NULL;
4487 }
4488 }
4489
4490 return res;
4491 }
4492 #undef SHARE_SUFFIX
4493 #undef BUILD_SUFFIX
4494 #endif
4495
4496 char *qemu_find_file(int type, const char *name)
4497 {
4498 int len;
4499 const char *subdir;
4500 char *buf;
4501
4502 /* If name contains path separators then try it as a straight path. */
4503 if ((strchr(name, '/') || strchr(name, '\\'))
4504 && access(name, R_OK) == 0) {
4505 return qemu_strdup(name);
4506 }
4507 switch (type) {
4508 case QEMU_FILE_TYPE_BIOS:
4509 subdir = "";
4510 break;
4511 case QEMU_FILE_TYPE_KEYMAP:
4512 subdir = "keymaps/";
4513 break;
4514 default:
4515 abort();
4516 }
4517 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4518 buf = qemu_mallocz(len);
4519 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4520 if (access(buf, R_OK)) {
4521 qemu_free(buf);
4522 return NULL;
4523 }
4524 return buf;
4525 }
4526
4527 static int device_help_func(QemuOpts *opts, void *opaque)
4528 {
4529 return qdev_device_help(opts);
4530 }
4531
4532 static int device_init_func(QemuOpts *opts, void *opaque)
4533 {
4534 DeviceState *dev;
4535
4536 dev = qdev_device_add(opts);
4537 if (!dev)
4538 return -1;
4539 return 0;
4540 }
4541
4542 static int chardev_init_func(QemuOpts *opts, void *opaque)
4543 {
4544 CharDriverState *chr;
4545
4546 chr = qemu_chr_open_opts(opts, NULL);
4547 if (!chr)
4548 return -1;
4549 return 0;
4550 }
4551
4552 static int mon_init_func(QemuOpts *opts, void *opaque)
4553 {
4554 CharDriverState *chr;
4555 const char *chardev;
4556 const char *mode;
4557 int flags;
4558
4559 mode = qemu_opt_get(opts, "mode");
4560 if (mode == NULL) {
4561 mode = "readline";
4562 }
4563 if (strcmp(mode, "readline") == 0) {
4564 flags = MONITOR_USE_READLINE;
4565 } else if (strcmp(mode, "control") == 0) {
4566 flags = MONITOR_USE_CONTROL;
4567 } else {
4568 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4569 exit(1);
4570 }
4571
4572 if (qemu_opt_get_bool(opts, "default", 0))
4573 flags |= MONITOR_IS_DEFAULT;
4574
4575 chardev = qemu_opt_get(opts, "chardev");
4576 chr = qemu_chr_find(chardev);
4577 if (chr == NULL) {
4578 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4579 exit(1);
4580 }
4581
4582 monitor_init(chr, flags);
4583 return 0;
4584 }
4585
4586 static void monitor_parse(const char *optarg, const char *mode)
4587 {
4588 static int monitor_device_index = 0;
4589 QemuOpts *opts;
4590 const char *p;
4591 char label[32];
4592 int def = 0;
4593
4594 if (strstart(optarg, "chardev:", &p)) {
4595 snprintf(label, sizeof(label), "%s", p);
4596 } else {
4597 if (monitor_device_index) {
4598 snprintf(label, sizeof(label), "monitor%d",
4599 monitor_device_index);
4600 } else {
4601 snprintf(label, sizeof(label), "monitor");
4602 def = 1;
4603 }
4604 opts = qemu_chr_parse_compat(label, optarg);
4605 if (!opts) {
4606 fprintf(stderr, "parse error: %s\n", optarg);
4607 exit(1);
4608 }
4609 }
4610
4611 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4612 if (!opts) {
4613 fprintf(stderr, "duplicate chardev: %s\n", label);
4614 exit(1);
4615 }
4616 qemu_opt_set(opts, "mode", mode);
4617 qemu_opt_set(opts, "chardev", label);
4618 if (def)
4619 qemu_opt_set(opts, "default", "on");
4620 monitor_device_index++;
4621 }
4622
4623 struct device_config {
4624 enum {
4625 DEV_USB, /* -usbdevice */
4626 DEV_BT, /* -bt */
4627 DEV_SERIAL, /* -serial */
4628 DEV_PARALLEL, /* -parallel */
4629 DEV_VIRTCON, /* -virtioconsole */
4630 DEV_DEBUGCON, /* -debugcon */
4631 } type;
4632 const char *cmdline;
4633 QTAILQ_ENTRY(device_config) next;
4634 };
4635 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4636
4637 static void add_device_config(int type, const char *cmdline)
4638 {
4639 struct device_config *conf;
4640
4641 conf = qemu_mallocz(sizeof(*conf));
4642 conf->type = type;
4643 conf->cmdline = cmdline;
4644 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4645 }
4646
4647 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4648 {
4649 struct device_config *conf;
4650 int rc;
4651
4652 QTAILQ_FOREACH(conf, &device_configs, next) {
4653 if (conf->type != type)
4654 continue;
4655 rc = func(conf->cmdline);
4656 if (0 != rc)
4657 return rc;
4658 }
4659 return 0;
4660 }
4661
4662 static int serial_parse(const char *devname)
4663 {
4664 static int index = 0;
4665 char label[32];
4666
4667 if (strcmp(devname, "none") == 0)
4668 return 0;
4669 if (index == MAX_SERIAL_PORTS) {
4670 fprintf(stderr, "qemu: too many serial ports\n");
4671 exit(1);
4672 }
4673 snprintf(label, sizeof(label), "serial%d", index);
4674 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4675 if (!serial_hds[index]) {
4676 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4677 devname, strerror(errno));
4678 return -1;
4679 }
4680 index++;
4681 return 0;
4682 }
4683
4684 static int parallel_parse(const char *devname)
4685 {
4686 static int index = 0;
4687 char label[32];
4688
4689 if (strcmp(devname, "none") == 0)
4690 return 0;
4691 if (index == MAX_PARALLEL_PORTS) {
4692 fprintf(stderr, "qemu: too many parallel ports\n");
4693 exit(1);
4694 }
4695 snprintf(label, sizeof(label), "parallel%d", index);
4696 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4697 if (!parallel_hds[index]) {
4698 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4699 devname, strerror(errno));
4700 return -1;
4701 }
4702 index++;
4703 return 0;
4704 }
4705
4706 static int virtcon_parse(const char *devname)
4707 {
4708 static int index = 0;
4709 char label[32];
4710 QemuOpts *bus_opts, *dev_opts;
4711
4712 if (strcmp(devname, "none") == 0)
4713 return 0;
4714 if (index == MAX_VIRTIO_CONSOLES) {
4715 fprintf(stderr, "qemu: too many virtio consoles\n");
4716 exit(1);
4717 }
4718
4719 bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4720 qemu_opt_set(bus_opts, "driver", "virtio-serial");
4721
4722 dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4723 qemu_opt_set(dev_opts, "driver", "virtconsole");
4724
4725 snprintf(label, sizeof(label), "virtcon%d", index);
4726 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4727 if (!virtcon_hds[index]) {
4728 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4729 devname, strerror(errno));
4730 return -1;
4731 }
4732 qemu_opt_set(dev_opts, "chardev", label);
4733
4734 index++;
4735 return 0;
4736 }
4737
4738 static int debugcon_parse(const char *devname)
4739 {
4740 QemuOpts *opts;
4741
4742 if (!qemu_chr_open("debugcon", devname, NULL)) {
4743 exit(1);
4744 }
4745 opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1);
4746 if (!opts) {
4747 fprintf(stderr, "qemu: already have a debugcon device\n");
4748 exit(1);
4749 }
4750 qemu_opt_set(opts, "driver", "isa-debugcon");
4751 qemu_opt_set(opts, "chardev", "debugcon");
4752 return 0;
4753 }
4754
4755 static const QEMUOption *lookup_opt(int argc, char **argv,
4756 const char **poptarg, int *poptind)
4757 {
4758 const QEMUOption *popt;
4759 int optind = *poptind;
4760 char *r = argv[optind];
4761 const char *optarg;
4762
4763 optind++;
4764 /* Treat --foo the same as -foo. */
4765 if (r[1] == '-')
4766 r++;
4767 popt = qemu_options;
4768 for(;;) {
4769 if (!popt->name) {
4770 fprintf(stderr, "%s: invalid option -- '%s'\n",
4771 argv[0], r);
4772 exit(1);
4773 }
4774 if (!strcmp(popt->name, r + 1))
4775 break;
4776 popt++;
4777 }
4778 if (popt->flags & HAS_ARG) {
4779 if (optind >= argc) {
4780 fprintf(stderr, "%s: option '%s' requires an argument\n",
4781 argv[0], r);
4782 exit(1);
4783 }
4784 optarg = argv[optind++];
4785 } else {
4786 optarg = NULL;
4787 }
4788
4789 *poptarg = optarg;
4790 *poptind = optind;
4791
4792 return popt;
4793 }
4794
4795 int main(int argc, char **argv, char **envp)
4796 {
4797 const char *gdbstub_dev = NULL;
4798 uint32_t boot_devices_bitmap = 0;
4799 int i;
4800 int snapshot, linux_boot, net_boot;
4801 const char *initrd_filename;
4802 const char *kernel_filename, *kernel_cmdline;
4803 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4804 DisplayState *ds;
4805 DisplayChangeListener *dcl;
4806 int cyls, heads, secs, translation;
4807 QemuOpts *hda_opts = NULL, *opts;
4808 int optind;
4809 const char *optarg;
4810 const char *loadvm = NULL;
4811 QEMUMachine *machine;
4812 const char *cpu_model;
4813 #ifndef _WIN32
4814 int fds[2];
4815 #endif
4816 int tb_size;
4817 const char *pid_file = NULL;
4818 const char *incoming = NULL;
4819 #ifndef _WIN32
4820 int fd = 0;
4821 struct passwd *pwd = NULL;
4822 const char *chroot_dir = NULL;
4823 const char *run_as = NULL;
4824 #endif
4825 CPUState *env;
4826 int show_vnc_port = 0;
4827 int defconfig = 1;
4828
4829 init_clocks();
4830
4831 qemu_errors_to_file(stderr);
4832 qemu_cache_utils_init(envp);
4833
4834 QLIST_INIT (&vm_change_state_head);
4835 #ifndef _WIN32
4836 {
4837 struct sigaction act;
4838 sigfillset(&act.sa_mask);
4839 act.sa_flags = 0;
4840 act.sa_handler = SIG_IGN;
4841 sigaction(SIGPIPE, &act, NULL);
4842 }
4843 #else
4844 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4845 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4846 QEMU to run on a single CPU */
4847 {
4848 HANDLE h;
4849 DWORD mask, smask;
4850 int i;
4851 h = GetCurrentProcess();
4852 if (GetProcessAffinityMask(h, &mask, &smask)) {
4853 for(i = 0; i < 32; i++) {
4854 if (mask & (1 << i))
4855 break;
4856 }
4857 if (i != 32) {
4858 mask = 1 << i;
4859 SetProcessAffinityMask(h, mask);
4860 }
4861 }
4862 }
4863 #endif
4864
4865 module_call_init(MODULE_INIT_MACHINE);
4866 machine = find_default_machine();
4867 cpu_model = NULL;
4868 initrd_filename = NULL;
4869 ram_size = 0;
4870 snapshot = 0;
4871 kernel_filename = NULL;
4872 kernel_cmdline = "";
4873 cyls = heads = secs = 0;
4874 translation = BIOS_ATA_TRANSLATION_AUTO;
4875
4876 for (i = 0; i < MAX_NODES; i++) {
4877 node_mem[i] = 0;
4878 node_cpumask[i] = 0;
4879 }
4880
4881 nb_numa_nodes = 0;
4882 nb_nics = 0;
4883
4884 tb_size = 0;
4885 autostart= 1;
4886
4887 /* first pass of option parsing */
4888 optind = 1;
4889 while (optind < argc) {
4890 if (argv[optind][0] != '-') {
4891 /* disk image */
4892 optind++;
4893 continue;
4894 } else {
4895 const QEMUOption *popt;
4896
4897 popt = lookup_opt(argc, argv, &optarg, &optind);
4898 switch (popt->index) {
4899 case QEMU_OPTION_nodefconfig:
4900 defconfig=0;
4901 break;
4902 }
4903 }
4904 }
4905
4906 if (defconfig) {
4907 FILE *fp;
4908 fp = fopen(CONFIG_QEMU_CONFDIR "/qemu.conf", "r");
4909 if (fp) {
4910 if (qemu_config_parse(fp) != 0) {
4911 exit(1);
4912 }
4913 fclose(fp);
4914 }
4915
4916 fp = fopen(CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", "r");
4917 if (fp) {
4918 if (qemu_config_parse(fp) != 0) {
4919 exit(1);
4920 }
4921 fclose(fp);
4922 }
4923 }
4924 #if defined(cpudef_setup)
4925 cpudef_setup(); /* parse cpu definitions in target config file */
4926 #endif
4927
4928 /* second pass of option parsing */
4929 optind = 1;
4930 for(;;) {
4931 if (optind >= argc)
4932 break;
4933 if (argv[optind][0] != '-') {
4934 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4935 } else {
4936 const QEMUOption *popt;
4937
4938 popt = lookup_opt(argc, argv, &optarg, &optind);
4939 switch(popt->index) {
4940 case QEMU_OPTION_M:
4941 machine = find_machine(optarg);
4942 if (!machine) {
4943 QEMUMachine *m;
4944 printf("Supported machines are:\n");
4945 for(m = first_machine; m != NULL; m = m->next) {
4946 if (m->alias)
4947 printf("%-10s %s (alias of %s)\n",
4948 m->alias, m->desc, m->name);
4949 printf("%-10s %s%s\n",
4950 m->name, m->desc,
4951 m->is_default ? " (default)" : "");
4952 }
4953 exit(*optarg != '?');
4954 }
4955 break;
4956 case QEMU_OPTION_cpu:
4957 /* hw initialization will check this */
4958 if (*optarg == '?') {
4959 /* XXX: implement xxx_cpu_list for targets that still miss it */
4960 #if defined(cpu_list_id)
4961 cpu_list_id(stdout, &fprintf, optarg);
4962 #elif defined(cpu_list)
4963 cpu_list(stdout, &fprintf); /* deprecated */
4964 #endif
4965 exit(0);
4966 } else {
4967 cpu_model = optarg;
4968 }
4969 break;
4970 case QEMU_OPTION_initrd:
4971 initrd_filename = optarg;
4972 break;
4973 case QEMU_OPTION_hda:
4974 if (cyls == 0)
4975 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4976 else
4977 hda_opts = drive_add(optarg, HD_ALIAS
4978 ",cyls=%d,heads=%d,secs=%d%s",
4979 0, cyls, heads, secs,
4980 translation == BIOS_ATA_TRANSLATION_LBA ?
4981 ",trans=lba" :
4982 translation == BIOS_ATA_TRANSLATION_NONE ?
4983 ",trans=none" : "");
4984 break;
4985 case QEMU_OPTION_hdb:
4986 case QEMU_OPTION_hdc:
4987 case QEMU_OPTION_hdd:
4988 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4989 break;
4990 case QEMU_OPTION_drive:
4991 drive_add(NULL, "%s", optarg);
4992 break;
4993 case QEMU_OPTION_set:
4994 if (qemu_set_option(optarg) != 0)
4995 exit(1);
4996 break;
4997 case QEMU_OPTION_global:
4998 if (qemu_global_option(optarg) != 0)
4999 exit(1);
5000 break;
5001 case QEMU_OPTION_mtdblock:
5002 drive_add(optarg, MTD_ALIAS);
5003 break;
5004 case QEMU_OPTION_sd:
5005 drive_add(optarg, SD_ALIAS);
5006 break;
5007 case QEMU_OPTION_pflash:
5008 drive_add(optarg, PFLASH_ALIAS);
5009 break;
5010 case QEMU_OPTION_snapshot:
5011 snapshot = 1;
5012 break;
5013 case QEMU_OPTION_hdachs:
5014 {
5015 const char *p;
5016 p = optarg;
5017 cyls = strtol(p, (char **)&p, 0);
5018 if (cyls < 1 || cyls > 16383)
5019 goto chs_fail;
5020 if (*p != ',')
5021 goto chs_fail;
5022 p++;
5023 heads = strtol(p, (char **)&p, 0);
5024 if (heads < 1 || heads > 16)
5025 goto chs_fail;
5026 if (*p != ',')
5027 goto chs_fail;
5028 p++;
5029 secs = strtol(p, (char **)&p, 0);
5030 if (secs < 1 || secs > 63)
5031 goto chs_fail;
5032 if (*p == ',') {
5033 p++;
5034 if (!strcmp(p, "none"))
5035 translation = BIOS_ATA_TRANSLATION_NONE;
5036 else if (!strcmp(p, "lba"))
5037 translation = BIOS_ATA_TRANSLATION_LBA;
5038 else if (!strcmp(p, "auto"))
5039 translation = BIOS_ATA_TRANSLATION_AUTO;
5040 else
5041 goto chs_fail;
5042 } else if (*p != '\0') {
5043 chs_fail:
5044 fprintf(stderr, "qemu: invalid physical CHS format\n");
5045 exit(1);
5046 }
5047 if (hda_opts != NULL) {
5048 char num[16];
5049 snprintf(num, sizeof(num), "%d", cyls);
5050 qemu_opt_set(hda_opts, "cyls", num);
5051 snprintf(num, sizeof(num), "%d", heads);
5052 qemu_opt_set(hda_opts, "heads", num);
5053 snprintf(num, sizeof(num), "%d", secs);
5054 qemu_opt_set(hda_opts, "secs", num);
5055 if (translation == BIOS_ATA_TRANSLATION_LBA)
5056 qemu_opt_set(hda_opts, "trans", "lba");
5057 if (translation == BIOS_ATA_TRANSLATION_NONE)
5058 qemu_opt_set(hda_opts, "trans", "none");
5059 }
5060 }
5061 break;
5062 case QEMU_OPTION_numa:
5063 if (nb_numa_nodes >= MAX_NODES) {
5064 fprintf(stderr, "qemu: too many NUMA nodes\n");
5065 exit(1);
5066 }
5067 numa_add(optarg);
5068 break;
5069 case QEMU_OPTION_nographic:
5070 display_type = DT_NOGRAPHIC;
5071 break;
5072 #ifdef CONFIG_CURSES
5073 case QEMU_OPTION_curses:
5074 display_type = DT_CURSES;
5075 break;
5076 #endif
5077 case QEMU_OPTION_portrait:
5078 graphic_rotate = 1;
5079 break;
5080 case QEMU_OPTION_kernel:
5081 kernel_filename = optarg;
5082 break;
5083 case QEMU_OPTION_append:
5084 kernel_cmdline = optarg;
5085 break;
5086 case QEMU_OPTION_cdrom:
5087 drive_add(optarg, CDROM_ALIAS);
5088 break;
5089 case QEMU_OPTION_boot:
5090 {
5091 static const char * const params[] = {
5092 "order", "once", "menu", NULL
5093 };
5094 char buf[sizeof(boot_devices)];
5095 char *standard_boot_devices;
5096 int legacy = 0;
5097
5098 if (!strchr(optarg, '=')) {
5099 legacy = 1;
5100 pstrcpy(buf, sizeof(buf), optarg);
5101 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5102 fprintf(stderr,
5103 "qemu: unknown boot parameter '%s' in '%s'\n",
5104 buf, optarg);
5105 exit(1);
5106 }
5107
5108 if (legacy ||
5109 get_param_value(buf, sizeof(buf), "order", optarg)) {
5110 boot_devices_bitmap = parse_bootdevices(buf);
5111 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5112 }
5113 if (!legacy) {
5114 if (get_param_value(buf, sizeof(buf),
5115 "once", optarg)) {
5116 boot_devices_bitmap |= parse_bootdevices(buf);
5117 standard_boot_devices = qemu_strdup(boot_devices);
5118 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5119 qemu_register_reset(restore_boot_devices,
5120 standard_boot_devices);
5121 }
5122 if (get_param_value(buf, sizeof(buf),
5123 "menu", optarg)) {
5124 if (!strcmp(buf, "on")) {
5125 boot_menu = 1;
5126 } else if (!strcmp(buf, "off")) {
5127 boot_menu = 0;
5128 } else {
5129 fprintf(stderr,
5130 "qemu: invalid option value '%s'\n",
5131 buf);
5132 exit(1);
5133 }
5134 }
5135 }
5136 }
5137 break;
5138 case QEMU_OPTION_fda:
5139 case QEMU_OPTION_fdb:
5140 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5141 break;
5142 #ifdef TARGET_I386
5143 case QEMU_OPTION_no_fd_bootchk:
5144 fd_bootchk = 0;
5145 break;
5146 #endif
5147 case QEMU_OPTION_netdev:
5148 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5149 exit(1);
5150 }
5151 break;
5152 case QEMU_OPTION_net:
5153 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5154 exit(1);
5155 }
5156 break;
5157 #ifdef CONFIG_SLIRP
5158 case QEMU_OPTION_tftp:
5159 legacy_tftp_prefix = optarg;
5160 break;
5161 case QEMU_OPTION_bootp:
5162 legacy_bootp_filename = optarg;
5163 break;
5164 #ifndef _WIN32
5165 case QEMU_OPTION_smb:
5166 if (net_slirp_smb(optarg) < 0)
5167 exit(1);
5168 break;
5169 #endif
5170 case QEMU_OPTION_redir:
5171 if (net_slirp_redir(optarg) < 0)
5172 exit(1);
5173 break;
5174 #endif
5175 case QEMU_OPTION_bt:
5176 add_device_config(DEV_BT, optarg);
5177 break;
5178 #ifdef HAS_AUDIO
5179 case QEMU_OPTION_audio_help:
5180 AUD_help ();
5181 exit (0);
5182 break;
5183 case QEMU_OPTION_soundhw:
5184 select_soundhw (optarg);
5185 break;
5186 #endif
5187 case QEMU_OPTION_h:
5188 help(0);
5189 break;
5190 case QEMU_OPTION_version:
5191 version();
5192 exit(0);
5193 break;
5194 case QEMU_OPTION_m: {
5195 uint64_t value;
5196 char *ptr;
5197
5198 value = strtoul(optarg, &ptr, 10);
5199 switch (*ptr) {
5200 case 0: case 'M': case 'm':
5201 value <<= 20;
5202 break;
5203 case 'G': case 'g':
5204 value <<= 30;
5205 break;
5206 default:
5207 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5208 exit(1);
5209 }
5210
5211 /* On 32-bit hosts, QEMU is limited by virtual address space */
5212 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5213 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5214 exit(1);
5215 }
5216 if (value != (uint64_t)(ram_addr_t)value) {
5217 fprintf(stderr, "qemu: ram size too large\n");
5218 exit(1);
5219 }
5220 ram_size = value;
5221 break;
5222 }
5223 case QEMU_OPTION_mempath:
5224 mem_path = optarg;
5225 break;
5226 #ifdef MAP_POPULATE
5227 case QEMU_OPTION_mem_prealloc:
5228 mem_prealloc = 1;
5229 break;
5230 #endif
5231 case QEMU_OPTION_d:
5232 {
5233 int mask;
5234 const CPULogItem *item;
5235
5236 mask = cpu_str_to_log_mask(optarg);
5237 if (!mask) {
5238 printf("Log items (comma separated):\n");
5239 for(item = cpu_log_items; item->mask != 0; item++) {
5240 printf("%-10s %s\n", item->name, item->help);
5241 }
5242 exit(1);
5243 }
5244 cpu_set_log(mask);
5245 }
5246 break;
5247 case QEMU_OPTION_s:
5248 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5249 break;
5250 case QEMU_OPTION_gdb:
5251 gdbstub_dev = optarg;
5252 break;
5253 case QEMU_OPTION_L:
5254 data_dir = optarg;
5255 break;
5256 case QEMU_OPTION_bios:
5257 bios_name = optarg;
5258 break;
5259 case QEMU_OPTION_singlestep:
5260 singlestep = 1;
5261 break;
5262 case QEMU_OPTION_S:
5263 autostart = 0;
5264 break;
5265 case QEMU_OPTION_k:
5266 keyboard_layout = optarg;
5267 break;
5268 case QEMU_OPTION_localtime:
5269 rtc_utc = 0;
5270 break;
5271 case QEMU_OPTION_vga:
5272 select_vgahw (optarg);
5273 break;
5274 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5275 case QEMU_OPTION_g:
5276 {
5277 const char *p;
5278 int w, h, depth;
5279 p = optarg;
5280 w = strtol(p, (char **)&p, 10);
5281 if (w <= 0) {
5282 graphic_error:
5283 fprintf(stderr, "qemu: invalid resolution or depth\n");
5284 exit(1);
5285 }
5286 if (*p != 'x')
5287 goto graphic_error;
5288 p++;
5289 h = strtol(p, (char **)&p, 10);
5290 if (h <= 0)
5291 goto graphic_error;
5292 if (*p == 'x') {
5293 p++;
5294 depth = strtol(p, (char **)&p, 10);
5295 if (depth != 8 && depth != 15 && depth != 16 &&
5296 depth != 24 && depth != 32)
5297 goto graphic_error;
5298 } else if (*p == '\0') {
5299 depth = graphic_depth;
5300 } else {
5301 goto graphic_error;
5302 }
5303
5304 graphic_width = w;
5305 graphic_height = h;
5306 graphic_depth = depth;
5307 }
5308 break;
5309 #endif
5310 case QEMU_OPTION_echr:
5311 {
5312 char *r;
5313 term_escape_char = strtol(optarg, &r, 0);
5314 if (r == optarg)
5315 printf("Bad argument to echr\n");
5316 break;
5317 }
5318 case QEMU_OPTION_monitor:
5319 monitor_parse(optarg, "readline");
5320 default_monitor = 0;
5321 break;
5322 case QEMU_OPTION_qmp:
5323 monitor_parse(optarg, "control");
5324 default_monitor = 0;
5325 break;
5326 case QEMU_OPTION_mon:
5327 opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5328 if (!opts) {
5329 fprintf(stderr, "parse error: %s\n", optarg);
5330 exit(1);
5331 }
5332 default_monitor = 0;
5333 break;
5334 case QEMU_OPTION_chardev:
5335 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5336 if (!opts) {
5337 fprintf(stderr, "parse error: %s\n", optarg);
5338 exit(1);
5339 }
5340 break;
5341 case QEMU_OPTION_serial:
5342 add_device_config(DEV_SERIAL, optarg);
5343 default_serial = 0;
5344 break;
5345 case QEMU_OPTION_watchdog:
5346 if (watchdog) {
5347 fprintf(stderr,
5348 "qemu: only one watchdog option may be given\n");
5349 return 1;
5350 }
5351 watchdog = optarg;
5352 break;
5353 case QEMU_OPTION_watchdog_action:
5354 if (select_watchdog_action(optarg) == -1) {
5355 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5356 exit(1);
5357 }
5358 break;
5359 case QEMU_OPTION_virtiocon:
5360 add_device_config(DEV_VIRTCON, optarg);
5361 default_virtcon = 0;
5362 break;
5363 case QEMU_OPTION_parallel:
5364 add_device_config(DEV_PARALLEL, optarg);
5365 default_parallel = 0;
5366 break;
5367 case QEMU_OPTION_debugcon:
5368 add_device_config(DEV_DEBUGCON, optarg);
5369 break;
5370 case QEMU_OPTION_loadvm:
5371 loadvm = optarg;
5372 break;
5373 case QEMU_OPTION_full_screen:
5374 full_screen = 1;
5375 break;
5376 #ifdef CONFIG_SDL
5377 case QEMU_OPTION_no_frame:
5378 no_frame = 1;
5379 break;
5380 case QEMU_OPTION_alt_grab:
5381 alt_grab = 1;
5382 break;
5383 case QEMU_OPTION_ctrl_grab:
5384 ctrl_grab = 1;
5385 break;
5386 case QEMU_OPTION_no_quit:
5387 no_quit = 1;
5388 break;
5389 case QEMU_OPTION_sdl:
5390 display_type = DT_SDL;
5391 break;
5392 #endif
5393 case QEMU_OPTION_pidfile:
5394 pid_file = optarg;
5395 break;
5396 #ifdef TARGET_I386
5397 case QEMU_OPTION_win2k_hack:
5398 win2k_install_hack = 1;
5399 break;
5400 case QEMU_OPTION_rtc_td_hack:
5401 rtc_td_hack = 1;
5402 break;
5403 case QEMU_OPTION_acpitable:
5404 if(acpi_table_add(optarg) < 0) {
5405 fprintf(stderr, "Wrong acpi table provided\n");
5406 exit(1);
5407 }
5408 break;
5409 case QEMU_OPTION_smbios:
5410 if(smbios_entry_add(optarg) < 0) {
5411 fprintf(stderr, "Wrong smbios provided\n");
5412 exit(1);
5413 }
5414 break;
5415 #endif
5416 #ifdef CONFIG_KVM
5417 case QEMU_OPTION_enable_kvm:
5418 kvm_allowed = 1;
5419 break;
5420 #endif
5421 case QEMU_OPTION_usb:
5422 usb_enabled = 1;
5423 break;
5424 case QEMU_OPTION_usbdevice:
5425 usb_enabled = 1;
5426 add_device_config(DEV_USB, optarg);
5427 break;
5428 case QEMU_OPTION_device:
5429 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5430 exit(1);
5431 }
5432 break;
5433 case QEMU_OPTION_smp:
5434 smp_parse(optarg);
5435 if (smp_cpus < 1) {
5436 fprintf(stderr, "Invalid number of CPUs\n");
5437 exit(1);
5438 }
5439 if (max_cpus < smp_cpus) {
5440 fprintf(stderr, "maxcpus must be equal to or greater than "
5441 "smp\n");
5442 exit(1);
5443 }
5444 if (max_cpus > 255) {
5445 fprintf(stderr, "Unsupported number of maxcpus\n");
5446 exit(1);
5447 }
5448 break;
5449 case QEMU_OPTION_vnc:
5450 display_type = DT_VNC;
5451 vnc_display = optarg;
5452 break;
5453 #ifdef TARGET_I386
5454 case QEMU_OPTION_no_acpi:
5455 acpi_enabled = 0;
5456 break;
5457 case QEMU_OPTION_no_hpet:
5458 no_hpet = 1;
5459 break;
5460 case QEMU_OPTION_balloon:
5461 if (balloon_parse(optarg) < 0) {
5462 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5463 exit(1);
5464 }
5465 break;
5466 #endif
5467 case QEMU_OPTION_no_reboot:
5468 no_reboot = 1;
5469 break;
5470 case QEMU_OPTION_no_shutdown:
5471 no_shutdown = 1;
5472 break;
5473 case QEMU_OPTION_show_cursor:
5474 cursor_hide = 0;
5475 break;
5476 case QEMU_OPTION_uuid:
5477 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5478 fprintf(stderr, "Fail to parse UUID string."
5479 " Wrong format.\n");
5480 exit(1);
5481 }
5482 break;
5483 #ifndef _WIN32
5484 case QEMU_OPTION_daemonize:
5485 daemonize = 1;
5486 break;
5487 #endif
5488 case QEMU_OPTION_option_rom:
5489 if (nb_option_roms >= MAX_OPTION_ROMS) {
5490 fprintf(stderr, "Too many option ROMs\n");
5491 exit(1);
5492 }
5493 option_rom[nb_option_roms] = optarg;
5494 nb_option_roms++;
5495 break;
5496 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5497 case QEMU_OPTION_semihosting:
5498 semihosting_enabled = 1;
5499 break;
5500 #endif
5501 case QEMU_OPTION_name:
5502 qemu_name = qemu_strdup(optarg);
5503 {
5504 char *p = strchr(qemu_name, ',');
5505 if (p != NULL) {
5506 *p++ = 0;
5507 if (strncmp(p, "process=", 8)) {
5508 fprintf(stderr, "Unknown subargument %s to -name", p);
5509 exit(1);
5510 }
5511 p += 8;
5512 set_proc_name(p);
5513 }
5514 }
5515 break;
5516 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5517 case QEMU_OPTION_prom_env:
5518 if (nb_prom_envs >= MAX_PROM_ENVS) {
5519 fprintf(stderr, "Too many prom variables\n");
5520 exit(1);
5521 }
5522 prom_envs[nb_prom_envs] = optarg;
5523 nb_prom_envs++;
5524 break;
5525 #endif
5526 #ifdef TARGET_ARM
5527 case QEMU_OPTION_old_param:
5528 old_param = 1;
5529 break;
5530 #endif
5531 case QEMU_OPTION_clock:
5532 configure_alarms(optarg);
5533 break;
5534 case QEMU_OPTION_startdate:
5535 configure_rtc_date_offset(optarg, 1);
5536 break;
5537 case QEMU_OPTION_rtc:
5538 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5539 if (!opts) {
5540 fprintf(stderr, "parse error: %s\n", optarg);
5541 exit(1);
5542 }
5543 configure_rtc(opts);
5544 break;
5545 case QEMU_OPTION_tb_size:
5546 tb_size = strtol(optarg, NULL, 0);
5547 if (tb_size < 0)
5548 tb_size = 0;
5549 break;
5550 case QEMU_OPTION_icount:
5551 use_icount = 1;
5552 if (strcmp(optarg, "auto") == 0) {
5553 icount_time_shift = -1;
5554 } else {
5555 icount_time_shift = strtol(optarg, NULL, 0);
5556 }
5557 break;
5558 case QEMU_OPTION_incoming:
5559 incoming = optarg;
5560 break;
5561 case QEMU_OPTION_nodefaults:
5562 default_serial = 0;
5563 default_parallel = 0;
5564 default_virtcon = 0;
5565 default_monitor = 0;
5566 default_vga = 0;
5567 default_net = 0;
5568 default_floppy = 0;
5569 default_cdrom = 0;
5570 default_sdcard = 0;
5571 break;
5572 #ifndef _WIN32
5573 case QEMU_OPTION_chroot:
5574 chroot_dir = optarg;
5575 break;
5576 case QEMU_OPTION_runas:
5577 run_as = optarg;
5578 break;
5579 #endif
5580 #ifdef CONFIG_XEN
5581 case QEMU_OPTION_xen_domid:
5582 xen_domid = atoi(optarg);
5583 break;
5584 case QEMU_OPTION_xen_create:
5585 xen_mode = XEN_CREATE;
5586 break;
5587 case QEMU_OPTION_xen_attach:
5588 xen_mode = XEN_ATTACH;
5589 break;
5590 #endif
5591 case QEMU_OPTION_readconfig:
5592 {
5593 FILE *fp;
5594 fp = fopen(optarg, "r");
5595 if (fp == NULL) {
5596 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5597 exit(1);
5598 }
5599 if (qemu_config_parse(fp) != 0) {
5600 exit(1);
5601 }
5602 fclose(fp);
5603 break;
5604 }
5605 case QEMU_OPTION_writeconfig:
5606 {
5607 FILE *fp;
5608 if (strcmp(optarg, "-") == 0) {
5609 fp = stdout;
5610 } else {
5611 fp = fopen(optarg, "w");
5612 if (fp == NULL) {
5613 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5614 exit(1);
5615 }
5616 }
5617 qemu_config_write(fp);
5618 fclose(fp);
5619 break;
5620 }
5621 }
5622 }
5623 }
5624
5625 /* If no data_dir is specified then try to find it relative to the
5626 executable path. */
5627 if (!data_dir) {
5628 data_dir = find_datadir(argv[0]);
5629 }
5630 /* If all else fails use the install patch specified when building. */
5631 if (!data_dir) {
5632 data_dir = CONFIG_QEMU_SHAREDIR;
5633 }
5634
5635 /*
5636 * Default to max_cpus = smp_cpus, in case the user doesn't
5637 * specify a max_cpus value.
5638 */
5639 if (!max_cpus)
5640 max_cpus = smp_cpus;
5641
5642 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5643 if (smp_cpus > machine->max_cpus) {
5644 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5645 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5646 machine->max_cpus);
5647 exit(1);
5648 }
5649
5650 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5651 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5652
5653 if (machine->no_serial) {
5654 default_serial = 0;
5655 }
5656 if (machine->no_parallel) {
5657 default_parallel = 0;
5658 }
5659 if (!machine->use_virtcon) {
5660 default_virtcon = 0;
5661 }
5662 if (machine->no_vga) {
5663 default_vga = 0;
5664 }
5665 if (machine->no_floppy) {
5666 default_floppy = 0;
5667 }
5668 if (machine->no_cdrom) {
5669 default_cdrom = 0;
5670 }
5671 if (machine->no_sdcard) {
5672 default_sdcard = 0;
5673 }
5674
5675 if (display_type == DT_NOGRAPHIC) {
5676 if (default_parallel)
5677 add_device_config(DEV_PARALLEL, "null");
5678 if (default_serial && default_monitor) {
5679 add_device_config(DEV_SERIAL, "mon:stdio");
5680 } else if (default_virtcon && default_monitor) {
5681 add_device_config(DEV_VIRTCON, "mon:stdio");
5682 } else {
5683 if (default_serial)
5684 add_device_config(DEV_SERIAL, "stdio");
5685 if (default_virtcon)
5686 add_device_config(DEV_VIRTCON, "stdio");
5687 if (default_monitor)
5688 monitor_parse("stdio", "readline");
5689 }
5690 } else {
5691 if (default_serial)
5692 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5693 if (default_parallel)
5694 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5695 if (default_monitor)
5696 monitor_parse("vc:80Cx24C", "readline");
5697 if (default_virtcon)
5698 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5699 }
5700 if (default_vga)
5701 vga_interface_type = VGA_CIRRUS;
5702
5703 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5704 exit(1);
5705
5706 #ifndef _WIN32
5707 if (daemonize) {
5708 pid_t pid;
5709
5710 if (pipe(fds) == -1)
5711 exit(1);
5712
5713 pid = fork();
5714 if (pid > 0) {
5715 uint8_t status;
5716 ssize_t len;
5717
5718 close(fds[1]);
5719
5720 again:
5721 len = read(fds[0], &status, 1);
5722 if (len == -1 && (errno == EINTR))
5723 goto again;
5724
5725 if (len != 1)
5726 exit(1);
5727 else if (status == 1) {
5728 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5729 exit(1);
5730 } else
5731 exit(0);
5732 } else if (pid < 0)
5733 exit(1);
5734
5735 close(fds[0]);
5736 qemu_set_cloexec(fds[1]);
5737
5738 setsid();
5739
5740 pid = fork();
5741 if (pid > 0)
5742 exit(0);
5743 else if (pid < 0)
5744 exit(1);
5745
5746 umask(027);
5747
5748 signal(SIGTSTP, SIG_IGN);
5749 signal(SIGTTOU, SIG_IGN);
5750 signal(SIGTTIN, SIG_IGN);
5751 }
5752 #endif
5753
5754 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5755 #ifndef _WIN32
5756 if (daemonize) {
5757 uint8_t status = 1;
5758 if (write(fds[1], &status, 1) != 1) {
5759 perror("daemonize. Writing to pipe\n");
5760 }
5761 } else
5762 #endif
5763 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5764 exit(1);
5765 }
5766
5767 if (kvm_enabled()) {
5768 int ret;
5769
5770 ret = kvm_init(smp_cpus);
5771 if (ret < 0) {
5772 fprintf(stderr, "failed to initialize KVM\n");
5773 exit(1);
5774 }
5775 }
5776
5777 if (qemu_init_main_loop()) {
5778 fprintf(stderr, "qemu_init_main_loop failed\n");
5779 exit(1);
5780 }
5781 linux_boot = (kernel_filename != NULL);
5782
5783 if (!linux_boot && *kernel_cmdline != '\0') {
5784 fprintf(stderr, "-append only allowed with -kernel option\n");
5785 exit(1);
5786 }
5787
5788 if (!linux_boot && initrd_filename != NULL) {
5789 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5790 exit(1);
5791 }
5792
5793 #ifndef _WIN32
5794 /* Win32 doesn't support line-buffering and requires size >= 2 */
5795 setvbuf(stdout, NULL, _IOLBF, 0);
5796 #endif
5797
5798 if (init_timer_alarm() < 0) {
5799 fprintf(stderr, "could not initialize alarm timer\n");
5800 exit(1);
5801 }
5802 if (use_icount && icount_time_shift < 0) {
5803 use_icount = 2;
5804 /* 125MIPS seems a reasonable initial guess at the guest speed.
5805 It will be corrected fairly quickly anyway. */
5806 icount_time_shift = 3;
5807 init_icount_adjust();
5808 }
5809
5810 #ifdef _WIN32
5811 socket_init();
5812 #endif
5813
5814 if (net_init_clients() < 0) {
5815 exit(1);
5816 }
5817
5818 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5819 net_set_boot_mask(net_boot);
5820
5821 /* init the bluetooth world */
5822 if (foreach_device_config(DEV_BT, bt_parse))
5823 exit(1);
5824
5825 /* init the memory */
5826 if (ram_size == 0)
5827 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5828
5829 /* init the dynamic translator */
5830 cpu_exec_init_all(tb_size * 1024 * 1024);
5831
5832 bdrv_init_with_whitelist();
5833
5834 blk_mig_init();
5835
5836 if (default_cdrom) {
5837 /* we always create the cdrom drive, even if no disk is there */
5838 drive_add(NULL, CDROM_ALIAS);
5839 }
5840
5841 if (default_floppy) {
5842 /* we always create at least one floppy */
5843 drive_add(NULL, FD_ALIAS, 0);
5844 }
5845
5846 if (default_sdcard) {
5847 /* we always create one sd slot, even if no card is in it */
5848 drive_add(NULL, SD_ALIAS);
5849 }
5850
5851 /* open the virtual block devices */
5852 if (snapshot)
5853 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5854 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5855 exit(1);
5856
5857 vmstate_register(0, &vmstate_timers ,&timers_state);
5858 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5859 ram_load, NULL);
5860
5861 if (nb_numa_nodes > 0) {
5862 int i;
5863
5864 if (nb_numa_nodes > smp_cpus) {
5865 nb_numa_nodes = smp_cpus;
5866 }
5867
5868 /* If no memory size if given for any node, assume the default case
5869 * and distribute the available memory equally across all nodes
5870 */
5871 for (i = 0; i < nb_numa_nodes; i++) {
5872 if (node_mem[i] != 0)
5873 break;
5874 }
5875 if (i == nb_numa_nodes) {
5876 uint64_t usedmem = 0;
5877
5878 /* On Linux, the each node's border has to be 8MB aligned,
5879 * the final node gets the rest.
5880 */
5881 for (i = 0; i < nb_numa_nodes - 1; i++) {
5882 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5883 usedmem += node_mem[i];
5884 }
5885 node_mem[i] = ram_size - usedmem;
5886 }
5887
5888 for (i = 0; i < nb_numa_nodes; i++) {
5889 if (node_cpumask[i] != 0)
5890 break;
5891 }
5892 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5893 * must cope with this anyway, because there are BIOSes out there in
5894 * real machines which also use this scheme.
5895 */
5896 if (i == nb_numa_nodes) {
5897 for (i = 0; i < smp_cpus; i++) {
5898 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5899 }
5900 }
5901 }
5902
5903 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5904 exit(1);
5905 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5906 exit(1);
5907 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5908 exit(1);
5909 if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
5910 exit(1);
5911
5912 module_call_init(MODULE_INIT_DEVICE);
5913
5914 if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0)
5915 exit(0);
5916
5917 if (watchdog) {
5918 i = select_watchdog(watchdog);
5919 if (i > 0)
5920 exit (i == 1 ? 1 : 0);
5921 }
5922
5923 if (machine->compat_props) {
5924 qdev_prop_register_global_list(machine->compat_props);
5925 }
5926 qemu_add_globals();
5927
5928 machine->init(ram_size, boot_devices,
5929 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5930
5931
5932 #ifndef _WIN32
5933 /* must be after terminal init, SDL library changes signal handlers */
5934 sighandler_setup();
5935 #endif
5936
5937 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5938 for (i = 0; i < nb_numa_nodes; i++) {
5939 if (node_cpumask[i] & (1 << env->cpu_index)) {
5940 env->numa_node = i;
5941 }
5942 }
5943 }
5944
5945 current_machine = machine;
5946
5947 /* init USB devices */
5948 if (usb_enabled) {
5949 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5950 exit(1);
5951 }
5952
5953 /* init generic devices */
5954 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5955 exit(1);
5956
5957 net_check_clients();
5958
5959 /* just use the first displaystate for the moment */
5960 ds = get_displaystate();
5961
5962 if (display_type == DT_DEFAULT) {
5963 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5964 display_type = DT_SDL;
5965 #else
5966 display_type = DT_VNC;
5967 vnc_display = "localhost:0,to=99";
5968 show_vnc_port = 1;
5969 #endif
5970 }
5971
5972
5973 switch (display_type) {
5974 case DT_NOGRAPHIC:
5975 break;
5976 #if defined(CONFIG_CURSES)
5977 case DT_CURSES:
5978 curses_display_init(ds, full_screen);
5979 break;
5980 #endif
5981 #if defined(CONFIG_SDL)
5982 case DT_SDL:
5983 sdl_display_init(ds, full_screen, no_frame);
5984 break;
5985 #elif defined(CONFIG_COCOA)
5986 case DT_SDL:
5987 cocoa_display_init(ds, full_screen);
5988 break;
5989 #endif
5990 case DT_VNC:
5991 vnc_display_init(ds);
5992 if (vnc_display_open(ds, vnc_display) < 0)
5993 exit(1);
5994
5995 if (show_vnc_port) {
5996 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5997 }
5998 break;
5999 default:
6000 break;
6001 }
6002 dpy_resize(ds);
6003
6004 dcl = ds->listeners;
6005 while (dcl != NULL) {
6006 if (dcl->dpy_refresh != NULL) {
6007 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6008 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6009 }
6010 dcl = dcl->next;
6011 }
6012
6013 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6014 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6015 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6016 }
6017
6018 text_consoles_set_display(ds);
6019
6020 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
6021 exit(1);
6022
6023 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6024 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6025 gdbstub_dev);
6026 exit(1);
6027 }
6028
6029 qdev_machine_creation_done();
6030
6031 if (rom_load_all() != 0) {
6032 fprintf(stderr, "rom loading failed\n");
6033 exit(1);
6034 }
6035
6036 qemu_system_reset();
6037 if (loadvm) {
6038 if (load_vmstate(cur_mon, loadvm) < 0) {
6039 autostart = 0;
6040 }
6041 }
6042
6043 if (incoming) {
6044 qemu_start_incoming_migration(incoming);
6045 } else if (autostart) {
6046 vm_start();
6047 }
6048
6049 #ifndef _WIN32
6050 if (daemonize) {
6051 uint8_t status = 0;
6052 ssize_t len;
6053
6054 again1:
6055 len = write(fds[1], &status, 1);
6056 if (len == -1 && (errno == EINTR))
6057 goto again1;
6058
6059 if (len != 1)
6060 exit(1);
6061
6062 if (chdir("/")) {
6063 perror("not able to chdir to /");
6064 exit(1);
6065 }
6066 TFR(fd = qemu_open("/dev/null", O_RDWR));
6067 if (fd == -1)
6068 exit(1);
6069 }
6070
6071 if (run_as) {
6072 pwd = getpwnam(run_as);
6073 if (!pwd) {
6074 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6075 exit(1);
6076 }
6077 }
6078
6079 if (chroot_dir) {
6080 if (chroot(chroot_dir) < 0) {
6081 fprintf(stderr, "chroot failed\n");
6082 exit(1);
6083 }
6084 if (chdir("/")) {
6085 perror("not able to chdir to /");
6086 exit(1);
6087 }
6088 }
6089
6090 if (run_as) {
6091 if (setgid(pwd->pw_gid) < 0) {
6092 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6093 exit(1);
6094 }
6095 if (setuid(pwd->pw_uid) < 0) {
6096 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6097 exit(1);
6098 }
6099 if (setuid(0) != -1) {
6100 fprintf(stderr, "Dropping privileges failed\n");
6101 exit(1);
6102 }
6103 }
6104
6105 if (daemonize) {
6106 dup2(fd, 0);
6107 dup2(fd, 1);
6108 dup2(fd, 2);
6109
6110 close(fd);
6111 }
6112 #endif
6113
6114 main_loop();
6115 quit_timers();
6116 net_cleanup();
6117
6118 return 0;
6119 }