]> git.proxmox.com Git - qemu.git/blob - vl.c
allow changing the speed of a running migration
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
159
160 #include "disas.h"
161
162 #include "exec-all.h"
163
164 #include "qemu_socket.h"
165
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
168 #endif
169
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
174
175
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
181
182 #define DEFAULT_RAM_SIZE 128
183
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
186
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
189
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
192
193 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 DisplayType display_type = DT_DEFAULT;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 int xenfb_enabled = 0;
218 #ifdef TARGET_SPARC
219 int graphic_width = 1024;
220 int graphic_height = 768;
221 int graphic_depth = 8;
222 #else
223 int graphic_width = 800;
224 int graphic_height = 600;
225 int graphic_depth = 15;
226 #endif
227 static int full_screen = 0;
228 #ifdef CONFIG_SDL
229 static int no_frame = 0;
230 #endif
231 int no_quit = 0;
232 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
233 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
234 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
235 #ifdef TARGET_I386
236 int win2k_install_hack = 0;
237 int rtc_td_hack = 0;
238 #endif
239 int usb_enabled = 0;
240 int singlestep = 0;
241 int smp_cpus = 1;
242 const char *vnc_display;
243 int acpi_enabled = 1;
244 int no_hpet = 0;
245 int fd_bootchk = 1;
246 int no_reboot = 0;
247 int no_shutdown = 0;
248 int cursor_hide = 1;
249 int graphic_rotate = 0;
250 #ifndef _WIN32
251 int daemonize = 0;
252 #endif
253 WatchdogTimerModel *watchdog = NULL;
254 int watchdog_action = WDT_RESET;
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
269
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
273
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
286
287 uint8_t qemu_uuid[16];
288
289 /***********************************************************/
290 /* x86 ISA bus support */
291
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
294
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297
298 static uint32_t ioport_read(int index, uint32_t address)
299 {
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
304 };
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
309 }
310
311 static void ioport_write(int index, uint32_t address, uint32_t data)
312 {
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
317 };
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
322 }
323
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325 {
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
330 }
331
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333 {
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
337 }
338
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341 {
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
347 }
348
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350 {
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
354 }
355
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357 {
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
362 }
363
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365 {
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
369 }
370
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
374 {
375 int i, bsize;
376
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
386 }
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
392 }
393 return 0;
394 }
395
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
399 {
400 int i, bsize;
401
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
411 }
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
417 }
418 return 0;
419 }
420
421 void isa_unassign_ioport(int start, int length)
422 {
423 int i;
424
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
429
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
433
434 ioport_opaque[i] = NULL;
435 }
436 }
437
438 /***********************************************************/
439
440 void cpu_outb(CPUState *env, int addr, int val)
441 {
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
448 }
449
450 void cpu_outw(CPUState *env, int addr, int val)
451 {
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
458 }
459
460 void cpu_outl(CPUState *env, int addr, int val)
461 {
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
468 }
469
470 int cpu_inb(CPUState *env, int addr)
471 {
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
480 }
481
482 int cpu_inw(CPUState *env, int addr)
483 {
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
492 }
493
494 int cpu_inl(CPUState *env, int addr)
495 {
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
504 }
505
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
508 {
509 va_list ap;
510 CPUState *env;
511
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
523 }
524 va_end(ap);
525 abort();
526 }
527
528 /***************/
529 /* ballooning */
530
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
533
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535 {
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
538 }
539
540 void qemu_balloon(ram_addr_t target)
541 {
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
544 }
545
546 ram_addr_t qemu_balloon_status(void)
547 {
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
551 }
552
553 /***********************************************************/
554 /* keyboard/mouse */
555
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562 {
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
565 }
566
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
570 {
571 QEMUPutMouseEntry *s, *cursor;
572
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
580
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
584 }
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
589
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
592
593 return s;
594 }
595
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597 {
598 QEMUPutMouseEntry *prev = NULL, *cursor;
599
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
602
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
607 }
608
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
618 }
619
620 prev->next = entry->next;
621
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
624
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
627 }
628
629 void kbd_put_keycode(int keycode)
630 {
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633 }
634 }
635
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637 {
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
641
642 if (!qemu_put_mouse_event_current) {
643 return;
644 }
645
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
662 }
663 }
664
665 int kbd_mouse_is_absolute(void)
666 {
667 if (!qemu_put_mouse_event_current)
668 return 0;
669
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671 }
672
673 void do_info_mice(Monitor *mon)
674 {
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
677
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
681 }
682
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
691 }
692 }
693
694 void do_mouse_set(Monitor *mon, int index)
695 {
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
698
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
702 }
703
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
708 }
709
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
714 }
715
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718 {
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
730
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
738 }
739
740 /***********************************************************/
741 /* real time host monotonic timer */
742
743 #define QEMU_TIMER_BASE 1000000000LL
744
745 #ifdef WIN32
746
747 static int64_t clock_freq;
748
749 static void init_get_clock(void)
750 {
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
757 }
758 clock_freq = freq.QuadPart;
759 }
760
761 static int64_t get_clock(void)
762 {
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766 }
767
768 #else
769
770 static int use_rt_clock;
771
772 static void init_get_clock(void)
773 {
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
777 {
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
781 }
782 }
783 #endif
784 }
785
786 static int64_t get_clock(void)
787 {
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
796 {
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802 }
803 }
804 #endif
805
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
808 {
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
816 }
817 return qemu_icount_bias + (icount << icount_time_shift);
818 }
819
820 /***********************************************************/
821 /* guest cycle counter */
822
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
827
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
830 {
831 if (use_icount) {
832 return cpu_get_icount();
833 }
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
843 }
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
846 }
847 }
848
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
851 {
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
858 }
859 }
860
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
863 {
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
868 }
869 }
870
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
874 {
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
879 }
880 }
881
882 /***********************************************************/
883 /* timers */
884
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
887
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
891 };
892
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
899 };
900
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
904
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
909 };
910
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
913
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915 {
916 return t && (t->flags & ALARM_FLAG_DYNTICKS);
917 }
918
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920 {
921 if (!alarm_has_dynticks(t))
922 return;
923
924 t->rearm(t);
925 }
926
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
929
930 static struct qemu_alarm_timer *alarm_timer;
931
932 #ifdef _WIN32
933
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, -1};
938
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
942
943 #else
944
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
947
948 #ifdef __linux__
949
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
956
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
959
960 #endif /* __linux__ */
961
962 #endif /* _WIN32 */
963
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969
970 static void icount_adjust(void)
971 {
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
979
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
989 }
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
995 }
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998 }
999
1000 static void icount_adjust_rt(void * opaque)
1001 {
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1005 }
1006
1007 static void icount_adjust_vm(void * opaque)
1008 {
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1012 }
1013
1014 static void init_icount_adjust(void)
1015 {
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027 }
1028
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1047 };
1048
1049 static void show_available_alarms(void)
1050 {
1051 int i;
1052
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1056 }
1057
1058 static void configure_alarms(char const *opt)
1059 {
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1066
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1070 }
1071
1072 arg = strdup(opt);
1073
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1080 }
1081
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1085 }
1086
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1090
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1095
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1099 }
1100
1101 free(arg);
1102
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1110 }
1111 }
1112
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1115
1116 static QEMUTimer *active_timers[2];
1117
1118 static QEMUClock *qemu_new_clock(int type)
1119 {
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1124 }
1125
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127 {
1128 QEMUTimer *ts;
1129
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1135 }
1136
1137 void qemu_free_timer(QEMUTimer *ts)
1138 {
1139 qemu_free(ts);
1140 }
1141
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1144 {
1145 QEMUTimer **pt, *t;
1146
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1157 }
1158 pt = &t->next;
1159 }
1160 }
1161
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165 {
1166 QEMUTimer **pt, *t;
1167
1168 qemu_del_timer(ts);
1169
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1181 }
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1185
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1190 }
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1194 }
1195 }
1196
1197 int qemu_timer_pending(QEMUTimer *ts)
1198 {
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1203 }
1204 return 0;
1205 }
1206
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208 {
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1212 }
1213
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215 {
1216 QEMUTimer *ts;
1217
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1225
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1228 }
1229 }
1230
1231 int64_t qemu_get_clock(QEMUClock *clock)
1232 {
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1242 }
1243 }
1244 }
1245
1246 static void init_timers(void)
1247 {
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252 }
1253
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256 {
1257 uint64_t expire_time;
1258
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1263 }
1264 qemu_put_be64(f, expire_time);
1265 }
1266
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268 {
1269 uint64_t expire_time;
1270
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1276 }
1277 }
1278
1279 static void timer_save(QEMUFile *f, void *opaque)
1280 {
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1283 }
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1287 }
1288
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290 {
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1295 }
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1300 }
1301 return 0;
1302 }
1303
1304 static void qemu_event_increment(void);
1305
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1313 {
1314 #if 0
1315 #define DISP_FREQ 1000
1316 {
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1338 }
1339 }
1340 last_clock = ti;
1341 }
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 qemu_event_increment();
1350 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1351
1352 #ifndef CONFIG_IOTHREAD
1353 if (next_cpu) {
1354 /* stop the currently executing cpu because a timer occured */
1355 cpu_exit(next_cpu);
1356 #ifdef CONFIG_KQEMU
1357 if (next_cpu->kqemu_enabled) {
1358 kqemu_cpu_interrupt(next_cpu);
1359 }
1360 #endif
1361 }
1362 #endif
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1365 }
1366 }
1367
1368 static int64_t qemu_next_deadline(void)
1369 {
1370 int64_t delta;
1371
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1378 }
1379
1380 if (delta < 0)
1381 delta = 0;
1382
1383 return delta;
1384 }
1385
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1388 {
1389 int64_t delta;
1390 int64_t rtdelta;
1391
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1396
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1402 }
1403
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1406
1407 return delta;
1408 }
1409 #endif
1410
1411 #ifndef _WIN32
1412
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1415 {
1416 int flags;
1417
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1421
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1424
1425 return 0;
1426 }
1427
1428 #if defined(__linux__)
1429
1430 #define RTC_FREQ 1024
1431
1432 static void enable_sigio_timer(int fd)
1433 {
1434 struct sigaction act;
1435
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1440
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1444 }
1445
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1447 {
1448 struct hpet_info info;
1449 int r, fd;
1450
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1454
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1462 }
1463
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1468
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1473
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1478
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1481
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1486 }
1487
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489 {
1490 int fd = (long)t->priv;
1491
1492 close(fd);
1493 }
1494
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1496 {
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1499
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1510 }
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1515 }
1516
1517 enable_sigio_timer(rtc_fd);
1518
1519 t->priv = (void *)(long)rtc_fd;
1520
1521 return 0;
1522 }
1523
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525 {
1526 int rtc_fd = (long)t->priv;
1527
1528 close(rtc_fd);
1529 }
1530
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532 {
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1536
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1540
1541 sigaction(SIGALRM, &act, NULL);
1542
1543 /*
1544 * Initialize ev struct to 0 to avoid valgrind complaining
1545 * about uninitialized data in timer_create call
1546 */
1547 memset(&ev, 0, sizeof(ev));
1548 ev.sigev_value.sival_int = 0;
1549 ev.sigev_notify = SIGEV_SIGNAL;
1550 ev.sigev_signo = SIGALRM;
1551
1552 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1553 perror("timer_create");
1554
1555 /* disable dynticks */
1556 fprintf(stderr, "Dynamic Ticks disabled\n");
1557
1558 return -1;
1559 }
1560
1561 t->priv = (void *)(long)host_timer;
1562
1563 return 0;
1564 }
1565
1566 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1567 {
1568 timer_t host_timer = (timer_t)(long)t->priv;
1569
1570 timer_delete(host_timer);
1571 }
1572
1573 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1574 {
1575 timer_t host_timer = (timer_t)(long)t->priv;
1576 struct itimerspec timeout;
1577 int64_t nearest_delta_us = INT64_MAX;
1578 int64_t current_us;
1579
1580 if (!active_timers[QEMU_TIMER_REALTIME] &&
1581 !active_timers[QEMU_TIMER_VIRTUAL])
1582 return;
1583
1584 nearest_delta_us = qemu_next_deadline_dyntick();
1585
1586 /* check whether a timer is already running */
1587 if (timer_gettime(host_timer, &timeout)) {
1588 perror("gettime");
1589 fprintf(stderr, "Internal timer error: aborting\n");
1590 exit(1);
1591 }
1592 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1593 if (current_us && current_us <= nearest_delta_us)
1594 return;
1595
1596 timeout.it_interval.tv_sec = 0;
1597 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1598 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1599 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1600 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1601 perror("settime");
1602 fprintf(stderr, "Internal timer error: aborting\n");
1603 exit(1);
1604 }
1605 }
1606
1607 #endif /* defined(__linux__) */
1608
1609 static int unix_start_timer(struct qemu_alarm_timer *t)
1610 {
1611 struct sigaction act;
1612 struct itimerval itv;
1613 int err;
1614
1615 /* timer signal */
1616 sigfillset(&act.sa_mask);
1617 act.sa_flags = 0;
1618 act.sa_handler = host_alarm_handler;
1619
1620 sigaction(SIGALRM, &act, NULL);
1621
1622 itv.it_interval.tv_sec = 0;
1623 /* for i386 kernel 2.6 to get 1 ms */
1624 itv.it_interval.tv_usec = 999;
1625 itv.it_value.tv_sec = 0;
1626 itv.it_value.tv_usec = 10 * 1000;
1627
1628 err = setitimer(ITIMER_REAL, &itv, NULL);
1629 if (err)
1630 return -1;
1631
1632 return 0;
1633 }
1634
1635 static void unix_stop_timer(struct qemu_alarm_timer *t)
1636 {
1637 struct itimerval itv;
1638
1639 memset(&itv, 0, sizeof(itv));
1640 setitimer(ITIMER_REAL, &itv, NULL);
1641 }
1642
1643 #endif /* !defined(_WIN32) */
1644
1645
1646 #ifdef _WIN32
1647
1648 static int win32_start_timer(struct qemu_alarm_timer *t)
1649 {
1650 TIMECAPS tc;
1651 struct qemu_alarm_win32 *data = t->priv;
1652 UINT flags;
1653
1654 memset(&tc, 0, sizeof(tc));
1655 timeGetDevCaps(&tc, sizeof(tc));
1656
1657 if (data->period < tc.wPeriodMin)
1658 data->period = tc.wPeriodMin;
1659
1660 timeBeginPeriod(data->period);
1661
1662 flags = TIME_CALLBACK_FUNCTION;
1663 if (alarm_has_dynticks(t))
1664 flags |= TIME_ONESHOT;
1665 else
1666 flags |= TIME_PERIODIC;
1667
1668 data->timerId = timeSetEvent(1, // interval (ms)
1669 data->period, // resolution
1670 host_alarm_handler, // function
1671 (DWORD)t, // parameter
1672 flags);
1673
1674 if (!data->timerId) {
1675 perror("Failed to initialize win32 alarm timer");
1676 timeEndPeriod(data->period);
1677 return -1;
1678 }
1679
1680 return 0;
1681 }
1682
1683 static void win32_stop_timer(struct qemu_alarm_timer *t)
1684 {
1685 struct qemu_alarm_win32 *data = t->priv;
1686
1687 timeKillEvent(data->timerId);
1688 timeEndPeriod(data->period);
1689 }
1690
1691 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1692 {
1693 struct qemu_alarm_win32 *data = t->priv;
1694 uint64_t nearest_delta_us;
1695
1696 if (!active_timers[QEMU_TIMER_REALTIME] &&
1697 !active_timers[QEMU_TIMER_VIRTUAL])
1698 return;
1699
1700 nearest_delta_us = qemu_next_deadline_dyntick();
1701 nearest_delta_us /= 1000;
1702
1703 timeKillEvent(data->timerId);
1704
1705 data->timerId = timeSetEvent(1,
1706 data->period,
1707 host_alarm_handler,
1708 (DWORD)t,
1709 TIME_ONESHOT | TIME_PERIODIC);
1710
1711 if (!data->timerId) {
1712 perror("Failed to re-arm win32 alarm timer");
1713
1714 timeEndPeriod(data->period);
1715 exit(1);
1716 }
1717 }
1718
1719 #endif /* _WIN32 */
1720
1721 static int init_timer_alarm(void)
1722 {
1723 struct qemu_alarm_timer *t = NULL;
1724 int i, err = -1;
1725
1726 for (i = 0; alarm_timers[i].name; i++) {
1727 t = &alarm_timers[i];
1728
1729 err = t->start(t);
1730 if (!err)
1731 break;
1732 }
1733
1734 if (err) {
1735 err = -ENOENT;
1736 goto fail;
1737 }
1738
1739 alarm_timer = t;
1740
1741 return 0;
1742
1743 fail:
1744 return err;
1745 }
1746
1747 static void quit_timers(void)
1748 {
1749 alarm_timer->stop(alarm_timer);
1750 alarm_timer = NULL;
1751 }
1752
1753 /***********************************************************/
1754 /* host time/date access */
1755 void qemu_get_timedate(struct tm *tm, int offset)
1756 {
1757 time_t ti;
1758 struct tm *ret;
1759
1760 time(&ti);
1761 ti += offset;
1762 if (rtc_date_offset == -1) {
1763 if (rtc_utc)
1764 ret = gmtime(&ti);
1765 else
1766 ret = localtime(&ti);
1767 } else {
1768 ti -= rtc_date_offset;
1769 ret = gmtime(&ti);
1770 }
1771
1772 memcpy(tm, ret, sizeof(struct tm));
1773 }
1774
1775 int qemu_timedate_diff(struct tm *tm)
1776 {
1777 time_t seconds;
1778
1779 if (rtc_date_offset == -1)
1780 if (rtc_utc)
1781 seconds = mktimegm(tm);
1782 else
1783 seconds = mktime(tm);
1784 else
1785 seconds = mktimegm(tm) + rtc_date_offset;
1786
1787 return seconds - time(NULL);
1788 }
1789
1790 #ifdef _WIN32
1791 static void socket_cleanup(void)
1792 {
1793 WSACleanup();
1794 }
1795
1796 static int socket_init(void)
1797 {
1798 WSADATA Data;
1799 int ret, err;
1800
1801 ret = WSAStartup(MAKEWORD(2,2), &Data);
1802 if (ret != 0) {
1803 err = WSAGetLastError();
1804 fprintf(stderr, "WSAStartup: %d\n", err);
1805 return -1;
1806 }
1807 atexit(socket_cleanup);
1808 return 0;
1809 }
1810 #endif
1811
1812 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1813 {
1814 char *q;
1815
1816 q = buf;
1817 while (*p != '\0' && *p != delim) {
1818 if (q && (q - buf) < buf_size - 1)
1819 *q++ = *p;
1820 p++;
1821 }
1822 if (q)
1823 *q = '\0';
1824
1825 return p;
1826 }
1827
1828 const char *get_opt_value(char *buf, int buf_size, const char *p)
1829 {
1830 char *q;
1831
1832 q = buf;
1833 while (*p != '\0') {
1834 if (*p == ',') {
1835 if (*(p + 1) != ',')
1836 break;
1837 p++;
1838 }
1839 if (q && (q - buf) < buf_size - 1)
1840 *q++ = *p;
1841 p++;
1842 }
1843 if (q)
1844 *q = '\0';
1845
1846 return p;
1847 }
1848
1849 int get_param_value(char *buf, int buf_size,
1850 const char *tag, const char *str)
1851 {
1852 const char *p;
1853 char option[128];
1854
1855 p = str;
1856 for(;;) {
1857 p = get_opt_name(option, sizeof(option), p, '=');
1858 if (*p != '=')
1859 break;
1860 p++;
1861 if (!strcmp(tag, option)) {
1862 (void)get_opt_value(buf, buf_size, p);
1863 return strlen(buf);
1864 } else {
1865 p = get_opt_value(NULL, 0, p);
1866 }
1867 if (*p != ',')
1868 break;
1869 p++;
1870 }
1871 return 0;
1872 }
1873
1874 int check_params(const char * const *params, const char *str)
1875 {
1876 int name_buf_size = 1;
1877 const char *p;
1878 char *name_buf;
1879 int i, len;
1880 int ret = 0;
1881
1882 for (i = 0; params[i] != NULL; i++) {
1883 len = strlen(params[i]) + 1;
1884 if (len > name_buf_size) {
1885 name_buf_size = len;
1886 }
1887 }
1888 name_buf = qemu_malloc(name_buf_size);
1889
1890 p = str;
1891 while (*p != '\0') {
1892 p = get_opt_name(name_buf, name_buf_size, p, '=');
1893 if (*p != '=') {
1894 ret = -1;
1895 break;
1896 }
1897 p++;
1898 for(i = 0; params[i] != NULL; i++)
1899 if (!strcmp(params[i], name_buf))
1900 break;
1901 if (params[i] == NULL) {
1902 ret = -1;
1903 break;
1904 }
1905 p = get_opt_value(NULL, 0, p);
1906 if (*p != ',')
1907 break;
1908 p++;
1909 }
1910
1911 qemu_free(name_buf);
1912 return ret;
1913 }
1914
1915 /***********************************************************/
1916 /* Bluetooth support */
1917 static int nb_hcis;
1918 static int cur_hci;
1919 static struct HCIInfo *hci_table[MAX_NICS];
1920
1921 static struct bt_vlan_s {
1922 struct bt_scatternet_s net;
1923 int id;
1924 struct bt_vlan_s *next;
1925 } *first_bt_vlan;
1926
1927 /* find or alloc a new bluetooth "VLAN" */
1928 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1929 {
1930 struct bt_vlan_s **pvlan, *vlan;
1931 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1932 if (vlan->id == id)
1933 return &vlan->net;
1934 }
1935 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1936 vlan->id = id;
1937 pvlan = &first_bt_vlan;
1938 while (*pvlan != NULL)
1939 pvlan = &(*pvlan)->next;
1940 *pvlan = vlan;
1941 return &vlan->net;
1942 }
1943
1944 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1945 {
1946 }
1947
1948 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1949 {
1950 return -ENOTSUP;
1951 }
1952
1953 static struct HCIInfo null_hci = {
1954 .cmd_send = null_hci_send,
1955 .sco_send = null_hci_send,
1956 .acl_send = null_hci_send,
1957 .bdaddr_set = null_hci_addr_set,
1958 };
1959
1960 struct HCIInfo *qemu_next_hci(void)
1961 {
1962 if (cur_hci == nb_hcis)
1963 return &null_hci;
1964
1965 return hci_table[cur_hci++];
1966 }
1967
1968 static struct HCIInfo *hci_init(const char *str)
1969 {
1970 char *endp;
1971 struct bt_scatternet_s *vlan = 0;
1972
1973 if (!strcmp(str, "null"))
1974 /* null */
1975 return &null_hci;
1976 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1977 /* host[:hciN] */
1978 return bt_host_hci(str[4] ? str + 5 : "hci0");
1979 else if (!strncmp(str, "hci", 3)) {
1980 /* hci[,vlan=n] */
1981 if (str[3]) {
1982 if (!strncmp(str + 3, ",vlan=", 6)) {
1983 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1984 if (*endp)
1985 vlan = 0;
1986 }
1987 } else
1988 vlan = qemu_find_bt_vlan(0);
1989 if (vlan)
1990 return bt_new_hci(vlan);
1991 }
1992
1993 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1994
1995 return 0;
1996 }
1997
1998 static int bt_hci_parse(const char *str)
1999 {
2000 struct HCIInfo *hci;
2001 bdaddr_t bdaddr;
2002
2003 if (nb_hcis >= MAX_NICS) {
2004 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2005 return -1;
2006 }
2007
2008 hci = hci_init(str);
2009 if (!hci)
2010 return -1;
2011
2012 bdaddr.b[0] = 0x52;
2013 bdaddr.b[1] = 0x54;
2014 bdaddr.b[2] = 0x00;
2015 bdaddr.b[3] = 0x12;
2016 bdaddr.b[4] = 0x34;
2017 bdaddr.b[5] = 0x56 + nb_hcis;
2018 hci->bdaddr_set(hci, bdaddr.b);
2019
2020 hci_table[nb_hcis++] = hci;
2021
2022 return 0;
2023 }
2024
2025 static void bt_vhci_add(int vlan_id)
2026 {
2027 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2028
2029 if (!vlan->slave)
2030 fprintf(stderr, "qemu: warning: adding a VHCI to "
2031 "an empty scatternet %i\n", vlan_id);
2032
2033 bt_vhci_init(bt_new_hci(vlan));
2034 }
2035
2036 static struct bt_device_s *bt_device_add(const char *opt)
2037 {
2038 struct bt_scatternet_s *vlan;
2039 int vlan_id = 0;
2040 char *endp = strstr(opt, ",vlan=");
2041 int len = (endp ? endp - opt : strlen(opt)) + 1;
2042 char devname[10];
2043
2044 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2045
2046 if (endp) {
2047 vlan_id = strtol(endp + 6, &endp, 0);
2048 if (*endp) {
2049 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2050 return 0;
2051 }
2052 }
2053
2054 vlan = qemu_find_bt_vlan(vlan_id);
2055
2056 if (!vlan->slave)
2057 fprintf(stderr, "qemu: warning: adding a slave device to "
2058 "an empty scatternet %i\n", vlan_id);
2059
2060 if (!strcmp(devname, "keyboard"))
2061 return bt_keyboard_init(vlan);
2062
2063 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2064 return 0;
2065 }
2066
2067 static int bt_parse(const char *opt)
2068 {
2069 const char *endp, *p;
2070 int vlan;
2071
2072 if (strstart(opt, "hci", &endp)) {
2073 if (!*endp || *endp == ',') {
2074 if (*endp)
2075 if (!strstart(endp, ",vlan=", 0))
2076 opt = endp + 1;
2077
2078 return bt_hci_parse(opt);
2079 }
2080 } else if (strstart(opt, "vhci", &endp)) {
2081 if (!*endp || *endp == ',') {
2082 if (*endp) {
2083 if (strstart(endp, ",vlan=", &p)) {
2084 vlan = strtol(p, (char **) &endp, 0);
2085 if (*endp) {
2086 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2087 return 1;
2088 }
2089 } else {
2090 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2091 return 1;
2092 }
2093 } else
2094 vlan = 0;
2095
2096 bt_vhci_add(vlan);
2097 return 0;
2098 }
2099 } else if (strstart(opt, "device:", &endp))
2100 return !bt_device_add(endp);
2101
2102 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2103 return 1;
2104 }
2105
2106 /***********************************************************/
2107 /* QEMU Block devices */
2108
2109 #define HD_ALIAS "index=%d,media=disk"
2110 #define CDROM_ALIAS "index=2,media=cdrom"
2111 #define FD_ALIAS "index=%d,if=floppy"
2112 #define PFLASH_ALIAS "if=pflash"
2113 #define MTD_ALIAS "if=mtd"
2114 #define SD_ALIAS "index=0,if=sd"
2115
2116 static int drive_opt_get_free_idx(void)
2117 {
2118 int index;
2119
2120 for (index = 0; index < MAX_DRIVES; index++)
2121 if (!drives_opt[index].used) {
2122 drives_opt[index].used = 1;
2123 return index;
2124 }
2125
2126 return -1;
2127 }
2128
2129 static int drive_get_free_idx(void)
2130 {
2131 int index;
2132
2133 for (index = 0; index < MAX_DRIVES; index++)
2134 if (!drives_table[index].used) {
2135 drives_table[index].used = 1;
2136 return index;
2137 }
2138
2139 return -1;
2140 }
2141
2142 int drive_add(const char *file, const char *fmt, ...)
2143 {
2144 va_list ap;
2145 int index = drive_opt_get_free_idx();
2146
2147 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2148 fprintf(stderr, "qemu: too many drives\n");
2149 return -1;
2150 }
2151
2152 drives_opt[index].file = file;
2153 va_start(ap, fmt);
2154 vsnprintf(drives_opt[index].opt,
2155 sizeof(drives_opt[0].opt), fmt, ap);
2156 va_end(ap);
2157
2158 nb_drives_opt++;
2159 return index;
2160 }
2161
2162 void drive_remove(int index)
2163 {
2164 drives_opt[index].used = 0;
2165 nb_drives_opt--;
2166 }
2167
2168 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2169 {
2170 int index;
2171
2172 /* seek interface, bus and unit */
2173
2174 for (index = 0; index < MAX_DRIVES; index++)
2175 if (drives_table[index].type == type &&
2176 drives_table[index].bus == bus &&
2177 drives_table[index].unit == unit &&
2178 drives_table[index].used)
2179 return index;
2180
2181 return -1;
2182 }
2183
2184 int drive_get_max_bus(BlockInterfaceType type)
2185 {
2186 int max_bus;
2187 int index;
2188
2189 max_bus = -1;
2190 for (index = 0; index < nb_drives; index++) {
2191 if(drives_table[index].type == type &&
2192 drives_table[index].bus > max_bus)
2193 max_bus = drives_table[index].bus;
2194 }
2195 return max_bus;
2196 }
2197
2198 const char *drive_get_serial(BlockDriverState *bdrv)
2199 {
2200 int index;
2201
2202 for (index = 0; index < nb_drives; index++)
2203 if (drives_table[index].bdrv == bdrv)
2204 return drives_table[index].serial;
2205
2206 return "\0";
2207 }
2208
2209 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2210 {
2211 int index;
2212
2213 for (index = 0; index < nb_drives; index++)
2214 if (drives_table[index].bdrv == bdrv)
2215 return drives_table[index].onerror;
2216
2217 return BLOCK_ERR_STOP_ENOSPC;
2218 }
2219
2220 static void bdrv_format_print(void *opaque, const char *name)
2221 {
2222 fprintf(stderr, " %s", name);
2223 }
2224
2225 void drive_uninit(BlockDriverState *bdrv)
2226 {
2227 int i;
2228
2229 for (i = 0; i < MAX_DRIVES; i++)
2230 if (drives_table[i].bdrv == bdrv) {
2231 drives_table[i].bdrv = NULL;
2232 drives_table[i].used = 0;
2233 drive_remove(drives_table[i].drive_opt_idx);
2234 nb_drives--;
2235 break;
2236 }
2237 }
2238
2239 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2240 {
2241 char buf[128];
2242 char file[1024];
2243 char devname[128];
2244 char serial[21];
2245 const char *mediastr = "";
2246 BlockInterfaceType type;
2247 enum { MEDIA_DISK, MEDIA_CDROM } media;
2248 int bus_id, unit_id;
2249 int cyls, heads, secs, translation;
2250 BlockDriverState *bdrv;
2251 BlockDriver *drv = NULL;
2252 QEMUMachine *machine = opaque;
2253 int max_devs;
2254 int index;
2255 int cache;
2256 int bdrv_flags, onerror;
2257 int drives_table_idx;
2258 char *str = arg->opt;
2259 static const char * const params[] = { "bus", "unit", "if", "index",
2260 "cyls", "heads", "secs", "trans",
2261 "media", "snapshot", "file",
2262 "cache", "format", "serial", "werror",
2263 NULL };
2264
2265 if (check_params(params, str) < 0) {
2266 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2267 buf, str);
2268 return -1;
2269 }
2270
2271 file[0] = 0;
2272 cyls = heads = secs = 0;
2273 bus_id = 0;
2274 unit_id = -1;
2275 translation = BIOS_ATA_TRANSLATION_AUTO;
2276 index = -1;
2277 cache = 3;
2278
2279 if (machine->use_scsi) {
2280 type = IF_SCSI;
2281 max_devs = MAX_SCSI_DEVS;
2282 pstrcpy(devname, sizeof(devname), "scsi");
2283 } else {
2284 type = IF_IDE;
2285 max_devs = MAX_IDE_DEVS;
2286 pstrcpy(devname, sizeof(devname), "ide");
2287 }
2288 media = MEDIA_DISK;
2289
2290 /* extract parameters */
2291
2292 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2293 bus_id = strtol(buf, NULL, 0);
2294 if (bus_id < 0) {
2295 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2296 return -1;
2297 }
2298 }
2299
2300 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2301 unit_id = strtol(buf, NULL, 0);
2302 if (unit_id < 0) {
2303 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2304 return -1;
2305 }
2306 }
2307
2308 if (get_param_value(buf, sizeof(buf), "if", str)) {
2309 pstrcpy(devname, sizeof(devname), buf);
2310 if (!strcmp(buf, "ide")) {
2311 type = IF_IDE;
2312 max_devs = MAX_IDE_DEVS;
2313 } else if (!strcmp(buf, "scsi")) {
2314 type = IF_SCSI;
2315 max_devs = MAX_SCSI_DEVS;
2316 } else if (!strcmp(buf, "floppy")) {
2317 type = IF_FLOPPY;
2318 max_devs = 0;
2319 } else if (!strcmp(buf, "pflash")) {
2320 type = IF_PFLASH;
2321 max_devs = 0;
2322 } else if (!strcmp(buf, "mtd")) {
2323 type = IF_MTD;
2324 max_devs = 0;
2325 } else if (!strcmp(buf, "sd")) {
2326 type = IF_SD;
2327 max_devs = 0;
2328 } else if (!strcmp(buf, "virtio")) {
2329 type = IF_VIRTIO;
2330 max_devs = 0;
2331 } else if (!strcmp(buf, "xen")) {
2332 type = IF_XEN;
2333 max_devs = 0;
2334 } else {
2335 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2336 return -1;
2337 }
2338 }
2339
2340 if (get_param_value(buf, sizeof(buf), "index", str)) {
2341 index = strtol(buf, NULL, 0);
2342 if (index < 0) {
2343 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2344 return -1;
2345 }
2346 }
2347
2348 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2349 cyls = strtol(buf, NULL, 0);
2350 }
2351
2352 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2353 heads = strtol(buf, NULL, 0);
2354 }
2355
2356 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2357 secs = strtol(buf, NULL, 0);
2358 }
2359
2360 if (cyls || heads || secs) {
2361 if (cyls < 1 || cyls > 16383) {
2362 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2363 return -1;
2364 }
2365 if (heads < 1 || heads > 16) {
2366 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2367 return -1;
2368 }
2369 if (secs < 1 || secs > 63) {
2370 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2371 return -1;
2372 }
2373 }
2374
2375 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2376 if (!cyls) {
2377 fprintf(stderr,
2378 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2379 str);
2380 return -1;
2381 }
2382 if (!strcmp(buf, "none"))
2383 translation = BIOS_ATA_TRANSLATION_NONE;
2384 else if (!strcmp(buf, "lba"))
2385 translation = BIOS_ATA_TRANSLATION_LBA;
2386 else if (!strcmp(buf, "auto"))
2387 translation = BIOS_ATA_TRANSLATION_AUTO;
2388 else {
2389 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2390 return -1;
2391 }
2392 }
2393
2394 if (get_param_value(buf, sizeof(buf), "media", str)) {
2395 if (!strcmp(buf, "disk")) {
2396 media = MEDIA_DISK;
2397 } else if (!strcmp(buf, "cdrom")) {
2398 if (cyls || secs || heads) {
2399 fprintf(stderr,
2400 "qemu: '%s' invalid physical CHS format\n", str);
2401 return -1;
2402 }
2403 media = MEDIA_CDROM;
2404 } else {
2405 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2406 return -1;
2407 }
2408 }
2409
2410 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2411 if (!strcmp(buf, "on"))
2412 snapshot = 1;
2413 else if (!strcmp(buf, "off"))
2414 snapshot = 0;
2415 else {
2416 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2417 return -1;
2418 }
2419 }
2420
2421 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2422 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2423 cache = 0;
2424 else if (!strcmp(buf, "writethrough"))
2425 cache = 1;
2426 else if (!strcmp(buf, "writeback"))
2427 cache = 2;
2428 else {
2429 fprintf(stderr, "qemu: invalid cache option\n");
2430 return -1;
2431 }
2432 }
2433
2434 if (get_param_value(buf, sizeof(buf), "format", str)) {
2435 if (strcmp(buf, "?") == 0) {
2436 fprintf(stderr, "qemu: Supported formats:");
2437 bdrv_iterate_format(bdrv_format_print, NULL);
2438 fprintf(stderr, "\n");
2439 return -1;
2440 }
2441 drv = bdrv_find_format(buf);
2442 if (!drv) {
2443 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2444 return -1;
2445 }
2446 }
2447
2448 if (arg->file == NULL)
2449 get_param_value(file, sizeof(file), "file", str);
2450 else
2451 pstrcpy(file, sizeof(file), arg->file);
2452
2453 if (!get_param_value(serial, sizeof(serial), "serial", str))
2454 memset(serial, 0, sizeof(serial));
2455
2456 onerror = BLOCK_ERR_STOP_ENOSPC;
2457 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2458 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2459 fprintf(stderr, "werror is no supported by this format\n");
2460 return -1;
2461 }
2462 if (!strcmp(buf, "ignore"))
2463 onerror = BLOCK_ERR_IGNORE;
2464 else if (!strcmp(buf, "enospc"))
2465 onerror = BLOCK_ERR_STOP_ENOSPC;
2466 else if (!strcmp(buf, "stop"))
2467 onerror = BLOCK_ERR_STOP_ANY;
2468 else if (!strcmp(buf, "report"))
2469 onerror = BLOCK_ERR_REPORT;
2470 else {
2471 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2472 return -1;
2473 }
2474 }
2475
2476 /* compute bus and unit according index */
2477
2478 if (index != -1) {
2479 if (bus_id != 0 || unit_id != -1) {
2480 fprintf(stderr,
2481 "qemu: '%s' index cannot be used with bus and unit\n", str);
2482 return -1;
2483 }
2484 if (max_devs == 0)
2485 {
2486 unit_id = index;
2487 bus_id = 0;
2488 } else {
2489 unit_id = index % max_devs;
2490 bus_id = index / max_devs;
2491 }
2492 }
2493
2494 /* if user doesn't specify a unit_id,
2495 * try to find the first free
2496 */
2497
2498 if (unit_id == -1) {
2499 unit_id = 0;
2500 while (drive_get_index(type, bus_id, unit_id) != -1) {
2501 unit_id++;
2502 if (max_devs && unit_id >= max_devs) {
2503 unit_id -= max_devs;
2504 bus_id++;
2505 }
2506 }
2507 }
2508
2509 /* check unit id */
2510
2511 if (max_devs && unit_id >= max_devs) {
2512 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2513 str, unit_id, max_devs - 1);
2514 return -1;
2515 }
2516
2517 /*
2518 * ignore multiple definitions
2519 */
2520
2521 if (drive_get_index(type, bus_id, unit_id) != -1)
2522 return -2;
2523
2524 /* init */
2525
2526 if (type == IF_IDE || type == IF_SCSI)
2527 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2528 if (max_devs)
2529 snprintf(buf, sizeof(buf), "%s%i%s%i",
2530 devname, bus_id, mediastr, unit_id);
2531 else
2532 snprintf(buf, sizeof(buf), "%s%s%i",
2533 devname, mediastr, unit_id);
2534 bdrv = bdrv_new(buf);
2535 drives_table_idx = drive_get_free_idx();
2536 drives_table[drives_table_idx].bdrv = bdrv;
2537 drives_table[drives_table_idx].type = type;
2538 drives_table[drives_table_idx].bus = bus_id;
2539 drives_table[drives_table_idx].unit = unit_id;
2540 drives_table[drives_table_idx].onerror = onerror;
2541 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2542 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2543 nb_drives++;
2544
2545 switch(type) {
2546 case IF_IDE:
2547 case IF_SCSI:
2548 case IF_XEN:
2549 switch(media) {
2550 case MEDIA_DISK:
2551 if (cyls != 0) {
2552 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2553 bdrv_set_translation_hint(bdrv, translation);
2554 }
2555 break;
2556 case MEDIA_CDROM:
2557 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2558 break;
2559 }
2560 break;
2561 case IF_SD:
2562 /* FIXME: This isn't really a floppy, but it's a reasonable
2563 approximation. */
2564 case IF_FLOPPY:
2565 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2566 break;
2567 case IF_PFLASH:
2568 case IF_MTD:
2569 case IF_VIRTIO:
2570 break;
2571 case IF_COUNT:
2572 abort();
2573 }
2574 if (!file[0])
2575 return -2;
2576 bdrv_flags = 0;
2577 if (snapshot) {
2578 bdrv_flags |= BDRV_O_SNAPSHOT;
2579 cache = 2; /* always use write-back with snapshot */
2580 }
2581 if (cache == 0) /* no caching */
2582 bdrv_flags |= BDRV_O_NOCACHE;
2583 else if (cache == 2) /* write-back */
2584 bdrv_flags |= BDRV_O_CACHE_WB;
2585 else if (cache == 3) /* not specified */
2586 bdrv_flags |= BDRV_O_CACHE_DEF;
2587 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2588 fprintf(stderr, "qemu: could not open disk image %s\n",
2589 file);
2590 return -1;
2591 }
2592 if (bdrv_key_required(bdrv))
2593 autostart = 0;
2594 return drives_table_idx;
2595 }
2596
2597 static void numa_add(const char *optarg)
2598 {
2599 char option[128];
2600 char *endptr;
2601 unsigned long long value, endvalue;
2602 int nodenr;
2603
2604 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2605 if (!strcmp(option, "node")) {
2606 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2607 nodenr = nb_numa_nodes;
2608 } else {
2609 nodenr = strtoull(option, NULL, 10);
2610 }
2611
2612 if (get_param_value(option, 128, "mem", optarg) == 0) {
2613 node_mem[nodenr] = 0;
2614 } else {
2615 value = strtoull(option, &endptr, 0);
2616 switch (*endptr) {
2617 case 0: case 'M': case 'm':
2618 value <<= 20;
2619 break;
2620 case 'G': case 'g':
2621 value <<= 30;
2622 break;
2623 }
2624 node_mem[nodenr] = value;
2625 }
2626 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2627 node_cpumask[nodenr] = 0;
2628 } else {
2629 value = strtoull(option, &endptr, 10);
2630 if (value >= 64) {
2631 value = 63;
2632 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2633 } else {
2634 if (*endptr == '-') {
2635 endvalue = strtoull(endptr+1, &endptr, 10);
2636 if (endvalue >= 63) {
2637 endvalue = 62;
2638 fprintf(stderr,
2639 "only 63 CPUs in NUMA mode supported.\n");
2640 }
2641 value = (1 << (endvalue + 1)) - (1 << value);
2642 } else {
2643 value = 1 << value;
2644 }
2645 }
2646 node_cpumask[nodenr] = value;
2647 }
2648 nb_numa_nodes++;
2649 }
2650 return;
2651 }
2652
2653 /***********************************************************/
2654 /* USB devices */
2655
2656 static USBPort *used_usb_ports;
2657 static USBPort *free_usb_ports;
2658
2659 /* ??? Maybe change this to register a hub to keep track of the topology. */
2660 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2661 usb_attachfn attach)
2662 {
2663 port->opaque = opaque;
2664 port->index = index;
2665 port->attach = attach;
2666 port->next = free_usb_ports;
2667 free_usb_ports = port;
2668 }
2669
2670 int usb_device_add_dev(USBDevice *dev)
2671 {
2672 USBPort *port;
2673
2674 /* Find a USB port to add the device to. */
2675 port = free_usb_ports;
2676 if (!port->next) {
2677 USBDevice *hub;
2678
2679 /* Create a new hub and chain it on. */
2680 free_usb_ports = NULL;
2681 port->next = used_usb_ports;
2682 used_usb_ports = port;
2683
2684 hub = usb_hub_init(VM_USB_HUB_SIZE);
2685 usb_attach(port, hub);
2686 port = free_usb_ports;
2687 }
2688
2689 free_usb_ports = port->next;
2690 port->next = used_usb_ports;
2691 used_usb_ports = port;
2692 usb_attach(port, dev);
2693 return 0;
2694 }
2695
2696 static void usb_msd_password_cb(void *opaque, int err)
2697 {
2698 USBDevice *dev = opaque;
2699
2700 if (!err)
2701 usb_device_add_dev(dev);
2702 else
2703 dev->handle_destroy(dev);
2704 }
2705
2706 static int usb_device_add(const char *devname, int is_hotplug)
2707 {
2708 const char *p;
2709 USBDevice *dev;
2710
2711 if (!free_usb_ports)
2712 return -1;
2713
2714 if (strstart(devname, "host:", &p)) {
2715 dev = usb_host_device_open(p);
2716 } else if (!strcmp(devname, "mouse")) {
2717 dev = usb_mouse_init();
2718 } else if (!strcmp(devname, "tablet")) {
2719 dev = usb_tablet_init();
2720 } else if (!strcmp(devname, "keyboard")) {
2721 dev = usb_keyboard_init();
2722 } else if (strstart(devname, "disk:", &p)) {
2723 BlockDriverState *bs;
2724
2725 dev = usb_msd_init(p);
2726 if (!dev)
2727 return -1;
2728 bs = usb_msd_get_bdrv(dev);
2729 if (bdrv_key_required(bs)) {
2730 autostart = 0;
2731 if (is_hotplug) {
2732 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2733 dev);
2734 return 0;
2735 }
2736 }
2737 } else if (!strcmp(devname, "wacom-tablet")) {
2738 dev = usb_wacom_init();
2739 } else if (strstart(devname, "serial:", &p)) {
2740 dev = usb_serial_init(p);
2741 #ifdef CONFIG_BRLAPI
2742 } else if (!strcmp(devname, "braille")) {
2743 dev = usb_baum_init();
2744 #endif
2745 } else if (strstart(devname, "net:", &p)) {
2746 int nic = nb_nics;
2747
2748 if (net_client_init("nic", p) < 0)
2749 return -1;
2750 nd_table[nic].model = "usb";
2751 dev = usb_net_init(&nd_table[nic]);
2752 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2753 dev = usb_bt_init(devname[2] ? hci_init(p) :
2754 bt_new_hci(qemu_find_bt_vlan(0)));
2755 } else {
2756 return -1;
2757 }
2758 if (!dev)
2759 return -1;
2760
2761 return usb_device_add_dev(dev);
2762 }
2763
2764 int usb_device_del_addr(int bus_num, int addr)
2765 {
2766 USBPort *port;
2767 USBPort **lastp;
2768 USBDevice *dev;
2769
2770 if (!used_usb_ports)
2771 return -1;
2772
2773 if (bus_num != 0)
2774 return -1;
2775
2776 lastp = &used_usb_ports;
2777 port = used_usb_ports;
2778 while (port && port->dev->addr != addr) {
2779 lastp = &port->next;
2780 port = port->next;
2781 }
2782
2783 if (!port)
2784 return -1;
2785
2786 dev = port->dev;
2787 *lastp = port->next;
2788 usb_attach(port, NULL);
2789 dev->handle_destroy(dev);
2790 port->next = free_usb_ports;
2791 free_usb_ports = port;
2792 return 0;
2793 }
2794
2795 static int usb_device_del(const char *devname)
2796 {
2797 int bus_num, addr;
2798 const char *p;
2799
2800 if (strstart(devname, "host:", &p))
2801 return usb_host_device_close(p);
2802
2803 if (!used_usb_ports)
2804 return -1;
2805
2806 p = strchr(devname, '.');
2807 if (!p)
2808 return -1;
2809 bus_num = strtoul(devname, NULL, 0);
2810 addr = strtoul(p + 1, NULL, 0);
2811
2812 return usb_device_del_addr(bus_num, addr);
2813 }
2814
2815 void do_usb_add(Monitor *mon, const char *devname)
2816 {
2817 usb_device_add(devname, 1);
2818 }
2819
2820 void do_usb_del(Monitor *mon, const char *devname)
2821 {
2822 usb_device_del(devname);
2823 }
2824
2825 void usb_info(Monitor *mon)
2826 {
2827 USBDevice *dev;
2828 USBPort *port;
2829 const char *speed_str;
2830
2831 if (!usb_enabled) {
2832 monitor_printf(mon, "USB support not enabled\n");
2833 return;
2834 }
2835
2836 for (port = used_usb_ports; port; port = port->next) {
2837 dev = port->dev;
2838 if (!dev)
2839 continue;
2840 switch(dev->speed) {
2841 case USB_SPEED_LOW:
2842 speed_str = "1.5";
2843 break;
2844 case USB_SPEED_FULL:
2845 speed_str = "12";
2846 break;
2847 case USB_SPEED_HIGH:
2848 speed_str = "480";
2849 break;
2850 default:
2851 speed_str = "?";
2852 break;
2853 }
2854 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2855 0, dev->addr, speed_str, dev->devname);
2856 }
2857 }
2858
2859 /***********************************************************/
2860 /* PCMCIA/Cardbus */
2861
2862 static struct pcmcia_socket_entry_s {
2863 PCMCIASocket *socket;
2864 struct pcmcia_socket_entry_s *next;
2865 } *pcmcia_sockets = 0;
2866
2867 void pcmcia_socket_register(PCMCIASocket *socket)
2868 {
2869 struct pcmcia_socket_entry_s *entry;
2870
2871 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2872 entry->socket = socket;
2873 entry->next = pcmcia_sockets;
2874 pcmcia_sockets = entry;
2875 }
2876
2877 void pcmcia_socket_unregister(PCMCIASocket *socket)
2878 {
2879 struct pcmcia_socket_entry_s *entry, **ptr;
2880
2881 ptr = &pcmcia_sockets;
2882 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2883 if (entry->socket == socket) {
2884 *ptr = entry->next;
2885 qemu_free(entry);
2886 }
2887 }
2888
2889 void pcmcia_info(Monitor *mon)
2890 {
2891 struct pcmcia_socket_entry_s *iter;
2892
2893 if (!pcmcia_sockets)
2894 monitor_printf(mon, "No PCMCIA sockets\n");
2895
2896 for (iter = pcmcia_sockets; iter; iter = iter->next)
2897 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2898 iter->socket->attached ? iter->socket->card_string :
2899 "Empty");
2900 }
2901
2902 /***********************************************************/
2903 /* register display */
2904
2905 struct DisplayAllocator default_allocator = {
2906 defaultallocator_create_displaysurface,
2907 defaultallocator_resize_displaysurface,
2908 defaultallocator_free_displaysurface
2909 };
2910
2911 void register_displaystate(DisplayState *ds)
2912 {
2913 DisplayState **s;
2914 s = &display_state;
2915 while (*s != NULL)
2916 s = &(*s)->next;
2917 ds->next = NULL;
2918 *s = ds;
2919 }
2920
2921 DisplayState *get_displaystate(void)
2922 {
2923 return display_state;
2924 }
2925
2926 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2927 {
2928 if(ds->allocator == &default_allocator) ds->allocator = da;
2929 return ds->allocator;
2930 }
2931
2932 /* dumb display */
2933
2934 static void dumb_display_init(void)
2935 {
2936 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2937 ds->allocator = &default_allocator;
2938 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2939 register_displaystate(ds);
2940 }
2941
2942 /***********************************************************/
2943 /* I/O handling */
2944
2945 typedef struct IOHandlerRecord {
2946 int fd;
2947 IOCanRWHandler *fd_read_poll;
2948 IOHandler *fd_read;
2949 IOHandler *fd_write;
2950 int deleted;
2951 void *opaque;
2952 /* temporary data */
2953 struct pollfd *ufd;
2954 struct IOHandlerRecord *next;
2955 } IOHandlerRecord;
2956
2957 static IOHandlerRecord *first_io_handler;
2958
2959 /* XXX: fd_read_poll should be suppressed, but an API change is
2960 necessary in the character devices to suppress fd_can_read(). */
2961 int qemu_set_fd_handler2(int fd,
2962 IOCanRWHandler *fd_read_poll,
2963 IOHandler *fd_read,
2964 IOHandler *fd_write,
2965 void *opaque)
2966 {
2967 IOHandlerRecord **pioh, *ioh;
2968
2969 if (!fd_read && !fd_write) {
2970 pioh = &first_io_handler;
2971 for(;;) {
2972 ioh = *pioh;
2973 if (ioh == NULL)
2974 break;
2975 if (ioh->fd == fd) {
2976 ioh->deleted = 1;
2977 break;
2978 }
2979 pioh = &ioh->next;
2980 }
2981 } else {
2982 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2983 if (ioh->fd == fd)
2984 goto found;
2985 }
2986 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2987 ioh->next = first_io_handler;
2988 first_io_handler = ioh;
2989 found:
2990 ioh->fd = fd;
2991 ioh->fd_read_poll = fd_read_poll;
2992 ioh->fd_read = fd_read;
2993 ioh->fd_write = fd_write;
2994 ioh->opaque = opaque;
2995 ioh->deleted = 0;
2996 }
2997 return 0;
2998 }
2999
3000 int qemu_set_fd_handler(int fd,
3001 IOHandler *fd_read,
3002 IOHandler *fd_write,
3003 void *opaque)
3004 {
3005 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3006 }
3007
3008 #ifdef _WIN32
3009 /***********************************************************/
3010 /* Polling handling */
3011
3012 typedef struct PollingEntry {
3013 PollingFunc *func;
3014 void *opaque;
3015 struct PollingEntry *next;
3016 } PollingEntry;
3017
3018 static PollingEntry *first_polling_entry;
3019
3020 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3021 {
3022 PollingEntry **ppe, *pe;
3023 pe = qemu_mallocz(sizeof(PollingEntry));
3024 pe->func = func;
3025 pe->opaque = opaque;
3026 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3027 *ppe = pe;
3028 return 0;
3029 }
3030
3031 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3032 {
3033 PollingEntry **ppe, *pe;
3034 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3035 pe = *ppe;
3036 if (pe->func == func && pe->opaque == opaque) {
3037 *ppe = pe->next;
3038 qemu_free(pe);
3039 break;
3040 }
3041 }
3042 }
3043
3044 /***********************************************************/
3045 /* Wait objects support */
3046 typedef struct WaitObjects {
3047 int num;
3048 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3049 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3050 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3051 } WaitObjects;
3052
3053 static WaitObjects wait_objects = {0};
3054
3055 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3056 {
3057 WaitObjects *w = &wait_objects;
3058
3059 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3060 return -1;
3061 w->events[w->num] = handle;
3062 w->func[w->num] = func;
3063 w->opaque[w->num] = opaque;
3064 w->num++;
3065 return 0;
3066 }
3067
3068 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3069 {
3070 int i, found;
3071 WaitObjects *w = &wait_objects;
3072
3073 found = 0;
3074 for (i = 0; i < w->num; i++) {
3075 if (w->events[i] == handle)
3076 found = 1;
3077 if (found) {
3078 w->events[i] = w->events[i + 1];
3079 w->func[i] = w->func[i + 1];
3080 w->opaque[i] = w->opaque[i + 1];
3081 }
3082 }
3083 if (found)
3084 w->num--;
3085 }
3086 #endif
3087
3088 /***********************************************************/
3089 /* ram save/restore */
3090
3091 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3092 {
3093 int v;
3094
3095 v = qemu_get_byte(f);
3096 switch(v) {
3097 case 0:
3098 if (qemu_get_buffer(f, buf, len) != len)
3099 return -EIO;
3100 break;
3101 case 1:
3102 v = qemu_get_byte(f);
3103 memset(buf, v, len);
3104 break;
3105 default:
3106 return -EINVAL;
3107 }
3108
3109 if (qemu_file_has_error(f))
3110 return -EIO;
3111
3112 return 0;
3113 }
3114
3115 static int ram_load_v1(QEMUFile *f, void *opaque)
3116 {
3117 int ret;
3118 ram_addr_t i;
3119
3120 if (qemu_get_be32(f) != last_ram_offset)
3121 return -EINVAL;
3122 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3123 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3124 if (ret)
3125 return ret;
3126 }
3127 return 0;
3128 }
3129
3130 #define BDRV_HASH_BLOCK_SIZE 1024
3131 #define IOBUF_SIZE 4096
3132 #define RAM_CBLOCK_MAGIC 0xfabe
3133
3134 typedef struct RamDecompressState {
3135 z_stream zstream;
3136 QEMUFile *f;
3137 uint8_t buf[IOBUF_SIZE];
3138 } RamDecompressState;
3139
3140 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3141 {
3142 int ret;
3143 memset(s, 0, sizeof(*s));
3144 s->f = f;
3145 ret = inflateInit(&s->zstream);
3146 if (ret != Z_OK)
3147 return -1;
3148 return 0;
3149 }
3150
3151 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3152 {
3153 int ret, clen;
3154
3155 s->zstream.avail_out = len;
3156 s->zstream.next_out = buf;
3157 while (s->zstream.avail_out > 0) {
3158 if (s->zstream.avail_in == 0) {
3159 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3160 return -1;
3161 clen = qemu_get_be16(s->f);
3162 if (clen > IOBUF_SIZE)
3163 return -1;
3164 qemu_get_buffer(s->f, s->buf, clen);
3165 s->zstream.avail_in = clen;
3166 s->zstream.next_in = s->buf;
3167 }
3168 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3169 if (ret != Z_OK && ret != Z_STREAM_END) {
3170 return -1;
3171 }
3172 }
3173 return 0;
3174 }
3175
3176 static void ram_decompress_close(RamDecompressState *s)
3177 {
3178 inflateEnd(&s->zstream);
3179 }
3180
3181 #define RAM_SAVE_FLAG_FULL 0x01
3182 #define RAM_SAVE_FLAG_COMPRESS 0x02
3183 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3184 #define RAM_SAVE_FLAG_PAGE 0x08
3185 #define RAM_SAVE_FLAG_EOS 0x10
3186
3187 static int is_dup_page(uint8_t *page, uint8_t ch)
3188 {
3189 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3190 uint32_t *array = (uint32_t *)page;
3191 int i;
3192
3193 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3194 if (array[i] != val)
3195 return 0;
3196 }
3197
3198 return 1;
3199 }
3200
3201 static int ram_save_block(QEMUFile *f)
3202 {
3203 static ram_addr_t current_addr = 0;
3204 ram_addr_t saved_addr = current_addr;
3205 ram_addr_t addr = 0;
3206 int found = 0;
3207
3208 while (addr < last_ram_offset) {
3209 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3210 uint8_t *p;
3211
3212 cpu_physical_memory_reset_dirty(current_addr,
3213 current_addr + TARGET_PAGE_SIZE,
3214 MIGRATION_DIRTY_FLAG);
3215
3216 p = qemu_get_ram_ptr(current_addr);
3217
3218 if (is_dup_page(p, *p)) {
3219 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3220 qemu_put_byte(f, *p);
3221 } else {
3222 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3223 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3224 }
3225
3226 found = 1;
3227 break;
3228 }
3229 addr += TARGET_PAGE_SIZE;
3230 current_addr = (saved_addr + addr) % last_ram_offset;
3231 }
3232
3233 return found;
3234 }
3235
3236 static ram_addr_t ram_save_threshold = 10;
3237 static uint64_t bytes_transferred = 0;
3238
3239 static ram_addr_t ram_save_remaining(void)
3240 {
3241 ram_addr_t addr;
3242 ram_addr_t count = 0;
3243
3244 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3245 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3246 count++;
3247 }
3248
3249 return count;
3250 }
3251
3252 uint64_t ram_bytes_remaining(void)
3253 {
3254 return ram_save_remaining() * TARGET_PAGE_SIZE;
3255 }
3256
3257 uint64_t ram_bytes_transferred(void)
3258 {
3259 return bytes_transferred;
3260 }
3261
3262 uint64_t ram_bytes_total(void)
3263 {
3264 return last_ram_offset;
3265 }
3266
3267 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3268 {
3269 ram_addr_t addr;
3270
3271 if (stage == 1) {
3272 /* Make sure all dirty bits are set */
3273 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3274 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3275 cpu_physical_memory_set_dirty(addr);
3276 }
3277
3278 /* Enable dirty memory tracking */
3279 cpu_physical_memory_set_dirty_tracking(1);
3280
3281 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3282 }
3283
3284 while (!qemu_file_rate_limit(f)) {
3285 int ret;
3286
3287 ret = ram_save_block(f);
3288 bytes_transferred += ret * TARGET_PAGE_SIZE;
3289 if (ret == 0) /* no more blocks */
3290 break;
3291 }
3292
3293 /* try transferring iterative blocks of memory */
3294
3295 if (stage == 3) {
3296
3297 /* flush all remaining blocks regardless of rate limiting */
3298 while (ram_save_block(f) != 0) {
3299 bytes_transferred += TARGET_PAGE_SIZE;
3300 }
3301 cpu_physical_memory_set_dirty_tracking(0);
3302 }
3303
3304 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3305
3306 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3307 }
3308
3309 static int ram_load_dead(QEMUFile *f, void *opaque)
3310 {
3311 RamDecompressState s1, *s = &s1;
3312 uint8_t buf[10];
3313 ram_addr_t i;
3314
3315 if (ram_decompress_open(s, f) < 0)
3316 return -EINVAL;
3317 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3318 if (ram_decompress_buf(s, buf, 1) < 0) {
3319 fprintf(stderr, "Error while reading ram block header\n");
3320 goto error;
3321 }
3322 if (buf[0] == 0) {
3323 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3324 BDRV_HASH_BLOCK_SIZE) < 0) {
3325 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3326 goto error;
3327 }
3328 } else {
3329 error:
3330 printf("Error block header\n");
3331 return -EINVAL;
3332 }
3333 }
3334 ram_decompress_close(s);
3335
3336 return 0;
3337 }
3338
3339 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3340 {
3341 ram_addr_t addr;
3342 int flags;
3343
3344 if (version_id == 1)
3345 return ram_load_v1(f, opaque);
3346
3347 if (version_id == 2) {
3348 if (qemu_get_be32(f) != last_ram_offset)
3349 return -EINVAL;
3350 return ram_load_dead(f, opaque);
3351 }
3352
3353 if (version_id != 3)
3354 return -EINVAL;
3355
3356 do {
3357 addr = qemu_get_be64(f);
3358
3359 flags = addr & ~TARGET_PAGE_MASK;
3360 addr &= TARGET_PAGE_MASK;
3361
3362 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3363 if (addr != last_ram_offset)
3364 return -EINVAL;
3365 }
3366
3367 if (flags & RAM_SAVE_FLAG_FULL) {
3368 if (ram_load_dead(f, opaque) < 0)
3369 return -EINVAL;
3370 }
3371
3372 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3373 uint8_t ch = qemu_get_byte(f);
3374 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3375 } else if (flags & RAM_SAVE_FLAG_PAGE)
3376 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3377 } while (!(flags & RAM_SAVE_FLAG_EOS));
3378
3379 return 0;
3380 }
3381
3382 void qemu_service_io(void)
3383 {
3384 qemu_notify_event();
3385 }
3386
3387 /***********************************************************/
3388 /* bottom halves (can be seen as timers which expire ASAP) */
3389
3390 struct QEMUBH {
3391 QEMUBHFunc *cb;
3392 void *opaque;
3393 int scheduled;
3394 int idle;
3395 int deleted;
3396 QEMUBH *next;
3397 };
3398
3399 static QEMUBH *first_bh = NULL;
3400
3401 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3402 {
3403 QEMUBH *bh;
3404 bh = qemu_mallocz(sizeof(QEMUBH));
3405 bh->cb = cb;
3406 bh->opaque = opaque;
3407 bh->next = first_bh;
3408 first_bh = bh;
3409 return bh;
3410 }
3411
3412 int qemu_bh_poll(void)
3413 {
3414 QEMUBH *bh, **bhp;
3415 int ret;
3416
3417 ret = 0;
3418 for (bh = first_bh; bh; bh = bh->next) {
3419 if (!bh->deleted && bh->scheduled) {
3420 bh->scheduled = 0;
3421 if (!bh->idle)
3422 ret = 1;
3423 bh->idle = 0;
3424 bh->cb(bh->opaque);
3425 }
3426 }
3427
3428 /* remove deleted bhs */
3429 bhp = &first_bh;
3430 while (*bhp) {
3431 bh = *bhp;
3432 if (bh->deleted) {
3433 *bhp = bh->next;
3434 qemu_free(bh);
3435 } else
3436 bhp = &bh->next;
3437 }
3438
3439 return ret;
3440 }
3441
3442 void qemu_bh_schedule_idle(QEMUBH *bh)
3443 {
3444 if (bh->scheduled)
3445 return;
3446 bh->scheduled = 1;
3447 bh->idle = 1;
3448 }
3449
3450 void qemu_bh_schedule(QEMUBH *bh)
3451 {
3452 if (bh->scheduled)
3453 return;
3454 bh->scheduled = 1;
3455 bh->idle = 0;
3456 /* stop the currently executing CPU to execute the BH ASAP */
3457 qemu_notify_event();
3458 }
3459
3460 void qemu_bh_cancel(QEMUBH *bh)
3461 {
3462 bh->scheduled = 0;
3463 }
3464
3465 void qemu_bh_delete(QEMUBH *bh)
3466 {
3467 bh->scheduled = 0;
3468 bh->deleted = 1;
3469 }
3470
3471 static void qemu_bh_update_timeout(int *timeout)
3472 {
3473 QEMUBH *bh;
3474
3475 for (bh = first_bh; bh; bh = bh->next) {
3476 if (!bh->deleted && bh->scheduled) {
3477 if (bh->idle) {
3478 /* idle bottom halves will be polled at least
3479 * every 10ms */
3480 *timeout = MIN(10, *timeout);
3481 } else {
3482 /* non-idle bottom halves will be executed
3483 * immediately */
3484 *timeout = 0;
3485 break;
3486 }
3487 }
3488 }
3489 }
3490
3491 /***********************************************************/
3492 /* machine registration */
3493
3494 static QEMUMachine *first_machine = NULL;
3495 QEMUMachine *current_machine = NULL;
3496
3497 int qemu_register_machine(QEMUMachine *m)
3498 {
3499 QEMUMachine **pm;
3500 pm = &first_machine;
3501 while (*pm != NULL)
3502 pm = &(*pm)->next;
3503 m->next = NULL;
3504 *pm = m;
3505 return 0;
3506 }
3507
3508 static QEMUMachine *find_machine(const char *name)
3509 {
3510 QEMUMachine *m;
3511
3512 for(m = first_machine; m != NULL; m = m->next) {
3513 if (!strcmp(m->name, name))
3514 return m;
3515 }
3516 return NULL;
3517 }
3518
3519 static QEMUMachine *find_default_machine(void)
3520 {
3521 QEMUMachine *m;
3522
3523 for(m = first_machine; m != NULL; m = m->next) {
3524 if (m->is_default) {
3525 return m;
3526 }
3527 }
3528 return NULL;
3529 }
3530
3531 /***********************************************************/
3532 /* main execution loop */
3533
3534 static void gui_update(void *opaque)
3535 {
3536 uint64_t interval = GUI_REFRESH_INTERVAL;
3537 DisplayState *ds = opaque;
3538 DisplayChangeListener *dcl = ds->listeners;
3539
3540 dpy_refresh(ds);
3541
3542 while (dcl != NULL) {
3543 if (dcl->gui_timer_interval &&
3544 dcl->gui_timer_interval < interval)
3545 interval = dcl->gui_timer_interval;
3546 dcl = dcl->next;
3547 }
3548 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3549 }
3550
3551 static void nographic_update(void *opaque)
3552 {
3553 uint64_t interval = GUI_REFRESH_INTERVAL;
3554
3555 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3556 }
3557
3558 struct vm_change_state_entry {
3559 VMChangeStateHandler *cb;
3560 void *opaque;
3561 LIST_ENTRY (vm_change_state_entry) entries;
3562 };
3563
3564 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3565
3566 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3567 void *opaque)
3568 {
3569 VMChangeStateEntry *e;
3570
3571 e = qemu_mallocz(sizeof (*e));
3572
3573 e->cb = cb;
3574 e->opaque = opaque;
3575 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3576 return e;
3577 }
3578
3579 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3580 {
3581 LIST_REMOVE (e, entries);
3582 qemu_free (e);
3583 }
3584
3585 static void vm_state_notify(int running, int reason)
3586 {
3587 VMChangeStateEntry *e;
3588
3589 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3590 e->cb(e->opaque, running, reason);
3591 }
3592 }
3593
3594 static void resume_all_vcpus(void);
3595 static void pause_all_vcpus(void);
3596
3597 void vm_start(void)
3598 {
3599 if (!vm_running) {
3600 cpu_enable_ticks();
3601 vm_running = 1;
3602 vm_state_notify(1, 0);
3603 qemu_rearm_alarm_timer(alarm_timer);
3604 resume_all_vcpus();
3605 }
3606 }
3607
3608 /* reset/shutdown handler */
3609
3610 typedef struct QEMUResetEntry {
3611 QEMUResetHandler *func;
3612 void *opaque;
3613 struct QEMUResetEntry *next;
3614 } QEMUResetEntry;
3615
3616 static QEMUResetEntry *first_reset_entry;
3617 static int reset_requested;
3618 static int shutdown_requested;
3619 static int powerdown_requested;
3620 static int debug_requested;
3621 static int vmstop_requested;
3622
3623 int qemu_shutdown_requested(void)
3624 {
3625 int r = shutdown_requested;
3626 shutdown_requested = 0;
3627 return r;
3628 }
3629
3630 int qemu_reset_requested(void)
3631 {
3632 int r = reset_requested;
3633 reset_requested = 0;
3634 return r;
3635 }
3636
3637 int qemu_powerdown_requested(void)
3638 {
3639 int r = powerdown_requested;
3640 powerdown_requested = 0;
3641 return r;
3642 }
3643
3644 static int qemu_debug_requested(void)
3645 {
3646 int r = debug_requested;
3647 debug_requested = 0;
3648 return r;
3649 }
3650
3651 static int qemu_vmstop_requested(void)
3652 {
3653 int r = vmstop_requested;
3654 vmstop_requested = 0;
3655 return r;
3656 }
3657
3658 static void do_vm_stop(int reason)
3659 {
3660 if (vm_running) {
3661 cpu_disable_ticks();
3662 vm_running = 0;
3663 pause_all_vcpus();
3664 vm_state_notify(0, reason);
3665 }
3666 }
3667
3668 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3669 {
3670 QEMUResetEntry **pre, *re;
3671
3672 pre = &first_reset_entry;
3673 while (*pre != NULL)
3674 pre = &(*pre)->next;
3675 re = qemu_mallocz(sizeof(QEMUResetEntry));
3676 re->func = func;
3677 re->opaque = opaque;
3678 re->next = NULL;
3679 *pre = re;
3680 }
3681
3682 void qemu_system_reset(void)
3683 {
3684 QEMUResetEntry *re;
3685
3686 /* reset all devices */
3687 for(re = first_reset_entry; re != NULL; re = re->next) {
3688 re->func(re->opaque);
3689 }
3690 if (kvm_enabled())
3691 kvm_sync_vcpus();
3692 }
3693
3694 void qemu_system_reset_request(void)
3695 {
3696 if (no_reboot) {
3697 shutdown_requested = 1;
3698 } else {
3699 reset_requested = 1;
3700 }
3701 qemu_notify_event();
3702 }
3703
3704 void qemu_system_shutdown_request(void)
3705 {
3706 shutdown_requested = 1;
3707 qemu_notify_event();
3708 }
3709
3710 void qemu_system_powerdown_request(void)
3711 {
3712 powerdown_requested = 1;
3713 qemu_notify_event();
3714 }
3715
3716 #ifdef CONFIG_IOTHREAD
3717 static void qemu_system_vmstop_request(int reason)
3718 {
3719 vmstop_requested = reason;
3720 qemu_notify_event();
3721 }
3722 #endif
3723
3724 #ifndef _WIN32
3725 static int io_thread_fd = -1;
3726
3727 static void qemu_event_increment(void)
3728 {
3729 static const char byte = 0;
3730
3731 if (io_thread_fd == -1)
3732 return;
3733
3734 write(io_thread_fd, &byte, sizeof(byte));
3735 }
3736
3737 static void qemu_event_read(void *opaque)
3738 {
3739 int fd = (unsigned long)opaque;
3740 ssize_t len;
3741
3742 /* Drain the notify pipe */
3743 do {
3744 char buffer[512];
3745 len = read(fd, buffer, sizeof(buffer));
3746 } while ((len == -1 && errno == EINTR) || len > 0);
3747 }
3748
3749 static int qemu_event_init(void)
3750 {
3751 int err;
3752 int fds[2];
3753
3754 err = pipe(fds);
3755 if (err == -1)
3756 return -errno;
3757
3758 err = fcntl_setfl(fds[0], O_NONBLOCK);
3759 if (err < 0)
3760 goto fail;
3761
3762 err = fcntl_setfl(fds[1], O_NONBLOCK);
3763 if (err < 0)
3764 goto fail;
3765
3766 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3767 (void *)(unsigned long)fds[0]);
3768
3769 io_thread_fd = fds[1];
3770 return 0;
3771
3772 fail:
3773 close(fds[0]);
3774 close(fds[1]);
3775 return err;
3776 }
3777 #else
3778 HANDLE qemu_event_handle;
3779
3780 static void dummy_event_handler(void *opaque)
3781 {
3782 }
3783
3784 static int qemu_event_init(void)
3785 {
3786 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3787 if (!qemu_event_handle) {
3788 perror("Failed CreateEvent");
3789 return -1;
3790 }
3791 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3792 return 0;
3793 }
3794
3795 static void qemu_event_increment(void)
3796 {
3797 SetEvent(qemu_event_handle);
3798 }
3799 #endif
3800
3801 static int cpu_can_run(CPUState *env)
3802 {
3803 if (env->stop)
3804 return 0;
3805 if (env->stopped)
3806 return 0;
3807 return 1;
3808 }
3809
3810 #ifndef CONFIG_IOTHREAD
3811 static int qemu_init_main_loop(void)
3812 {
3813 return qemu_event_init();
3814 }
3815
3816 void qemu_init_vcpu(void *_env)
3817 {
3818 CPUState *env = _env;
3819
3820 if (kvm_enabled())
3821 kvm_init_vcpu(env);
3822 return;
3823 }
3824
3825 int qemu_cpu_self(void *env)
3826 {
3827 return 1;
3828 }
3829
3830 static void resume_all_vcpus(void)
3831 {
3832 }
3833
3834 static void pause_all_vcpus(void)
3835 {
3836 }
3837
3838 void qemu_cpu_kick(void *env)
3839 {
3840 return;
3841 }
3842
3843 void qemu_notify_event(void)
3844 {
3845 CPUState *env = cpu_single_env;
3846
3847 if (env) {
3848 cpu_exit(env);
3849 #ifdef USE_KQEMU
3850 if (env->kqemu_enabled)
3851 kqemu_cpu_interrupt(env);
3852 #endif
3853 }
3854 }
3855
3856 #define qemu_mutex_lock_iothread() do { } while (0)
3857 #define qemu_mutex_unlock_iothread() do { } while (0)
3858
3859 void vm_stop(int reason)
3860 {
3861 do_vm_stop(reason);
3862 }
3863
3864 #else /* CONFIG_IOTHREAD */
3865
3866 #include "qemu-thread.h"
3867
3868 QemuMutex qemu_global_mutex;
3869 static QemuMutex qemu_fair_mutex;
3870
3871 static QemuThread io_thread;
3872
3873 static QemuThread *tcg_cpu_thread;
3874 static QemuCond *tcg_halt_cond;
3875
3876 static int qemu_system_ready;
3877 /* cpu creation */
3878 static QemuCond qemu_cpu_cond;
3879 /* system init */
3880 static QemuCond qemu_system_cond;
3881 static QemuCond qemu_pause_cond;
3882
3883 static void block_io_signals(void);
3884 static void unblock_io_signals(void);
3885 static int tcg_has_work(void);
3886
3887 static int qemu_init_main_loop(void)
3888 {
3889 int ret;
3890
3891 ret = qemu_event_init();
3892 if (ret)
3893 return ret;
3894
3895 qemu_cond_init(&qemu_pause_cond);
3896 qemu_mutex_init(&qemu_fair_mutex);
3897 qemu_mutex_init(&qemu_global_mutex);
3898 qemu_mutex_lock(&qemu_global_mutex);
3899
3900 unblock_io_signals();
3901 qemu_thread_self(&io_thread);
3902
3903 return 0;
3904 }
3905
3906 static void qemu_wait_io_event(CPUState *env)
3907 {
3908 while (!tcg_has_work())
3909 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3910
3911 qemu_mutex_unlock(&qemu_global_mutex);
3912
3913 /*
3914 * Users of qemu_global_mutex can be starved, having no chance
3915 * to acquire it since this path will get to it first.
3916 * So use another lock to provide fairness.
3917 */
3918 qemu_mutex_lock(&qemu_fair_mutex);
3919 qemu_mutex_unlock(&qemu_fair_mutex);
3920
3921 qemu_mutex_lock(&qemu_global_mutex);
3922 if (env->stop) {
3923 env->stop = 0;
3924 env->stopped = 1;
3925 qemu_cond_signal(&qemu_pause_cond);
3926 }
3927 }
3928
3929 static int qemu_cpu_exec(CPUState *env);
3930
3931 static void *kvm_cpu_thread_fn(void *arg)
3932 {
3933 CPUState *env = arg;
3934
3935 block_io_signals();
3936 qemu_thread_self(env->thread);
3937
3938 /* signal CPU creation */
3939 qemu_mutex_lock(&qemu_global_mutex);
3940 env->created = 1;
3941 qemu_cond_signal(&qemu_cpu_cond);
3942
3943 /* and wait for machine initialization */
3944 while (!qemu_system_ready)
3945 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3946
3947 while (1) {
3948 if (cpu_can_run(env))
3949 qemu_cpu_exec(env);
3950 qemu_wait_io_event(env);
3951 }
3952
3953 return NULL;
3954 }
3955
3956 static void tcg_cpu_exec(void);
3957
3958 static void *tcg_cpu_thread_fn(void *arg)
3959 {
3960 CPUState *env = arg;
3961
3962 block_io_signals();
3963 qemu_thread_self(env->thread);
3964
3965 /* signal CPU creation */
3966 qemu_mutex_lock(&qemu_global_mutex);
3967 for (env = first_cpu; env != NULL; env = env->next_cpu)
3968 env->created = 1;
3969 qemu_cond_signal(&qemu_cpu_cond);
3970
3971 /* and wait for machine initialization */
3972 while (!qemu_system_ready)
3973 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3974
3975 while (1) {
3976 tcg_cpu_exec();
3977 qemu_wait_io_event(cur_cpu);
3978 }
3979
3980 return NULL;
3981 }
3982
3983 void qemu_cpu_kick(void *_env)
3984 {
3985 CPUState *env = _env;
3986 qemu_cond_broadcast(env->halt_cond);
3987 if (kvm_enabled())
3988 qemu_thread_signal(env->thread, SIGUSR1);
3989 }
3990
3991 int qemu_cpu_self(void *env)
3992 {
3993 return (cpu_single_env != NULL);
3994 }
3995
3996 static void cpu_signal(int sig)
3997 {
3998 if (cpu_single_env)
3999 cpu_exit(cpu_single_env);
4000 }
4001
4002 static void block_io_signals(void)
4003 {
4004 sigset_t set;
4005 struct sigaction sigact;
4006
4007 sigemptyset(&set);
4008 sigaddset(&set, SIGUSR2);
4009 sigaddset(&set, SIGIO);
4010 sigaddset(&set, SIGALRM);
4011 pthread_sigmask(SIG_BLOCK, &set, NULL);
4012
4013 sigemptyset(&set);
4014 sigaddset(&set, SIGUSR1);
4015 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4016
4017 memset(&sigact, 0, sizeof(sigact));
4018 sigact.sa_handler = cpu_signal;
4019 sigaction(SIGUSR1, &sigact, NULL);
4020 }
4021
4022 static void unblock_io_signals(void)
4023 {
4024 sigset_t set;
4025
4026 sigemptyset(&set);
4027 sigaddset(&set, SIGUSR2);
4028 sigaddset(&set, SIGIO);
4029 sigaddset(&set, SIGALRM);
4030 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4031
4032 sigemptyset(&set);
4033 sigaddset(&set, SIGUSR1);
4034 pthread_sigmask(SIG_BLOCK, &set, NULL);
4035 }
4036
4037 static void qemu_signal_lock(unsigned int msecs)
4038 {
4039 qemu_mutex_lock(&qemu_fair_mutex);
4040
4041 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4042 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4043 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4044 break;
4045 }
4046 qemu_mutex_unlock(&qemu_fair_mutex);
4047 }
4048
4049 static void qemu_mutex_lock_iothread(void)
4050 {
4051 if (kvm_enabled()) {
4052 qemu_mutex_lock(&qemu_fair_mutex);
4053 qemu_mutex_lock(&qemu_global_mutex);
4054 qemu_mutex_unlock(&qemu_fair_mutex);
4055 } else
4056 qemu_signal_lock(100);
4057 }
4058
4059 static void qemu_mutex_unlock_iothread(void)
4060 {
4061 qemu_mutex_unlock(&qemu_global_mutex);
4062 }
4063
4064 static int all_vcpus_paused(void)
4065 {
4066 CPUState *penv = first_cpu;
4067
4068 while (penv) {
4069 if (!penv->stopped)
4070 return 0;
4071 penv = (CPUState *)penv->next_cpu;
4072 }
4073
4074 return 1;
4075 }
4076
4077 static void pause_all_vcpus(void)
4078 {
4079 CPUState *penv = first_cpu;
4080
4081 while (penv) {
4082 penv->stop = 1;
4083 qemu_thread_signal(penv->thread, SIGUSR1);
4084 qemu_cpu_kick(penv);
4085 penv = (CPUState *)penv->next_cpu;
4086 }
4087
4088 while (!all_vcpus_paused()) {
4089 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4090 penv = first_cpu;
4091 while (penv) {
4092 qemu_thread_signal(penv->thread, SIGUSR1);
4093 penv = (CPUState *)penv->next_cpu;
4094 }
4095 }
4096 }
4097
4098 static void resume_all_vcpus(void)
4099 {
4100 CPUState *penv = first_cpu;
4101
4102 while (penv) {
4103 penv->stop = 0;
4104 penv->stopped = 0;
4105 qemu_thread_signal(penv->thread, SIGUSR1);
4106 qemu_cpu_kick(penv);
4107 penv = (CPUState *)penv->next_cpu;
4108 }
4109 }
4110
4111 static void tcg_init_vcpu(void *_env)
4112 {
4113 CPUState *env = _env;
4114 /* share a single thread for all cpus with TCG */
4115 if (!tcg_cpu_thread) {
4116 env->thread = qemu_mallocz(sizeof(QemuThread));
4117 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4118 qemu_cond_init(env->halt_cond);
4119 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4120 while (env->created == 0)
4121 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4122 tcg_cpu_thread = env->thread;
4123 tcg_halt_cond = env->halt_cond;
4124 } else {
4125 env->thread = tcg_cpu_thread;
4126 env->halt_cond = tcg_halt_cond;
4127 }
4128 }
4129
4130 static void kvm_start_vcpu(CPUState *env)
4131 {
4132 kvm_init_vcpu(env);
4133 env->thread = qemu_mallocz(sizeof(QemuThread));
4134 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4135 qemu_cond_init(env->halt_cond);
4136 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4137 while (env->created == 0)
4138 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4139 }
4140
4141 void qemu_init_vcpu(void *_env)
4142 {
4143 CPUState *env = _env;
4144
4145 if (kvm_enabled())
4146 kvm_start_vcpu(env);
4147 else
4148 tcg_init_vcpu(env);
4149 }
4150
4151 void qemu_notify_event(void)
4152 {
4153 qemu_event_increment();
4154 }
4155
4156 void vm_stop(int reason)
4157 {
4158 QemuThread me;
4159 qemu_thread_self(&me);
4160
4161 if (!qemu_thread_equal(&me, &io_thread)) {
4162 qemu_system_vmstop_request(reason);
4163 /*
4164 * FIXME: should not return to device code in case
4165 * vm_stop() has been requested.
4166 */
4167 if (cpu_single_env) {
4168 cpu_exit(cpu_single_env);
4169 cpu_single_env->stop = 1;
4170 }
4171 return;
4172 }
4173 do_vm_stop(reason);
4174 }
4175
4176 #endif
4177
4178
4179 #ifdef _WIN32
4180 static void host_main_loop_wait(int *timeout)
4181 {
4182 int ret, ret2, i;
4183 PollingEntry *pe;
4184
4185
4186 /* XXX: need to suppress polling by better using win32 events */
4187 ret = 0;
4188 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4189 ret |= pe->func(pe->opaque);
4190 }
4191 if (ret == 0) {
4192 int err;
4193 WaitObjects *w = &wait_objects;
4194
4195 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4196 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4197 if (w->func[ret - WAIT_OBJECT_0])
4198 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4199
4200 /* Check for additional signaled events */
4201 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4202
4203 /* Check if event is signaled */
4204 ret2 = WaitForSingleObject(w->events[i], 0);
4205 if(ret2 == WAIT_OBJECT_0) {
4206 if (w->func[i])
4207 w->func[i](w->opaque[i]);
4208 } else if (ret2 == WAIT_TIMEOUT) {
4209 } else {
4210 err = GetLastError();
4211 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4212 }
4213 }
4214 } else if (ret == WAIT_TIMEOUT) {
4215 } else {
4216 err = GetLastError();
4217 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4218 }
4219 }
4220
4221 *timeout = 0;
4222 }
4223 #else
4224 static void host_main_loop_wait(int *timeout)
4225 {
4226 }
4227 #endif
4228
4229 void main_loop_wait(int timeout)
4230 {
4231 IOHandlerRecord *ioh;
4232 fd_set rfds, wfds, xfds;
4233 int ret, nfds;
4234 struct timeval tv;
4235
4236 qemu_bh_update_timeout(&timeout);
4237
4238 host_main_loop_wait(&timeout);
4239
4240 /* poll any events */
4241 /* XXX: separate device handlers from system ones */
4242 nfds = -1;
4243 FD_ZERO(&rfds);
4244 FD_ZERO(&wfds);
4245 FD_ZERO(&xfds);
4246 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4247 if (ioh->deleted)
4248 continue;
4249 if (ioh->fd_read &&
4250 (!ioh->fd_read_poll ||
4251 ioh->fd_read_poll(ioh->opaque) != 0)) {
4252 FD_SET(ioh->fd, &rfds);
4253 if (ioh->fd > nfds)
4254 nfds = ioh->fd;
4255 }
4256 if (ioh->fd_write) {
4257 FD_SET(ioh->fd, &wfds);
4258 if (ioh->fd > nfds)
4259 nfds = ioh->fd;
4260 }
4261 }
4262
4263 tv.tv_sec = timeout / 1000;
4264 tv.tv_usec = (timeout % 1000) * 1000;
4265
4266 #if defined(CONFIG_SLIRP)
4267 if (slirp_is_inited()) {
4268 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4269 }
4270 #endif
4271 qemu_mutex_unlock_iothread();
4272 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4273 qemu_mutex_lock_iothread();
4274 if (ret > 0) {
4275 IOHandlerRecord **pioh;
4276
4277 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4278 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4279 ioh->fd_read(ioh->opaque);
4280 }
4281 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4282 ioh->fd_write(ioh->opaque);
4283 }
4284 }
4285
4286 /* remove deleted IO handlers */
4287 pioh = &first_io_handler;
4288 while (*pioh) {
4289 ioh = *pioh;
4290 if (ioh->deleted) {
4291 *pioh = ioh->next;
4292 qemu_free(ioh);
4293 } else
4294 pioh = &ioh->next;
4295 }
4296 }
4297 #if defined(CONFIG_SLIRP)
4298 if (slirp_is_inited()) {
4299 if (ret < 0) {
4300 FD_ZERO(&rfds);
4301 FD_ZERO(&wfds);
4302 FD_ZERO(&xfds);
4303 }
4304 slirp_select_poll(&rfds, &wfds, &xfds);
4305 }
4306 #endif
4307
4308 /* rearm timer, if not periodic */
4309 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4310 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4311 qemu_rearm_alarm_timer(alarm_timer);
4312 }
4313
4314 /* vm time timers */
4315 if (vm_running) {
4316 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4317 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4318 qemu_get_clock(vm_clock));
4319 }
4320
4321 /* real time timers */
4322 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4323 qemu_get_clock(rt_clock));
4324
4325 /* Check bottom-halves last in case any of the earlier events triggered
4326 them. */
4327 qemu_bh_poll();
4328
4329 }
4330
4331 static int qemu_cpu_exec(CPUState *env)
4332 {
4333 int ret;
4334 #ifdef CONFIG_PROFILER
4335 int64_t ti;
4336 #endif
4337
4338 #ifdef CONFIG_PROFILER
4339 ti = profile_getclock();
4340 #endif
4341 if (use_icount) {
4342 int64_t count;
4343 int decr;
4344 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4345 env->icount_decr.u16.low = 0;
4346 env->icount_extra = 0;
4347 count = qemu_next_deadline();
4348 count = (count + (1 << icount_time_shift) - 1)
4349 >> icount_time_shift;
4350 qemu_icount += count;
4351 decr = (count > 0xffff) ? 0xffff : count;
4352 count -= decr;
4353 env->icount_decr.u16.low = decr;
4354 env->icount_extra = count;
4355 }
4356 ret = cpu_exec(env);
4357 #ifdef CONFIG_PROFILER
4358 qemu_time += profile_getclock() - ti;
4359 #endif
4360 if (use_icount) {
4361 /* Fold pending instructions back into the
4362 instruction counter, and clear the interrupt flag. */
4363 qemu_icount -= (env->icount_decr.u16.low
4364 + env->icount_extra);
4365 env->icount_decr.u32 = 0;
4366 env->icount_extra = 0;
4367 }
4368 return ret;
4369 }
4370
4371 static void tcg_cpu_exec(void)
4372 {
4373 int ret = 0;
4374
4375 if (next_cpu == NULL)
4376 next_cpu = first_cpu;
4377 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4378 CPUState *env = cur_cpu = next_cpu;
4379
4380 if (!vm_running)
4381 break;
4382 if (timer_alarm_pending) {
4383 timer_alarm_pending = 0;
4384 break;
4385 }
4386 if (cpu_can_run(env))
4387 ret = qemu_cpu_exec(env);
4388 if (ret == EXCP_DEBUG) {
4389 gdb_set_stop_cpu(env);
4390 debug_requested = 1;
4391 break;
4392 }
4393 }
4394 }
4395
4396 static int cpu_has_work(CPUState *env)
4397 {
4398 if (env->stop)
4399 return 1;
4400 if (env->stopped)
4401 return 0;
4402 if (!env->halted)
4403 return 1;
4404 if (qemu_cpu_has_work(env))
4405 return 1;
4406 return 0;
4407 }
4408
4409 static int tcg_has_work(void)
4410 {
4411 CPUState *env;
4412
4413 for (env = first_cpu; env != NULL; env = env->next_cpu)
4414 if (cpu_has_work(env))
4415 return 1;
4416 return 0;
4417 }
4418
4419 static int qemu_calculate_timeout(void)
4420 {
4421 int timeout;
4422
4423 if (!vm_running)
4424 timeout = 5000;
4425 else if (tcg_has_work())
4426 timeout = 0;
4427 else if (!use_icount)
4428 timeout = 5000;
4429 else {
4430 /* XXX: use timeout computed from timers */
4431 int64_t add;
4432 int64_t delta;
4433 /* Advance virtual time to the next event. */
4434 if (use_icount == 1) {
4435 /* When not using an adaptive execution frequency
4436 we tend to get badly out of sync with real time,
4437 so just delay for a reasonable amount of time. */
4438 delta = 0;
4439 } else {
4440 delta = cpu_get_icount() - cpu_get_clock();
4441 }
4442 if (delta > 0) {
4443 /* If virtual time is ahead of real time then just
4444 wait for IO. */
4445 timeout = (delta / 1000000) + 1;
4446 } else {
4447 /* Wait for either IO to occur or the next
4448 timer event. */
4449 add = qemu_next_deadline();
4450 /* We advance the timer before checking for IO.
4451 Limit the amount we advance so that early IO
4452 activity won't get the guest too far ahead. */
4453 if (add > 10000000)
4454 add = 10000000;
4455 delta += add;
4456 add = (add + (1 << icount_time_shift) - 1)
4457 >> icount_time_shift;
4458 qemu_icount += add;
4459 timeout = delta / 1000000;
4460 if (timeout < 0)
4461 timeout = 0;
4462 }
4463 }
4464
4465 return timeout;
4466 }
4467
4468 static int vm_can_run(void)
4469 {
4470 if (powerdown_requested)
4471 return 0;
4472 if (reset_requested)
4473 return 0;
4474 if (shutdown_requested)
4475 return 0;
4476 if (debug_requested)
4477 return 0;
4478 return 1;
4479 }
4480
4481 static void main_loop(void)
4482 {
4483 int r;
4484
4485 #ifdef CONFIG_IOTHREAD
4486 qemu_system_ready = 1;
4487 qemu_cond_broadcast(&qemu_system_cond);
4488 #endif
4489
4490 for (;;) {
4491 do {
4492 #ifdef CONFIG_PROFILER
4493 int64_t ti;
4494 #endif
4495 #ifndef CONFIG_IOTHREAD
4496 tcg_cpu_exec();
4497 #endif
4498 #ifdef CONFIG_PROFILER
4499 ti = profile_getclock();
4500 #endif
4501 #ifdef CONFIG_IOTHREAD
4502 main_loop_wait(1000);
4503 #else
4504 main_loop_wait(qemu_calculate_timeout());
4505 #endif
4506 #ifdef CONFIG_PROFILER
4507 dev_time += profile_getclock() - ti;
4508 #endif
4509 } while (vm_can_run());
4510
4511 if (qemu_debug_requested())
4512 vm_stop(EXCP_DEBUG);
4513 if (qemu_shutdown_requested()) {
4514 if (no_shutdown) {
4515 vm_stop(0);
4516 no_shutdown = 0;
4517 } else
4518 break;
4519 }
4520 if (qemu_reset_requested()) {
4521 pause_all_vcpus();
4522 qemu_system_reset();
4523 resume_all_vcpus();
4524 }
4525 if (qemu_powerdown_requested())
4526 qemu_system_powerdown();
4527 if ((r = qemu_vmstop_requested()))
4528 vm_stop(r);
4529 }
4530 pause_all_vcpus();
4531 }
4532
4533 static void version(void)
4534 {
4535 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4536 }
4537
4538 static void help(int exitcode)
4539 {
4540 version();
4541 printf("usage: %s [options] [disk_image]\n"
4542 "\n"
4543 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4544 "\n"
4545 #define DEF(option, opt_arg, opt_enum, opt_help) \
4546 opt_help
4547 #define DEFHEADING(text) stringify(text) "\n"
4548 #include "qemu-options.h"
4549 #undef DEF
4550 #undef DEFHEADING
4551 #undef GEN_DOCS
4552 "\n"
4553 "During emulation, the following keys are useful:\n"
4554 "ctrl-alt-f toggle full screen\n"
4555 "ctrl-alt-n switch to virtual console 'n'\n"
4556 "ctrl-alt toggle mouse and keyboard grab\n"
4557 "\n"
4558 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4559 ,
4560 "qemu",
4561 DEFAULT_RAM_SIZE,
4562 #ifndef _WIN32
4563 DEFAULT_NETWORK_SCRIPT,
4564 DEFAULT_NETWORK_DOWN_SCRIPT,
4565 #endif
4566 DEFAULT_GDBSTUB_PORT,
4567 "/tmp/qemu.log");
4568 exit(exitcode);
4569 }
4570
4571 #define HAS_ARG 0x0001
4572
4573 enum {
4574 #define DEF(option, opt_arg, opt_enum, opt_help) \
4575 opt_enum,
4576 #define DEFHEADING(text)
4577 #include "qemu-options.h"
4578 #undef DEF
4579 #undef DEFHEADING
4580 #undef GEN_DOCS
4581 };
4582
4583 typedef struct QEMUOption {
4584 const char *name;
4585 int flags;
4586 int index;
4587 } QEMUOption;
4588
4589 static const QEMUOption qemu_options[] = {
4590 { "h", 0, QEMU_OPTION_h },
4591 #define DEF(option, opt_arg, opt_enum, opt_help) \
4592 { option, opt_arg, opt_enum },
4593 #define DEFHEADING(text)
4594 #include "qemu-options.h"
4595 #undef DEF
4596 #undef DEFHEADING
4597 #undef GEN_DOCS
4598 { NULL },
4599 };
4600
4601 #ifdef HAS_AUDIO
4602 struct soundhw soundhw[] = {
4603 #ifdef HAS_AUDIO_CHOICE
4604 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4605 {
4606 "pcspk",
4607 "PC speaker",
4608 0,
4609 1,
4610 { .init_isa = pcspk_audio_init }
4611 },
4612 #endif
4613
4614 #ifdef CONFIG_SB16
4615 {
4616 "sb16",
4617 "Creative Sound Blaster 16",
4618 0,
4619 1,
4620 { .init_isa = SB16_init }
4621 },
4622 #endif
4623
4624 #ifdef CONFIG_CS4231A
4625 {
4626 "cs4231a",
4627 "CS4231A",
4628 0,
4629 1,
4630 { .init_isa = cs4231a_init }
4631 },
4632 #endif
4633
4634 #ifdef CONFIG_ADLIB
4635 {
4636 "adlib",
4637 #ifdef HAS_YMF262
4638 "Yamaha YMF262 (OPL3)",
4639 #else
4640 "Yamaha YM3812 (OPL2)",
4641 #endif
4642 0,
4643 1,
4644 { .init_isa = Adlib_init }
4645 },
4646 #endif
4647
4648 #ifdef CONFIG_GUS
4649 {
4650 "gus",
4651 "Gravis Ultrasound GF1",
4652 0,
4653 1,
4654 { .init_isa = GUS_init }
4655 },
4656 #endif
4657
4658 #ifdef CONFIG_AC97
4659 {
4660 "ac97",
4661 "Intel 82801AA AC97 Audio",
4662 0,
4663 0,
4664 { .init_pci = ac97_init }
4665 },
4666 #endif
4667
4668 #ifdef CONFIG_ES1370
4669 {
4670 "es1370",
4671 "ENSONIQ AudioPCI ES1370",
4672 0,
4673 0,
4674 { .init_pci = es1370_init }
4675 },
4676 #endif
4677
4678 #endif /* HAS_AUDIO_CHOICE */
4679
4680 { NULL, NULL, 0, 0, { NULL } }
4681 };
4682
4683 static void select_soundhw (const char *optarg)
4684 {
4685 struct soundhw *c;
4686
4687 if (*optarg == '?') {
4688 show_valid_cards:
4689
4690 printf ("Valid sound card names (comma separated):\n");
4691 for (c = soundhw; c->name; ++c) {
4692 printf ("%-11s %s\n", c->name, c->descr);
4693 }
4694 printf ("\n-soundhw all will enable all of the above\n");
4695 exit (*optarg != '?');
4696 }
4697 else {
4698 size_t l;
4699 const char *p;
4700 char *e;
4701 int bad_card = 0;
4702
4703 if (!strcmp (optarg, "all")) {
4704 for (c = soundhw; c->name; ++c) {
4705 c->enabled = 1;
4706 }
4707 return;
4708 }
4709
4710 p = optarg;
4711 while (*p) {
4712 e = strchr (p, ',');
4713 l = !e ? strlen (p) : (size_t) (e - p);
4714
4715 for (c = soundhw; c->name; ++c) {
4716 if (!strncmp (c->name, p, l)) {
4717 c->enabled = 1;
4718 break;
4719 }
4720 }
4721
4722 if (!c->name) {
4723 if (l > 80) {
4724 fprintf (stderr,
4725 "Unknown sound card name (too big to show)\n");
4726 }
4727 else {
4728 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4729 (int) l, p);
4730 }
4731 bad_card = 1;
4732 }
4733 p += l + (e != NULL);
4734 }
4735
4736 if (bad_card)
4737 goto show_valid_cards;
4738 }
4739 }
4740 #endif
4741
4742 static void select_vgahw (const char *p)
4743 {
4744 const char *opts;
4745
4746 cirrus_vga_enabled = 0;
4747 std_vga_enabled = 0;
4748 vmsvga_enabled = 0;
4749 xenfb_enabled = 0;
4750 if (strstart(p, "std", &opts)) {
4751 std_vga_enabled = 1;
4752 } else if (strstart(p, "cirrus", &opts)) {
4753 cirrus_vga_enabled = 1;
4754 } else if (strstart(p, "vmware", &opts)) {
4755 vmsvga_enabled = 1;
4756 } else if (strstart(p, "xenfb", &opts)) {
4757 xenfb_enabled = 1;
4758 } else if (!strstart(p, "none", &opts)) {
4759 invalid_vga:
4760 fprintf(stderr, "Unknown vga type: %s\n", p);
4761 exit(1);
4762 }
4763 while (*opts) {
4764 const char *nextopt;
4765
4766 if (strstart(opts, ",retrace=", &nextopt)) {
4767 opts = nextopt;
4768 if (strstart(opts, "dumb", &nextopt))
4769 vga_retrace_method = VGA_RETRACE_DUMB;
4770 else if (strstart(opts, "precise", &nextopt))
4771 vga_retrace_method = VGA_RETRACE_PRECISE;
4772 else goto invalid_vga;
4773 } else goto invalid_vga;
4774 opts = nextopt;
4775 }
4776 }
4777
4778 #ifdef _WIN32
4779 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4780 {
4781 exit(STATUS_CONTROL_C_EXIT);
4782 return TRUE;
4783 }
4784 #endif
4785
4786 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4787 {
4788 int ret;
4789
4790 if(strlen(str) != 36)
4791 return -1;
4792
4793 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4794 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4795 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4796
4797 if(ret != 16)
4798 return -1;
4799
4800 #ifdef TARGET_I386
4801 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4802 #endif
4803
4804 return 0;
4805 }
4806
4807 #define MAX_NET_CLIENTS 32
4808
4809 #ifndef _WIN32
4810
4811 static void termsig_handler(int signal)
4812 {
4813 qemu_system_shutdown_request();
4814 }
4815
4816 static void termsig_setup(void)
4817 {
4818 struct sigaction act;
4819
4820 memset(&act, 0, sizeof(act));
4821 act.sa_handler = termsig_handler;
4822 sigaction(SIGINT, &act, NULL);
4823 sigaction(SIGHUP, &act, NULL);
4824 sigaction(SIGTERM, &act, NULL);
4825 }
4826
4827 #endif
4828
4829 int main(int argc, char **argv, char **envp)
4830 {
4831 const char *gdbstub_dev = NULL;
4832 uint32_t boot_devices_bitmap = 0;
4833 int i;
4834 int snapshot, linux_boot, net_boot;
4835 const char *initrd_filename;
4836 const char *kernel_filename, *kernel_cmdline;
4837 const char *boot_devices = "";
4838 DisplayState *ds;
4839 DisplayChangeListener *dcl;
4840 int cyls, heads, secs, translation;
4841 const char *net_clients[MAX_NET_CLIENTS];
4842 int nb_net_clients;
4843 const char *bt_opts[MAX_BT_CMDLINE];
4844 int nb_bt_opts;
4845 int hda_index;
4846 int optind;
4847 const char *r, *optarg;
4848 CharDriverState *monitor_hd = NULL;
4849 const char *monitor_device;
4850 const char *serial_devices[MAX_SERIAL_PORTS];
4851 int serial_device_index;
4852 const char *parallel_devices[MAX_PARALLEL_PORTS];
4853 int parallel_device_index;
4854 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4855 int virtio_console_index;
4856 const char *loadvm = NULL;
4857 QEMUMachine *machine;
4858 const char *cpu_model;
4859 const char *usb_devices[MAX_USB_CMDLINE];
4860 int usb_devices_index;
4861 #ifndef _WIN32
4862 int fds[2];
4863 #endif
4864 int tb_size;
4865 const char *pid_file = NULL;
4866 const char *incoming = NULL;
4867 #ifndef _WIN32
4868 int fd = 0;
4869 struct passwd *pwd = NULL;
4870 const char *chroot_dir = NULL;
4871 const char *run_as = NULL;
4872 #endif
4873 CPUState *env;
4874 int show_vnc_port = 0;
4875
4876 qemu_cache_utils_init(envp);
4877
4878 LIST_INIT (&vm_change_state_head);
4879 #ifndef _WIN32
4880 {
4881 struct sigaction act;
4882 sigfillset(&act.sa_mask);
4883 act.sa_flags = 0;
4884 act.sa_handler = SIG_IGN;
4885 sigaction(SIGPIPE, &act, NULL);
4886 }
4887 #else
4888 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4889 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4890 QEMU to run on a single CPU */
4891 {
4892 HANDLE h;
4893 DWORD mask, smask;
4894 int i;
4895 h = GetCurrentProcess();
4896 if (GetProcessAffinityMask(h, &mask, &smask)) {
4897 for(i = 0; i < 32; i++) {
4898 if (mask & (1 << i))
4899 break;
4900 }
4901 if (i != 32) {
4902 mask = 1 << i;
4903 SetProcessAffinityMask(h, mask);
4904 }
4905 }
4906 }
4907 #endif
4908
4909 module_call_init(MODULE_INIT_MACHINE);
4910 machine = find_default_machine();
4911 cpu_model = NULL;
4912 initrd_filename = NULL;
4913 ram_size = 0;
4914 snapshot = 0;
4915 kernel_filename = NULL;
4916 kernel_cmdline = "";
4917 cyls = heads = secs = 0;
4918 translation = BIOS_ATA_TRANSLATION_AUTO;
4919 monitor_device = "vc:80Cx24C";
4920
4921 serial_devices[0] = "vc:80Cx24C";
4922 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4923 serial_devices[i] = NULL;
4924 serial_device_index = 0;
4925
4926 parallel_devices[0] = "vc:80Cx24C";
4927 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4928 parallel_devices[i] = NULL;
4929 parallel_device_index = 0;
4930
4931 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4932 virtio_consoles[i] = NULL;
4933 virtio_console_index = 0;
4934
4935 for (i = 0; i < MAX_NODES; i++) {
4936 node_mem[i] = 0;
4937 node_cpumask[i] = 0;
4938 }
4939
4940 usb_devices_index = 0;
4941
4942 nb_net_clients = 0;
4943 nb_bt_opts = 0;
4944 nb_drives = 0;
4945 nb_drives_opt = 0;
4946 nb_numa_nodes = 0;
4947 hda_index = -1;
4948
4949 nb_nics = 0;
4950
4951 tb_size = 0;
4952 autostart= 1;
4953
4954 register_watchdogs();
4955
4956 optind = 1;
4957 for(;;) {
4958 if (optind >= argc)
4959 break;
4960 r = argv[optind];
4961 if (r[0] != '-') {
4962 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4963 } else {
4964 const QEMUOption *popt;
4965
4966 optind++;
4967 /* Treat --foo the same as -foo. */
4968 if (r[1] == '-')
4969 r++;
4970 popt = qemu_options;
4971 for(;;) {
4972 if (!popt->name) {
4973 fprintf(stderr, "%s: invalid option -- '%s'\n",
4974 argv[0], r);
4975 exit(1);
4976 }
4977 if (!strcmp(popt->name, r + 1))
4978 break;
4979 popt++;
4980 }
4981 if (popt->flags & HAS_ARG) {
4982 if (optind >= argc) {
4983 fprintf(stderr, "%s: option '%s' requires an argument\n",
4984 argv[0], r);
4985 exit(1);
4986 }
4987 optarg = argv[optind++];
4988 } else {
4989 optarg = NULL;
4990 }
4991
4992 switch(popt->index) {
4993 case QEMU_OPTION_M:
4994 machine = find_machine(optarg);
4995 if (!machine) {
4996 QEMUMachine *m;
4997 printf("Supported machines are:\n");
4998 for(m = first_machine; m != NULL; m = m->next) {
4999 printf("%-10s %s%s\n",
5000 m->name, m->desc,
5001 m->is_default ? " (default)" : "");
5002 }
5003 exit(*optarg != '?');
5004 }
5005 break;
5006 case QEMU_OPTION_cpu:
5007 /* hw initialization will check this */
5008 if (*optarg == '?') {
5009 /* XXX: implement xxx_cpu_list for targets that still miss it */
5010 #if defined(cpu_list)
5011 cpu_list(stdout, &fprintf);
5012 #endif
5013 exit(0);
5014 } else {
5015 cpu_model = optarg;
5016 }
5017 break;
5018 case QEMU_OPTION_initrd:
5019 initrd_filename = optarg;
5020 break;
5021 case QEMU_OPTION_hda:
5022 if (cyls == 0)
5023 hda_index = drive_add(optarg, HD_ALIAS, 0);
5024 else
5025 hda_index = drive_add(optarg, HD_ALIAS
5026 ",cyls=%d,heads=%d,secs=%d%s",
5027 0, cyls, heads, secs,
5028 translation == BIOS_ATA_TRANSLATION_LBA ?
5029 ",trans=lba" :
5030 translation == BIOS_ATA_TRANSLATION_NONE ?
5031 ",trans=none" : "");
5032 break;
5033 case QEMU_OPTION_hdb:
5034 case QEMU_OPTION_hdc:
5035 case QEMU_OPTION_hdd:
5036 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5037 break;
5038 case QEMU_OPTION_drive:
5039 drive_add(NULL, "%s", optarg);
5040 break;
5041 case QEMU_OPTION_mtdblock:
5042 drive_add(optarg, MTD_ALIAS);
5043 break;
5044 case QEMU_OPTION_sd:
5045 drive_add(optarg, SD_ALIAS);
5046 break;
5047 case QEMU_OPTION_pflash:
5048 drive_add(optarg, PFLASH_ALIAS);
5049 break;
5050 case QEMU_OPTION_snapshot:
5051 snapshot = 1;
5052 break;
5053 case QEMU_OPTION_hdachs:
5054 {
5055 const char *p;
5056 p = optarg;
5057 cyls = strtol(p, (char **)&p, 0);
5058 if (cyls < 1 || cyls > 16383)
5059 goto chs_fail;
5060 if (*p != ',')
5061 goto chs_fail;
5062 p++;
5063 heads = strtol(p, (char **)&p, 0);
5064 if (heads < 1 || heads > 16)
5065 goto chs_fail;
5066 if (*p != ',')
5067 goto chs_fail;
5068 p++;
5069 secs = strtol(p, (char **)&p, 0);
5070 if (secs < 1 || secs > 63)
5071 goto chs_fail;
5072 if (*p == ',') {
5073 p++;
5074 if (!strcmp(p, "none"))
5075 translation = BIOS_ATA_TRANSLATION_NONE;
5076 else if (!strcmp(p, "lba"))
5077 translation = BIOS_ATA_TRANSLATION_LBA;
5078 else if (!strcmp(p, "auto"))
5079 translation = BIOS_ATA_TRANSLATION_AUTO;
5080 else
5081 goto chs_fail;
5082 } else if (*p != '\0') {
5083 chs_fail:
5084 fprintf(stderr, "qemu: invalid physical CHS format\n");
5085 exit(1);
5086 }
5087 if (hda_index != -1)
5088 snprintf(drives_opt[hda_index].opt,
5089 sizeof(drives_opt[hda_index].opt),
5090 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5091 0, cyls, heads, secs,
5092 translation == BIOS_ATA_TRANSLATION_LBA ?
5093 ",trans=lba" :
5094 translation == BIOS_ATA_TRANSLATION_NONE ?
5095 ",trans=none" : "");
5096 }
5097 break;
5098 case QEMU_OPTION_numa:
5099 if (nb_numa_nodes >= MAX_NODES) {
5100 fprintf(stderr, "qemu: too many NUMA nodes\n");
5101 exit(1);
5102 }
5103 numa_add(optarg);
5104 break;
5105 case QEMU_OPTION_nographic:
5106 display_type = DT_NOGRAPHIC;
5107 break;
5108 #ifdef CONFIG_CURSES
5109 case QEMU_OPTION_curses:
5110 display_type = DT_CURSES;
5111 break;
5112 #endif
5113 case QEMU_OPTION_portrait:
5114 graphic_rotate = 1;
5115 break;
5116 case QEMU_OPTION_kernel:
5117 kernel_filename = optarg;
5118 break;
5119 case QEMU_OPTION_append:
5120 kernel_cmdline = optarg;
5121 break;
5122 case QEMU_OPTION_cdrom:
5123 drive_add(optarg, CDROM_ALIAS);
5124 break;
5125 case QEMU_OPTION_boot:
5126 boot_devices = optarg;
5127 /* We just do some generic consistency checks */
5128 {
5129 /* Could easily be extended to 64 devices if needed */
5130 const char *p;
5131
5132 boot_devices_bitmap = 0;
5133 for (p = boot_devices; *p != '\0'; p++) {
5134 /* Allowed boot devices are:
5135 * a b : floppy disk drives
5136 * c ... f : IDE disk drives
5137 * g ... m : machine implementation dependant drives
5138 * n ... p : network devices
5139 * It's up to each machine implementation to check
5140 * if the given boot devices match the actual hardware
5141 * implementation and firmware features.
5142 */
5143 if (*p < 'a' || *p > 'q') {
5144 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5145 exit(1);
5146 }
5147 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5148 fprintf(stderr,
5149 "Boot device '%c' was given twice\n",*p);
5150 exit(1);
5151 }
5152 boot_devices_bitmap |= 1 << (*p - 'a');
5153 }
5154 }
5155 break;
5156 case QEMU_OPTION_fda:
5157 case QEMU_OPTION_fdb:
5158 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5159 break;
5160 #ifdef TARGET_I386
5161 case QEMU_OPTION_no_fd_bootchk:
5162 fd_bootchk = 0;
5163 break;
5164 #endif
5165 case QEMU_OPTION_net:
5166 if (nb_net_clients >= MAX_NET_CLIENTS) {
5167 fprintf(stderr, "qemu: too many network clients\n");
5168 exit(1);
5169 }
5170 net_clients[nb_net_clients] = optarg;
5171 nb_net_clients++;
5172 break;
5173 #ifdef CONFIG_SLIRP
5174 case QEMU_OPTION_tftp:
5175 tftp_prefix = optarg;
5176 break;
5177 case QEMU_OPTION_bootp:
5178 bootp_filename = optarg;
5179 break;
5180 #ifndef _WIN32
5181 case QEMU_OPTION_smb:
5182 net_slirp_smb(optarg);
5183 break;
5184 #endif
5185 case QEMU_OPTION_redir:
5186 net_slirp_redir(NULL, optarg);
5187 break;
5188 #endif
5189 case QEMU_OPTION_bt:
5190 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5191 fprintf(stderr, "qemu: too many bluetooth options\n");
5192 exit(1);
5193 }
5194 bt_opts[nb_bt_opts++] = optarg;
5195 break;
5196 #ifdef HAS_AUDIO
5197 case QEMU_OPTION_audio_help:
5198 AUD_help ();
5199 exit (0);
5200 break;
5201 case QEMU_OPTION_soundhw:
5202 select_soundhw (optarg);
5203 break;
5204 #endif
5205 case QEMU_OPTION_h:
5206 help(0);
5207 break;
5208 case QEMU_OPTION_version:
5209 version();
5210 exit(0);
5211 break;
5212 case QEMU_OPTION_m: {
5213 uint64_t value;
5214 char *ptr;
5215
5216 value = strtoul(optarg, &ptr, 10);
5217 switch (*ptr) {
5218 case 0: case 'M': case 'm':
5219 value <<= 20;
5220 break;
5221 case 'G': case 'g':
5222 value <<= 30;
5223 break;
5224 default:
5225 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5226 exit(1);
5227 }
5228
5229 /* On 32-bit hosts, QEMU is limited by virtual address space */
5230 if (value > (2047 << 20)
5231 #ifndef CONFIG_KQEMU
5232 && HOST_LONG_BITS == 32
5233 #endif
5234 ) {
5235 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5236 exit(1);
5237 }
5238 if (value != (uint64_t)(ram_addr_t)value) {
5239 fprintf(stderr, "qemu: ram size too large\n");
5240 exit(1);
5241 }
5242 ram_size = value;
5243 break;
5244 }
5245 case QEMU_OPTION_d:
5246 {
5247 int mask;
5248 const CPULogItem *item;
5249
5250 mask = cpu_str_to_log_mask(optarg);
5251 if (!mask) {
5252 printf("Log items (comma separated):\n");
5253 for(item = cpu_log_items; item->mask != 0; item++) {
5254 printf("%-10s %s\n", item->name, item->help);
5255 }
5256 exit(1);
5257 }
5258 cpu_set_log(mask);
5259 }
5260 break;
5261 case QEMU_OPTION_s:
5262 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5263 break;
5264 case QEMU_OPTION_gdb:
5265 gdbstub_dev = optarg;
5266 break;
5267 case QEMU_OPTION_L:
5268 bios_dir = optarg;
5269 break;
5270 case QEMU_OPTION_bios:
5271 bios_name = optarg;
5272 break;
5273 case QEMU_OPTION_singlestep:
5274 singlestep = 1;
5275 break;
5276 case QEMU_OPTION_S:
5277 autostart = 0;
5278 break;
5279 #ifndef _WIN32
5280 case QEMU_OPTION_k:
5281 keyboard_layout = optarg;
5282 break;
5283 #endif
5284 case QEMU_OPTION_localtime:
5285 rtc_utc = 0;
5286 break;
5287 case QEMU_OPTION_vga:
5288 select_vgahw (optarg);
5289 break;
5290 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5291 case QEMU_OPTION_g:
5292 {
5293 const char *p;
5294 int w, h, depth;
5295 p = optarg;
5296 w = strtol(p, (char **)&p, 10);
5297 if (w <= 0) {
5298 graphic_error:
5299 fprintf(stderr, "qemu: invalid resolution or depth\n");
5300 exit(1);
5301 }
5302 if (*p != 'x')
5303 goto graphic_error;
5304 p++;
5305 h = strtol(p, (char **)&p, 10);
5306 if (h <= 0)
5307 goto graphic_error;
5308 if (*p == 'x') {
5309 p++;
5310 depth = strtol(p, (char **)&p, 10);
5311 if (depth != 8 && depth != 15 && depth != 16 &&
5312 depth != 24 && depth != 32)
5313 goto graphic_error;
5314 } else if (*p == '\0') {
5315 depth = graphic_depth;
5316 } else {
5317 goto graphic_error;
5318 }
5319
5320 graphic_width = w;
5321 graphic_height = h;
5322 graphic_depth = depth;
5323 }
5324 break;
5325 #endif
5326 case QEMU_OPTION_echr:
5327 {
5328 char *r;
5329 term_escape_char = strtol(optarg, &r, 0);
5330 if (r == optarg)
5331 printf("Bad argument to echr\n");
5332 break;
5333 }
5334 case QEMU_OPTION_monitor:
5335 monitor_device = optarg;
5336 break;
5337 case QEMU_OPTION_serial:
5338 if (serial_device_index >= MAX_SERIAL_PORTS) {
5339 fprintf(stderr, "qemu: too many serial ports\n");
5340 exit(1);
5341 }
5342 serial_devices[serial_device_index] = optarg;
5343 serial_device_index++;
5344 break;
5345 case QEMU_OPTION_watchdog:
5346 i = select_watchdog(optarg);
5347 if (i > 0)
5348 exit (i == 1 ? 1 : 0);
5349 break;
5350 case QEMU_OPTION_watchdog_action:
5351 if (select_watchdog_action(optarg) == -1) {
5352 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5353 exit(1);
5354 }
5355 break;
5356 case QEMU_OPTION_virtiocon:
5357 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5358 fprintf(stderr, "qemu: too many virtio consoles\n");
5359 exit(1);
5360 }
5361 virtio_consoles[virtio_console_index] = optarg;
5362 virtio_console_index++;
5363 break;
5364 case QEMU_OPTION_parallel:
5365 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5366 fprintf(stderr, "qemu: too many parallel ports\n");
5367 exit(1);
5368 }
5369 parallel_devices[parallel_device_index] = optarg;
5370 parallel_device_index++;
5371 break;
5372 case QEMU_OPTION_loadvm:
5373 loadvm = optarg;
5374 break;
5375 case QEMU_OPTION_full_screen:
5376 full_screen = 1;
5377 break;
5378 #ifdef CONFIG_SDL
5379 case QEMU_OPTION_no_frame:
5380 no_frame = 1;
5381 break;
5382 case QEMU_OPTION_alt_grab:
5383 alt_grab = 1;
5384 break;
5385 case QEMU_OPTION_no_quit:
5386 no_quit = 1;
5387 break;
5388 case QEMU_OPTION_sdl:
5389 display_type = DT_SDL;
5390 break;
5391 #endif
5392 case QEMU_OPTION_pidfile:
5393 pid_file = optarg;
5394 break;
5395 #ifdef TARGET_I386
5396 case QEMU_OPTION_win2k_hack:
5397 win2k_install_hack = 1;
5398 break;
5399 case QEMU_OPTION_rtc_td_hack:
5400 rtc_td_hack = 1;
5401 break;
5402 case QEMU_OPTION_acpitable:
5403 if(acpi_table_add(optarg) < 0) {
5404 fprintf(stderr, "Wrong acpi table provided\n");
5405 exit(1);
5406 }
5407 break;
5408 case QEMU_OPTION_smbios:
5409 if(smbios_entry_add(optarg) < 0) {
5410 fprintf(stderr, "Wrong smbios provided\n");
5411 exit(1);
5412 }
5413 break;
5414 #endif
5415 #ifdef CONFIG_KQEMU
5416 case QEMU_OPTION_no_kqemu:
5417 kqemu_allowed = 0;
5418 break;
5419 case QEMU_OPTION_kernel_kqemu:
5420 kqemu_allowed = 2;
5421 break;
5422 #endif
5423 #ifdef CONFIG_KVM
5424 case QEMU_OPTION_enable_kvm:
5425 kvm_allowed = 1;
5426 #ifdef CONFIG_KQEMU
5427 kqemu_allowed = 0;
5428 #endif
5429 break;
5430 #endif
5431 case QEMU_OPTION_usb:
5432 usb_enabled = 1;
5433 break;
5434 case QEMU_OPTION_usbdevice:
5435 usb_enabled = 1;
5436 if (usb_devices_index >= MAX_USB_CMDLINE) {
5437 fprintf(stderr, "Too many USB devices\n");
5438 exit(1);
5439 }
5440 usb_devices[usb_devices_index] = optarg;
5441 usb_devices_index++;
5442 break;
5443 case QEMU_OPTION_smp:
5444 smp_cpus = atoi(optarg);
5445 if (smp_cpus < 1) {
5446 fprintf(stderr, "Invalid number of CPUs\n");
5447 exit(1);
5448 }
5449 break;
5450 case QEMU_OPTION_vnc:
5451 display_type = DT_VNC;
5452 vnc_display = optarg;
5453 break;
5454 #ifdef TARGET_I386
5455 case QEMU_OPTION_no_acpi:
5456 acpi_enabled = 0;
5457 break;
5458 case QEMU_OPTION_no_hpet:
5459 no_hpet = 1;
5460 break;
5461 #endif
5462 case QEMU_OPTION_no_reboot:
5463 no_reboot = 1;
5464 break;
5465 case QEMU_OPTION_no_shutdown:
5466 no_shutdown = 1;
5467 break;
5468 case QEMU_OPTION_show_cursor:
5469 cursor_hide = 0;
5470 break;
5471 case QEMU_OPTION_uuid:
5472 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5473 fprintf(stderr, "Fail to parse UUID string."
5474 " Wrong format.\n");
5475 exit(1);
5476 }
5477 break;
5478 #ifndef _WIN32
5479 case QEMU_OPTION_daemonize:
5480 daemonize = 1;
5481 break;
5482 #endif
5483 case QEMU_OPTION_option_rom:
5484 if (nb_option_roms >= MAX_OPTION_ROMS) {
5485 fprintf(stderr, "Too many option ROMs\n");
5486 exit(1);
5487 }
5488 option_rom[nb_option_roms] = optarg;
5489 nb_option_roms++;
5490 break;
5491 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5492 case QEMU_OPTION_semihosting:
5493 semihosting_enabled = 1;
5494 break;
5495 #endif
5496 case QEMU_OPTION_name:
5497 qemu_name = optarg;
5498 break;
5499 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5500 case QEMU_OPTION_prom_env:
5501 if (nb_prom_envs >= MAX_PROM_ENVS) {
5502 fprintf(stderr, "Too many prom variables\n");
5503 exit(1);
5504 }
5505 prom_envs[nb_prom_envs] = optarg;
5506 nb_prom_envs++;
5507 break;
5508 #endif
5509 #ifdef TARGET_ARM
5510 case QEMU_OPTION_old_param:
5511 old_param = 1;
5512 break;
5513 #endif
5514 case QEMU_OPTION_clock:
5515 configure_alarms(optarg);
5516 break;
5517 case QEMU_OPTION_startdate:
5518 {
5519 struct tm tm;
5520 time_t rtc_start_date;
5521 if (!strcmp(optarg, "now")) {
5522 rtc_date_offset = -1;
5523 } else {
5524 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5525 &tm.tm_year,
5526 &tm.tm_mon,
5527 &tm.tm_mday,
5528 &tm.tm_hour,
5529 &tm.tm_min,
5530 &tm.tm_sec) == 6) {
5531 /* OK */
5532 } else if (sscanf(optarg, "%d-%d-%d",
5533 &tm.tm_year,
5534 &tm.tm_mon,
5535 &tm.tm_mday) == 3) {
5536 tm.tm_hour = 0;
5537 tm.tm_min = 0;
5538 tm.tm_sec = 0;
5539 } else {
5540 goto date_fail;
5541 }
5542 tm.tm_year -= 1900;
5543 tm.tm_mon--;
5544 rtc_start_date = mktimegm(&tm);
5545 if (rtc_start_date == -1) {
5546 date_fail:
5547 fprintf(stderr, "Invalid date format. Valid format are:\n"
5548 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5549 exit(1);
5550 }
5551 rtc_date_offset = time(NULL) - rtc_start_date;
5552 }
5553 }
5554 break;
5555 case QEMU_OPTION_tb_size:
5556 tb_size = strtol(optarg, NULL, 0);
5557 if (tb_size < 0)
5558 tb_size = 0;
5559 break;
5560 case QEMU_OPTION_icount:
5561 use_icount = 1;
5562 if (strcmp(optarg, "auto") == 0) {
5563 icount_time_shift = -1;
5564 } else {
5565 icount_time_shift = strtol(optarg, NULL, 0);
5566 }
5567 break;
5568 case QEMU_OPTION_incoming:
5569 incoming = optarg;
5570 break;
5571 #ifndef _WIN32
5572 case QEMU_OPTION_chroot:
5573 chroot_dir = optarg;
5574 break;
5575 case QEMU_OPTION_runas:
5576 run_as = optarg;
5577 break;
5578 #endif
5579 #ifdef CONFIG_XEN
5580 case QEMU_OPTION_xen_domid:
5581 xen_domid = atoi(optarg);
5582 break;
5583 case QEMU_OPTION_xen_create:
5584 xen_mode = XEN_CREATE;
5585 break;
5586 case QEMU_OPTION_xen_attach:
5587 xen_mode = XEN_ATTACH;
5588 break;
5589 #endif
5590 }
5591 }
5592 }
5593
5594 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5595 if (kvm_allowed && kqemu_allowed) {
5596 fprintf(stderr,
5597 "You can not enable both KVM and kqemu at the same time\n");
5598 exit(1);
5599 }
5600 #endif
5601
5602 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5603 if (smp_cpus > machine->max_cpus) {
5604 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5605 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5606 machine->max_cpus);
5607 exit(1);
5608 }
5609
5610 if (display_type == DT_NOGRAPHIC) {
5611 if (serial_device_index == 0)
5612 serial_devices[0] = "stdio";
5613 if (parallel_device_index == 0)
5614 parallel_devices[0] = "null";
5615 if (strncmp(monitor_device, "vc", 2) == 0)
5616 monitor_device = "stdio";
5617 }
5618
5619 #ifndef _WIN32
5620 if (daemonize) {
5621 pid_t pid;
5622
5623 if (pipe(fds) == -1)
5624 exit(1);
5625
5626 pid = fork();
5627 if (pid > 0) {
5628 uint8_t status;
5629 ssize_t len;
5630
5631 close(fds[1]);
5632
5633 again:
5634 len = read(fds[0], &status, 1);
5635 if (len == -1 && (errno == EINTR))
5636 goto again;
5637
5638 if (len != 1)
5639 exit(1);
5640 else if (status == 1) {
5641 fprintf(stderr, "Could not acquire pidfile\n");
5642 exit(1);
5643 } else
5644 exit(0);
5645 } else if (pid < 0)
5646 exit(1);
5647
5648 setsid();
5649
5650 pid = fork();
5651 if (pid > 0)
5652 exit(0);
5653 else if (pid < 0)
5654 exit(1);
5655
5656 umask(027);
5657
5658 signal(SIGTSTP, SIG_IGN);
5659 signal(SIGTTOU, SIG_IGN);
5660 signal(SIGTTIN, SIG_IGN);
5661 }
5662
5663 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5664 if (daemonize) {
5665 uint8_t status = 1;
5666 write(fds[1], &status, 1);
5667 } else
5668 fprintf(stderr, "Could not acquire pid file\n");
5669 exit(1);
5670 }
5671 #endif
5672
5673 #ifdef CONFIG_KQEMU
5674 if (smp_cpus > 1)
5675 kqemu_allowed = 0;
5676 #endif
5677 if (qemu_init_main_loop()) {
5678 fprintf(stderr, "qemu_init_main_loop failed\n");
5679 exit(1);
5680 }
5681 linux_boot = (kernel_filename != NULL);
5682 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5683
5684 if (!linux_boot && *kernel_cmdline != '\0') {
5685 fprintf(stderr, "-append only allowed with -kernel option\n");
5686 exit(1);
5687 }
5688
5689 if (!linux_boot && initrd_filename != NULL) {
5690 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5691 exit(1);
5692 }
5693
5694 /* boot to floppy or the default cd if no hard disk defined yet */
5695 if (!boot_devices[0]) {
5696 boot_devices = "cad";
5697 }
5698 setvbuf(stdout, NULL, _IOLBF, 0);
5699
5700 init_timers();
5701 if (init_timer_alarm() < 0) {
5702 fprintf(stderr, "could not initialize alarm timer\n");
5703 exit(1);
5704 }
5705 if (use_icount && icount_time_shift < 0) {
5706 use_icount = 2;
5707 /* 125MIPS seems a reasonable initial guess at the guest speed.
5708 It will be corrected fairly quickly anyway. */
5709 icount_time_shift = 3;
5710 init_icount_adjust();
5711 }
5712
5713 #ifdef _WIN32
5714 socket_init();
5715 #endif
5716
5717 /* init network clients */
5718 if (nb_net_clients == 0) {
5719 /* if no clients, we use a default config */
5720 net_clients[nb_net_clients++] = "nic";
5721 #ifdef CONFIG_SLIRP
5722 net_clients[nb_net_clients++] = "user";
5723 #endif
5724 }
5725
5726 for(i = 0;i < nb_net_clients; i++) {
5727 if (net_client_parse(net_clients[i]) < 0)
5728 exit(1);
5729 }
5730 net_client_check();
5731
5732 #ifdef TARGET_I386
5733 /* XXX: this should be moved in the PC machine instantiation code */
5734 if (net_boot != 0) {
5735 int netroms = 0;
5736 for (i = 0; i < nb_nics && i < 4; i++) {
5737 const char *model = nd_table[i].model;
5738 char buf[1024];
5739 if (net_boot & (1 << i)) {
5740 if (model == NULL)
5741 model = "ne2k_pci";
5742 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5743 if (get_image_size(buf) > 0) {
5744 if (nb_option_roms >= MAX_OPTION_ROMS) {
5745 fprintf(stderr, "Too many option ROMs\n");
5746 exit(1);
5747 }
5748 option_rom[nb_option_roms] = strdup(buf);
5749 nb_option_roms++;
5750 netroms++;
5751 }
5752 }
5753 }
5754 if (netroms == 0) {
5755 fprintf(stderr, "No valid PXE rom found for network device\n");
5756 exit(1);
5757 }
5758 }
5759 #endif
5760
5761 /* init the bluetooth world */
5762 for (i = 0; i < nb_bt_opts; i++)
5763 if (bt_parse(bt_opts[i]))
5764 exit(1);
5765
5766 /* init the memory */
5767 if (ram_size == 0)
5768 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5769
5770 #ifdef CONFIG_KQEMU
5771 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5772 guest ram allocation. It needs to go away. */
5773 if (kqemu_allowed) {
5774 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5775 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5776 if (!kqemu_phys_ram_base) {
5777 fprintf(stderr, "Could not allocate physical memory\n");
5778 exit(1);
5779 }
5780 }
5781 #endif
5782
5783 /* init the dynamic translator */
5784 cpu_exec_init_all(tb_size * 1024 * 1024);
5785
5786 bdrv_init();
5787 dma_helper_init();
5788
5789 /* we always create the cdrom drive, even if no disk is there */
5790
5791 if (nb_drives_opt < MAX_DRIVES)
5792 drive_add(NULL, CDROM_ALIAS);
5793
5794 /* we always create at least one floppy */
5795
5796 if (nb_drives_opt < MAX_DRIVES)
5797 drive_add(NULL, FD_ALIAS, 0);
5798
5799 /* we always create one sd slot, even if no card is in it */
5800
5801 if (nb_drives_opt < MAX_DRIVES)
5802 drive_add(NULL, SD_ALIAS);
5803
5804 /* open the virtual block devices */
5805
5806 for(i = 0; i < nb_drives_opt; i++)
5807 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5808 exit(1);
5809
5810 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5811 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5812
5813 #ifndef _WIN32
5814 /* must be after terminal init, SDL library changes signal handlers */
5815 termsig_setup();
5816 #endif
5817
5818 /* Maintain compatibility with multiple stdio monitors */
5819 if (!strcmp(monitor_device,"stdio")) {
5820 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5821 const char *devname = serial_devices[i];
5822 if (devname && !strcmp(devname,"mon:stdio")) {
5823 monitor_device = NULL;
5824 break;
5825 } else if (devname && !strcmp(devname,"stdio")) {
5826 monitor_device = NULL;
5827 serial_devices[i] = "mon:stdio";
5828 break;
5829 }
5830 }
5831 }
5832
5833 if (nb_numa_nodes > 0) {
5834 int i;
5835
5836 if (nb_numa_nodes > smp_cpus) {
5837 nb_numa_nodes = smp_cpus;
5838 }
5839
5840 /* If no memory size if given for any node, assume the default case
5841 * and distribute the available memory equally across all nodes
5842 */
5843 for (i = 0; i < nb_numa_nodes; i++) {
5844 if (node_mem[i] != 0)
5845 break;
5846 }
5847 if (i == nb_numa_nodes) {
5848 uint64_t usedmem = 0;
5849
5850 /* On Linux, the each node's border has to be 8MB aligned,
5851 * the final node gets the rest.
5852 */
5853 for (i = 0; i < nb_numa_nodes - 1; i++) {
5854 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5855 usedmem += node_mem[i];
5856 }
5857 node_mem[i] = ram_size - usedmem;
5858 }
5859
5860 for (i = 0; i < nb_numa_nodes; i++) {
5861 if (node_cpumask[i] != 0)
5862 break;
5863 }
5864 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5865 * must cope with this anyway, because there are BIOSes out there in
5866 * real machines which also use this scheme.
5867 */
5868 if (i == nb_numa_nodes) {
5869 for (i = 0; i < smp_cpus; i++) {
5870 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5871 }
5872 }
5873 }
5874
5875 if (kvm_enabled()) {
5876 int ret;
5877
5878 ret = kvm_init(smp_cpus);
5879 if (ret < 0) {
5880 fprintf(stderr, "failed to initialize KVM\n");
5881 exit(1);
5882 }
5883 }
5884
5885 if (monitor_device) {
5886 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5887 if (!monitor_hd) {
5888 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5889 exit(1);
5890 }
5891 }
5892
5893 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5894 const char *devname = serial_devices[i];
5895 if (devname && strcmp(devname, "none")) {
5896 char label[32];
5897 snprintf(label, sizeof(label), "serial%d", i);
5898 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5899 if (!serial_hds[i]) {
5900 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5901 devname);
5902 exit(1);
5903 }
5904 }
5905 }
5906
5907 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5908 const char *devname = parallel_devices[i];
5909 if (devname && strcmp(devname, "none")) {
5910 char label[32];
5911 snprintf(label, sizeof(label), "parallel%d", i);
5912 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5913 if (!parallel_hds[i]) {
5914 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5915 devname);
5916 exit(1);
5917 }
5918 }
5919 }
5920
5921 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5922 const char *devname = virtio_consoles[i];
5923 if (devname && strcmp(devname, "none")) {
5924 char label[32];
5925 snprintf(label, sizeof(label), "virtcon%d", i);
5926 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5927 if (!virtcon_hds[i]) {
5928 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5929 devname);
5930 exit(1);
5931 }
5932 }
5933 }
5934
5935 module_call_init(MODULE_INIT_DEVICE);
5936
5937 machine->init(ram_size, boot_devices,
5938 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5939
5940
5941 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5942 for (i = 0; i < nb_numa_nodes; i++) {
5943 if (node_cpumask[i] & (1 << env->cpu_index)) {
5944 env->numa_node = i;
5945 }
5946 }
5947 }
5948
5949 current_machine = machine;
5950
5951 /* Set KVM's vcpu state to qemu's initial CPUState. */
5952 if (kvm_enabled()) {
5953 int ret;
5954
5955 ret = kvm_sync_vcpus();
5956 if (ret < 0) {
5957 fprintf(stderr, "failed to initialize vcpus\n");
5958 exit(1);
5959 }
5960 }
5961
5962 /* init USB devices */
5963 if (usb_enabled) {
5964 for(i = 0; i < usb_devices_index; i++) {
5965 if (usb_device_add(usb_devices[i], 0) < 0) {
5966 fprintf(stderr, "Warning: could not add USB device %s\n",
5967 usb_devices[i]);
5968 }
5969 }
5970 }
5971
5972 if (!display_state)
5973 dumb_display_init();
5974 /* just use the first displaystate for the moment */
5975 ds = display_state;
5976
5977 if (display_type == DT_DEFAULT) {
5978 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5979 display_type = DT_SDL;
5980 #else
5981 display_type = DT_VNC;
5982 vnc_display = "localhost:0,to=99";
5983 show_vnc_port = 1;
5984 #endif
5985 }
5986
5987
5988 switch (display_type) {
5989 case DT_NOGRAPHIC:
5990 break;
5991 #if defined(CONFIG_CURSES)
5992 case DT_CURSES:
5993 curses_display_init(ds, full_screen);
5994 break;
5995 #endif
5996 #if defined(CONFIG_SDL)
5997 case DT_SDL:
5998 sdl_display_init(ds, full_screen, no_frame);
5999 break;
6000 #elif defined(CONFIG_COCOA)
6001 case DT_SDL:
6002 cocoa_display_init(ds, full_screen);
6003 break;
6004 #endif
6005 case DT_VNC:
6006 vnc_display_init(ds);
6007 if (vnc_display_open(ds, vnc_display) < 0)
6008 exit(1);
6009
6010 if (show_vnc_port) {
6011 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6012 }
6013 break;
6014 default:
6015 break;
6016 }
6017 dpy_resize(ds);
6018
6019 dcl = ds->listeners;
6020 while (dcl != NULL) {
6021 if (dcl->dpy_refresh != NULL) {
6022 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6023 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6024 }
6025 dcl = dcl->next;
6026 }
6027
6028 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6029 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6030 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6031 }
6032
6033 text_consoles_set_display(display_state);
6034 qemu_chr_initial_reset();
6035
6036 if (monitor_device && monitor_hd)
6037 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6038
6039 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6040 const char *devname = serial_devices[i];
6041 if (devname && strcmp(devname, "none")) {
6042 char label[32];
6043 snprintf(label, sizeof(label), "serial%d", i);
6044 if (strstart(devname, "vc", 0))
6045 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6046 }
6047 }
6048
6049 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6050 const char *devname = parallel_devices[i];
6051 if (devname && strcmp(devname, "none")) {
6052 char label[32];
6053 snprintf(label, sizeof(label), "parallel%d", i);
6054 if (strstart(devname, "vc", 0))
6055 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6056 }
6057 }
6058
6059 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6060 const char *devname = virtio_consoles[i];
6061 if (virtcon_hds[i] && devname) {
6062 char label[32];
6063 snprintf(label, sizeof(label), "virtcon%d", i);
6064 if (strstart(devname, "vc", 0))
6065 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6066 }
6067 }
6068
6069 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6070 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6071 gdbstub_dev);
6072 exit(1);
6073 }
6074
6075 if (loadvm)
6076 do_loadvm(cur_mon, loadvm);
6077
6078 if (incoming) {
6079 autostart = 0; /* fixme how to deal with -daemonize */
6080 qemu_start_incoming_migration(incoming);
6081 }
6082
6083 if (autostart)
6084 vm_start();
6085
6086 #ifndef _WIN32
6087 if (daemonize) {
6088 uint8_t status = 0;
6089 ssize_t len;
6090
6091 again1:
6092 len = write(fds[1], &status, 1);
6093 if (len == -1 && (errno == EINTR))
6094 goto again1;
6095
6096 if (len != 1)
6097 exit(1);
6098
6099 chdir("/");
6100 TFR(fd = open("/dev/null", O_RDWR));
6101 if (fd == -1)
6102 exit(1);
6103 }
6104
6105 if (run_as) {
6106 pwd = getpwnam(run_as);
6107 if (!pwd) {
6108 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6109 exit(1);
6110 }
6111 }
6112
6113 if (chroot_dir) {
6114 if (chroot(chroot_dir) < 0) {
6115 fprintf(stderr, "chroot failed\n");
6116 exit(1);
6117 }
6118 chdir("/");
6119 }
6120
6121 if (run_as) {
6122 if (setgid(pwd->pw_gid) < 0) {
6123 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6124 exit(1);
6125 }
6126 if (setuid(pwd->pw_uid) < 0) {
6127 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6128 exit(1);
6129 }
6130 if (setuid(0) != -1) {
6131 fprintf(stderr, "Dropping privileges failed\n");
6132 exit(1);
6133 }
6134 }
6135
6136 if (daemonize) {
6137 dup2(fd, 0);
6138 dup2(fd, 1);
6139 dup2(fd, 2);
6140
6141 close(fd);
6142 }
6143 #endif
6144
6145 main_loop();
6146 quit_timers();
6147 net_cleanup();
6148
6149 return 0;
6150 }