]> git.proxmox.com Git - ceph.git/blobdiff - ceph/src/boost/boost/geometry/algorithms/is_convex.hpp
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / boost / boost / geometry / algorithms / is_convex.hpp
index 1df778d1b55650e8e568bde75cec8ff153ab7083..0d54111c9ec188d11c730222495e57f35603a9ee 100644 (file)
@@ -2,8 +2,8 @@
 
 // Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands.
 
-// This file was modified by Oracle on 2017, 2018.
-// Modifications copyright (c) 2017-2018 Oracle and/or its affiliates.
+// This file was modified by Oracle on 2017-2021.
+// Modifications copyright (c) 2017-2021 Oracle and/or its affiliates.
 
 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
 
 #define BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP
 
 
-#include <boost/variant/apply_visitor.hpp>
-#include <boost/variant/static_visitor.hpp>
-#include <boost/variant/variant_fwd.hpp>
+#include <boost/range/empty.hpp>
 
 #include <boost/geometry/algorithms/detail/equals/point_point.hpp>
+#include <boost/geometry/algorithms/detail/dummy_geometries.hpp>
+#include <boost/geometry/algorithms/detail/visit.hpp>
 #include <boost/geometry/core/access.hpp>
 #include <boost/geometry/core/closure.hpp>
 #include <boost/geometry/core/cs.hpp>
 #include <boost/geometry/core/coordinate_dimension.hpp>
+#include <boost/geometry/core/exterior_ring.hpp>
 #include <boost/geometry/core/point_type.hpp>
+#include <boost/geometry/core/interior_rings.hpp>
+#include <boost/geometry/core/visit.hpp>
+#include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility
 #include <boost/geometry/geometries/concepts/check.hpp>
 #include <boost/geometry/iterators/ever_circling_iterator.hpp>
 #include <boost/geometry/strategies/default_strategy.hpp>
-#include <boost/geometry/strategies/side.hpp>
-#include <boost/geometry/views/detail/normalized_view.hpp>
+#include <boost/geometry/strategies/is_convex/cartesian.hpp>
+#include <boost/geometry/strategies/is_convex/geographic.hpp>
+#include <boost/geometry/strategies/is_convex/spherical.hpp>
+#include <boost/geometry/views/detail/closed_clockwise_view.hpp>
 
 
 namespace boost { namespace geometry
@@ -42,17 +48,11 @@ namespace detail { namespace is_convex
 
 struct ring_is_convex
 {
-    template <typename Ring, typename SideStrategy>
-    static inline bool apply(Ring const& ring, SideStrategy const& strategy)
+    template <typename Ring, typename Strategies>
+    static inline bool apply(Ring const& ring, Strategies const& strategies)
     {
-        typename SideStrategy::equals_point_point_strategy_type
-            eq_pp_strategy = strategy.get_equals_point_point_strategy();
-
         std::size_t n = boost::size(ring);
-        if (boost::size(ring) < core_detail::closure::minimum_ring_size
-                                    <
-                                        geometry::closure<Ring>::value
-                                    >::value)
+        if (n < detail::minimum_ring_size<Ring>::value)
         {
             // (Too) small rings are considered as non-concave, is convex
             return true;
@@ -61,16 +61,18 @@ struct ring_is_convex
         // Walk in clockwise direction, consider ring as closed
         // (though closure is not important in this algorithm - any dupped
         //  point is skipped)
-        typedef detail::normalized_view<Ring const> view_type;
-        view_type view(ring);
+        using view_type = detail::closed_clockwise_view<Ring const>;
+        view_type const view(ring);
 
-        typedef geometry::ever_circling_range_iterator<view_type const> it_type;
+        using it_type = geometry::ever_circling_range_iterator<view_type const>;
         it_type previous(view);
         it_type current(view);
         current++;
 
+        auto const equals_strategy = strategies.relate(dummy_point(), dummy_point());
+
         std::size_t index = 1;
-        while (equals::equals_point_point(*current, *previous, eq_pp_strategy)
+        while (equals::equals_point_point(*current, *previous, equals_strategy)
             && index < n)
         {
             current++;
@@ -85,17 +87,19 @@ struct ring_is_convex
 
         it_type next = current;
         next++;
-        while (equals::equals_point_point(*current, *next, eq_pp_strategy))
+        while (equals::equals_point_point(*current, *next, equals_strategy))
         {
             next++;
         }
 
+        auto const side_strategy = strategies.side();
+
         // We have now three different points on the ring
         // Walk through all points, use a counter because of the ever-circling
         // iterator
         for (std::size_t i = 0; i < n; i++)
         {
-            int const side = strategy.apply(*previous, *current, *next);
+            int const side = side_strategy.apply(*previous, *current, *next);
             if (side == 1)
             {
                 // Next is on the left side of clockwise ring:
@@ -109,7 +113,7 @@ struct ring_is_convex
             // Advance next to next different point
             // (because there are non-equal points, this loop is not infinite)
             next++;
-            while (equals::equals_point_point(*current, *next, eq_pp_strategy))
+            while (equals::equals_point_point(*current, *next, equals_strategy))
             {
                 next++;
             }
@@ -119,6 +123,28 @@ struct ring_is_convex
 };
 
 
+struct polygon_is_convex
+{
+    template <typename Polygon, typename Strategies>
+    static inline bool apply(Polygon const& polygon, Strategies const& strategies)
+    {
+        return boost::empty(interior_rings(polygon))
+            && ring_is_convex::apply(exterior_ring(polygon), strategies);
+    }
+};
+
+struct multi_polygon_is_convex
+{
+    template <typename MultiPolygon, typename Strategies>
+    static inline bool apply(MultiPolygon const& multi_polygon, Strategies const& strategies)
+    {
+        auto const size = boost::size(multi_polygon);
+        return size == 0 // For consistency with ring_is_convex
+            || (size == 1 && polygon_is_convex::apply(range::front(multi_polygon), strategies));
+    }
+};
+
+
 }} // namespace detail::is_convex
 #endif // DOXYGEN_NO_DETAIL
 
@@ -132,83 +158,169 @@ template
     typename Geometry,
     typename Tag = typename tag<Geometry>::type
 >
-struct is_convex : not_implemented<Tag>
-{};
+struct is_convex
+{
+    template <typename Strategies>
+    static inline bool apply(Geometry const&, Strategies const&)
+    {
+        // Convexity is not defined for PointLike and Linear geometries.
+        // We could implement this because the following definitions would work:
+        // - no line segment between two points on the interior or boundary ever goes outside.
+        // - convex_hull of geometry is equal to the original geometry, this implies equal
+        //   topological dimension.
+        // For MultiPoint we'd have to check whether or not an arbitrary number of equal points
+        //   is stored.
+        // MultiPolygon we'd have to check for continuous chain of Linestrings which would require
+        //   the use of relate(pt, seg) or distance(pt, pt) strategy.
+        return false;
+    }
+};
 
 template <typename Box>
 struct is_convex<Box, box_tag>
 {
-    template <typename Strategy>
-    static inline bool apply(Box const& , Strategy const& )
+    template <typename Strategies>
+    static inline bool apply(Box const& , Strategies const& )
     {
         // Any box is convex (TODO: consider spherical boxes)
+        // TODO: in spherical and geographic the answer would be "false" most of the time.
+        //   Assuming that:
+        //   - it even makes sense to consider Box in spherical and geographic in this context
+        //     because it's not a Polygon, e.g. it can degenerate to a Point.
+        //   - line segments are defined by geodesics and box edges by parallels and meridians
+        //   - we use this definition: A convex polygon is a simple polygon (not self-intersecting)
+        //     in which no line segment between two points on the boundary ever goes outside the
+        //     polygon.
+        //   Then a geodesic segment would go into the exterior of a Box for all horizontal edges
+        //   of a Box unless it was one of the poles (edge degenerated to a point) or equator and
+        //   longitude difference was lesser than 360 (otherwise depending on the CS there would be
+        //   no solution or there would be two possible solutions - segment going through one of
+        //   the poles, at least in case of oblate spheroid, either way the answer would probably
+        //   be "false").
         return true;
     }
 };
 
-template <typename Box>
-struct is_convex<Box, ring_tag> : detail::is_convex::ring_is_convex
+template <typename Ring>
+struct is_convex<Ring, ring_tag> : detail::is_convex::ring_is_convex
+{};
+
+template <typename Polygon>
+struct is_convex<Polygon, polygon_tag> : detail::is_convex::polygon_is_convex
+{};
+
+template <typename MultiPolygon>
+struct is_convex<MultiPolygon, multi_polygon_tag> : detail::is_convex::multi_polygon_is_convex
 {};
 
 
 } // namespace dispatch
 #endif // DOXYGEN_NO_DISPATCH
 
-namespace resolve_variant {
+namespace resolve_strategy {
 
-template <typename Geometry>
+template
+<
+    typename Strategies,
+    bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value
+>
 struct is_convex
 {
-    template <typename Strategy>
+    template <typename Geometry>
+    static bool apply(Geometry const& geometry, Strategies const& strategies)
+    {
+        return dispatch::is_convex<Geometry>::apply(geometry, strategies);
+    }
+};
+
+template <typename Strategy>
+struct is_convex<Strategy, false>
+{
+    template <typename Geometry>
     static bool apply(Geometry const& geometry, Strategy const& strategy)
     {
-        concepts::check<Geometry>();
-        return dispatch::is_convex<Geometry>::apply(geometry, strategy);
+        using strategies::is_convex::services::strategy_converter;
+        return dispatch::is_convex
+            <
+                Geometry
+            >::apply(geometry, strategy_converter<Strategy>::get(strategy));
     }
+};
 
-    static bool apply(Geometry const& geometry, geometry::default_strategy const&)
+template <>
+struct is_convex<default_strategy, false>
+{
+    template <typename Geometry>
+    static bool apply(Geometry const& geometry, default_strategy const& )
     {
-        typedef typename strategy::side::services::default_strategy
+        typedef typename strategies::is_convex::services::default_strategy
             <
-                typename cs_tag<Geometry>::type
-            >::type side_strategy;
+                Geometry
+            >::type strategy_type;
 
-        return apply(geometry, side_strategy());
+        return dispatch::is_convex<Geometry>::apply(geometry, strategy_type());
     }
 };
 
-template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
-struct is_convex<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
+} // namespace resolve_strategy
+
+namespace resolve_dynamic {
+
+template <typename Geometry, typename Tag = typename tag<Geometry>::type>
+struct is_convex
 {
     template <typename Strategy>
-    struct visitor: boost::static_visitor<bool>
+    static bool apply(Geometry const& geometry, Strategy const& strategy)
     {
-        Strategy const& m_strategy;
-
-        visitor(Strategy const& strategy) : m_strategy(strategy) {}
+        concepts::check<Geometry>();
+        return resolve_strategy::is_convex<Strategy>::apply(geometry, strategy);
+    }
+};
 
-        template <typename Geometry>
-        bool operator()(Geometry const& geometry) const
+template <typename Geometry>
+struct is_convex<Geometry, dynamic_geometry_tag>
+{
+    template <typename Strategy>
+    static inline bool apply(Geometry const& geometry, Strategy const& strategy)
+    {
+        bool result = false;
+        traits::visit<Geometry>::apply([&](auto const& g)
         {
-            return is_convex<Geometry>::apply(geometry, m_strategy);
-        }
-    };
+            result = is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy);
+        }, geometry);
+        return result;
+    }
+};
 
+// NOTE: This is a simple implementation checking if a GC contains single convex geometry.
+//   Technically a GC could store e.g. polygons touching with edges and together creating a convex
+//   region. To check this we'd require relate() strategy and the algorithm would be quite complex.
+template <typename Geometry>
+struct is_convex<Geometry, geometry_collection_tag>
+{
     template <typename Strategy>
-    static inline bool apply(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry,
-                             Strategy const& strategy)
+    static inline bool apply(Geometry const& geometry, Strategy const& strategy)
     {
-        return boost::apply_visitor(visitor<Strategy>(strategy), geometry);
+        bool result = false;
+        bool is_first = true;
+        detail::visit_breadth_first([&](auto const& g)
+        {
+            result = is_first
+                  && is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy);
+            is_first = false;
+            return result;
+        }, geometry);
+        return result;
     }
 };
 
-} // namespace resolve_variant
+} // namespace resolve_dynamic
 
 // TODO: documentation / qbk
 template<typename Geometry>
 inline bool is_convex(Geometry const& geometry)
 {
-    return resolve_variant::is_convex
+    return resolve_dynamic::is_convex
             <
                 Geometry
             >::apply(geometry, geometry::default_strategy());
@@ -218,7 +330,7 @@ inline bool is_convex(Geometry const& geometry)
 template<typename Geometry, typename Strategy>
 inline bool is_convex(Geometry const& geometry, Strategy const& strategy)
 {
-    return resolve_variant::is_convex<Geometry>::apply(geometry, strategy);
+    return resolve_dynamic::is_convex<Geometry>::apply(geometry, strategy);
 }