]> git.proxmox.com Git - ceph.git/blobdiff - ceph/src/zstd/CONTRIBUTING.md
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / zstd / CONTRIBUTING.md
index dd013f8084fa41a79800706187f7710311de9658..637e37188550b3325d487729e3849278c04b422f 100644 (file)
@@ -26,6 +26,356 @@ to do this once to work on any of Facebook's open source projects.
 
 Complete your CLA here: <https://code.facebook.com/cla>
 
+## Workflow
+Zstd uses a branch-based workflow for making changes to the codebase. Typically, zstd
+will use a new branch per sizable topic. For smaller changes, it is okay to lump multiple
+related changes into a branch.
+
+Our contribution process works in three main stages:
+1. Local development
+    * Update:
+        * Checkout your fork of zstd if you have not already
+        ```
+        git checkout https://github.com/<username>/zstd
+        cd zstd
+        ```
+        * Update your local dev branch
+        ```
+        git pull https://github.com/facebook/zstd dev
+        git push origin dev
+        ```
+    * Topic and development:
+        * Make a new branch on your fork about the topic you're developing for
+        ```
+        # branch names should be consise but sufficiently informative
+        git checkout -b <branch-name>
+        git push origin <branch-name>
+        ```
+        * Make commits and push
+        ```
+        # make some changes =
+        git add -u && git commit -m <message>
+        git push origin <branch-name>
+        ```
+        * Note: run local tests to ensure that your changes didn't break existing functionality
+            * Quick check
+            ```
+            make shortest
+            ```
+            * Longer check
+            ```
+            make test
+            ```
+2. Code Review and CI tests
+    * Ensure CI tests pass:
+        * Before sharing anything to the community, make sure that all CI tests pass on your local fork.
+        See our section on setting up your CI environment for more information on how to do this.
+        * Ensure that static analysis passes on your development machine. See the Static Analysis section
+        below to see how to do this.
+    * Create a pull request:
+        * When you are ready to share you changes to the community, create a pull request from your branch
+        to facebook:dev. You can do this very easily by clicking 'Create Pull Request' on your fork's home
+        page.
+        * From there, select the branch where you made changes as your source branch and facebook:dev
+        as the destination.
+        * Examine the diff presented between the two branches to make sure there is nothing unexpected.
+    * Write a good pull request description:
+        * While there is no strict template that our contributors follow, we would like them to
+        sufficiently summarize and motivate the changes they are proposing. We recommend all pull requests,
+        at least indirectly, address the following points.
+            * Is this pull request important and why?
+            * Is it addressing an issue? If so, what issue? (provide links for convenience please)
+            * Is this a new feature? If so, why is it useful and/or necessary?
+            * Are there background references and documents that reviewers should be aware of to properly assess this change?
+        * Note: make sure to point out any design and architectural decisions that you made and the rationale behind them.
+        * Note: if you have been working with a specific user and would like them to review your work, make sure you mention them using (@<username>)
+    * Submit the pull request and iterate with feedback.
+3. Merge and Release
+    * Getting approval:
+        * You will have to iterate on your changes with feedback from other collaborators to reach a point
+        where your pull request can be safely merged.
+        * To avoid too many comments on style and convention, make sure that you have a
+        look at our style section below before creating a pull request.
+        * Eventually, someone from the zstd team will approve your pull request and not long after merge it into
+        the dev branch.
+    * Housekeeping:
+        * Most PRs are linked with one or more Github issues. If this is the case for your PR, make sure
+        the corresponding issue is mentioned. If your change 'fixes' or completely addresses the
+        issue at hand, then please indicate this by requesting that an issue be closed by commenting.
+        * Just because your changes have been merged does not mean the topic or larger issue is complete. Remember
+        that the change must make it to an official zstd release for it to be meaningful. We recommend
+        that contributers track the activity on their pull request and corresponding issue(s) page(s) until
+        their change makes it to the next release of zstd. Users will often discover bugs in your code or
+        suggest ways to refine and improve your initial changes even after the pull request is merged.
+
+## Static Analysis
+Static analysis is a process for examining the correctness or validity of a program without actually
+executing it. It usually helps us find many simple bugs. Zstd uses clang's `scan-build` tool for
+static analysis. You can install it by following the instructions for your OS on https://clang-analyzer.llvm.org/scan-build.
+
+Once installed, you can ensure that our static analysis tests pass on your local development machine
+by running:
+```
+make staticAnalyze
+```
+
+In general, you can use `scan-build` to static analyze any build script. For example, to static analyze
+just `contrib/largeNbDicts` and nothing else, you can run:
+
+```
+scan-build make -C contrib/largeNbDicts largeNbDicts
+```
+
+## Performance
+Performance is extremely important for zstd and we only merge pull requests whose performance
+landscape and corresponding trade-offs have been adequately analyzed, reproduced, and presented.
+This high bar for performance means that every PR which has the potential to
+impact performance takes a very long time for us to properly review. That being said, we
+always welcome contributions to improve performance (or worsen performance for the trade-off of
+something else). Please keep the following in mind before submitting a performance related PR:
+
+1. Zstd isn't as old as gzip but it has been around for time now and its evolution is
+very well documented via past Github issues and pull requests. It may be the case that your
+particular performance optimization has already been considered in the past. Please take some
+time to search through old issues and pull requests using keywords specific to your
+would-be PR. Of course, just because a topic has already been discussed (and perhaps rejected
+on some grounds) in the past, doesn't mean it isn't worth bringing up again. But even in that case,
+it will be helpful for you to have context from that topic's history before contributing.
+2. The distinction between noise and actual performance gains can unfortunately be very subtle
+especially when microbenchmarking extremely small wins or losses. The only remedy to getting
+something subtle merged is extensive benchmarking. You will be doing us a great favor if you
+take the time to run extensive, long-duration, and potentially cross-(os, platform, process, etc)
+benchmarks on your end before submitting a PR. Of course, you will not be able to benchmark
+your changes on every single processor and os out there (and neither will we) but do that best
+you can:) We've adding some things to think about when benchmarking below in the Benchmarking
+Performance section which might be helpful for you.
+3. Optimizing performance for a certain OS, processor vendor, compiler, or network system is a perfectly
+legitimate thing to do as long as it does not harm the overall performance health of Zstd.
+This is a hard balance to strike but please keep in mind other aspects of Zstd when
+submitting changes that are clang-specific, windows-specific, etc.
+
+## Benchmarking Performance
+Performance microbenchmarking is a tricky subject but also essential for Zstd. We value empirical
+testing over theoretical speculation. This guide it not perfect but for most scenarios, it
+is a good place to start.
+
+### Stability
+Unfortunately, the most important aspect in being able to benchmark reliably is to have a stable
+benchmarking machine. A virtual machine, a machine with shared resources, or your laptop
+will typically not be stable enough to obtain reliable benchmark results. If you can get your
+hands on a desktop, this is usually a better scenario.
+
+Of course, benchmarking can be done on non-hyper-stable machines as well. You will just have to
+do a little more work to ensure that you are in fact measuring the changes you've made not and
+noise. Here are some things you can do to make your benchmarks more stable:
+
+1. The most simple thing you can do to drastically improve the stability of your benchmark is
+to run it multiple times and then aggregate the results of those runs. As a general rule of
+thumb, the smaller the change you are trying to measure, the more samples of benchmark runs
+you will have to aggregate over to get reliable results. Here are some additional things to keep in
+mind when running multiple trials:
+    * How you aggregate your samples are important. You might be tempted to use the mean of your
+    results. While this is certainly going to be a more stable number than a raw single sample
+    benchmark number, you might have more luck by taking the median. The mean is not robust to
+    outliers whereas the median is. Better still, you could simply take the fastest speed your
+    benchmark achieved on each run since that is likely the fastest your process will be
+    capable of running your code. In our experience, this (aggregating by just taking the sample
+    with the fastest running time) has been the most stable approach.
+    * The more samples you have, the more stable your benchmarks should be. You can verify
+    your improved stability by looking at the size of your confidence intervals as you
+    increase your sample count. These should get smaller and smaller. Eventually hopefully
+    smaller than the performance win you are expecting.
+    * Most processors will take some time to get `hot` when running anything. The observations
+    you collect during that time period will very different from the true performance number. Having
+    a very large number of sample will help alleviate this problem slightly but you can also
+    address is directly by simply not including the first `n` iterations of your benchmark in
+    your aggregations. You can determine `n` by simply looking at the results from each iteration
+    and then hand picking a good threshold after which the variance in results seems to stabilize.
+2. You cannot really get reliable benchmarks if your host machine is simultaneously running
+another cpu/memory-intensive application in the background. If you are running benchmarks on your
+personal laptop for instance, you should close all applications (including your code editor and
+browser) before running your benchmarks. You might also have invisible background applications
+running. You can see what these are by looking at either Activity Monitor on Mac or Task Manager
+on Windows. You will get more stable benchmark results of you end those processes as well.
+    * If you have multiple cores, you can even run your benchmark on a reserved core to prevent
+    pollution from other OS and user processes. There are a number of ways to do this depending
+    on your OS:
+        * On linux boxes, you have use https://github.com/lpechacek/cpuset.
+        * On Windows, you can "Set Processor Affinity" using https://www.thewindowsclub.com/processor-affinity-windows
+        * On Mac, you can try to use their dedicated affinity API https://developer.apple.com/library/archive/releasenotes/Performance/RN-AffinityAPI/#//apple_ref/doc/uid/TP40006635-CH1-DontLinkElementID_2
+3. To benchmark, you will likely end up writing a separate c/c++ program that will link libzstd.
+Dynamically linking your library will introduce some added variation (not a large amount but
+definitely some). Statically linking libzstd will be more stable. Static libraries should
+be enabled by default when building zstd.
+4. Use a profiler with a good high resolution timer. See the section below on profiling for
+details on this.
+5. Disable frequency scaling, turbo boost and address space randomization (this will vary by OS)
+6. Try to avoid storage. On some systems you can use tmpfs. Putting the program, inputs and outputs on
+tmpfs avoids touching a real storage system, which can have a pretty big variability.
+
+Also check our LLVM's guide on benchmarking here: https://llvm.org/docs/Benchmarking.html
+
+### Zstd benchmark
+The fastest signal you can get regarding your performance changes is via the in-build zstd cli
+bench option. You can run Zstd as you typically would for your scenario using some set of options
+and then additionally also specify the `-b#` option. Doing this will run our benchmarking pipeline
+for that options you have just provided. If you want to look at the internals of how this
+benchmarking script works, you can check out programs/benchzstd.c
+
+For example: say you have made a change that you believe improves the speed of zstd level 1. The
+very first thing you should use to asses whether you actually achieved any sort of improvement
+is `zstd -b`. You might try to do something like this. Note: you can use the `-i` option to
+specify a running time for your benchmark in seconds (default is 3 seconds).
+Usually, the longer the running time, the more stable your results will be.
+
+```
+$ git checkout <commit-before-your-change>
+$ make && cp zstd zstd-old
+$ git checkout <commit-after-your-change>
+$ make && cp zstd zstd-new
+$ zstd-old -i5 -b1 <your-test-data>
+ 1<your-test-data>         :      8990 ->      3992 (2.252), 302.6 MB/s , 626.4 MB/s
+$ zstd-new -i5 -b1 <your-test-data>
+ 1<your-test-data>         :      8990 ->      3992 (2.252), 302.8 MB/s , 628.4 MB/s
+```
+
+Unless your performance win is large enough to be visible despite the intrinsic noise
+on your computer, benchzstd alone will likely not be enough to validate the impact of your
+changes. For example, the results of the example above indicate that effectively nothing
+changed but there could be a small <3% improvement that the noise on the host machine
+obscured. So unless you see a large performance win (10-15% consistently) using just
+this method of evaluation will not be sufficient.
+
+### Profiling
+There are a number of great profilers out there. We're going to briefly mention how you can
+profile your code using `instruments` on mac, `perf` on linux and `visual studio profiler`
+on windows.
+
+Say you have an idea for a change that you think will provide some good performance gains
+for level 1 compression on Zstd. Typically this means, you have identified a section of
+code that you think can be made to run faster.
+
+The first thing you will want to do is make sure that the piece of code is actually taking up
+a notable amount of time to run. It is usually not worth optimzing something which accounts for less than
+0.0001% of the total running time. Luckily, there are tools to help with this.
+Profilers will let you see how much time your code spends inside a particular function.
+If your target code snippit is only part of a function, it might be worth trying to
+isolate that snippit by moving it to its own function (this is usually not necessary but
+might be).
+
+Most profilers (including the profilers dicusssed below) will generate a call graph of
+functions for you. Your goal will be to find your function of interest in this call grapch
+and then inspect the time spent inside of it. You might also want to to look at the
+annotated assembly which most profilers will provide you with.
+
+#### Instruments
+We will once again consider the scenario where you think you've identified a piece of code
+whose performance can be improved upon. Follow these steps to profile your code using
+Instruments.
+
+1. Open Instruments
+2. Select `Time Profiler` from the list of standard templates
+3. Close all other applications except for your instruments window and your terminal
+4. Run your benchmarking script from your terminal window
+    * You will want a benchmark that runs for at least a few seconds (5 seconds will
+    usually be long enough). This way the profiler will have something to work with
+    and you will have ample time to attach your profiler to this process:)
+    * I will just use benchzstd as my bencharmking script for this example:
+```
+$ zstd -b1 -i5 <my-data> # this will run for 5 seconds
+```
+5. Once you run your benchmarking script, switch back over to instruments and attach your
+process to the time profiler. You can do this by:
+    * Clicking on the `All Processes` drop down in the top left of the toolbar.
+    * Selecting your process from the dropdown. In my case, it is just going to be labled
+    `zstd`
+    * Hitting the bright red record circle button on the top left of the toolbar
+6. You profiler will now start collecting metrics from your bencharking script. Once
+you think you have collected enough samples (usually this is the case after 3 seconds of
+recording), stop your profiler.
+7. Make sure that in toolbar of the bottom window, `profile` is selected.
+8. You should be able to see your call graph.
+    * If you don't see the call graph or an incomplete call graph, make sure you have compiled
+    zstd and your benchmarking scripg using debug flags. On mac and linux, this just means
+    you will have to supply the `-g` flag alone with your build script. You might also
+    have to provide the `-fno-omit-frame-pointer` flag
+9. Dig down the graph to find your function call and then inspect it by double clicking
+the list item. You will be able to see the annotated source code and the assembly side by
+side.
+
+#### Perf
+
+This wiki has a pretty detailed tutorial on getting started working with perf so we'll
+leave you to check that out of you're getting started:
+
+https://perf.wiki.kernel.org/index.php/Tutorial
+
+Some general notes on perf:
+* Use `perf stat -r # <bench-program>` to quickly get some relevant timing and
+counter statistics. Perf uses a high resolution timer and this is likely one
+of the first things your team will run when assessing your PR.
+* Perf has a long list of hardware counters that can be viewed with `perf --list`.
+When measuring optimizations, something worth trying is to make sure the handware
+counters you expect to be impacted by your change are in fact being so. For example,
+if you expect the L1 cache misses to decrease with your change, you can look at the
+counter `L1-dcache-load-misses`
+* Perf hardware counters will not work on a virtual machine.
+
+#### Visual Studio
+
+TODO
+
+
+## Setting up continuous integration (CI) on your fork
+Zstd uses a number of different continuous integration (CI) tools to ensure that new changes
+are well tested before they make it to an official release. Specifically, we use the platforms
+travis-ci, circle-ci, and appveyor.
+
+Changes cannot be merged into the main dev branch unless they pass all of our CI tests.
+The easiest way to run these CI tests on your own before submitting a PR to our dev branch
+is to configure your personal fork of zstd with each of the CI platforms. Below, you'll find
+instructions for doing this.
+
+### travis-ci
+Follow these steps to link travis-ci with your github fork of zstd
+
+1. Make sure you are logged into your github account
+2. Go to https://travis-ci.org/
+3. Click 'Sign in with Github' on the top right
+4. Click 'Authorize travis-ci'
+5. Click 'Activate all repositories using Github Apps'
+6. Select 'Only select repositories' and select your fork of zstd from the drop down
+7. Click 'Approve and Install'
+8. Click 'Sign in with Github' again. This time, it will be for travis-pro (which will let you view your tests on the web dashboard)
+9. Click 'Authorize travis-pro'
+10. You should have travis set up on your fork now.
+
+### circle-ci
+TODO
+
+### appveyor
+Follow these steps to link circle-ci with your girhub fork of zstd
+
+1. Make sure you are logged into your github account
+2. Go to https://www.appveyor.com/
+3. Click 'Sign in' on the top right
+4. Select 'Github' on the left panel
+5. Click 'Authorize appveyor'
+6. You might be asked to select which repositories you want to give appveyor permission to. Select your fork of zstd if you're prompted
+7. You should have appveyor set up on your fork now.
+
+### General notes on CI
+CI tests run every time a pull request (PR) is created or updated. The exact tests
+that get run will depend on the destination branch you specify. Some tests take
+longer to run than others. Currently, our CI is set up to run a short
+series of tests when creating a PR to the dev branch and a longer series of tests
+when creating a PR to the master branch. You can look in the configuration files
+of the respective CI platform for more information on what gets run when.
+
+Most people will just want to create a PR with the destination set to their local dev
+branch of zstd. You can then find the status of the tests on the PR's page. You can also
+re-run tests and cancel running tests from the PR page or from the respective CI's dashboard.
+
 ## Issues
 We use GitHub issues to track public bugs. Please ensure your description is
 clear and has sufficient instructions to be able to reproduce the issue.
@@ -34,7 +384,7 @@ Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
 disclosure of security bugs. In those cases, please go through the process
 outlined on that page and do not file a public issue.
 
-## Coding Style  
+## Coding Style
 * 4 spaces for indentation rather than tabs
 
 ## License