]> git.proxmox.com Git - qemu.git/blobdiff - exec.c
tcg/optimize: fix setcond2 optimization
[qemu.git] / exec.c
diff --git a/exec.c b/exec.c
index c4ed6fdef1f445316d578bcca2df4233628afcb4..19725dbc05e0a72767c95239337d1ed800bdf82a 100644 (file)
--- a/exec.c
+++ b/exec.c
@@ -1,5 +1,5 @@
 /*
- *  virtual page mapping and translated block handling
+ *  Virtual page mapping
  *
  *  Copyright (c) 2003 Fabrice Bellard
  *
 #include "tcg.h"
 #include "hw/hw.h"
 #include "hw/qdev.h"
-#include "osdep.h"
-#include "kvm.h"
-#include "hw/xen.h"
-#include "qemu-timer.h"
-#include "memory.h"
-#include "exec-memory.h"
+#include "qemu/osdep.h"
+#include "sysemu/kvm.h"
+#include "hw/xen/xen.h"
+#include "qemu/timer.h"
+#include "qemu/config-file.h"
+#include "exec/memory.h"
+#include "sysemu/dma.h"
+#include "exec/address-spaces.h"
 #if defined(CONFIG_USER_ONLY)
 #include <qemu.h>
-#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
-#include <sys/param.h>
-#if __FreeBSD_version >= 700104
-#define HAVE_KINFO_GETVMMAP
-#define sigqueue sigqueue_freebsd  /* avoid redefinition */
-#include <sys/time.h>
-#include <sys/proc.h>
-#include <machine/profile.h>
-#define _KERNEL
-#include <sys/user.h>
-#undef _KERNEL
-#undef sigqueue
-#include <libutil.h>
-#endif
-#endif
 #else /* !CONFIG_USER_ONLY */
-#include "xen-mapcache.h"
+#include "sysemu/xen-mapcache.h"
 #include "trace.h"
 #endif
+#include "exec/cpu-all.h"
 
-#include "cputlb.h"
+#include "exec/cputlb.h"
+#include "translate-all.h"
 
-#include "memory-internal.h"
+#include "exec/memory-internal.h"
 
-//#define DEBUG_TB_INVALIDATE
-//#define DEBUG_FLUSH
 //#define DEBUG_UNASSIGNED
-
-/* make various TB consistency checks */
-//#define DEBUG_TB_CHECK
-
-//#define DEBUG_IOPORT
 //#define DEBUG_SUBPAGE
 
-#if !defined(CONFIG_USER_ONLY)
-/* TB consistency checks only implemented for usermode emulation.  */
-#undef DEBUG_TB_CHECK
-#endif
-
-#define SMC_BITMAP_USE_THRESHOLD 10
-
-static TranslationBlock *tbs;
-static int code_gen_max_blocks;
-TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
-static int nb_tbs;
-/* any access to the tbs or the page table must use this lock */
-spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-
-uint8_t *code_gen_prologue;
-static uint8_t *code_gen_buffer;
-static size_t code_gen_buffer_size;
-/* threshold to flush the translated code buffer */
-static size_t code_gen_buffer_max_size;
-static uint8_t *code_gen_ptr;
-
 #if !defined(CONFIG_USER_ONLY)
 int phys_ram_fd;
 static int in_migration;
 
-RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
+RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
 
 static MemoryRegion *system_memory;
 static MemoryRegion *system_io;
 
 AddressSpace address_space_io;
 AddressSpace address_space_memory;
+DMAContext dma_context_memory;
 
 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
 static MemoryRegion io_mem_subpage_ram;
@@ -116,60 +78,7 @@ DEFINE_TLS(CPUArchState *,cpu_single_env);
 /* 0 = Do not count executed instructions.
    1 = Precise instruction counting.
    2 = Adaptive rate instruction counting.  */
-int use_icount = 0;
-
-typedef struct PageDesc {
-    /* list of TBs intersecting this ram page */
-    TranslationBlock *first_tb;
-    /* in order to optimize self modifying code, we count the number
-       of lookups we do to a given page to use a bitmap */
-    unsigned int code_write_count;
-    uint8_t *code_bitmap;
-#if defined(CONFIG_USER_ONLY)
-    unsigned long flags;
-#endif
-} PageDesc;
-
-/* In system mode we want L1_MAP to be based on ram offsets,
-   while in user mode we want it to be based on virtual addresses.  */
-#if !defined(CONFIG_USER_ONLY)
-#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
-# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
-#else
-# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
-#endif
-#else
-# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
-#endif
-
-/* Size of the L2 (and L3, etc) page tables.  */
-#define L2_BITS 10
-#define L2_SIZE (1 << L2_BITS)
-
-#define P_L2_LEVELS \
-    (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
-
-/* The bits remaining after N lower levels of page tables.  */
-#define V_L1_BITS_REM \
-    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
-
-#if V_L1_BITS_REM < 4
-#define V_L1_BITS  (V_L1_BITS_REM + L2_BITS)
-#else
-#define V_L1_BITS  V_L1_BITS_REM
-#endif
-
-#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)
-
-#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
-
-uintptr_t qemu_real_host_page_size;
-uintptr_t qemu_host_page_size;
-uintptr_t qemu_host_page_mask;
-
-/* This is a multi-level map on the virtual address space.
-   The bottom level has pointers to PageDesc.  */
-static void *l1_map[V_L1_SIZE];
+int use_icount;
 
 #if !defined(CONFIG_USER_ONLY)
 
@@ -188,181 +97,11 @@ static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
 
 static void io_mem_init(void);
 static void memory_map_init(void);
+static void *qemu_safe_ram_ptr(ram_addr_t addr);
 
 static MemoryRegion io_mem_watch;
 #endif
 
-/* statistics */
-static int tb_flush_count;
-static int tb_phys_invalidate_count;
-
-#ifdef _WIN32
-static inline void map_exec(void *addr, long size)
-{
-    DWORD old_protect;
-    VirtualProtect(addr, size,
-                   PAGE_EXECUTE_READWRITE, &old_protect);
-    
-}
-#else
-static inline void map_exec(void *addr, long size)
-{
-    unsigned long start, end, page_size;
-    
-    page_size = getpagesize();
-    start = (unsigned long)addr;
-    start &= ~(page_size - 1);
-    
-    end = (unsigned long)addr + size;
-    end += page_size - 1;
-    end &= ~(page_size - 1);
-    
-    mprotect((void *)start, end - start,
-             PROT_READ | PROT_WRITE | PROT_EXEC);
-}
-#endif
-
-static void page_init(void)
-{
-    /* NOTE: we can always suppose that qemu_host_page_size >=
-       TARGET_PAGE_SIZE */
-#ifdef _WIN32
-    {
-        SYSTEM_INFO system_info;
-
-        GetSystemInfo(&system_info);
-        qemu_real_host_page_size = system_info.dwPageSize;
-    }
-#else
-    qemu_real_host_page_size = getpagesize();
-#endif
-    if (qemu_host_page_size == 0)
-        qemu_host_page_size = qemu_real_host_page_size;
-    if (qemu_host_page_size < TARGET_PAGE_SIZE)
-        qemu_host_page_size = TARGET_PAGE_SIZE;
-    qemu_host_page_mask = ~(qemu_host_page_size - 1);
-
-#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
-    {
-#ifdef HAVE_KINFO_GETVMMAP
-        struct kinfo_vmentry *freep;
-        int i, cnt;
-
-        freep = kinfo_getvmmap(getpid(), &cnt);
-        if (freep) {
-            mmap_lock();
-            for (i = 0; i < cnt; i++) {
-                unsigned long startaddr, endaddr;
-
-                startaddr = freep[i].kve_start;
-                endaddr = freep[i].kve_end;
-                if (h2g_valid(startaddr)) {
-                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
-
-                    if (h2g_valid(endaddr)) {
-                        endaddr = h2g(endaddr);
-                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
-                    } else {
-#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
-                        endaddr = ~0ul;
-                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
-#endif
-                    }
-                }
-            }
-            free(freep);
-            mmap_unlock();
-        }
-#else
-        FILE *f;
-
-        last_brk = (unsigned long)sbrk(0);
-
-        f = fopen("/compat/linux/proc/self/maps", "r");
-        if (f) {
-            mmap_lock();
-
-            do {
-                unsigned long startaddr, endaddr;
-                int n;
-
-                n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
-
-                if (n == 2 && h2g_valid(startaddr)) {
-                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
-
-                    if (h2g_valid(endaddr)) {
-                        endaddr = h2g(endaddr);
-                    } else {
-                        endaddr = ~0ul;
-                    }
-                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
-                }
-            } while (!feof(f));
-
-            fclose(f);
-            mmap_unlock();
-        }
-#endif
-    }
-#endif
-}
-
-static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
-{
-    PageDesc *pd;
-    void **lp;
-    int i;
-
-#if defined(CONFIG_USER_ONLY)
-    /* We can't use g_malloc because it may recurse into a locked mutex. */
-# define ALLOC(P, SIZE)                                 \
-    do {                                                \
-        P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \
-                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \
-    } while (0)
-#else
-# define ALLOC(P, SIZE) \
-    do { P = g_malloc0(SIZE); } while (0)
-#endif
-
-    /* Level 1.  Always allocated.  */
-    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
-
-    /* Level 2..N-1.  */
-    for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
-        void **p = *lp;
-
-        if (p == NULL) {
-            if (!alloc) {
-                return NULL;
-            }
-            ALLOC(p, sizeof(void *) * L2_SIZE);
-            *lp = p;
-        }
-
-        lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
-    }
-
-    pd = *lp;
-    if (pd == NULL) {
-        if (!alloc) {
-            return NULL;
-        }
-        ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
-        *lp = pd;
-    }
-
-#undef ALLOC
-
-    return pd + (index & (L2_SIZE - 1));
-}
-
-static inline PageDesc *page_find(tb_page_addr_t index)
-{
-    return page_find_alloc(index, 0);
-}
-
 #if !defined(CONFIG_USER_ONLY)
 
 static void phys_map_node_reserve(unsigned nodes)
@@ -398,13 +137,13 @@ static void phys_map_nodes_reset(void)
 }
 
 
-static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
-                                target_phys_addr_t *nb, uint16_t leaf,
+static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
+                                hwaddr *nb, uint16_t leaf,
                                 int level)
 {
     PhysPageEntry *p;
     int i;
-    target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
+    hwaddr step = (hwaddr)1 << (level * L2_BITS);
 
     if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
         lp->ptr = phys_map_node_alloc();
@@ -434,7 +173,7 @@ static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
 }
 
 static void phys_page_set(AddressSpaceDispatch *d,
-                          target_phys_addr_t index, target_phys_addr_t nb,
+                          hwaddr index, hwaddr nb,
                           uint16_t leaf)
 {
     /* Wildly overreserve - it doesn't matter much. */
@@ -443,7 +182,7 @@ static void phys_page_set(AddressSpaceDispatch *d,
     phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 }
 
-MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, target_phys_addr_t index)
+MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
 {
     PhysPageEntry lp = d->phys_map;
     PhysPageEntry *p;
@@ -469,193 +208,27 @@ bool memory_region_is_unassigned(MemoryRegion *mr)
         && mr != &io_mem_notdirty && !mr->rom_device
         && mr != &io_mem_watch;
 }
-
-#define mmap_lock() do { } while(0)
-#define mmap_unlock() do { } while(0)
-#endif
-
-#if defined(CONFIG_USER_ONLY)
-/* Currently it is not recommended to allocate big chunks of data in
-   user mode. It will change when a dedicated libc will be used.  */
-/* ??? 64-bit hosts ought to have no problem mmaping data outside the
-   region in which the guest needs to run.  Revisit this.  */
-#define USE_STATIC_CODE_GEN_BUFFER
-#endif
-
-/* ??? Should configure for this, not list operating systems here.  */
-#if (defined(__linux__) \
-    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
-    || defined(__DragonFly__) || defined(__OpenBSD__) \
-    || defined(__NetBSD__))
-# define USE_MMAP
-#endif
-
-/* Minimum size of the code gen buffer.  This number is randomly chosen,
-   but not so small that we can't have a fair number of TB's live.  */
-#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
-
-/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
-   indicated, this is constrained by the range of direct branches on the
-   host cpu, as used by the TCG implementation of goto_tb.  */
-#if defined(__x86_64__)
-# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
-#elif defined(__sparc__)
-# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
-#elif defined(__arm__)
-# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
-#elif defined(__s390x__)
-  /* We have a +- 4GB range on the branches; leave some slop.  */
-# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
-#else
-# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
-#endif
-
-#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
-
-#define DEFAULT_CODE_GEN_BUFFER_SIZE \
-  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
-   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
-
-static inline size_t size_code_gen_buffer(size_t tb_size)
-{
-    /* Size the buffer.  */
-    if (tb_size == 0) {
-#ifdef USE_STATIC_CODE_GEN_BUFFER
-        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
-#else
-        /* ??? Needs adjustments.  */
-        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
-           static buffer, we could size this on RESERVED_VA, on the text
-           segment size of the executable, or continue to use the default.  */
-        tb_size = (unsigned long)(ram_size / 4);
-#endif
-    }
-    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
-        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
-    }
-    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
-        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
-    }
-    code_gen_buffer_size = tb_size;
-    return tb_size;
-}
-
-#ifdef USE_STATIC_CODE_GEN_BUFFER
-static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
-    __attribute__((aligned(CODE_GEN_ALIGN)));
-
-static inline void *alloc_code_gen_buffer(void)
-{
-    map_exec(static_code_gen_buffer, code_gen_buffer_size);
-    return static_code_gen_buffer;
-}
-#elif defined(USE_MMAP)
-static inline void *alloc_code_gen_buffer(void)
-{
-    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
-    uintptr_t start = 0;
-    void *buf;
-
-    /* Constrain the position of the buffer based on the host cpu.
-       Note that these addresses are chosen in concert with the
-       addresses assigned in the relevant linker script file.  */
-# if defined(__PIE__) || defined(__PIC__)
-    /* Don't bother setting a preferred location if we're building
-       a position-independent executable.  We're more likely to get
-       an address near the main executable if we let the kernel
-       choose the address.  */
-# elif defined(__x86_64__) && defined(MAP_32BIT)
-    /* Force the memory down into low memory with the executable.
-       Leave the choice of exact location with the kernel.  */
-    flags |= MAP_32BIT;
-    /* Cannot expect to map more than 800MB in low memory.  */
-    if (code_gen_buffer_size > 800u * 1024 * 1024) {
-        code_gen_buffer_size = 800u * 1024 * 1024;
-    }
-# elif defined(__sparc__)
-    start = 0x40000000ul;
-# elif defined(__s390x__)
-    start = 0x90000000ul;
-# endif
-
-    buf = mmap((void *)start, code_gen_buffer_size,
-               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
-    return buf == MAP_FAILED ? NULL : buf;
-}
-#else
-static inline void *alloc_code_gen_buffer(void)
-{
-    void *buf = g_malloc(code_gen_buffer_size);
-    if (buf) {
-        map_exec(buf, code_gen_buffer_size);
-    }
-    return buf;
-}
-#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
-
-static inline void code_gen_alloc(size_t tb_size)
-{
-    code_gen_buffer_size = size_code_gen_buffer(tb_size);
-    code_gen_buffer = alloc_code_gen_buffer();
-    if (code_gen_buffer == NULL) {
-        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
-        exit(1);
-    }
-
-    /* Steal room for the prologue at the end of the buffer.  This ensures
-       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
-       from TB's to the prologue are going to be in range.  It also means
-       that we don't need to mark (additional) portions of the data segment
-       as executable.  */
-    code_gen_prologue = code_gen_buffer + code_gen_buffer_size - 1024;
-    code_gen_buffer_size -= 1024;
-
-    code_gen_buffer_max_size = code_gen_buffer_size -
-        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
-    code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
-    tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
-}
-
-/* Must be called before using the QEMU cpus. 'tb_size' is the size
-   (in bytes) allocated to the translation buffer. Zero means default
-   size. */
-void tcg_exec_init(unsigned long tb_size)
-{
-    cpu_gen_init();
-    code_gen_alloc(tb_size);
-    code_gen_ptr = code_gen_buffer;
-    tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
-    page_init();
-#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
-    /* There's no guest base to take into account, so go ahead and
-       initialize the prologue now.  */
-    tcg_prologue_init(&tcg_ctx);
 #endif
-}
-
-bool tcg_enabled(void)
-{
-    return code_gen_buffer != NULL;
-}
 
 void cpu_exec_init_all(void)
 {
 #if !defined(CONFIG_USER_ONLY)
+    qemu_mutex_init(&ram_list.mutex);
     memory_map_init();
     io_mem_init();
 #endif
 }
 
-#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
 
 static int cpu_common_post_load(void *opaque, int version_id)
 {
-    CPUArchState *env = opaque;
+    CPUState *cpu = opaque;
 
     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
        version_id is increased. */
-    env->interrupt_request &= ~0x01;
-    tlb_flush(env, 1);
+    cpu->interrupt_request &= ~0x01;
+    tlb_flush(cpu->env_ptr, 1);
 
     return 0;
 }
@@ -667,803 +240,78 @@ static const VMStateDescription vmstate_cpu_common = {
     .minimum_version_id_old = 1,
     .post_load = cpu_common_post_load,
     .fields      = (VMStateField []) {
-        VMSTATE_UINT32(halted, CPUArchState),
-        VMSTATE_UINT32(interrupt_request, CPUArchState),
-        VMSTATE_END_OF_LIST()
-    }
-};
-#endif
-
-CPUArchState *qemu_get_cpu(int cpu)
-{
-    CPUArchState *env = first_cpu;
-
-    while (env) {
-        if (env->cpu_index == cpu)
-            break;
-        env = env->next_cpu;
-    }
-
-    return env;
-}
-
-void cpu_exec_init(CPUArchState *env)
-{
-    CPUArchState **penv;
-    int cpu_index;
-
-#if defined(CONFIG_USER_ONLY)
-    cpu_list_lock();
-#endif
-    env->next_cpu = NULL;
-    penv = &first_cpu;
-    cpu_index = 0;
-    while (*penv != NULL) {
-        penv = &(*penv)->next_cpu;
-        cpu_index++;
-    }
-    env->cpu_index = cpu_index;
-    env->numa_node = 0;
-    QTAILQ_INIT(&env->breakpoints);
-    QTAILQ_INIT(&env->watchpoints);
-#ifndef CONFIG_USER_ONLY
-    env->thread_id = qemu_get_thread_id();
-#endif
-    *penv = env;
-#if defined(CONFIG_USER_ONLY)
-    cpu_list_unlock();
-#endif
-#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
-    vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
-    register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
-                    cpu_save, cpu_load, env);
-#endif
-}
-
-/* Allocate a new translation block. Flush the translation buffer if
-   too many translation blocks or too much generated code. */
-static TranslationBlock *tb_alloc(target_ulong pc)
-{
-    TranslationBlock *tb;
-
-    if (nb_tbs >= code_gen_max_blocks ||
-        (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
-        return NULL;
-    tb = &tbs[nb_tbs++];
-    tb->pc = pc;
-    tb->cflags = 0;
-    return tb;
-}
-
-void tb_free(TranslationBlock *tb)
-{
-    /* In practice this is mostly used for single use temporary TB
-       Ignore the hard cases and just back up if this TB happens to
-       be the last one generated.  */
-    if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
-        code_gen_ptr = tb->tc_ptr;
-        nb_tbs--;
-    }
-}
-
-static inline void invalidate_page_bitmap(PageDesc *p)
-{
-    if (p->code_bitmap) {
-        g_free(p->code_bitmap);
-        p->code_bitmap = NULL;
-    }
-    p->code_write_count = 0;
-}
-
-/* Set to NULL all the 'first_tb' fields in all PageDescs. */
-
-static void page_flush_tb_1 (int level, void **lp)
-{
-    int i;
-
-    if (*lp == NULL) {
-        return;
-    }
-    if (level == 0) {
-        PageDesc *pd = *lp;
-        for (i = 0; i < L2_SIZE; ++i) {
-            pd[i].first_tb = NULL;
-            invalidate_page_bitmap(pd + i);
-        }
-    } else {
-        void **pp = *lp;
-        for (i = 0; i < L2_SIZE; ++i) {
-            page_flush_tb_1 (level - 1, pp + i);
-        }
-    }
-}
-
-static void page_flush_tb(void)
-{
-    int i;
-    for (i = 0; i < V_L1_SIZE; i++) {
-        page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
-    }
-}
-
-/* flush all the translation blocks */
-/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUArchState *env1)
-{
-    CPUArchState *env;
-#if defined(DEBUG_FLUSH)
-    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
-           (unsigned long)(code_gen_ptr - code_gen_buffer),
-           nb_tbs, nb_tbs > 0 ?
-           ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
-#endif
-    if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
-        cpu_abort(env1, "Internal error: code buffer overflow\n");
-
-    nb_tbs = 0;
-
-    for(env = first_cpu; env != NULL; env = env->next_cpu) {
-        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-    }
-
-    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
-    page_flush_tb();
-
-    code_gen_ptr = code_gen_buffer;
-    /* XXX: flush processor icache at this point if cache flush is
-       expensive */
-    tb_flush_count++;
-}
-
-#ifdef DEBUG_TB_CHECK
-
-static void tb_invalidate_check(target_ulong address)
-{
-    TranslationBlock *tb;
-    int i;
-    address &= TARGET_PAGE_MASK;
-    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
-        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
-            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
-                  address >= tb->pc + tb->size)) {
-                printf("ERROR invalidate: address=" TARGET_FMT_lx
-                       " PC=%08lx size=%04x\n",
-                       address, (long)tb->pc, tb->size);
-            }
-        }
-    }
-}
-
-/* verify that all the pages have correct rights for code */
-static void tb_page_check(void)
-{
-    TranslationBlock *tb;
-    int i, flags1, flags2;
-
-    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
-        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
-            flags1 = page_get_flags(tb->pc);
-            flags2 = page_get_flags(tb->pc + tb->size - 1);
-            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
-                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
-                       (long)tb->pc, tb->size, flags1, flags2);
-            }
-        }
-    }
-}
-
-#endif
-
-/* invalidate one TB */
-static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
-                             int next_offset)
-{
-    TranslationBlock *tb1;
-    for(;;) {
-        tb1 = *ptb;
-        if (tb1 == tb) {
-            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
-            break;
-        }
-        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
-    }
-}
-
-static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
-{
-    TranslationBlock *tb1;
-    unsigned int n1;
-
-    for(;;) {
-        tb1 = *ptb;
-        n1 = (uintptr_t)tb1 & 3;
-        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
-        if (tb1 == tb) {
-            *ptb = tb1->page_next[n1];
-            break;
-        }
-        ptb = &tb1->page_next[n1];
-    }
-}
-
-static inline void tb_jmp_remove(TranslationBlock *tb, int n)
-{
-    TranslationBlock *tb1, **ptb;
-    unsigned int n1;
-
-    ptb = &tb->jmp_next[n];
-    tb1 = *ptb;
-    if (tb1) {
-        /* find tb(n) in circular list */
-        for(;;) {
-            tb1 = *ptb;
-            n1 = (uintptr_t)tb1 & 3;
-            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
-            if (n1 == n && tb1 == tb)
-                break;
-            if (n1 == 2) {
-                ptb = &tb1->jmp_first;
-            } else {
-                ptb = &tb1->jmp_next[n1];
-            }
-        }
-        /* now we can suppress tb(n) from the list */
-        *ptb = tb->jmp_next[n];
-
-        tb->jmp_next[n] = NULL;
-    }
-}
-
-/* reset the jump entry 'n' of a TB so that it is not chained to
-   another TB */
-static inline void tb_reset_jump(TranslationBlock *tb, int n)
-{
-    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
-}
-
-void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
-{
-    CPUArchState *env;
-    PageDesc *p;
-    unsigned int h, n1;
-    tb_page_addr_t phys_pc;
-    TranslationBlock *tb1, *tb2;
-
-    /* remove the TB from the hash list */
-    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
-    h = tb_phys_hash_func(phys_pc);
-    tb_remove(&tb_phys_hash[h], tb,
-              offsetof(TranslationBlock, phys_hash_next));
-
-    /* remove the TB from the page list */
-    if (tb->page_addr[0] != page_addr) {
-        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
-        tb_page_remove(&p->first_tb, tb);
-        invalidate_page_bitmap(p);
-    }
-    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
-        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
-        tb_page_remove(&p->first_tb, tb);
-        invalidate_page_bitmap(p);
-    }
-
-    tb_invalidated_flag = 1;
-
-    /* remove the TB from the hash list */
-    h = tb_jmp_cache_hash_func(tb->pc);
-    for(env = first_cpu; env != NULL; env = env->next_cpu) {
-        if (env->tb_jmp_cache[h] == tb)
-            env->tb_jmp_cache[h] = NULL;
-    }
-
-    /* suppress this TB from the two jump lists */
-    tb_jmp_remove(tb, 0);
-    tb_jmp_remove(tb, 1);
-
-    /* suppress any remaining jumps to this TB */
-    tb1 = tb->jmp_first;
-    for(;;) {
-        n1 = (uintptr_t)tb1 & 3;
-        if (n1 == 2)
-            break;
-        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
-        tb2 = tb1->jmp_next[n1];
-        tb_reset_jump(tb1, n1);
-        tb1->jmp_next[n1] = NULL;
-        tb1 = tb2;
-    }
-    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
-
-    tb_phys_invalidate_count++;
-}
-
-static inline void set_bits(uint8_t *tab, int start, int len)
-{
-    int end, mask, end1;
-
-    end = start + len;
-    tab += start >> 3;
-    mask = 0xff << (start & 7);
-    if ((start & ~7) == (end & ~7)) {
-        if (start < end) {
-            mask &= ~(0xff << (end & 7));
-            *tab |= mask;
-        }
-    } else {
-        *tab++ |= mask;
-        start = (start + 8) & ~7;
-        end1 = end & ~7;
-        while (start < end1) {
-            *tab++ = 0xff;
-            start += 8;
-        }
-        if (start < end) {
-            mask = ~(0xff << (end & 7));
-            *tab |= mask;
-        }
-    }
-}
-
-static void build_page_bitmap(PageDesc *p)
-{
-    int n, tb_start, tb_end;
-    TranslationBlock *tb;
-
-    p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
-
-    tb = p->first_tb;
-    while (tb != NULL) {
-        n = (uintptr_t)tb & 3;
-        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
-        /* NOTE: this is subtle as a TB may span two physical pages */
-        if (n == 0) {
-            /* NOTE: tb_end may be after the end of the page, but
-               it is not a problem */
-            tb_start = tb->pc & ~TARGET_PAGE_MASK;
-            tb_end = tb_start + tb->size;
-            if (tb_end > TARGET_PAGE_SIZE)
-                tb_end = TARGET_PAGE_SIZE;
-        } else {
-            tb_start = 0;
-            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
-        }
-        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
-        tb = tb->page_next[n];
-    }
-}
-
-TranslationBlock *tb_gen_code(CPUArchState *env,
-                              target_ulong pc, target_ulong cs_base,
-                              int flags, int cflags)
-{
-    TranslationBlock *tb;
-    uint8_t *tc_ptr;
-    tb_page_addr_t phys_pc, phys_page2;
-    target_ulong virt_page2;
-    int code_gen_size;
-
-    phys_pc = get_page_addr_code(env, pc);
-    tb = tb_alloc(pc);
-    if (!tb) {
-        /* flush must be done */
-        tb_flush(env);
-        /* cannot fail at this point */
-        tb = tb_alloc(pc);
-        /* Don't forget to invalidate previous TB info.  */
-        tb_invalidated_flag = 1;
-    }
-    tc_ptr = code_gen_ptr;
-    tb->tc_ptr = tc_ptr;
-    tb->cs_base = cs_base;
-    tb->flags = flags;
-    tb->cflags = cflags;
-    cpu_gen_code(env, tb, &code_gen_size);
-    code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
-                             CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
-    /* check next page if needed */
-    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
-    phys_page2 = -1;
-    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
-        phys_page2 = get_page_addr_code(env, virt_page2);
-    }
-    tb_link_page(tb, phys_pc, phys_page2);
-    return tb;
-}
-
-/*
- * Invalidate all TBs which intersect with the target physical address range
- * [start;end[. NOTE: start and end may refer to *different* physical pages.
- * 'is_cpu_write_access' should be true if called from a real cpu write
- * access: the virtual CPU will exit the current TB if code is modified inside
- * this TB.
- */
-void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
-                              int is_cpu_write_access)
-{
-    while (start < end) {
-        tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
-        start &= TARGET_PAGE_MASK;
-        start += TARGET_PAGE_SIZE;
-    }
-}
-
-/*
- * Invalidate all TBs which intersect with the target physical address range
- * [start;end[. NOTE: start and end must refer to the *same* physical page.
- * 'is_cpu_write_access' should be true if called from a real cpu write
- * access: the virtual CPU will exit the current TB if code is modified inside
- * this TB.
- */
-void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
-                                   int is_cpu_write_access)
-{
-    TranslationBlock *tb, *tb_next, *saved_tb;
-    CPUArchState *env = cpu_single_env;
-    tb_page_addr_t tb_start, tb_end;
-    PageDesc *p;
-    int n;
-#ifdef TARGET_HAS_PRECISE_SMC
-    int current_tb_not_found = is_cpu_write_access;
-    TranslationBlock *current_tb = NULL;
-    int current_tb_modified = 0;
-    target_ulong current_pc = 0;
-    target_ulong current_cs_base = 0;
-    int current_flags = 0;
-#endif /* TARGET_HAS_PRECISE_SMC */
-
-    p = page_find(start >> TARGET_PAGE_BITS);
-    if (!p)
-        return;
-    if (!p->code_bitmap &&
-        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
-        is_cpu_write_access) {
-        /* build code bitmap */
-        build_page_bitmap(p);
-    }
-
-    /* we remove all the TBs in the range [start, end[ */
-    /* XXX: see if in some cases it could be faster to invalidate all the code */
-    tb = p->first_tb;
-    while (tb != NULL) {
-        n = (uintptr_t)tb & 3;
-        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
-        tb_next = tb->page_next[n];
-        /* NOTE: this is subtle as a TB may span two physical pages */
-        if (n == 0) {
-            /* NOTE: tb_end may be after the end of the page, but
-               it is not a problem */
-            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
-            tb_end = tb_start + tb->size;
-        } else {
-            tb_start = tb->page_addr[1];
-            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
-        }
-        if (!(tb_end <= start || tb_start >= end)) {
-#ifdef TARGET_HAS_PRECISE_SMC
-            if (current_tb_not_found) {
-                current_tb_not_found = 0;
-                current_tb = NULL;
-                if (env->mem_io_pc) {
-                    /* now we have a real cpu fault */
-                    current_tb = tb_find_pc(env->mem_io_pc);
-                }
-            }
-            if (current_tb == tb &&
-                (current_tb->cflags & CF_COUNT_MASK) != 1) {
-                /* If we are modifying the current TB, we must stop
-                its execution. We could be more precise by checking
-                that the modification is after the current PC, but it
-                would require a specialized function to partially
-                restore the CPU state */
-
-                current_tb_modified = 1;
-                cpu_restore_state(current_tb, env, env->mem_io_pc);
-                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
-                                     &current_flags);
-            }
-#endif /* TARGET_HAS_PRECISE_SMC */
-            /* we need to do that to handle the case where a signal
-               occurs while doing tb_phys_invalidate() */
-            saved_tb = NULL;
-            if (env) {
-                saved_tb = env->current_tb;
-                env->current_tb = NULL;
-            }
-            tb_phys_invalidate(tb, -1);
-            if (env) {
-                env->current_tb = saved_tb;
-                if (env->interrupt_request && env->current_tb)
-                    cpu_interrupt(env, env->interrupt_request);
-            }
-        }
-        tb = tb_next;
-    }
-#if !defined(CONFIG_USER_ONLY)
-    /* if no code remaining, no need to continue to use slow writes */
-    if (!p->first_tb) {
-        invalidate_page_bitmap(p);
-        if (is_cpu_write_access) {
-            tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
-        }
-    }
-#endif
-#ifdef TARGET_HAS_PRECISE_SMC
-    if (current_tb_modified) {
-        /* we generate a block containing just the instruction
-           modifying the memory. It will ensure that it cannot modify
-           itself */
-        env->current_tb = NULL;
-        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
-        cpu_resume_from_signal(env, NULL);
-    }
-#endif
-}
-
-/* len must be <= 8 and start must be a multiple of len */
-static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
-{
-    PageDesc *p;
-    int offset, b;
-#if 0
-    if (1) {
-        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
-                  cpu_single_env->mem_io_vaddr, len,
-                  cpu_single_env->eip,
-                  cpu_single_env->eip +
-                  (intptr_t)cpu_single_env->segs[R_CS].base);
-    }
-#endif
-    p = page_find(start >> TARGET_PAGE_BITS);
-    if (!p)
-        return;
-    if (p->code_bitmap) {
-        offset = start & ~TARGET_PAGE_MASK;
-        b = p->code_bitmap[offset >> 3] >> (offset & 7);
-        if (b & ((1 << len) - 1))
-            goto do_invalidate;
-    } else {
-    do_invalidate:
-        tb_invalidate_phys_page_range(start, start + len, 1);
-    }
-}
-
-#if !defined(CONFIG_SOFTMMU)
-static void tb_invalidate_phys_page(tb_page_addr_t addr,
-                                    uintptr_t pc, void *puc)
-{
-    TranslationBlock *tb;
-    PageDesc *p;
-    int n;
-#ifdef TARGET_HAS_PRECISE_SMC
-    TranslationBlock *current_tb = NULL;
-    CPUArchState *env = cpu_single_env;
-    int current_tb_modified = 0;
-    target_ulong current_pc = 0;
-    target_ulong current_cs_base = 0;
-    int current_flags = 0;
-#endif
-
-    addr &= TARGET_PAGE_MASK;
-    p = page_find(addr >> TARGET_PAGE_BITS);
-    if (!p)
-        return;
-    tb = p->first_tb;
-#ifdef TARGET_HAS_PRECISE_SMC
-    if (tb && pc != 0) {
-        current_tb = tb_find_pc(pc);
-    }
-#endif
-    while (tb != NULL) {
-        n = (uintptr_t)tb & 3;
-        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
-#ifdef TARGET_HAS_PRECISE_SMC
-        if (current_tb == tb &&
-            (current_tb->cflags & CF_COUNT_MASK) != 1) {
-                /* If we are modifying the current TB, we must stop
-                   its execution. We could be more precise by checking
-                   that the modification is after the current PC, but it
-                   would require a specialized function to partially
-                   restore the CPU state */
-
-            current_tb_modified = 1;
-            cpu_restore_state(current_tb, env, pc);
-            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
-                                 &current_flags);
-        }
-#endif /* TARGET_HAS_PRECISE_SMC */
-        tb_phys_invalidate(tb, addr);
-        tb = tb->page_next[n];
-    }
-    p->first_tb = NULL;
-#ifdef TARGET_HAS_PRECISE_SMC
-    if (current_tb_modified) {
-        /* we generate a block containing just the instruction
-           modifying the memory. It will ensure that it cannot modify
-           itself */
-        env->current_tb = NULL;
-        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
-        cpu_resume_from_signal(env, puc);
-    }
-#endif
-}
-#endif
-
-/* add the tb in the target page and protect it if necessary */
-static inline void tb_alloc_page(TranslationBlock *tb,
-                                 unsigned int n, tb_page_addr_t page_addr)
-{
-    PageDesc *p;
-#ifndef CONFIG_USER_ONLY
-    bool page_already_protected;
-#endif
-
-    tb->page_addr[n] = page_addr;
-    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
-    tb->page_next[n] = p->first_tb;
-#ifndef CONFIG_USER_ONLY
-    page_already_protected = p->first_tb != NULL;
-#endif
-    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
-    invalidate_page_bitmap(p);
-
-#if defined(TARGET_HAS_SMC) || 1
-
-#if defined(CONFIG_USER_ONLY)
-    if (p->flags & PAGE_WRITE) {
-        target_ulong addr;
-        PageDesc *p2;
-        int prot;
-
-        /* force the host page as non writable (writes will have a
-           page fault + mprotect overhead) */
-        page_addr &= qemu_host_page_mask;
-        prot = 0;
-        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
-            addr += TARGET_PAGE_SIZE) {
-
-            p2 = page_find (addr >> TARGET_PAGE_BITS);
-            if (!p2)
-                continue;
-            prot |= p2->flags;
-            p2->flags &= ~PAGE_WRITE;
-          }
-        mprotect(g2h(page_addr), qemu_host_page_size,
-                 (prot & PAGE_BITS) & ~PAGE_WRITE);
-#ifdef DEBUG_TB_INVALIDATE
-        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
-               page_addr);
-#endif
+        VMSTATE_UINT32(halted, CPUState),
+        VMSTATE_UINT32(interrupt_request, CPUState),
+        VMSTATE_END_OF_LIST()
     }
+};
 #else
-    /* if some code is already present, then the pages are already
-       protected. So we handle the case where only the first TB is
-       allocated in a physical page */
-    if (!page_already_protected) {
-        tlb_protect_code(page_addr);
-    }
+#define vmstate_cpu_common vmstate_dummy
 #endif
 
-#endif /* TARGET_HAS_SMC */
-}
-
-/* add a new TB and link it to the physical page tables. phys_page2 is
-   (-1) to indicate that only one page contains the TB. */
-void tb_link_page(TranslationBlock *tb,
-                  tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
+CPUState *qemu_get_cpu(int index)
 {
-    unsigned int h;
-    TranslationBlock **ptb;
-
-    /* Grab the mmap lock to stop another thread invalidating this TB
-       before we are done.  */
-    mmap_lock();
-    /* add in the physical hash table */
-    h = tb_phys_hash_func(phys_pc);
-    ptb = &tb_phys_hash[h];
-    tb->phys_hash_next = *ptb;
-    *ptb = tb;
-
-    /* add in the page list */
-    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
-    if (phys_page2 != -1)
-        tb_alloc_page(tb, 1, phys_page2);
-    else
-        tb->page_addr[1] = -1;
-
-    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
-    tb->jmp_next[0] = NULL;
-    tb->jmp_next[1] = NULL;
+    CPUArchState *env = first_cpu;
+    CPUState *cpu = NULL;
 
-    /* init original jump addresses */
-    if (tb->tb_next_offset[0] != 0xffff)
-        tb_reset_jump(tb, 0);
-    if (tb->tb_next_offset[1] != 0xffff)
-        tb_reset_jump(tb, 1);
+    while (env) {
+        cpu = ENV_GET_CPU(env);
+        if (cpu->cpu_index == index) {
+            break;
+        }
+        env = env->next_cpu;
+    }
 
-#ifdef DEBUG_TB_CHECK
-    tb_page_check();
-#endif
-    mmap_unlock();
+    return env ? cpu : NULL;
 }
 
-/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
-   tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
+void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
 {
-    int m_min, m_max, m;
-    uintptr_t v;
-    TranslationBlock *tb;
+    CPUArchState *env = first_cpu;
 
-    if (nb_tbs <= 0)
-        return NULL;
-    if (tc_ptr < (uintptr_t)code_gen_buffer ||
-        tc_ptr >= (uintptr_t)code_gen_ptr) {
-        return NULL;
-    }
-    /* binary search (cf Knuth) */
-    m_min = 0;
-    m_max = nb_tbs - 1;
-    while (m_min <= m_max) {
-        m = (m_min + m_max) >> 1;
-        tb = &tbs[m];
-        v = (uintptr_t)tb->tc_ptr;
-        if (v == tc_ptr)
-            return tb;
-        else if (tc_ptr < v) {
-            m_max = m - 1;
-        } else {
-            m_min = m + 1;
-        }
+    while (env) {
+        func(ENV_GET_CPU(env), data);
+        env = env->next_cpu;
     }
-    return &tbs[m_max];
 }
 
-static void tb_reset_jump_recursive(TranslationBlock *tb);
-
-static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+void cpu_exec_init(CPUArchState *env)
 {
-    TranslationBlock *tb1, *tb_next, **ptb;
-    unsigned int n1;
-
-    tb1 = tb->jmp_next[n];
-    if (tb1 != NULL) {
-        /* find head of list */
-        for(;;) {
-            n1 = (uintptr_t)tb1 & 3;
-            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
-            if (n1 == 2)
-                break;
-            tb1 = tb1->jmp_next[n1];
-        }
-        /* we are now sure now that tb jumps to tb1 */
-        tb_next = tb1;
-
-        /* remove tb from the jmp_first list */
-        ptb = &tb_next->jmp_first;
-        for(;;) {
-            tb1 = *ptb;
-            n1 = (uintptr_t)tb1 & 3;
-            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
-            if (n1 == n && tb1 == tb)
-                break;
-            ptb = &tb1->jmp_next[n1];
-        }
-        *ptb = tb->jmp_next[n];
-        tb->jmp_next[n] = NULL;
-
-        /* suppress the jump to next tb in generated code */
-        tb_reset_jump(tb, n);
+    CPUState *cpu = ENV_GET_CPU(env);
+    CPUClass *cc = CPU_GET_CLASS(cpu);
+    CPUArchState **penv;
+    int cpu_index;
 
-        /* suppress jumps in the tb on which we could have jumped */
-        tb_reset_jump_recursive(tb_next);
+#if defined(CONFIG_USER_ONLY)
+    cpu_list_lock();
+#endif
+    env->next_cpu = NULL;
+    penv = &first_cpu;
+    cpu_index = 0;
+    while (*penv != NULL) {
+        penv = &(*penv)->next_cpu;
+        cpu_index++;
+    }
+    cpu->cpu_index = cpu_index;
+    cpu->numa_node = 0;
+    QTAILQ_INIT(&env->breakpoints);
+    QTAILQ_INIT(&env->watchpoints);
+#ifndef CONFIG_USER_ONLY
+    cpu->thread_id = qemu_get_thread_id();
+#endif
+    *penv = env;
+#if defined(CONFIG_USER_ONLY)
+    cpu_list_unlock();
+#endif
+    vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+    register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
+                    cpu_save, cpu_load, env);
+    assert(cc->vmsd == NULL);
+#endif
+    if (cc->vmsd != NULL) {
+        vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
     }
-}
-
-static void tb_reset_jump_recursive(TranslationBlock *tb)
-{
-    tb_reset_jump_recursive2(tb, 0);
-    tb_reset_jump_recursive2(tb, 1);
 }
 
 #if defined(TARGET_HAS_ICE)
@@ -1473,21 +321,6 @@ static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
     tb_invalidate_phys_page_range(pc, pc + 1, 0);
 }
 #else
-void tb_invalidate_phys_addr(target_phys_addr_t addr)
-{
-    ram_addr_t ram_addr;
-    MemoryRegionSection *section;
-
-    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
-    if (!(memory_region_is_ram(section->mr)
-          || (section->mr->rom_device && section->mr->readable))) {
-        return;
-    }
-    ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
-        + memory_region_section_addr(section, addr);
-    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
-}
-
 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 {
     tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
@@ -1669,75 +502,12 @@ void cpu_single_step(CPUArchState *env, int enabled)
 #endif
 }
 
-static void cpu_unlink_tb(CPUArchState *env)
-{
-    /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
-       problem and hope the cpu will stop of its own accord.  For userspace
-       emulation this often isn't actually as bad as it sounds.  Often
-       signals are used primarily to interrupt blocking syscalls.  */
-    TranslationBlock *tb;
-    static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
-
-    spin_lock(&interrupt_lock);
-    tb = env->current_tb;
-    /* if the cpu is currently executing code, we must unlink it and
-       all the potentially executing TB */
-    if (tb) {
-        env->current_tb = NULL;
-        tb_reset_jump_recursive(tb);
-    }
-    spin_unlock(&interrupt_lock);
-}
-
-#ifndef CONFIG_USER_ONLY
-/* mask must never be zero, except for A20 change call */
-static void tcg_handle_interrupt(CPUArchState *env, int mask)
-{
-    int old_mask;
-
-    old_mask = env->interrupt_request;
-    env->interrupt_request |= mask;
-
-    /*
-     * If called from iothread context, wake the target cpu in
-     * case its halted.
-     */
-    if (!qemu_cpu_is_self(env)) {
-        qemu_cpu_kick(env);
-        return;
-    }
-
-    if (use_icount) {
-        env->icount_decr.u16.high = 0xffff;
-        if (!can_do_io(env)
-            && (mask & ~old_mask) != 0) {
-            cpu_abort(env, "Raised interrupt while not in I/O function");
-        }
-    } else {
-        cpu_unlink_tb(env);
-    }
-}
-
-CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
-
-#else /* CONFIG_USER_ONLY */
-
-void cpu_interrupt(CPUArchState *env, int mask)
-{
-    env->interrupt_request |= mask;
-    cpu_unlink_tb(env);
-}
-#endif /* CONFIG_USER_ONLY */
-
-void cpu_reset_interrupt(CPUArchState *env, int mask)
-{
-    env->interrupt_request &= ~mask;
-}
-
 void cpu_exit(CPUArchState *env)
 {
-    env->exit_request = 1;
-    cpu_unlink_tb(env);
+    CPUState *cpu = ENV_GET_CPU(env);
+
+    cpu->exit_request = 1;
+    cpu->tcg_exit_req = 1;
 }
 
 void cpu_abort(CPUArchState *env, const char *fmt, ...)
@@ -1776,7 +546,6 @@ CPUArchState *cpu_copy(CPUArchState *env)
 {
     CPUArchState *new_env = cpu_init(env->cpu_model_str);
     CPUArchState *next_cpu = new_env->next_cpu;
-    int cpu_index = new_env->cpu_index;
 #if defined(TARGET_HAS_ICE)
     CPUBreakpoint *bp;
     CPUWatchpoint *wp;
@@ -1784,9 +553,8 @@ CPUArchState *cpu_copy(CPUArchState *env)
 
     memcpy(new_env, env, sizeof(CPUArchState));
 
-    /* Preserve chaining and index. */
+    /* Preserve chaining. */
     new_env->next_cpu = next_cpu;
-    new_env->cpu_index = cpu_index;
 
     /* Clone all break/watchpoints.
        Note: Once we support ptrace with hw-debug register access, make sure
@@ -1807,21 +575,6 @@ CPUArchState *cpu_copy(CPUArchState *env)
 }
 
 #if !defined(CONFIG_USER_ONLY)
-void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
-{
-    unsigned int i;
-
-    /* Discard jump cache entries for any tb which might potentially
-       overlap the flushed page.  */
-    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
-    memset (&env->tb_jmp_cache[i], 0, 
-            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
-
-    i = tb_jmp_cache_hash_page(addr);
-    memset (&env->tb_jmp_cache[i], 0, 
-            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
-}
-
 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
                                       uintptr_t length)
 {
@@ -1859,21 +612,21 @@ void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
     }
 }
 
-int cpu_physical_memory_set_dirty_tracking(int enable)
+static int cpu_physical_memory_set_dirty_tracking(int enable)
 {
     int ret = 0;
     in_migration = enable;
     return ret;
 }
 
-target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
+hwaddr memory_region_section_get_iotlb(CPUArchState *env,
                                                    MemoryRegionSection *section,
                                                    target_ulong vaddr,
-                                                   target_phys_addr_t paddr,
+                                                   hwaddr paddr,
                                                    int prot,
                                                    target_ulong *address)
 {
-    target_phys_addr_t iotlb;
+    hwaddr iotlb;
     CPUWatchpoint *wp;
 
     if (memory_region_is_ram(section->mr)) {
@@ -1911,264 +664,6 @@ target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
 
     return iotlb;
 }
-
-#else
-/*
- * Walks guest process memory "regions" one by one
- * and calls callback function 'fn' for each region.
- */
-
-struct walk_memory_regions_data
-{
-    walk_memory_regions_fn fn;
-    void *priv;
-    uintptr_t start;
-    int prot;
-};
-
-static int walk_memory_regions_end(struct walk_memory_regions_data *data,
-                                   abi_ulong end, int new_prot)
-{
-    if (data->start != -1ul) {
-        int rc = data->fn(data->priv, data->start, end, data->prot);
-        if (rc != 0) {
-            return rc;
-        }
-    }
-
-    data->start = (new_prot ? end : -1ul);
-    data->prot = new_prot;
-
-    return 0;
-}
-
-static int walk_memory_regions_1(struct walk_memory_regions_data *data,
-                                 abi_ulong base, int level, void **lp)
-{
-    abi_ulong pa;
-    int i, rc;
-
-    if (*lp == NULL) {
-        return walk_memory_regions_end(data, base, 0);
-    }
-
-    if (level == 0) {
-        PageDesc *pd = *lp;
-        for (i = 0; i < L2_SIZE; ++i) {
-            int prot = pd[i].flags;
-
-            pa = base | (i << TARGET_PAGE_BITS);
-            if (prot != data->prot) {
-                rc = walk_memory_regions_end(data, pa, prot);
-                if (rc != 0) {
-                    return rc;
-                }
-            }
-        }
-    } else {
-        void **pp = *lp;
-        for (i = 0; i < L2_SIZE; ++i) {
-            pa = base | ((abi_ulong)i <<
-                (TARGET_PAGE_BITS + L2_BITS * level));
-            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
-            if (rc != 0) {
-                return rc;
-            }
-        }
-    }
-
-    return 0;
-}
-
-int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
-{
-    struct walk_memory_regions_data data;
-    uintptr_t i;
-
-    data.fn = fn;
-    data.priv = priv;
-    data.start = -1ul;
-    data.prot = 0;
-
-    for (i = 0; i < V_L1_SIZE; i++) {
-        int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
-                                       V_L1_SHIFT / L2_BITS - 1, l1_map + i);
-        if (rc != 0) {
-            return rc;
-        }
-    }
-
-    return walk_memory_regions_end(&data, 0, 0);
-}
-
-static int dump_region(void *priv, abi_ulong start,
-    abi_ulong end, unsigned long prot)
-{
-    FILE *f = (FILE *)priv;
-
-    (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
-        " "TARGET_ABI_FMT_lx" %c%c%c\n",
-        start, end, end - start,
-        ((prot & PAGE_READ) ? 'r' : '-'),
-        ((prot & PAGE_WRITE) ? 'w' : '-'),
-        ((prot & PAGE_EXEC) ? 'x' : '-'));
-
-    return (0);
-}
-
-/* dump memory mappings */
-void page_dump(FILE *f)
-{
-    (void) fprintf(f, "%-8s %-8s %-8s %s\n",
-            "start", "end", "size", "prot");
-    walk_memory_regions(f, dump_region);
-}
-
-int page_get_flags(target_ulong address)
-{
-    PageDesc *p;
-
-    p = page_find(address >> TARGET_PAGE_BITS);
-    if (!p)
-        return 0;
-    return p->flags;
-}
-
-/* Modify the flags of a page and invalidate the code if necessary.
-   The flag PAGE_WRITE_ORG is positioned automatically depending
-   on PAGE_WRITE.  The mmap_lock should already be held.  */
-void page_set_flags(target_ulong start, target_ulong end, int flags)
-{
-    target_ulong addr, len;
-
-    /* This function should never be called with addresses outside the
-       guest address space.  If this assert fires, it probably indicates
-       a missing call to h2g_valid.  */
-#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
-    assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
-#endif
-    assert(start < end);
-
-    start = start & TARGET_PAGE_MASK;
-    end = TARGET_PAGE_ALIGN(end);
-
-    if (flags & PAGE_WRITE) {
-        flags |= PAGE_WRITE_ORG;
-    }
-
-    for (addr = start, len = end - start;
-         len != 0;
-         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
-        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
-
-        /* If the write protection bit is set, then we invalidate
-           the code inside.  */
-        if (!(p->flags & PAGE_WRITE) &&
-            (flags & PAGE_WRITE) &&
-            p->first_tb) {
-            tb_invalidate_phys_page(addr, 0, NULL);
-        }
-        p->flags = flags;
-    }
-}
-
-int page_check_range(target_ulong start, target_ulong len, int flags)
-{
-    PageDesc *p;
-    target_ulong end;
-    target_ulong addr;
-
-    /* This function should never be called with addresses outside the
-       guest address space.  If this assert fires, it probably indicates
-       a missing call to h2g_valid.  */
-#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
-    assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
-#endif
-
-    if (len == 0) {
-        return 0;
-    }
-    if (start + len - 1 < start) {
-        /* We've wrapped around.  */
-        return -1;
-    }
-
-    end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
-    start = start & TARGET_PAGE_MASK;
-
-    for (addr = start, len = end - start;
-         len != 0;
-         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
-        p = page_find(addr >> TARGET_PAGE_BITS);
-        if( !p )
-            return -1;
-        if( !(p->flags & PAGE_VALID) )
-            return -1;
-
-        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
-            return -1;
-        if (flags & PAGE_WRITE) {
-            if (!(p->flags & PAGE_WRITE_ORG))
-                return -1;
-            /* unprotect the page if it was put read-only because it
-               contains translated code */
-            if (!(p->flags & PAGE_WRITE)) {
-                if (!page_unprotect(addr, 0, NULL))
-                    return -1;
-            }
-            return 0;
-        }
-    }
-    return 0;
-}
-
-/* called from signal handler: invalidate the code and unprotect the
-   page. Return TRUE if the fault was successfully handled. */
-int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
-{
-    unsigned int prot;
-    PageDesc *p;
-    target_ulong host_start, host_end, addr;
-
-    /* Technically this isn't safe inside a signal handler.  However we
-       know this only ever happens in a synchronous SEGV handler, so in
-       practice it seems to be ok.  */
-    mmap_lock();
-
-    p = page_find(address >> TARGET_PAGE_BITS);
-    if (!p) {
-        mmap_unlock();
-        return 0;
-    }
-
-    /* if the page was really writable, then we change its
-       protection back to writable */
-    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
-        host_start = address & qemu_host_page_mask;
-        host_end = host_start + qemu_host_page_size;
-
-        prot = 0;
-        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
-            p = page_find(addr >> TARGET_PAGE_BITS);
-            p->flags |= PAGE_WRITE;
-            prot |= p->flags;
-
-            /* and since the content will be modified, we must invalidate
-               the corresponding translated code. */
-            tb_invalidate_phys_page(addr, pc, puc);
-#ifdef DEBUG_TB_CHECK
-            tb_invalidate_check(addr);
-#endif
-        }
-        mprotect((void *)g2h(host_start), qemu_host_page_size,
-                 prot & PAGE_BITS);
-
-        mmap_unlock();
-        return 1;
-    }
-    mmap_unlock();
-    return 0;
-}
 #endif /* defined(CONFIG_USER_ONLY) */
 
 #if !defined(CONFIG_USER_ONLY)
@@ -2176,13 +671,13 @@ int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 typedef struct subpage_t {
     MemoryRegion iomem;
-    target_phys_addr_t base;
+    hwaddr base;
     uint16_t sub_section[TARGET_PAGE_SIZE];
 } subpage_t;
 
 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
                              uint16_t section);
-static subpage_t *subpage_init(target_phys_addr_t base);
+static subpage_t *subpage_init(hwaddr base);
 static void destroy_page_desc(uint16_t section_index)
 {
     MemoryRegionSection *section = &phys_sections[section_index];
@@ -2241,14 +736,14 @@ static void phys_sections_clear(void)
 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 {
     subpage_t *subpage;
-    target_phys_addr_t base = section->offset_within_address_space
+    hwaddr base = section->offset_within_address_space
         & TARGET_PAGE_MASK;
     MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
     MemoryRegionSection subsection = {
         .offset_within_address_space = base,
         .size = TARGET_PAGE_SIZE,
     };
-    target_phys_addr_t start, end;
+    hwaddr start, end;
 
     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 
@@ -2268,9 +763,9 @@ static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *secti
 
 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 {
-    target_phys_addr_t start_addr = section->offset_within_address_space;
+    hwaddr start_addr = section->offset_within_address_space;
     ram_addr_t size = section->size;
-    target_phys_addr_t addr;
+    hwaddr addr;
     uint16_t section_index = phys_section_add(section);
 
     assert(size);
@@ -2320,6 +815,16 @@ void qemu_flush_coalesced_mmio_buffer(void)
         kvm_flush_coalesced_mmio_buffer();
 }
 
+void qemu_mutex_lock_ramlist(void)
+{
+    qemu_mutex_lock(&ram_list.mutex);
+}
+
+void qemu_mutex_unlock_ramlist(void)
+{
+    qemu_mutex_unlock(&ram_list.mutex);
+}
+
 #if defined(__linux__) && !defined(TARGET_S390X)
 
 #include <sys/vfs.h>
@@ -2351,6 +856,8 @@ static void *file_ram_alloc(RAMBlock *block,
                             const char *path)
 {
     char *filename;
+    char *sanitized_name;
+    char *c;
     void *area;
     int fd;
 #ifdef MAP_POPULATE
@@ -2372,18 +879,25 @@ static void *file_ram_alloc(RAMBlock *block,
         return NULL;
     }
 
-    if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
-        return NULL;
+    /* Make name safe to use with mkstemp by replacing '/' with '_'. */
+    sanitized_name = g_strdup(block->mr->name);
+    for (c = sanitized_name; *c != '\0'; c++) {
+        if (*c == '/')
+            *c = '_';
     }
 
+    filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
+                               sanitized_name);
+    g_free(sanitized_name);
+
     fd = mkstemp(filename);
     if (fd < 0) {
         perror("unable to create backing store for hugepages");
-        free(filename);
+        g_free(filename);
         return NULL;
     }
     unlink(filename);
-    free(filename);
+    g_free(filename);
 
     memory = (memory+hpagesize-1) & ~(hpagesize-1);
 
@@ -2421,15 +935,17 @@ static ram_addr_t find_ram_offset(ram_addr_t size)
     RAMBlock *block, *next_block;
     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 
-    if (QLIST_EMPTY(&ram_list.blocks))
+    assert(size != 0); /* it would hand out same offset multiple times */
+
+    if (QTAILQ_EMPTY(&ram_list.blocks))
         return 0;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         ram_addr_t end, next = RAM_ADDR_MAX;
 
         end = block->offset + block->length;
 
-        QLIST_FOREACH(next_block, &ram_list.blocks, next) {
+        QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
             if (next_block->offset >= end) {
                 next = MIN(next, next_block->offset);
             }
@@ -2454,7 +970,7 @@ ram_addr_t last_ram_offset(void)
     RAMBlock *block;
     ram_addr_t last = 0;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next)
+    QTAILQ_FOREACH(block, &ram_list.blocks, next)
         last = MAX(last, block->offset + block->length);
 
     return last;
@@ -2483,7 +999,7 @@ void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
     RAMBlock *new_block, *block;
 
     new_block = NULL;
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (block->offset == addr) {
             new_block = block;
             break;
@@ -2501,13 +1017,16 @@ void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
     }
     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    /* This assumes the iothread lock is taken here too.  */
+    qemu_mutex_lock_ramlist();
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                     new_block->idstr);
             abort();
         }
     }
+    qemu_mutex_unlock_ramlist();
 }
 
 static int memory_try_enable_merging(void *addr, size_t len)
@@ -2526,11 +1045,13 @@ static int memory_try_enable_merging(void *addr, size_t len)
 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
                                    MemoryRegion *mr)
 {
-    RAMBlock *new_block;
+    RAMBlock *block, *new_block;
 
     size = TARGET_PAGE_ALIGN(size);
     new_block = g_malloc0(sizeof(*new_block));
 
+    /* This assumes the iothread lock is taken here too.  */
+    qemu_mutex_lock_ramlist();
     new_block->mr = mr;
     new_block->offset = find_ram_offset(size);
     if (host) {
@@ -2562,7 +1083,21 @@ ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
     }
     new_block->length = size;
 
-    QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
+    /* Keep the list sorted from biggest to smallest block.  */
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+        if (block->length < new_block->length) {
+            break;
+        }
+    }
+    if (block) {
+        QTAILQ_INSERT_BEFORE(block, new_block, next);
+    } else {
+        QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
+    }
+    ram_list.mru_block = NULL;
+
+    ram_list.version++;
+    qemu_mutex_unlock_ramlist();
 
     ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
                                        last_ram_offset() >> TARGET_PAGE_BITS);
@@ -2571,6 +1106,7 @@ ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
     cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
 
     qemu_ram_setup_dump(new_block->host, size);
+    qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
 
     if (kvm_enabled())
         kvm_setup_guest_memory(new_block->host, size);
@@ -2587,22 +1123,31 @@ void qemu_ram_free_from_ptr(ram_addr_t addr)
 {
     RAMBlock *block;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    /* This assumes the iothread lock is taken here too.  */
+    qemu_mutex_lock_ramlist();
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (addr == block->offset) {
-            QLIST_REMOVE(block, next);
+            QTAILQ_REMOVE(&ram_list.blocks, block, next);
+            ram_list.mru_block = NULL;
+            ram_list.version++;
             g_free(block);
-            return;
+            break;
         }
     }
+    qemu_mutex_unlock_ramlist();
 }
 
 void qemu_ram_free(ram_addr_t addr)
 {
     RAMBlock *block;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    /* This assumes the iothread lock is taken here too.  */
+    qemu_mutex_lock_ramlist();
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (addr == block->offset) {
-            QLIST_REMOVE(block, next);
+            QTAILQ_REMOVE(&ram_list.blocks, block, next);
+            ram_list.mru_block = NULL;
+            ram_list.version++;
             if (block->flags & RAM_PREALLOC_MASK) {
                 ;
             } else if (mem_path) {
@@ -2628,9 +1173,10 @@ void qemu_ram_free(ram_addr_t addr)
 #endif
             }
             g_free(block);
-            return;
+            break;
         }
     }
+    qemu_mutex_unlock_ramlist();
 
 }
 
@@ -2642,7 +1188,7 @@ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
     int flags;
     void *area, *vaddr;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         offset = addr - block->offset;
         if (offset < block->length) {
             vaddr = block->host + offset;
@@ -2708,43 +1254,48 @@ void *qemu_get_ram_ptr(ram_addr_t addr)
 {
     RAMBlock *block;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    /* The list is protected by the iothread lock here.  */
+    block = ram_list.mru_block;
+    if (block && addr - block->offset < block->length) {
+        goto found;
+    }
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (addr - block->offset < block->length) {
-            /* Move this entry to to start of the list.  */
-            if (block != QLIST_FIRST(&ram_list.blocks)) {
-                QLIST_REMOVE(block, next);
-                QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
-            }
-            if (xen_enabled()) {
-                /* We need to check if the requested address is in the RAM
-                 * because we don't want to map the entire memory in QEMU.
-                 * In that case just map until the end of the page.
-                 */
-                if (block->offset == 0) {
-                    return xen_map_cache(addr, 0, 0);
-                } else if (block->host == NULL) {
-                    block->host =
-                        xen_map_cache(block->offset, block->length, 1);
-                }
-            }
-            return block->host + (addr - block->offset);
+            goto found;
         }
     }
 
     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
     abort();
 
-    return NULL;
+found:
+    ram_list.mru_block = block;
+    if (xen_enabled()) {
+        /* We need to check if the requested address is in the RAM
+         * because we don't want to map the entire memory in QEMU.
+         * In that case just map until the end of the page.
+         */
+        if (block->offset == 0) {
+            return xen_map_cache(addr, 0, 0);
+        } else if (block->host == NULL) {
+            block->host =
+                xen_map_cache(block->offset, block->length, 1);
+        }
+    }
+    return block->host + (addr - block->offset);
 }
 
-/* Return a host pointer to ram allocated with qemu_ram_alloc.
- * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
+/* Return a host pointer to ram allocated with qemu_ram_alloc.  Same as
+ * qemu_get_ram_ptr but do not touch ram_list.mru_block.
+ *
+ * ??? Is this still necessary?
  */
-void *qemu_safe_ram_ptr(ram_addr_t addr)
+static void *qemu_safe_ram_ptr(ram_addr_t addr)
 {
     RAMBlock *block;
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    /* The list is protected by the iothread lock here.  */
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         if (addr - block->offset < block->length) {
             if (xen_enabled()) {
                 /* We need to check if the requested address is in the RAM
@@ -2770,7 +1321,7 @@ void *qemu_safe_ram_ptr(ram_addr_t addr)
 
 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
  * but takes a size argument */
-void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
+static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
 {
     if (*size == 0) {
         return NULL;
@@ -2780,7 +1331,7 @@ void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
     } else {
         RAMBlock *block;
 
-        QLIST_FOREACH(block, &ram_list.blocks, next) {
+        QTAILQ_FOREACH(block, &ram_list.blocks, next) {
             if (addr - block->offset < block->length) {
                 if (addr - block->offset + *size > block->length)
                     *size = block->length - addr + block->offset;
@@ -2808,7 +1359,7 @@ int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
         return 0;
     }
 
-    QLIST_FOREACH(block, &ram_list.blocks, next) {
+    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
         /* This case append when the block is not mapped. */
         if (block->host == NULL) {
             continue;
@@ -2835,7 +1386,7 @@ ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
     return ram_addr;
 }
 
-static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
                                     unsigned size)
 {
 #ifdef DEBUG_UNASSIGNED
@@ -2847,7 +1398,7 @@ static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
     return 0;
 }
 
-static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
+static void unassigned_mem_write(void *opaque, hwaddr addr,
                                  uint64_t val, unsigned size)
 {
 #ifdef DEBUG_UNASSIGNED
@@ -2864,13 +1415,13 @@ static const MemoryRegionOps unassigned_mem_ops = {
     .endianness = DEVICE_NATIVE_ENDIAN,
 };
 
-static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t error_mem_read(void *opaque, hwaddr addr,
                                unsigned size)
 {
     abort();
 }
 
-static void error_mem_write(void *opaque, target_phys_addr_t addr,
+static void error_mem_write(void *opaque, hwaddr addr,
                             uint64_t value, unsigned size)
 {
     abort();
@@ -2888,7 +1439,7 @@ static const MemoryRegionOps rom_mem_ops = {
     .endianness = DEVICE_NATIVE_ENDIAN,
 };
 
-static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
+static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
                                uint64_t val, unsigned size)
 {
     int dirty_flags;
@@ -2931,7 +1482,6 @@ static void check_watchpoint(int offset, int len_mask, int flags)
 {
     CPUArchState *env = cpu_single_env;
     target_ulong pc, cs_base;
-    TranslationBlock *tb;
     target_ulong vaddr;
     CPUWatchpoint *wp;
     int cpu_flags;
@@ -2940,7 +1490,7 @@ static void check_watchpoint(int offset, int len_mask, int flags)
         /* We re-entered the check after replacing the TB. Now raise
          * the debug interrupt so that is will trigger after the
          * current instruction. */
-        cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
+        cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
         return;
     }
     vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
@@ -2950,13 +1500,7 @@ static void check_watchpoint(int offset, int len_mask, int flags)
             wp->flags |= BP_WATCHPOINT_HIT;
             if (!env->watchpoint_hit) {
                 env->watchpoint_hit = wp;
-                tb = tb_find_pc(env->mem_io_pc);
-                if (!tb) {
-                    cpu_abort(env, "check_watchpoint: could not find TB for "
-                              "pc=%p", (void *)env->mem_io_pc);
-                }
-                cpu_restore_state(tb, env, env->mem_io_pc);
-                tb_phys_invalidate(tb, -1);
+                tb_check_watchpoint(env);
                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
                     env->exception_index = EXCP_DEBUG;
                     cpu_loop_exit(env);
@@ -2975,7 +1519,7 @@ static void check_watchpoint(int offset, int len_mask, int flags)
 /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
    so these check for a hit then pass through to the normal out-of-line
    phys routines.  */
-static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t watch_mem_read(void *opaque, hwaddr addr,
                                unsigned size)
 {
     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
@@ -2987,7 +1531,7 @@ static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
     }
 }
 
-static void watch_mem_write(void *opaque, target_phys_addr_t addr,
+static void watch_mem_write(void *opaque, hwaddr addr,
                             uint64_t val, unsigned size)
 {
     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
@@ -3011,7 +1555,7 @@ static const MemoryRegionOps watch_mem_ops = {
     .endianness = DEVICE_NATIVE_ENDIAN,
 };
 
-static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
+static uint64_t subpage_read(void *opaque, hwaddr addr,
                              unsigned len)
 {
     subpage_t *mmio = opaque;
@@ -3029,7 +1573,7 @@ static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
     return io_mem_read(section->mr, addr, len);
 }
 
-static void subpage_write(void *opaque, target_phys_addr_t addr,
+static void subpage_write(void *opaque, hwaddr addr,
                           uint64_t value, unsigned len)
 {
     subpage_t *mmio = opaque;
@@ -3054,7 +1598,7 @@ static const MemoryRegionOps subpage_ops = {
     .endianness = DEVICE_NATIVE_ENDIAN,
 };
 
-static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
+static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
                                  unsigned size)
 {
     ram_addr_t raddr = addr;
@@ -3067,7 +1611,7 @@ static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
     }
 }
 
-static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
+static void subpage_ram_write(void *opaque, hwaddr addr,
                               uint64_t value, unsigned size)
 {
     ram_addr_t raddr = addr;
@@ -3111,7 +1655,7 @@ static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
     return 0;
 }
 
-static subpage_t *subpage_init(target_phys_addr_t base)
+static subpage_t *subpage_init(hwaddr base)
 {
     subpage_t *mmio;
 
@@ -3142,7 +1686,7 @@ static uint16_t dummy_section(MemoryRegion *mr)
     return phys_section_add(&section);
 }
 
-MemoryRegion *iotlb_to_region(target_phys_addr_t index)
+MemoryRegion *iotlb_to_region(hwaddr index)
 {
     return phys_sections[index & ~TARGET_PAGE_MASK].mr;
 }
@@ -3275,6 +1819,9 @@ static void memory_map_init(void)
     memory_listener_register(&core_memory_listener, &address_space_memory);
     memory_listener_register(&io_memory_listener, &address_space_io);
     memory_listener_register(&tcg_memory_listener, &address_space_memory);
+
+    dma_context_init(&dma_context_memory, &address_space_memory,
+                     NULL, NULL, NULL);
 }
 
 MemoryRegion *get_system_memory(void)
@@ -3332,8 +1879,8 @@ int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 
 #else
 
-static void invalidate_and_set_dirty(target_phys_addr_t addr,
-                                     target_phys_addr_t length)
+static void invalidate_and_set_dirty(hwaddr addr,
+                                     hwaddr length)
 {
     if (!cpu_physical_memory_is_dirty(addr)) {
         /* invalidate code */
@@ -3344,14 +1891,14 @@ static void invalidate_and_set_dirty(target_phys_addr_t addr,
     xen_modified_memory(addr, length);
 }
 
-void address_space_rw(AddressSpace *as, target_phys_addr_t addr, uint8_t *buf,
+void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
                       int len, bool is_write)
 {
     AddressSpaceDispatch *d = as->dispatch;
     int l;
     uint8_t *ptr;
     uint32_t val;
-    target_phys_addr_t page;
+    hwaddr page;
     MemoryRegionSection *section;
 
     while (len > 0) {
@@ -3363,7 +1910,7 @@ void address_space_rw(AddressSpace *as, target_phys_addr_t addr, uint8_t *buf,
 
         if (is_write) {
             if (!memory_region_is_ram(section->mr)) {
-                target_phys_addr_t addr1;
+                hwaddr addr1;
                 addr1 = memory_region_section_addr(section, addr);
                 /* XXX: could force cpu_single_env to NULL to avoid
                    potential bugs */
@@ -3396,7 +1943,7 @@ void address_space_rw(AddressSpace *as, target_phys_addr_t addr, uint8_t *buf,
         } else {
             if (!(memory_region_is_ram(section->mr) ||
                   memory_region_is_romd(section->mr))) {
-                target_phys_addr_t addr1;
+                hwaddr addr1;
                 /* I/O case */
                 addr1 = memory_region_section_addr(section, addr);
                 if (l >= 4 && ((addr1 & 3) == 0)) {
@@ -3430,7 +1977,7 @@ void address_space_rw(AddressSpace *as, target_phys_addr_t addr, uint8_t *buf,
     }
 }
 
-void address_space_write(AddressSpace *as, target_phys_addr_t addr,
+void address_space_write(AddressSpace *as, hwaddr addr,
                          const uint8_t *buf, int len)
 {
     address_space_rw(as, addr, (uint8_t *)buf, len, true);
@@ -3443,26 +1990,26 @@ void address_space_write(AddressSpace *as, target_phys_addr_t addr,
  * @addr: address within that address space
  * @buf: buffer with the data transferred
  */
-void address_space_read(AddressSpace *as, target_phys_addr_t addr, uint8_t *buf, int len)
+void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
 {
     address_space_rw(as, addr, buf, len, false);
 }
 
 
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
                             int len, int is_write)
 {
     return address_space_rw(&address_space_memory, addr, buf, len, is_write);
 }
 
 /* used for ROM loading : can write in RAM and ROM */
-void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+void cpu_physical_memory_write_rom(hwaddr addr,
                                    const uint8_t *buf, int len)
 {
     AddressSpaceDispatch *d = address_space_memory.dispatch;
     int l;
     uint8_t *ptr;
-    target_phys_addr_t page;
+    hwaddr page;
     MemoryRegionSection *section;
 
     while (len > 0) {
@@ -3493,8 +2040,8 @@ void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 
 typedef struct {
     void *buffer;
-    target_phys_addr_t addr;
-    target_phys_addr_t len;
+    hwaddr addr;
+    hwaddr len;
 } BounceBuffer;
 
 static BounceBuffer bounce;
@@ -3518,7 +2065,7 @@ void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
     return client;
 }
 
-void cpu_unregister_map_client(void *_client)
+static void cpu_unregister_map_client(void *_client)
 {
     MapClient *client = (MapClient *)_client;
 
@@ -3545,15 +2092,15 @@ static void cpu_notify_map_clients(void)
  * likely to succeed.
  */
 void *address_space_map(AddressSpace *as,
-                        target_phys_addr_t addr,
-                        target_phys_addr_t *plen,
+                        hwaddr addr,
+                        hwaddr *plen,
                         bool is_write)
 {
     AddressSpaceDispatch *d = as->dispatch;
-    target_phys_addr_t len = *plen;
-    target_phys_addr_t todo = 0;
+    hwaddr len = *plen;
+    hwaddr todo = 0;
     int l;
-    target_phys_addr_t page;
+    hwaddr page;
     MemoryRegionSection *section;
     ram_addr_t raddr = RAM_ADDR_MAX;
     ram_addr_t rlen;
@@ -3599,8 +2146,8 @@ void *address_space_map(AddressSpace *as,
  * Will also mark the memory as dirty if is_write == 1.  access_len gives
  * the amount of memory that was actually read or written by the caller.
  */
-void address_space_unmap(AddressSpace *as, void *buffer, target_phys_addr_t len,
-                         int is_write, target_phys_addr_t access_len)
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+                         int is_write, hwaddr access_len)
 {
     if (buffer != bounce.buffer) {
         if (is_write) {
@@ -3628,21 +2175,21 @@ void address_space_unmap(AddressSpace *as, void *buffer, target_phys_addr_t len,
     cpu_notify_map_clients();
 }
 
-void *cpu_physical_memory_map(target_phys_addr_t addr,
-                              target_phys_addr_t *plen,
+void *cpu_physical_memory_map(hwaddr addr,
+                              hwaddr *plen,
                               int is_write)
 {
     return address_space_map(&address_space_memory, addr, plen, is_write);
 }
 
-void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
-                               int is_write, target_phys_addr_t access_len)
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+                               int is_write, hwaddr access_len)
 {
     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 }
 
 /* warning: addr must be aligned */
-static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
+static inline uint32_t ldl_phys_internal(hwaddr addr,
                                          enum device_endian endian)
 {
     uint8_t *ptr;
@@ -3685,23 +2232,23 @@ static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
     return val;
 }
 
-uint32_t ldl_phys(target_phys_addr_t addr)
+uint32_t ldl_phys(hwaddr addr)
 {
     return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 }
 
-uint32_t ldl_le_phys(target_phys_addr_t addr)
+uint32_t ldl_le_phys(hwaddr addr)
 {
     return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 }
 
-uint32_t ldl_be_phys(target_phys_addr_t addr)
+uint32_t ldl_be_phys(hwaddr addr)
 {
     return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
 }
 
 /* warning: addr must be aligned */
-static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
+static inline uint64_t ldq_phys_internal(hwaddr addr,
                                          enum device_endian endian)
 {
     uint8_t *ptr;
@@ -3744,23 +2291,23 @@ static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
     return val;
 }
 
-uint64_t ldq_phys(target_phys_addr_t addr)
+uint64_t ldq_phys(hwaddr addr)
 {
     return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 }
 
-uint64_t ldq_le_phys(target_phys_addr_t addr)
+uint64_t ldq_le_phys(hwaddr addr)
 {
     return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 }
 
-uint64_t ldq_be_phys(target_phys_addr_t addr)
+uint64_t ldq_be_phys(hwaddr addr)
 {
     return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
 }
 
 /* XXX: optimize */
-uint32_t ldub_phys(target_phys_addr_t addr)
+uint32_t ldub_phys(hwaddr addr)
 {
     uint8_t val;
     cpu_physical_memory_read(addr, &val, 1);
@@ -3768,7 +2315,7 @@ uint32_t ldub_phys(target_phys_addr_t addr)
 }
 
 /* warning: addr must be aligned */
-static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
+static inline uint32_t lduw_phys_internal(hwaddr addr,
                                           enum device_endian endian)
 {
     uint8_t *ptr;
@@ -3811,17 +2358,17 @@ static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
     return val;
 }
 
-uint32_t lduw_phys(target_phys_addr_t addr)
+uint32_t lduw_phys(hwaddr addr)
 {
     return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 }
 
-uint32_t lduw_le_phys(target_phys_addr_t addr)
+uint32_t lduw_le_phys(hwaddr addr)
 {
     return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 }
 
-uint32_t lduw_be_phys(target_phys_addr_t addr)
+uint32_t lduw_be_phys(hwaddr addr)
 {
     return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
 }
@@ -3829,7 +2376,7 @@ uint32_t lduw_be_phys(target_phys_addr_t addr)
 /* warning: addr must be aligned. The ram page is not masked as dirty
    and the code inside is not invalidated. It is useful if the dirty
    bits are used to track modified PTEs */
-void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+void stl_phys_notdirty(hwaddr addr, uint32_t val)
 {
     uint8_t *ptr;
     MemoryRegionSection *section;
@@ -3861,7 +2408,7 @@ void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
     }
 }
 
-void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+void stq_phys_notdirty(hwaddr addr, uint64_t val)
 {
     uint8_t *ptr;
     MemoryRegionSection *section;
@@ -3889,7 +2436,7 @@ void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
 }
 
 /* warning: addr must be aligned */
-static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
+static inline void stl_phys_internal(hwaddr addr, uint32_t val,
                                      enum device_endian endian)
 {
     uint8_t *ptr;
@@ -3933,30 +2480,30 @@ static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
     }
 }
 
-void stl_phys(target_phys_addr_t addr, uint32_t val)
+void stl_phys(hwaddr addr, uint32_t val)
 {
     stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 }
 
-void stl_le_phys(target_phys_addr_t addr, uint32_t val)
+void stl_le_phys(hwaddr addr, uint32_t val)
 {
     stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 }
 
-void stl_be_phys(target_phys_addr_t addr, uint32_t val)
+void stl_be_phys(hwaddr addr, uint32_t val)
 {
     stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 }
 
 /* XXX: optimize */
-void stb_phys(target_phys_addr_t addr, uint32_t val)
+void stb_phys(hwaddr addr, uint32_t val)
 {
     uint8_t v = val;
     cpu_physical_memory_write(addr, &v, 1);
 }
 
 /* warning: addr must be aligned */
-static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
+static inline void stw_phys_internal(hwaddr addr, uint32_t val,
                                      enum device_endian endian)
 {
     uint8_t *ptr;
@@ -4000,35 +2547,35 @@ static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
     }
 }
 
-void stw_phys(target_phys_addr_t addr, uint32_t val)
+void stw_phys(hwaddr addr, uint32_t val)
 {
     stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 }
 
-void stw_le_phys(target_phys_addr_t addr, uint32_t val)
+void stw_le_phys(hwaddr addr, uint32_t val)
 {
     stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 }
 
-void stw_be_phys(target_phys_addr_t addr, uint32_t val)
+void stw_be_phys(hwaddr addr, uint32_t val)
 {
     stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 }
 
 /* XXX: optimize */
-void stq_phys(target_phys_addr_t addr, uint64_t val)
+void stq_phys(hwaddr addr, uint64_t val)
 {
     val = tswap64(val);
     cpu_physical_memory_write(addr, &val, 8);
 }
 
-void stq_le_phys(target_phys_addr_t addr, uint64_t val)
+void stq_le_phys(hwaddr addr, uint64_t val)
 {
     val = cpu_to_le64(val);
     cpu_physical_memory_write(addr, &val, 8);
 }
 
-void stq_be_phys(target_phys_addr_t addr, uint64_t val)
+void stq_be_phys(hwaddr addr, uint64_t val)
 {
     val = cpu_to_be64(val);
     cpu_physical_memory_write(addr, &val, 8);
@@ -4039,7 +2586,7 @@ int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
                         uint8_t *buf, int len, int is_write)
 {
     int l;
-    target_phys_addr_t phys_addr;
+    hwaddr phys_addr;
     target_ulong page;
 
     while (len > 0) {
@@ -4064,119 +2611,8 @@ int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 }
 #endif
 
-/* in deterministic execution mode, instructions doing device I/Os
-   must be at the end of the TB */
-void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
-{
-    TranslationBlock *tb;
-    uint32_t n, cflags;
-    target_ulong pc, cs_base;
-    uint64_t flags;
-
-    tb = tb_find_pc(retaddr);
-    if (!tb) {
-        cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
-                  (void *)retaddr);
-    }
-    n = env->icount_decr.u16.low + tb->icount;
-    cpu_restore_state(tb, env, retaddr);
-    /* Calculate how many instructions had been executed before the fault
-       occurred.  */
-    n = n - env->icount_decr.u16.low;
-    /* Generate a new TB ending on the I/O insn.  */
-    n++;
-    /* On MIPS and SH, delay slot instructions can only be restarted if
-       they were already the first instruction in the TB.  If this is not
-       the first instruction in a TB then re-execute the preceding
-       branch.  */
-#if defined(TARGET_MIPS)
-    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
-        env->active_tc.PC -= 4;
-        env->icount_decr.u16.low++;
-        env->hflags &= ~MIPS_HFLAG_BMASK;
-    }
-#elif defined(TARGET_SH4)
-    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
-            && n > 1) {
-        env->pc -= 2;
-        env->icount_decr.u16.low++;
-        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
-    }
-#endif
-    /* This should never happen.  */
-    if (n > CF_COUNT_MASK)
-        cpu_abort(env, "TB too big during recompile");
-
-    cflags = n | CF_LAST_IO;
-    pc = tb->pc;
-    cs_base = tb->cs_base;
-    flags = tb->flags;
-    tb_phys_invalidate(tb, -1);
-    /* FIXME: In theory this could raise an exception.  In practice
-       we have already translated the block once so it's probably ok.  */
-    tb_gen_code(env, pc, cs_base, flags, cflags);
-    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
-       the first in the TB) then we end up generating a whole new TB and
-       repeating the fault, which is horribly inefficient.
-       Better would be to execute just this insn uncached, or generate a
-       second new TB.  */
-    cpu_resume_from_signal(env, NULL);
-}
-
 #if !defined(CONFIG_USER_ONLY)
 
-void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
-{
-    int i, target_code_size, max_target_code_size;
-    int direct_jmp_count, direct_jmp2_count, cross_page;
-    TranslationBlock *tb;
-
-    target_code_size = 0;
-    max_target_code_size = 0;
-    cross_page = 0;
-    direct_jmp_count = 0;
-    direct_jmp2_count = 0;
-    for(i = 0; i < nb_tbs; i++) {
-        tb = &tbs[i];
-        target_code_size += tb->size;
-        if (tb->size > max_target_code_size)
-            max_target_code_size = tb->size;
-        if (tb->page_addr[1] != -1)
-            cross_page++;
-        if (tb->tb_next_offset[0] != 0xffff) {
-            direct_jmp_count++;
-            if (tb->tb_next_offset[1] != 0xffff) {
-                direct_jmp2_count++;
-            }
-        }
-    }
-    /* XXX: avoid using doubles ? */
-    cpu_fprintf(f, "Translation buffer state:\n");
-    cpu_fprintf(f, "gen code size       %td/%zd\n",
-                code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
-    cpu_fprintf(f, "TB count            %d/%d\n", 
-                nb_tbs, code_gen_max_blocks);
-    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
-                nb_tbs ? target_code_size / nb_tbs : 0,
-                max_target_code_size);
-    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
-                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
-                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
-    cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
-            cross_page,
-            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
-    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
-                direct_jmp_count,
-                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
-                direct_jmp2_count,
-                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
-    cpu_fprintf(f, "\nStatistics:\n");
-    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
-    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
-    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
-    tcg_dump_info(f, cpu_fprintf);
-}
-
 /*
  * A helper function for the _utterly broken_ virtio device model to find out if
  * it's running on a big endian machine. Don't do this at home kids!
@@ -4194,7 +2630,7 @@ bool virtio_is_big_endian(void)
 #endif
 
 #ifndef CONFIG_USER_ONLY
-bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
+bool cpu_physical_memory_is_io(hwaddr phys_addr)
 {
     MemoryRegionSection *section;