]> git.proxmox.com Git - qemu.git/blobdiff - fpu/softfloat.h
balloon: Add braces around if statements
[qemu.git] / fpu / softfloat.h
index 55c0c1cda51f662bc4b0095ae875376695cda836..bde250087be38888d767694eac53eb2eca464ec6 100644 (file)
@@ -74,24 +74,6 @@ typedef int64_t int64;
 #define SNAN_BIT_IS_ONE                0
 #endif
 
-/*----------------------------------------------------------------------------
-| The macro `FLOATX80' must be defined to enable the extended double-precision
-| floating-point format `floatx80'.  If this macro is not defined, the
-| `floatx80' type will not be defined, and none of the functions that either
-| input or output the `floatx80' type will be defined.  The same applies to
-| the `FLOAT128' macro and the quadruple-precision format `float128'.
-*----------------------------------------------------------------------------*/
-#ifdef CONFIG_SOFTFLOAT
-/* bit exact soft float support */
-#define FLOATX80
-#define FLOAT128
-#else
-/* native float support */
-#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
-#define FLOATX80
-#endif
-#endif /* !CONFIG_SOFTFLOAT */
-
 #define STATUS_PARAM , float_status *status
 #define STATUS(field) status->field
 #define STATUS_VAR , status
@@ -106,7 +88,6 @@ enum {
     float_relation_unordered =  2
 };
 
-#ifdef CONFIG_SOFTFLOAT
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE floating-point types.
 *----------------------------------------------------------------------------*/
@@ -149,13 +130,11 @@ typedef uint64_t float64;
 #define const_float32(x) (x)
 #define const_float64(x) (x)
 #endif
-#ifdef FLOATX80
 typedef struct {
     uint64_t low;
     uint16_t high;
 } floatx80;
-#endif
-#ifdef FLOAT128
+#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
 typedef struct {
 #ifdef HOST_WORDS_BIGENDIAN
     uint64_t high, low;
@@ -163,7 +142,6 @@ typedef struct {
     uint64_t low, high;
 #endif
 } float128;
-#endif
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE floating-point underflow tininess-detection mode.
@@ -192,16 +170,15 @@ enum {
     float_flag_overflow  =  8,
     float_flag_underflow = 16,
     float_flag_inexact   = 32,
-    float_flag_input_denormal = 64
+    float_flag_input_denormal = 64,
+    float_flag_output_denormal = 128
 };
 
 typedef struct float_status {
     signed char float_detect_tininess;
     signed char float_rounding_mode;
     signed char float_exception_flags;
-#ifdef FLOATX80
     signed char floatx80_rounding_precision;
-#endif
     /* should denormalised results go to zero and set the inexact flag? */
     flag flush_to_zero;
     /* should denormalised inputs go to zero and set the input_denormal flag? */
@@ -231,9 +208,7 @@ INLINE int get_float_exception_flags(float_status *status)
 {
     return STATUS(float_exception_flags);
 }
-#ifdef FLOATX80
 void set_floatx80_rounding_precision(int val STATUS_PARAM);
-#endif
 
 /*----------------------------------------------------------------------------
 | Routine to raise any or all of the software IEC/IEEE floating-point
@@ -248,22 +223,14 @@ float32 int32_to_float32( int32 STATUS_PARAM );
 float64 int32_to_float64( int32 STATUS_PARAM );
 float32 uint32_to_float32( unsigned int STATUS_PARAM );
 float64 uint32_to_float64( unsigned int STATUS_PARAM );
-#ifdef FLOATX80
 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
 float128 int32_to_float128( int32 STATUS_PARAM );
-#endif
 float32 int64_to_float32( int64 STATUS_PARAM );
 float32 uint64_to_float32( uint64 STATUS_PARAM );
 float64 int64_to_float64( int64 STATUS_PARAM );
 float64 uint64_to_float64( uint64 STATUS_PARAM );
-#ifdef FLOATX80
 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
 float128 int64_to_float128( int64 STATUS_PARAM );
-#endif
 
 /*----------------------------------------------------------------------------
 | Software half-precision conversion routines.
@@ -301,12 +268,8 @@ uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
 int64 float32_to_int64( float32 STATUS_PARAM );
 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
 float64 float32_to_float64( float32 STATUS_PARAM );
-#ifdef FLOATX80
 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
 float128 float32_to_float128( float32 STATUS_PARAM );
-#endif
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE single-precision operations.
@@ -324,7 +287,7 @@ int float32_eq( float32, float32 STATUS_PARAM );
 int float32_le( float32, float32 STATUS_PARAM );
 int float32_lt( float32, float32 STATUS_PARAM );
 int float32_unordered( float32, float32 STATUS_PARAM );
-int float32_eq_signaling( float32, float32 STATUS_PARAM );
+int float32_eq_quiet( float32, float32 STATUS_PARAM );
 int float32_le_quiet( float32, float32 STATUS_PARAM );
 int float32_lt_quiet( float32, float32 STATUS_PARAM );
 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
@@ -386,6 +349,7 @@ INLINE float32 float32_set_sign(float32 a, int sign)
 #define float32_zero make_float32(0)
 #define float32_one make_float32(0x3f800000)
 #define float32_ln2 make_float32(0x3f317218)
+#define float32_pi make_float32(0x40490fdb)
 #define float32_half make_float32(0x3f000000)
 #define float32_infinity make_float32(0x7f800000)
 
@@ -417,12 +381,8 @@ int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
 float32 float64_to_float32( float64 STATUS_PARAM );
-#ifdef FLOATX80
 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
-#endif
-#ifdef FLOAT128
 float128 float64_to_float128( float64 STATUS_PARAM );
-#endif
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE double-precision operations.
@@ -440,7 +400,7 @@ int float64_eq( float64, float64 STATUS_PARAM );
 int float64_le( float64, float64 STATUS_PARAM );
 int float64_lt( float64, float64 STATUS_PARAM );
 int float64_unordered( float64, float64 STATUS_PARAM );
-int float64_eq_signaling( float64, float64 STATUS_PARAM );
+int float64_eq_quiet( float64, float64 STATUS_PARAM );
 int float64_le_quiet( float64, float64 STATUS_PARAM );
 int float64_lt_quiet( float64, float64 STATUS_PARAM );
 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
@@ -489,6 +449,11 @@ INLINE int float64_is_any_nan(float64 a)
     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 }
 
+INLINE int float64_is_zero_or_denormal(float64 a)
+{
+    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
+}
+
 INLINE float64 float64_set_sign(float64 a, int sign)
 {
     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
@@ -498,6 +463,7 @@ INLINE float64 float64_set_sign(float64 a, int sign)
 #define float64_zero make_float64(0)
 #define float64_one make_float64(0x3ff0000000000000LL)
 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
+#define float64_pi make_float64(0x400921fb54442d18LL)
 #define float64_half make_float64(0x3fe0000000000000LL)
 #define float64_infinity make_float64(0x7ff0000000000000LL)
 
@@ -514,8 +480,6 @@ INLINE float64 float64_set_sign(float64 a, int sign)
 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
 #endif
 
-#ifdef FLOATX80
-
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE extended double-precision conversion routines.
 *----------------------------------------------------------------------------*/
@@ -525,9 +489,7 @@ int64 floatx80_to_int64( floatx80 STATUS_PARAM );
 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
-#ifdef FLOAT128
 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
-#endif
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE extended double-precision operations.
@@ -543,10 +505,12 @@ int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
-int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
+int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
+int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
 int floatx80_is_quiet_nan( floatx80 );
 int floatx80_is_signaling_nan( floatx80 );
 floatx80 floatx80_maybe_silence_nan( floatx80 );
@@ -566,7 +530,7 @@ INLINE floatx80 floatx80_chs(floatx80 a)
 
 INLINE int floatx80_is_infinity(floatx80 a)
 {
-    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
+    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
 }
 
 INLINE int floatx80_is_neg(floatx80 a)
@@ -579,11 +543,23 @@ INLINE int floatx80_is_zero(floatx80 a)
     return (a.high & 0x7fff) == 0 && a.low == 0;
 }
 
+INLINE int floatx80_is_zero_or_denormal(floatx80 a)
+{
+    return (a.high & 0x7fff) == 0;
+}
+
 INLINE int floatx80_is_any_nan(floatx80 a)
 {
     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 }
 
+#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
+#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
+#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
+#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
+#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
+#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
+
 /*----------------------------------------------------------------------------
 | The pattern for a default generated extended double-precision NaN.  The
 | `high' and `low' values hold the most- and least-significant bits,
@@ -597,10 +573,6 @@ INLINE int floatx80_is_any_nan(floatx80 a)
 #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
 #endif
 
-#endif
-
-#ifdef FLOAT128
-
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE quadruple-precision conversion routines.
 *----------------------------------------------------------------------------*/
@@ -610,9 +582,7 @@ int64 float128_to_int64( float128 STATUS_PARAM );
 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
 float32 float128_to_float32( float128 STATUS_PARAM );
 float64 float128_to_float64( float128 STATUS_PARAM );
-#ifdef FLOATX80
 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
-#endif
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE quadruple-precision operations.
@@ -628,7 +598,7 @@ int float128_eq( float128, float128 STATUS_PARAM );
 int float128_le( float128, float128 STATUS_PARAM );
 int float128_lt( float128, float128 STATUS_PARAM );
 int float128_unordered( float128, float128 STATUS_PARAM );
-int float128_eq_signaling( float128, float128 STATUS_PARAM );
+int float128_eq_quiet( float128, float128 STATUS_PARAM );
 int float128_le_quiet( float128, float128 STATUS_PARAM );
 int float128_lt_quiet( float128, float128 STATUS_PARAM );
 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
@@ -666,6 +636,11 @@ INLINE int float128_is_zero(float128 a)
     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 }
 
+INLINE int float128_is_zero_or_denormal(float128 a)
+{
+    return (a.high & 0x7fff000000000000LL) == 0;
+}
+
 INLINE int float128_is_any_nan(float128 a)
 {
     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
@@ -684,12 +659,4 @@ INLINE int float128_is_any_nan(float128 a)
 #define float128_default_nan_low  LIT64( 0x0000000000000000 )
 #endif
 
-#endif
-
-#else /* CONFIG_SOFTFLOAT */
-
-#include "softfloat-native.h"
-
-#endif /* !CONFIG_SOFTFLOAT */
-
 #endif /* !SOFTFLOAT_H */