]> git.proxmox.com Git - qemu.git/blobdiff - kvm-all.c
KVM: Rework VCPU state writeback API
[qemu.git] / kvm-all.c
index c9f09c7e180a5a27247696ac2b0a268b77a4e36f..534ead060d81b593a7a3725e183c71bd9d7adde0 100644 (file)
--- a/kvm-all.c
+++ b/kvm-all.c
@@ -21,6 +21,7 @@
 #include <linux/kvm.h>
 
 #include "qemu-common.h"
+#include "qemu-barrier.h"
 #include "sysemu.h"
 #include "hw/hw.h"
 #include "gdbstub.h"
@@ -58,11 +59,18 @@ struct KVMState
     int fd;
     int vmfd;
     int coalesced_mmio;
+#ifdef KVM_CAP_COALESCED_MMIO
+    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
+#endif
     int broken_set_mem_region;
     int migration_log;
+    int vcpu_events;
+    int robust_singlestep;
 #ifdef KVM_CAP_SET_GUEST_DEBUG
     struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
 #endif
+    int irqchip_in_kernel;
+    int pit_in_kernel;
 };
 
 static KVMState *kvm_state;
@@ -143,6 +151,23 @@ static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 }
 
+static void kvm_reset_vcpu(void *opaque)
+{
+    CPUState *env = opaque;
+
+    kvm_arch_reset_vcpu(env);
+}
+
+int kvm_irqchip_in_kernel(void)
+{
+    return kvm_state->irqchip_in_kernel;
+}
+
+int kvm_pit_in_kernel(void)
+{
+    return kvm_state->pit_in_kernel;
+}
+
 
 int kvm_init_vcpu(CPUState *env)
 {
@@ -175,27 +200,21 @@ int kvm_init_vcpu(CPUState *env)
         goto err;
     }
 
-    ret = kvm_arch_init_vcpu(env);
+#ifdef KVM_CAP_COALESCED_MMIO
+    if (s->coalesced_mmio && !s->coalesced_mmio_ring)
+        s->coalesced_mmio_ring = (void *) env->kvm_run +
+               s->coalesced_mmio * PAGE_SIZE;
+#endif
 
+    ret = kvm_arch_init_vcpu(env);
+    if (ret == 0) {
+        qemu_register_reset(kvm_reset_vcpu, env);
+        kvm_arch_reset_vcpu(env);
+    }
 err:
     return ret;
 }
 
-int kvm_sync_vcpus(void)
-{
-    CPUState *env;
-
-    for (env = first_cpu; env != NULL; env = env->next_cpu) {
-        int ret;
-
-        ret = kvm_arch_put_registers(env);
-        if (ret)
-            return ret;
-    }
-
-    return 0;
-}
-
 /*
  * dirty pages logging control
  */
@@ -209,7 +228,7 @@ static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
     if (mem == NULL)  {
             fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
                     TARGET_FMT_plx "\n", __func__, phys_addr,
-                    phys_addr + size - 1);
+                    (target_phys_addr_t)(phys_addr + size - 1));
             return -EINVAL;
     }
 
@@ -243,7 +262,7 @@ int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
                                           KVM_MEM_LOG_DIRTY_PAGES);
 }
 
-int kvm_set_migration_log(int enable)
+static int kvm_set_migration_log(int enable)
 {
     KVMState *s = kvm_state;
     KVMSlot *mem;
@@ -265,6 +284,11 @@ int kvm_set_migration_log(int enable)
     return 0;
 }
 
+static int test_le_bit(unsigned long nr, unsigned char *addr)
+{
+    return (addr[nr >> 3] >> (nr & 7)) & 1;
+}
+
 /**
  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
@@ -273,8 +297,8 @@ int kvm_set_migration_log(int enable)
  * @start_add: start of logged region.
  * @end_addr: end of logged region.
  */
-int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
-                                   target_phys_addr_t end_addr)
+static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
+                                         target_phys_addr_t end_addr)
 {
     KVMState *s = kvm_state;
     unsigned long size, allocated_size = 0;
@@ -311,12 +335,10 @@ int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
         for (phys_addr = mem->start_addr, addr = mem->phys_offset;
              phys_addr < mem->start_addr + mem->memory_size;
              phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
-            unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
+            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
             unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
-            unsigned word = nr / (sizeof(*bitmap) * 8);
-            unsigned bit = nr % (sizeof(*bitmap) * 8);
 
-            if ((bitmap[word] >> bit) & 1) {
+            if (test_le_bit(nr, bitmap)) {
                 cpu_physical_memory_set_dirty(addr);
             }
         }
@@ -377,13 +399,176 @@ int kvm_check_extension(KVMState *s, unsigned int extension)
     return ret;
 }
 
-static void kvm_reset_vcpus(void *opaque)
+static void kvm_set_phys_mem(target_phys_addr_t start_addr,
+                            ram_addr_t size,
+                            ram_addr_t phys_offset)
+{
+    KVMState *s = kvm_state;
+    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
+    KVMSlot *mem, old;
+    int err;
+
+    if (start_addr & ~TARGET_PAGE_MASK) {
+        if (flags >= IO_MEM_UNASSIGNED) {
+            if (!kvm_lookup_overlapping_slot(s, start_addr,
+                                             start_addr + size)) {
+                return;
+            }
+            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
+        } else {
+            fprintf(stderr, "Only page-aligned memory slots supported\n");
+        }
+        abort();
+    }
+
+    /* KVM does not support read-only slots */
+    phys_offset &= ~IO_MEM_ROM;
+
+    while (1) {
+        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
+        if (!mem) {
+            break;
+        }
+
+        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
+            (start_addr + size <= mem->start_addr + mem->memory_size) &&
+            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
+            /* The new slot fits into the existing one and comes with
+             * identical parameters - nothing to be done. */
+            return;
+        }
+
+        old = *mem;
+
+        /* unregister the overlapping slot */
+        mem->memory_size = 0;
+        err = kvm_set_user_memory_region(s, mem);
+        if (err) {
+            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
+                    __func__, strerror(-err));
+            abort();
+        }
+
+        /* Workaround for older KVM versions: we can't join slots, even not by
+         * unregistering the previous ones and then registering the larger
+         * slot. We have to maintain the existing fragmentation. Sigh.
+         *
+         * This workaround assumes that the new slot starts at the same
+         * address as the first existing one. If not or if some overlapping
+         * slot comes around later, we will fail (not seen in practice so far)
+         * - and actually require a recent KVM version. */
+        if (s->broken_set_mem_region &&
+            old.start_addr == start_addr && old.memory_size < size &&
+            flags < IO_MEM_UNASSIGNED) {
+            mem = kvm_alloc_slot(s);
+            mem->memory_size = old.memory_size;
+            mem->start_addr = old.start_addr;
+            mem->phys_offset = old.phys_offset;
+            mem->flags = 0;
+
+            err = kvm_set_user_memory_region(s, mem);
+            if (err) {
+                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
+                        strerror(-err));
+                abort();
+            }
+
+            start_addr += old.memory_size;
+            phys_offset += old.memory_size;
+            size -= old.memory_size;
+            continue;
+        }
+
+        /* register prefix slot */
+        if (old.start_addr < start_addr) {
+            mem = kvm_alloc_slot(s);
+            mem->memory_size = start_addr - old.start_addr;
+            mem->start_addr = old.start_addr;
+            mem->phys_offset = old.phys_offset;
+            mem->flags = 0;
+
+            err = kvm_set_user_memory_region(s, mem);
+            if (err) {
+                fprintf(stderr, "%s: error registering prefix slot: %s\n",
+                        __func__, strerror(-err));
+                abort();
+            }
+        }
+
+        /* register suffix slot */
+        if (old.start_addr + old.memory_size > start_addr + size) {
+            ram_addr_t size_delta;
+
+            mem = kvm_alloc_slot(s);
+            mem->start_addr = start_addr + size;
+            size_delta = mem->start_addr - old.start_addr;
+            mem->memory_size = old.memory_size - size_delta;
+            mem->phys_offset = old.phys_offset + size_delta;
+            mem->flags = 0;
+
+            err = kvm_set_user_memory_region(s, mem);
+            if (err) {
+                fprintf(stderr, "%s: error registering suffix slot: %s\n",
+                        __func__, strerror(-err));
+                abort();
+            }
+        }
+    }
+
+    /* in case the KVM bug workaround already "consumed" the new slot */
+    if (!size)
+        return;
+
+    /* KVM does not need to know about this memory */
+    if (flags >= IO_MEM_UNASSIGNED)
+        return;
+
+    mem = kvm_alloc_slot(s);
+    mem->memory_size = size;
+    mem->start_addr = start_addr;
+    mem->phys_offset = phys_offset;
+    mem->flags = 0;
+
+    err = kvm_set_user_memory_region(s, mem);
+    if (err) {
+        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
+                strerror(-err));
+        abort();
+    }
+}
+
+static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
+                                 target_phys_addr_t start_addr,
+                                 ram_addr_t size,
+                                 ram_addr_t phys_offset)
+{
+       kvm_set_phys_mem(start_addr, size, phys_offset);
+}
+
+static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
+                                       target_phys_addr_t start_addr,
+                                       target_phys_addr_t end_addr)
+{
+       return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
+}
+
+static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
+                                   int enable)
 {
-    kvm_sync_vcpus();
+       return kvm_set_migration_log(enable);
 }
 
+static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
+       .set_memory = kvm_client_set_memory,
+       .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
+       .migration_log = kvm_client_migration_log,
+};
+
 int kvm_init(int smp_cpus)
 {
+    static const char upgrade_note[] =
+        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
+        "(see http://sourceforge.net/projects/kvm).\n";
     KVMState *s;
     int ret;
     int i;
@@ -396,13 +581,13 @@ int kvm_init(int smp_cpus)
     s = qemu_mallocz(sizeof(KVMState));
 
 #ifdef KVM_CAP_SET_GUEST_DEBUG
-    TAILQ_INIT(&s->kvm_sw_breakpoints);
+    QTAILQ_INIT(&s->kvm_sw_breakpoints);
 #endif
     for (i = 0; i < ARRAY_SIZE(s->slots); i++)
         s->slots[i].slot = i;
 
     s->vmfd = -1;
-    s->fd = open("/dev/kvm", O_RDWR);
+    s->fd = qemu_open("/dev/kvm", O_RDWR);
     if (s->fd == -1) {
         fprintf(stderr, "Could not access KVM kernel module: %m\n");
         ret = -errno;
@@ -434,7 +619,8 @@ int kvm_init(int smp_cpus)
      */
     if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
         ret = -EINVAL;
-        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
+        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
+                upgrade_note);
         goto err;
     }
 
@@ -445,15 +631,15 @@ int kvm_init(int smp_cpus)
         ret = -EINVAL;
 
         fprintf(stderr,
-                "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
-                "Please upgrade to at least kvm-81.\n");
+                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
+                upgrade_note);
         goto err;
     }
 
+    s->coalesced_mmio = 0;
 #ifdef KVM_CAP_COALESCED_MMIO
     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
-#else
-    s->coalesced_mmio = 0;
+    s->coalesced_mmio_ring = NULL;
 #endif
 
     s->broken_set_mem_region = 1;
@@ -464,13 +650,23 @@ int kvm_init(int smp_cpus)
     }
 #endif
 
+    s->vcpu_events = 0;
+#ifdef KVM_CAP_VCPU_EVENTS
+    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
+#endif
+
+    s->robust_singlestep = 0;
+#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
+    s->robust_singlestep =
+        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
+#endif
+
     ret = kvm_arch_init(s, smp_cpus);
     if (ret < 0)
         goto err;
 
-    qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
-
     kvm_state = s;
+    cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
 
     return 0;
 
@@ -486,8 +682,8 @@ err:
     return ret;
 }
 
-static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
-                         int direction, int size, uint32_t count)
+static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
+                         uint32_t count)
 {
     int i;
     uint8_t *ptr = data;
@@ -496,25 +692,25 @@ static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
         if (direction == KVM_EXIT_IO_IN) {
             switch (size) {
             case 1:
-                stb_p(ptr, cpu_inb(env, port));
+                stb_p(ptr, cpu_inb(port));
                 break;
             case 2:
-                stw_p(ptr, cpu_inw(env, port));
+                stw_p(ptr, cpu_inw(port));
                 break;
             case 4:
-                stl_p(ptr, cpu_inl(env, port));
+                stl_p(ptr, cpu_inl(port));
                 break;
             }
         } else {
             switch (size) {
             case 1:
-                cpu_outb(env, port, ldub_p(ptr));
+                cpu_outb(port, ldub_p(ptr));
                 break;
             case 2:
-                cpu_outw(env, port, lduw_p(ptr));
+                cpu_outw(port, lduw_p(ptr));
                 break;
             case 4:
-                cpu_outl(env, port, ldl_p(ptr));
+                cpu_outl(port, ldl_p(ptr));
                 break;
             }
         }
@@ -525,27 +721,45 @@ static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
     return 1;
 }
 
-static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
+void kvm_flush_coalesced_mmio_buffer(void)
 {
 #ifdef KVM_CAP_COALESCED_MMIO
     KVMState *s = kvm_state;
-    if (s->coalesced_mmio) {
-        struct kvm_coalesced_mmio_ring *ring;
-
-        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
+    if (s->coalesced_mmio_ring) {
+        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
         while (ring->first != ring->last) {
             struct kvm_coalesced_mmio *ent;
 
             ent = &ring->coalesced_mmio[ring->first];
 
             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
-            /* FIXME smp_wmb() */
+            smp_wmb();
             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
         }
     }
 #endif
 }
 
+void kvm_cpu_synchronize_state(CPUState *env)
+{
+    if (!env->kvm_vcpu_dirty) {
+        kvm_arch_get_registers(env);
+        env->kvm_vcpu_dirty = 1;
+    }
+}
+
+void kvm_cpu_synchronize_post_reset(CPUState *env)
+{
+    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
+    env->kvm_vcpu_dirty = 0;
+}
+
+void kvm_cpu_synchronize_post_init(CPUState *env)
+{
+    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
+    env->kvm_vcpu_dirty = 0;
+}
+
 int kvm_cpu_exec(CPUState *env)
 {
     struct kvm_run *run = env->kvm_run;
@@ -554,18 +768,27 @@ int kvm_cpu_exec(CPUState *env)
     dprintf("kvm_cpu_exec()\n");
 
     do {
-        kvm_arch_pre_run(env, run);
-
+#ifndef CONFIG_IOTHREAD
         if (env->exit_request) {
             dprintf("interrupt exit requested\n");
             ret = 0;
             break;
         }
+#endif
+
+        if (env->kvm_vcpu_dirty) {
+            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
+            env->kvm_vcpu_dirty = 0;
+        }
 
+        kvm_arch_pre_run(env, run);
+        qemu_mutex_unlock_iothread();
         ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
+        qemu_mutex_lock_iothread();
         kvm_arch_post_run(env, run);
 
         if (ret == -EINTR || ret == -EAGAIN) {
+            cpu_exit(env);
             dprintf("io window exit\n");
             ret = 0;
             break;
@@ -576,13 +799,13 @@ int kvm_cpu_exec(CPUState *env)
             abort();
         }
 
-        kvm_run_coalesced_mmio(env, run);
+        kvm_flush_coalesced_mmio_buffer();
 
         ret = 0; /* exit loop */
         switch (run->exit_reason) {
         case KVM_EXIT_IO:
             dprintf("handle_io\n");
-            ret = kvm_handle_io(env, run->io.port,
+            ret = kvm_handle_io(run->io.port,
                                 (uint8_t *)run + run->io.data_offset,
                                 run->io.direction,
                                 run->io.size,
@@ -641,144 +864,6 @@ int kvm_cpu_exec(CPUState *env)
     return ret;
 }
 
-void kvm_set_phys_mem(target_phys_addr_t start_addr,
-                      ram_addr_t size,
-                      ram_addr_t phys_offset)
-{
-    KVMState *s = kvm_state;
-    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
-    KVMSlot *mem, old;
-    int err;
-
-    if (start_addr & ~TARGET_PAGE_MASK) {
-        if (flags >= IO_MEM_UNASSIGNED) {
-            if (!kvm_lookup_overlapping_slot(s, start_addr,
-                                             start_addr + size)) {
-                return;
-            }
-            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
-        } else {
-            fprintf(stderr, "Only page-aligned memory slots supported\n");
-        }
-        abort();
-    }
-
-    /* KVM does not support read-only slots */
-    phys_offset &= ~IO_MEM_ROM;
-
-    while (1) {
-        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
-        if (!mem) {
-            break;
-        }
-
-        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
-            (start_addr + size <= mem->start_addr + mem->memory_size) &&
-            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
-            /* The new slot fits into the existing one and comes with
-             * identical parameters - nothing to be done. */
-            return;
-        }
-
-        old = *mem;
-
-        /* unregister the overlapping slot */
-        mem->memory_size = 0;
-        err = kvm_set_user_memory_region(s, mem);
-        if (err) {
-            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
-                    __func__, strerror(-err));
-            abort();
-        }
-
-        /* Workaround for older KVM versions: we can't join slots, even not by
-         * unregistering the previous ones and then registering the larger
-         * slot. We have to maintain the existing fragmentation. Sigh.
-         *
-         * This workaround assumes that the new slot starts at the same
-         * address as the first existing one. If not or if some overlapping
-         * slot comes around later, we will fail (not seen in practice so far)
-         * - and actually require a recent KVM version. */
-        if (s->broken_set_mem_region &&
-            old.start_addr == start_addr && old.memory_size < size &&
-            flags < IO_MEM_UNASSIGNED) {
-            mem = kvm_alloc_slot(s);
-            mem->memory_size = old.memory_size;
-            mem->start_addr = old.start_addr;
-            mem->phys_offset = old.phys_offset;
-            mem->flags = 0;
-
-            err = kvm_set_user_memory_region(s, mem);
-            if (err) {
-                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
-                        strerror(-err));
-                abort();
-            }
-
-            start_addr += old.memory_size;
-            phys_offset += old.memory_size;
-            size -= old.memory_size;
-            continue;
-        }
-
-        /* register prefix slot */
-        if (old.start_addr < start_addr) {
-            mem = kvm_alloc_slot(s);
-            mem->memory_size = start_addr - old.start_addr;
-            mem->start_addr = old.start_addr;
-            mem->phys_offset = old.phys_offset;
-            mem->flags = 0;
-
-            err = kvm_set_user_memory_region(s, mem);
-            if (err) {
-                fprintf(stderr, "%s: error registering prefix slot: %s\n",
-                        __func__, strerror(-err));
-                abort();
-            }
-        }
-
-        /* register suffix slot */
-        if (old.start_addr + old.memory_size > start_addr + size) {
-            ram_addr_t size_delta;
-
-            mem = kvm_alloc_slot(s);
-            mem->start_addr = start_addr + size;
-            size_delta = mem->start_addr - old.start_addr;
-            mem->memory_size = old.memory_size - size_delta;
-            mem->phys_offset = old.phys_offset + size_delta;
-            mem->flags = 0;
-
-            err = kvm_set_user_memory_region(s, mem);
-            if (err) {
-                fprintf(stderr, "%s: error registering suffix slot: %s\n",
-                        __func__, strerror(-err));
-                abort();
-            }
-        }
-    }
-
-    /* in case the KVM bug workaround already "consumed" the new slot */
-    if (!size)
-        return;
-
-    /* KVM does not need to know about this memory */
-    if (flags >= IO_MEM_UNASSIGNED)
-        return;
-
-    mem = kvm_alloc_slot(s);
-    mem->memory_size = size;
-    mem->start_addr = start_addr;
-    mem->phys_offset = phys_offset;
-    mem->flags = 0;
-
-    err = kvm_set_user_memory_region(s, mem);
-    if (err) {
-        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
-                strerror(-err));
-        abort();
-    }
-}
-
 int kvm_ioctl(KVMState *s, int type, ...)
 {
     int ret;
@@ -841,6 +926,16 @@ int kvm_has_sync_mmu(void)
 #endif
 }
 
+int kvm_has_vcpu_events(void)
+{
+    return kvm_state->vcpu_events;
+}
+
+int kvm_has_robust_singlestep(void)
+{
+    return kvm_state->robust_singlestep;
+}
+
 void kvm_setup_guest_memory(void *start, size_t size)
 {
     if (!kvm_has_sync_mmu()) {
@@ -860,12 +955,22 @@ void kvm_setup_guest_memory(void *start, size_t size)
 }
 
 #ifdef KVM_CAP_SET_GUEST_DEBUG
+static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
+{
+#ifdef CONFIG_IOTHREAD
+    if (env != cpu_single_env) {
+        abort();
+    }
+#endif
+    func(data);
+}
+
 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
                                                  target_ulong pc)
 {
     struct kvm_sw_breakpoint *bp;
 
-    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
+    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
         if (bp->pc == pc)
             return bp;
     }
@@ -874,21 +979,37 @@ struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
 
 int kvm_sw_breakpoints_active(CPUState *env)
 {
-    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
+    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
+}
+
+struct kvm_set_guest_debug_data {
+    struct kvm_guest_debug dbg;
+    CPUState *env;
+    int err;
+};
+
+static void kvm_invoke_set_guest_debug(void *data)
+{
+    struct kvm_set_guest_debug_data *dbg_data = data;
+    CPUState *env = dbg_data->env;
+
+    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
 }
 
 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
 {
-    struct kvm_guest_debug dbg;
+    struct kvm_set_guest_debug_data data;
 
-    dbg.control = 0;
-    if (env->singlestep_enabled)
-        dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
+    data.dbg.control = reinject_trap;
 
-    kvm_arch_update_guest_debug(env, &dbg);
-    dbg.control |= reinject_trap;
+    if (env->singlestep_enabled) {
+        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
+    }
+    kvm_arch_update_guest_debug(env, &data.dbg);
+    data.env = env;
 
-    return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
+    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
+    return data.err;
 }
 
 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
@@ -917,7 +1038,7 @@ int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
             return err;
         }
 
-        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
+        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
                           bp, entry);
     } else {
         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
@@ -954,7 +1075,7 @@ int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
         if (err)
             return err;
 
-        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
+        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
         qemu_free(bp);
     } else {
         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
@@ -976,7 +1097,7 @@ void kvm_remove_all_breakpoints(CPUState *current_env)
     KVMState *s = current_env->kvm_state;
     CPUState *env;
 
-    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
+    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
         if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
             /* Try harder to find a CPU that currently sees the breakpoint. */
             for (env = first_cpu; env != NULL; env = env->next_cpu) {
@@ -1014,3 +1135,21 @@ void kvm_remove_all_breakpoints(CPUState *current_env)
 {
 }
 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
+
+int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
+{
+    struct kvm_signal_mask *sigmask;
+    int r;
+
+    if (!sigset)
+        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
+
+    sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
+
+    sigmask->len = 8;
+    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
+    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
+    free(sigmask);
+
+    return r;
+}